ip_output.c revision 3a7c384ffd57ef5fbd95f48edaa2ca4eb3d9f2ee
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		The Internet Protocol (IP) output module.
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Donald Becker, <becker@super.org>
11 *		Alan Cox, <Alan.Cox@linux.org>
12 *		Richard Underwood
13 *		Stefan Becker, <stefanb@yello.ping.de>
14 *		Jorge Cwik, <jorge@laser.satlink.net>
15 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 *		Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 *	See ip_input.c for original log
19 *
20 *	Fixes:
21 *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22 *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23 *		Bradford Johnson:	Fix faulty handling of some frames when
24 *					no route is found.
25 *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26 *					(in case if packet not accepted by
27 *					output firewall rules)
28 *		Mike McLagan	:	Routing by source
29 *		Alexey Kuznetsov:	use new route cache
30 *		Andi Kleen:		Fix broken PMTU recovery and remove
31 *					some redundant tests.
32 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33 *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34 *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35 *					for decreased register pressure on x86
36 *					and more readibility.
37 *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38 *					silently drop skb instead of failing with -EPERM.
39 *		Detlev Wengorz	:	Copy protocol for fragments.
40 *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41 *					datagrams.
42 *		Hirokazu Takahashi:	sendfile() on UDP works now.
43 */
44
45#include <asm/uaccess.h>
46#include <linux/module.h>
47#include <linux/types.h>
48#include <linux/kernel.h>
49#include <linux/mm.h>
50#include <linux/string.h>
51#include <linux/errno.h>
52#include <linux/highmem.h>
53#include <linux/slab.h>
54
55#include <linux/socket.h>
56#include <linux/sockios.h>
57#include <linux/in.h>
58#include <linux/inet.h>
59#include <linux/netdevice.h>
60#include <linux/etherdevice.h>
61#include <linux/proc_fs.h>
62#include <linux/stat.h>
63#include <linux/init.h>
64
65#include <net/snmp.h>
66#include <net/ip.h>
67#include <net/protocol.h>
68#include <net/route.h>
69#include <net/xfrm.h>
70#include <linux/skbuff.h>
71#include <net/sock.h>
72#include <net/arp.h>
73#include <net/icmp.h>
74#include <net/checksum.h>
75#include <net/inetpeer.h>
76#include <linux/igmp.h>
77#include <linux/netfilter_ipv4.h>
78#include <linux/netfilter_bridge.h>
79#include <linux/mroute.h>
80#include <linux/netlink.h>
81#include <linux/tcp.h>
82
83int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84EXPORT_SYMBOL(sysctl_ip_default_ttl);
85
86/* Generate a checksum for an outgoing IP datagram. */
87__inline__ void ip_send_check(struct iphdr *iph)
88{
89	iph->check = 0;
90	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91}
92EXPORT_SYMBOL(ip_send_check);
93
94int __ip_local_out(struct sk_buff *skb)
95{
96	struct iphdr *iph = ip_hdr(skb);
97
98	iph->tot_len = htons(skb->len);
99	ip_send_check(iph);
100	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
101		       skb_dst(skb)->dev, dst_output);
102}
103
104int ip_local_out(struct sk_buff *skb)
105{
106	int err;
107
108	err = __ip_local_out(skb);
109	if (likely(err == 1))
110		err = dst_output(skb);
111
112	return err;
113}
114EXPORT_SYMBOL_GPL(ip_local_out);
115
116static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
117{
118	int ttl = inet->uc_ttl;
119
120	if (ttl < 0)
121		ttl = ip4_dst_hoplimit(dst);
122	return ttl;
123}
124
125/*
126 *		Add an ip header to a skbuff and send it out.
127 *
128 */
129int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
130			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
131{
132	struct inet_sock *inet = inet_sk(sk);
133	struct rtable *rt = skb_rtable(skb);
134	struct iphdr *iph;
135
136	/* Build the IP header. */
137	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
138	skb_reset_network_header(skb);
139	iph = ip_hdr(skb);
140	iph->version  = 4;
141	iph->ihl      = 5;
142	iph->tos      = inet->tos;
143	if (ip_dont_fragment(sk, &rt->dst))
144		iph->frag_off = htons(IP_DF);
145	else
146		iph->frag_off = 0;
147	iph->ttl      = ip_select_ttl(inet, &rt->dst);
148	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
149	iph->saddr    = saddr;
150	iph->protocol = sk->sk_protocol;
151	ip_select_ident(iph, &rt->dst, sk);
152
153	if (opt && opt->opt.optlen) {
154		iph->ihl += opt->opt.optlen>>2;
155		ip_options_build(skb, &opt->opt, daddr, rt, 0);
156	}
157
158	skb->priority = sk->sk_priority;
159	skb->mark = sk->sk_mark;
160
161	/* Send it out. */
162	return ip_local_out(skb);
163}
164EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
165
166static inline int ip_finish_output2(struct sk_buff *skb)
167{
168	struct dst_entry *dst = skb_dst(skb);
169	struct rtable *rt = (struct rtable *)dst;
170	struct net_device *dev = dst->dev;
171	unsigned int hh_len = LL_RESERVED_SPACE(dev);
172	struct neighbour *neigh;
173	u32 nexthop;
174
175	if (rt->rt_type == RTN_MULTICAST) {
176		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
177	} else if (rt->rt_type == RTN_BROADCAST)
178		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
179
180	/* Be paranoid, rather than too clever. */
181	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
182		struct sk_buff *skb2;
183
184		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
185		if (skb2 == NULL) {
186			kfree_skb(skb);
187			return -ENOMEM;
188		}
189		if (skb->sk)
190			skb_set_owner_w(skb2, skb->sk);
191		consume_skb(skb);
192		skb = skb2;
193	}
194
195	rcu_read_lock_bh();
196	nexthop = rt->rt_gateway ? rt->rt_gateway : ip_hdr(skb)->daddr;
197	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
198	if (unlikely(!neigh))
199		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
200	if (!IS_ERR(neigh)) {
201		int res = dst_neigh_output(dst, neigh, skb);
202
203		rcu_read_unlock_bh();
204		return res;
205	}
206	rcu_read_unlock_bh();
207
208	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
209			    __func__);
210	kfree_skb(skb);
211	return -EINVAL;
212}
213
214static inline int ip_skb_dst_mtu(struct sk_buff *skb)
215{
216	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
217
218	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
219	       skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
220}
221
222static int ip_finish_output(struct sk_buff *skb)
223{
224#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
225	/* Policy lookup after SNAT yielded a new policy */
226	if (skb_dst(skb)->xfrm != NULL) {
227		IPCB(skb)->flags |= IPSKB_REROUTED;
228		return dst_output(skb);
229	}
230#endif
231	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
232		return ip_fragment(skb, ip_finish_output2);
233	else
234		return ip_finish_output2(skb);
235}
236
237int ip_mc_output(struct sk_buff *skb)
238{
239	struct sock *sk = skb->sk;
240	struct rtable *rt = skb_rtable(skb);
241	struct net_device *dev = rt->dst.dev;
242
243	/*
244	 *	If the indicated interface is up and running, send the packet.
