fib_trie.c revision 80b71b80df14d885f7e50e115c1348398f418759
1/*
2 *   This program is free software; you can redistribute it and/or
3 *   modify it under the terms of the GNU General Public License
4 *   as published by the Free Software Foundation; either version
5 *   2 of the License, or (at your option) any later version.
6 *
7 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 *     & Swedish University of Agricultural Sciences.
9 *
10 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11 *     Agricultural Sciences.
12 *
13 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET		An implementation of the TCP/IP protocol suite for the LINUX
30 *		operating system.  INET is implemented using the  BSD Socket
31 *		interface as the means of communication with the user level.
32 *
33 *		IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 *		This program is free software; you can redistribute it and/or
39 *		modify it under the terms of the GNU General Public License
40 *		as published by the Free Software Foundation; either version
41 *		2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 *		David S. Miller, <davem@davemloft.net>
46 *		Stephen Hemminger <shemminger@osdl.org>
47 *		Paul E. McKenney <paulmck@us.ibm.com>
48 *		Patrick McHardy <kaber@trash.net>
49 */
50
51#define VERSION "0.409"
52
53#include <asm/uaccess.h>
54#include <asm/system.h>
55#include <linux/bitops.h>
56#include <linux/types.h>
57#include <linux/kernel.h>
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
65#include <linux/inetdevice.h>
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
69#include <linux/rcupdate.h>
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
74#include <net/net_namespace.h>
75#include <net/ip.h>
76#include <net/protocol.h>
77#include <net/route.h>
78#include <net/tcp.h>
79#include <net/sock.h>
80#include <net/ip_fib.h>
81#include "fib_lookup.h"
82
83#define MAX_STAT_DEPTH 32
84
85#define KEYLENGTH (8*sizeof(t_key))
86
87typedef unsigned int t_key;
88
89#define T_TNODE 0
90#define T_LEAF  1
91#define NODE_TYPE_MASK	0x1UL
92#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
94#define IS_TNODE(n) (!(n->parent & T_LEAF))
95#define IS_LEAF(n) (n->parent & T_LEAF)
96
97struct node {
98	unsigned long parent;
99	t_key key;
100};
101
102struct leaf {
103	unsigned long parent;
104	t_key key;
105	struct hlist_head list;
106	struct rcu_head rcu;
107};
108
109struct leaf_info {
110	struct hlist_node hlist;
111	struct rcu_head rcu;
112	int plen;
113	struct list_head falh;
114};
115
116struct tnode {
117	unsigned long parent;
118	t_key key;
119	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
120	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
121	unsigned int full_children;	/* KEYLENGTH bits needed */
122	unsigned int empty_children;	/* KEYLENGTH bits needed */
123	union {
124		struct rcu_head rcu;
125		struct work_struct work;
126		struct tnode *tnode_free;
127	};
128	struct node *child[0];
129};
130
131#ifdef CONFIG_IP_FIB_TRIE_STATS
132struct trie_use_stats {
133	unsigned int gets;
134	unsigned int backtrack;
135	unsigned int semantic_match_passed;
136	unsigned int semantic_match_miss;
137	unsigned int null_node_hit;
138	unsigned int resize_node_skipped;
139};
140#endif
141
142struct trie_stat {
143	unsigned int totdepth;
144	unsigned int maxdepth;
145	unsigned int tnodes;
146	unsigned int leaves;
147	unsigned int nullpointers;
148	unsigned int prefixes;
149	unsigned int nodesizes[MAX_STAT_DEPTH];
150};
151
152struct trie {
153	struct node *trie;
154#ifdef CONFIG_IP_FIB_TRIE_STATS
155	struct trie_use_stats stats;
156#endif
157};
158
159static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
160static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
161				  int wasfull);
162static struct node *resize(struct trie *t, struct tnode *tn);
163static struct tnode *inflate(struct trie *t, struct tnode *tn);
164static struct tnode *halve(struct trie *t, struct tnode *tn);
165/* tnodes to free after resize(); protected by RTNL */
166static struct tnode *tnode_free_head;
167static size_t tnode_free_size;
168
169/*
170 * synchronize_rcu after call_rcu for that many pages; it should be especially
171 * useful before resizing the root node with PREEMPT_NONE configs; the value was
172 * obtained experimentally, aiming to avoid visible slowdown.
173 */
174static const int sync_pages = 128;
175
176static struct kmem_cache *fn_alias_kmem __read_mostly;
177static struct kmem_cache *trie_leaf_kmem __read_mostly;
178
179static inline struct tnode *node_parent(struct node *node)
180{
181	return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
182}
183
184static inline struct tnode *node_parent_rcu(struct node *node)
185{
186	struct tnode *ret = node_parent(node);
187
188	return rcu_dereference(ret);
189}
190
191/* Same as rcu_assign_pointer
192 * but that macro() assumes that value is a pointer.
193 */
194static inline void node_set_parent(struct node *node, struct tnode *ptr)
195{
196	smp_wmb();
197	node->parent = (unsigned long)ptr | NODE_TYPE(node);
198}
199
200static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
201{
202	BUG_ON(i >= 1U << tn->bits);
203
204	return tn->child[i];
205}
206
207static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
208{
209	struct node *ret = tnode_get_child(tn, i);
210
211	return rcu_dereference(ret);
212}
213
214static inline int tnode_child_length(const struct tnode *tn)
215{
216	return 1 << tn->bits;
217}
218
219static inline t_key mask_pfx(t_key k, unsigned short l)
220{
221	return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
222}
223
224static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
225{
226	if (offset < KEYLENGTH)
227		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
228	else
229		return 0;
230}
231
232static inline int tkey_equals(t_key a, t_key b)
233{
234	return a == b;
235}
236
237static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
238{
239	if (bits == 0 || offset >= KEYLENGTH)
240		return 1;
241	bits = bits > KEYLENGTH ? KEYLENGTH : bits;
242	return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
243}
244
245static inline int tkey_mismatch(t_key a, int offset, t_key b)
246{
247	t_key diff = a ^ b;
248	int i = offset;
249
250	if (!diff)
251		return 0;
252	while ((diff << i) >> (KEYLENGTH-1) == 0)
253		i++;
254	return i;
255}
256
257/*
258  To understand this stuff, an understanding of keys and all their bits is
259  necessary. Every node in the trie has a key associated with it, but not
260  all of the bits in that key are significant.
261
262  Consider a node 'n' and its parent 'tp'.
263
264  If n is a leaf, every bit in its key is significant. Its presence is
265  necessitated by path compression, since during a tree traversal (when
266  searching for a leaf - unless we are doing an insertion) we will completely
267  ignore all skipped bits we encounter. Thus we need to verify, at the end of
268  a potentially successful search, that we have indeed been walking the
269  correct key path.
270
271  Note that we can never "miss" the correct key in the tree if present by
272  following the wrong path. Path compression ensures that segments of the key
273  that are the same for all keys with a given prefix are skipped, but the
274  skipped part *is* identical for each node in the subtrie below the skipped
275  bit! trie_insert() in this implementation takes care of that - note the
276  call to tkey_sub_equals() in trie_insert().
277
278  if n is an internal node - a 'tnode' here, the various parts of its key
279  have many different meanings.
280
281  Example:
282  _________________________________________________________________
283  | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
284  -----------------------------------------------------------------
285    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
286
287  _________________________________________________________________
288  | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
289  -----------------------------------------------------------------
290   16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31
291
292  tp->pos = 7
293  tp->bits = 3
294  n->pos = 15
295  n->bits = 4
296
297  First, let's just ignore the bits that come before the parent tp, that is
298  the bits from 0 to (tp->pos-1). They are *known* but at this point we do
299  not use them for anything.
300
301  The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
302  index into the parent's child array. That is, they will be used to find
303  'n' among tp's children.
304
305  The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
306  for the node n.
307
308  All the bits we have seen so far are significant to the node n. The rest
309  of the bits are really not needed or indeed known in n->key.
310
311  The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
312  n's child array, and will of course be different for each child.
313
314
315  The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
316  at this point.
