fib_trie.c revision 3ed18d76d959e5cbfa5d70c8f7ba95476582a556
1/*
2 *   This program is free software; you can redistribute it and/or
3 *   modify it under the terms of the GNU General Public License
4 *   as published by the Free Software Foundation; either version
5 *   2 of the License, or (at your option) any later version.
6 *
7 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 *     & Swedish University of Agricultural Sciences.
9 *
10 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11 *     Agricultural Sciences.
12 *
13 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET		An implementation of the TCP/IP protocol suite for the LINUX
30 *		operating system.  INET is implemented using the  BSD Socket
31 *		interface as the means of communication with the user level.
32 *
33 *		IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 *		This program is free software; you can redistribute it and/or
39 *		modify it under the terms of the GNU General Public License
40 *		as published by the Free Software Foundation; either version
41 *		2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 *		David S. Miller, <davem@davemloft.net>
46 *		Stephen Hemminger <shemminger@osdl.org>
47 *		Paul E. McKenney <paulmck@us.ibm.com>
48 *		Patrick McHardy <kaber@trash.net>
49 */
50
51#define VERSION "0.408"
52
53#include <asm/uaccess.h>
54#include <asm/system.h>
55#include <linux/bitops.h>
56#include <linux/types.h>
57#include <linux/kernel.h>
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
65#include <linux/inetdevice.h>
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
69#include <linux/rcupdate.h>
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
74#include <net/net_namespace.h>
75#include <net/ip.h>
76#include <net/protocol.h>
77#include <net/route.h>
78#include <net/tcp.h>
79#include <net/sock.h>
80#include <net/ip_fib.h>
81#include "fib_lookup.h"
82
83#define MAX_STAT_DEPTH 32
84
85#define KEYLENGTH (8*sizeof(t_key))
86
87typedef unsigned int t_key;
88
89#define T_TNODE 0
90#define T_LEAF  1
91#define NODE_TYPE_MASK	0x1UL
92#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
94#define IS_TNODE(n) (!(n->parent & T_LEAF))
95#define IS_LEAF(n) (n->parent & T_LEAF)
96
97struct node {
98	unsigned long parent;
99	t_key key;
100};
101
102struct leaf {
103	unsigned long parent;
104	t_key key;
105	struct hlist_head list;
106	struct rcu_head rcu;
107};
108
109struct leaf_info {
110	struct hlist_node hlist;
111	struct rcu_head rcu;
112	int plen;
113	struct list_head falh;
114};
115
116struct tnode {
117	unsigned long parent;
118	t_key key;
119	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
120	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
121	unsigned int full_children;	/* KEYLENGTH bits needed */
122	unsigned int empty_children;	/* KEYLENGTH bits needed */
123	union {
124		struct rcu_head rcu;
125		struct work_struct work;
126	};
127	struct node *child[0];
128};
129
130#ifdef CONFIG_IP_FIB_TRIE_STATS
131struct trie_use_stats {
132	unsigned int gets;
133	unsigned int backtrack;
134	unsigned int semantic_match_passed;
135	unsigned int semantic_match_miss;
136	unsigned int null_node_hit;
137	unsigned int resize_node_skipped;
138};
139#endif
140
141struct trie_stat {
142	unsigned int totdepth;
143	unsigned int maxdepth;
144	unsigned int tnodes;
145	unsigned int leaves;
146	unsigned int nullpointers;
147	unsigned int prefixes;
148	unsigned int nodesizes[MAX_STAT_DEPTH];
149};
150
151struct trie {
152	struct node *trie;
153#ifdef CONFIG_IP_FIB_TRIE_STATS
154	struct trie_use_stats stats;
155#endif
156};
157
158static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
159static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
160				  int wasfull);
161static struct node *resize(struct trie *t, struct tnode *tn);
162static struct tnode *inflate(struct trie *t, struct tnode *tn);
163static struct tnode *halve(struct trie *t, struct tnode *tn);
164
165static struct kmem_cache *fn_alias_kmem __read_mostly;
166static struct kmem_cache *trie_leaf_kmem __read_mostly;
167
168static inline struct tnode *node_parent(struct node *node)
169{
170	return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171}
172
173static inline struct tnode *node_parent_rcu(struct node *node)
174{
175	struct tnode *ret = node_parent(node);
176
177	return rcu_dereference(ret);
178}
179
180/* Same as rcu_assign_pointer
181 * but that macro() assumes that value is a pointer.
182 */
183static inline void node_set_parent(struct node *node, struct tnode *ptr)
184{
185	smp_wmb();
186	node->parent = (unsigned long)ptr | NODE_TYPE(node);
187}
188
189static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
190{
191	BUG_ON(i >= 1U << tn->bits);
192
193	return tn->child[i];
194}
195
196static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
197{
198	struct node *ret = tnode_get_child(tn, i);
199
200	return rcu_dereference(ret);
201}
202
203static inline int tnode_child_length(const struct tnode *tn)
204{
205	return 1 << tn->bits;
206}
207
208static inline t_key mask_pfx(t_key k, unsigned short l)
209{
210	return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
211}
212
213static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
214{
215	if (offset < KEYLENGTH)
216		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
217	else
218		return 0;
219}
220
221static inline int tkey_equals(t_key a, t_key b)
222{
223	return a == b;
224}
225
226static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
227{
228	if (bits == 0 || offset >= KEYLENGTH)
229		return 1;
230	bits = bits > KEYLENGTH ? KEYLENGTH : bits;
231	return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
232}
233
234static inline int tkey_mismatch(t_key a, int offset, t_key b)
235{
236	t_key diff = a ^ b;
237	int i = offset;
238
239	if (!diff)
240		return 0;
241	while ((diff << i) >> (KEYLENGTH-1) == 0)
242		i++;
243	return i;
244}
245
246/*
247  To understand this stuff, an understanding of keys and all their bits is
248  necessary. Every node in the trie has a key associated with it, but not
249  all of the bits in that key are significant.
250
251  Consider a node 'n' and its parent 'tp'.
252
253  If n is a leaf, every bit in its key is significant. Its presence is
254  necessitated by path compression, since during a tree traversal (when
255  searching for a leaf - unless we are doing an insertion) we will completely
256  ignore all skipped bits we encounter. Thus we need to verify, at the end of
257  a potentially successful search, that we have indeed been walking the
258  correct key path.
259
260  Note that we can never "miss" the correct key in the tree if present by
261  following the wrong path. Path compression ensures that segments of the key
262  that are the same for all keys with a given prefix are skipped, but the
263  skipped part *is* identical for each node in the subtrie below the skipped
264  bit! trie_insert() in this implementation takes care of that - note the
265  call to tkey_sub_equals() in trie_insert().
266
267  if n is an internal node - a 'tnode' here, the various parts of its key
268  have many different meanings.
269
270  Example:
271  _________________________________________________________________
272  | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
273  -----------------------------------------------------------------
274    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
275
276  _________________________________________________________________
277  | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
278  -----------------------------------------------------------------
279   16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31
280
281  tp->pos = 7
282  tp->bits = 3
283  n->pos = 15
284  n->bits = 4
285
286  First, let's just ignore the bits that come before the parent tp, that is
287  the bits from 0 to (tp->pos-1). They are *known* but at this point we do
288  not use them for anything.
289
290  The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
291  index into the parent's child array. That is, they will be used to find
292  'n' among tp's children.
293
294  The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
295  for the node n.
296
297  All the bits we have seen so far are significant to the node n. The rest
298  of the bits are really not needed or indeed known in n->key.
299
300  The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
301  n's child array, and will of course be different for each child.
302
303
304  The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
305  at this point.
