sock.c revision f7b86bfe8d9f10e5a9fcacf52dddf29d0d58a33b
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115#include <linux/user_namespace.h>
116#include <linux/static_key.h>
117#include <linux/memcontrol.h>
118#include <linux/prefetch.h>
119
120#include <asm/uaccess.h>
121
122#include <linux/netdevice.h>
123#include <net/protocol.h>
124#include <linux/skbuff.h>
125#include <net/net_namespace.h>
126#include <net/request_sock.h>
127#include <net/sock.h>
128#include <linux/net_tstamp.h>
129#include <net/xfrm.h>
130#include <linux/ipsec.h>
131#include <net/cls_cgroup.h>
132#include <net/netprio_cgroup.h>
133
134#include <linux/filter.h>
135
136#include <trace/events/sock.h>
137
138#ifdef CONFIG_INET
139#include <net/tcp.h>
140#endif
141
142static DEFINE_MUTEX(proto_list_mutex);
143static LIST_HEAD(proto_list);
144
145#ifdef CONFIG_MEMCG_KMEM
146int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147{
148	struct proto *proto;
149	int ret = 0;
150
151	mutex_lock(&proto_list_mutex);
152	list_for_each_entry(proto, &proto_list, node) {
153		if (proto->init_cgroup) {
154			ret = proto->init_cgroup(memcg, ss);
155			if (ret)
156				goto out;
157		}
158	}
159
160	mutex_unlock(&proto_list_mutex);
161	return ret;
162out:
163	list_for_each_entry_continue_reverse(proto, &proto_list, node)
164		if (proto->destroy_cgroup)
165			proto->destroy_cgroup(memcg);
166	mutex_unlock(&proto_list_mutex);
167	return ret;
168}
169
170void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171{
172	struct proto *proto;
173
174	mutex_lock(&proto_list_mutex);
175	list_for_each_entry_reverse(proto, &proto_list, node)
176		if (proto->destroy_cgroup)
177			proto->destroy_cgroup(memcg);
178	mutex_unlock(&proto_list_mutex);
179}
180#endif
181
182/*
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
185 */
186static struct lock_class_key af_family_keys[AF_MAX];
187static struct lock_class_key af_family_slock_keys[AF_MAX];
188
189struct static_key memcg_socket_limit_enabled;
190EXPORT_SYMBOL(memcg_socket_limit_enabled);
191
192/*
193 * Make lock validator output more readable. (we pre-construct these
194 * strings build-time, so that runtime initialization of socket
195 * locks is fast):
196 */
197static const char *const af_family_key_strings[AF_MAX+1] = {
198  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
199  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
200  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
201  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
202  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
203  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
204  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
205  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
206  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
207  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
208  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
209  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
210  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
211  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
212};
213static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
215  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
216  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
217  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
218  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
219  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
220  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
221  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
222  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
223  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
224  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
225  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
226  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
227  "slock-AF_NFC"   , "slock-AF_MAX"
228};
229static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
231  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
232  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
233  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
234  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
235  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
236  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
237  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
238  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
239  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
240  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
241  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
242  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
243  "clock-AF_NFC"   , "clock-AF_MAX"
244};
245
246/*
247 * sk_callback_lock locking rules are per-address-family,
248 * so split the lock classes by using a per-AF key:
249 */
250static struct lock_class_key af_callback_keys[AF_MAX];
251
252/* Take into consideration the size of the struct sk_buff overhead in the
253 * determination of these values, since that is non-constant across
254 * platforms.  This makes socket queueing behavior and performance
255 * not depend upon such differences.
256 */
257#define _SK_MEM_PACKETS		256
258#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
259#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
261
262/* Run time adjustable parameters. */
263__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264EXPORT_SYMBOL(sysctl_wmem_max);
265__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266EXPORT_SYMBOL(sysctl_rmem_max);
267__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
269
270/* Maximal space eaten by iovec or ancillary data plus some space */
271int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272EXPORT_SYMBOL(sysctl_optmem_max);
273
274struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
275EXPORT_SYMBOL_GPL(memalloc_socks);
276
277/**
278 * sk_set_memalloc - sets %SOCK_MEMALLOC
279 * @sk: socket to set it on
280 *
281 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
282 * It's the responsibility of the admin to adjust min_free_kbytes
283 * to meet the requirements
284 */
285void sk_set_memalloc(struct sock *sk)
286{
287	sock_set_flag(sk, SOCK_MEMALLOC);
288	sk->sk_allocation |= __GFP_MEMALLOC;
289	static_key_slow_inc(&memalloc_socks);
290}
291EXPORT_SYMBOL_GPL(sk_set_memalloc);
292
293void sk_clear_memalloc(struct sock *sk)
294{
295	sock_reset_flag(sk, SOCK_MEMALLOC);
296	sk->sk_allocation &= ~__GFP_MEMALLOC;
297	static_key_slow_dec(&memalloc_socks);
298
299	/*
300	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
301	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
302	 * it has rmem allocations there is a risk that the user of the
303	 * socket cannot make forward progress due to exceeding the rmem
304	 * limits. By rights, sk_clear_memalloc() should only be called
305	 * on sockets being torn down but warn and reset the accounting if
306	 * that assumption breaks.
307	 */
308	if (WARN_ON(sk->sk_forward_alloc))
309		sk_mem_reclaim(sk);
310}
311EXPORT_SYMBOL_GPL(sk_clear_memalloc);
312
313int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
314{
315	int ret;
316	unsigned long pflags = current->flags;
317
318	/* these should have been dropped before queueing */
319	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
320
321	current->flags |= PF_MEMALLOC;
322	ret = sk->sk_backlog_rcv(sk, skb);
323	tsk_restore_flags(current, pflags, PF_MEMALLOC);
324
325	return ret;
326}
327EXPORT_SYMBOL(__sk_backlog_rcv);
328
329static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
330{
331	struct timeval tv;
332
333	if (optlen < sizeof(tv))
334		return -EINVAL;
335	if (copy_from_user(&tv, optval, sizeof(tv)))
336		return -EFAULT;
337	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
338		return -EDOM;
339
340	if (tv.tv_sec < 0) {
341		static int warned __read_mostly;
342
343		*timeo_p = 0;
344		if (warned < 10 && net_ratelimit()) {
345			warned++;
346			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
347				__func__, current->comm, task_pid_nr(current));
348		}
349		return 0;
350	}
351	*timeo_p = MAX_SCHEDULE_TIMEOUT;
352	if (tv.tv_sec == 0 && tv.tv_usec == 0)
353		return 0;
354	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
355		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
356	return 0;
357}
358
359static void sock_warn_obsolete_bsdism(const char *name)
360{
361	static int warned;
362	static char warncomm[TASK_COMM_LEN];
363	if (strcmp(warncomm, current->comm) && warned < 5) {
364		strcpy(warncomm,  current->comm);
365		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
366			warncomm, name);
367		warned++;
368	}
369}
370
371#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
372
373static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
374{
375	if (sk->sk_flags & flags) {
376		sk->sk_flags &= ~flags;
377		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
378			net_disable_timestamp();
379	}
380}
381
382
383int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
384{
385	int err;
386	int skb_len;
387	unsigned long flags;
388	struct sk_buff_head *list = &sk->sk_receive_queue;
389
390	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
391		atomic_inc(&sk->sk_drops);
392		trace_sock_rcvqueue_full(sk, skb);
393		return -ENOMEM;
394	}
395
396	err = sk_filter(sk, skb);
397	if (err)
398		return err;
399
400	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
401		atomic_inc(&sk->sk_drops);
402		return -ENOBUFS;
403	}
404
405	skb->dev = NULL;
406	skb_set_owner_r(skb, sk);
407
408	/* Cache the SKB length before we tack it onto the receive
409	 * queue.  Once it is added it no longer belongs to us and
410	 * may be freed by other threads of control pulling packets
411	 * from the queue.
412	 */
413	skb_len = skb->len;
414
415	/* we escape from rcu protected region, make sure we dont leak
416	 * a norefcounted dst
417	 */
418	skb_dst_force(skb);
419
420	spin_lock_irqsave(&list->lock, flags);
421	skb->dropcount = atomic_read(&sk->sk_drops);
422	__skb_queue_tail(list, skb);
423	spin_unlock_irqrestore(&list->lock, flags);
424
425	if (!sock_flag(sk, SOCK_DEAD))
426		sk->sk_data_ready(sk, skb_len);
427	return 0;
428}
429EXPORT_SYMBOL(sock_queue_rcv_skb);
430
431int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
432{
433	int rc = NET_RX_SUCCESS;
434
435	if (sk_filter(sk, skb))
436		goto discard_and_relse;
437
438	skb->dev = NULL;
439
440	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
441		atomic_inc(&sk->sk_drops);
442		goto discard_and_relse;
443	}
444	if (nested)
445		bh_lock_sock_nested(sk);
446	else
447		bh_lock_sock(sk);
448	if (!sock_owned_by_user(sk)) {
449		/*
450		 * trylock + unlock semantics:
451		 */
452		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
453
454		rc = sk_backlog_rcv(sk, skb);
455
456		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
457	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
458		bh_unlock_sock(sk);
459		atomic_inc(&sk->sk_drops);
460		goto discard_and_relse;
461	}
462
463	bh_unlock_sock(sk);
464out:
465	sock_put(sk);
466	return rc;
467discard_and_relse:
468	kfree_skb(skb);
469	goto out;
470}
471EXPORT_SYMBOL(sk_receive_skb);
472
473void sk_reset_txq(struct sock *sk)
474{
475	sk_tx_queue_clear(sk);
476}
477EXPORT_SYMBOL(sk_reset_txq);
478
479struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
480{
481	struct dst_entry *dst = __sk_dst_get(sk);
482
483	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
484		sk_tx_queue_clear(sk);
485		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
486		dst_release(dst);
487		return NULL;
488	}
489
490	return dst;
491}
492EXPORT_SYMBOL(__sk_dst_check);
493
494struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
495{
496	struct dst_entry *dst = sk_dst_get(sk);
497
498	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
499		sk_dst_reset(sk);
500		dst_release(dst);
501		return NULL;
502	}
503
504	return dst;
505}
506EXPORT_SYMBOL(sk_dst_check);
507
508static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
509{
510	int ret = -ENOPROTOOPT;
511#ifdef CONFIG_NETDEVICES
512	struct net *net = sock_net(sk);
513	char devname[IFNAMSIZ];
514	int index;
515
516	/* Sorry... */
517	ret = -EPERM;
518	if (!capable(CAP_NET_RAW))
519		goto out;
520
521	ret = -EINVAL;
522	if (optlen < 0)
523		goto out;
524
525	/* Bind this socket to a particular device like "eth0",
526	 * as specified in the passed interface name. If the
527	 * name is "" or the option length is zero the socket
528	 * is not bound.