317
318*/
319
320static inline void check_tnode(const struct tnode *tn)
321{
322	WARN_ON(tn && tn->pos+tn->bits > 32);
323}
324
325static const int halve_threshold = 25;
326static const int inflate_threshold = 50;
327static const int halve_threshold_root = 15;
328static const int inflate_threshold_root = 30;
329
330static void __alias_free_mem(struct rcu_head *head)
331{
332	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
333	kmem_cache_free(fn_alias_kmem, fa);
334}
335
336static inline void alias_free_mem_rcu(struct fib_alias *fa)
337{
338	call_rcu(&fa->rcu, __alias_free_mem);
339}
340
341static void __leaf_free_rcu(struct rcu_head *head)
342{
343	struct leaf *l = container_of(head, struct leaf, rcu);
344	kmem_cache_free(trie_leaf_kmem, l);
345}
346
347static inline void free_leaf(struct leaf *l)
348{
349	call_rcu_bh(&l->rcu, __leaf_free_rcu);
350}
351
352static void __leaf_info_free_rcu(struct rcu_head *head)
353{
354	kfree(container_of(head, struct leaf_info, rcu));
355}
356
357static inline void free_leaf_info(struct leaf_info *leaf)
358{
359	call_rcu(&leaf->rcu, __leaf_info_free_rcu);
360}
361
362static struct tnode *tnode_alloc(size_t size)
363{
364	if (size <= PAGE_SIZE)
365		return kzalloc(size, GFP_KERNEL);
366	else
367		return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
368}
369
370static void __tnode_vfree(struct work_struct *arg)
371{
372	struct tnode *tn = container_of(arg, struct tnode, work);
373	vfree(tn);
374}
375
376static void __tnode_free_rcu(struct rcu_head *head)
377{
378	struct tnode *tn = container_of(head, struct tnode, rcu);
379	size_t size = sizeof(struct tnode) +
380		      (sizeof(struct node *) << tn->bits);
381
382	if (size <= PAGE_SIZE)
383		kfree(tn);
384	else {
385		INIT_WORK(&tn->work, __tnode_vfree);
386		schedule_work(&tn->work);
387	}
388}
389
390static inline void tnode_free(struct tnode *tn)
391{
392	if (IS_LEAF(tn))
393		free_leaf((struct leaf *) tn);
394	else
395		call_rcu(&tn->rcu, __tnode_free_rcu);
396}
397
398static void tnode_free_safe(struct tnode *tn)
399{
400	BUG_ON(IS_LEAF(tn));
401	tn->tnode_free = tnode_free_head;
402	tnode_free_head = tn;
403	tnode_free_size += sizeof(struct tnode) +
404			   (sizeof(struct node *) << tn->bits);
405}
406
407static void tnode_free_flush(void)
408{
409	struct tnode *tn;
410
411	while ((tn = tnode_free_head)) {
412		tnode_free_head = tn->tnode_free;
413		tn->tnode_free = NULL;
414		tnode_free(tn);
415	}
416
417	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
418		tnode_free_size = 0;
419		synchronize_rcu();
420	}
421}
422
423static struct leaf *leaf_new(void)
424{
425	struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
426	if (l) {
427		l->parent = T_LEAF;
428		INIT_HLIST_HEAD(&l->list);
429	}
430	return l;
431}
432
433static struct leaf_info *leaf_info_new(int plen)
434{
435	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
436	if (li) {
437		li->plen = plen;
438		INIT_LIST_HEAD(&li->falh);
439	}
440	return li;
441}
442
443static struct tnode *tnode_new(t_key key, int pos, int bits)
444{
445	size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
446	struct tnode *tn = tnode_alloc(sz);
447
448	if (tn) {
449		tn->parent = T_TNODE;
450		tn->pos = pos;
451		tn->bits = bits;
452		tn->key = key;
453		tn->full_children = 0;
454		tn->empty_children = 1<<bits;
455	}
456
457	pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
458		 (unsigned long) (sizeof(struct node) << bits));
459	return tn;
460}
461
462/*
463 * Check whether a tnode 'n' is "full", i.e. it is an internal node
464 * and no bits are skipped. See discussion in dyntree paper p. 6
465 */
466
467static inline int tnode_full(const struct tnode *tn, const struct node *n)
468{
469	if (n == NULL || IS_LEAF(n))
470		return 0;
471
472	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
473}
474
475static inline void put_child(struct trie *t, struct tnode *tn, int i,
476			     struct node *n)
477{
478	tnode_put_child_reorg(tn, i, n, -1);
479}
480
481 /*
482  * Add a child at position i overwriting the old value.
483  * Update the value of full_children and empty_children.
484  */
485
486static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
487				  int wasfull)
488{
489	struct node *chi = tn->child[i];
490	int isfull;
491
492	BUG_ON(i >= 1<<tn->bits);
493
494	/* update emptyChildren */
495	if (n == NULL && chi != NULL)
496		tn->empty_children++;
497	else if (n != NULL && chi == NULL)
498		tn->empty_children--;
499
500	/* update fullChildren */
501	if (wasfull == -1)
502		wasfull = tnode_full(tn, chi);
503
504	isfull = tnode_full(tn, n);
505	if (wasfull && !isfull)
506		tn->full_children--;
507	else if (!wasfull && isfull)
508		tn->full_children++;
509
510	if (n)
511		node_set_parent(n, tn);
512
513	rcu_assign_pointer(tn->child[i], n);
514}
515
516#define MAX_WORK 10
517static struct node *resize(struct trie *t, struct tnode *tn)
518{
519	int i;
520	struct tnode *old_tn;
521	int inflate_threshold_use;
522	int halve_threshold_use;
523	int max_work;
524
525	if (!tn)
526		return NULL;
527
528	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
529		 tn, inflate_threshold, halve_threshold);
530
531	/* No children */
532	if (tn->empty_children == tnode_child_length(tn)) {
533		tnode_free_safe(tn);
534		return NULL;
535	}
536	/* One child */
537	if (tn->empty_children == tnode_child_length(tn) - 1)
538		goto one_child;
539	/*
540	 * Double as long as the resulting node has a number of
541	 * nonempty nodes that are above the threshold.
542	 */
543
544	/*
545	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
546	 * the Helsinki University of Technology and Matti Tikkanen of Nokia
547	 * Telecommunications, page 6:
548	 * "A node is doubled if the ratio of non-empty children to all
549	 * children in the *doubled* node is at least 'high'."
550	 *
551	 * 'high' in this instance is the variable 'inflate_threshold'. It
552	 * is expressed as a percentage, so we multiply it with
553	 * tnode_child_length() and instead of multiplying by 2 (since the
554	 * child array will be doubled by inflate()) and multiplying
555	 * the left-hand side by 100 (to handle the percentage thing) we
556	 * multiply the left-hand side by 50.
557	 *
558	 * The left-hand side may look a bit weird: tnode_child_length(tn)
559	 * - tn->empty_children is of course the number of non-null children
560	 * in the current node. tn->full_children is the number of "full"
561	 * children, that is non-null tnodes with a skip value of 0.
562	 * All of those will be doubled in the resulting inflated tnode, so
563	 * we just count them one extra time here.
564	 *
565	 * A clearer way to write this would be:
566	 *
567	 * to_be_doubled = tn->full_children;
568	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
569	 *     tn->full_children;
570	 *
571	 * new_child_length = tnode_child_length(tn) * 2;
572	 *
573	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
574	 *      new_child_length;
575	 * if (new_fill_factor >= inflate_threshold)
576	 *
577	 * ...and so on, tho it would mess up the while () loop.
578	 *
579	 * anyway,
580	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
581	 *      inflate_threshold
582	 *
583	 * avoid a division:
584	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
585	 *      inflate_threshold * new_child_length
586	 *
587	 * expand not_to_be_doubled and to_be_doubled, and shorten:
588	 * 100 * (tnode_child_length(tn) - tn->empty_children +
589	 *    tn->full_children) >= inflate_threshold * new_child_length
590	 *
591	 * expand new_child_length:
592	 * 100 * (tnode_child_length(tn) - tn->empty_children +
593	 *    tn->full_children) >=
594	 *      inflate_threshold * tnode_child_length(tn) * 2
595	 *
596	 * shorten again:
597	 * 50 * (tn->full_children + tnode_child_length(tn) -
598	 *    tn->empty_children) >= inflate_threshold *
599	 *    tnode_child_length(tn)
600	 *
601	 */
602
603	check_tnode(tn);
604
605	/* Keep root node larger  */
606
607	if (!node_parent((struct node*) tn)) {
608		inflate_threshold_use = inflate_threshold_root;
609		halve_threshold_use = halve_threshold_root;
610	}
611	else {
612		inflate_threshold_use = inflate_threshold;
613		halve_threshold_use = halve_threshold;
614	}
615
616	max_work = MAX_WORK;
617	while ((tn->full_children > 0 &&  max_work-- &&
618		50 * (tn->full_children + tnode_child_length(tn)
619		      - tn->empty_children)
620		>= inflate_threshold_use * tnode_child_length(tn))) {
621
622		old_tn = tn;
623		tn = inflate(t, tn);
624
625		if (IS_ERR(tn)) {
626			tn = old_tn;
627#ifdef CONFIG_IP_FIB_TRIE_STATS
628			t->stats.resize_node_skipped++;
629#endif
630			break;
631		}
632	}
633
634	check_tnode(tn);
635
636	/* Return if at least one inflate is run */
637	if( max_work != MAX_WORK)
638		return (struct node *) tn;
639
640	/*
641	 * Halve as long as the number of empty children in this
642	 * node is above threshold.
643	 */
644
645	max_work = MAX_WORK;
646	while (tn->bits > 1 &&  max_work-- &&
647	       100 * (tnode_child_length(tn) - tn->empty_children) <
648	       halve_threshold_use * tnode_child_length(tn)) {
649
650		old_tn = tn;
651		tn = halve(t, tn);
652		if (IS_ERR(tn)) {
653			tn = old_tn;
654#ifdef CONFIG_IP_FIB_TRIE_STATS
655			t->stats.resize_node_skipped++;
656#endif
657			break;
658		}
659	}
660
661
662	/* Only one child remains */
663	if (tn->empty_children == tnode_child_length(tn) - 1) {
664one_child:
665		for (i = 0; i < tnode_child_length(tn); i++) {
666			struct node *n;
667
668			n = tn->child[i];
669			if (!n)
670				continue;
671
672			/* compress one level */
673
674			node_set_parent(n, NULL);
675			tnode_free_safe(tn);
676			return n;
677		}
678	}
679	return (struct node *) tn;
680}
681
682static struct tnode *inflate(struct trie *t, struct tnode *tn)
683{
684	struct tnode *oldtnode = tn;
685	int olen = tnode_child_length(tn);
686	int i;
687
688	pr_debug("In inflate\n");
689
690	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
691
692	if (!tn)
693		return ERR_PTR(-ENOMEM);
694
695	/*
696	 * Preallocate and store tnodes before the actual work so we
697	 * don't get into an inconsistent state if memory allocation
698	 * fails. In case of failure we return the oldnode and  inflate
699	 * of tnode is ignored.