306
307*/
308
309static inline void check_tnode(const struct tnode *tn)
310{
311	WARN_ON(tn && tn->pos+tn->bits > 32);
312}
313
314static const int halve_threshold = 25;
315static const int inflate_threshold = 50;
316static const int halve_threshold_root = 8;
317static const int inflate_threshold_root = 15;
318
319
320static void __alias_free_mem(struct rcu_head *head)
321{
322	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
323	kmem_cache_free(fn_alias_kmem, fa);
324}
325
326static inline void alias_free_mem_rcu(struct fib_alias *fa)
327{
328	call_rcu(&fa->rcu, __alias_free_mem);
329}
330
331static void __leaf_free_rcu(struct rcu_head *head)
332{
333	struct leaf *l = container_of(head, struct leaf, rcu);
334	kmem_cache_free(trie_leaf_kmem, l);
335}
336
337static inline void free_leaf(struct leaf *l)
338{
339	call_rcu_bh(&l->rcu, __leaf_free_rcu);
340}
341
342static void __leaf_info_free_rcu(struct rcu_head *head)
343{
344	kfree(container_of(head, struct leaf_info, rcu));
345}
346
347static inline void free_leaf_info(struct leaf_info *leaf)
348{
349	call_rcu(&leaf->rcu, __leaf_info_free_rcu);
350}
351
352static struct tnode *tnode_alloc(size_t size)
353{
354	if (size <= PAGE_SIZE)
355		return kzalloc(size, GFP_KERNEL);
356	else
357		return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
358}
359
360static void __tnode_vfree(struct work_struct *arg)
361{
362	struct tnode *tn = container_of(arg, struct tnode, work);
363	vfree(tn);
364}
365
366static void __tnode_free_rcu(struct rcu_head *head)
367{
368	struct tnode *tn = container_of(head, struct tnode, rcu);
369	size_t size = sizeof(struct tnode) +
370		      (sizeof(struct node *) << tn->bits);
371
372	if (size <= PAGE_SIZE)
373		kfree(tn);
374	else {
375		INIT_WORK(&tn->work, __tnode_vfree);
376		schedule_work(&tn->work);
377	}
378}
379
380static inline void tnode_free(struct tnode *tn)
381{
382	if (IS_LEAF(tn))
383		free_leaf((struct leaf *) tn);
384	else
385		call_rcu(&tn->rcu, __tnode_free_rcu);
386}
387
388static struct leaf *leaf_new(void)
389{
390	struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
391	if (l) {
392		l->parent = T_LEAF;
393		INIT_HLIST_HEAD(&l->list);
394	}
395	return l;
396}
397
398static struct leaf_info *leaf_info_new(int plen)
399{
400	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
401	if (li) {
402		li->plen = plen;
403		INIT_LIST_HEAD(&li->falh);
404	}
405	return li;
406}
407
408static struct tnode *tnode_new(t_key key, int pos, int bits)
409{
410	size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
411	struct tnode *tn = tnode_alloc(sz);
412
413	if (tn) {
414		tn->parent = T_TNODE;
415		tn->pos = pos;
416		tn->bits = bits;
417		tn->key = key;
418		tn->full_children = 0;
419		tn->empty_children = 1<<bits;
420	}
421
422	pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
423		 (unsigned long) (sizeof(struct node) << bits));
424	return tn;
425}
426
427/*
428 * Check whether a tnode 'n' is "full", i.e. it is an internal node
429 * and no bits are skipped. See discussion in dyntree paper p. 6
430 */
431
432static inline int tnode_full(const struct tnode *tn, const struct node *n)
433{
434	if (n == NULL || IS_LEAF(n))
435		return 0;
436
437	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
438}
439
440static inline void put_child(struct trie *t, struct tnode *tn, int i,
441			     struct node *n)
442{
443	tnode_put_child_reorg(tn, i, n, -1);
444}
445
446 /*
447  * Add a child at position i overwriting the old value.
448  * Update the value of full_children and empty_children.
449  */
450
451static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
452				  int wasfull)
453{
454	struct node *chi = tn->child[i];
455	int isfull;
456
457	BUG_ON(i >= 1<<tn->bits);
458
459	/* update emptyChildren */
460	if (n == NULL && chi != NULL)
461		tn->empty_children++;
462	else if (n != NULL && chi == NULL)
463		tn->empty_children--;
464
465	/* update fullChildren */
466	if (wasfull == -1)
467		wasfull = tnode_full(tn, chi);
468
469	isfull = tnode_full(tn, n);
470	if (wasfull && !isfull)
471		tn->full_children--;
472	else if (!wasfull && isfull)
473		tn->full_children++;
474
475	if (n)
476		node_set_parent(n, tn);
477
478	rcu_assign_pointer(tn->child[i], n);
479}
480
481static struct node *resize(struct trie *t, struct tnode *tn)
482{
483	int i;
484	int err = 0;
485	struct tnode *old_tn;
486	int inflate_threshold_use;
487	int halve_threshold_use;
488	int max_resize;
489
490	if (!tn)
491		return NULL;
492
493	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
494		 tn, inflate_threshold, halve_threshold);
495
496	/* No children */
497	if (tn->empty_children == tnode_child_length(tn)) {
498		tnode_free(tn);
499		return NULL;
500	}
501	/* One child */
502	if (tn->empty_children == tnode_child_length(tn) - 1)
503		for (i = 0; i < tnode_child_length(tn); i++) {
504			struct node *n;
505
506			n = tn->child[i];
507			if (!n)
508				continue;
509
510			/* compress one level */
511			node_set_parent(n, NULL);
512			tnode_free(tn);
513			return n;
514		}
515	/*
516	 * Double as long as the resulting node has a number of
517	 * nonempty nodes that are above the threshold.
518	 */
519
520	/*
521	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
522	 * the Helsinki University of Technology and Matti Tikkanen of Nokia
523	 * Telecommunications, page 6:
524	 * "A node is doubled if the ratio of non-empty children to all
525	 * children in the *doubled* node is at least 'high'."
526	 *
527	 * 'high' in this instance is the variable 'inflate_threshold'. It
528	 * is expressed as a percentage, so we multiply it with
529	 * tnode_child_length() and instead of multiplying by 2 (since the
530	 * child array will be doubled by inflate()) and multiplying
531	 * the left-hand side by 100 (to handle the percentage thing) we
532	 * multiply the left-hand side by 50.
533	 *
534	 * The left-hand side may look a bit weird: tnode_child_length(tn)
535	 * - tn->empty_children is of course the number of non-null children
536	 * in the current node. tn->full_children is the number of "full"
537	 * children, that is non-null tnodes with a skip value of 0.
538	 * All of those will be doubled in the resulting inflated tnode, so
539	 * we just count them one extra time here.
540	 *
541	 * A clearer way to write this would be:
542	 *
543	 * to_be_doubled = tn->full_children;
544	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
545	 *     tn->full_children;
546	 *
547	 * new_child_length = tnode_child_length(tn) * 2;
548	 *
549	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
550	 *      new_child_length;
551	 * if (new_fill_factor >= inflate_threshold)
552	 *
553	 * ...and so on, tho it would mess up the while () loop.
554	 *
555	 * anyway,
556	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
557	 *      inflate_threshold
558	 *
559	 * avoid a division:
560	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
561	 *      inflate_threshold * new_child_length
562	 *
563	 * expand not_to_be_doubled and to_be_doubled, and shorten:
564	 * 100 * (tnode_child_length(tn) - tn->empty_children +
565	 *    tn->full_children) >= inflate_threshold * new_child_length
566	 *
567	 * expand new_child_length:
568	 * 100 * (tnode_child_length(tn) - tn->empty_children +
569	 *    tn->full_children) >=
570	 *      inflate_threshold * tnode_child_length(tn) * 2
571	 *
572	 * shorten again:
573	 * 50 * (tn->full_children + tnode_child_length(tn) -
574	 *    tn->empty_children) >= inflate_threshold *
575	 *    tnode_child_length(tn)
576	 *
577	 */
578
579	check_tnode(tn);
580
581	/* Keep root node larger  */
582
583	if (!tn->parent)
584		inflate_threshold_use = inflate_threshold_root;
585	else
586		inflate_threshold_use = inflate_threshold;
587
588	err = 0;
589	max_resize = 10;
590	while ((tn->full_children > 0 &&  max_resize-- &&
591		50 * (tn->full_children + tnode_child_length(tn)
592		      - tn->empty_children)
593		>= inflate_threshold_use * tnode_child_length(tn))) {
594
595		old_tn = tn;
596		tn = inflate(t, tn);
597
598		if (IS_ERR(tn)) {
599			tn = old_tn;
600#ifdef CONFIG_IP_FIB_TRIE_STATS
601			t->stats.resize_node_skipped++;
602#endif
603			break;
604		}
605	}
606
607	if (max_resize < 0) {
608		if (!tn->parent)
609			pr_warning("Fix inflate_threshold_root."
610				   " Now=%d size=%d bits\n",
611				   inflate_threshold_root, tn->bits);
612		else
613			pr_warning("Fix inflate_threshold."
614				   " Now=%d size=%d bits\n",
615				   inflate_threshold, tn->bits);
616	}
617
618	check_tnode(tn);
619
620	/*
621	 * Halve as long as the number of empty children in this
622	 * node is above threshold.
623	 */
624
625
626	/* Keep root node larger  */
627
628	if (!tn->parent)
629		halve_threshold_use = halve_threshold_root;
630	else
631		halve_threshold_use = halve_threshold;
632
633	err = 0;
634	max_resize = 10;
635	while (tn->bits > 1 &&  max_resize-- &&
636	       100 * (tnode_child_length(tn) - tn->empty_children) <
637	       halve_threshold_use * tnode_child_length(tn)) {
638
639		old_tn = tn;
640		tn = halve(t, tn);
641		if (IS_ERR(tn)) {
642			tn = old_tn;
643#ifdef CONFIG_IP_FIB_TRIE_STATS
644			t->stats.resize_node_skipped++;
645#endif
646			break;
647		}
648	}
649
650	if (max_resize < 0) {
651		if (!tn->parent)
652			pr_warning("Fix halve_threshold_root."
653				   " Now=%d size=%d bits\n",
654				   halve_threshold_root, tn->bits);
655		else
656			pr_warning("Fix halve_threshold."
657				   " Now=%d size=%d bits\n",
658				   halve_threshold, tn->bits);
659	}
660
661	/* Only one child remains */
662	if (tn->empty_children == tnode_child_length(tn) - 1)
663		for (i = 0; i < tnode_child_length(tn); i++) {
664			struct node *n;
665
666			n = tn->child[i];
667			if (!n)
668				continue;
669
670			/* compress one level */
671
672			node_set_parent(n, NULL);
673			tnode_free(tn);
674			return n;
675		}
676
677	return (struct node *) tn;
678}
679
680static struct tnode *inflate(struct trie *t, struct tnode *tn)
681{
682	struct tnode *oldtnode = tn;
683	int olen = tnode_child_length(tn);
684	int i;
685
686	pr_debug("In inflate\n");
687
688	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
689
690	if (!tn)
691		return ERR_PTR(-ENOMEM);
692
693	/*
694	 * Preallocate and store tnodes before the actual work so we
695	 * don't get into an inconsistent state if memory allocation
696	 * fails. In case of failure we return the oldnode and  inflate
697	 * of tnode is ignored.