245	 */
246	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
247
248	skb->dev = dev;
249	skb->protocol = htons(ETH_P_IP);
250
251	/*
252	 *	Multicasts are looped back for other local users
253	 */
254
255	if (rt->rt_flags&RTCF_MULTICAST) {
256		if (sk_mc_loop(sk)
257#ifdef CONFIG_IP_MROUTE
258		/* Small optimization: do not loopback not local frames,
259		   which returned after forwarding; they will be  dropped
260		   by ip_mr_input in any case.
261		   Note, that local frames are looped back to be delivered
262		   to local recipients.
263
264		   This check is duplicated in ip_mr_input at the moment.
265		 */
266		    &&
267		    ((rt->rt_flags & RTCF_LOCAL) ||
268		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
269#endif
270		   ) {
271			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
272			if (newskb)
273				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
274					newskb, NULL, newskb->dev,
275					dev_loopback_xmit);
276		}
277
278		/* Multicasts with ttl 0 must not go beyond the host */
279
280		if (ip_hdr(skb)->ttl == 0) {
281			kfree_skb(skb);
282			return 0;
283		}
284	}
285
286	if (rt->rt_flags&RTCF_BROADCAST) {
287		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
288		if (newskb)
289			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
290				NULL, newskb->dev, dev_loopback_xmit);
291	}
292
293	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
294			    skb->dev, ip_finish_output,
295			    !(IPCB(skb)->flags & IPSKB_REROUTED));
296}
297
298int ip_output(struct sk_buff *skb)
299{
300	struct net_device *dev = skb_dst(skb)->dev;
301
302	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
303
304	skb->dev = dev;
305	skb->protocol = htons(ETH_P_IP);
306
307	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
308			    ip_finish_output,
309			    !(IPCB(skb)->flags & IPSKB_REROUTED));
310}
311
312/*
313 * copy saddr and daddr, possibly using 64bit load/stores
314 * Equivalent to :
315 *   iph->saddr = fl4->saddr;
316 *   iph->daddr = fl4->daddr;
317 */
318static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
319{
320	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
321		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
322	memcpy(&iph->saddr, &fl4->saddr,
323	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
324}
325
326int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
327{
328	struct sock *sk = skb->sk;
329	struct inet_sock *inet = inet_sk(sk);
330	struct ip_options_rcu *inet_opt;
331	struct flowi4 *fl4;
332	struct rtable *rt;
333	struct iphdr *iph;
334	int res;
335
336	/* Skip all of this if the packet is already routed,
337	 * f.e. by something like SCTP.
338	 */
339	rcu_read_lock();
340	inet_opt = rcu_dereference(inet->inet_opt);
341	fl4 = &fl->u.ip4;
342	rt = skb_rtable(skb);
343	if (rt != NULL)
344		goto packet_routed;
345
346	/* Make sure we can route this packet. */
347	rt = (struct rtable *)__sk_dst_check(sk, 0);
348	if (rt == NULL) {
349		__be32 daddr;
350
351		/* Use correct destination address if we have options. */
352		daddr = inet->inet_daddr;
353		if (inet_opt && inet_opt->opt.srr)
354			daddr = inet_opt->opt.faddr;
355
356		/* If this fails, retransmit mechanism of transport layer will
357		 * keep trying until route appears or the connection times
358		 * itself out.
359		 */
360		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
361					   daddr, inet->inet_saddr,
362					   inet->inet_dport,
363					   inet->inet_sport,
364					   sk->sk_protocol,
365					   RT_CONN_FLAGS(sk),
366					   sk->sk_bound_dev_if);
367		if (IS_ERR(rt))
368			goto no_route;
369		sk_setup_caps(sk, &rt->dst);
370	}
371	skb_dst_set_noref(skb, &rt->dst);
372
373packet_routed:
374	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_gateway)
375		goto no_route;
376
377	/* OK, we know where to send it, allocate and build IP header. */
378	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
379	skb_reset_network_header(skb);
380	iph = ip_hdr(skb);
381	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
382	if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
383		iph->frag_off = htons(IP_DF);
384	else
385		iph->frag_off = 0;
386	iph->ttl      = ip_select_ttl(inet, &rt->dst);
387	iph->protocol = sk->sk_protocol;
388	ip_copy_addrs(iph, fl4);
389
390	/* Transport layer set skb->h.foo itself. */
391
392	if (inet_opt && inet_opt->opt.optlen) {
393		iph->ihl += inet_opt->opt.optlen >> 2;
394		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
395	}
396
397	ip_select_ident_more(iph, &rt->dst, sk,
398			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
399
400	skb->priority = sk->sk_priority;
401	skb->mark = sk->sk_mark;
402
403	res = ip_local_out(skb);
404	rcu_read_unlock();
405	return res;
406
407no_route:
408	rcu_read_unlock();
409	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
410	kfree_skb(skb);
411	return -EHOSTUNREACH;
412}
413EXPORT_SYMBOL(ip_queue_xmit);
414
415
416static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
417{
418	to->pkt_type = from->pkt_type;
419	to->priority = from->priority;
420	to->protocol = from->protocol;
421	skb_dst_drop(to);
422	skb_dst_copy(to, from);
423	to->dev = from->dev;
424	to->mark = from->mark;
425
426	/* Copy the flags to each fragment. */
427	IPCB(to)->flags = IPCB(from)->flags;
428
429#ifdef CONFIG_NET_SCHED
430	to->tc_index = from->tc_index;
431#endif
432	nf_copy(to, from);
433#if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
434    defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
435	to->nf_trace = from->nf_trace;
436#endif
437#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
438	to->ipvs_property = from->ipvs_property;
439#endif
440	skb_copy_secmark(to, from);
441}
442
443/*
444 *	This IP datagram is too large to be sent in one piece.  Break it up into
445 *	smaller pieces (each of size equal to IP header plus
446 *	a block of the data of the original IP data part) that will yet fit in a
447 *	single device frame, and queue such a frame for sending.