700	 */
701
702	for (i = 0; i < olen; i++) {
703		struct tnode *inode;
704
705		inode = (struct tnode *) tnode_get_child(oldtnode, i);
706		if (inode &&
707		    IS_TNODE(inode) &&
708		    inode->pos == oldtnode->pos + oldtnode->bits &&
709		    inode->bits > 1) {
710			struct tnode *left, *right;
711			t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
712
713			left = tnode_new(inode->key&(~m), inode->pos + 1,
714					 inode->bits - 1);
715			if (!left)
716				goto nomem;
717
718			right = tnode_new(inode->key|m, inode->pos + 1,
719					  inode->bits - 1);
720
721			if (!right) {
722				tnode_free(left);
723				goto nomem;
724			}
725
726			put_child(t, tn, 2*i, (struct node *) left);
727			put_child(t, tn, 2*i+1, (struct node *) right);
728		}
729	}
730
731	for (i = 0; i < olen; i++) {
732		struct tnode *inode;
733		struct node *node = tnode_get_child(oldtnode, i);
734		struct tnode *left, *right;
735		int size, j;
736
737		/* An empty child */
738		if (node == NULL)
739			continue;
740
741		/* A leaf or an internal node with skipped bits */
742
743		if (IS_LEAF(node) || ((struct tnode *) node)->pos >
744		   tn->pos + tn->bits - 1) {
745			if (tkey_extract_bits(node->key,
746					      oldtnode->pos + oldtnode->bits,
747					      1) == 0)
748				put_child(t, tn, 2*i, node);
749			else
750				put_child(t, tn, 2*i+1, node);
751			continue;
752		}
753
754		/* An internal node with two children */
755		inode = (struct tnode *) node;
756
757		if (inode->bits == 1) {
758			put_child(t, tn, 2*i, inode->child[0]);
759			put_child(t, tn, 2*i+1, inode->child[1]);
760
761			tnode_free_safe(inode);
762			continue;
763		}
764
765		/* An internal node with more than two children */
766
767		/* We will replace this node 'inode' with two new
768		 * ones, 'left' and 'right', each with half of the
769		 * original children. The two new nodes will have
770		 * a position one bit further down the key and this
771		 * means that the "significant" part of their keys
772		 * (see the discussion near the top of this file)
773		 * will differ by one bit, which will be "0" in
774		 * left's key and "1" in right's key. Since we are
775		 * moving the key position by one step, the bit that
776		 * we are moving away from - the bit at position
777		 * (inode->pos) - is the one that will differ between
778		 * left and right. So... we synthesize that bit in the
779		 * two  new keys.
780		 * The mask 'm' below will be a single "one" bit at
781		 * the position (inode->pos)
782		 */
783
784		/* Use the old key, but set the new significant
785		 *   bit to zero.
786		 */
787
788		left = (struct tnode *) tnode_get_child(tn, 2*i);
789		put_child(t, tn, 2*i, NULL);
790
791		BUG_ON(!left);
792
793		right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794		put_child(t, tn, 2*i+1, NULL);
795
796		BUG_ON(!right);
797
798		size = tnode_child_length(left);
799		for (j = 0; j < size; j++) {
800			put_child(t, left, j, inode->child[j]);
801			put_child(t, right, j, inode->child[j + size]);
802		}
803		put_child(t, tn, 2*i, resize(t, left));
804		put_child(t, tn, 2*i+1, resize(t, right));
805
806		tnode_free_safe(inode);
807	}
808	tnode_free_safe(oldtnode);
809	return tn;
810nomem:
811	{
812		int size = tnode_child_length(tn);
813		int j;
814
815		for (j = 0; j < size; j++)
816			if (tn->child[j])
817				tnode_free((struct tnode *)tn->child[j]);
818
819		tnode_free(tn);
820
821		return ERR_PTR(-ENOMEM);
822	}
823}
824
825static struct tnode *halve(struct trie *t, struct tnode *tn)
826{
827	struct tnode *oldtnode = tn;
828	struct node *left, *right;
829	int i;
830	int olen = tnode_child_length(tn);
831
832	pr_debug("In halve\n");
833
834	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
835
836	if (!tn)
837		return ERR_PTR(-ENOMEM);
838
839	/*
840	 * Preallocate and store tnodes before the actual work so we
841	 * don't get into an inconsistent state if memory allocation
842	 * fails. In case of failure we return the oldnode and halve
843	 * of tnode is ignored.
844	 */
845
846	for (i = 0; i < olen; i += 2) {
847		left = tnode_get_child(oldtnode, i);
848		right = tnode_get_child(oldtnode, i+1);
849
850		/* Two nonempty children */
851		if (left && right) {
852			struct tnode *newn;
853
854			newn = tnode_new(left->key, tn->pos + tn->bits, 1);
855
856			if (!newn)
857				goto nomem;
858
859			put_child(t, tn, i/2, (struct node *)newn);
860		}
861
862	}
863
864	for (i = 0; i < olen; i += 2) {
865		struct tnode *newBinNode;
866
867		left = tnode_get_child(oldtnode, i);
868		right = tnode_get_child(oldtnode, i+1);
869
870		/* At least one of the children is empty */
871		if (left == NULL) {
872			if (right == NULL)    /* Both are empty */
873				continue;
874			put_child(t, tn, i/2, right);
875			continue;
876		}
877
878		if (right == NULL) {
879			put_child(t, tn, i/2, left);
880			continue;
881		}
882
883		/* Two nonempty children */
884		newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885		put_child(t, tn, i/2, NULL);
886		put_child(t, newBinNode, 0, left);
887		put_child(t, newBinNode, 1, right);
888		put_child(t, tn, i/2, resize(t, newBinNode));
889	}
890	tnode_free_safe(oldtnode);
891	return tn;
892nomem:
893	{
894		int size = tnode_child_length(tn);
895		int j;
896
897		for (j = 0; j < size; j++)
898			if (tn->child[j])
899				tnode_free((struct tnode *)tn->child[j]);
900
901		tnode_free(tn);
902
903		return ERR_PTR(-ENOMEM);
904	}
905}
906
907/* readside must use rcu_read_lock currently dump routines
908 via get_fa_head and dump */
909
910static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
911{
912	struct hlist_head *head = &l->list;
913	struct hlist_node *node;
914	struct leaf_info *li;
915
916	hlist_for_each_entry_rcu(li, node, head, hlist)
917		if (li->plen == plen)
918			return li;
919
920	return NULL;
921}
922
923static inline struct list_head *get_fa_head(struct leaf *l, int plen)
924{
925	struct leaf_info *li = find_leaf_info(l, plen);
926
927	if (!li)
928		return NULL;
929
930	return &li->falh;
931}
932
933static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
934{
935	struct leaf_info *li = NULL, *last = NULL;
936	struct hlist_node *node;
937
938	if (hlist_empty(head)) {
939		hlist_add_head_rcu(&new->hlist, head);
940	} else {
941		hlist_for_each_entry(li, node, head, hlist) {
942			if (new->plen > li->plen)
943				break;
944
945			last = li;
946		}
947		if (last)
948			hlist_add_after_rcu(&last->hlist, &new->hlist);
949		else
950			hlist_add_before_rcu(&new->hlist, &li->hlist);
951	}
952}
953
954/* rcu_read_lock needs to be hold by caller from readside */
955
956static struct leaf *
957fib_find_node(struct trie *t, u32 key)
958{
959	int pos;
960	struct tnode *tn;
961	struct node *n;
962
963	pos = 0;
964	n = rcu_dereference(t->trie);
965
966	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
967		tn = (struct tnode *) n;
968
969		check_tnode(tn);
970
971		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
972			pos = tn->pos + tn->bits;
973			n = tnode_get_child_rcu(tn,
974						tkey_extract_bits(key,
975								  tn->pos,
976								  tn->bits));
977		} else
978			break;
979	}
980	/* Case we have found a leaf. Compare prefixes */
981
982	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983		return (struct leaf *)n;
984
985	return NULL;
986}
987
988static void trie_rebalance(struct trie *t, struct tnode *tn)
989{
990	int wasfull;
991	t_key cindex, key;
992	struct tnode *tp;
993
994	key = tn->key;
995
996	while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
997		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
998		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
999		tn = (struct tnode *) resize(t, (struct tnode *)tn);
1000
1001		tnode_put_child_reorg((struct tnode *)tp, cindex,
1002				      (struct node *)tn, wasfull);
1003
1004		tp = node_parent((struct node *) tn);
1005		if (!tp)
1006			rcu_assign_pointer(t->trie, (struct node *)tn);
1007
1008		tnode_free_flush();
1009		if (!tp)
1010			break;
1011		tn = tp;
1012	}
1013
1014	/* Handle last (top) tnode */
1015	if (IS_TNODE(tn))
1016		tn = (struct tnode *)resize(t, (struct tnode *)tn);
1017
1018	rcu_assign_pointer(t->trie, (struct node *)tn);
1019	tnode_free_flush();
1020
1021	return;
1022}
1023
1024/* only used from updater-side */
1025
1026static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1027{
1028	int pos, newpos;
1029	struct tnode *tp = NULL, *tn = NULL;
1030	struct node *n;
1031	struct leaf *l;
1032	int missbit;
1033	struct list_head *fa_head = NULL;
1034	struct leaf_info *li;
1035	t_key cindex;
1036
1037	pos = 0;
1038	n = t->trie;
1039
1040	/* If we point to NULL, stop. Either the tree is empty and we should
1041	 * just put a new leaf in if, or we have reached an empty child slot,
1042	 * and we should just put our new leaf in that.