529	 */
530	if (optlen > IFNAMSIZ - 1)
531		optlen = IFNAMSIZ - 1;
532	memset(devname, 0, sizeof(devname));
533
534	ret = -EFAULT;
535	if (copy_from_user(devname, optval, optlen))
536		goto out;
537
538	index = 0;
539	if (devname[0] != '\0') {
540		struct net_device *dev;
541
542		rcu_read_lock();
543		dev = dev_get_by_name_rcu(net, devname);
544		if (dev)
545			index = dev->ifindex;
546		rcu_read_unlock();
547		ret = -ENODEV;
548		if (!dev)
549			goto out;
550	}
551
552	lock_sock(sk);
553	sk->sk_bound_dev_if = index;
554	sk_dst_reset(sk);
555	release_sock(sk);
556
557	ret = 0;
558
559out:
560#endif
561
562	return ret;
563}
564
565static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
566{
567	if (valbool)
568		sock_set_flag(sk, bit);
569	else
570		sock_reset_flag(sk, bit);
571}
572
573/*
574 *	This is meant for all protocols to use and covers goings on
575 *	at the socket level. Everything here is generic.
576 */
577
578int sock_setsockopt(struct socket *sock, int level, int optname,
579		    char __user *optval, unsigned int optlen)
580{
581	struct sock *sk = sock->sk;
582	int val;
583	int valbool;
584	struct linger ling;
585	int ret = 0;
586
587	/*
588	 *	Options without arguments
589	 */
590
591	if (optname == SO_BINDTODEVICE)
592		return sock_bindtodevice(sk, optval, optlen);
593
594	if (optlen < sizeof(int))
595		return -EINVAL;
596
597	if (get_user(val, (int __user *)optval))
598		return -EFAULT;
599
600	valbool = val ? 1 : 0;
601
602	lock_sock(sk);
603
604	switch (optname) {
605	case SO_DEBUG:
606		if (val && !capable(CAP_NET_ADMIN))
607			ret = -EACCES;
608		else
609			sock_valbool_flag(sk, SOCK_DBG, valbool);
610		break;
611	case SO_REUSEADDR:
612		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
613		break;
614	case SO_TYPE:
615	case SO_PROTOCOL:
616	case SO_DOMAIN:
617	case SO_ERROR:
618		ret = -ENOPROTOOPT;
619		break;
620	case SO_DONTROUTE:
621		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
622		break;
623	case SO_BROADCAST:
624		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
625		break;
626	case SO_SNDBUF:
627		/* Don't error on this BSD doesn't and if you think
628		 * about it this is right. Otherwise apps have to
629		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
630		 * are treated in BSD as hints
631		 */
632		val = min_t(u32, val, sysctl_wmem_max);
633set_sndbuf:
634		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
635		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
636		/* Wake up sending tasks if we upped the value. */
637		sk->sk_write_space(sk);
638		break;
639
640	case SO_SNDBUFFORCE:
641		if (!capable(CAP_NET_ADMIN)) {
642			ret = -EPERM;
643			break;
644		}
645		goto set_sndbuf;
646
647	case SO_RCVBUF:
648		/* Don't error on this BSD doesn't and if you think
649		 * about it this is right. Otherwise apps have to
650		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
651		 * are treated in BSD as hints
652		 */
653		val = min_t(u32, val, sysctl_rmem_max);
654set_rcvbuf:
655		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
656		/*
657		 * We double it on the way in to account for
658		 * "struct sk_buff" etc. overhead.   Applications
659		 * assume that the SO_RCVBUF setting they make will
660		 * allow that much actual data to be received on that
661		 * socket.
662		 *
663		 * Applications are unaware that "struct sk_buff" and
664		 * other overheads allocate from the receive buffer
665		 * during socket buffer allocation.
666		 *
667		 * And after considering the possible alternatives,
668		 * returning the value we actually used in getsockopt
669		 * is the most desirable behavior.
670		 */
671		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
672		break;
673
674	case SO_RCVBUFFORCE:
675		if (!capable(CAP_NET_ADMIN)) {
676			ret = -EPERM;
677			break;
678		}
679		goto set_rcvbuf;
680
681	case SO_KEEPALIVE:
682#ifdef CONFIG_INET
683		if (sk->sk_protocol == IPPROTO_TCP &&
684		    sk->sk_type == SOCK_STREAM)
685			tcp_set_keepalive(sk, valbool);
686#endif
687		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
688		break;
689
690	case SO_OOBINLINE:
691		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
692		break;
693
694	case SO_NO_CHECK:
695		sk->sk_no_check = valbool;
696		break;
697
698	case SO_PRIORITY:
699		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
700			sk->sk_priority = val;
701		else
702			ret = -EPERM;
703		break;
704
705	case SO_LINGER:
706		if (optlen < sizeof(ling)) {
707			ret = -EINVAL;	/* 1003.1g */
708			break;
709		}
710		if (copy_from_user(&ling, optval, sizeof(ling))) {
711			ret = -EFAULT;
712			break;
713		}
714		if (!ling.l_onoff)
715			sock_reset_flag(sk, SOCK_LINGER);
716		else {
717#if (BITS_PER_LONG == 32)
718			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
719				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
720			else
721#endif
722				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
723			sock_set_flag(sk, SOCK_LINGER);
724		}
725		break;
726
727	case SO_BSDCOMPAT:
728		sock_warn_obsolete_bsdism("setsockopt");
729		break;
730
731	case SO_PASSCRED:
732		if (valbool)
733			set_bit(SOCK_PASSCRED, &sock->flags);
734		else
735			clear_bit(SOCK_PASSCRED, &sock->flags);
736		break;
737
738	case SO_TIMESTAMP:
739	case SO_TIMESTAMPNS:
740		if (valbool)  {
741			if (optname == SO_TIMESTAMP)
742				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
743			else
744				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
745			sock_set_flag(sk, SOCK_RCVTSTAMP);
746			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
747		} else {
748			sock_reset_flag(sk, SOCK_RCVTSTAMP);
749			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
750		}
751		break;
752
753	case SO_TIMESTAMPING:
754		if (val & ~SOF_TIMESTAMPING_MASK) {
755			ret = -EINVAL;
756			break;
757		}
758		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
759				  val & SOF_TIMESTAMPING_TX_HARDWARE);
760		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
761				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
762		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
763				  val & SOF_TIMESTAMPING_RX_HARDWARE);
764		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
765			sock_enable_timestamp(sk,
766					      SOCK_TIMESTAMPING_RX_SOFTWARE);
767		else
768			sock_disable_timestamp(sk,
769					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
770		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
771				  val & SOF_TIMESTAMPING_SOFTWARE);
772		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
773				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
774		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
775				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
776		break;
777
778	case SO_RCVLOWAT:
779		if (val < 0)
780			val = INT_MAX;
781		sk->sk_rcvlowat = val ? : 1;
782		break;
783
784	case SO_RCVTIMEO:
785		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
786		break;
787
788	case SO_SNDTIMEO:
789		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
790		break;
791
792	case SO_ATTACH_FILTER:
793		ret = -EINVAL;
794		if (optlen == sizeof(struct sock_fprog)) {
795			struct sock_fprog fprog;
796
797			ret = -EFAULT;
798			if (copy_from_user(&fprog, optval, sizeof(fprog)))
799				break;
800
801			ret = sk_attach_filter(&fprog, sk);
802		}
803		break;
804
805	case SO_DETACH_FILTER:
806		ret = sk_detach_filter(sk);
807		break;
808
809	case SO_PASSSEC:
810		if (valbool)
811			set_bit(SOCK_PASSSEC, &sock->flags);
812		else
813			clear_bit(SOCK_PASSSEC, &sock->flags);
814		break;
815	case SO_MARK:
816		if (!capable(CAP_NET_ADMIN))
817			ret = -EPERM;
818		else
819			sk->sk_mark = val;
820		break;
821
822		/* We implement the SO_SNDLOWAT etc to