448 */
449
450int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
451{
452	struct iphdr *iph;
453	int ptr;
454	struct net_device *dev;
455	struct sk_buff *skb2;
456	unsigned int mtu, hlen, left, len, ll_rs;
457	int offset;
458	__be16 not_last_frag;
459	struct rtable *rt = skb_rtable(skb);
460	int err = 0;
461
462	dev = rt->dst.dev;
463
464	/*
465	 *	Point into the IP datagram header.
466	 */
467
468	iph = ip_hdr(skb);
469
470	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
471		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
472		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
473			  htonl(ip_skb_dst_mtu(skb)));
474		kfree_skb(skb);
475		return -EMSGSIZE;
476	}
477
478	/*
479	 *	Setup starting values.
480	 */
481
482	hlen = iph->ihl * 4;
483	mtu = dst_mtu(&rt->dst) - hlen;	/* Size of data space */
484#ifdef CONFIG_BRIDGE_NETFILTER
485	if (skb->nf_bridge)
486		mtu -= nf_bridge_mtu_reduction(skb);
487#endif
488	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
489
490	/* When frag_list is given, use it. First, check its validity:
491	 * some transformers could create wrong frag_list or break existing
492	 * one, it is not prohibited. In this case fall back to copying.
493	 *
494	 * LATER: this step can be merged to real generation of fragments,
495	 * we can switch to copy when see the first bad fragment.
496	 */
497	if (skb_has_frag_list(skb)) {
498		struct sk_buff *frag, *frag2;
499		int first_len = skb_pagelen(skb);
500
501		if (first_len - hlen > mtu ||
502		    ((first_len - hlen) & 7) ||
503		    ip_is_fragment(iph) ||
504		    skb_cloned(skb))
505			goto slow_path;
506
507		skb_walk_frags(skb, frag) {
508			/* Correct geometry. */
509			if (frag->len > mtu ||
510			    ((frag->len & 7) && frag->next) ||
511			    skb_headroom(frag) < hlen)
512				goto slow_path_clean;
513
514			/* Partially cloned skb? */
515			if (skb_shared(frag))
516				goto slow_path_clean;
517
518			BUG_ON(frag->sk);
519			if (skb->sk) {
520				frag->sk = skb->sk;
521				frag->destructor = sock_wfree;
522			}
523			skb->truesize -= frag->truesize;
524		}
525
526		/* Everything is OK. Generate! */
527
528		err = 0;
529		offset = 0;
530		frag = skb_shinfo(skb)->frag_list;
531		skb_frag_list_init(skb);
532		skb->data_len = first_len - skb_headlen(skb);
533		skb->len = first_len;
534		iph->tot_len = htons(first_len);
535		iph->frag_off = htons(IP_MF);
536		ip_send_check(iph);
537
538		for (;;) {
539			/* Prepare header of the next frame,
540			 * before previous one went down. */
541			if (frag) {
542				frag->ip_summed = CHECKSUM_NONE;
543				skb_reset_transport_header(frag);
544				__skb_push(frag, hlen);
545				skb_reset_network_header(frag);
546				memcpy(skb_network_header(frag), iph, hlen);
547				iph = ip_hdr(frag);
548				iph->tot_len = htons(frag->len);
549				ip_copy_metadata(frag, skb);
550				if (offset == 0)
551					ip_options_fragment(frag);
552				offset += skb->len - hlen;
553				iph->frag_off = htons(offset>>3);
554				if (frag->next != NULL)
555					iph->frag_off |= htons(IP_MF);
556				/* Ready, complete checksum */
557				ip_send_check(iph);
558			}
559
560			err = output(skb);
561
562			if (!err)
563				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
564			if (err || !frag)
565				break;
566
567			skb = frag;
568			frag = skb->next;
569			skb->next = NULL;
570		}
571
572		if (err == 0) {
573			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
574			return 0;
575		}
576
577		while (frag) {
578			skb = frag->next;
579			kfree_skb(frag);
580			frag = skb;
581		}
582		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
583		return err;
584
585slow_path_clean:
586		skb_walk_frags(skb, frag2) {
587			if (frag2 == frag)
588				break;
589			frag2->sk = NULL;
590			frag2->destructor = NULL;
591			skb->truesize += frag2->truesize;
592		}
593	}
594
595slow_path:
596	left = skb->len - hlen;		/* Space per frame */
597	ptr = hlen;		/* Where to start from */
598
599	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
600	 * we need to make room for the encapsulating header
601	 */
602	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
603
604	/*
605	 *	Fragment the datagram.