1043	 * If we point to a T_TNODE, check if it matches our key. Note that
1044	 * a T_TNODE might be skipping any number of bits - its 'pos' need
1045	 * not be the parent's 'pos'+'bits'!
1046	 *
1047	 * If it does match the current key, get pos/bits from it, extract
1048	 * the index from our key, push the T_TNODE and walk the tree.
1049	 *
1050	 * If it doesn't, we have to replace it with a new T_TNODE.
1051	 *
1052	 * If we point to a T_LEAF, it might or might not have the same key
1053	 * as we do. If it does, just change the value, update the T_LEAF's
1054	 * value, and return it.
1055	 * If it doesn't, we need to replace it with a T_TNODE.
1056	 */
1057
1058	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
1059		tn = (struct tnode *) n;
1060
1061		check_tnode(tn);
1062
1063		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1064			tp = tn;
1065			pos = tn->pos + tn->bits;
1066			n = tnode_get_child(tn,
1067					    tkey_extract_bits(key,
1068							      tn->pos,
1069							      tn->bits));
1070
1071			BUG_ON(n && node_parent(n) != tn);
1072		} else
1073			break;
1074	}
1075
1076	/*
1077	 * n  ----> NULL, LEAF or TNODE
1078	 *
1079	 * tp is n's (parent) ----> NULL or TNODE
1080	 */
1081
1082	BUG_ON(tp && IS_LEAF(tp));
1083
1084	/* Case 1: n is a leaf. Compare prefixes */
1085
1086	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1087		l = (struct leaf *) n;
1088		li = leaf_info_new(plen);
1089
1090		if (!li)
1091			return NULL;
1092
1093		fa_head = &li->falh;
1094		insert_leaf_info(&l->list, li);
1095		goto done;
1096	}
1097	l = leaf_new();
1098
1099	if (!l)
1100		return NULL;
1101
1102	l->key = key;
1103	li = leaf_info_new(plen);
1104
1105	if (!li) {
1106		free_leaf(l);
1107		return NULL;
1108	}
1109
1110	fa_head = &li->falh;
1111	insert_leaf_info(&l->list, li);
1112
1113	if (t->trie && n == NULL) {
1114		/* Case 2: n is NULL, and will just insert a new leaf */
1115
1116		node_set_parent((struct node *)l, tp);
1117
1118		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1119		put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1120	} else {
1121		/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1122		/*
1123		 *  Add a new tnode here
1124		 *  first tnode need some special handling
1125		 */
1126
1127		if (tp)
1128			pos = tp->pos+tp->bits;
1129		else
1130			pos = 0;
1131
1132		if (n) {
1133			newpos = tkey_mismatch(key, pos, n->key);
1134			tn = tnode_new(n->key, newpos, 1);
1135		} else {
1136			newpos = 0;
1137			tn = tnode_new(key, newpos, 1); /* First tnode */
1138		}
1139
1140		if (!tn) {
1141			free_leaf_info(li);
1142			free_leaf(l);
1143			return NULL;
1144		}
1145
1146		node_set_parent((struct node *)tn, tp);
1147
1148		missbit = tkey_extract_bits(key, newpos, 1);
1149		put_child(t, tn, missbit, (struct node *)l);
1150		put_child(t, tn, 1-missbit, n);
1151
1152		if (tp) {
1153			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1154			put_child(t, (struct tnode *)tp, cindex,
1155				  (struct node *)tn);
1156		} else {
1157			rcu_assign_pointer(t->trie, (struct node *)tn);
1158			tp = tn;
1159		}
1160	}
1161
1162	if (tp && tp->pos + tp->bits > 32)
1163		pr_warning("fib_trie"
1164			   " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1165			   tp, tp->pos, tp->bits, key, plen);
1166
1167	/* Rebalance the trie */
1168
1169	trie_rebalance(t, tp);
1170done:
1171	return fa_head;
1172}
1173
1174/*
1175 * Caller must hold RTNL.
1176 */
1177static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1178{
1179	struct trie *t = (struct trie *) tb->tb_data;
1180	struct fib_alias *fa, *new_fa;
1181	struct list_head *fa_head = NULL;
1182	struct fib_info *fi;
1183	int plen = cfg->fc_dst_len;
1184	u8 tos = cfg->fc_tos;
1185	u32 key, mask;
1186	int err;
1187	struct leaf *l;
1188
1189	if (plen > 32)
1190		return -EINVAL;
1191
1192	key = ntohl(cfg->fc_dst);
1193
1194	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1195
1196	mask = ntohl(inet_make_mask(plen));
1197
1198	if (key & ~mask)
1199		return -EINVAL;
1200
1201	key = key & mask;
1202
1203	fi = fib_create_info(cfg);
1204	if (IS_ERR(fi)) {
1205		err = PTR_ERR(fi);
1206		goto err;
1207	}
1208
1209	l = fib_find_node(t, key);
1210	fa = NULL;
1211
1212	if (l) {
1213		fa_head = get_fa_head(l, plen);
1214		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1215	}
1216
1217	/* Now fa, if non-NULL, points to the first fib alias
1218	 * with the same keys [prefix,tos,priority], if such key already
1219	 * exists or to the node before which we will insert new one.
1220	 *
1221	 * If fa is NULL, we will need to allocate a new one and
1222	 * insert to the head of f.
1223	 *
1224	 * If f is NULL, no fib node matched the destination key
1225	 * and we need to allocate a new one of those as well.
1226	 */
1227
1228	if (fa && fa->fa_tos == tos &&
1229	    fa->fa_info->fib_priority == fi->fib_priority) {
1230		struct fib_alias *fa_first, *fa_match;
1231
1232		err = -EEXIST;
1233		if (cfg->fc_nlflags & NLM_F_EXCL)
1234			goto out;
1235
1236		/* We have 2 goals:
1237		 * 1. Find exact match for type, scope, fib_info to avoid
1238		 * duplicate routes
1239		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1240		 */
1241		fa_match = NULL;
1242		fa_first = fa;
1243		fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1244		list_for_each_entry_continue(fa, fa_head, fa_list) {
1245			if (fa->fa_tos != tos)
1246				break;
1247			if (fa->fa_info->fib_priority != fi->fib_priority)
1248				break;
1249			if (fa->fa_type == cfg->fc_type &&
1250			    fa->fa_scope == cfg->fc_scope &&
1251			    fa->fa_info == fi) {
1252				fa_match = fa;
1253				break;
1254			}
1255		}
1256
1257		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1258			struct fib_info *fi_drop;
1259			u8 state;
1260
1261			fa = fa_first;
1262			if (fa_match) {
1263				if (fa == fa_match)
1264					err = 0;
1265				goto out;
1266			}
1267			err = -ENOBUFS;
1268			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1269			if (new_fa == NULL)
1270				goto out;
1271
1272			fi_drop = fa->fa_info;
1273			new_fa->fa_tos = fa->fa_tos;
1274			new_fa->fa_info = fi;
1275			new_fa->fa_type = cfg->fc_type;
1276			new_fa->fa_scope = cfg->fc_scope;
1277			state = fa->fa_state;
1278			new_fa->fa_state = state & ~FA_S_ACCESSED;
1279
1280			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1281			alias_free_mem_rcu(fa);
1282
1283			fib_release_info(fi_drop);
1284			if (state & FA_S_ACCESSED)
1285				rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1286			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1287				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1288
1289			goto succeeded;
1290		}
1291		/* Error if we find a perfect match which
1292		 * uses the same scope, type, and nexthop
1293		 * information.
1294		 */
1295		if (fa_match)
1296			goto out;
1297
1298		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1299			fa = fa_first;
1300	}
1301	err = -ENOENT;
1302	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1303		goto out;
1304
1305	err = -ENOBUFS;
1306	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1307	if (new_fa == NULL)
1308		goto out;
1309
1310	new_fa->fa_info = fi;
1311	new_fa->fa_tos = tos;
1312	new_fa->fa_type = cfg->fc_type;
1313	new_fa->fa_scope = cfg->fc_scope;
1314	new_fa->fa_state = 0;
1315	/*
1316	 * Insert new entry to the list.
