fib_trie.c revision 6640e69731b42fd5e3d2b26201c8b34fc897a0ee
1/*
2 *   This program is free software; you can redistribute it and/or
3 *   modify it under the terms of the GNU General Public License
4 *   as published by the Free Software Foundation; either version
5 *   2 of the License, or (at your option) any later version.
6 *
7 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 *     & Swedish University of Agricultural Sciences.
9 *
10 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11 *     Agricultural Sciences.
12 *
13 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version:	$Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET		An implementation of the TCP/IP protocol suite for the LINUX
32 *		operating system.  INET is implemented using the  BSD Socket
33 *		interface as the means of communication with the user level.
34 *
35 *		IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 *		This program is free software; you can redistribute it and/or
41 *		modify it under the terms of the GNU General Public License
42 *		as published by the Free Software Foundation; either version
43 *		2 of the License, or (at your option) any later version.
44 *
45 * Substantial contributions to this work comes from:
46 *
47 *		David S. Miller, <davem@davemloft.net>
48 *		Stephen Hemminger <shemminger@osdl.org>
49 *		Paul E. McKenney <paulmck@us.ibm.com>
50 *		Patrick McHardy <kaber@trash.net>
51 */
52
53#define VERSION "0.407"
54
55#include <asm/uaccess.h>
56#include <asm/system.h>
57#include <asm/bitops.h>
58#include <linux/types.h>
59#include <linux/kernel.h>
60#include <linux/sched.h>
61#include <linux/mm.h>
62#include <linux/string.h>
63#include <linux/socket.h>
64#include <linux/sockios.h>
65#include <linux/errno.h>
66#include <linux/in.h>
67#include <linux/inet.h>
68#include <linux/inetdevice.h>
69#include <linux/netdevice.h>
70#include <linux/if_arp.h>
71#include <linux/proc_fs.h>
72#include <linux/rcupdate.h>
73#include <linux/skbuff.h>
74#include <linux/netlink.h>
75#include <linux/init.h>
76#include <linux/list.h>
77#include <net/ip.h>
78#include <net/protocol.h>
79#include <net/route.h>
80#include <net/tcp.h>
81#include <net/sock.h>
82#include <net/ip_fib.h>
83#include "fib_lookup.h"
84
85#undef CONFIG_IP_FIB_TRIE_STATS
86#define MAX_STAT_DEPTH 32
87
88#define KEYLENGTH (8*sizeof(t_key))
89#define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
90#define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
91
92typedef unsigned int t_key;
93
94#define T_TNODE 0
95#define T_LEAF  1
96#define NODE_TYPE_MASK	0x1UL
97#define NODE_PARENT(node) \
98	((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
99
100#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
101
102#define NODE_SET_PARENT(node, ptr)		\
103	rcu_assign_pointer((node)->parent,	\
104			   ((unsigned long)(ptr)) | NODE_TYPE(node))
105
106#define IS_TNODE(n) (!(n->parent & T_LEAF))
107#define IS_LEAF(n) (n->parent & T_LEAF)
108
109struct node {
110	t_key key;
111	unsigned long parent;
112};
113
114struct leaf {
115	t_key key;
116	unsigned long parent;
117	struct hlist_head list;
118	struct rcu_head rcu;
119};
120
121struct leaf_info {
122	struct hlist_node hlist;
123	struct rcu_head rcu;
124	int plen;
125	struct list_head falh;
126};
127
128struct tnode {
129	t_key key;
130	unsigned long parent;
131	unsigned short pos:5;		/* 2log(KEYLENGTH) bits needed */
132	unsigned short bits:5;		/* 2log(KEYLENGTH) bits needed */
133	unsigned short full_children;	/* KEYLENGTH bits needed */
134	unsigned short empty_children;	/* KEYLENGTH bits needed */
135	struct rcu_head rcu;
136	struct node *child[0];
137};
138
139#ifdef CONFIG_IP_FIB_TRIE_STATS
140struct trie_use_stats {
141	unsigned int gets;
142	unsigned int backtrack;
143	unsigned int semantic_match_passed;
144	unsigned int semantic_match_miss;
145	unsigned int null_node_hit;
146	unsigned int resize_node_skipped;
147};
148#endif
149
150struct trie_stat {
151	unsigned int totdepth;
152	unsigned int maxdepth;
153	unsigned int tnodes;
154	unsigned int leaves;
155	unsigned int nullpointers;
156	unsigned int nodesizes[MAX_STAT_DEPTH];
157};
158
159struct trie {
160	struct node *trie;
161#ifdef CONFIG_IP_FIB_TRIE_STATS
162	struct trie_use_stats stats;
163#endif
164	int size;
165	unsigned int revision;
166};
167
168static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
169static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
170static struct node *resize(struct trie *t, struct tnode *tn);
171static struct tnode *inflate(struct trie *t, struct tnode *tn);
172static struct tnode *halve(struct trie *t, struct tnode *tn);
173static void tnode_free(struct tnode *tn);
174
175static struct kmem_cache *fn_alias_kmem __read_mostly;
176static struct trie *trie_local = NULL, *trie_main = NULL;
177
178
179/* rcu_read_lock needs to be hold by caller from readside */
180
181static inline struct node *tnode_get_child(struct tnode *tn, int i)
182{
183	BUG_ON(i >= 1 << tn->bits);
184
185	return rcu_dereference(tn->child[i]);
186}
187
188static inline int tnode_child_length(const struct tnode *tn)
189{
190	return 1 << tn->bits;
191}
192
193static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
194{
195	if (offset < KEYLENGTH)
196		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
197	else
198		return 0;
199}
200
201static inline int tkey_equals(t_key a, t_key b)
202{
203	return a == b;
204}
205
206static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
207{
208	if (bits == 0 || offset >= KEYLENGTH)
209		return 1;
210	bits = bits > KEYLENGTH ? KEYLENGTH : bits;
211	return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
212}
213
214static inline int tkey_mismatch(t_key a, int offset, t_key b)
215{
216	t_key diff = a ^ b;
217	int i = offset;
218
219	if (!diff)
220		return 0;
221	while ((diff << i) >> (KEYLENGTH-1) == 0)
222		i++;
223	return i;
224}
225
226/*
227  To understand this stuff, an understanding of keys and all their bits is
228  necessary. Every node in the trie has a key associated with it, but not
229  all of the bits in that key are significant.
230
231  Consider a node 'n' and its parent 'tp'.
232
233  If n is a leaf, every bit in its key is significant. Its presence is
234  necessitated by path compression, since during a tree traversal (when
235  searching for a leaf - unless we are doing an insertion) we will completely
236  ignore all skipped bits we encounter. Thus we need to verify, at the end of
237  a potentially successful search, that we have indeed been walking the
238  correct key path.
239
240  Note that we can never "miss" the correct key in the tree if present by
241  following the wrong path. Path compression ensures that segments of the key
242  that are the same for all keys with a given prefix are skipped, but the
243  skipped part *is* identical for each node in the subtrie below the skipped
244  bit! trie_insert() in this implementation takes care of that - note the
245  call to tkey_sub_equals() in trie_insert().
246
247  if n is an internal node - a 'tnode' here, the various parts of its key
248  have many different meanings.
249
250  Example:
251  _________________________________________________________________
252  | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
253  -----------------------------------------------------------------
254    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
255
256  _________________________________________________________________
257  | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
258  -----------------------------------------------------------------
259   16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31
260
261  tp->pos = 7
262  tp->bits = 3
263  n->pos = 15
264  n->bits = 4
265
266  First, let's just ignore the bits that come before the parent tp, that is
267  the bits from 0 to (tp->pos-1). They are *known* but at this point we do
268  not use them for anything.
269
270  The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
271  index into the parent's child array. That is, they will be used to find
272  'n' among tp's children.
273
274  The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
275  for the node n.
276
277  All the bits we have seen so far are significant to the node n. The rest
278  of the bits are really not needed or indeed known in n->key.
279
280  The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
281  n's child array, and will of course be different for each child.
282
283
284  The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
285  at this point.