606	 */
607
608	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
609	not_last_frag = iph->frag_off & htons(IP_MF);
610
611	/*
612	 *	Keep copying data until we run out.
613	 */
614
615	while (left > 0) {
616		len = left;
617		/* IF: it doesn't fit, use 'mtu' - the data space left */
618		if (len > mtu)
619			len = mtu;
620		/* IF: we are not sending up to and including the packet end
621		   then align the next start on an eight byte boundary */
622		if (len < left)	{
623			len &= ~7;
624		}
625		/*
626		 *	Allocate buffer.
627		 */
628
629		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
630			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
631			err = -ENOMEM;
632			goto fail;
633		}
634
635		/*
636		 *	Set up data on packet
637		 */
638
639		ip_copy_metadata(skb2, skb);
640		skb_reserve(skb2, ll_rs);
641		skb_put(skb2, len + hlen);
642		skb_reset_network_header(skb2);
643		skb2->transport_header = skb2->network_header + hlen;
644
645		/*
646		 *	Charge the memory for the fragment to any owner
647		 *	it might possess
648		 */
649
650		if (skb->sk)
651			skb_set_owner_w(skb2, skb->sk);
652
653		/*
654		 *	Copy the packet header into the new buffer.
655		 */
656
657		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
658
659		/*
660		 *	Copy a block of the IP datagram.
661		 */
662		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
663			BUG();
664		left -= len;
665
666		/*
667		 *	Fill in the new header fields.
668		 */
669		iph = ip_hdr(skb2);
670		iph->frag_off = htons((offset >> 3));
671
672		/* ANK: dirty, but effective trick. Upgrade options only if
673		 * the segment to be fragmented was THE FIRST (otherwise,
674		 * options are already fixed) and make it ONCE
675		 * on the initial skb, so that all the following fragments
676		 * will inherit fixed options.
677		 */
678		if (offset == 0)
679			ip_options_fragment(skb);
680
681		/*
682		 *	Added AC : If we are fragmenting a fragment that's not the
683		 *		   last fragment then keep MF on each bit
684		 */
685		if (left > 0 || not_last_frag)
686			iph->frag_off |= htons(IP_MF);
687		ptr += len;
688		offset += len;
689
690		/*
691		 *	Put this fragment into the sending queue.
692		 */
693		iph->tot_len = htons(len + hlen);
694
695		ip_send_check(iph);
696
697		err = output(skb2);
698		if (err)
699			goto fail;
700
701		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
702	}
703	consume_skb(skb);
704	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
705	return err;
706
707fail:
708	kfree_skb(skb);
709	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
710	return err;
711}
712EXPORT_SYMBOL(ip_fragment);
713
714int
715ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
716{
717	struct iovec *iov = from;
718
719	if (skb->ip_summed == CHECKSUM_PARTIAL) {
720		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
721			return -EFAULT;
722	} else {
723		__wsum csum = 0;
724		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
725			return -EFAULT;
726		skb->csum = csum_block_add(skb->csum, csum, odd);
727	}
728	return 0;
729}
730EXPORT_SYMBOL(ip_generic_getfrag);
731
732static inline __wsum
733csum_page(struct page *page, int offset, int copy)
734{
735	char *kaddr;
736	__wsum csum;
737	kaddr = kmap(page);
738	csum = csum_partial(kaddr + offset, copy, 0);
739	kunmap(page);
740	return csum;
741}
742
743static inline int ip_ufo_append_data(struct sock *sk,
744			struct sk_buff_head *queue,
745			int getfrag(void *from, char *to, int offset, int len,
746			       int odd, struct sk_buff *skb),
747			void *from, int length, int hh_len, int fragheaderlen,
748			int transhdrlen, int maxfraglen, unsigned int flags)
749{
750	struct sk_buff *skb;
751	int err;
752
753	/* There is support for UDP fragmentation offload by network
754	 * device, so create one single skb packet containing complete
755	 * udp datagram
756	 */
757	if ((skb = skb_peek_tail(queue)) == NULL) {
758		skb = sock_alloc_send_skb(sk,
759			hh_len + fragheaderlen + transhdrlen + 20,
760			(flags & MSG_DONTWAIT), &err);
761
762		if (skb == NULL)
763			return err;
764
765		/* reserve space for Hardware header */
766		skb_reserve(skb, hh_len);
767
768		/* create space for UDP/IP header */
769		skb_put(skb, fragheaderlen + transhdrlen);
770
771		/* initialize network header pointer */
772		skb_reset_network_header(skb);
773
774		/* initialize protocol header pointer */
775		skb->transport_header = skb->network_header + fragheaderlen;
776
777		skb->ip_summed = CHECKSUM_PARTIAL;
778		skb->csum = 0;
779
780		/* specify the length of each IP datagram fragment */
781		skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
782		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
783		__skb_queue_tail(queue, skb);
784	}
785
786	return skb_append_datato_frags(sk, skb, getfrag, from,
787				       (length - transhdrlen));
788}
789
790static int __ip_append_data(struct sock *sk,
791			    struct flowi4 *fl4,
792			    struct sk_buff_head *queue,
793			    struct inet_cork *cork,
794			    int getfrag(void *from, char *to, int offset,
795					int len, int odd, struct sk_buff *skb),
796			    void *from, int length, int transhdrlen,
797			    unsigned int flags)
798{
799	struct inet_sock *inet = inet_sk(sk);
800	struct sk_buff *skb;
801
802	struct ip_options *opt = cork->opt;
803	int hh_len;
804	int exthdrlen;
805	int mtu;
806	int copy;
807	int err;
808	int offset = 0;
809	unsigned int maxfraglen, fragheaderlen;
810	int csummode = CHECKSUM_NONE;
811	struct rtable *rt = (struct rtable *)cork->dst;
812
813	skb = skb_peek_tail(queue);
814
815	exthdrlen = !skb ? rt->dst.header_len : 0;
816	mtu = cork->fragsize;
817
818	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
819
820	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
821	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
822
823	if (cork->length + length > 0xFFFF - fragheaderlen) {
824		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
825			       mtu-exthdrlen);
826		return -EMSGSIZE;
827	}
828
829	/*
830	 * transhdrlen > 0 means that this is the first fragment and we wish
831	 * it won't be fragmented in the future.