1317	 */
1318
1319	if (!fa_head) {
1320		fa_head = fib_insert_node(t, key, plen);
1321		if (unlikely(!fa_head)) {
1322			err = -ENOMEM;
1323			goto out_free_new_fa;
1324		}
1325	}
1326
1327	list_add_tail_rcu(&new_fa->fa_list,
1328			  (fa ? &fa->fa_list : fa_head));
1329
1330	rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1331	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1332		  &cfg->fc_nlinfo, 0);
1333succeeded:
1334	return 0;
1335
1336out_free_new_fa:
1337	kmem_cache_free(fn_alias_kmem, new_fa);
1338out:
1339	fib_release_info(fi);
1340err:
1341	return err;
1342}
1343
1344/* should be called with rcu_read_lock */
1345static int check_leaf(struct trie *t, struct leaf *l,
1346		      t_key key,  const struct flowi *flp,
1347		      struct fib_result *res)
1348{
1349	struct leaf_info *li;
1350	struct hlist_head *hhead = &l->list;
1351	struct hlist_node *node;
1352
1353	hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1354		int err;
1355		int plen = li->plen;
1356		__be32 mask = inet_make_mask(plen);
1357
1358		if (l->key != (key & ntohl(mask)))
1359			continue;
1360
1361		err = fib_semantic_match(&li->falh, flp, res, plen);
1362
1363#ifdef CONFIG_IP_FIB_TRIE_STATS
1364		if (err <= 0)
1365			t->stats.semantic_match_passed++;
1366		else
1367			t->stats.semantic_match_miss++;
1368#endif
1369		if (err <= 0)
1370			return err;
1371	}
1372
1373	return 1;
1374}
1375
1376static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1377			  struct fib_result *res)
1378{
1379	struct trie *t = (struct trie *) tb->tb_data;
1380	int ret;
1381	struct node *n;
1382	struct tnode *pn;
1383	int pos, bits;
1384	t_key key = ntohl(flp->fl4_dst);
1385	int chopped_off;
1386	t_key cindex = 0;
1387	int current_prefix_length = KEYLENGTH;
1388	struct tnode *cn;
1389	t_key node_prefix, key_prefix, pref_mismatch;
1390	int mp;
1391
1392	rcu_read_lock();
1393
1394	n = rcu_dereference(t->trie);
1395	if (!n)
1396		goto failed;
1397
1398#ifdef CONFIG_IP_FIB_TRIE_STATS
1399	t->stats.gets++;
1400#endif
1401
1402	/* Just a leaf? */
1403	if (IS_LEAF(n)) {
1404		ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1405		goto found;
1406	}
1407
1408	pn = (struct tnode *) n;
1409	chopped_off = 0;
1410
1411	while (pn) {
1412		pos = pn->pos;
1413		bits = pn->bits;
1414
1415		if (!chopped_off)
1416			cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1417						   pos, bits);
1418
1419		n = tnode_get_child_rcu(pn, cindex);
1420
1421		if (n == NULL) {
1422#ifdef CONFIG_IP_FIB_TRIE_STATS
1423			t->stats.null_node_hit++;
1424#endif
1425			goto backtrace;
1426		}
1427
1428		if (IS_LEAF(n)) {
1429			ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1430			if (ret > 0)
1431				goto backtrace;
1432			goto found;
1433		}
1434
1435		cn = (struct tnode *)n;
1436
1437		/*
1438		 * It's a tnode, and we can do some extra checks here if we
1439		 * like, to avoid descending into a dead-end branch.
1440		 * This tnode is in the parent's child array at index
1441		 * key[p_pos..p_pos+p_bits] but potentially with some bits
1442		 * chopped off, so in reality the index may be just a
1443		 * subprefix, padded with zero at the end.
1444		 * We can also take a look at any skipped bits in this
1445		 * tnode - everything up to p_pos is supposed to be ok,
1446		 * and the non-chopped bits of the index (se previous
1447		 * paragraph) are also guaranteed ok, but the rest is
1448		 * considered unknown.
1449		 *
1450		 * The skipped bits are key[pos+bits..cn->pos].
1451		 */
1452
1453		/* If current_prefix_length < pos+bits, we are already doing
1454		 * actual prefix  matching, which means everything from
1455		 * pos+(bits-chopped_off) onward must be zero along some
1456		 * branch of this subtree - otherwise there is *no* valid
1457		 * prefix present. Here we can only check the skipped
1458		 * bits. Remember, since we have already indexed into the
1459		 * parent's child array, we know that the bits we chopped of
1460		 * *are* zero.
1461		 */
1462
1463		/* NOTA BENE: Checking only skipped bits
1464		   for the new node here */
1465
1466		if (current_prefix_length < pos+bits) {
1467			if (tkey_extract_bits(cn->key, current_prefix_length,
1468						cn->pos - current_prefix_length)
1469			    || !(cn->child[0]))
1470				goto backtrace;
1471		}
1472
1473		/*
1474		 * If chopped_off=0, the index is fully validated and we
1475		 * only need to look at the skipped bits for this, the new,
1476		 * tnode. What we actually want to do is to find out if
1477		 * these skipped bits match our key perfectly, or if we will
1478		 * have to count on finding a matching prefix further down,
1479		 * because if we do, we would like to have some way of
1480		 * verifying the existence of such a prefix at this point.
1481		 */
1482
1483		/* The only thing we can do at this point is to verify that
1484		 * any such matching prefix can indeed be a prefix to our
1485		 * key, and if the bits in the node we are inspecting that
1486		 * do not match our key are not ZERO, this cannot be true.
1487		 * Thus, find out where there is a mismatch (before cn->pos)
1488		 * and verify that all the mismatching bits are zero in the
1489		 * new tnode's key.
1490		 */
1491
1492		/*
1493		 * Note: We aren't very concerned about the piece of
1494		 * the key that precede pn->pos+pn->bits, since these
1495		 * have already been checked. The bits after cn->pos
1496		 * aren't checked since these are by definition
1497		 * "unknown" at this point. Thus, what we want to see
1498		 * is if we are about to enter the "prefix matching"
1499		 * state, and in that case verify that the skipped
1500		 * bits that will prevail throughout this subtree are
1501		 * zero, as they have to be if we are to find a
1502		 * matching prefix.
1503		 */
1504
1505		node_prefix = mask_pfx(cn->key, cn->pos);
1506		key_prefix = mask_pfx(key, cn->pos);
1507		pref_mismatch = key_prefix^node_prefix;
1508		mp = 0;
1509
1510		/*
1511		 * In short: If skipped bits in this node do not match
1512		 * the search key, enter the "prefix matching"
1513		 * state.directly.
1514		 */
1515		if (pref_mismatch) {
1516			while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1517				mp++;
1518				pref_mismatch = pref_mismatch << 1;
1519			}
1520			key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1521
1522			if (key_prefix != 0)
1523				goto backtrace;
1524
1525			if (current_prefix_length >= cn->pos)
1526				current_prefix_length = mp;
1527		}
1528
1529		pn = (struct tnode *)n; /* Descend */
1530		chopped_off = 0;
1531		continue;
1532
1533backtrace:
1534		chopped_off++;
1535
1536		/* As zero don't change the child key (cindex) */
1537		while ((chopped_off <= pn->bits)
1538		       && !(cindex & (1<<(chopped_off-1))))
1539			chopped_off++;
1540
1541		/* Decrease current_... with bits chopped off */
1542		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1543			current_prefix_length = pn->pos + pn->bits
1544				- chopped_off;
1545
1546		/*
1547		 * Either we do the actual chop off according or if we have
1548		 * chopped off all bits in this tnode walk up to our parent.
1549		 */
1550
1551		if (chopped_off <= pn->bits) {
1552			cindex &= ~(1 << (chopped_off-1));
1553		} else {
1554			struct tnode *parent = node_parent_rcu((struct node *) pn);
1555			if (!parent)
1556				goto failed;
1557
1558			/* Get Child's index */
1559			cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1560			pn = parent;
1561			chopped_off = 0;
1562
1563#ifdef CONFIG_IP_FIB_TRIE_STATS
1564			t->stats.backtrack++;
1565#endif
1566			goto backtrace;
1567		}
1568	}
1569failed:
1570	ret = 1;
1571found:
1572	rcu_read_unlock();
1573	return ret;
1574}
1575
1576/*
1577 * Remove the leaf and return parent.
1578 */
1579static void trie_leaf_remove(struct trie *t, struct leaf *l)
1580{
1581	struct tnode *tp = node_parent((struct node *) l);
1582
1583	pr_debug("entering trie_leaf_remove(%p)\n", l);
1584
1585	if (tp) {
1586		t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1587		put_child(t, (struct tnode *)tp, cindex, NULL);
1588		trie_rebalance(t, tp);
1589	} else
1590		rcu_assign_pointer(t->trie, NULL);
1591
1592	free_leaf(l);
1593}
1594
1595/*
1596 * Caller must hold RTNL.
1597 */
1598static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1599{
1600	struct trie *t = (struct trie *) tb->tb_data;
1601	u32 key, mask;
1602	int plen = cfg->fc_dst_len;
1603	u8 tos = cfg->fc_tos;
1604	struct fib_alias *fa, *fa_to_delete;
1605	struct list_head *fa_head;
1606	struct leaf *l;
1607	struct leaf_info *li;
1608
1609	if (plen > 32)
1610		return -EINVAL;
1611
1612	key = ntohl(cfg->fc_dst);
1613	mask = ntohl(inet_make_mask(plen));
1614
1615	if (key & ~mask)
1616		return -EINVAL;
1617
1618	key = key & mask;
1619	l = fib_find_node(t, key);
1620
1621	if (!l)
1622		return -ESRCH;
1623
1624	fa_head = get_fa_head(l, plen);
1625	fa = fib_find_alias(fa_head, tos, 0);
1626
1627	if (!fa)
1628		return -ESRCH;
1629
1630	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1631
1632	fa_to_delete = NULL;
1633	fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1634	list_for_each_entry_continue(fa, fa_head, fa_list) {
1635		struct fib_info *fi = fa->fa_info;
1636
1637		if (fa->fa_tos != tos)
1638			break;
1639
1640		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1641		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1642		     fa->fa_scope == cfg->fc_scope) &&
1643		    (!cfg->fc_protocol ||
1644		     fi->fib_protocol == cfg->fc_protocol) &&
1645		    fib_nh_match(cfg, fi) == 0) {
1646			fa_to_delete = fa;
1647			break;
1648		}
1649	}
1650
1651	if (!fa_to_delete)
1652		return -ESRCH;
1653
1654	fa = fa_to_delete;
1655	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1656		  &cfg->fc_nlinfo, 0);
1657
1658	l = fib_find_node(t, key);
1659	li = find_leaf_info(l, plen);
1660
1661	list_del_rcu(&fa->fa_list);
1662
1663	if (list_empty(fa_head)) {
1664		hlist_del_rcu(&li->hlist);
1665		free_leaf_info(li);
1666	}
1667
1668	if (hlist_empty(&l->list))
1669		trie_leaf_remove(t, l);
1670
1671	if (fa->fa_state & FA_S_ACCESSED)
1672		rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1673
1674	fib_release_info(fa->fa_info);
1675	alias_free_mem_rcu(fa);
1676	return 0;
1677}
1678
1679static int trie_flush_list(struct list_head *head)
1680{
1681	struct fib_alias *fa, *fa_node;
1682	int found = 0;
1683
1684	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1685		struct fib_info *fi = fa->fa_info;
1686
1687		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1688			list_del_rcu(&fa->fa_list);
1689			fib_release_info(fa->fa_info);
1690			alias_free_mem_rcu(fa);
1691			found++;
1692		}
1693	}
1694	return found;
1695}
1696
1697static int trie_flush_leaf(struct leaf *l)
1698{
1699	int found = 0;
1700	struct hlist_head *lih = &l->list;
1701	struct hlist_node *node, *tmp;
1702	struct leaf_info *li = NULL;
1703
1704	hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1705		found += trie_flush_list(&li->falh);
1706
1707		if (list_empty(&li->falh)) {
1708			hlist_del_rcu(&li->hlist);
1709			free_leaf_info(li);
1710		}
1711	}
1712	return found;
1713}
1714
1715/*
1716 * Scan for the next right leaf starting at node p->child[idx]
1717 * Since we have back pointer, no recursion necessary.