286
287*/
288
289static inline void check_tnode(const struct tnode *tn)
290{
291	WARN_ON(tn && tn->pos+tn->bits > 32);
292}
293
294static int halve_threshold = 25;
295static int inflate_threshold = 50;
296static int halve_threshold_root = 15;
297static int inflate_threshold_root = 25;
298
299
300static void __alias_free_mem(struct rcu_head *head)
301{
302	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
303	kmem_cache_free(fn_alias_kmem, fa);
304}
305
306static inline void alias_free_mem_rcu(struct fib_alias *fa)
307{
308	call_rcu(&fa->rcu, __alias_free_mem);
309}
310
311static void __leaf_free_rcu(struct rcu_head *head)
312{
313	kfree(container_of(head, struct leaf, rcu));
314}
315
316static void __leaf_info_free_rcu(struct rcu_head *head)
317{
318	kfree(container_of(head, struct leaf_info, rcu));
319}
320
321static inline void free_leaf_info(struct leaf_info *leaf)
322{
323	call_rcu(&leaf->rcu, __leaf_info_free_rcu);
324}
325
326static struct tnode *tnode_alloc(unsigned int size)
327{
328	struct page *pages;
329
330	if (size <= PAGE_SIZE)
331		return kcalloc(size, 1, GFP_KERNEL);
332
333	pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
334	if (!pages)
335		return NULL;
336
337	return page_address(pages);
338}
339
340static void __tnode_free_rcu(struct rcu_head *head)
341{
342	struct tnode *tn = container_of(head, struct tnode, rcu);
343	unsigned int size = sizeof(struct tnode) +
344		(1 << tn->bits) * sizeof(struct node *);
345
346	if (size <= PAGE_SIZE)
347		kfree(tn);
348	else
349		free_pages((unsigned long)tn, get_order(size));
350}
351
352static inline void tnode_free(struct tnode *tn)
353{
354	if(IS_LEAF(tn)) {
355		struct leaf *l = (struct leaf *) tn;
356		call_rcu_bh(&l->rcu, __leaf_free_rcu);
357	}
358        else
359		call_rcu(&tn->rcu, __tnode_free_rcu);
360}
361
362static struct leaf *leaf_new(void)
363{
364	struct leaf *l = kmalloc(sizeof(struct leaf),  GFP_KERNEL);
365	if (l) {
366		l->parent = T_LEAF;
367		INIT_HLIST_HEAD(&l->list);
368	}
369	return l;
370}
371
372static struct leaf_info *leaf_info_new(int plen)
373{
374	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
375	if (li) {
376		li->plen = plen;
377		INIT_LIST_HEAD(&li->falh);
378	}
379	return li;
380}
381
382static struct tnode* tnode_new(t_key key, int pos, int bits)
383{
384	int nchildren = 1<<bits;
385	int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
386	struct tnode *tn = tnode_alloc(sz);
387
388	if (tn) {
389		memset(tn, 0, sz);
390		tn->parent = T_TNODE;
391		tn->pos = pos;
392		tn->bits = bits;
393		tn->key = key;
394		tn->full_children = 0;
395		tn->empty_children = 1<<bits;
396	}
397
398	pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
399		 (unsigned int) (sizeof(struct node) * 1<<bits));
400	return tn;
401}
402
403/*
404 * Check whether a tnode 'n' is "full", i.e. it is an internal node
405 * and no bits are skipped. See discussion in dyntree paper p. 6
406 */
407
408static inline int tnode_full(const struct tnode *tn, const struct node *n)
409{
410	if (n == NULL || IS_LEAF(n))
411		return 0;
412
413	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
414}
415
416static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
417{
418	tnode_put_child_reorg(tn, i, n, -1);
419}
420
421 /*
422  * Add a child at position i overwriting the old value.
423  * Update the value of full_children and empty_children.
424  */
425
426static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
427{
428	struct node *chi = tn->child[i];
429	int isfull;
430
431	BUG_ON(i >= 1<<tn->bits);
432
433
434	/* update emptyChildren */
435	if (n == NULL && chi != NULL)
436		tn->empty_children++;
437	else if (n != NULL && chi == NULL)
438		tn->empty_children--;
439
440	/* update fullChildren */
441	if (wasfull == -1)
442		wasfull = tnode_full(tn, chi);
443
444	isfull = tnode_full(tn, n);
445	if (wasfull && !isfull)
446		tn->full_children--;
447	else if (!wasfull && isfull)
448		tn->full_children++;
449
450	if (n)
451		NODE_SET_PARENT(n, tn);
452
453	rcu_assign_pointer(tn->child[i], n);
454}
455
456static struct node *resize(struct trie *t, struct tnode *tn)
457{
458	int i;
459	int err = 0;
460	struct tnode *old_tn;
461	int inflate_threshold_use;
462	int halve_threshold_use;
463
464 	if (!tn)
465		return NULL;
466
467	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
468		 tn, inflate_threshold, halve_threshold);
469
470	/* No children */
471	if (tn->empty_children == tnode_child_length(tn)) {
472		tnode_free(tn);
473		return NULL;
474	}
475	/* One child */
476	if (tn->empty_children == tnode_child_length(tn) - 1)
477		for (i = 0; i < tnode_child_length(tn); i++) {
478			struct node *n;
479
480			n = tn->child[i];
481			if (!n)
482				continue;
483
484			/* compress one level */
485			NODE_SET_PARENT(n, NULL);
486			tnode_free(tn);
487			return n;
488		}
489	/*
490	 * Double as long as the resulting node has a number of
491	 * nonempty nodes that are above the threshold.
492	 */
493
494	/*
495	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
496	 * the Helsinki University of Technology and Matti Tikkanen of Nokia
497	 * Telecommunications, page 6:
498	 * "A node is doubled if the ratio of non-empty children to all
499	 * children in the *doubled* node is at least 'high'."
500	 *
501	 * 'high' in this instance is the variable 'inflate_threshold'. It
502	 * is expressed as a percentage, so we multiply it with
503	 * tnode_child_length() and instead of multiplying by 2 (since the
504	 * child array will be doubled by inflate()) and multiplying
505	 * the left-hand side by 100 (to handle the percentage thing) we
506	 * multiply the left-hand side by 50.
507	 *
508	 * The left-hand side may look a bit weird: tnode_child_length(tn)
509	 * - tn->empty_children is of course the number of non-null children
510	 * in the current node. tn->full_children is the number of "full"
511	 * children, that is non-null tnodes with a skip value of 0.
512	 * All of those will be doubled in the resulting inflated tnode, so
513	 * we just count them one extra time here.
514	 *
515	 * A clearer way to write this would be:
516	 *
517	 * to_be_doubled = tn->full_children;
518	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
519	 *     tn->full_children;
520	 *
521	 * new_child_length = tnode_child_length(tn) * 2;
522	 *
523	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
524	 *      new_child_length;
525	 * if (new_fill_factor >= inflate_threshold)
526	 *
527	 * ...and so on, tho it would mess up the while () loop.
528	 *
529	 * anyway,
530	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
531	 *      inflate_threshold
532	 *
533	 * avoid a division:
534	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
535	 *      inflate_threshold * new_child_length
536	 *
537	 * expand not_to_be_doubled and to_be_doubled, and shorten:
538	 * 100 * (tnode_child_length(tn) - tn->empty_children +
539	 *    tn->full_children) >= inflate_threshold * new_child_length
540	 *
541	 * expand new_child_length:
542	 * 100 * (tnode_child_length(tn) - tn->empty_children +
543	 *    tn->full_children) >=
544	 *      inflate_threshold * tnode_child_length(tn) * 2
545	 *
546	 * shorten again:
547	 * 50 * (tn->full_children + tnode_child_length(tn) -
548	 *    tn->empty_children) >= inflate_threshold *
549	 *    tnode_child_length(tn)
550	 *
551	 */
552
553	check_tnode(tn);
554
555	/* Keep root node larger  */
556
557	if(!tn->parent)
558		inflate_threshold_use = inflate_threshold_root;
559	else
560		inflate_threshold_use = inflate_threshold;
561
562	err = 0;
563	while ((tn->full_children > 0 &&
564	       50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
565				inflate_threshold_use * tnode_child_length(tn))) {
566
567		old_tn = tn;
568		tn = inflate(t, tn);
569		if (IS_ERR(tn)) {
570			tn = old_tn;
571#ifdef CONFIG_IP_FIB_TRIE_STATS
572			t->stats.resize_node_skipped++;
573#endif
574			break;
575		}
576	}
577
578	check_tnode(tn);
579
580	/*
581	 * Halve as long as the number of empty children in this
582	 * node is above threshold.
583	 */
584
585
586	/* Keep root node larger  */
587
588	if(!tn->parent)
589		halve_threshold_use = halve_threshold_root;
590	else
591		halve_threshold_use = halve_threshold;
592
593	err = 0;
594	while (tn->bits > 1 &&
595	       100 * (tnode_child_length(tn) - tn->empty_children) <
596	       halve_threshold_use * tnode_child_length(tn)) {
597
598		old_tn = tn;
599		tn = halve(t, tn);
600		if (IS_ERR(tn)) {
601			tn = old_tn;
602#ifdef CONFIG_IP_FIB_TRIE_STATS
603			t->stats.resize_node_skipped++;
604#endif
605			break;
606		}
607	}
608
609
610	/* Only one child remains */
611	if (tn->empty_children == tnode_child_length(tn) - 1)
612		for (i = 0; i < tnode_child_length(tn); i++) {
613			struct node *n;
614
615			n = tn->child[i];
616			if (!n)
617				continue;
618
619			/* compress one level */
620
621			NODE_SET_PARENT(n, NULL);
622			tnode_free(tn);
623			return n;
624		}
625
626	return (struct node *) tn;
627}
628
629static struct tnode *inflate(struct trie *t, struct tnode *tn)
630{
631	struct tnode *inode;
632	struct tnode *oldtnode = tn;
633	int olen = tnode_child_length(tn);
634	int i;
635
636	pr_debug("In inflate\n");
637
638	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
639
640	if (!tn)
641		return ERR_PTR(-ENOMEM);
642
643	/*
644	 * Preallocate and store tnodes before the actual work so we
645	 * don't get into an inconsistent state if memory allocation
646	 * fails. In case of failure we return the oldnode and  inflate
647	 * of tnode is ignored.
