ip_output.c revision 95603e2293de556de7e82221649bfd7fd98b64a3
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		The Internet Protocol (IP) output module.
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Donald Becker, <becker@super.org>
11 *		Alan Cox, <Alan.Cox@linux.org>
12 *		Richard Underwood
13 *		Stefan Becker, <stefanb@yello.ping.de>
14 *		Jorge Cwik, <jorge@laser.satlink.net>
15 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 *		Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 *	See ip_input.c for original log
19 *
20 *	Fixes:
21 *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22 *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23 *		Bradford Johnson:	Fix faulty handling of some frames when
24 *					no route is found.
25 *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26 *					(in case if packet not accepted by
27 *					output firewall rules)
28 *		Mike McLagan	:	Routing by source
29 *		Alexey Kuznetsov:	use new route cache
30 *		Andi Kleen:		Fix broken PMTU recovery and remove
31 *					some redundant tests.
32 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33 *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34 *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35 *					for decreased register pressure on x86
36 *					and more readibility.
37 *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38 *					silently drop skb instead of failing with -EPERM.
39 *		Detlev Wengorz	:	Copy protocol for fragments.
40 *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41 *					datagrams.
42 *		Hirokazu Takahashi:	sendfile() on UDP works now.
43 */
44
45#include <asm/uaccess.h>
46#include <linux/module.h>
47#include <linux/types.h>
48#include <linux/kernel.h>
49#include <linux/mm.h>
50#include <linux/string.h>
51#include <linux/errno.h>
52#include <linux/highmem.h>
53#include <linux/slab.h>
54
55#include <linux/socket.h>
56#include <linux/sockios.h>
57#include <linux/in.h>
58#include <linux/inet.h>
59#include <linux/netdevice.h>
60#include <linux/etherdevice.h>
61#include <linux/proc_fs.h>
62#include <linux/stat.h>
63#include <linux/init.h>
64
65#include <net/snmp.h>
66#include <net/ip.h>
67#include <net/protocol.h>
68#include <net/route.h>
69#include <net/xfrm.h>
70#include <linux/skbuff.h>
71#include <net/sock.h>
72#include <net/arp.h>
73#include <net/icmp.h>
74#include <net/checksum.h>
75#include <net/inetpeer.h>
76#include <linux/igmp.h>
77#include <linux/netfilter_ipv4.h>
78#include <linux/netfilter_bridge.h>
79#include <linux/mroute.h>
80#include <linux/netlink.h>
81#include <linux/tcp.h>
82
83int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84EXPORT_SYMBOL(sysctl_ip_default_ttl);
85
86/* Generate a checksum for an outgoing IP datagram. */
87__inline__ void ip_send_check(struct iphdr *iph)
88{
89	iph->check = 0;
90	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91}
92EXPORT_SYMBOL(ip_send_check);
93
94int __ip_local_out(struct sk_buff *skb)
95{
96	struct iphdr *iph = ip_hdr(skb);
97
98	iph->tot_len = htons(skb->len);
99	ip_send_check(iph);
100	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
101		       skb_dst(skb)->dev, dst_output);
102}
103
104int ip_local_out(struct sk_buff *skb)
105{
106	int err;
107
108	err = __ip_local_out(skb);
109	if (likely(err == 1))
110		err = dst_output(skb);
111
112	return err;
113}
114EXPORT_SYMBOL_GPL(ip_local_out);
115
116static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
117{
118	int ttl = inet->uc_ttl;
119
120	if (ttl < 0)
121		ttl = ip4_dst_hoplimit(dst);
122	return ttl;
123}
124
125/*
126 *		Add an ip header to a skbuff and send it out.