1718 */
1719static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1720{
1721	do {
1722		t_key idx;
1723
1724		if (c)
1725			idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1726		else
1727			idx = 0;
1728
1729		while (idx < 1u << p->bits) {
1730			c = tnode_get_child_rcu(p, idx++);
1731			if (!c)
1732				continue;
1733
1734			if (IS_LEAF(c)) {
1735				prefetch(p->child[idx]);
1736				return (struct leaf *) c;
1737			}
1738
1739			/* Rescan start scanning in new node */
1740			p = (struct tnode *) c;
1741			idx = 0;
1742		}
1743
1744		/* Node empty, walk back up to parent */
1745		c = (struct node *) p;
1746	} while ( (p = node_parent_rcu(c)) != NULL);
1747
1748	return NULL; /* Root of trie */
1749}
1750
1751static struct leaf *trie_firstleaf(struct trie *t)
1752{
1753	struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1754
1755	if (!n)
1756		return NULL;
1757
1758	if (IS_LEAF(n))          /* trie is just a leaf */
1759		return (struct leaf *) n;
1760
1761	return leaf_walk_rcu(n, NULL);
1762}
1763
1764static struct leaf *trie_nextleaf(struct leaf *l)
1765{
1766	struct node *c = (struct node *) l;
1767	struct tnode *p = node_parent_rcu(c);
1768
1769	if (!p)
1770		return NULL;	/* trie with just one leaf */
1771
1772	return leaf_walk_rcu(p, c);
1773}
1774
1775static struct leaf *trie_leafindex(struct trie *t, int index)
1776{
1777	struct leaf *l = trie_firstleaf(t);
1778
1779	while (l && index-- > 0)
1780		l = trie_nextleaf(l);
1781
1782	return l;
1783}
1784
1785
1786/*
1787 * Caller must hold RTNL.
1788 */
1789static int fn_trie_flush(struct fib_table *tb)
1790{
1791	struct trie *t = (struct trie *) tb->tb_data;
1792	struct leaf *l, *ll = NULL;
1793	int found = 0;
1794
1795	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1796		found += trie_flush_leaf(l);
1797
1798		if (ll && hlist_empty(&ll->list))
1799			trie_leaf_remove(t, ll);
1800		ll = l;
1801	}
1802
1803	if (ll && hlist_empty(&ll->list))
1804		trie_leaf_remove(t, ll);
1805
1806	pr_debug("trie_flush found=%d\n", found);
1807	return found;
1808}
1809
1810static void fn_trie_select_default(struct fib_table *tb,
1811				   const struct flowi *flp,
1812				   struct fib_result *res)
1813{
1814	struct trie *t = (struct trie *) tb->tb_data;
1815	int order, last_idx;
1816	struct fib_info *fi = NULL;
1817	struct fib_info *last_resort;
1818	struct fib_alias *fa = NULL;
1819	struct list_head *fa_head;
1820	struct leaf *l;
1821
1822	last_idx = -1;
1823	last_resort = NULL;
1824	order = -1;
1825
1826	rcu_read_lock();
1827
1828	l = fib_find_node(t, 0);
1829	if (!l)
1830		goto out;
1831
1832	fa_head = get_fa_head(l, 0);
1833	if (!fa_head)
1834		goto out;
1835
1836	if (list_empty(fa_head))
1837		goto out;
1838
1839	list_for_each_entry_rcu(fa, fa_head, fa_list) {
1840		struct fib_info *next_fi = fa->fa_info;
1841
1842		if (fa->fa_scope != res->scope ||
1843		    fa->fa_type != RTN_UNICAST)
1844			continue;
1845
1846		if (next_fi->fib_priority > res->fi->fib_priority)
1847			break;
1848		if (!next_fi->fib_nh[0].nh_gw ||
1849		    next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1850			continue;
1851		fa->fa_state |= FA_S_ACCESSED;
1852
1853		if (fi == NULL) {
1854			if (next_fi != res->fi)
1855				break;
1856		} else if (!fib_detect_death(fi, order, &last_resort,
1857					     &last_idx, tb->tb_default)) {
1858			fib_result_assign(res, fi);
1859			tb->tb_default = order;
1860			goto out;
1861		}
1862		fi = next_fi;
1863		order++;
1864	}
1865	if (order <= 0 || fi == NULL) {
1866		tb->tb_default = -1;
1867		goto out;
1868	}
1869
1870	if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1871				tb->tb_default)) {
1872		fib_result_assign(res, fi);
1873		tb->tb_default = order;
1874		goto out;
1875	}
1876	if (last_idx >= 0)
1877		fib_result_assign(res, last_resort);
1878	tb->tb_default = last_idx;
1879out:
1880	rcu_read_unlock();
1881}
1882
1883static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1884			   struct fib_table *tb,
1885			   struct sk_buff *skb, struct netlink_callback *cb)
1886{
1887	int i, s_i;
1888	struct fib_alias *fa;
1889	__be32 xkey = htonl(key);
1890
1891	s_i = cb->args[5];
1892	i = 0;
1893
1894	/* rcu_read_lock is hold by caller */
1895
1896	list_for_each_entry_rcu(fa, fah, fa_list) {
1897		if (i < s_i) {
1898			i++;
1899			continue;
1900		}
1901
1902		if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1903				  cb->nlh->nlmsg_seq,
1904				  RTM_NEWROUTE,
1905				  tb->tb_id,
1906				  fa->fa_type,
1907				  fa->fa_scope,
1908				  xkey,
1909				  plen,
1910				  fa->fa_tos,
1911				  fa->fa_info, NLM_F_MULTI) < 0) {
1912			cb->args[5] = i;
1913			return -1;
1914		}
1915		i++;
1916	}
1917	cb->args[5] = i;
1918	return skb->len;
1919}
1920
1921static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1922			struct sk_buff *skb, struct netlink_callback *cb)
1923{
1924	struct leaf_info *li;
1925	struct hlist_node *node;
1926	int i, s_i;
1927
1928	s_i = cb->args[4];
1929	i = 0;
1930
1931	/* rcu_read_lock is hold by caller */
1932	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1933		if (i < s_i) {
1934			i++;
1935			continue;
1936		}
1937
1938		if (i > s_i)
1939			cb->args[5] = 0;
1940
1941		if (list_empty(&li->falh))
1942			continue;
1943
1944		if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1945			cb->args[4] = i;
1946			return -1;
1947		}
1948		i++;
1949	}
1950
1951	cb->args[4] = i;
1952	return skb->len;
1953}
1954
1955static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1956			struct netlink_callback *cb)
1957{
1958	struct leaf *l;
1959	struct trie *t = (struct trie *) tb->tb_data;
1960	t_key key = cb->args[2];
1961	int count = cb->args[3];
1962
1963	rcu_read_lock();
1964	/* Dump starting at last key.
1965	 * Note: 0.0.0.0/0 (ie default) is first key.