823		   not be settable (1003.1g 5.3) */
824	case SO_RXQ_OVFL:
825		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
826		break;
827
828	case SO_WIFI_STATUS:
829		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
830		break;
831
832	case SO_PEEK_OFF:
833		if (sock->ops->set_peek_off)
834			sock->ops->set_peek_off(sk, val);
835		else
836			ret = -EOPNOTSUPP;
837		break;
838
839	case SO_NOFCS:
840		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
841		break;
842
843	default:
844		ret = -ENOPROTOOPT;
845		break;
846	}
847	release_sock(sk);
848	return ret;
849}
850EXPORT_SYMBOL(sock_setsockopt);
851
852
853void cred_to_ucred(struct pid *pid, const struct cred *cred,
854		   struct ucred *ucred)
855{
856	ucred->pid = pid_vnr(pid);
857	ucred->uid = ucred->gid = -1;
858	if (cred) {
859		struct user_namespace *current_ns = current_user_ns();
860
861		ucred->uid = from_kuid_munged(current_ns, cred->euid);
862		ucred->gid = from_kgid_munged(current_ns, cred->egid);
863	}
864}
865EXPORT_SYMBOL_GPL(cred_to_ucred);
866
867int sock_getsockopt(struct socket *sock, int level, int optname,
868		    char __user *optval, int __user *optlen)
869{
870	struct sock *sk = sock->sk;
871
872	union {
873		int val;
874		struct linger ling;
875		struct timeval tm;
876	} v;
877
878	int lv = sizeof(int);
879	int len;
880
881	if (get_user(len, optlen))
882		return -EFAULT;
883	if (len < 0)
884		return -EINVAL;
885
886	memset(&v, 0, sizeof(v));
887
888	switch (optname) {
889	case SO_DEBUG:
890		v.val = sock_flag(sk, SOCK_DBG);
891		break;
892
893	case SO_DONTROUTE:
894		v.val = sock_flag(sk, SOCK_LOCALROUTE);
895		break;
896
897	case SO_BROADCAST:
898		v.val = sock_flag(sk, SOCK_BROADCAST);
899		break;
900
901	case SO_SNDBUF:
902		v.val = sk->sk_sndbuf;
903		break;
904
905	case SO_RCVBUF:
906		v.val = sk->sk_rcvbuf;
907		break;
908
909	case SO_REUSEADDR:
910		v.val = sk->sk_reuse;
911		break;
912
913	case SO_KEEPALIVE:
914		v.val = sock_flag(sk, SOCK_KEEPOPEN);
915		break;
916
917	case SO_TYPE:
918		v.val = sk->sk_type;
919		break;
920
921	case SO_PROTOCOL:
922		v.val = sk->sk_protocol;
923		break;
924
925	case SO_DOMAIN:
926		v.val = sk->sk_family;
927		break;
928
929	case SO_ERROR:
930		v.val = -sock_error(sk);
931		if (v.val == 0)
932			v.val = xchg(&sk->sk_err_soft, 0);
933		break;
934
935	case SO_OOBINLINE:
936		v.val = sock_flag(sk, SOCK_URGINLINE);
937		break;
938
939	case SO_NO_CHECK:
940		v.val = sk->sk_no_check;
941		break;
942
943	case SO_PRIORITY:
944		v.val = sk->sk_priority;
945		break;
946
947	case SO_LINGER:
948		lv		= sizeof(v.ling);
949		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
950		v.ling.l_linger	= sk->sk_lingertime / HZ;
951		break;
952
953	case SO_BSDCOMPAT:
954		sock_warn_obsolete_bsdism("getsockopt");
955		break;
956
957	case SO_TIMESTAMP:
958		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
959				!sock_flag(sk, SOCK_RCVTSTAMPNS);
960		break;
961
962	case SO_TIMESTAMPNS:
963		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
964		break;
965
966	case SO_TIMESTAMPING:
967		v.val = 0;
968		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
969			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
970		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
971			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
972		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
973			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
974		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
975			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
976		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
977			v.val |= SOF_TIMESTAMPING_SOFTWARE;
978		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
979			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
980		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
981			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
982		break;
983
984	case SO_RCVTIMEO:
985		lv = sizeof(struct timeval);
986		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
987			v.tm.tv_sec = 0;
988			v.tm.tv_usec = 0;
989		} else {
990			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
991			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
992		}
993		break;
994
995	case SO_SNDTIMEO:
996		lv = sizeof(struct timeval);
997		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
998			v.tm.tv_sec = 0;
999			v.tm.tv_usec = 0;
1000		} else {
1001			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1002			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1003		}
1004		break;
1005
1006	case SO_RCVLOWAT:
1007		v.val = sk->sk_rcvlowat;
1008		break;
1009
1010	case SO_SNDLOWAT:
1011		v.val = 1;
1012		break;
1013
1014	case SO_PASSCRED:
1015		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1016		break;
1017
1018	case SO_PEERCRED:
1019	{
1020		struct ucred peercred;
1021		if (len > sizeof(peercred))
1022			len = sizeof(peercred);
1023		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1024		if (copy_to_user(optval, &peercred, len))
1025			return -EFAULT;
1026		goto lenout;
1027	}
1028
1029	case SO_PEERNAME:
1030	{
1031		char address[128];
1032
1033		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1034			return -ENOTCONN;
1035		if (lv < len)
1036			return -EINVAL;
1037		if (copy_to_user(optval, address, len))
1038			return -EFAULT;
1039		goto lenout;
1040	}
1041
1042	/* Dubious BSD thing... Probably nobody even uses it, but
1043	 * the UNIX standard wants it for whatever reason... -DaveM
1044	 */
1045	case SO_ACCEPTCONN:
1046		v.val = sk->sk_state == TCP_LISTEN;
1047		break;
1048
1049	case SO_PASSSEC:
1050		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1051		break;
1052
1053	case SO_PEERSEC:
1054		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1055
1056	case SO_MARK:
1057		v.val = sk->sk_mark;
1058		break;
1059
1060	case SO_RXQ_OVFL:
1061		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1062		break;
1063
1064	case SO_WIFI_STATUS:
1065		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1066		break;
1067
1068	case SO_PEEK_OFF:
1069		if (!sock->ops->set_peek_off)
1070			return -EOPNOTSUPP;
1071
1072		v.val = sk->sk_peek_off;
1073		break;
1074	case SO_NOFCS:
1075		v.val = sock_flag(sk, SOCK_NOFCS);
1076		break;
1077	case SO_BINDTODEVICE:
1078		v.val = sk->sk_bound_dev_if;
1079		break;
1080	default:
1081		return -ENOPROTOOPT;
1082	}
1083
1084	if (len > lv)
1085		len = lv;
1086	if (copy_to_user(optval, &v, len))
1087		return -EFAULT;
1088lenout:
1089	if (put_user(len, optlen))
1090		return -EFAULT;
1091	return 0;
1092}
1093
1094/*
1095 * Initialize an sk_lock.
1096 *
1097 * (We also register the sk_lock with the lock validator.)
1098 */
1099static inline void sock_lock_init(struct sock *sk)
1100{
1101	sock_lock_init_class_and_name(sk,
1102			af_family_slock_key_strings[sk->sk_family],
1103			af_family_slock_keys + sk->sk_family,
1104			af_family_key_strings[sk->sk_family],
1105			af_family_keys + sk->sk_family);
1106}
1107
1108/*
1109 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1110 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1111 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1112 */
1113static void sock_copy(struct sock *nsk, const struct sock *osk)
1114{
1115#ifdef CONFIG_SECURITY_NETWORK
1116	void *sptr = nsk->sk_security;
1117#endif
1118	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1119
1120	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1121	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1122
1123#ifdef CONFIG_SECURITY_NETWORK
1124	nsk->sk_security = sptr;
1125	security_sk_clone(osk, nsk);
1126#endif
1127}
1128
1129/*
1130 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1131 * un-modified. Special care is taken when initializing object to zero.