832	 */
833	if (transhdrlen &&
834	    length + fragheaderlen <= mtu &&
835	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
836	    !exthdrlen)
837		csummode = CHECKSUM_PARTIAL;
838
839	cork->length += length;
840	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
841	    (sk->sk_protocol == IPPROTO_UDP) &&
842	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
843		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
844					 hh_len, fragheaderlen, transhdrlen,
845					 maxfraglen, flags);
846		if (err)
847			goto error;
848		return 0;
849	}
850
851	/* So, what's going on in the loop below?
852	 *
853	 * We use calculated fragment length to generate chained skb,
854	 * each of segments is IP fragment ready for sending to network after
855	 * adding appropriate IP header.
856	 */
857
858	if (!skb)
859		goto alloc_new_skb;
860
861	while (length > 0) {
862		/* Check if the remaining data fits into current packet. */
863		copy = mtu - skb->len;
864		if (copy < length)
865			copy = maxfraglen - skb->len;
866		if (copy <= 0) {
867			char *data;
868			unsigned int datalen;
869			unsigned int fraglen;
870			unsigned int fraggap;
871			unsigned int alloclen;
872			struct sk_buff *skb_prev;
873alloc_new_skb:
874			skb_prev = skb;
875			if (skb_prev)
876				fraggap = skb_prev->len - maxfraglen;
877			else
878				fraggap = 0;
879
880			/*
881			 * If remaining data exceeds the mtu,
882			 * we know we need more fragment(s).
883			 */
884			datalen = length + fraggap;
885			if (datalen > mtu - fragheaderlen)
886				datalen = maxfraglen - fragheaderlen;
887			fraglen = datalen + fragheaderlen;
888
889			if ((flags & MSG_MORE) &&
890			    !(rt->dst.dev->features&NETIF_F_SG))
891				alloclen = mtu;
892			else
893				alloclen = fraglen;
894
895			alloclen += exthdrlen;
896
897			/* The last fragment gets additional space at tail.
898			 * Note, with MSG_MORE we overallocate on fragments,
899			 * because we have no idea what fragment will be
900			 * the last.
901			 */
902			if (datalen == length + fraggap)
903				alloclen += rt->dst.trailer_len;
904
905			if (transhdrlen) {
906				skb = sock_alloc_send_skb(sk,
907						alloclen + hh_len + 15,
908						(flags & MSG_DONTWAIT), &err);
909			} else {
910				skb = NULL;
911				if (atomic_read(&sk->sk_wmem_alloc) <=
912				    2 * sk->sk_sndbuf)
913					skb = sock_wmalloc(sk,
914							   alloclen + hh_len + 15, 1,
915							   sk->sk_allocation);
916				if (unlikely(skb == NULL))
917					err = -ENOBUFS;
918				else
919					/* only the initial fragment is
920					   time stamped */
921					cork->tx_flags = 0;
922			}
923			if (skb == NULL)
924				goto error;
925
926			/*
927			 *	Fill in the control structures
928			 */
929			skb->ip_summed = csummode;
930			skb->csum = 0;
931			skb_reserve(skb, hh_len);
932			skb_shinfo(skb)->tx_flags = cork->tx_flags;
933
934			/*
935			 *	Find where to start putting bytes.
936			 */
937			data = skb_put(skb, fraglen + exthdrlen);
938			skb_set_network_header(skb, exthdrlen);
939			skb->transport_header = (skb->network_header +
940						 fragheaderlen);
941			data += fragheaderlen + exthdrlen;
942
943			if (fraggap) {
944				skb->csum = skb_copy_and_csum_bits(
945					skb_prev, maxfraglen,
946					data + transhdrlen, fraggap, 0);
947				skb_prev->csum = csum_sub(skb_prev->csum,
948							  skb->csum);
949				data += fraggap;
950				pskb_trim_unique(skb_prev, maxfraglen);
951			}
952
953			copy = datalen - transhdrlen - fraggap;
954			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
955				err = -EFAULT;
956				kfree_skb(skb);
957				goto error;
958			}
959
960			offset += copy;
961			length -= datalen - fraggap;
962			transhdrlen = 0;
963			exthdrlen = 0;
964			csummode = CHECKSUM_NONE;
965
966			/*
967			 * Put the packet on the pending queue.