1966	 */
1967	if (count == 0)
1968		l = trie_firstleaf(t);
1969	else {
1970		/* Normally, continue from last key, but if that is missing
1971		 * fallback to using slow rescan
1972		 */
1973		l = fib_find_node(t, key);
1974		if (!l)
1975			l = trie_leafindex(t, count);
1976	}
1977
1978	while (l) {
1979		cb->args[2] = l->key;
1980		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1981			cb->args[3] = count;
1982			rcu_read_unlock();
1983			return -1;
1984		}
1985
1986		++count;
1987		l = trie_nextleaf(l);
1988		memset(&cb->args[4], 0,
1989		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1990	}
1991	cb->args[3] = count;
1992	rcu_read_unlock();
1993
1994	return skb->len;
1995}
1996
1997void __init fib_hash_init(void)
1998{
1999	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2000					  sizeof(struct fib_alias),
2001					  0, SLAB_PANIC, NULL);
2002
2003	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2004					   max(sizeof(struct leaf),
2005					       sizeof(struct leaf_info)),
2006					   0, SLAB_PANIC, NULL);
2007}
2008
2009
2010/* Fix more generic FIB names for init later */
2011struct fib_table *fib_hash_table(u32 id)
2012{
2013	struct fib_table *tb;
2014	struct trie *t;
2015
2016	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2017		     GFP_KERNEL);
2018	if (tb == NULL)
2019		return NULL;
2020
2021	tb->tb_id = id;
2022	tb->tb_default = -1;
2023	tb->tb_lookup = fn_trie_lookup;
2024	tb->tb_insert = fn_trie_insert;
2025	tb->tb_delete = fn_trie_delete;
2026	tb->tb_flush = fn_trie_flush;
2027	tb->tb_select_default = fn_trie_select_default;
2028	tb->tb_dump = fn_trie_dump;
2029
2030	t = (struct trie *) tb->tb_data;
2031	memset(t, 0, sizeof(*t));
2032
2033	if (id == RT_TABLE_LOCAL)
2034		pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2035
2036	return tb;
2037}
2038
2039#ifdef CONFIG_PROC_FS
2040/* Depth first Trie walk iterator */
2041struct fib_trie_iter {
2042	struct seq_net_private p;
2043	struct fib_table *tb;
2044	struct tnode *tnode;
2045	unsigned index;
2046	unsigned depth;
2047};
2048
2049static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2050{
2051	struct tnode *tn = iter->tnode;
2052	unsigned cindex = iter->index;
2053	struct tnode *p;
2054
2055	/* A single entry routing table */
2056	if (!tn)
2057		return NULL;
2058
2059	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2060		 iter->tnode, iter->index, iter->depth);
2061rescan:
2062	while (cindex < (1<<tn->bits)) {
2063		struct node *n = tnode_get_child_rcu(tn, cindex);
2064
2065		if (n) {
2066			if (IS_LEAF(n)) {
2067				iter->tnode = tn;
2068				iter->index = cindex + 1;
2069			} else {
2070				/* push down one level */
2071				iter->tnode = (struct tnode *) n;
2072				iter->index = 0;
2073				++iter->depth;
2074			}
2075			return n;
2076		}
2077
2078		++cindex;
2079	}
2080
2081	/* Current node exhausted, pop back up */
2082	p = node_parent_rcu((struct node *)tn);
2083	if (p) {
2084		cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2085		tn = p;
2086		--iter->depth;
2087		goto rescan;
2088	}
2089
2090	/* got root? */
2091	return NULL;
2092}
2093
2094static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2095				       struct trie *t)
2096{
2097	struct node *n;
2098
2099	if (!t)
2100		return NULL;
2101
2102	n = rcu_dereference(t->trie);
2103	if (!n)
2104		return NULL;
2105
2106	if (IS_TNODE(n)) {
2107		iter->tnode = (struct tnode *) n;
2108		iter->index = 0;
2109		iter->depth = 1;
2110	} else {
2111		iter->tnode = NULL;
2112		iter->index = 0;
2113		iter->depth = 0;
2114	}
2115
2116	return n;
2117}
2118
2119static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2120{
2121	struct node *n;
2122	struct fib_trie_iter iter;
2123
2124	memset(s, 0, sizeof(*s));
2125
2126	rcu_read_lock();
2127	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2128		if (IS_LEAF(n)) {
2129			struct leaf *l = (struct leaf *)n;
2130			struct leaf_info *li;
2131			struct hlist_node *tmp;
2132
2133			s->leaves++;
2134			s->totdepth += iter.depth;
2135			if (iter.depth > s->maxdepth)
2136				s->maxdepth = iter.depth;
2137
2138			hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2139				++s->prefixes;
2140		} else {
2141			const struct tnode *tn = (const struct tnode *) n;
2142			int i;
2143
2144			s->tnodes++;
2145			if (tn->bits < MAX_STAT_DEPTH)
2146				s->nodesizes[tn->bits]++;
2147
2148			for (i = 0; i < (1<<tn->bits); i++)
2149				if (!tn->child[i])
2150					s->nullpointers++;
2151		}
2152	}
2153	rcu_read_unlock();
2154}
2155
2156/*
2157 *	This outputs /proc/net/fib_triestats
2158 */
2159static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2160{
2161	unsigned i, max, pointers, bytes, avdepth;
2162
2163	if (stat->leaves)
2164		avdepth = stat->totdepth*100 / stat->leaves;
2165	else
2166		avdepth = 0;
2167
2168	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2169		   avdepth / 100, avdepth % 100);
2170	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2171
2172	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2173	bytes = sizeof(struct leaf) * stat->leaves;
2174
2175	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2176	bytes += sizeof(struct leaf_info) * stat->prefixes;
2177
2178	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2179	bytes += sizeof(struct tnode) * stat->tnodes;
2180
2181	max = MAX_STAT_DEPTH;
2182	while (max > 0 && stat->nodesizes[max-1] == 0)
2183		max--;
2184
2185	pointers = 0;
2186	for (i = 1; i <= max; i++)
2187		if (stat->nodesizes[i] != 0) {
2188			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2189			pointers += (1<<i) * stat->nodesizes[i];
2190		}
2191	seq_putc(seq, '\n');
2192	seq_printf(seq, "\tPointers: %u\n", pointers);
2193
2194	bytes += sizeof(struct node *) * pointers;
2195	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2196	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2197}
2198
2199#ifdef CONFIG_IP_FIB_TRIE_STATS
2200static void trie_show_usage(struct seq_file *seq,
2201			    const struct trie_use_stats *stats)
2202{
2203	seq_printf(seq, "\nCounters:\n---------\n");
2204	seq_printf(seq, "gets = %u\n", stats->gets);
2205	seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2206	seq_printf(seq, "semantic match passed = %u\n",
2207		   stats->semantic_match_passed);
2208	seq_printf(seq, "semantic match miss = %u\n",
2209		   stats->semantic_match_miss);
2210	seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2211	seq_printf(seq, "skipped node resize = %u\n\n",
2212		   stats->resize_node_skipped);
2213}
2214#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2215
2216static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2217{
2218	if (tb->tb_id == RT_TABLE_LOCAL)
2219		seq_puts(seq, "Local:\n");
2220	else if (tb->tb_id == RT_TABLE_MAIN)
2221		seq_puts(seq, "Main:\n");
2222	else
2223		seq_printf(seq, "Id %d:\n", tb->tb_id);
2224}
2225
2226
2227static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2228{
2229	struct net *net = (struct net *)seq->private;
2230	unsigned int h;
2231
2232	seq_printf(seq,
2233		   "Basic info: size of leaf:"
2234		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2235		   sizeof(struct leaf), sizeof(struct tnode));
2236
2237	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2238		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2239		struct hlist_node *node;
2240		struct fib_table *tb;
2241
2242		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2243			struct trie *t = (struct trie *) tb->tb_data;
2244			struct trie_stat stat;
2245
2246			if (!t)
2247				continue;
2248
2249			fib_table_print(seq, tb);
2250
2251			trie_collect_stats(t, &stat);
2252			trie_show_stats(seq, &stat);
2253#ifdef CONFIG_IP_FIB_TRIE_STATS
2254			trie_show_usage(seq, &t->stats);
2255#endif
2256		}
2257	}
2258
2259	return 0;
2260}
2261
2262static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2263{
2264	return single_open_net(inode, file, fib_triestat_seq_show);
2265}
2266
2267static const struct file_operations fib_triestat_fops = {
2268	.owner	= THIS_MODULE,
2269	.open	= fib_triestat_seq_open,
2270	.read	= seq_read,
2271	.llseek	= seq_lseek,
2272	.release = single_release_net,
2273};
2274
2275static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2276{
2277	struct fib_trie_iter *iter = seq->private;
2278	struct net *net = seq_file_net(seq);
2279	loff_t idx = 0;
2280	unsigned int h;
2281
2282	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2283		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2284		struct hlist_node *node;
2285		struct fib_table *tb;
2286
2287		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2288			struct node *n;
2289
2290			for (n = fib_trie_get_first(iter,
2291						    (struct trie *) tb->tb_data);
2292			     n; n = fib_trie_get_next(iter))
2293				if (pos == idx++) {
2294					iter->tb = tb;
2295					return n;
2296				}
2297		}
2298	}
2299
2300	return NULL;
2301}
2302
2303static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2304	__acquires(RCU)
2305{
2306	rcu_read_lock();
2307	return fib_trie_get_idx(seq, *pos);
2308}
2309
2310static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2311{
2312	struct fib_trie_iter *iter = seq->private;
2313	struct net *net = seq_file_net(seq);
2314	struct fib_table *tb = iter->tb;
2315	struct hlist_node *tb_node;
2316	unsigned int h;
2317	struct node *n;
2318
2319	++*pos;