648	 */
649
650	for (i = 0; i < olen; i++) {
651		struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
652
653		if (inode &&
654		    IS_TNODE(inode) &&
655		    inode->pos == oldtnode->pos + oldtnode->bits &&
656		    inode->bits > 1) {
657			struct tnode *left, *right;
658			t_key m = TKEY_GET_MASK(inode->pos, 1);
659
660			left = tnode_new(inode->key&(~m), inode->pos + 1,
661					 inode->bits - 1);
662			if (!left)
663				goto nomem;
664
665			right = tnode_new(inode->key|m, inode->pos + 1,
666					  inode->bits - 1);
667
668                        if (!right) {
669				tnode_free(left);
670				goto nomem;
671                        }
672
673			put_child(t, tn, 2*i, (struct node *) left);
674			put_child(t, tn, 2*i+1, (struct node *) right);
675		}
676	}
677
678	for (i = 0; i < olen; i++) {
679		struct node *node = tnode_get_child(oldtnode, i);
680		struct tnode *left, *right;
681		int size, j;
682
683		/* An empty child */
684		if (node == NULL)
685			continue;
686
687		/* A leaf or an internal node with skipped bits */
688
689		if (IS_LEAF(node) || ((struct tnode *) node)->pos >
690		   tn->pos + tn->bits - 1) {
691			if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
692					     1) == 0)
693				put_child(t, tn, 2*i, node);
694			else
695				put_child(t, tn, 2*i+1, node);
696			continue;
697		}
698
699		/* An internal node with two children */
700		inode = (struct tnode *) node;
701
702		if (inode->bits == 1) {
703			put_child(t, tn, 2*i, inode->child[0]);
704			put_child(t, tn, 2*i+1, inode->child[1]);
705
706			tnode_free(inode);
707			continue;
708		}
709
710		/* An internal node with more than two children */
711
712		/* We will replace this node 'inode' with two new
713		 * ones, 'left' and 'right', each with half of the
714		 * original children. The two new nodes will have
715		 * a position one bit further down the key and this
716		 * means that the "significant" part of their keys
717		 * (see the discussion near the top of this file)
718		 * will differ by one bit, which will be "0" in
719		 * left's key and "1" in right's key. Since we are
720		 * moving the key position by one step, the bit that
721		 * we are moving away from - the bit at position
722		 * (inode->pos) - is the one that will differ between
723		 * left and right. So... we synthesize that bit in the
724		 * two  new keys.
725		 * The mask 'm' below will be a single "one" bit at
726		 * the position (inode->pos)
727		 */
728
729		/* Use the old key, but set the new significant
730		 *   bit to zero.
731		 */
732
733		left = (struct tnode *) tnode_get_child(tn, 2*i);
734		put_child(t, tn, 2*i, NULL);
735
736		BUG_ON(!left);
737
738		right = (struct tnode *) tnode_get_child(tn, 2*i+1);
739		put_child(t, tn, 2*i+1, NULL);
740
741		BUG_ON(!right);
742
743		size = tnode_child_length(left);
744		for (j = 0; j < size; j++) {
745			put_child(t, left, j, inode->child[j]);
746			put_child(t, right, j, inode->child[j + size]);
747		}
748		put_child(t, tn, 2*i, resize(t, left));
749		put_child(t, tn, 2*i+1, resize(t, right));
750
751		tnode_free(inode);
752	}
753	tnode_free(oldtnode);
754	return tn;
755nomem:
756	{
757		int size = tnode_child_length(tn);
758		int j;
759
760		for (j = 0; j < size; j++)
761			if (tn->child[j])
762				tnode_free((struct tnode *)tn->child[j]);
763
764		tnode_free(tn);
765
766		return ERR_PTR(-ENOMEM);
767	}
768}
769
770static struct tnode *halve(struct trie *t, struct tnode *tn)
771{
772	struct tnode *oldtnode = tn;
773	struct node *left, *right;
774	int i;
775	int olen = tnode_child_length(tn);
776
777	pr_debug("In halve\n");
778
779	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
780
781	if (!tn)
782		return ERR_PTR(-ENOMEM);
783
784	/*
785	 * Preallocate and store tnodes before the actual work so we
786	 * don't get into an inconsistent state if memory allocation
787	 * fails. In case of failure we return the oldnode and halve
788	 * of tnode is ignored.
789	 */
790
791	for (i = 0; i < olen; i += 2) {
792		left = tnode_get_child(oldtnode, i);
793		right = tnode_get_child(oldtnode, i+1);
794
795		/* Two nonempty children */
796		if (left && right) {
797			struct tnode *newn;
798
799			newn = tnode_new(left->key, tn->pos + tn->bits, 1);
800
801			if (!newn)
802				goto nomem;
803
804			put_child(t, tn, i/2, (struct node *)newn);
805		}
806
807	}
808
809	for (i = 0; i < olen; i += 2) {
810		struct tnode *newBinNode;
811
812		left = tnode_get_child(oldtnode, i);
813		right = tnode_get_child(oldtnode, i+1);
814
815		/* At least one of the children is empty */
816		if (left == NULL) {
817			if (right == NULL)    /* Both are empty */
818				continue;
819			put_child(t, tn, i/2, right);
820			continue;
821		}
822
823		if (right == NULL) {
824			put_child(t, tn, i/2, left);
825			continue;
826		}
827
828		/* Two nonempty children */
829		newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
830		put_child(t, tn, i/2, NULL);
831		put_child(t, newBinNode, 0, left);
832		put_child(t, newBinNode, 1, right);
833		put_child(t, tn, i/2, resize(t, newBinNode));
834	}
835	tnode_free(oldtnode);
836	return tn;
837nomem:
838	{
839		int size = tnode_child_length(tn);
840		int j;
841
842		for (j = 0; j < size; j++)
843			if (tn->child[j])
844				tnode_free((struct tnode *)tn->child[j]);
845
846		tnode_free(tn);
847
848		return ERR_PTR(-ENOMEM);
849	}
850}
851
852static void trie_init(struct trie *t)
853{
854	if (!t)
855		return;
856
857	t->size = 0;
858	rcu_assign_pointer(t->trie, NULL);
859	t->revision = 0;
860#ifdef CONFIG_IP_FIB_TRIE_STATS
861	memset(&t->stats, 0, sizeof(struct trie_use_stats));
862#endif
863}
864
865/* readside must use rcu_read_lock currently dump routines
866 via get_fa_head and dump */
867
868static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
869{
870	struct hlist_head *head = &l->list;
871	struct hlist_node *node;
872	struct leaf_info *li;
873
874	hlist_for_each_entry_rcu(li, node, head, hlist)
875		if (li->plen == plen)
876			return li;
877
878	return NULL;
879}
880
881static inline struct list_head * get_fa_head(struct leaf *l, int plen)
882{
883	struct leaf_info *li = find_leaf_info(l, plen);
884
885	if (!li)
886		return NULL;
887
888	return &li->falh;
889}
890
891static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
892{
893        struct leaf_info *li = NULL, *last = NULL;
894        struct hlist_node *node;
895
896        if (hlist_empty(head)) {
897                hlist_add_head_rcu(&new->hlist, head);
898        } else {
899                hlist_for_each_entry(li, node, head, hlist) {
900                        if (new->plen > li->plen)
901                                break;
902
903                        last = li;
904                }
905                if (last)
906                        hlist_add_after_rcu(&last->hlist, &new->hlist);
907                else
908                        hlist_add_before_rcu(&new->hlist, &li->hlist);
909        }
910}
911
912/* rcu_read_lock needs to be hold by caller from readside */
913
914static struct leaf *
915fib_find_node(struct trie *t, u32 key)
916{
917	int pos;
918	struct tnode *tn;
919	struct node *n;
920
921	pos = 0;
922	n = rcu_dereference(t->trie);
923
924	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
925		tn = (struct tnode *) n;
926
927		check_tnode(tn);
928
929		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
930			pos = tn->pos + tn->bits;
931			n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
932		} else
933			break;
934	}
935	/* Case we have found a leaf. Compare prefixes */
936
937	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
938		return (struct leaf *)n;
939
940	return NULL;
941}
942
943static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
944{
945	int wasfull;
946	t_key cindex, key;
947	struct tnode *tp = NULL;
948
949	key = tn->key;
950
951	while (tn != NULL && NODE_PARENT(tn) != NULL) {
952
953		tp = NODE_PARENT(tn);
954		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
955		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
956		tn = (struct tnode *) resize (t, (struct tnode *)tn);
957		tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
958
959		if (!NODE_PARENT(tn))
960			break;
961
962		tn = NODE_PARENT(tn);
963	}
964	/* Handle last (top) tnode */
965	if (IS_TNODE(tn))
966		tn = (struct tnode*) resize(t, (struct tnode *)tn);
967
968	return (struct node*) tn;
969}
970
971/* only used from updater-side */
972
973static  struct list_head *
974fib_insert_node(struct trie *t, int *err, u32 key, int plen)
975{
976	int pos, newpos;
977	struct tnode *tp = NULL, *tn = NULL;
978	struct node *n;
979	struct leaf *l;
980	int missbit;
981	struct list_head *fa_head = NULL;
982	struct leaf_info *li;
983	t_key cindex;
984
985	pos = 0;
986	n = t->trie;
987
988	/* If we point to NULL, stop. Either the tree is empty and we should
989	 * just put a new leaf in if, or we have reached an empty child slot,
990	 * and we should just put our new leaf in that.