1132 */
1133static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1134{
1135	if (offsetof(struct sock, sk_node.next) != 0)
1136		memset(sk, 0, offsetof(struct sock, sk_node.next));
1137	memset(&sk->sk_node.pprev, 0,
1138	       size - offsetof(struct sock, sk_node.pprev));
1139}
1140
1141void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1142{
1143	unsigned long nulls1, nulls2;
1144
1145	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1146	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1147	if (nulls1 > nulls2)
1148		swap(nulls1, nulls2);
1149
1150	if (nulls1 != 0)
1151		memset((char *)sk, 0, nulls1);
1152	memset((char *)sk + nulls1 + sizeof(void *), 0,
1153	       nulls2 - nulls1 - sizeof(void *));
1154	memset((char *)sk + nulls2 + sizeof(void *), 0,
1155	       size - nulls2 - sizeof(void *));
1156}
1157EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1158
1159static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1160		int family)
1161{
1162	struct sock *sk;
1163	struct kmem_cache *slab;
1164
1165	slab = prot->slab;
1166	if (slab != NULL) {
1167		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1168		if (!sk)
1169			return sk;
1170		if (priority & __GFP_ZERO) {
1171			if (prot->clear_sk)
1172				prot->clear_sk(sk, prot->obj_size);
1173			else
1174				sk_prot_clear_nulls(sk, prot->obj_size);
1175		}
1176	} else
1177		sk = kmalloc(prot->obj_size, priority);
1178
1179	if (sk != NULL) {
1180		kmemcheck_annotate_bitfield(sk, flags);
1181
1182		if (security_sk_alloc(sk, family, priority))
1183			goto out_free;
1184
1185		if (!try_module_get(prot->owner))
1186			goto out_free_sec;
1187		sk_tx_queue_clear(sk);
1188	}
1189
1190	return sk;
1191
1192out_free_sec:
1193	security_sk_free(sk);
1194out_free:
1195	if (slab != NULL)
1196		kmem_cache_free(slab, sk);
1197	else
1198		kfree(sk);
1199	return NULL;
1200}
1201
1202static void sk_prot_free(struct proto *prot, struct sock *sk)
1203{
1204	struct kmem_cache *slab;
1205	struct module *owner;
1206
1207	owner = prot->owner;
1208	slab = prot->slab;
1209
1210	security_sk_free(sk);
1211	if (slab != NULL)
1212		kmem_cache_free(slab, sk);
1213	else
1214		kfree(sk);
1215	module_put(owner);
1216}
1217
1218#ifdef CONFIG_CGROUPS
1219#if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1220void sock_update_classid(struct sock *sk)
1221{
1222	u32 classid;
1223
1224	rcu_read_lock();  /* doing current task, which cannot vanish. */
1225	classid = task_cls_classid(current);
1226	rcu_read_unlock();
1227	if (classid != sk->sk_classid)
1228		sk->sk_classid = classid;
1229}
1230EXPORT_SYMBOL(sock_update_classid);
1231#endif
1232
1233#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1234void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1235{
1236	if (in_interrupt())
1237		return;
1238
1239	sk->sk_cgrp_prioidx = task_netprioidx(task);
1240}
1241EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1242#endif
1243#endif
1244
1245/**
1246 *	sk_alloc - All socket objects are allocated here
1247 *	@net: the applicable net namespace
1248 *	@family: protocol family
1249 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1250 *	@prot: struct proto associated with this new sock instance
1251 */
1252struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1253		      struct proto *prot)
1254{
1255	struct sock *sk;
1256
1257	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1258	if (sk) {
1259		sk->sk_family = family;
1260		/*
1261		 * See comment in struct sock definition to understand
1262		 * why we need sk_prot_creator -acme
1263		 */
1264		sk->sk_prot = sk->sk_prot_creator = prot;
1265		sock_lock_init(sk);
1266		sock_net_set(sk, get_net(net));
1267		atomic_set(&sk->sk_wmem_alloc, 1);
1268
1269		sock_update_classid(sk);
1270		sock_update_netprioidx(sk, current);
1271	}
1272
1273	return sk;
1274}
1275EXPORT_SYMBOL(sk_alloc);
1276
1277static void __sk_free(struct sock *sk)
1278{
1279	struct sk_filter *filter;
1280
1281	if (sk->sk_destruct)
1282		sk->sk_destruct(sk);
1283
1284	filter = rcu_dereference_check(sk->sk_filter,
1285				       atomic_read(&sk->sk_wmem_alloc) == 0);
1286	if (filter) {
1287		sk_filter_uncharge(sk, filter);
1288		RCU_INIT_POINTER(sk->sk_filter, NULL);
1289	}
1290
1291	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1292
1293	if (atomic_read(&sk->sk_omem_alloc))
1294		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1295			 __func__, atomic_read(&sk->sk_omem_alloc));
1296
1297	if (sk->sk_peer_cred)
1298		put_cred(sk->sk_peer_cred);
1299	put_pid(sk->sk_peer_pid);
1300	put_net(sock_net(sk));
1301	sk_prot_free(sk->sk_prot_creator, sk);
1302}
1303
1304void sk_free(struct sock *sk)
1305{
1306	/*
1307	 * We subtract one from sk_wmem_alloc and can know if
1308	 * some packets are still in some tx queue.
1309	 * If not null, sock_wfree() will call __sk_free(sk) later
1310	 */
1311	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1312		__sk_free(sk);
1313}
1314EXPORT_SYMBOL(sk_free);
1315
1316/*
1317 * Last sock_put should drop reference to sk->sk_net. It has already
1318 * been dropped in sk_change_net. Taking reference to stopping namespace
1319 * is not an option.
1320 * Take reference to a socket to remove it from hash _alive_ and after that
1321 * destroy it in the context of init_net.
1322 */
1323void sk_release_kernel(struct sock *sk)
1324{
1325	if (sk == NULL || sk->sk_socket == NULL)
1326		return;
1327
1328	sock_hold(sk);
1329	sock_release(sk->sk_socket);
1330	release_net(sock_net(sk));
1331	sock_net_set(sk, get_net(&init_net));
1332	sock_put(sk);
1333}
1334EXPORT_SYMBOL(sk_release_kernel);
1335
1336static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1337{
1338	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1339		sock_update_memcg(newsk);
1340}
1341
1342/**
1343 *	sk_clone_lock - clone a socket, and lock its clone
1344 *	@sk: the socket to clone
1345 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1346 *
1347 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1348 */
1349struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1350{
1351	struct sock *newsk;
1352
1353	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1354	if (newsk != NULL) {
1355		struct sk_filter *filter;
1356
1357		sock_copy(newsk, sk);
1358
1359		/* SANITY */
1360		get_net(sock_net(newsk));
1361		sk_node_init(&newsk->sk_node);
1362		sock_lock_init(newsk);
1363		bh_lock_sock(newsk);
1364		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1365		newsk->sk_backlog.len = 0;
1366
1367		atomic_set(&newsk->sk_rmem_alloc, 0);
1368		/*
1369		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1370		 */
1371		atomic_set(&newsk->sk_wmem_alloc, 1);
1372		atomic_set(&newsk->sk_omem_alloc, 0);
1373		skb_queue_head_init(&newsk->sk_receive_queue);
1374		skb_queue_head_init(&newsk->sk_write_queue);
1375#ifdef CONFIG_NET_DMA
1376		skb_queue_head_init(&newsk->sk_async_wait_queue);
1377#endif
1378
1379		spin_lock_init(&newsk->sk_dst_lock);
1380		rwlock_init(&newsk->sk_callback_lock);
1381		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1382				af_callback_keys + newsk->sk_family,
1383				af_family_clock_key_strings[newsk->sk_family]);
1384
1385		newsk->sk_dst_cache	= NULL;
1386		newsk->sk_wmem_queued	= 0;
1387		newsk->sk_forward_alloc = 0;
1388		newsk->sk_send_head	= NULL;
1389		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1390
1391		sock_reset_flag(newsk, SOCK_DONE);
1392		skb_queue_head_init(&newsk->sk_error_queue);
1393
1394		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1395		if (filter != NULL)
1396			sk_filter_charge(newsk, filter);
1397
1398		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1399			/* It is still raw copy of parent, so invalidate
1400			 * destructor and make plain sk_free() */
1401			newsk->sk_destruct = NULL;
1402			bh_unlock_sock(newsk);
1403			sk_free(newsk);
1404			newsk = NULL;
1405			goto out;
1406		}
1407
1408		newsk->sk_err	   = 0;
1409		newsk->sk_priority = 0;
1410		/*
1411		 * Before updating sk_refcnt, we must commit prior changes to memory
1412		 * (Documentation/RCU/rculist_nulls.txt for details)
1413		 */
1414		smp_wmb();
1415		atomic_set(&newsk->sk_refcnt, 2);
1416
1417		/*
1418		 * Increment the counter in the same struct proto as the master
1419		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1420		 * is the same as sk->sk_prot->socks, as this field was copied
1421		 * with memcpy).
1422		 *
1423		 * This _changes_ the previous behaviour, where
1424		 * tcp_create_openreq_child always was incrementing the
1425		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1426		 * to be taken into account in all callers. -acme
1427		 */
1428		sk_refcnt_debug_inc(newsk);
1429		sk_set_socket(newsk, NULL);
1430		newsk->sk_wq = NULL;
1431
1432		sk_update_clone(sk, newsk);
1433
1434		if (newsk->sk_prot->sockets_allocated)
1435			sk_sockets_allocated_inc(newsk);
1436
1437		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1438			net_enable_timestamp();
1439	}
1440out:
1441	return newsk;
1442}
1443EXPORT_SYMBOL_GPL(sk_clone_lock);
1444
1445void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1446{
1447	__sk_dst_set(sk, dst);
1448	sk->sk_route_caps = dst->dev->features;
1449	if (sk->sk_route_caps & NETIF_F_GSO)
1450		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1451	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1452	if (sk_can_gso(sk)) {
1453		if (dst->header_len) {
1454			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1455		} else {
1456			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1457			sk->sk_gso_max_size = dst->dev->gso_max_size;
1458			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1459		}
1460	}
1461}
1462EXPORT_SYMBOL_GPL(sk_setup_caps);
1463
1464/*
1465 *	Simple resource managers for sockets.
1466 */
1467
1468
1469/*
1470 * Write buffer destructor automatically called from kfree_skb.
1471 */
1472void sock_wfree(struct sk_buff *skb)
1473{
1474	struct sock *sk = skb->sk;
1475	unsigned int len = skb->truesize;
1476
1477	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1478		/*
1479		 * Keep a reference on sk_wmem_alloc, this will be released
1480		 * after sk_write_space() call
1481		 */
1482		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1483		sk->sk_write_space(sk);
1484		len = 1;
1485	}
1486	/*
1487	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1488	 * could not do because of in-flight packets
1489	 */
1490	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1491		__sk_free(sk);
1492}
1493EXPORT_SYMBOL(sock_wfree);
1494
1495/*
1496 * Read buffer destructor automatically called from kfree_skb.
1497 */
1498void sock_rfree(struct sk_buff *skb)
1499{
1500	struct sock *sk = skb->sk;
1501	unsigned int len = skb->truesize;
1502
1503	atomic_sub(len, &sk->sk_rmem_alloc);
1504	sk_mem_uncharge(sk, len);
1505}
1506EXPORT_SYMBOL(sock_rfree);
1507
1508void sock_edemux(struct sk_buff *skb)
1509{
1510	struct sock *sk = skb->sk;
1511
1512#ifdef CONFIG_INET
1513	if (sk->sk_state == TCP_TIME_WAIT)
1514		inet_twsk_put(inet_twsk(sk));
1515	else
1516#endif
1517		sock_put(sk);
1518}
1519EXPORT_SYMBOL(sock_edemux);
1520
1521kuid_t sock_i_uid(struct sock *sk)
1522{
1523	kuid_t uid;
1524
1525	read_lock_bh(&sk->sk_callback_lock);
1526	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1527	read_unlock_bh(&sk->sk_callback_lock);
1528	return uid;
1529}
1530EXPORT_SYMBOL(sock_i_uid);
1531
1532unsigned long sock_i_ino(struct sock *sk)
1533{
1534	unsigned long ino;
1535
1536	read_lock_bh(&sk->sk_callback_lock);
1537	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1538	read_unlock_bh(&sk->sk_callback_lock);
1539	return ino;
1540}
1541EXPORT_SYMBOL(sock_i_ino);
1542
1543/*
1544 * Allocate a skb from the socket's send buffer.