698	 */
699
700	for (i = 0; i < olen; i++) {
701		struct tnode *inode;
702
703		inode = (struct tnode *) tnode_get_child(oldtnode, i);
704		if (inode &&
705		    IS_TNODE(inode) &&
706		    inode->pos == oldtnode->pos + oldtnode->bits &&
707		    inode->bits > 1) {
708			struct tnode *left, *right;
709			t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
710
711			left = tnode_new(inode->key&(~m), inode->pos + 1,
712					 inode->bits - 1);
713			if (!left)
714				goto nomem;
715
716			right = tnode_new(inode->key|m, inode->pos + 1,
717					  inode->bits - 1);
718
719			if (!right) {
720				tnode_free(left);
721				goto nomem;
722			}
723
724			put_child(t, tn, 2*i, (struct node *) left);
725			put_child(t, tn, 2*i+1, (struct node *) right);
726		}
727	}
728
729	for (i = 0; i < olen; i++) {
730		struct tnode *inode;
731		struct node *node = tnode_get_child(oldtnode, i);
732		struct tnode *left, *right;
733		int size, j;
734
735		/* An empty child */
736		if (node == NULL)
737			continue;
738
739		/* A leaf or an internal node with skipped bits */
740
741		if (IS_LEAF(node) || ((struct tnode *) node)->pos >
742		   tn->pos + tn->bits - 1) {
743			if (tkey_extract_bits(node->key,
744					      oldtnode->pos + oldtnode->bits,
745					      1) == 0)
746				put_child(t, tn, 2*i, node);
747			else
748				put_child(t, tn, 2*i+1, node);
749			continue;
750		}
751
752		/* An internal node with two children */
753		inode = (struct tnode *) node;
754
755		if (inode->bits == 1) {
756			put_child(t, tn, 2*i, inode->child[0]);
757			put_child(t, tn, 2*i+1, inode->child[1]);
758
759			tnode_free(inode);
760			continue;
761		}
762
763		/* An internal node with more than two children */
764
765		/* We will replace this node 'inode' with two new
766		 * ones, 'left' and 'right', each with half of the
767		 * original children. The two new nodes will have
768		 * a position one bit further down the key and this
769		 * means that the "significant" part of their keys
770		 * (see the discussion near the top of this file)
771		 * will differ by one bit, which will be "0" in
772		 * left's key and "1" in right's key. Since we are
773		 * moving the key position by one step, the bit that
774		 * we are moving away from - the bit at position
775		 * (inode->pos) - is the one that will differ between
776		 * left and right. So... we synthesize that bit in the
777		 * two  new keys.
778		 * The mask 'm' below will be a single "one" bit at
779		 * the position (inode->pos)
780		 */
781
782		/* Use the old key, but set the new significant
783		 *   bit to zero.
784		 */
785
786		left = (struct tnode *) tnode_get_child(tn, 2*i);
787		put_child(t, tn, 2*i, NULL);
788
789		BUG_ON(!left);
790
791		right = (struct tnode *) tnode_get_child(tn, 2*i+1);
792		put_child(t, tn, 2*i+1, NULL);
793
794		BUG_ON(!right);
795
796		size = tnode_child_length(left);
797		for (j = 0; j < size; j++) {
798			put_child(t, left, j, inode->child[j]);
799			put_child(t, right, j, inode->child[j + size]);
800		}
801		put_child(t, tn, 2*i, resize(t, left));
802		put_child(t, tn, 2*i+1, resize(t, right));
803
804		tnode_free(inode);
805	}
806	tnode_free(oldtnode);
807	return tn;
808nomem:
809	{
810		int size = tnode_child_length(tn);
811		int j;
812
813		for (j = 0; j < size; j++)
814			if (tn->child[j])
815				tnode_free((struct tnode *)tn->child[j]);
816
817		tnode_free(tn);
818
819		return ERR_PTR(-ENOMEM);
820	}
821}
822
823static struct tnode *halve(struct trie *t, struct tnode *tn)
824{
825	struct tnode *oldtnode = tn;
826	struct node *left, *right;
827	int i;
828	int olen = tnode_child_length(tn);
829
830	pr_debug("In halve\n");
831
832	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
833
834	if (!tn)
835		return ERR_PTR(-ENOMEM);
836
837	/*
838	 * Preallocate and store tnodes before the actual work so we
839	 * don't get into an inconsistent state if memory allocation
840	 * fails. In case of failure we return the oldnode and halve
841	 * of tnode is ignored.
842	 */
843
844	for (i = 0; i < olen; i += 2) {
845		left = tnode_get_child(oldtnode, i);
846		right = tnode_get_child(oldtnode, i+1);
847
848		/* Two nonempty children */
849		if (left && right) {
850			struct tnode *newn;
851
852			newn = tnode_new(left->key, tn->pos + tn->bits, 1);
853
854			if (!newn)
855				goto nomem;
856
857			put_child(t, tn, i/2, (struct node *)newn);
858		}
859
860	}
861
862	for (i = 0; i < olen; i += 2) {
863		struct tnode *newBinNode;
864
865		left = tnode_get_child(oldtnode, i);
866		right = tnode_get_child(oldtnode, i+1);
867
868		/* At least one of the children is empty */
869		if (left == NULL) {
870			if (right == NULL)    /* Both are empty */
871				continue;
872			put_child(t, tn, i/2, right);
873			continue;
874		}
875
876		if (right == NULL) {
877			put_child(t, tn, i/2, left);
878			continue;
879		}
880
881		/* Two nonempty children */
882		newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
883		put_child(t, tn, i/2, NULL);
884		put_child(t, newBinNode, 0, left);
885		put_child(t, newBinNode, 1, right);
886		put_child(t, tn, i/2, resize(t, newBinNode));
887	}
888	tnode_free(oldtnode);
889	return tn;
890nomem:
891	{
892		int size = tnode_child_length(tn);
893		int j;
894
895		for (j = 0; j < size; j++)
896			if (tn->child[j])
897				tnode_free((struct tnode *)tn->child[j]);
898
899		tnode_free(tn);
900
901		return ERR_PTR(-ENOMEM);
902	}
903}
904
905/* readside must use rcu_read_lock currently dump routines
906 via get_fa_head and dump */
907
908static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
909{
910	struct hlist_head *head = &l->list;
911	struct hlist_node *node;
912	struct leaf_info *li;
913
914	hlist_for_each_entry_rcu(li, node, head, hlist)
915		if (li->plen == plen)
916			return li;
917
918	return NULL;
919}
920
921static inline struct list_head *get_fa_head(struct leaf *l, int plen)
922{
923	struct leaf_info *li = find_leaf_info(l, plen);
924
925	if (!li)
926		return NULL;
927
928	return &li->falh;
929}
930
931static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
932{
933	struct leaf_info *li = NULL, *last = NULL;
934	struct hlist_node *node;
935
936	if (hlist_empty(head)) {
937		hlist_add_head_rcu(&new->hlist, head);
938	} else {
939		hlist_for_each_entry(li, node, head, hlist) {
940			if (new->plen > li->plen)
941				break;
942
943			last = li;
944		}
945		if (last)
946			hlist_add_after_rcu(&last->hlist, &new->hlist);
947		else
948			hlist_add_before_rcu(&new->hlist, &li->hlist);
949	}
950}
951
952/* rcu_read_lock needs to be hold by caller from readside */
953
954static struct leaf *
955fib_find_node(struct trie *t, u32 key)
956{
957	int pos;
958	struct tnode *tn;
959	struct node *n;
960
961	pos = 0;
962	n = rcu_dereference(t->trie);
963
964	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
965		tn = (struct tnode *) n;
966
967		check_tnode(tn);
968
969		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
970			pos = tn->pos + tn->bits;
971			n = tnode_get_child_rcu(tn,
972						tkey_extract_bits(key,
973								  tn->pos,
974								  tn->bits));
975		} else
976			break;
977	}
978	/* Case we have found a leaf. Compare prefixes */
979
980	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
981		return (struct leaf *)n;
982
983	return NULL;
984}
985
986static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
987{
988	int wasfull;
989	t_key cindex, key;
990	struct tnode *tp;
991
992	preempt_disable();
993	key = tn->key;
994
995	while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
996		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
997		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
998		tn = (struct tnode *) resize(t, (struct tnode *)tn);
999
1000		tnode_put_child_reorg((struct tnode *)tp, cindex,
1001				      (struct node *)tn, wasfull);
1002
1003		tp = node_parent((struct node *) tn);
1004		if (!tp)
1005			break;
1006		tn = tp;
1007	}
1008
1009	/* Handle last (top) tnode */
1010	if (IS_TNODE(tn))
1011		tn = (struct tnode *)resize(t, (struct tnode *)tn);
1012
1013	preempt_enable();
1014	return (struct node *)tn;
1015}
1016
1017/* only used from updater-side */
1018
1019static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1020{
1021	int pos, newpos;
1022	struct tnode *tp = NULL, *tn = NULL;
1023	struct node *n;
1024	struct leaf *l;
1025	int missbit;
1026	struct list_head *fa_head = NULL;
1027	struct leaf_info *li;
1028	t_key cindex;
1029
1030	pos = 0;
1031	n = t->trie;
1032
1033	/* If we point to NULL, stop. Either the tree is empty and we should
1034	 * just put a new leaf in if, or we have reached an empty child slot,
1035	 * and we should just put our new leaf in that.
1036	 * If we point to a T_TNODE, check if it matches our key. Note that
1037	 * a T_TNODE might be skipping any number of bits - its 'pos' need
1038	 * not be the parent's 'pos'+'bits'!