991	 * If we point to a T_TNODE, check if it matches our key. Note that
992	 * a T_TNODE might be skipping any number of bits - its 'pos' need
993	 * not be the parent's 'pos'+'bits'!
994	 *
995	 * If it does match the current key, get pos/bits from it, extract
996	 * the index from our key, push the T_TNODE and walk the tree.
997	 *
998	 * If it doesn't, we have to replace it with a new T_TNODE.
999	 *
1000	 * If we point to a T_LEAF, it might or might not have the same key
1001	 * as we do. If it does, just change the value, update the T_LEAF's
1002	 * value, and return it.
1003	 * If it doesn't, we need to replace it with a T_TNODE.
1004	 */
1005
1006	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
1007		tn = (struct tnode *) n;
1008
1009		check_tnode(tn);
1010
1011		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1012			tp = tn;
1013			pos = tn->pos + tn->bits;
1014			n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1015
1016			BUG_ON(n && NODE_PARENT(n) != tn);
1017		} else
1018			break;
1019	}
1020
1021	/*
1022	 * n  ----> NULL, LEAF or TNODE
1023	 *
1024	 * tp is n's (parent) ----> NULL or TNODE
1025	 */
1026
1027	BUG_ON(tp && IS_LEAF(tp));
1028
1029	/* Case 1: n is a leaf. Compare prefixes */
1030
1031	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1032		struct leaf *l = (struct leaf *) n;
1033
1034		li = leaf_info_new(plen);
1035
1036		if (!li) {
1037			*err = -ENOMEM;
1038			goto err;
1039		}
1040
1041		fa_head = &li->falh;
1042		insert_leaf_info(&l->list, li);
1043		goto done;
1044	}
1045	t->size++;
1046	l = leaf_new();
1047
1048	if (!l) {
1049		*err = -ENOMEM;
1050		goto err;
1051	}
1052
1053	l->key = key;
1054	li = leaf_info_new(plen);
1055
1056	if (!li) {
1057		tnode_free((struct tnode *) l);
1058		*err = -ENOMEM;
1059		goto err;
1060	}
1061
1062	fa_head = &li->falh;
1063	insert_leaf_info(&l->list, li);
1064
1065	if (t->trie && n == NULL) {
1066		/* Case 2: n is NULL, and will just insert a new leaf */
1067
1068		NODE_SET_PARENT(l, tp);
1069
1070		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1071		put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1072	} else {
1073		/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1074		/*
1075		 *  Add a new tnode here
1076		 *  first tnode need some special handling
1077		 */
1078
1079		if (tp)
1080			pos = tp->pos+tp->bits;
1081		else
1082			pos = 0;
1083
1084		if (n) {
1085			newpos = tkey_mismatch(key, pos, n->key);
1086			tn = tnode_new(n->key, newpos, 1);
1087		} else {
1088			newpos = 0;
1089			tn = tnode_new(key, newpos, 1); /* First tnode */
1090		}
1091
1092		if (!tn) {
1093			free_leaf_info(li);
1094			tnode_free((struct tnode *) l);
1095			*err = -ENOMEM;
1096			goto err;
1097		}
1098
1099		NODE_SET_PARENT(tn, tp);
1100
1101		missbit = tkey_extract_bits(key, newpos, 1);
1102		put_child(t, tn, missbit, (struct node *)l);
1103		put_child(t, tn, 1-missbit, n);
1104
1105		if (tp) {
1106			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1107			put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
1108		} else {
1109			rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
1110			tp = tn;
1111		}
1112	}
1113
1114	if (tp && tp->pos + tp->bits > 32)
1115		printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1116		       tp, tp->pos, tp->bits, key, plen);
1117
1118	/* Rebalance the trie */
1119
1120	rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1121done:
1122	t->revision++;
1123err:
1124	return fa_head;
1125}
1126
1127static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1128{
1129	struct trie *t = (struct trie *) tb->tb_data;
1130	struct fib_alias *fa, *new_fa;
1131	struct list_head *fa_head = NULL;
1132	struct fib_info *fi;
1133	int plen = cfg->fc_dst_len;
1134	u8 tos = cfg->fc_tos;
1135	u32 key, mask;
1136	int err;
1137	struct leaf *l;
1138
1139	if (plen > 32)
1140		return -EINVAL;
1141
1142	key = ntohl(cfg->fc_dst);
1143
1144	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1145
1146	mask = ntohl(inet_make_mask(plen));
1147
1148	if (key & ~mask)
1149		return -EINVAL;
1150
1151	key = key & mask;
1152
1153	fi = fib_create_info(cfg);
1154	if (IS_ERR(fi)) {
1155		err = PTR_ERR(fi);
1156		goto err;
1157	}
1158
1159	l = fib_find_node(t, key);
1160	fa = NULL;
1161
1162	if (l) {
1163		fa_head = get_fa_head(l, plen);
1164		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1165	}
1166
1167	/* Now fa, if non-NULL, points to the first fib alias
1168	 * with the same keys [prefix,tos,priority], if such key already
1169	 * exists or to the node before which we will insert new one.
1170	 *
1171	 * If fa is NULL, we will need to allocate a new one and
1172	 * insert to the head of f.
1173	 *
1174	 * If f is NULL, no fib node matched the destination key
1175	 * and we need to allocate a new one of those as well.
1176	 */
1177
1178	if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1179		struct fib_alias *fa_orig;
1180
1181		err = -EEXIST;
1182		if (cfg->fc_nlflags & NLM_F_EXCL)
1183			goto out;
1184
1185		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1186			struct fib_info *fi_drop;
1187			u8 state;
1188
1189			err = -ENOBUFS;
1190			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1191			if (new_fa == NULL)
1192				goto out;
1193
1194			fi_drop = fa->fa_info;
1195			new_fa->fa_tos = fa->fa_tos;
1196			new_fa->fa_info = fi;
1197			new_fa->fa_type = cfg->fc_type;
1198			new_fa->fa_scope = cfg->fc_scope;
1199			state = fa->fa_state;
1200			new_fa->fa_state &= ~FA_S_ACCESSED;
1201
1202			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1203			alias_free_mem_rcu(fa);
1204
1205			fib_release_info(fi_drop);
1206			if (state & FA_S_ACCESSED)
1207				rt_cache_flush(-1);
1208
1209			goto succeeded;
1210		}
1211		/* Error if we find a perfect match which
1212		 * uses the same scope, type, and nexthop
1213		 * information.
1214		 */
1215		fa_orig = fa;
1216		list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1217			if (fa->fa_tos != tos)
1218				break;
1219			if (fa->fa_info->fib_priority != fi->fib_priority)
1220				break;
1221			if (fa->fa_type == cfg->fc_type &&
1222			    fa->fa_scope == cfg->fc_scope &&
1223			    fa->fa_info == fi) {
1224				goto out;
1225			}
1226		}
1227		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1228			fa = fa_orig;
1229	}
1230	err = -ENOENT;
1231	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1232		goto out;
1233
1234	err = -ENOBUFS;
1235	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1236	if (new_fa == NULL)
1237		goto out;
1238
1239	new_fa->fa_info = fi;
1240	new_fa->fa_tos = tos;
1241	new_fa->fa_type = cfg->fc_type;
1242	new_fa->fa_scope = cfg->fc_scope;
1243	new_fa->fa_state = 0;
1244	/*
1245	 * Insert new entry to the list.