1545 */
1546struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1547			     gfp_t priority)
1548{
1549	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1550		struct sk_buff *skb = alloc_skb(size, priority);
1551		if (skb) {
1552			skb_set_owner_w(skb, sk);
1553			return skb;
1554		}
1555	}
1556	return NULL;
1557}
1558EXPORT_SYMBOL(sock_wmalloc);
1559
1560/*
1561 * Allocate a skb from the socket's receive buffer.
1562 */
1563struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1564			     gfp_t priority)
1565{
1566	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1567		struct sk_buff *skb = alloc_skb(size, priority);
1568		if (skb) {
1569			skb_set_owner_r(skb, sk);
1570			return skb;
1571		}
1572	}
1573	return NULL;
1574}
1575
1576/*
1577 * Allocate a memory block from the socket's option memory buffer.
1578 */
1579void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1580{
1581	if ((unsigned int)size <= sysctl_optmem_max &&
1582	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1583		void *mem;
1584		/* First do the add, to avoid the race if kmalloc
1585		 * might sleep.
1586		 */
1587		atomic_add(size, &sk->sk_omem_alloc);
1588		mem = kmalloc(size, priority);
1589		if (mem)
1590			return mem;
1591		atomic_sub(size, &sk->sk_omem_alloc);
1592	}
1593	return NULL;
1594}
1595EXPORT_SYMBOL(sock_kmalloc);
1596
1597/*
1598 * Free an option memory block.
1599 */
1600void sock_kfree_s(struct sock *sk, void *mem, int size)
1601{
1602	kfree(mem);
1603	atomic_sub(size, &sk->sk_omem_alloc);
1604}
1605EXPORT_SYMBOL(sock_kfree_s);
1606
1607/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1608   I think, these locks should be removed for datagram sockets.
1609 */
1610static long sock_wait_for_wmem(struct sock *sk, long timeo)
1611{
1612	DEFINE_WAIT(wait);
1613
1614	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1615	for (;;) {
1616		if (!timeo)
1617			break;
1618		if (signal_pending(current))
1619			break;
1620		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1621		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1622		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1623			break;
1624		if (sk->sk_shutdown & SEND_SHUTDOWN)
1625			break;
1626		if (sk->sk_err)
1627			break;
1628		timeo = schedule_timeout(timeo);
1629	}
1630	finish_wait(sk_sleep(sk), &wait);
1631	return timeo;
1632}
1633
1634
1635/*
1636 *	Generic send/receive buffer handlers
1637 */
1638
1639struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1640				     unsigned long data_len, int noblock,
1641				     int *errcode)
1642{
1643	struct sk_buff *skb;
1644	gfp_t gfp_mask;
1645	long timeo;
1646	int err;
1647	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1648
1649	err = -EMSGSIZE;
1650	if (npages > MAX_SKB_FRAGS)
1651		goto failure;
1652
1653	gfp_mask = sk->sk_allocation;
1654	if (gfp_mask & __GFP_WAIT)
1655		gfp_mask |= __GFP_REPEAT;
1656
1657	timeo = sock_sndtimeo(sk, noblock);
1658	while (1) {
1659		err = sock_error(sk);
1660		if (err != 0)
1661			goto failure;
1662
1663		err = -EPIPE;
1664		if (sk->sk_shutdown & SEND_SHUTDOWN)
1665			goto failure;
1666
1667		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1668			skb = alloc_skb(header_len, gfp_mask);
1669			if (skb) {
1670				int i;
1671
1672				/* No pages, we're done... */
1673				if (!data_len)
1674					break;
1675
1676				skb->truesize += data_len;
1677				skb_shinfo(skb)->nr_frags = npages;
1678				for (i = 0; i < npages; i++) {
1679					struct page *page;
1680
1681					page = alloc_pages(sk->sk_allocation, 0);
1682					if (!page) {
1683						err = -ENOBUFS;
1684						skb_shinfo(skb)->nr_frags = i;
1685						kfree_skb(skb);
1686						goto failure;
1687					}
1688
1689					__skb_fill_page_desc(skb, i,
1690							page, 0,
1691							(data_len >= PAGE_SIZE ?
1692							 PAGE_SIZE :
1693							 data_len));
1694					data_len -= PAGE_SIZE;
1695				}
1696
1697				/* Full success... */
1698				break;
1699			}
1700			err = -ENOBUFS;
1701			goto failure;
1702		}
1703		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1704		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1705		err = -EAGAIN;
1706		if (!timeo)
1707			goto failure;
1708		if (signal_pending(current))
1709			goto interrupted;
1710		timeo = sock_wait_for_wmem(sk, timeo);
1711	}
1712
1713	skb_set_owner_w(skb, sk);
1714	return skb;
1715
1716interrupted:
1717	err = sock_intr_errno(timeo);
1718failure:
1719	*errcode = err;
1720	return NULL;
1721}
1722EXPORT_SYMBOL(sock_alloc_send_pskb);
1723
1724struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1725				    int noblock, int *errcode)
1726{
1727	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1728}
1729EXPORT_SYMBOL(sock_alloc_send_skb);
1730
1731/* On 32bit arches, an skb frag is limited to 2^15 */
1732#define SKB_FRAG_PAGE_ORDER	get_order(32768)
1733
1734bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1735{
1736	int order;
1737
1738	if (pfrag->page) {
1739		if (atomic_read(&pfrag->page->_count) == 1) {
1740			pfrag->offset = 0;
1741			return true;
1742		}
1743		if (pfrag->offset < pfrag->size)
1744			return true;
1745		put_page(pfrag->page);
1746	}
1747
1748	/* We restrict high order allocations to users that can afford to wait */
1749	order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
1750
1751	do {
1752		gfp_t gfp = sk->sk_allocation;
1753
1754		if (order)
1755			gfp |= __GFP_COMP | __GFP_NOWARN;
1756		pfrag->page = alloc_pages(gfp, order);
1757		if (likely(pfrag->page)) {
1758			pfrag->offset = 0;
1759			pfrag->size = PAGE_SIZE << order;
1760			return true;
1761		}
1762	} while (--order >= 0);
1763
1764	sk_enter_memory_pressure(sk);
1765	sk_stream_moderate_sndbuf(sk);
1766	return false;
1767}
1768EXPORT_SYMBOL(sk_page_frag_refill);
1769
1770static void __lock_sock(struct sock *sk)
1771	__releases(&sk->sk_lock.slock)
1772	__acquires(&sk->sk_lock.slock)
1773{
1774	DEFINE_WAIT(wait);
1775
1776	for (;;) {
1777		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1778					TASK_UNINTERRUPTIBLE);
1779		spin_unlock_bh(&sk->sk_lock.slock);
1780		schedule();
1781		spin_lock_bh(&sk->sk_lock.slock);
1782		if (!sock_owned_by_user(sk))
1783			break;
1784	}
1785	finish_wait(&sk->sk_lock.wq, &wait);
1786}
1787
1788static void __release_sock(struct sock *sk)
1789	__releases(&sk->sk_lock.slock)
1790	__acquires(&sk->sk_lock.slock)
1791{
1792	struct sk_buff *skb = sk->sk_backlog.head;
1793
1794	do {
1795		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1796		bh_unlock_sock(sk);
1797
1798		do {
1799			struct sk_buff *next = skb->next;
1800
1801			prefetch(next);
1802			WARN_ON_ONCE(skb_dst_is_noref(skb));
1803			skb->next = NULL;
1804			sk_backlog_rcv(sk, skb);
1805
1806			/*
1807			 * We are in process context here with softirqs
1808			 * disabled, use cond_resched_softirq() to preempt.
1809			 * This is safe to do because we've taken the backlog
1810			 * queue private:
1811			 */
1812			cond_resched_softirq();
1813
1814			skb = next;
1815		} while (skb != NULL);
1816
1817		bh_lock_sock(sk);
1818	} while ((skb = sk->sk_backlog.head) != NULL);
1819
1820	/*
1821	 * Doing the zeroing here guarantee we can not loop forever
1822	 * while a wild producer attempts to flood us.
1823	 */
1824	sk->sk_backlog.len = 0;
1825}
1826
1827/**
1828 * sk_wait_data - wait for data to arrive at sk_receive_queue
1829 * @sk:    sock to wait on
1830 * @timeo: for how long
1831 *
1832 * Now socket state including sk->sk_err is changed only under lock,
1833 * hence we may omit checks after joining wait queue.
1834 * We check receive queue before schedule() only as optimization;
1835 * it is very likely that release_sock() added new data.