1039	 *
1040	 * If it does match the current key, get pos/bits from it, extract
1041	 * the index from our key, push the T_TNODE and walk the tree.
1042	 *
1043	 * If it doesn't, we have to replace it with a new T_TNODE.
1044	 *
1045	 * If we point to a T_LEAF, it might or might not have the same key
1046	 * as we do. If it does, just change the value, update the T_LEAF's
1047	 * value, and return it.
1048	 * If it doesn't, we need to replace it with a T_TNODE.
1049	 */
1050
1051	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
1052		tn = (struct tnode *) n;
1053
1054		check_tnode(tn);
1055
1056		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1057			tp = tn;
1058			pos = tn->pos + tn->bits;
1059			n = tnode_get_child(tn,
1060					    tkey_extract_bits(key,
1061							      tn->pos,
1062							      tn->bits));
1063
1064			BUG_ON(n && node_parent(n) != tn);
1065		} else
1066			break;
1067	}
1068
1069	/*
1070	 * n  ----> NULL, LEAF or TNODE
1071	 *
1072	 * tp is n's (parent) ----> NULL or TNODE
1073	 */
1074
1075	BUG_ON(tp && IS_LEAF(tp));
1076
1077	/* Case 1: n is a leaf. Compare prefixes */
1078
1079	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1080		l = (struct leaf *) n;
1081		li = leaf_info_new(plen);
1082
1083		if (!li)
1084			return NULL;
1085
1086		fa_head = &li->falh;
1087		insert_leaf_info(&l->list, li);
1088		goto done;
1089	}
1090	l = leaf_new();
1091
1092	if (!l)
1093		return NULL;
1094
1095	l->key = key;
1096	li = leaf_info_new(plen);
1097
1098	if (!li) {
1099		free_leaf(l);
1100		return NULL;
1101	}
1102
1103	fa_head = &li->falh;
1104	insert_leaf_info(&l->list, li);
1105
1106	if (t->trie && n == NULL) {
1107		/* Case 2: n is NULL, and will just insert a new leaf */
1108
1109		node_set_parent((struct node *)l, tp);
1110
1111		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1112		put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1113	} else {
1114		/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1115		/*
1116		 *  Add a new tnode here
1117		 *  first tnode need some special handling
1118		 */
1119
1120		if (tp)
1121			pos = tp->pos+tp->bits;
1122		else
1123			pos = 0;
1124
1125		if (n) {
1126			newpos = tkey_mismatch(key, pos, n->key);
1127			tn = tnode_new(n->key, newpos, 1);
1128		} else {
1129			newpos = 0;
1130			tn = tnode_new(key, newpos, 1); /* First tnode */
1131		}
1132
1133		if (!tn) {
1134			free_leaf_info(li);
1135			free_leaf(l);
1136			return NULL;
1137		}
1138
1139		node_set_parent((struct node *)tn, tp);
1140
1141		missbit = tkey_extract_bits(key, newpos, 1);
1142		put_child(t, tn, missbit, (struct node *)l);
1143		put_child(t, tn, 1-missbit, n);
1144
1145		if (tp) {
1146			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1147			put_child(t, (struct tnode *)tp, cindex,
1148				  (struct node *)tn);
1149		} else {
1150			rcu_assign_pointer(t->trie, (struct node *)tn);
1151			tp = tn;
1152		}
1153	}
1154
1155	if (tp && tp->pos + tp->bits > 32)
1156		pr_warning("fib_trie"
1157			   " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1158			   tp, tp->pos, tp->bits, key, plen);
1159
1160	/* Rebalance the trie */
1161
1162	rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1163done:
1164	return fa_head;
1165}
1166
1167/*
1168 * Caller must hold RTNL.
1169 */
1170static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1171{
1172	struct trie *t = (struct trie *) tb->tb_data;
1173	struct fib_alias *fa, *new_fa;
1174	struct list_head *fa_head = NULL;
1175	struct fib_info *fi;
1176	int plen = cfg->fc_dst_len;
1177	u8 tos = cfg->fc_tos;
1178	u32 key, mask;
1179	int err;
1180	struct leaf *l;
1181
1182	if (plen > 32)
1183		return -EINVAL;
1184
1185	key = ntohl(cfg->fc_dst);
1186
1187	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1188
1189	mask = ntohl(inet_make_mask(plen));
1190
1191	if (key & ~mask)
1192		return -EINVAL;
1193
1194	key = key & mask;
1195
1196	fi = fib_create_info(cfg);
1197	if (IS_ERR(fi)) {
1198		err = PTR_ERR(fi);
1199		goto err;
1200	}
1201
1202	l = fib_find_node(t, key);
1203	fa = NULL;
1204
1205	if (l) {
1206		fa_head = get_fa_head(l, plen);
1207		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1208	}
1209
1210	/* Now fa, if non-NULL, points to the first fib alias
1211	 * with the same keys [prefix,tos,priority], if such key already
1212	 * exists or to the node before which we will insert new one.
1213	 *
1214	 * If fa is NULL, we will need to allocate a new one and
1215	 * insert to the head of f.
1216	 *
1217	 * If f is NULL, no fib node matched the destination key
1218	 * and we need to allocate a new one of those as well.
1219	 */
1220
1221	if (fa && fa->fa_tos == tos &&
1222	    fa->fa_info->fib_priority == fi->fib_priority) {
1223		struct fib_alias *fa_first, *fa_match;
1224
1225		err = -EEXIST;
1226		if (cfg->fc_nlflags & NLM_F_EXCL)
1227			goto out;
1228
1229		/* We have 2 goals:
1230		 * 1. Find exact match for type, scope, fib_info to avoid
1231		 * duplicate routes
1232		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1233		 */
1234		fa_match = NULL;
1235		fa_first = fa;
1236		fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1237		list_for_each_entry_continue(fa, fa_head, fa_list) {
1238			if (fa->fa_tos != tos)
1239				break;
1240			if (fa->fa_info->fib_priority != fi->fib_priority)
1241				break;
1242			if (fa->fa_type == cfg->fc_type &&
1243			    fa->fa_scope == cfg->fc_scope &&
1244			    fa->fa_info == fi) {
1245				fa_match = fa;
1246				break;
1247			}
1248		}
1249
1250		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1251			struct fib_info *fi_drop;
1252			u8 state;
1253
1254			fa = fa_first;
1255			if (fa_match) {
1256				if (fa == fa_match)
1257					err = 0;
1258				goto out;
1259			}
1260			err = -ENOBUFS;
1261			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1262			if (new_fa == NULL)
1263				goto out;
1264
1265			fi_drop = fa->fa_info;
1266			new_fa->fa_tos = fa->fa_tos;
1267			new_fa->fa_info = fi;
1268			new_fa->fa_type = cfg->fc_type;
1269			new_fa->fa_scope = cfg->fc_scope;
1270			state = fa->fa_state;
1271			new_fa->fa_state = state & ~FA_S_ACCESSED;
1272
1273			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1274			alias_free_mem_rcu(fa);
1275
1276			fib_release_info(fi_drop);
1277			if (state & FA_S_ACCESSED)
1278				rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1279			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1280				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1281
1282			goto succeeded;
1283		}
1284		/* Error if we find a perfect match which
1285		 * uses the same scope, type, and nexthop
1286		 * information.
1287		 */
1288		if (fa_match)
1289			goto out;
1290
1291		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1292			fa = fa_first;
1293	}
1294	err = -ENOENT;
1295	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1296		goto out;
1297
1298	err = -ENOBUFS;
1299	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1300	if (new_fa == NULL)
1301		goto out;
1302
1303	new_fa->fa_info = fi;
1304	new_fa->fa_tos = tos;
1305	new_fa->fa_type = cfg->fc_type;
1306	new_fa->fa_scope = cfg->fc_scope;
1307	new_fa->fa_state = 0;
1308	/*
1309	 * Insert new entry to the list.