1246	 */
1247
1248	if (!fa_head) {
1249		err = 0;
1250		fa_head = fib_insert_node(t, &err, key, plen);
1251		if (err)
1252			goto out_free_new_fa;
1253	}
1254
1255	list_add_tail_rcu(&new_fa->fa_list,
1256			  (fa ? &fa->fa_list : fa_head));
1257
1258	rt_cache_flush(-1);
1259	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1260		  &cfg->fc_nlinfo);
1261succeeded:
1262	return 0;
1263
1264out_free_new_fa:
1265	kmem_cache_free(fn_alias_kmem, new_fa);
1266out:
1267	fib_release_info(fi);
1268err:
1269	return err;
1270}
1271
1272
1273/* should be called with rcu_read_lock */
1274static inline int check_leaf(struct trie *t, struct leaf *l,
1275			     t_key key, int *plen, const struct flowi *flp,
1276			     struct fib_result *res)
1277{
1278	int err, i;
1279	__be32 mask;
1280	struct leaf_info *li;
1281	struct hlist_head *hhead = &l->list;
1282	struct hlist_node *node;
1283
1284	hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1285		i = li->plen;
1286		mask = inet_make_mask(i);
1287		if (l->key != (key & ntohl(mask)))
1288			continue;
1289
1290		if ((err = fib_semantic_match(&li->falh, flp, res, htonl(l->key), mask, i)) <= 0) {
1291			*plen = i;
1292#ifdef CONFIG_IP_FIB_TRIE_STATS
1293			t->stats.semantic_match_passed++;
1294#endif
1295			return err;
1296		}
1297#ifdef CONFIG_IP_FIB_TRIE_STATS
1298		t->stats.semantic_match_miss++;
1299#endif
1300	}
1301	return 1;
1302}
1303
1304static int
1305fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1306{
1307	struct trie *t = (struct trie *) tb->tb_data;
1308	int plen, ret = 0;
1309	struct node *n;
1310	struct tnode *pn;
1311	int pos, bits;
1312	t_key key = ntohl(flp->fl4_dst);
1313	int chopped_off;
1314	t_key cindex = 0;
1315	int current_prefix_length = KEYLENGTH;
1316	struct tnode *cn;
1317	t_key node_prefix, key_prefix, pref_mismatch;
1318	int mp;
1319
1320	rcu_read_lock();
1321
1322	n = rcu_dereference(t->trie);
1323	if (!n)
1324		goto failed;
1325
1326#ifdef CONFIG_IP_FIB_TRIE_STATS
1327	t->stats.gets++;
1328#endif
1329
1330	/* Just a leaf? */
1331	if (IS_LEAF(n)) {
1332		if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1333			goto found;
1334		goto failed;
1335	}
1336	pn = (struct tnode *) n;
1337	chopped_off = 0;
1338
1339	while (pn) {
1340		pos = pn->pos;
1341		bits = pn->bits;
1342
1343		if (!chopped_off)
1344			cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1345
1346		n = tnode_get_child(pn, cindex);
1347
1348		if (n == NULL) {
1349#ifdef CONFIG_IP_FIB_TRIE_STATS
1350			t->stats.null_node_hit++;
1351#endif
1352			goto backtrace;
1353		}
1354
1355		if (IS_LEAF(n)) {
1356			if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1357				goto found;
1358			else
1359				goto backtrace;
1360		}
1361
1362#define HL_OPTIMIZE
1363#ifdef HL_OPTIMIZE
1364		cn = (struct tnode *)n;
1365
1366		/*
1367		 * It's a tnode, and we can do some extra checks here if we
1368		 * like, to avoid descending into a dead-end branch.
1369		 * This tnode is in the parent's child array at index
1370		 * key[p_pos..p_pos+p_bits] but potentially with some bits
1371		 * chopped off, so in reality the index may be just a
1372		 * subprefix, padded with zero at the end.
1373		 * We can also take a look at any skipped bits in this
1374		 * tnode - everything up to p_pos is supposed to be ok,
1375		 * and the non-chopped bits of the index (se previous
1376		 * paragraph) are also guaranteed ok, but the rest is
1377		 * considered unknown.
1378		 *
1379		 * The skipped bits are key[pos+bits..cn->pos].
1380		 */
1381
1382		/* If current_prefix_length < pos+bits, we are already doing
1383		 * actual prefix  matching, which means everything from
1384		 * pos+(bits-chopped_off) onward must be zero along some
1385		 * branch of this subtree - otherwise there is *no* valid
1386		 * prefix present. Here we can only check the skipped
1387		 * bits. Remember, since we have already indexed into the
1388		 * parent's child array, we know that the bits we chopped of
1389		 * *are* zero.
1390		 */
1391
1392		/* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1393
1394		if (current_prefix_length < pos+bits) {
1395			if (tkey_extract_bits(cn->key, current_prefix_length,
1396						cn->pos - current_prefix_length) != 0 ||
1397			    !(cn->child[0]))
1398				goto backtrace;
1399		}
1400
1401		/*
1402		 * If chopped_off=0, the index is fully validated and we
1403		 * only need to look at the skipped bits for this, the new,
1404		 * tnode. What we actually want to do is to find out if
1405		 * these skipped bits match our key perfectly, or if we will
1406		 * have to count on finding a matching prefix further down,
1407		 * because if we do, we would like to have some way of
1408		 * verifying the existence of such a prefix at this point.
1409		 */
1410
1411		/* The only thing we can do at this point is to verify that
1412		 * any such matching prefix can indeed be a prefix to our
1413		 * key, and if the bits in the node we are inspecting that
1414		 * do not match our key are not ZERO, this cannot be true.
1415		 * Thus, find out where there is a mismatch (before cn->pos)
1416		 * and verify that all the mismatching bits are zero in the
1417		 * new tnode's key.
1418		 */
1419
1420		/* Note: We aren't very concerned about the piece of the key
1421		 * that precede pn->pos+pn->bits, since these have already been
1422		 * checked. The bits after cn->pos aren't checked since these are
1423		 * by definition "unknown" at this point. Thus, what we want to
1424		 * see is if we are about to enter the "prefix matching" state,
1425		 * and in that case verify that the skipped bits that will prevail
1426		 * throughout this subtree are zero, as they have to be if we are
1427		 * to find a matching prefix.
1428		 */
1429
1430		node_prefix = MASK_PFX(cn->key, cn->pos);
1431		key_prefix = MASK_PFX(key, cn->pos);
1432		pref_mismatch = key_prefix^node_prefix;
1433		mp = 0;
1434
1435		/* In short: If skipped bits in this node do not match the search
1436		 * key, enter the "prefix matching" state.directly.
1437		 */
1438		if (pref_mismatch) {
1439			while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1440				mp++;
1441				pref_mismatch = pref_mismatch <<1;
1442			}
1443			key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1444
1445			if (key_prefix != 0)
1446				goto backtrace;
1447
1448			if (current_prefix_length >= cn->pos)
1449				current_prefix_length = mp;
1450		}
1451#endif
1452		pn = (struct tnode *)n; /* Descend */
1453		chopped_off = 0;
1454		continue;
1455
1456backtrace:
1457		chopped_off++;
1458
1459		/* As zero don't change the child key (cindex) */
1460		while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
1461			chopped_off++;
1462
1463		/* Decrease current_... with bits chopped off */
1464		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1465			current_prefix_length = pn->pos + pn->bits - chopped_off;
1466
1467		/*
1468		 * Either we do the actual chop off according or if we have
1469		 * chopped off all bits in this tnode walk up to our parent.
1470		 */
1471
1472		if (chopped_off <= pn->bits) {
1473			cindex &= ~(1 << (chopped_off-1));
1474		} else {
1475			if (NODE_PARENT(pn) == NULL)
1476				goto failed;
1477
1478			/* Get Child's index */
1479			cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1480			pn = NODE_PARENT(pn);
1481			chopped_off = 0;
1482
1483#ifdef CONFIG_IP_FIB_TRIE_STATS
1484			t->stats.backtrack++;
1485#endif
1486			goto backtrace;
1487		}
1488	}
1489failed:
1490	ret = 1;
1491found:
1492	rcu_read_unlock();
1493	return ret;
1494}
1495
1496/* only called from updater side */
1497static int trie_leaf_remove(struct trie *t, t_key key)
1498{
1499	t_key cindex;
1500	struct tnode *tp = NULL;
1501	struct node *n = t->trie;
1502	struct leaf *l;
1503
1504	pr_debug("entering trie_leaf_remove(%p)\n", n);
1505
1506	/* Note that in the case skipped bits, those bits are *not* checked!
1507	 * When we finish this, we will have NULL or a T_LEAF, and the
1508	 * T_LEAF may or may not match our key.
1509	 */
1510
1511	while (n != NULL && IS_TNODE(n)) {
1512		struct tnode *tn = (struct tnode *) n;
1513		check_tnode(tn);
1514		n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1515
1516		BUG_ON(n && NODE_PARENT(n) != tn);
1517	}
1518	l = (struct leaf *) n;
1519
1520	if (!n || !tkey_equals(l->key, key))
1521		return 0;
1522
1523	/*
1524	 * Key found.