1836 */
1837int sk_wait_data(struct sock *sk, long *timeo)
1838{
1839	int rc;
1840	DEFINE_WAIT(wait);
1841
1842	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1843	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1844	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1845	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1846	finish_wait(sk_sleep(sk), &wait);
1847	return rc;
1848}
1849EXPORT_SYMBOL(sk_wait_data);
1850
1851/**
1852 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1853 *	@sk: socket
1854 *	@size: memory size to allocate
1855 *	@kind: allocation type
1856 *
1857 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1858 *	rmem allocation. This function assumes that protocols which have
1859 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1860 */
1861int __sk_mem_schedule(struct sock *sk, int size, int kind)
1862{
1863	struct proto *prot = sk->sk_prot;
1864	int amt = sk_mem_pages(size);
1865	long allocated;
1866	int parent_status = UNDER_LIMIT;
1867
1868	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1869
1870	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1871
1872	/* Under limit. */
1873	if (parent_status == UNDER_LIMIT &&
1874			allocated <= sk_prot_mem_limits(sk, 0)) {
1875		sk_leave_memory_pressure(sk);
1876		return 1;
1877	}
1878
1879	/* Under pressure. (we or our parents) */
1880	if ((parent_status > SOFT_LIMIT) ||
1881			allocated > sk_prot_mem_limits(sk, 1))
1882		sk_enter_memory_pressure(sk);
1883
1884	/* Over hard limit (we or our parents) */
1885	if ((parent_status == OVER_LIMIT) ||
1886			(allocated > sk_prot_mem_limits(sk, 2)))
1887		goto suppress_allocation;
1888
1889	/* guarantee minimum buffer size under pressure */
1890	if (kind == SK_MEM_RECV) {
1891		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1892			return 1;
1893
1894	} else { /* SK_MEM_SEND */
1895		if (sk->sk_type == SOCK_STREAM) {
1896			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1897				return 1;
1898		} else if (atomic_read(&sk->sk_wmem_alloc) <
1899			   prot->sysctl_wmem[0])
1900				return 1;
1901	}
1902
1903	if (sk_has_memory_pressure(sk)) {
1904		int alloc;
1905
1906		if (!sk_under_memory_pressure(sk))
1907			return 1;
1908		alloc = sk_sockets_allocated_read_positive(sk);
1909		if (sk_prot_mem_limits(sk, 2) > alloc *
1910		    sk_mem_pages(sk->sk_wmem_queued +
1911				 atomic_read(&sk->sk_rmem_alloc) +
1912				 sk->sk_forward_alloc))
1913			return 1;
1914	}
1915
1916suppress_allocation:
1917
1918	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1919		sk_stream_moderate_sndbuf(sk);
1920
1921		/* Fail only if socket is _under_ its sndbuf.
1922		 * In this case we cannot block, so that we have to fail.
1923		 */
1924		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1925			return 1;
1926	}
1927
1928	trace_sock_exceed_buf_limit(sk, prot, allocated);
1929
1930	/* Alas. Undo changes. */
1931	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1932
1933	sk_memory_allocated_sub(sk, amt);
1934
1935	return 0;
1936}
1937EXPORT_SYMBOL(__sk_mem_schedule);
1938
1939/**
1940 *	__sk_reclaim - reclaim memory_allocated
1941 *	@sk: socket
1942 */
1943void __sk_mem_reclaim(struct sock *sk)
1944{
1945	sk_memory_allocated_sub(sk,
1946				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1947	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1948
1949	if (sk_under_memory_pressure(sk) &&
1950	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1951		sk_leave_memory_pressure(sk);
1952}
1953EXPORT_SYMBOL(__sk_mem_reclaim);
1954
1955
1956/*
1957 * Set of default routines for initialising struct proto_ops when
1958 * the protocol does not support a particular function. In certain
1959 * cases where it makes no sense for a protocol to have a "do nothing"
1960 * function, some default processing is provided.
1961 */
1962
1963int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1964{
1965	return -EOPNOTSUPP;
1966}
1967EXPORT_SYMBOL(sock_no_bind);
1968
1969int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1970		    int len, int flags)
1971{
1972	return -EOPNOTSUPP;
1973}
1974EXPORT_SYMBOL(sock_no_connect);
1975
1976int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1977{
1978	return -EOPNOTSUPP;
1979}
1980EXPORT_SYMBOL(sock_no_socketpair);
1981
1982int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1983{
1984	return -EOPNOTSUPP;
1985}
1986EXPORT_SYMBOL(sock_no_accept);
1987
1988int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1989		    int *len, int peer)
1990{
1991	return -EOPNOTSUPP;
1992}
1993EXPORT_SYMBOL(sock_no_getname);
1994
1995unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1996{
1997	return 0;
1998}
1999EXPORT_SYMBOL(sock_no_poll);
2000
2001int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2002{
2003	return -EOPNOTSUPP;
2004}
2005EXPORT_SYMBOL(sock_no_ioctl);
2006
2007int sock_no_listen(struct socket *sock, int backlog)
2008{
2009	return -EOPNOTSUPP;
2010}
2011EXPORT_SYMBOL(sock_no_listen);
2012
2013int sock_no_shutdown(struct socket *sock, int how)
2014{
2015	return -EOPNOTSUPP;
2016}
2017EXPORT_SYMBOL(sock_no_shutdown);
2018
2019int sock_no_setsockopt(struct socket *sock, int level, int optname,
2020		    char __user *optval, unsigned int optlen)
2021{
2022	return -EOPNOTSUPP;
2023}
2024EXPORT_SYMBOL(sock_no_setsockopt);
2025
2026int sock_no_getsockopt(struct socket *sock, int level, int optname,
2027		    char __user *optval, int __user *optlen)
2028{
2029	return -EOPNOTSUPP;
2030}
2031EXPORT_SYMBOL(sock_no_getsockopt);
2032
2033int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2034		    size_t len)
2035{
2036	return -EOPNOTSUPP;
2037}
2038EXPORT_SYMBOL(sock_no_sendmsg);
2039
2040int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2041		    size_t len, int flags)
2042{
2043	return -EOPNOTSUPP;
2044}
2045EXPORT_SYMBOL(sock_no_recvmsg);
2046
2047int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2048{
2049	/* Mirror missing mmap method error code */
2050	return -ENODEV;
2051}
2052EXPORT_SYMBOL(sock_no_mmap);
2053
2054ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2055{
2056	ssize_t res;
2057	struct msghdr msg = {.msg_flags = flags};
2058	struct kvec iov;
2059	char *kaddr = kmap(page);
2060	iov.iov_base = kaddr + offset;
2061	iov.iov_len = size;
2062	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2063	kunmap(page);
2064	return res;
2065}
2066EXPORT_SYMBOL(sock_no_sendpage);
2067
2068/*
2069 *	Default Socket Callbacks
2070 */
2071
2072static void sock_def_wakeup(struct sock *sk)
2073{
2074	struct socket_wq *wq;
2075
2076	rcu_read_lock();
2077	wq = rcu_dereference(sk->sk_wq);
2078	if (wq_has_sleeper(wq))
2079		wake_up_interruptible_all(&wq->wait);
2080	rcu_read_unlock();
2081}
2082
2083static void sock_def_error_report(struct sock *sk)
2084{
2085	struct socket_wq *wq;
2086
2087	rcu_read_lock();
2088	wq = rcu_dereference(sk->sk_wq);
2089	if (wq_has_sleeper(wq))
2090		wake_up_interruptible_poll(&wq->wait, POLLERR);
2091	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2092	rcu_read_unlock();
2093}
2094
2095static void sock_def_readable(struct sock *sk, int len)
2096{
2097	struct socket_wq *wq;
2098
2099	rcu_read_lock();
2100	wq = rcu_dereference(sk->sk_wq);
2101	if (wq_has_sleeper(wq))
2102		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2103						POLLRDNORM | POLLRDBAND);
2104	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2105	rcu_read_unlock();
2106}
2107
2108static void sock_def_write_space(struct sock *sk)
2109{
2110	struct socket_wq *wq;
2111
2112	rcu_read_lock();
2113
2114	/* Do not wake up a writer until he can make "significant"
2115	 * progress.  --DaveM
2116	 */
2117	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2118		wq = rcu_dereference(sk->sk_wq);
2119		if (wq_has_sleeper(wq))
2120			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2121						POLLWRNORM | POLLWRBAND);
2122
2123		/* Should agree with poll, otherwise some programs break */
2124		if (sock_writeable(sk))
2125			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2126	}
2127
2128	rcu_read_unlock();
2129}
2130
2131static void sock_def_destruct(struct sock *sk)
2132{
2133	kfree(sk->sk_protinfo);
2134}
2135
2136void sk_send_sigurg(struct sock *sk)
2137{
2138	if (sk->sk_socket && sk->sk_socket->file)
2139		if (send_sigurg(&sk->sk_socket->file->f_owner))
2140			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2141}
2142EXPORT_SYMBOL(sk_send_sigurg);
2143
2144void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2145		    unsigned long expires)
2146{
2147	if (!mod_timer(timer, expires))
2148		sock_hold(sk);
2149}