1310	 */
1311
1312	if (!fa_head) {
1313		fa_head = fib_insert_node(t, key, plen);
1314		if (unlikely(!fa_head)) {
1315			err = -ENOMEM;
1316			goto out_free_new_fa;
1317		}
1318	}
1319
1320	list_add_tail_rcu(&new_fa->fa_list,
1321			  (fa ? &fa->fa_list : fa_head));
1322
1323	rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1324	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1325		  &cfg->fc_nlinfo, 0);
1326succeeded:
1327	return 0;
1328
1329out_free_new_fa:
1330	kmem_cache_free(fn_alias_kmem, new_fa);
1331out:
1332	fib_release_info(fi);
1333err:
1334	return err;
1335}
1336
1337/* should be called with rcu_read_lock */
1338static int check_leaf(struct trie *t, struct leaf *l,
1339		      t_key key,  const struct flowi *flp,
1340		      struct fib_result *res)
1341{
1342	struct leaf_info *li;
1343	struct hlist_head *hhead = &l->list;
1344	struct hlist_node *node;
1345
1346	hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1347		int err;
1348		int plen = li->plen;
1349		__be32 mask = inet_make_mask(plen);
1350
1351		if (l->key != (key & ntohl(mask)))
1352			continue;
1353
1354		err = fib_semantic_match(&li->falh, flp, res,
1355					 htonl(l->key), mask, plen);
1356
1357#ifdef CONFIG_IP_FIB_TRIE_STATS
1358		if (err <= 0)
1359			t->stats.semantic_match_passed++;
1360		else
1361			t->stats.semantic_match_miss++;
1362#endif
1363		if (err <= 0)
1364			return err;
1365	}
1366
1367	return 1;
1368}
1369
1370static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1371			  struct fib_result *res)
1372{
1373	struct trie *t = (struct trie *) tb->tb_data;
1374	int ret;
1375	struct node *n;
1376	struct tnode *pn;
1377	int pos, bits;
1378	t_key key = ntohl(flp->fl4_dst);
1379	int chopped_off;
1380	t_key cindex = 0;
1381	int current_prefix_length = KEYLENGTH;
1382	struct tnode *cn;
1383	t_key node_prefix, key_prefix, pref_mismatch;
1384	int mp;
1385
1386	rcu_read_lock();
1387
1388	n = rcu_dereference(t->trie);
1389	if (!n)
1390		goto failed;
1391
1392#ifdef CONFIG_IP_FIB_TRIE_STATS
1393	t->stats.gets++;
1394#endif
1395
1396	/* Just a leaf? */
1397	if (IS_LEAF(n)) {
1398		ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1399		goto found;
1400	}
1401
1402	pn = (struct tnode *) n;
1403	chopped_off = 0;
1404
1405	while (pn) {
1406		pos = pn->pos;
1407		bits = pn->bits;
1408
1409		if (!chopped_off)
1410			cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1411						   pos, bits);
1412
1413		n = tnode_get_child(pn, cindex);
1414
1415		if (n == NULL) {
1416#ifdef CONFIG_IP_FIB_TRIE_STATS
1417			t->stats.null_node_hit++;
1418#endif
1419			goto backtrace;
1420		}
1421
1422		if (IS_LEAF(n)) {
1423			ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1424			if (ret > 0)
1425				goto backtrace;
1426			goto found;
1427		}
1428
1429		cn = (struct tnode *)n;
1430
1431		/*
1432		 * It's a tnode, and we can do some extra checks here if we
1433		 * like, to avoid descending into a dead-end branch.
1434		 * This tnode is in the parent's child array at index
1435		 * key[p_pos..p_pos+p_bits] but potentially with some bits
1436		 * chopped off, so in reality the index may be just a
1437		 * subprefix, padded with zero at the end.
1438		 * We can also take a look at any skipped bits in this
1439		 * tnode - everything up to p_pos is supposed to be ok,
1440		 * and the non-chopped bits of the index (se previous
1441		 * paragraph) are also guaranteed ok, but the rest is
1442		 * considered unknown.
1443		 *
1444		 * The skipped bits are key[pos+bits..cn->pos].
1445		 */
1446
1447		/* If current_prefix_length < pos+bits, we are already doing
1448		 * actual prefix  matching, which means everything from
1449		 * pos+(bits-chopped_off) onward must be zero along some
1450		 * branch of this subtree - otherwise there is *no* valid
1451		 * prefix present. Here we can only check the skipped
1452		 * bits. Remember, since we have already indexed into the
1453		 * parent's child array, we know that the bits we chopped of
1454		 * *are* zero.
1455		 */
1456
1457		/* NOTA BENE: Checking only skipped bits
1458		   for the new node here */
1459
1460		if (current_prefix_length < pos+bits) {
1461			if (tkey_extract_bits(cn->key, current_prefix_length,
1462						cn->pos - current_prefix_length)
1463			    || !(cn->child[0]))
1464				goto backtrace;
1465		}
1466
1467		/*
1468		 * If chopped_off=0, the index is fully validated and we
1469		 * only need to look at the skipped bits for this, the new,
1470		 * tnode. What we actually want to do is to find out if
1471		 * these skipped bits match our key perfectly, or if we will
1472		 * have to count on finding a matching prefix further down,
1473		 * because if we do, we would like to have some way of
1474		 * verifying the existence of such a prefix at this point.
1475		 */
1476
1477		/* The only thing we can do at this point is to verify that
1478		 * any such matching prefix can indeed be a prefix to our
1479		 * key, and if the bits in the node we are inspecting that
1480		 * do not match our key are not ZERO, this cannot be true.
1481		 * Thus, find out where there is a mismatch (before cn->pos)
1482		 * and verify that all the mismatching bits are zero in the
1483		 * new tnode's key.
1484		 */
1485
1486		/*
1487		 * Note: We aren't very concerned about the piece of
1488		 * the key that precede pn->pos+pn->bits, since these
1489		 * have already been checked. The bits after cn->pos
1490		 * aren't checked since these are by definition
1491		 * "unknown" at this point. Thus, what we want to see
1492		 * is if we are about to enter the "prefix matching"
1493		 * state, and in that case verify that the skipped
1494		 * bits that will prevail throughout this subtree are
1495		 * zero, as they have to be if we are to find a
1496		 * matching prefix.
1497		 */
1498
1499		node_prefix = mask_pfx(cn->key, cn->pos);
1500		key_prefix = mask_pfx(key, cn->pos);
1501		pref_mismatch = key_prefix^node_prefix;
1502		mp = 0;
1503
1504		/*
1505		 * In short: If skipped bits in this node do not match
1506		 * the search key, enter the "prefix matching"
1507		 * state.directly.
1508		 */
1509		if (pref_mismatch) {
1510			while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1511				mp++;
1512				pref_mismatch = pref_mismatch << 1;
1513			}
1514			key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1515
1516			if (key_prefix != 0)
1517				goto backtrace;
1518
1519			if (current_prefix_length >= cn->pos)
1520				current_prefix_length = mp;
1521		}
1522
1523		pn = (struct tnode *)n; /* Descend */
1524		chopped_off = 0;
1525		continue;
1526
1527backtrace:
1528		chopped_off++;
1529
1530		/* As zero don't change the child key (cindex) */
1531		while ((chopped_off <= pn->bits)
1532		       && !(cindex & (1<<(chopped_off-1))))
1533			chopped_off++;
1534
1535		/* Decrease current_... with bits chopped off */
1536		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1537			current_prefix_length = pn->pos + pn->bits
1538				- chopped_off;
1539
1540		/*
1541		 * Either we do the actual chop off according or if we have
1542		 * chopped off all bits in this tnode walk up to our parent.
1543		 */
1544
1545		if (chopped_off <= pn->bits) {
1546			cindex &= ~(1 << (chopped_off-1));
1547		} else {
1548			struct tnode *parent = node_parent((struct node *) pn);
1549			if (!parent)
1550				goto failed;
1551
1552			/* Get Child's index */
1553			cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1554			pn = parent;
1555			chopped_off = 0;
1556
1557#ifdef CONFIG_IP_FIB_TRIE_STATS
1558			t->stats.backtrack++;
1559#endif
1560			goto backtrace;
1561		}
1562	}
1563failed:
1564	ret = 1;
1565found:
1566	rcu_read_unlock();
1567	return ret;
1568}
1569
1570/*
1571 * Remove the leaf and return parent.
1572 */
1573static void trie_leaf_remove(struct trie *t, struct leaf *l)
1574{
1575	struct tnode *tp = node_parent((struct node *) l);
1576
1577	pr_debug("entering trie_leaf_remove(%p)\n", l);
1578
1579	if (tp) {
1580		t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1581		put_child(t, (struct tnode *)tp, cindex, NULL);
1582		rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1583	} else
1584		rcu_assign_pointer(t->trie, NULL);
1585
1586	free_leaf(l);
1587}
1588
1589/*
1590 * Caller must hold RTNL.
1591 */
1592static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1593{
1594	struct trie *t = (struct trie *) tb->tb_data;
1595	u32 key, mask;
1596	int plen = cfg->fc_dst_len;
1597	u8 tos = cfg->fc_tos;
1598	struct fib_alias *fa, *fa_to_delete;
1599	struct list_head *fa_head;
1600	struct leaf *l;
1601	struct leaf_info *li;
1602
1603	if (plen > 32)
1604		return -EINVAL;
1605
1606	key = ntohl(cfg->fc_dst);
1607	mask = ntohl(inet_make_mask(plen));
1608
1609	if (key & ~mask)
1610		return -EINVAL;
1611
1612	key = key & mask;
1613	l = fib_find_node(t, key);
1614
1615	if (!l)
1616		return -ESRCH;
1617
1618	fa_head = get_fa_head(l, plen);
1619	fa = fib_find_alias(fa_head, tos, 0);
1620
1621	if (!fa)
1622		return -ESRCH;
1623
1624	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1625
1626	fa_to_delete = NULL;
1627	fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1628	list_for_each_entry_continue(fa, fa_head, fa_list) {
1629		struct fib_info *fi = fa->fa_info;
1630
1631		if (fa->fa_tos != tos)
1632			break;
1633
1634		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1635		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1636		     fa->fa_scope == cfg->fc_scope) &&
1637		    (!cfg->fc_protocol ||
1638		     fi->fib_protocol == cfg->fc_protocol) &&
1639		    fib_nh_match(cfg, fi) == 0) {
1640			fa_to_delete = fa;
1641			break;
1642		}
1643	}
1644
1645	if (!fa_to_delete)
1646		return -ESRCH;
1647
1648	fa = fa_to_delete;
1649	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1650		  &cfg->fc_nlinfo, 0);
1651
1652	l = fib_find_node(t, key);
1653	li = find_leaf_info(l, plen);
1654
1655	list_del_rcu(&fa->fa_list);
1656
1657	if (list_empty(fa_head)) {
1658		hlist_del_rcu(&li->hlist);
1659		free_leaf_info(li);
1660	}
1661
1662	if (hlist_empty(&l->list))
1663		trie_leaf_remove(t, l);
1664
1665	if (fa->fa_state & FA_S_ACCESSED)
1666		rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1667
1668	fib_release_info(fa->fa_info);
1669	alias_free_mem_rcu(fa);
1670	return 0;
1671}
1672
1673static int trie_flush_list(struct list_head *head)
1674{
1675	struct fib_alias *fa, *fa_node;
1676	int found = 0;
1677
1678	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1679		struct fib_info *fi = fa->fa_info;
1680
1681		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1682			list_del_rcu(&fa->fa_list);
1683			fib_release_info(fa->fa_info);
1684			alias_free_mem_rcu(fa);
1685			found++;
1686		}
1687	}
1688	return found;
1689}
1690
1691static int trie_flush_leaf(struct leaf *l)
1692{
1693	int found = 0;
1694	struct hlist_head *lih = &l->list;
1695	struct hlist_node *node, *tmp;
1696	struct leaf_info *li = NULL;
1697
1698	hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1699		found += trie_flush_list(&li->falh);
1700
1701		if (list_empty(&li->falh)) {
1702			hlist_del_rcu(&li->hlist);
1703			free_leaf_info(li);
1704		}
1705	}
1706	return found;
1707}
1708
1709/*
1710 * Scan for the next right leaf starting at node p->child[idx]
1711 * Since we have back pointer, no recursion necessary.