1525	 * Remove the leaf and rebalance the tree
1526	 */
1527
1528	t->revision++;
1529	t->size--;
1530
1531	preempt_disable();
1532	tp = NODE_PARENT(n);
1533	tnode_free((struct tnode *) n);
1534
1535	if (tp) {
1536		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1537		put_child(t, (struct tnode *)tp, cindex, NULL);
1538		rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1539	} else
1540		rcu_assign_pointer(t->trie, NULL);
1541	preempt_enable();
1542
1543	return 1;
1544}
1545
1546static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1547{
1548	struct trie *t = (struct trie *) tb->tb_data;
1549	u32 key, mask;
1550	int plen = cfg->fc_dst_len;
1551	u8 tos = cfg->fc_tos;
1552	struct fib_alias *fa, *fa_to_delete;
1553	struct list_head *fa_head;
1554	struct leaf *l;
1555	struct leaf_info *li;
1556
1557	if (plen > 32)
1558		return -EINVAL;
1559
1560	key = ntohl(cfg->fc_dst);
1561	mask = ntohl(inet_make_mask(plen));
1562
1563	if (key & ~mask)
1564		return -EINVAL;
1565
1566	key = key & mask;
1567	l = fib_find_node(t, key);
1568
1569	if (!l)
1570		return -ESRCH;
1571
1572	fa_head = get_fa_head(l, plen);
1573	fa = fib_find_alias(fa_head, tos, 0);
1574
1575	if (!fa)
1576		return -ESRCH;
1577
1578	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1579
1580	fa_to_delete = NULL;
1581	fa_head = fa->fa_list.prev;
1582
1583	list_for_each_entry(fa, fa_head, fa_list) {
1584		struct fib_info *fi = fa->fa_info;
1585
1586		if (fa->fa_tos != tos)
1587			break;
1588
1589		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1590		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1591		     fa->fa_scope == cfg->fc_scope) &&
1592		    (!cfg->fc_protocol ||
1593		     fi->fib_protocol == cfg->fc_protocol) &&
1594		    fib_nh_match(cfg, fi) == 0) {
1595			fa_to_delete = fa;
1596			break;
1597		}
1598	}
1599
1600	if (!fa_to_delete)
1601		return -ESRCH;
1602
1603	fa = fa_to_delete;
1604	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1605		  &cfg->fc_nlinfo);
1606
1607	l = fib_find_node(t, key);
1608	li = find_leaf_info(l, plen);
1609
1610	list_del_rcu(&fa->fa_list);
1611
1612	if (list_empty(fa_head)) {
1613		hlist_del_rcu(&li->hlist);
1614		free_leaf_info(li);
1615	}
1616
1617	if (hlist_empty(&l->list))
1618		trie_leaf_remove(t, key);
1619
1620	if (fa->fa_state & FA_S_ACCESSED)
1621		rt_cache_flush(-1);
1622
1623	fib_release_info(fa->fa_info);
1624	alias_free_mem_rcu(fa);
1625	return 0;
1626}
1627
1628static int trie_flush_list(struct trie *t, struct list_head *head)
1629{
1630	struct fib_alias *fa, *fa_node;
1631	int found = 0;
1632
1633	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1634		struct fib_info *fi = fa->fa_info;
1635
1636		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1637			list_del_rcu(&fa->fa_list);
1638			fib_release_info(fa->fa_info);
1639			alias_free_mem_rcu(fa);
1640			found++;
1641		}
1642	}
1643	return found;
1644}
1645
1646static int trie_flush_leaf(struct trie *t, struct leaf *l)
1647{
1648	int found = 0;
1649	struct hlist_head *lih = &l->list;
1650	struct hlist_node *node, *tmp;
1651	struct leaf_info *li = NULL;
1652
1653	hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1654		found += trie_flush_list(t, &li->falh);
1655
1656		if (list_empty(&li->falh)) {
1657			hlist_del_rcu(&li->hlist);
1658			free_leaf_info(li);
1659		}
1660	}
1661	return found;
1662}
1663
1664/* rcu_read_lock needs to be hold by caller from readside */
1665
1666static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1667{
1668	struct node *c = (struct node *) thisleaf;
1669	struct tnode *p;
1670	int idx;
1671	struct node *trie = rcu_dereference(t->trie);
1672
1673	if (c == NULL) {
1674		if (trie == NULL)
1675			return NULL;
1676
1677		if (IS_LEAF(trie))          /* trie w. just a leaf */
1678			return (struct leaf *) trie;
1679
1680		p = (struct tnode*) trie;  /* Start */
1681	} else
1682		p = (struct tnode *) NODE_PARENT(c);
1683
1684	while (p) {
1685		int pos, last;
1686
1687		/*  Find the next child of the parent */
1688		if (c)
1689			pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1690		else
1691			pos = 0;
1692
1693		last = 1 << p->bits;
1694		for (idx = pos; idx < last ; idx++) {
1695			c = rcu_dereference(p->child[idx]);
1696
1697			if (!c)
1698				continue;
1699
1700			/* Decend if tnode */
1701			while (IS_TNODE(c)) {
1702				p = (struct tnode *) c;
1703  				idx = 0;
1704
1705				/* Rightmost non-NULL branch */
1706				if (p && IS_TNODE(p))
1707					while (!(c = rcu_dereference(p->child[idx]))
1708					       && idx < (1<<p->bits)) idx++;
1709
1710				/* Done with this tnode? */
1711				if (idx >= (1 << p->bits) || !c)
1712					goto up;
1713			}
1714			return (struct leaf *) c;
1715		}
1716up:
1717		/* No more children go up one step  */
1718		c = (struct node *) p;
1719		p = (struct tnode *) NODE_PARENT(p);
1720	}
1721	return NULL; /* Ready. Root of trie */
1722}
1723
1724static int fn_trie_flush(struct fib_table *tb)
1725{
1726	struct trie *t = (struct trie *) tb->tb_data;
1727	struct leaf *ll = NULL, *l = NULL;
1728	int found = 0, h;
1729
1730	t->revision++;
1731
1732	for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1733		found += trie_flush_leaf(t, l);
1734
1735		if (ll && hlist_empty(&ll->list))
1736			trie_leaf_remove(t, ll->key);
1737		ll = l;
1738	}
1739
1740	if (ll && hlist_empty(&ll->list))
1741		trie_leaf_remove(t, ll->key);
1742
1743	pr_debug("trie_flush found=%d\n", found);
1744	return found;
1745}
1746
1747static int trie_last_dflt = -1;
1748
1749static void
1750fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1751{
1752	struct trie *t = (struct trie *) tb->tb_data;
1753	int order, last_idx;
1754	struct fib_info *fi = NULL;
1755	struct fib_info *last_resort;
1756	struct fib_alias *fa = NULL;
1757	struct list_head *fa_head;
1758	struct leaf *l;
1759
1760	last_idx = -1;
1761	last_resort = NULL;
1762	order = -1;
1763
1764	rcu_read_lock();
1765
1766	l = fib_find_node(t, 0);
1767	if (!l)
1768		goto out;
1769
1770	fa_head = get_fa_head(l, 0);
1771	if (!fa_head)
1772		goto out;
1773
1774	if (list_empty(fa_head))
1775		goto out;
1776
1777	list_for_each_entry_rcu(fa, fa_head, fa_list) {
1778		struct fib_info *next_fi = fa->fa_info;
1779
1780		if (fa->fa_scope != res->scope ||
1781		    fa->fa_type != RTN_UNICAST)
1782			continue;
1783
1784		if (next_fi->fib_priority > res->fi->fib_priority)
1785			break;
1786		if (!next_fi->fib_nh[0].nh_gw ||
1787		    next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1788			continue;
1789		fa->fa_state |= FA_S_ACCESSED;
1790
1791		if (fi == NULL) {
1792			if (next_fi != res->fi)
1793				break;
1794		} else if (!fib_detect_death(fi, order, &last_resort,
1795					     &last_idx, &trie_last_dflt)) {
1796			if (res->fi)
1797				fib_info_put(res->fi);
1798			res->fi = fi;
1799			atomic_inc(&fi->fib_clntref);
1800			trie_last_dflt = order;
1801			goto out;
1802		}
1803		fi = next_fi;
1804		order++;
1805	}
1806	if (order <= 0 || fi == NULL) {
1807		trie_last_dflt = -1;
1808		goto out;
1809	}
1810
1811	if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1812		if (res->fi)
1813			fib_info_put(res->fi);
1814		res->fi = fi;
1815		atomic_inc(&fi->fib_clntref);
1816		trie_last_dflt = order;
1817		goto out;
1818	}
1819	if (last_idx >= 0) {
1820		if (res->fi)
1821			fib_info_put(res->fi);
1822		res->fi = last_resort;
1823		if (last_resort)
1824			atomic_inc(&last_resort->fib_clntref);
1825	}
1826	trie_last_dflt = last_idx;
1827 out:;
1828	rcu_read_unlock();
1829}
1830
1831static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
1832			   struct sk_buff *skb, struct netlink_callback *cb)
1833{
1834	int i, s_i;
1835	struct fib_alias *fa;
1836
1837	__be32 xkey = htonl(key);
1838
1839	s_i = cb->args[4];
1840	i = 0;
1841
1842	/* rcu_read_lock is hold by caller */
1843
1844	list_for_each_entry_rcu(fa, fah, fa_list) {
1845		if (i < s_i) {
1846			i++;
1847			continue;
1848		}
1849		BUG_ON(!fa->fa_info);
1850
1851		if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1852				  cb->nlh->nlmsg_seq,
1853				  RTM_NEWROUTE,
1854				  tb->tb_id,
1855				  fa->fa_type,
1856				  fa->fa_scope,
1857				  xkey,
1858				  plen,
1859				  fa->fa_tos,
1860				  fa->fa_info, 0) < 0) {
1861			cb->args[4] = i;
1862			return -1;
1863		}
1864		i++;
1865	}
1866	cb->args[4] = i;
1867	return skb->len;
1868}
1869