2320	/* next node in same table */
2321	n = fib_trie_get_next(iter);
2322	if (n)
2323		return n;
2324
2325	/* walk rest of this hash chain */
2326	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2327	while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2328		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2329		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2330		if (n)
2331			goto found;
2332	}
2333
2334	/* new hash chain */
2335	while (++h < FIB_TABLE_HASHSZ) {
2336		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2337		hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2338			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2339			if (n)
2340				goto found;
2341		}
2342	}
2343	return NULL;
2344
2345found:
2346	iter->tb = tb;
2347	return n;
2348}
2349
2350static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2351	__releases(RCU)
2352{
2353	rcu_read_unlock();
2354}
2355
2356static void seq_indent(struct seq_file *seq, int n)
2357{
2358	while (n-- > 0) seq_puts(seq, "   ");
2359}
2360
2361static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2362{
2363	switch (s) {
2364	case RT_SCOPE_UNIVERSE: return "universe";
2365	case RT_SCOPE_SITE:	return "site";
2366	case RT_SCOPE_LINK:	return "link";
2367	case RT_SCOPE_HOST:	return "host";
2368	case RT_SCOPE_NOWHERE:	return "nowhere";
2369	default:
2370		snprintf(buf, len, "scope=%d", s);
2371		return buf;
2372	}
2373}
2374
2375static const char *const rtn_type_names[__RTN_MAX] = {
2376	[RTN_UNSPEC] = "UNSPEC",
2377	[RTN_UNICAST] = "UNICAST",
2378	[RTN_LOCAL] = "LOCAL",
2379	[RTN_BROADCAST] = "BROADCAST",
2380	[RTN_ANYCAST] = "ANYCAST",
2381	[RTN_MULTICAST] = "MULTICAST",
2382	[RTN_BLACKHOLE] = "BLACKHOLE",
2383	[RTN_UNREACHABLE] = "UNREACHABLE",
2384	[RTN_PROHIBIT] = "PROHIBIT",
2385	[RTN_THROW] = "THROW",
2386	[RTN_NAT] = "NAT",
2387	[RTN_XRESOLVE] = "XRESOLVE",
2388};
2389
2390static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2391{
2392	if (t < __RTN_MAX && rtn_type_names[t])
2393		return rtn_type_names[t];
2394	snprintf(buf, len, "type %u", t);
2395	return buf;
2396}
2397
2398/* Pretty print the trie */
2399static int fib_trie_seq_show(struct seq_file *seq, void *v)
2400{
2401	const struct fib_trie_iter *iter = seq->private;
2402	struct node *n = v;
2403
2404	if (!node_parent_rcu(n))
2405		fib_table_print(seq, iter->tb);
2406
2407	if (IS_TNODE(n)) {
2408		struct tnode *tn = (struct tnode *) n;
2409		__be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2410
2411		seq_indent(seq, iter->depth-1);
2412		seq_printf(seq, "  +-- %pI4/%d %d %d %d\n",
2413			   &prf, tn->pos, tn->bits, tn->full_children,
2414			   tn->empty_children);
2415
2416	} else {
2417		struct leaf *l = (struct leaf *) n;
2418		struct leaf_info *li;
2419		struct hlist_node *node;
2420		__be32 val = htonl(l->key);
2421
2422		seq_indent(seq, iter->depth);
2423		seq_printf(seq, "  |-- %pI4\n", &val);
2424
2425		hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2426			struct fib_alias *fa;
2427
2428			list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2429				char buf1[32], buf2[32];
2430
2431				seq_indent(seq, iter->depth+1);
2432				seq_printf(seq, "  /%d %s %s", li->plen,
2433					   rtn_scope(buf1, sizeof(buf1),
2434						     fa->fa_scope),
2435					   rtn_type(buf2, sizeof(buf2),
2436						    fa->fa_type));
2437				if (fa->fa_tos)
2438					seq_printf(seq, " tos=%d", fa->fa_tos);
2439				seq_putc(seq, '\n');
2440			}
2441		}
2442	}
2443
2444	return 0;
2445}
2446
2447static const struct seq_operations fib_trie_seq_ops = {
2448	.start  = fib_trie_seq_start,
2449	.next   = fib_trie_seq_next,
2450	.stop   = fib_trie_seq_stop,
2451	.show   = fib_trie_seq_show,
2452};
2453
2454static int fib_trie_seq_open(struct inode *inode, struct file *file)
2455{
2456	return seq_open_net(inode, file, &fib_trie_seq_ops,
2457			    sizeof(struct fib_trie_iter));
2458}
2459
2460static const struct file_operations fib_trie_fops = {
2461	.owner  = THIS_MODULE,
2462	.open   = fib_trie_seq_open,
2463	.read   = seq_read,
2464	.llseek = seq_lseek,
2465	.release = seq_release_net,
2466};
2467
2468struct fib_route_iter {
2469	struct seq_net_private p;
2470	struct trie *main_trie;
2471	loff_t	pos;
2472	t_key	key;
2473};
2474
2475static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2476{
2477	struct leaf *l = NULL;
2478	struct trie *t = iter->main_trie;
2479
2480	/* use cache location of last found key */
2481	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2482		pos -= iter->pos;
2483	else {
2484		iter->pos = 0;
2485		l = trie_firstleaf(t);
2486	}
2487
2488	while (l && pos-- > 0) {
2489		iter->pos++;
2490		l = trie_nextleaf(l);
2491	}
2492
2493	if (l)
2494		iter->key = pos;	/* remember it */
2495	else
2496		iter->pos = 0;		/* forget it */
2497
2498	return l;
2499}
2500
2501static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2502	__acquires(RCU)
2503{
2504	struct fib_route_iter *iter = seq->private;
2505	struct fib_table *tb;
2506
2507	rcu_read_lock();
2508	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2509	if (!tb)
2510		return NULL;
2511
2512	iter->main_trie = (struct trie *) tb->tb_data;
2513	if (*pos == 0)
2514		return SEQ_START_TOKEN;
2515	else
2516		return fib_route_get_idx(iter, *pos - 1);
2517}
2518
2519static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2520{
2521	struct fib_route_iter *iter = seq->private;
2522	struct leaf *l = v;
2523
2524	++*pos;
2525	if (v == SEQ_START_TOKEN) {
2526		iter->pos = 0;
2527		l = trie_firstleaf(iter->main_trie);
2528	} else {
2529		iter->pos++;
2530		l = trie_nextleaf(l);
2531	}
2532
2533	if (l)
2534		iter->key = l->key;
2535	else
2536		iter->pos = 0;
2537	return l;
2538}
2539
2540static void fib_route_seq_stop(struct seq_file *seq, void *v)
2541	__releases(RCU)
2542{
2543	rcu_read_unlock();
2544}
2545
2546static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2547{
2548	static unsigned type2flags[RTN_MAX + 1] = {
2549		[7] = RTF_REJECT, [8] = RTF_REJECT,
2550	};
2551	unsigned flags = type2flags[type];
2552
2553	if (fi && fi->fib_nh->nh_gw)
2554		flags |= RTF_GATEWAY;
2555	if (mask == htonl(0xFFFFFFFF))
2556		flags |= RTF_HOST;
2557	flags |= RTF_UP;
2558	return flags;
2559}
2560
2561/*
2562 *	This outputs /proc/net/route.
2563 *	The format of the file is not supposed to be changed
2564 * 	and needs to be same as fib_hash output to avoid breaking
2565 *	legacy utilities
2566 */
2567static int fib_route_seq_show(struct seq_file *seq, void *v)
2568{
2569	struct leaf *l = v;
2570	struct leaf_info *li;
2571	struct hlist_node *node;
2572
2573	if (v == SEQ_START_TOKEN) {
2574		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2575			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2576			   "\tWindow\tIRTT");
2577		return 0;
2578	}
2579
2580	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2581		struct fib_alias *fa;
2582		__be32 mask, prefix;
2583
2584		mask = inet_make_mask(li->plen);
2585		prefix = htonl(l->key);
2586
2587		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2588			const struct fib_info *fi = fa->fa_info;
2589			unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2590			int len;
2591
2592			if (fa->fa_type == RTN_BROADCAST
2593			    || fa->fa_type == RTN_MULTICAST)
2594				continue;
2595
2596			if (fi)
2597				seq_printf(seq,
2598					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2599					 "%d\t%08X\t%d\t%u\t%u%n",
2600					 fi->fib_dev ? fi->fib_dev->name : "*",
2601					 prefix,
2602					 fi->fib_nh->nh_gw, flags, 0, 0,
2603					 fi->fib_priority,
2604					 mask,
2605					 (fi->fib_advmss ?
2606					  fi->fib_advmss + 40 : 0),
2607					 fi->fib_window,
2608					 fi->fib_rtt >> 3, &len);
2609			else
2610				seq_printf(seq,
2611					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2612					 "%d\t%08X\t%d\t%u\t%u%n",
2613					 prefix, 0, flags, 0, 0, 0,
2614					 mask, 0, 0, 0, &len);
2615
2616			seq_printf(seq, "%*s\n", 127 - len, "");
2617		}
2618	}
2619
2620	return 0;
2621}
2622
2623static const struct seq_operations fib_route_seq_ops = {
2624	.start  = fib_route_seq_start,
2625	.next   = fib_route_seq_next,
2626	.stop   = fib_route_seq_stop,
2627	.show   = fib_route_seq_show,
2628};
2629
2630static int fib_route_seq_open(struct inode *inode, struct file *file)
2631{
2632	return seq_open_net(inode, file, &fib_route_seq_ops,
2633			    sizeof(struct fib_route_iter));
2634}
2635
2636static const struct file_operations fib_route_fops = {
2637	.owner  = THIS_MODULE,
2638	.open   = fib_route_seq_open,
2639	.read   = seq_read,
2640	.llseek = seq_lseek,
2641	.release = seq_release_net,
2642};
2643
2644int __net_init fib_proc_init(struct net *net)
2645{
2646	if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2647		goto out1;
2648
2649	if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2650				  &fib_triestat_fops))
2651		goto out2;
2652
2653	if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2654		goto out3;
2655
2656	return 0;
2657
2658out3:
2659	proc_net_remove(net, "fib_triestat");
2660out2:
2661	proc_net_remove(net, "fib_trie");
2662out1:
2663	return -ENOMEM;
2664}
2665
2666void __net_exit fib_proc_exit(struct net *net)
2667{
2668	proc_net_remove(net, "fib_trie");
2669	proc_net_remove(net, "fib_triestat");
2670	proc_net_remove(net, "route");
2671}
2672
2673#endif /* CONFIG_PROC_FS */
2674