968			 */
969			__skb_queue_tail(queue, skb);
970			continue;
971		}
972
973		if (copy > length)
974			copy = length;
975
976		if (!(rt->dst.dev->features&NETIF_F_SG)) {
977			unsigned int off;
978
979			off = skb->len;
980			if (getfrag(from, skb_put(skb, copy),
981					offset, copy, off, skb) < 0) {
982				__skb_trim(skb, off);
983				err = -EFAULT;
984				goto error;
985			}
986		} else {
987			int i = skb_shinfo(skb)->nr_frags;
988			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
989			struct page *page = cork->page;
990			int off = cork->off;
991			unsigned int left;
992
993			if (page && (left = PAGE_SIZE - off) > 0) {
994				if (copy >= left)
995					copy = left;
996				if (page != skb_frag_page(frag)) {
997					if (i == MAX_SKB_FRAGS) {
998						err = -EMSGSIZE;
999						goto error;
1000					}
1001					skb_fill_page_desc(skb, i, page, off, 0);
1002					skb_frag_ref(skb, i);
1003					frag = &skb_shinfo(skb)->frags[i];
1004				}
1005			} else if (i < MAX_SKB_FRAGS) {
1006				if (copy > PAGE_SIZE)
1007					copy = PAGE_SIZE;
1008				page = alloc_pages(sk->sk_allocation, 0);
1009				if (page == NULL)  {
1010					err = -ENOMEM;
1011					goto error;
1012				}
1013				cork->page = page;
1014				cork->off = 0;
1015
1016				skb_fill_page_desc(skb, i, page, 0, 0);
1017				frag = &skb_shinfo(skb)->frags[i];
1018			} else {
1019				err = -EMSGSIZE;
1020				goto error;
1021			}
1022			if (getfrag(from, skb_frag_address(frag)+skb_frag_size(frag),
1023				    offset, copy, skb->len, skb) < 0) {
1024				err = -EFAULT;
1025				goto error;
1026			}
1027			cork->off += copy;
1028			skb_frag_size_add(frag, copy);
1029			skb->len += copy;
1030			skb->data_len += copy;
1031			skb->truesize += copy;
1032			atomic_add(copy, &sk->sk_wmem_alloc);
1033		}
1034		offset += copy;
1035		length -= copy;
1036	}
1037
1038	return 0;
1039
1040error:
1041	cork->length -= length;
1042	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1043	return err;
1044}
1045
1046static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1047			 struct ipcm_cookie *ipc, struct rtable **rtp)
1048{
1049	struct inet_sock *inet = inet_sk(sk);
1050	struct ip_options_rcu *opt;
1051	struct rtable *rt;
1052
1053	/*
1054	 * setup for corking.
1055	 */
1056	opt = ipc->opt;
1057	if (opt) {
1058		if (cork->opt == NULL) {
1059			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1060					    sk->sk_allocation);
1061			if (unlikely(cork->opt == NULL))
1062				return -ENOBUFS;
1063		}
1064		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1065		cork->flags |= IPCORK_OPT;
1066		cork->addr = ipc->addr;
1067	}
1068	rt = *rtp;
1069	if (unlikely(!rt))
1070		return -EFAULT;
1071	/*
1072	 * We steal reference to this route, caller should not release it
1073	 */
1074	*rtp = NULL;
1075	cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1076			 rt->dst.dev->mtu : dst_mtu(&rt->dst);
1077	cork->dst = &rt->dst;
1078	cork->length = 0;
1079	cork->tx_flags = ipc->tx_flags;
1080	cork->page = NULL;
1081	cork->off = 0;
1082
1083	return 0;
1084}
1085
1086/*
1087 *	ip_append_data() and ip_append_page() can make one large IP datagram
1088 *	from many pieces of data. Each pieces will be holded on the socket
1089 *	until ip_push_pending_frames() is called. Each piece can be a page
1090 *	or non-page data.
1091 *
1092 *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1093 *	this interface potentially.
1094 *
1095 *	LATER: length must be adjusted by pad at tail, when it is required.
1096 */
1097int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1098		   int getfrag(void *from, char *to, int offset, int len,
1099			       int odd, struct sk_buff *skb),
1100		   void *from, int length, int transhdrlen,
1101		   struct ipcm_cookie *ipc, struct rtable **rtp,
1102		   unsigned int flags)
1103{
1104	struct inet_sock *inet = inet_sk(sk);
1105	int err;
1106
1107	if (flags&MSG_PROBE)
1108		return 0;
1109
1110	if (skb_queue_empty(&sk->sk_write_queue)) {
1111		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1112		if (err)
1113			return err;
1114	} else {
1115		transhdrlen = 0;
1116	}
1117
1118	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, getfrag,
1119				from, length, transhdrlen, flags);
1120}
1121
1122ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1123		       int offset, size_t size, int flags)
1124{
1125	struct inet_sock *inet = inet_sk(sk);
1126	struct sk_buff *skb;
1127	struct rtable *rt;
1128	struct ip_options *opt = NULL;
1129	struct inet_cork *cork;
1130	int hh_len;
1131	int mtu;
1132	int len;
1133	int err;
1134	unsigned int maxfraglen, fragheaderlen, fraggap;
1135
1136	if (inet->hdrincl)
1137		return -EPERM;
1138
1139	if (flags&MSG_PROBE)
1140		return 0;
1141
1142	if (skb_queue_empty(&sk->sk_write_queue))
1143		return -EINVAL;
1144
1145	cork = &inet->cork.base;
1146	rt = (struct rtable *)cork->dst;
1147	if (cork->flags & IPCORK_OPT)
1148		opt = cork->opt;
1149
1150	if (!(rt->dst.dev->features&NETIF_F_SG))
1151		return -EOPNOTSUPP;
1152
1153	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1154	mtu = cork->fragsize;
1155
1156	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1157	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1158
1159	if (cork->length + size > 0xFFFF - fragheaderlen) {
1160		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
1161		return -EMSGSIZE;
1162	}
1163
1164	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1165		return -EINVAL;
1166
1167	cork->length += size;
1168	if ((size + skb->len > mtu) &&
1169	    (sk->sk_protocol == IPPROTO_UDP) &&
1170	    (rt->dst.dev->features & NETIF_F_UFO)) {
1171		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1172		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1173	}
1174
1175
1176	while (size > 0) {
1177		int i;
1178
1179		if (skb_is_gso(skb))
1180			len = size;
1181		else {
1182
1183			/* Check if the remaining data fits into current packet. */
1184			len = mtu - skb->len;
1185			if (len < size)
1186				len = maxfraglen - skb->len;
1187		}
1188		if (len <= 0) {
1189			struct sk_buff *skb_prev;
1190			int alloclen;
1191
1192			skb_prev = skb;
1193			fraggap = skb_prev->len - maxfraglen;
1194
1195			alloclen = fragheaderlen + hh_len + fraggap + 15;
1196			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1197			if (unlikely(!skb)) {
1198				err = -ENOBUFS;
1199				goto error;
1200			}
1201
1202			/*
1203			 *	Fill in the control structures
1204			 */
1205			skb->ip_summed = CHECKSUM_NONE;
1206			skb->csum = 0;
1207			skb_reserve(skb, hh_len);
1208
1209			/*
1210			 *	Find where to start putting bytes.