1870static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
1871			     struct netlink_callback *cb)
1872{
1873	int h, s_h;
1874	struct list_head *fa_head;
1875	struct leaf *l = NULL;
1876
1877	s_h = cb->args[3];
1878
1879	for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1880		if (h < s_h)
1881			continue;
1882		if (h > s_h)
1883			memset(&cb->args[4], 0,
1884			       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1885
1886		fa_head = get_fa_head(l, plen);
1887
1888		if (!fa_head)
1889			continue;
1890
1891		if (list_empty(fa_head))
1892			continue;
1893
1894		if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1895			cb->args[3] = h;
1896			return -1;
1897		}
1898	}
1899	cb->args[3] = h;
1900	return skb->len;
1901}
1902
1903static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1904{
1905	int m, s_m;
1906	struct trie *t = (struct trie *) tb->tb_data;
1907
1908	s_m = cb->args[2];
1909
1910	rcu_read_lock();
1911	for (m = 0; m <= 32; m++) {
1912		if (m < s_m)
1913			continue;
1914		if (m > s_m)
1915			memset(&cb->args[3], 0,
1916				sizeof(cb->args) - 3*sizeof(cb->args[0]));
1917
1918		if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1919			cb->args[2] = m;
1920			goto out;
1921		}
1922	}
1923	rcu_read_unlock();
1924	cb->args[2] = m;
1925	return skb->len;
1926out:
1927	rcu_read_unlock();
1928	return -1;
1929}
1930
1931/* Fix more generic FIB names for init later */
1932
1933#ifdef CONFIG_IP_MULTIPLE_TABLES
1934struct fib_table * fib_hash_init(u32 id)
1935#else
1936struct fib_table * __init fib_hash_init(u32 id)
1937#endif
1938{
1939	struct fib_table *tb;
1940	struct trie *t;
1941
1942	if (fn_alias_kmem == NULL)
1943		fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1944						  sizeof(struct fib_alias),
1945						  0, SLAB_HWCACHE_ALIGN,
1946						  NULL, NULL);
1947
1948	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1949		     GFP_KERNEL);
1950	if (tb == NULL)
1951		return NULL;
1952
1953	tb->tb_id = id;
1954	tb->tb_lookup = fn_trie_lookup;
1955	tb->tb_insert = fn_trie_insert;
1956	tb->tb_delete = fn_trie_delete;
1957	tb->tb_flush = fn_trie_flush;
1958	tb->tb_select_default = fn_trie_select_default;
1959	tb->tb_dump = fn_trie_dump;
1960	memset(tb->tb_data, 0, sizeof(struct trie));
1961
1962	t = (struct trie *) tb->tb_data;
1963
1964	trie_init(t);
1965
1966	if (id == RT_TABLE_LOCAL)
1967		trie_local = t;
1968	else if (id == RT_TABLE_MAIN)
1969		trie_main = t;
1970
1971	if (id == RT_TABLE_LOCAL)
1972		printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
1973
1974	return tb;
1975}
1976
1977#ifdef CONFIG_PROC_FS
1978/* Depth first Trie walk iterator */
1979struct fib_trie_iter {
1980	struct tnode *tnode;
1981	struct trie *trie;
1982	unsigned index;
1983	unsigned depth;
1984};
1985
1986static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
1987{
1988	struct tnode *tn = iter->tnode;
1989	unsigned cindex = iter->index;
1990	struct tnode *p;
1991
1992	/* A single entry routing table */
1993	if (!tn)
1994		return NULL;
1995
1996	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1997		 iter->tnode, iter->index, iter->depth);
1998rescan:
1999	while (cindex < (1<<tn->bits)) {
2000		struct node *n = tnode_get_child(tn, cindex);
2001
2002		if (n) {
2003			if (IS_LEAF(n)) {
2004				iter->tnode = tn;
2005				iter->index = cindex + 1;
2006			} else {
2007				/* push down one level */
2008				iter->tnode = (struct tnode *) n;
2009				iter->index = 0;
2010				++iter->depth;
2011			}
2012			return n;
2013		}
2014
2015		++cindex;
2016	}
2017
2018	/* Current node exhausted, pop back up */
2019	p = NODE_PARENT(tn);
2020	if (p) {
2021		cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2022		tn = p;
2023		--iter->depth;
2024		goto rescan;
2025	}
2026
2027	/* got root? */
2028	return NULL;
2029}
2030
2031static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2032				       struct trie *t)
2033{
2034	struct node *n ;
2035
2036	if(!t)
2037		return NULL;
2038
2039	n = rcu_dereference(t->trie);
2040
2041	if(!iter)
2042		return NULL;
2043
2044	if (n) {
2045		if (IS_TNODE(n)) {
2046			iter->tnode = (struct tnode *) n;
2047			iter->trie = t;
2048			iter->index = 0;
2049			iter->depth = 1;
2050		} else {
2051			iter->tnode = NULL;
2052			iter->trie  = t;
2053			iter->index = 0;
2054			iter->depth = 0;
2055		}
2056		return n;
2057	}
2058	return NULL;
2059}
2060
2061static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2062{
2063	struct node *n;
2064	struct fib_trie_iter iter;
2065
2066	memset(s, 0, sizeof(*s));
2067
2068	rcu_read_lock();
2069	for (n = fib_trie_get_first(&iter, t); n;
2070	     n = fib_trie_get_next(&iter)) {
2071		if (IS_LEAF(n)) {
2072			s->leaves++;
2073			s->totdepth += iter.depth;
2074			if (iter.depth > s->maxdepth)
2075				s->maxdepth = iter.depth;
2076		} else {
2077			const struct tnode *tn = (const struct tnode *) n;
2078			int i;
2079
2080			s->tnodes++;
2081			if(tn->bits < MAX_STAT_DEPTH)
2082				s->nodesizes[tn->bits]++;
2083
2084			for (i = 0; i < (1<<tn->bits); i++)
2085				if (!tn->child[i])
2086					s->nullpointers++;
2087		}
2088	}
2089	rcu_read_unlock();
2090}
2091
2092/*
2093 *	This outputs /proc/net/fib_triestats
2094 */
2095static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2096{
2097	unsigned i, max, pointers, bytes, avdepth;
2098
2099	if (stat->leaves)
2100		avdepth = stat->totdepth*100 / stat->leaves;
2101	else
2102		avdepth = 0;
2103
2104	seq_printf(seq, "\tAver depth:     %d.%02d\n", avdepth / 100, avdepth % 100 );
2105	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2106
2107	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2108
2109	bytes = sizeof(struct leaf) * stat->leaves;
2110	seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes);
2111	bytes += sizeof(struct tnode) * stat->tnodes;
2112
2113	max = MAX_STAT_DEPTH;
2114	while (max > 0 && stat->nodesizes[max-1] == 0)
2115		max--;
2116
2117	pointers = 0;
2118	for (i = 1; i <= max; i++)
2119		if (stat->nodesizes[i] != 0) {
2120			seq_printf(seq, "  %d: %d",  i, stat->nodesizes[i]);
2121			pointers += (1<<i) * stat->nodesizes[i];
2122		}
2123	seq_putc(seq, '\n');
2124	seq_printf(seq, "\tPointers: %d\n", pointers);
2125
2126	bytes += sizeof(struct node *) * pointers;
2127	seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2128	seq_printf(seq, "Total size: %d  kB\n", (bytes + 1023) / 1024);
2129
2130#ifdef CONFIG_IP_FIB_TRIE_STATS
2131	seq_printf(seq, "Counters:\n---------\n");
2132	seq_printf(seq,"gets = %d\n", t->stats.gets);
2133	seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2134	seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2135	seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2136	seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2137	seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2138#ifdef CLEAR_STATS
2139	memset(&(t->stats), 0, sizeof(t->stats));
2140#endif
2141#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2142}
2143
2144static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2145{
2146	struct trie_stat *stat;
2147
2148	stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2149	if (!stat)
2150		return -ENOMEM;
2151
2152	seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2153		   sizeof(struct leaf), sizeof(struct tnode));
2154
2155	if (trie_local) {
2156		seq_printf(seq, "Local:\n");
2157		trie_collect_stats(trie_local, stat);
2158		trie_show_stats(seq, stat);
2159	}
2160
2161	if (trie_main) {
2162		seq_printf(seq, "Main:\n");
2163		trie_collect_stats(trie_main, stat);
2164		trie_show_stats(seq, stat);
2165	}
2166	kfree(stat);
2167
2168	return 0;
2169}
2170
2171static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2172{
2173	return single_open(file, fib_triestat_seq_show, NULL);
2174}
2175
2176static struct file_operations fib_triestat_fops = {
2177	.owner	= THIS_MODULE,
2178	.open	= fib_triestat_seq_open,
2179	.read	= seq_read,
2180	.llseek	= seq_lseek,
2181	.release = single_release,
2182};
2183
2184static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2185				      loff_t pos)
2186{
2187	loff_t idx = 0;
2188	struct node *n;
2189
2190	for (n = fib_trie_get_first(iter, trie_local);
2191	     n; ++idx, n = fib_trie_get_next(iter)) {
2192		if (pos == idx)
2193			return n;
2194	}
2195
2196	for (n = fib_trie_get_first(iter, trie_main);