1712 */
1713static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1714{
1715	do {
1716		t_key idx;
1717
1718		if (c)
1719			idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1720		else
1721			idx = 0;
1722
1723		while (idx < 1u << p->bits) {
1724			c = tnode_get_child_rcu(p, idx++);
1725			if (!c)
1726				continue;
1727
1728			if (IS_LEAF(c)) {
1729				prefetch(p->child[idx]);
1730				return (struct leaf *) c;
1731			}
1732
1733			/* Rescan start scanning in new node */
1734			p = (struct tnode *) c;
1735			idx = 0;
1736		}
1737
1738		/* Node empty, walk back up to parent */
1739		c = (struct node *) p;
1740	} while ( (p = node_parent_rcu(c)) != NULL);
1741
1742	return NULL; /* Root of trie */
1743}
1744
1745static struct leaf *trie_firstleaf(struct trie *t)
1746{
1747	struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1748
1749	if (!n)
1750		return NULL;
1751
1752	if (IS_LEAF(n))          /* trie is just a leaf */
1753		return (struct leaf *) n;
1754
1755	return leaf_walk_rcu(n, NULL);
1756}
1757
1758static struct leaf *trie_nextleaf(struct leaf *l)
1759{
1760	struct node *c = (struct node *) l;
1761	struct tnode *p = node_parent(c);
1762
1763	if (!p)
1764		return NULL;	/* trie with just one leaf */
1765
1766	return leaf_walk_rcu(p, c);
1767}
1768
1769static struct leaf *trie_leafindex(struct trie *t, int index)
1770{
1771	struct leaf *l = trie_firstleaf(t);
1772
1773	while (l && index-- > 0)
1774		l = trie_nextleaf(l);
1775
1776	return l;
1777}
1778
1779
1780/*
1781 * Caller must hold RTNL.
1782 */
1783static int fn_trie_flush(struct fib_table *tb)
1784{
1785	struct trie *t = (struct trie *) tb->tb_data;
1786	struct leaf *l, *ll = NULL;
1787	int found = 0;
1788
1789	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1790		found += trie_flush_leaf(l);
1791
1792		if (ll && hlist_empty(&ll->list))
1793			trie_leaf_remove(t, ll);
1794		ll = l;
1795	}
1796
1797	if (ll && hlist_empty(&ll->list))
1798		trie_leaf_remove(t, ll);
1799
1800	pr_debug("trie_flush found=%d\n", found);
1801	return found;
1802}
1803
1804static void fn_trie_select_default(struct fib_table *tb,
1805				   const struct flowi *flp,
1806				   struct fib_result *res)
1807{
1808	struct trie *t = (struct trie *) tb->tb_data;
1809	int order, last_idx;
1810	struct fib_info *fi = NULL;
1811	struct fib_info *last_resort;
1812	struct fib_alias *fa = NULL;
1813	struct list_head *fa_head;
1814	struct leaf *l;
1815
1816	last_idx = -1;
1817	last_resort = NULL;
1818	order = -1;
1819
1820	rcu_read_lock();
1821
1822	l = fib_find_node(t, 0);
1823	if (!l)
1824		goto out;
1825
1826	fa_head = get_fa_head(l, 0);
1827	if (!fa_head)
1828		goto out;
1829
1830	if (list_empty(fa_head))
1831		goto out;
1832
1833	list_for_each_entry_rcu(fa, fa_head, fa_list) {
1834		struct fib_info *next_fi = fa->fa_info;
1835
1836		if (fa->fa_scope != res->scope ||
1837		    fa->fa_type != RTN_UNICAST)
1838			continue;
1839
1840		if (next_fi->fib_priority > res->fi->fib_priority)
1841			break;
1842		if (!next_fi->fib_nh[0].nh_gw ||
1843		    next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1844			continue;
1845		fa->fa_state |= FA_S_ACCESSED;
1846
1847		if (fi == NULL) {
1848			if (next_fi != res->fi)
1849				break;
1850		} else if (!fib_detect_death(fi, order, &last_resort,
1851					     &last_idx, tb->tb_default)) {
1852			fib_result_assign(res, fi);
1853			tb->tb_default = order;
1854			goto out;
1855		}
1856		fi = next_fi;
1857		order++;
1858	}
1859	if (order <= 0 || fi == NULL) {
1860		tb->tb_default = -1;
1861		goto out;
1862	}
1863
1864	if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1865				tb->tb_default)) {
1866		fib_result_assign(res, fi);
1867		tb->tb_default = order;
1868		goto out;
1869	}
1870	if (last_idx >= 0)
1871		fib_result_assign(res, last_resort);
1872	tb->tb_default = last_idx;
1873out:
1874	rcu_read_unlock();
1875}
1876
1877static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1878			   struct fib_table *tb,
1879			   struct sk_buff *skb, struct netlink_callback *cb)
1880{
1881	int i, s_i;
1882	struct fib_alias *fa;
1883	__be32 xkey = htonl(key);
1884
1885	s_i = cb->args[5];
1886	i = 0;
1887
1888	/* rcu_read_lock is hold by caller */
1889
1890	list_for_each_entry_rcu(fa, fah, fa_list) {
1891		if (i < s_i) {
1892			i++;
1893			continue;
1894		}
1895
1896		if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1897				  cb->nlh->nlmsg_seq,
1898				  RTM_NEWROUTE,
1899				  tb->tb_id,
1900				  fa->fa_type,
1901				  fa->fa_scope,
1902				  xkey,
1903				  plen,
1904				  fa->fa_tos,
1905				  fa->fa_info, NLM_F_MULTI) < 0) {
1906			cb->args[5] = i;
1907			return -1;
1908		}
1909		i++;
1910	}
1911	cb->args[5] = i;
1912	return skb->len;
1913}
1914
1915static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1916			struct sk_buff *skb, struct netlink_callback *cb)
1917{
1918	struct leaf_info *li;
1919	struct hlist_node *node;
1920	int i, s_i;
1921
1922	s_i = cb->args[4];
1923	i = 0;
1924
1925	/* rcu_read_lock is hold by caller */
1926	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1927		if (i < s_i) {
1928			i++;
1929			continue;
1930		}
1931
1932		if (i > s_i)
1933			cb->args[5] = 0;
1934
1935		if (list_empty(&li->falh))
1936			continue;
1937
1938		if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1939			cb->args[4] = i;
1940			return -1;
1941		}
1942		i++;
1943	}
1944
1945	cb->args[4] = i;
1946	return skb->len;
1947}
1948
1949static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1950			struct netlink_callback *cb)
1951{
1952	struct leaf *l;
1953	struct trie *t = (struct trie *) tb->tb_data;
1954	t_key key = cb->args[2];
1955	int count = cb->args[3];
1956
1957	rcu_read_lock();
1958	/* Dump starting at last key.
1959	 * Note: 0.0.0.0/0 (ie default) is first key.