1211			 */
1212			skb_put(skb, fragheaderlen + fraggap);
1213			skb_reset_network_header(skb);
1214			skb->transport_header = (skb->network_header +
1215						 fragheaderlen);
1216			if (fraggap) {
1217				skb->csum = skb_copy_and_csum_bits(skb_prev,
1218								   maxfraglen,
1219						    skb_transport_header(skb),
1220								   fraggap, 0);
1221				skb_prev->csum = csum_sub(skb_prev->csum,
1222							  skb->csum);
1223				pskb_trim_unique(skb_prev, maxfraglen);
1224			}
1225
1226			/*
1227			 * Put the packet on the pending queue.
1228			 */
1229			__skb_queue_tail(&sk->sk_write_queue, skb);
1230			continue;
1231		}
1232
1233		i = skb_shinfo(skb)->nr_frags;
1234		if (len > size)
1235			len = size;
1236		if (skb_can_coalesce(skb, i, page, offset)) {
1237			skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1238		} else if (i < MAX_SKB_FRAGS) {
1239			get_page(page);
1240			skb_fill_page_desc(skb, i, page, offset, len);
1241		} else {
1242			err = -EMSGSIZE;
1243			goto error;
1244		}
1245
1246		if (skb->ip_summed == CHECKSUM_NONE) {
1247			__wsum csum;
1248			csum = csum_page(page, offset, len);
1249			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1250		}
1251
1252		skb->len += len;
1253		skb->data_len += len;
1254		skb->truesize += len;
1255		atomic_add(len, &sk->sk_wmem_alloc);
1256		offset += len;
1257		size -= len;
1258	}
1259	return 0;
1260
1261error:
1262	cork->length -= size;
1263	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1264	return err;
1265}
1266
1267static void ip_cork_release(struct inet_cork *cork)
1268{
1269	cork->flags &= ~IPCORK_OPT;
1270	kfree(cork->opt);
1271	cork->opt = NULL;
1272	dst_release(cork->dst);
1273	cork->dst = NULL;
1274}
1275
1276/*
1277 *	Combined all pending IP fragments on the socket as one IP datagram
1278 *	and push them out.
1279 */
1280struct sk_buff *__ip_make_skb(struct sock *sk,
1281			      struct flowi4 *fl4,
1282			      struct sk_buff_head *queue,
1283			      struct inet_cork *cork)
1284{
1285	struct sk_buff *skb, *tmp_skb;
1286	struct sk_buff **tail_skb;
1287	struct inet_sock *inet = inet_sk(sk);
1288	struct net *net = sock_net(sk);
1289	struct ip_options *opt = NULL;
1290	struct rtable *rt = (struct rtable *)cork->dst;
1291	struct iphdr *iph;
1292	__be16 df = 0;
1293	__u8 ttl;
1294
1295	if ((skb = __skb_dequeue(queue)) == NULL)
1296		goto out;
1297	tail_skb = &(skb_shinfo(skb)->frag_list);
1298
1299	/* move skb->data to ip header from ext header */
1300	if (skb->data < skb_network_header(skb))
1301		__skb_pull(skb, skb_network_offset(skb));
1302	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1303		__skb_pull(tmp_skb, skb_network_header_len(skb));
1304		*tail_skb = tmp_skb;
1305		tail_skb = &(tmp_skb->next);
1306		skb->len += tmp_skb->len;
1307		skb->data_len += tmp_skb->len;
1308		skb->truesize += tmp_skb->truesize;
1309		tmp_skb->destructor = NULL;
1310		tmp_skb->sk = NULL;
1311	}
1312
1313	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1314	 * to fragment the frame generated here. No matter, what transforms
1315	 * how transforms change size of the packet, it will come out.
1316	 */
1317	if (inet->pmtudisc < IP_PMTUDISC_DO)
1318		skb->local_df = 1;
1319
1320	/* DF bit is set when we want to see DF on outgoing frames.
1321	 * If local_df is set too, we still allow to fragment this frame
1322	 * locally. */
1323	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1324	    (skb->len <= dst_mtu(&rt->dst) &&
1325	     ip_dont_fragment(sk, &rt->dst)))
1326		df = htons(IP_DF);
1327
1328	if (cork->flags & IPCORK_OPT)
1329		opt = cork->opt;
1330
1331	if (rt->rt_type == RTN_MULTICAST)
1332		ttl = inet->mc_ttl;
1333	else
1334		ttl = ip_select_ttl(inet, &rt->dst);
1335
1336	iph = (struct iphdr *)skb->data;
1337	iph->version = 4;
1338	iph->ihl = 5;
1339	iph->tos = inet->tos;
1340	iph->frag_off = df;
1341	ip_select_ident(iph, &rt->dst, sk);
1342	iph->ttl = ttl;
1343	iph->protocol = sk->sk_protocol;
1344	ip_copy_addrs(iph, fl4);
1345
1346	if (opt) {
1347		iph->ihl += opt->optlen>>2;
1348		ip_options_build(skb, opt, cork->addr, rt, 0);
1349	}
1350
1351	skb->priority = sk->sk_priority;
1352	skb->mark = sk->sk_mark;
1353	/*
1354	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1355	 * on dst refcount
1356	 */
1357	cork->dst = NULL;
1358	skb_dst_set(skb, &rt->dst);
1359
1360	if (iph->protocol == IPPROTO_ICMP)
1361		icmp_out_count(net, ((struct icmphdr *)
1362			skb_transport_header(skb))->type);
1363
1364	ip_cork_release(cork);
1365out:
1366	return skb;
1367}
1368
1369int ip_send_skb(struct sk_buff *skb)
1370{
1371	struct net *net = sock_net(skb->sk);
1372	int err;
1373
1374	err = ip_local_out(skb);
1375	if (err) {
1376		if (err > 0)
1377			err = net_xmit_errno(err);
1378		if (err)
1379			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1380	}
1381
1382	return err;
1383}
1384
1385int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1386{
1387	struct sk_buff *skb;
1388
1389	skb = ip_finish_skb(sk, fl4);
1390	if (!skb)
1391		return 0;
1392
1393	/* Netfilter gets whole the not fragmented skb. */
1394	return ip_send_skb(skb);
1395}
1396
1397/*
1398 *	Throw away all pending data on the socket.