127 *
128 */
129int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
130			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
131{
132	struct inet_sock *inet = inet_sk(sk);
133	struct rtable *rt = skb_rtable(skb);
134	struct iphdr *iph;
135
136	/* Build the IP header. */
137	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
138	skb_reset_network_header(skb);
139	iph = ip_hdr(skb);
140	iph->version  = 4;
141	iph->ihl      = 5;
142	iph->tos      = inet->tos;
143	if (ip_dont_fragment(sk, &rt->dst))
144		iph->frag_off = htons(IP_DF);
145	else
146		iph->frag_off = 0;
147	iph->ttl      = ip_select_ttl(inet, &rt->dst);
148	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
149	iph->saddr    = saddr;
150	iph->protocol = sk->sk_protocol;
151	ip_select_ident(iph, &rt->dst, sk);
152
153	if (opt && opt->opt.optlen) {
154		iph->ihl += opt->opt.optlen>>2;
155		ip_options_build(skb, &opt->opt, daddr, rt, 0);
156	}
157
158	skb->priority = sk->sk_priority;
159	skb->mark = sk->sk_mark;
160
161	/* Send it out. */
162	return ip_local_out(skb);
163}
164EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
165
166static inline int ip_finish_output2(struct sk_buff *skb)
167{
168	struct dst_entry *dst = skb_dst(skb);
169	struct rtable *rt = (struct rtable *)dst;
170	struct net_device *dev = dst->dev;
171	unsigned int hh_len = LL_RESERVED_SPACE(dev);
172	struct neighbour *neigh;
173
174	if (rt->rt_type == RTN_MULTICAST) {
175		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
176	} else if (rt->rt_type == RTN_BROADCAST)
177		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
178
179	/* Be paranoid, rather than too clever. */
180	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
181		struct sk_buff *skb2;
182
183		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
184		if (skb2 == NULL) {
185			kfree_skb(skb);
186			return -ENOMEM;
187		}
188		if (skb->sk)
189			skb_set_owner_w(skb2, skb->sk);
190		consume_skb(skb);
191		skb = skb2;
192	}
193
194	rcu_read_lock();
195	neigh = dst_get_neighbour_noref(dst);
196	if (neigh) {
197		int res = neigh_output(neigh, skb);
198
199		rcu_read_unlock();
200		return res;
201	}
202	rcu_read_unlock();
203
204	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
205			    __func__);
206	kfree_skb(skb);
207	return -EINVAL;
208}
209
210static inline int ip_skb_dst_mtu(struct sk_buff *skb)
211{
212	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
213
214	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
215	       skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
216}
217
218static int ip_finish_output(struct sk_buff *skb)
219{
220#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
221	/* Policy lookup after SNAT yielded a new policy */
222	if (skb_dst(skb)->xfrm != NULL) {
223		IPCB(skb)->flags |= IPSKB_REROUTED;
224		return dst_output(skb);
225	}
226#endif
227	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
228		return ip_fragment(skb, ip_finish_output2);
229	else
230		return ip_finish_output2(skb);
231}
232
233int ip_mc_output(struct sk_buff *skb)
234{
235	struct sock *sk = skb->sk;
236	struct rtable *rt = skb_rtable(skb);
237	struct net_device *dev = rt->dst.dev;
238
239	/*
240	 *	If the indicated interface is up and running, send the packet.
241	 */
242	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
243
244	skb->dev = dev;
245	skb->protocol = htons(ETH_P_IP);
246
247	/*
248	 *	Multicasts are looped back for other local users
249	 */
250
251	if (rt->rt_flags&RTCF_MULTICAST) {
252		if (sk_mc_loop(sk)
253#ifdef CONFIG_IP_MROUTE
254		/* Small optimization: do not loopback not local frames,
255		   which returned after forwarding; they will be  dropped
256		   by ip_mr_input in any case.
257		   Note, that local frames are looped back to be delivered
258		   to local recipients.
259
260		   This check is duplicated in ip_mr_input at the moment.
261		 */
262		    &&
263		    ((rt->rt_flags & RTCF_LOCAL) ||
264		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
265#endif
266		   ) {
267			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
268			if (newskb)
269				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
270					newskb, NULL, newskb->dev,
271					dev_loopback_xmit);
272		}
273
274		/* Multicasts with ttl 0 must not go beyond the host */
275
276		if (ip_hdr(skb)->ttl == 0) {
277			kfree_skb(skb);
278			return 0;
279		}
280	}
281
282	if (rt->rt_flags&RTCF_BROADCAST) {
283		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
284		if (newskb)
285			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
286				NULL, newskb->dev, dev_loopback_xmit);
287	}
288
289	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
290			    skb->dev, ip_finish_output,
291			    !(IPCB(skb)->flags & IPSKB_REROUTED));
292}
293
294int ip_output(struct sk_buff *skb)
295{
296	struct net_device *dev = skb_dst(skb)->dev;
297
298	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
299
300	skb->dev = dev;
301	skb->protocol = htons(ETH_P_IP);
302
303	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
304			    ip_finish_output,
305			    !(IPCB(skb)->flags & IPSKB_REROUTED));
306}
307
308/*
309 * copy saddr and daddr, possibly using 64bit load/stores
310 * Equivalent to :
311 *   iph->saddr = fl4->saddr;
312 *   iph->daddr = fl4->daddr;
313 */
314static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
315{
316	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
317		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
318	memcpy(&iph->saddr, &fl4->saddr,
319	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
320}
321
322int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
323{
324	struct sock *sk = skb->sk;
325	struct inet_sock *inet = inet_sk(sk);
326	struct ip_options_rcu *inet_opt;
327	struct flowi4 *fl4;
328	struct rtable *rt;
329	struct iphdr *iph;
330	int res;
331
332	/* Skip all of this if the packet is already routed,
333	 * f.e. by something like SCTP.
334	 */
335	rcu_read_lock();
336	inet_opt = rcu_dereference(inet->inet_opt);
337	fl4 = &fl->u.ip4;
338	rt = skb_rtable(skb);
339	if (rt != NULL)
340		goto packet_routed;
341
342	/* Make sure we can route this packet. */
343	rt = (struct rtable *)__sk_dst_check(sk, 0);
344	if (rt == NULL) {
345		__be32 daddr;
346
347		/* Use correct destination address if we have options. */
348		daddr = inet->inet_daddr;
349		if (inet_opt && inet_opt->opt.srr)
350			daddr = inet_opt->opt.faddr;
351
352		/* If this fails, retransmit mechanism of transport layer will
353		 * keep trying until route appears or the connection times
354		 * itself out.