1960	 */
1961	if (count == 0)
1962		l = trie_firstleaf(t);
1963	else {
1964		/* Normally, continue from last key, but if that is missing
1965		 * fallback to using slow rescan
1966		 */
1967		l = fib_find_node(t, key);
1968		if (!l)
1969			l = trie_leafindex(t, count);
1970	}
1971
1972	while (l) {
1973		cb->args[2] = l->key;
1974		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1975			cb->args[3] = count;
1976			rcu_read_unlock();
1977			return -1;
1978		}
1979
1980		++count;
1981		l = trie_nextleaf(l);
1982		memset(&cb->args[4], 0,
1983		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1984	}
1985	cb->args[3] = count;
1986	rcu_read_unlock();
1987
1988	return skb->len;
1989}
1990
1991void __init fib_hash_init(void)
1992{
1993	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1994					  sizeof(struct fib_alias),
1995					  0, SLAB_PANIC, NULL);
1996
1997	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1998					   max(sizeof(struct leaf),
1999					       sizeof(struct leaf_info)),
2000					   0, SLAB_PANIC, NULL);
2001}
2002
2003
2004/* Fix more generic FIB names for init later */
2005struct fib_table *fib_hash_table(u32 id)
2006{
2007	struct fib_table *tb;
2008	struct trie *t;
2009
2010	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2011		     GFP_KERNEL);
2012	if (tb == NULL)
2013		return NULL;
2014
2015	tb->tb_id = id;
2016	tb->tb_default = -1;
2017	tb->tb_lookup = fn_trie_lookup;
2018	tb->tb_insert = fn_trie_insert;
2019	tb->tb_delete = fn_trie_delete;
2020	tb->tb_flush = fn_trie_flush;
2021	tb->tb_select_default = fn_trie_select_default;
2022	tb->tb_dump = fn_trie_dump;
2023
2024	t = (struct trie *) tb->tb_data;
2025	memset(t, 0, sizeof(*t));
2026
2027	if (id == RT_TABLE_LOCAL)
2028		pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2029
2030	return tb;
2031}
2032
2033#ifdef CONFIG_PROC_FS
2034/* Depth first Trie walk iterator */
2035struct fib_trie_iter {
2036	struct seq_net_private p;
2037	struct fib_table *tb;
2038	struct tnode *tnode;
2039	unsigned index;
2040	unsigned depth;
2041};
2042
2043static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2044{
2045	struct tnode *tn = iter->tnode;
2046	unsigned cindex = iter->index;
2047	struct tnode *p;
2048
2049	/* A single entry routing table */
2050	if (!tn)
2051		return NULL;
2052
2053	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2054		 iter->tnode, iter->index, iter->depth);
2055rescan:
2056	while (cindex < (1<<tn->bits)) {
2057		struct node *n = tnode_get_child_rcu(tn, cindex);
2058
2059		if (n) {
2060			if (IS_LEAF(n)) {
2061				iter->tnode = tn;
2062				iter->index = cindex + 1;
2063			} else {
2064				/* push down one level */
2065				iter->tnode = (struct tnode *) n;
2066				iter->index = 0;
2067				++iter->depth;
2068			}
2069			return n;
2070		}
2071
2072		++cindex;
2073	}
2074
2075	/* Current node exhausted, pop back up */
2076	p = node_parent_rcu((struct node *)tn);
2077	if (p) {
2078		cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2079		tn = p;
2080		--iter->depth;
2081		goto rescan;
2082	}
2083
2084	/* got root? */
2085	return NULL;
2086}
2087
2088static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2089				       struct trie *t)
2090{
2091	struct node *n;
2092
2093	if (!t)
2094		return NULL;
2095
2096	n = rcu_dereference(t->trie);
2097	if (!n)
2098		return NULL;
2099
2100	if (IS_TNODE(n)) {
2101		iter->tnode = (struct tnode *) n;
2102		iter->index = 0;
2103		iter->depth = 1;
2104	} else {
2105		iter->tnode = NULL;
2106		iter->index = 0;
2107		iter->depth = 0;
2108	}
2109
2110	return n;
2111}
2112
2113static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2114{
2115	struct node *n;
2116	struct fib_trie_iter iter;
2117
2118	memset(s, 0, sizeof(*s));
2119
2120	rcu_read_lock();
2121	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2122		if (IS_LEAF(n)) {
2123			struct leaf *l = (struct leaf *)n;
2124			struct leaf_info *li;
2125			struct hlist_node *tmp;
2126
2127			s->leaves++;
2128			s->totdepth += iter.depth;
2129			if (iter.depth > s->maxdepth)
2130				s->maxdepth = iter.depth;
2131
2132			hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2133				++s->prefixes;
2134		} else {
2135			const struct tnode *tn = (const struct tnode *) n;
2136			int i;
2137
2138			s->tnodes++;
2139			if (tn->bits < MAX_STAT_DEPTH)
2140				s->nodesizes[tn->bits]++;
2141
2142			for (i = 0; i < (1<<tn->bits); i++)
2143				if (!tn->child[i])
2144					s->nullpointers++;
2145		}
2146	}
2147	rcu_read_unlock();
2148}
2149
2150/*
2151 *	This outputs /proc/net/fib_triestats
2152 */
2153static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2154{
2155	unsigned i, max, pointers, bytes, avdepth;
2156
2157	if (stat->leaves)
2158		avdepth = stat->totdepth*100 / stat->leaves;
2159	else
2160		avdepth = 0;
2161
2162	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2163		   avdepth / 100, avdepth % 100);
2164	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2165
2166	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2167	bytes = sizeof(struct leaf) * stat->leaves;
2168
2169	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2170	bytes += sizeof(struct leaf_info) * stat->prefixes;
2171
2172	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2173	bytes += sizeof(struct tnode) * stat->tnodes;
2174
2175	max = MAX_STAT_DEPTH;
2176	while (max > 0 && stat->nodesizes[max-1] == 0)
2177		max--;
2178
2179	pointers = 0;
2180	for (i = 1; i <= max; i++)
2181		if (stat->nodesizes[i] != 0) {
2182			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2183			pointers += (1<<i) * stat->nodesizes[i];
2184		}
2185	seq_putc(seq, '\n');
2186	seq_printf(seq, "\tPointers: %u\n", pointers);
2187
2188	bytes += sizeof(struct node *) * pointers;
2189	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2190	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2191}
2192
2193#ifdef CONFIG_IP_FIB_TRIE_STATS
2194static void trie_show_usage(struct seq_file *seq,
2195			    const struct trie_use_stats *stats)
2196{
2197	seq_printf(seq, "\nCounters:\n---------\n");
2198	seq_printf(seq, "gets = %u\n", stats->gets);
2199	seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2200	seq_printf(seq, "semantic match passed = %u\n",
2201		   stats->semantic_match_passed);
2202	seq_printf(seq, "semantic match miss = %u\n",
2203		   stats->semantic_match_miss);
2204	seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2205	seq_printf(seq, "skipped node resize = %u\n\n",
2206		   stats->resize_node_skipped);
2207}
2208#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2209
2210static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2211{
2212	if (tb->tb_id == RT_TABLE_LOCAL)
2213		seq_puts(seq, "Local:\n");
2214	else if (tb->tb_id == RT_TABLE_MAIN)
2215		seq_puts(seq, "Main:\n");
2216	else
2217		seq_printf(seq, "Id %d:\n", tb->tb_id);
2218}
2219
2220
2221static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2222{
2223	struct net *net = (struct net *)seq->private;
2224	unsigned int h;
2225
2226	seq_printf(seq,
2227		   "Basic info: size of leaf:"
2228		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2229		   sizeof(struct leaf), sizeof(struct tnode));
2230
2231	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2232		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2233		struct hlist_node *node;
2234		struct fib_table *tb;
2235
2236		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2237			struct trie *t = (struct trie *) tb->tb_data;
2238			struct trie_stat stat;
2239
2240			if (!t)
2241				continue;
2242
2243			fib_table_print(seq, tb);
2244
2245			trie_collect_stats(t, &stat);
2246			trie_show_stats(seq, &stat);
2247#ifdef CONFIG_IP_FIB_TRIE_STATS
2248			trie_show_usage(seq, &t->stats);
2249#endif
2250		}
2251	}
2252
2253	return 0;
2254}
2255
2256static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2257{
2258	return single_open_net(inode, file, fib_triestat_seq_show);
2259}
2260
2261static const struct file_operations fib_triestat_fops = {
2262	.owner	= THIS_MODULE,
2263	.open	= fib_triestat_seq_open,
2264	.read	= seq_read,
2265	.llseek	= seq_lseek,
2266	.release = single_release_net,
2267};
2268
2269static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2270{
2271	struct fib_trie_iter *iter = seq->private;
2272	struct net *net = seq_file_net(seq);
2273	loff_t idx = 0;
2274	unsigned int h;
2275
2276	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2277		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2278		struct hlist_node *node;
2279		struct fib_table *tb;
2280
2281		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2282			struct node *n;
2283
2284			for (n = fib_trie_get_first(iter,
2285						    (struct trie *) tb->tb_data);
2286			     n; n = fib_trie_get_next(iter))
2287				if (pos == idx++) {
2288					iter->tb = tb;
2289					return n;
2290				}
2291		}
2292	}
2293
2294	return NULL;
2295}
2296
2297static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2298	__acquires(RCU)
2299{
2300	rcu_read_lock();
2301	return fib_trie_get_idx(seq, *pos);
2302}
2303
2304static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2305{
2306	struct fib_trie_iter *iter = seq->private;
2307	struct net *net = seq_file_net(seq);
2308	struct fib_table *tb = iter->tb;
2309	struct hlist_node *tb_node;
2310	unsigned int h;
2311	struct node *n;
2312
2313	++*pos;