2150EXPORT_SYMBOL(sk_reset_timer);
2151
2152void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2153{
2154	if (timer_pending(timer) && del_timer(timer))
2155		__sock_put(sk);
2156}
2157EXPORT_SYMBOL(sk_stop_timer);
2158
2159void sock_init_data(struct socket *sock, struct sock *sk)
2160{
2161	skb_queue_head_init(&sk->sk_receive_queue);
2162	skb_queue_head_init(&sk->sk_write_queue);
2163	skb_queue_head_init(&sk->sk_error_queue);
2164#ifdef CONFIG_NET_DMA
2165	skb_queue_head_init(&sk->sk_async_wait_queue);
2166#endif
2167
2168	sk->sk_send_head	=	NULL;
2169
2170	init_timer(&sk->sk_timer);
2171
2172	sk->sk_allocation	=	GFP_KERNEL;
2173	sk->sk_rcvbuf		=	sysctl_rmem_default;
2174	sk->sk_sndbuf		=	sysctl_wmem_default;
2175	sk->sk_state		=	TCP_CLOSE;
2176	sk_set_socket(sk, sock);
2177
2178	sock_set_flag(sk, SOCK_ZAPPED);
2179
2180	if (sock) {
2181		sk->sk_type	=	sock->type;
2182		sk->sk_wq	=	sock->wq;
2183		sock->sk	=	sk;
2184	} else
2185		sk->sk_wq	=	NULL;
2186
2187	spin_lock_init(&sk->sk_dst_lock);
2188	rwlock_init(&sk->sk_callback_lock);
2189	lockdep_set_class_and_name(&sk->sk_callback_lock,
2190			af_callback_keys + sk->sk_family,
2191			af_family_clock_key_strings[sk->sk_family]);
2192
2193	sk->sk_state_change	=	sock_def_wakeup;
2194	sk->sk_data_ready	=	sock_def_readable;
2195	sk->sk_write_space	=	sock_def_write_space;
2196	sk->sk_error_report	=	sock_def_error_report;
2197	sk->sk_destruct		=	sock_def_destruct;
2198
2199	sk->sk_frag.page	=	NULL;
2200	sk->sk_frag.offset	=	0;
2201	sk->sk_peek_off		=	-1;
2202
2203	sk->sk_peer_pid 	=	NULL;
2204	sk->sk_peer_cred	=	NULL;
2205	sk->sk_write_pending	=	0;
2206	sk->sk_rcvlowat		=	1;
2207	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2208	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2209
2210	sk->sk_stamp = ktime_set(-1L, 0);
2211
2212	/*
2213	 * Before updating sk_refcnt, we must commit prior changes to memory
2214	 * (Documentation/RCU/rculist_nulls.txt for details)
2215	 */
2216	smp_wmb();
2217	atomic_set(&sk->sk_refcnt, 1);
2218	atomic_set(&sk->sk_drops, 0);
2219}
2220EXPORT_SYMBOL(sock_init_data);
2221
2222void lock_sock_nested(struct sock *sk, int subclass)
2223{
2224	might_sleep();
2225	spin_lock_bh(&sk->sk_lock.slock);
2226	if (sk->sk_lock.owned)
2227		__lock_sock(sk);
2228	sk->sk_lock.owned = 1;
2229	spin_unlock(&sk->sk_lock.slock);
2230	/*
2231	 * The sk_lock has mutex_lock() semantics here:
2232	 */
2233	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2234	local_bh_enable();
2235}
2236EXPORT_SYMBOL(lock_sock_nested);
2237
2238void release_sock(struct sock *sk)
2239{
2240	/*
2241	 * The sk_lock has mutex_unlock() semantics:
2242	 */
2243	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2244
2245	spin_lock_bh(&sk->sk_lock.slock);
2246	if (sk->sk_backlog.tail)
2247		__release_sock(sk);
2248
2249	if (sk->sk_prot->release_cb)
2250		sk->sk_prot->release_cb(sk);
2251
2252	sk->sk_lock.owned = 0;
2253	if (waitqueue_active(&sk->sk_lock.wq))
2254		wake_up(&sk->sk_lock.wq);
2255	spin_unlock_bh(&sk->sk_lock.slock);
2256}
2257EXPORT_SYMBOL(release_sock);
2258
2259/**
2260 * lock_sock_fast - fast version of lock_sock
2261 * @sk: socket
2262 *
2263 * This version should be used for very small section, where process wont block
2264 * return false if fast path is taken
2265 *   sk_lock.slock locked, owned = 0, BH disabled
2266 * return true if slow path is taken
2267 *   sk_lock.slock unlocked, owned = 1, BH enabled
2268 */
2269bool lock_sock_fast(struct sock *sk)
2270{
2271	might_sleep();
2272	spin_lock_bh(&sk->sk_lock.slock);
2273
2274	if (!sk->sk_lock.owned)
2275		/*
2276		 * Note : We must disable BH
2277		 */
2278		return false;
2279
2280	__lock_sock(sk);
2281	sk->sk_lock.owned = 1;
2282	spin_unlock(&sk->sk_lock.slock);
2283	/*
2284	 * The sk_lock has mutex_lock() semantics here:
2285	 */
2286	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2287	local_bh_enable();
2288	return true;
2289}
2290EXPORT_SYMBOL(lock_sock_fast);
2291
2292int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2293{
2294	struct timeval tv;
2295	if (!sock_flag(sk, SOCK_TIMESTAMP))
2296		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2297	tv = ktime_to_timeval(sk->sk_stamp);
2298	if (tv.tv_sec == -1)
2299		return -ENOENT;
2300	if (tv.tv_sec == 0) {
2301		sk->sk_stamp = ktime_get_real();
2302		tv = ktime_to_timeval(sk->sk_stamp);
2303	}
2304	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2305}
2306EXPORT_SYMBOL(sock_get_timestamp);
2307
2308int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2309{
2310	struct timespec ts;
2311	if (!sock_flag(sk, SOCK_TIMESTAMP))
2312		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2313	ts = ktime_to_timespec(sk->sk_stamp);
2314	if (ts.tv_sec == -1)
2315		return -ENOENT;
2316	if (ts.tv_sec == 0) {
2317		sk->sk_stamp = ktime_get_real();
2318		ts = ktime_to_timespec(sk->sk_stamp);
2319	}
2320	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2321}
2322EXPORT_SYMBOL(sock_get_timestampns);
2323
2324void sock_enable_timestamp(struct sock *sk, int flag)
2325{
2326	if (!sock_flag(sk, flag)) {
2327		unsigned long previous_flags = sk->sk_flags;
2328
2329		sock_set_flag(sk, flag);
2330		/*
2331		 * we just set one of the two flags which require net
2332		 * time stamping, but time stamping might have been on
2333		 * already because of the other one
2334		 */
2335		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2336			net_enable_timestamp();
2337	}
2338}
2339
2340/*
2341 *	Get a socket option on an socket.
2342 *
2343 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2344 *	asynchronous errors should be reported by getsockopt. We assume
2345 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2346 */
2347int sock_common_getsockopt(struct socket *sock, int level, int optname,
2348			   char __user *optval, int __user *optlen)
2349{
2350	struct sock *sk = sock->sk;
2351
2352	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2353}
2354EXPORT_SYMBOL(sock_common_getsockopt);
2355
2356#ifdef CONFIG_COMPAT
2357int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2358				  char __user *optval, int __user *optlen)
2359{
2360	struct sock *sk = sock->sk;
2361
2362	if (sk->sk_prot->compat_getsockopt != NULL)
2363		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2364						      optval, optlen);
2365	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2366}
2367EXPORT_SYMBOL(compat_sock_common_getsockopt);
2368#endif
2369
2370int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2371			struct msghdr *msg, size_t size, int flags)
2372{
2373	struct sock *sk = sock->sk;
2374	int addr_len = 0;
2375	int err;
2376
2377	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2378				   flags & ~MSG_DONTWAIT, &addr_len);
2379	if (err >= 0)
2380		msg->msg_namelen = addr_len;
2381	return err;
2382}
2383EXPORT_SYMBOL(sock_common_recvmsg);
2384
2385/*
2386 *	Set socket options on an inet socket.
2387 */
2388int sock_common_setsockopt(struct socket *sock, int level, int optname,
2389			   char __user *optval, unsigned int optlen)
2390{
2391	struct sock *sk = sock->sk;
2392
2393	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2394}
2395EXPORT_SYMBOL(sock_common_setsockopt);
2396
2397#ifdef CONFIG_COMPAT
2398int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2399				  char __user *optval, unsigned int optlen)
2400{
2401	struct sock *sk = sock->sk;
2402
2403	if (sk->sk_prot->compat_setsockopt != NULL)
2404		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2405						      optval, optlen);
2406	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2407}
2408EXPORT_SYMBOL(compat_sock_common_setsockopt);
2409#endif
2410
2411void sk_common_release(struct sock *sk)
2412{
2413	if (sk->sk_prot->destroy)
2414		sk->sk_prot->destroy(sk);
2415
2416	/*
2417	 * Observation: when sock_common_release is called, processes have
2418	 * no access to socket. But net still has.
2419	 * Step one, detach it from networking:
2420	 *
2421	 * A. Remove from hash tables.
2422	 */
2423
2424	sk->sk_prot->unhash(sk);
2425
2426	/*
2427	 * In this point socket cannot receive new packets, but it is possible
2428	 * that some packets are in flight because some CPU runs receiver and
2429	 * did hash table lookup before we unhashed socket. They will achieve
2430	 * receive queue and will be purged by socket destructor.
2431	 *
2432	 * Also we still have packets pending on receive queue and probably,
2433	 * our own packets waiting in device queues. sock_destroy will drain
2434	 * receive queue, but transmitted packets will delay socket destruction
2435	 * until the last reference will be released.