1399 */
1400static void __ip_flush_pending_frames(struct sock *sk,
1401				      struct sk_buff_head *queue,
1402				      struct inet_cork *cork)
1403{
1404	struct sk_buff *skb;
1405
1406	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1407		kfree_skb(skb);
1408
1409	ip_cork_release(cork);
1410}
1411
1412void ip_flush_pending_frames(struct sock *sk)
1413{
1414	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1415}
1416
1417struct sk_buff *ip_make_skb(struct sock *sk,
1418			    struct flowi4 *fl4,
1419			    int getfrag(void *from, char *to, int offset,
1420					int len, int odd, struct sk_buff *skb),
1421			    void *from, int length, int transhdrlen,
1422			    struct ipcm_cookie *ipc, struct rtable **rtp,
1423			    unsigned int flags)
1424{
1425	struct inet_cork cork;
1426	struct sk_buff_head queue;
1427	int err;
1428
1429	if (flags & MSG_PROBE)
1430		return NULL;
1431
1432	__skb_queue_head_init(&queue);
1433
1434	cork.flags = 0;
1435	cork.addr = 0;
1436	cork.opt = NULL;
1437	err = ip_setup_cork(sk, &cork, ipc, rtp);
1438	if (err)
1439		return ERR_PTR(err);
1440
1441	err = __ip_append_data(sk, fl4, &queue, &cork, getfrag,
1442			       from, length, transhdrlen, flags);
1443	if (err) {
1444		__ip_flush_pending_frames(sk, &queue, &cork);
1445		return ERR_PTR(err);
1446	}
1447
1448	return __ip_make_skb(sk, fl4, &queue, &cork);
1449}
1450
1451/*
1452 *	Fetch data from kernel space and fill in checksum if needed.
1453 */
1454static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1455			      int len, int odd, struct sk_buff *skb)
1456{
1457	__wsum csum;
1458
1459	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1460	skb->csum = csum_block_add(skb->csum, csum, odd);
1461	return 0;
1462}
1463
1464/*
1465 *	Generic function to send a packet as reply to another packet.
1466 *	Used to send some TCP resets/acks so far.
1467 *
1468 *	Use a fake percpu inet socket to avoid false sharing and contention.
1469 */
1470static DEFINE_PER_CPU(struct inet_sock, unicast_sock) = {
1471	.sk = {
1472		.__sk_common = {
1473			.skc_refcnt = ATOMIC_INIT(1),
1474		},
1475		.sk_wmem_alloc	= ATOMIC_INIT(1),
1476		.sk_allocation	= GFP_ATOMIC,
1477		.sk_flags	= (1UL << SOCK_USE_WRITE_QUEUE),
1478	},
1479	.pmtudisc	= IP_PMTUDISC_WANT,
1480	.uc_ttl		= -1,
1481};
1482
1483void ip_send_unicast_reply(struct net *net, struct sk_buff *skb, __be32 daddr,
1484			   __be32 saddr, const struct ip_reply_arg *arg,
1485			   unsigned int len)
1486{
1487	struct ip_options_data replyopts;
1488	struct ipcm_cookie ipc;
1489	struct flowi4 fl4;
1490	struct rtable *rt = skb_rtable(skb);
1491	struct sk_buff *nskb;
1492	struct sock *sk;
1493	struct inet_sock *inet;
1494
1495	if (ip_options_echo(&replyopts.opt.opt, skb))
1496		return;
1497
1498	ipc.addr = daddr;
1499	ipc.opt = NULL;
1500	ipc.tx_flags = 0;
1501
1502	if (replyopts.opt.opt.optlen) {
1503		ipc.opt = &replyopts.opt;
1504
1505		if (replyopts.opt.opt.srr)
1506			daddr = replyopts.opt.opt.faddr;
1507	}
1508
1509	flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1510			   RT_TOS(arg->tos),
1511			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1512			   ip_reply_arg_flowi_flags(arg),
1513			   daddr, saddr,
1514			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1515	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1516	rt = ip_route_output_key(net, &fl4);
1517	if (IS_ERR(rt))
1518		return;
1519
1520	inet = &get_cpu_var(unicast_sock);
1521
1522	inet->tos = arg->tos;
1523	sk = &inet->sk;
1524	sk->sk_priority = skb->priority;
1525	sk->sk_protocol = ip_hdr(skb)->protocol;
1526	sk->sk_bound_dev_if = arg->bound_dev_if;
1527	sock_net_set(sk, net);
1528	__skb_queue_head_init(&sk->sk_write_queue);
1529	sk->sk_sndbuf = sysctl_wmem_default;
1530	ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1531		       &ipc, &rt, MSG_DONTWAIT);
1532	nskb = skb_peek(&sk->sk_write_queue);
1533	if (nskb) {
1534		if (arg->csumoffset >= 0)
1535			*((__sum16 *)skb_transport_header(nskb) +
1536			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1537								arg->csum));
1538		nskb->ip_summed = CHECKSUM_NONE;
1539		skb_orphan(nskb);
1540		skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1541		ip_push_pending_frames(sk, &fl4);
1542	}
1543
1544	put_cpu_var(unicast_sock);
1545
1546	ip_rt_put(rt);
1547}
1548
1549void __init ip_init(void)
1550{
1551	ip_rt_init();
1552	inet_initpeers();
1553
1554#if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1555	igmp_mc_proc_init();
1556#endif
1557}
1558