2314	/* next node in same table */
2315	n = fib_trie_get_next(iter);
2316	if (n)
2317		return n;
2318
2319	/* walk rest of this hash chain */
2320	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2321	while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2322		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2323		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2324		if (n)
2325			goto found;
2326	}
2327
2328	/* new hash chain */
2329	while (++h < FIB_TABLE_HASHSZ) {
2330		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2331		hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2332			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2333			if (n)
2334				goto found;
2335		}
2336	}
2337	return NULL;
2338
2339found:
2340	iter->tb = tb;
2341	return n;
2342}
2343
2344static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2345	__releases(RCU)
2346{
2347	rcu_read_unlock();
2348}
2349
2350static void seq_indent(struct seq_file *seq, int n)
2351{
2352	while (n-- > 0) seq_puts(seq, "   ");
2353}
2354
2355static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2356{
2357	switch (s) {
2358	case RT_SCOPE_UNIVERSE: return "universe";
2359	case RT_SCOPE_SITE:	return "site";
2360	case RT_SCOPE_LINK:	return "link";
2361	case RT_SCOPE_HOST:	return "host";
2362	case RT_SCOPE_NOWHERE:	return "nowhere";
2363	default:
2364		snprintf(buf, len, "scope=%d", s);
2365		return buf;
2366	}
2367}
2368
2369static const char *rtn_type_names[__RTN_MAX] = {
2370	[RTN_UNSPEC] = "UNSPEC",
2371	[RTN_UNICAST] = "UNICAST",
2372	[RTN_LOCAL] = "LOCAL",
2373	[RTN_BROADCAST] = "BROADCAST",
2374	[RTN_ANYCAST] = "ANYCAST",
2375	[RTN_MULTICAST] = "MULTICAST",
2376	[RTN_BLACKHOLE] = "BLACKHOLE",
2377	[RTN_UNREACHABLE] = "UNREACHABLE",
2378	[RTN_PROHIBIT] = "PROHIBIT",
2379	[RTN_THROW] = "THROW",
2380	[RTN_NAT] = "NAT",
2381	[RTN_XRESOLVE] = "XRESOLVE",
2382};
2383
2384static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2385{
2386	if (t < __RTN_MAX && rtn_type_names[t])
2387		return rtn_type_names[t];
2388	snprintf(buf, len, "type %u", t);
2389	return buf;
2390}
2391
2392/* Pretty print the trie */
2393static int fib_trie_seq_show(struct seq_file *seq, void *v)
2394{
2395	const struct fib_trie_iter *iter = seq->private;
2396	struct node *n = v;
2397
2398	if (!node_parent_rcu(n))
2399		fib_table_print(seq, iter->tb);
2400
2401	if (IS_TNODE(n)) {
2402		struct tnode *tn = (struct tnode *) n;
2403		__be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2404
2405		seq_indent(seq, iter->depth-1);
2406		seq_printf(seq, "  +-- %pI4/%d %d %d %d\n",
2407			   &prf, tn->pos, tn->bits, tn->full_children,
2408			   tn->empty_children);
2409
2410	} else {
2411		struct leaf *l = (struct leaf *) n;
2412		struct leaf_info *li;
2413		struct hlist_node *node;
2414		__be32 val = htonl(l->key);
2415
2416		seq_indent(seq, iter->depth);
2417		seq_printf(seq, "  |-- %pI4\n", &val);
2418
2419		hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2420			struct fib_alias *fa;
2421
2422			list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2423				char buf1[32], buf2[32];
2424
2425				seq_indent(seq, iter->depth+1);
2426				seq_printf(seq, "  /%d %s %s", li->plen,
2427					   rtn_scope(buf1, sizeof(buf1),
2428						     fa->fa_scope),
2429					   rtn_type(buf2, sizeof(buf2),
2430						    fa->fa_type));
2431				if (fa->fa_tos)
2432					seq_printf(seq, " tos=%d", fa->fa_tos);
2433				seq_putc(seq, '\n');
2434			}
2435		}
2436	}
2437
2438	return 0;
2439}
2440
2441static const struct seq_operations fib_trie_seq_ops = {
2442	.start  = fib_trie_seq_start,
2443	.next   = fib_trie_seq_next,
2444	.stop   = fib_trie_seq_stop,
2445	.show   = fib_trie_seq_show,
2446};
2447
2448static int fib_trie_seq_open(struct inode *inode, struct file *file)
2449{
2450	return seq_open_net(inode, file, &fib_trie_seq_ops,
2451			    sizeof(struct fib_trie_iter));
2452}
2453
2454static const struct file_operations fib_trie_fops = {
2455	.owner  = THIS_MODULE,
2456	.open   = fib_trie_seq_open,
2457	.read   = seq_read,
2458	.llseek = seq_lseek,
2459	.release = seq_release_net,
2460};
2461
2462struct fib_route_iter {
2463	struct seq_net_private p;
2464	struct trie *main_trie;
2465	loff_t	pos;
2466	t_key	key;
2467};
2468
2469static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2470{
2471	struct leaf *l = NULL;
2472	struct trie *t = iter->main_trie;
2473
2474	/* use cache location of last found key */
2475	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2476		pos -= iter->pos;
2477	else {
2478		iter->pos = 0;
2479		l = trie_firstleaf(t);
2480	}
2481
2482	while (l && pos-- > 0) {
2483		iter->pos++;
2484		l = trie_nextleaf(l);
2485	}
2486
2487	if (l)
2488		iter->key = pos;	/* remember it */
2489	else
2490		iter->pos = 0;		/* forget it */
2491
2492	return l;
2493}
2494
2495static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2496	__acquires(RCU)
2497{
2498	struct fib_route_iter *iter = seq->private;
2499	struct fib_table *tb;
2500
2501	rcu_read_lock();
2502	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2503	if (!tb)
2504		return NULL;
2505
2506	iter->main_trie = (struct trie *) tb->tb_data;
2507	if (*pos == 0)
2508		return SEQ_START_TOKEN;
2509	else
2510		return fib_route_get_idx(iter, *pos - 1);
2511}
2512
2513static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2514{
2515	struct fib_route_iter *iter = seq->private;
2516	struct leaf *l = v;
2517
2518	++*pos;
2519	if (v == SEQ_START_TOKEN) {
2520		iter->pos = 0;
2521		l = trie_firstleaf(iter->main_trie);
2522	} else {
2523		iter->pos++;
2524		l = trie_nextleaf(l);
2525	}
2526
2527	if (l)
2528		iter->key = l->key;
2529	else
2530		iter->pos = 0;
2531	return l;
2532}
2533
2534static void fib_route_seq_stop(struct seq_file *seq, void *v)
2535	__releases(RCU)
2536{
2537	rcu_read_unlock();
2538}
2539
2540static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2541{
2542	static unsigned type2flags[RTN_MAX + 1] = {
2543		[7] = RTF_REJECT, [8] = RTF_REJECT,
2544	};
2545	unsigned flags = type2flags[type];
2546
2547	if (fi && fi->fib_nh->nh_gw)
2548		flags |= RTF_GATEWAY;
2549	if (mask == htonl(0xFFFFFFFF))
2550		flags |= RTF_HOST;
2551	flags |= RTF_UP;
2552	return flags;
2553}
2554
2555/*
2556 *	This outputs /proc/net/route.
2557 *	The format of the file is not supposed to be changed
2558 * 	and needs to be same as fib_hash output to avoid breaking
2559 *	legacy utilities
2560 */
2561static int fib_route_seq_show(struct seq_file *seq, void *v)
2562{
2563	struct leaf *l = v;
2564	struct leaf_info *li;
2565	struct hlist_node *node;
2566
2567	if (v == SEQ_START_TOKEN) {
2568		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2569			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2570			   "\tWindow\tIRTT");
2571		return 0;
2572	}
2573
2574	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2575		struct fib_alias *fa;
2576		__be32 mask, prefix;
2577
2578		mask = inet_make_mask(li->plen);
2579		prefix = htonl(l->key);
2580
2581		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2582			const struct fib_info *fi = fa->fa_info;
2583			unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2584			int len;
2585
2586			if (fa->fa_type == RTN_BROADCAST
2587			    || fa->fa_type == RTN_MULTICAST)
2588				continue;
2589
2590			if (fi)
2591				seq_printf(seq,
2592					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2593					 "%d\t%08X\t%d\t%u\t%u%n",
2594					 fi->fib_dev ? fi->fib_dev->name : "*",
2595					 prefix,
2596					 fi->fib_nh->nh_gw, flags, 0, 0,
2597					 fi->fib_priority,
2598					 mask,
2599					 (fi->fib_advmss ?
2600					  fi->fib_advmss + 40 : 0),
2601					 fi->fib_window,
2602					 fi->fib_rtt >> 3, &len);
2603			else
2604				seq_printf(seq,
2605					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2606					 "%d\t%08X\t%d\t%u\t%u%n",
2607					 prefix, 0, flags, 0, 0, 0,
2608					 mask, 0, 0, 0, &len);
2609
2610			seq_printf(seq, "%*s\n", 127 - len, "");
2611		}
2612	}
2613
2614	return 0;
2615}
2616
2617static const struct seq_operations fib_route_seq_ops = {
2618	.start  = fib_route_seq_start,
2619	.next   = fib_route_seq_next,
2620	.stop   = fib_route_seq_stop,
2621	.show   = fib_route_seq_show,
2622};
2623
2624static int fib_route_seq_open(struct inode *inode, struct file *file)
2625{
2626	return seq_open_net(inode, file, &fib_route_seq_ops,
2627			    sizeof(struct fib_route_iter));
2628}
2629
2630static const struct file_operations fib_route_fops = {
2631	.owner  = THIS_MODULE,
2632	.open   = fib_route_seq_open,
2633	.read   = seq_read,
2634	.llseek = seq_lseek,
2635	.release = seq_release_net,
2636};
2637
2638int __net_init fib_proc_init(struct net *net)
2639{
2640	if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2641		goto out1;
2642
2643	if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2644				  &fib_triestat_fops))
2645		goto out2;
2646
2647	if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2648		goto out3;
2649
2650	return 0;
2651
2652out3:
2653	proc_net_remove(net, "fib_triestat");
2654out2:
2655	proc_net_remove(net, "fib_trie");
2656out1:
2657	return -ENOMEM;
2658}
2659
2660void __net_exit fib_proc_exit(struct net *net)
2661{
2662	proc_net_remove(net, "fib_trie");
2663	proc_net_remove(net, "fib_triestat");
2664	proc_net_remove(net, "route");
2665}
2666
2667#endif /* CONFIG_PROC_FS */
2668