2197	     n; ++idx, n = fib_trie_get_next(iter)) {
2198		if (pos == idx)
2199			return n;
2200	}
2201	return NULL;
2202}
2203
2204static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2205{
2206	rcu_read_lock();
2207	if (*pos == 0)
2208		return SEQ_START_TOKEN;
2209	return fib_trie_get_idx(seq->private, *pos - 1);
2210}
2211
2212static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2213{
2214	struct fib_trie_iter *iter = seq->private;
2215	void *l = v;
2216
2217	++*pos;
2218	if (v == SEQ_START_TOKEN)
2219		return fib_trie_get_idx(iter, 0);
2220
2221	v = fib_trie_get_next(iter);
2222	BUG_ON(v == l);
2223	if (v)
2224		return v;
2225
2226	/* continue scan in next trie */
2227	if (iter->trie == trie_local)
2228		return fib_trie_get_first(iter, trie_main);
2229
2230	return NULL;
2231}
2232
2233static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2234{
2235	rcu_read_unlock();
2236}
2237
2238static void seq_indent(struct seq_file *seq, int n)
2239{
2240	while (n-- > 0) seq_puts(seq, "   ");
2241}
2242
2243static inline const char *rtn_scope(enum rt_scope_t s)
2244{
2245	static char buf[32];
2246
2247	switch(s) {
2248	case RT_SCOPE_UNIVERSE: return "universe";
2249	case RT_SCOPE_SITE:	return "site";
2250	case RT_SCOPE_LINK:	return "link";
2251	case RT_SCOPE_HOST:	return "host";
2252	case RT_SCOPE_NOWHERE:	return "nowhere";
2253	default:
2254		snprintf(buf, sizeof(buf), "scope=%d", s);
2255		return buf;
2256	}
2257}
2258
2259static const char *rtn_type_names[__RTN_MAX] = {
2260	[RTN_UNSPEC] = "UNSPEC",
2261	[RTN_UNICAST] = "UNICAST",
2262	[RTN_LOCAL] = "LOCAL",
2263	[RTN_BROADCAST] = "BROADCAST",
2264	[RTN_ANYCAST] = "ANYCAST",
2265	[RTN_MULTICAST] = "MULTICAST",
2266	[RTN_BLACKHOLE] = "BLACKHOLE",
2267	[RTN_UNREACHABLE] = "UNREACHABLE",
2268	[RTN_PROHIBIT] = "PROHIBIT",
2269	[RTN_THROW] = "THROW",
2270	[RTN_NAT] = "NAT",
2271	[RTN_XRESOLVE] = "XRESOLVE",
2272};
2273
2274static inline const char *rtn_type(unsigned t)
2275{
2276	static char buf[32];
2277
2278	if (t < __RTN_MAX && rtn_type_names[t])
2279		return rtn_type_names[t];
2280	snprintf(buf, sizeof(buf), "type %d", t);
2281	return buf;
2282}
2283
2284/* Pretty print the trie */
2285static int fib_trie_seq_show(struct seq_file *seq, void *v)
2286{
2287	const struct fib_trie_iter *iter = seq->private;
2288	struct node *n = v;
2289
2290	if (v == SEQ_START_TOKEN)
2291		return 0;
2292
2293	if (IS_TNODE(n)) {
2294		struct tnode *tn = (struct tnode *) n;
2295		__be32 prf = htonl(MASK_PFX(tn->key, tn->pos));
2296
2297		if (!NODE_PARENT(n)) {
2298			if (iter->trie == trie_local)
2299				seq_puts(seq, "<local>:\n");
2300			else
2301				seq_puts(seq, "<main>:\n");
2302		}
2303		seq_indent(seq, iter->depth-1);
2304		seq_printf(seq, "  +-- %d.%d.%d.%d/%d %d %d %d\n",
2305			   NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2306			   tn->empty_children);
2307
2308	} else {
2309		struct leaf *l = (struct leaf *) n;
2310		int i;
2311		__be32 val = htonl(l->key);
2312
2313		seq_indent(seq, iter->depth);
2314		seq_printf(seq, "  |-- %d.%d.%d.%d\n", NIPQUAD(val));
2315		for (i = 32; i >= 0; i--) {
2316			struct leaf_info *li = find_leaf_info(l, i);
2317			if (li) {
2318				struct fib_alias *fa;
2319				list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2320					seq_indent(seq, iter->depth+1);
2321					seq_printf(seq, "  /%d %s %s", i,
2322						   rtn_scope(fa->fa_scope),
2323						   rtn_type(fa->fa_type));
2324					if (fa->fa_tos)
2325						seq_printf(seq, "tos =%d\n",
2326							   fa->fa_tos);
2327					seq_putc(seq, '\n');
2328				}
2329			}
2330		}
2331	}
2332
2333	return 0;
2334}
2335
2336static struct seq_operations fib_trie_seq_ops = {
2337	.start  = fib_trie_seq_start,
2338	.next   = fib_trie_seq_next,
2339	.stop   = fib_trie_seq_stop,
2340	.show   = fib_trie_seq_show,
2341};
2342
2343static int fib_trie_seq_open(struct inode *inode, struct file *file)
2344{
2345	struct seq_file *seq;
2346	int rc = -ENOMEM;
2347	struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2348
2349	if (!s)
2350		goto out;
2351
2352	rc = seq_open(file, &fib_trie_seq_ops);
2353	if (rc)
2354		goto out_kfree;
2355
2356	seq	     = file->private_data;
2357	seq->private = s;
2358	memset(s, 0, sizeof(*s));
2359out:
2360	return rc;
2361out_kfree:
2362	kfree(s);
2363	goto out;
2364}
2365
2366static struct file_operations fib_trie_fops = {
2367	.owner  = THIS_MODULE,
2368	.open   = fib_trie_seq_open,
2369	.read   = seq_read,
2370	.llseek = seq_lseek,
2371	.release = seq_release_private,
2372};
2373
2374static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2375{
2376	static unsigned type2flags[RTN_MAX + 1] = {
2377		[7] = RTF_REJECT, [8] = RTF_REJECT,
2378	};
2379	unsigned flags = type2flags[type];
2380
2381	if (fi && fi->fib_nh->nh_gw)
2382		flags |= RTF_GATEWAY;
2383	if (mask == htonl(0xFFFFFFFF))
2384		flags |= RTF_HOST;
2385	flags |= RTF_UP;
2386	return flags;
2387}
2388
2389/*
2390 *	This outputs /proc/net/route.
2391 *	The format of the file is not supposed to be changed
2392 * 	and needs to be same as fib_hash output to avoid breaking
2393 *	legacy utilities
2394 */
2395static int fib_route_seq_show(struct seq_file *seq, void *v)
2396{
2397	const struct fib_trie_iter *iter = seq->private;
2398	struct leaf *l = v;
2399	int i;
2400	char bf[128];
2401
2402	if (v == SEQ_START_TOKEN) {
2403		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2404			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2405			   "\tWindow\tIRTT");
2406		return 0;
2407	}
2408
2409	if (iter->trie == trie_local)
2410		return 0;
2411	if (IS_TNODE(l))
2412		return 0;
2413
2414	for (i=32; i>=0; i--) {
2415		struct leaf_info *li = find_leaf_info(l, i);
2416		struct fib_alias *fa;
2417		__be32 mask, prefix;
2418
2419		if (!li)
2420			continue;
2421
2422		mask = inet_make_mask(li->plen);
2423		prefix = htonl(l->key);
2424
2425		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2426			const struct fib_info *fi = fa->fa_info;
2427			unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2428
2429			if (fa->fa_type == RTN_BROADCAST
2430			    || fa->fa_type == RTN_MULTICAST)
2431				continue;
2432
2433			if (fi)
2434				snprintf(bf, sizeof(bf),
2435					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2436					 fi->fib_dev ? fi->fib_dev->name : "*",
2437					 prefix,
2438					 fi->fib_nh->nh_gw, flags, 0, 0,
2439					 fi->fib_priority,
2440					 mask,
2441					 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2442					 fi->fib_window,
2443					 fi->fib_rtt >> 3);
2444			else
2445				snprintf(bf, sizeof(bf),
2446					 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2447					 prefix, 0, flags, 0, 0, 0,
2448					 mask, 0, 0, 0);
2449
2450			seq_printf(seq, "%-127s\n", bf);
2451		}
2452	}
2453
2454	return 0;
2455}
2456
2457static struct seq_operations fib_route_seq_ops = {
2458	.start  = fib_trie_seq_start,
2459	.next   = fib_trie_seq_next,
2460	.stop   = fib_trie_seq_stop,
2461	.show   = fib_route_seq_show,
2462};
2463
2464static int fib_route_seq_open(struct inode *inode, struct file *file)
2465{
2466	struct seq_file *seq;
2467	int rc = -ENOMEM;
2468	struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2469
2470	if (!s)
2471		goto out;
2472
2473	rc = seq_open(file, &fib_route_seq_ops);
2474	if (rc)
2475		goto out_kfree;
2476
2477	seq	     = file->private_data;
2478	seq->private = s;
2479	memset(s, 0, sizeof(*s));
2480out:
2481	return rc;
2482out_kfree:
2483	kfree(s);
2484	goto out;
2485}
2486
2487static struct file_operations fib_route_fops = {
2488	.owner  = THIS_MODULE,
2489	.open   = fib_route_seq_open,
2490	.read   = seq_read,
2491	.llseek = seq_lseek,
2492	.release = seq_release_private,
2493};
2494
2495int __init fib_proc_init(void)
2496{
2497	if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops))
2498		goto out1;
2499
2500	if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops))
2501		goto out2;
2502
2503	if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops))
2504		goto out3;
2505
2506	return 0;
2507
2508out3:
2509	proc_net_remove("fib_triestat");
2510out2:
2511	proc_net_remove("fib_trie");
2512out1:
2513	return -ENOMEM;
2514}
2515
2516void __init fib_proc_exit(void)
2517{
2518	proc_net_remove("fib_trie");
2519	proc_net_remove("fib_triestat");
2520	proc_net_remove("route");
2521}
2522
2523#endif /* CONFIG_PROC_FS */
2524