2436	 */
2437
2438	sock_orphan(sk);
2439
2440	xfrm_sk_free_policy(sk);
2441
2442	sk_refcnt_debug_release(sk);
2443
2444	if (sk->sk_frag.page) {
2445		put_page(sk->sk_frag.page);
2446		sk->sk_frag.page = NULL;
2447	}
2448
2449	sock_put(sk);
2450}
2451EXPORT_SYMBOL(sk_common_release);
2452
2453#ifdef CONFIG_PROC_FS
2454#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2455struct prot_inuse {
2456	int val[PROTO_INUSE_NR];
2457};
2458
2459static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2460
2461#ifdef CONFIG_NET_NS
2462void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2463{
2464	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2465}
2466EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2467
2468int sock_prot_inuse_get(struct net *net, struct proto *prot)
2469{
2470	int cpu, idx = prot->inuse_idx;
2471	int res = 0;
2472
2473	for_each_possible_cpu(cpu)
2474		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2475
2476	return res >= 0 ? res : 0;
2477}
2478EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2479
2480static int __net_init sock_inuse_init_net(struct net *net)
2481{
2482	net->core.inuse = alloc_percpu(struct prot_inuse);
2483	return net->core.inuse ? 0 : -ENOMEM;
2484}
2485
2486static void __net_exit sock_inuse_exit_net(struct net *net)
2487{
2488	free_percpu(net->core.inuse);
2489}
2490
2491static struct pernet_operations net_inuse_ops = {
2492	.init = sock_inuse_init_net,
2493	.exit = sock_inuse_exit_net,
2494};
2495
2496static __init int net_inuse_init(void)
2497{
2498	if (register_pernet_subsys(&net_inuse_ops))
2499		panic("Cannot initialize net inuse counters");
2500
2501	return 0;
2502}
2503
2504core_initcall(net_inuse_init);
2505#else
2506static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2507
2508void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2509{
2510	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2511}
2512EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2513
2514int sock_prot_inuse_get(struct net *net, struct proto *prot)
2515{
2516	int cpu, idx = prot->inuse_idx;
2517	int res = 0;
2518
2519	for_each_possible_cpu(cpu)
2520		res += per_cpu(prot_inuse, cpu).val[idx];
2521
2522	return res >= 0 ? res : 0;
2523}
2524EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2525#endif
2526
2527static void assign_proto_idx(struct proto *prot)
2528{
2529	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2530
2531	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2532		pr_err("PROTO_INUSE_NR exhausted\n");
2533		return;
2534	}
2535
2536	set_bit(prot->inuse_idx, proto_inuse_idx);
2537}
2538
2539static void release_proto_idx(struct proto *prot)
2540{
2541	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2542		clear_bit(prot->inuse_idx, proto_inuse_idx);
2543}
2544#else
2545static inline void assign_proto_idx(struct proto *prot)
2546{
2547}
2548
2549static inline void release_proto_idx(struct proto *prot)
2550{
2551}
2552#endif
2553
2554int proto_register(struct proto *prot, int alloc_slab)
2555{
2556	if (alloc_slab) {
2557		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2558					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2559					NULL);
2560
2561		if (prot->slab == NULL) {
2562			pr_crit("%s: Can't create sock SLAB cache!\n",
2563				prot->name);
2564			goto out;
2565		}
2566
2567		if (prot->rsk_prot != NULL) {
2568			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2569			if (prot->rsk_prot->slab_name == NULL)
2570				goto out_free_sock_slab;
2571
2572			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2573								 prot->rsk_prot->obj_size, 0,
2574								 SLAB_HWCACHE_ALIGN, NULL);
2575
2576			if (prot->rsk_prot->slab == NULL) {
2577				pr_crit("%s: Can't create request sock SLAB cache!\n",
2578					prot->name);
2579				goto out_free_request_sock_slab_name;
2580			}
2581		}
2582
2583		if (prot->twsk_prot != NULL) {
2584			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2585
2586			if (prot->twsk_prot->twsk_slab_name == NULL)
2587				goto out_free_request_sock_slab;
2588
2589			prot->twsk_prot->twsk_slab =
2590				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2591						  prot->twsk_prot->twsk_obj_size,
2592						  0,
2593						  SLAB_HWCACHE_ALIGN |
2594							prot->slab_flags,
2595						  NULL);
2596			if (prot->twsk_prot->twsk_slab == NULL)
2597				goto out_free_timewait_sock_slab_name;
2598		}
2599	}
2600
2601	mutex_lock(&proto_list_mutex);
2602	list_add(&prot->node, &proto_list);
2603	assign_proto_idx(prot);
2604	mutex_unlock(&proto_list_mutex);
2605	return 0;
2606
2607out_free_timewait_sock_slab_name:
2608	kfree(prot->twsk_prot->twsk_slab_name);
2609out_free_request_sock_slab:
2610	if (prot->rsk_prot && prot->rsk_prot->slab) {
2611		kmem_cache_destroy(prot->rsk_prot->slab);
2612		prot->rsk_prot->slab = NULL;
2613	}
2614out_free_request_sock_slab_name:
2615	if (prot->rsk_prot)
2616		kfree(prot->rsk_prot->slab_name);
2617out_free_sock_slab:
2618	kmem_cache_destroy(prot->slab);
2619	prot->slab = NULL;
2620out:
2621	return -ENOBUFS;
2622}
2623EXPORT_SYMBOL(proto_register);
2624
2625void proto_unregister(struct proto *prot)
2626{
2627	mutex_lock(&proto_list_mutex);
2628	release_proto_idx(prot);
2629	list_del(&prot->node);
2630	mutex_unlock(&proto_list_mutex);
2631
2632	if (prot->slab != NULL) {
2633		kmem_cache_destroy(prot->slab);
2634		prot->slab = NULL;
2635	}
2636
2637	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2638		kmem_cache_destroy(prot->rsk_prot->slab);
2639		kfree(prot->rsk_prot->slab_name);
2640		prot->rsk_prot->slab = NULL;
2641	}
2642
2643	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2644		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2645		kfree(prot->twsk_prot->twsk_slab_name);
2646		prot->twsk_prot->twsk_slab = NULL;
2647	}
2648}
2649EXPORT_SYMBOL(proto_unregister);
2650
2651#ifdef CONFIG_PROC_FS
2652static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2653	__acquires(proto_list_mutex)
2654{
2655	mutex_lock(&proto_list_mutex);
2656	return seq_list_start_head(&proto_list, *pos);
2657}
2658
2659static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2660{
2661	return seq_list_next(v, &proto_list, pos);
2662}
2663
2664static void proto_seq_stop(struct seq_file *seq, void *v)
2665	__releases(proto_list_mutex)
2666{
2667	mutex_unlock(&proto_list_mutex);
2668}
2669
2670static char proto_method_implemented(const void *method)
2671{
2672	return method == NULL ? 'n' : 'y';
2673}
2674static long sock_prot_memory_allocated(struct proto *proto)
2675{
2676	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2677}
2678
2679static char *sock_prot_memory_pressure(struct proto *proto)
2680{
2681	return proto->memory_pressure != NULL ?
2682	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2683}
2684
2685static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2686{
2687
2688	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2689			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2690		   proto->name,
2691		   proto->obj_size,
2692		   sock_prot_inuse_get(seq_file_net(seq), proto),
2693		   sock_prot_memory_allocated(proto),
2694		   sock_prot_memory_pressure(proto),
2695		   proto->max_header,
2696		   proto->slab == NULL ? "no" : "yes",
2697		   module_name(proto->owner),
2698		   proto_method_implemented(proto->close),
2699		   proto_method_implemented(proto->connect),
2700		   proto_method_implemented(proto->disconnect),
2701		   proto_method_implemented(proto->accept),
2702		   proto_method_implemented(proto->ioctl),
2703		   proto_method_implemented(proto->init),
2704		   proto_method_implemented(proto->destroy),
2705		   proto_method_implemented(proto->shutdown),
2706		   proto_method_implemented(proto->setsockopt),
2707		   proto_method_implemented(proto->getsockopt),
2708		   proto_method_implemented(proto->sendmsg),
2709		   proto_method_implemented(proto->recvmsg),
2710		   proto_method_implemented(proto->sendpage),
2711		   proto_method_implemented(proto->bind),
2712		   proto_method_implemented(proto->backlog_rcv),
2713		   proto_method_implemented(proto->hash),
2714		   proto_method_implemented(proto->unhash),
2715		   proto_method_implemented(proto->get_port),
2716		   proto_method_implemented(proto->enter_memory_pressure));
2717}
2718
2719static int proto_seq_show(struct seq_file *seq, void *v)
2720{
2721	if (v == &proto_list)
2722		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2723			   "protocol",
2724			   "size",
2725			   "sockets",
2726			   "memory",
2727			   "press",
2728			   "maxhdr",
2729			   "slab",
2730			   "module",
2731			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2732	else
2733		proto_seq_printf(seq, list_entry(v, struct proto, node));
2734	return 0;
2735}
2736
2737static const struct seq_operations proto_seq_ops = {
2738	.start  = proto_seq_start,
2739	.next   = proto_seq_next,
2740	.stop   = proto_seq_stop,
2741	.show   = proto_seq_show,
2742};
2743
2744static int proto_seq_open(struct inode *inode, struct file *file)
2745{
2746	return seq_open_net(inode, file, &proto_seq_ops,
2747			    sizeof(struct seq_net_private));
2748}
2749
2750static const struct file_operations proto_seq_fops = {
2751	.owner		= THIS_MODULE,
2752	.open		= proto_seq_open,
2753	.read		= seq_read,
2754	.llseek		= seq_lseek,
2755	.release	= seq_release_net,
2756};
2757
2758static __net_init int proto_init_net(struct net *net)
2759{
2760	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2761		return -ENOMEM;
2762
2763	return 0;
2764}
2765
2766static __net_exit void proto_exit_net(struct net *net)
2767{
2768	proc_net_remove(net, "protocols");
2769}
2770
2771
2772static __net_initdata struct pernet_operations proto_net_ops = {
2773	.init = proto_init_net,
2774	.exit = proto_exit_net,
2775};
2776
2777static int __init proto_init(void)
2778{
2779	return register_pernet_subsys(&proto_net_ops);
2780}
2781
2782subsys_initcall(proto_init);
2783
2784#endif /* PROC_FS */
2785