355		 */
356		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
357					   daddr, inet->inet_saddr,
358					   inet->inet_dport,
359					   inet->inet_sport,
360					   sk->sk_protocol,
361					   RT_CONN_FLAGS(sk),
362					   sk->sk_bound_dev_if);
363		if (IS_ERR(rt))
364			goto no_route;
365		sk_setup_caps(sk, &rt->dst);
366	}
367	skb_dst_set_noref(skb, &rt->dst);
368
369packet_routed:
370	if (inet_opt && inet_opt->opt.is_strictroute && fl4->daddr != rt->rt_gateway)
371		goto no_route;
372
373	/* OK, we know where to send it, allocate and build IP header. */
374	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
375	skb_reset_network_header(skb);
376	iph = ip_hdr(skb);
377	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
378	if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
379		iph->frag_off = htons(IP_DF);
380	else
381		iph->frag_off = 0;
382	iph->ttl      = ip_select_ttl(inet, &rt->dst);
383	iph->protocol = sk->sk_protocol;
384	ip_copy_addrs(iph, fl4);
385
386	/* Transport layer set skb->h.foo itself. */
387
388	if (inet_opt && inet_opt->opt.optlen) {
389		iph->ihl += inet_opt->opt.optlen >> 2;
390		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
391	}
392
393	ip_select_ident_more(iph, &rt->dst, sk,
394			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
395
396	skb->priority = sk->sk_priority;
397	skb->mark = sk->sk_mark;
398
399	res = ip_local_out(skb);
400	rcu_read_unlock();
401	return res;
402
403no_route:
404	rcu_read_unlock();
405	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
406	kfree_skb(skb);
407	return -EHOSTUNREACH;
408}
409EXPORT_SYMBOL(ip_queue_xmit);
410
411
412static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
413{
414	to->pkt_type = from->pkt_type;
415	to->priority = from->priority;
416	to->protocol = from->protocol;
417	skb_dst_drop(to);
418	skb_dst_copy(to, from);
419	to->dev = from->dev;
420	to->mark = from->mark;
421
422	/* Copy the flags to each fragment. */
423	IPCB(to)->flags = IPCB(from)->flags;
424
425#ifdef CONFIG_NET_SCHED
426	to->tc_index = from->tc_index;
427#endif
428	nf_copy(to, from);
429#if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
430    defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
431	to->nf_trace = from->nf_trace;
432#endif
433#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
434	to->ipvs_property = from->ipvs_property;
435#endif
436	skb_copy_secmark(to, from);
437}
438
439/*
440 *	This IP datagram is too large to be sent in one piece.  Break it up into
441 *	smaller pieces (each of size equal to IP header plus
442 *	a block of the data of the original IP data part) that will yet fit in a
443 *	single device frame, and queue such a frame for sending.
444 */
445
446int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
447{
448	struct iphdr *iph;
449	int ptr;
450	struct net_device *dev;
451	struct sk_buff *skb2;
452	unsigned int mtu, hlen, left, len, ll_rs;
453	int offset;
454	__be16 not_last_frag;
455	struct rtable *rt = skb_rtable(skb);
456	int err = 0;
457
458	dev = rt->dst.dev;
459
460	/*
461	 *	Point into the IP datagram header.
462	 */
463
464	iph = ip_hdr(skb);
465
466	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
467		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
468		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
469			  htonl(ip_skb_dst_mtu(skb)));
470		kfree_skb(skb);
471		return -EMSGSIZE;
472	}
473
474	/*
475	 *	Setup starting values.
476	 */
477
478	hlen = iph->ihl * 4;
479	mtu = dst_mtu(&rt->dst) - hlen;	/* Size of data space */
480#ifdef CONFIG_BRIDGE_NETFILTER
481	if (skb->nf_bridge)
482		mtu -= nf_bridge_mtu_reduction(skb);
483#endif
484	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
485
486	/* When frag_list is given, use it. First, check its validity:
487	 * some transformers could create wrong frag_list or break existing
488	 * one, it is not prohibited. In this case fall back to copying.
489	 *
490	 * LATER: this step can be merged to real generation of fragments,
491	 * we can switch to copy when see the first bad fragment.
492	 */
493	if (skb_has_frag_list(skb)) {
494		struct sk_buff *frag, *frag2;
495		int first_len = skb_pagelen(skb);
496
497		if (first_len - hlen > mtu ||
498		    ((first_len - hlen) & 7) ||
499		    ip_is_fragment(iph) ||
500		    skb_cloned(skb))
501			goto slow_path;
502
503		skb_walk_frags(skb, frag) {
504			/* Correct geometry. */
505			if (frag->len > mtu ||
506			    ((frag->len & 7) && frag->next) ||
507			    skb_headroom(frag) < hlen)
508				goto slow_path_clean;
509
510			/* Partially cloned skb? */
511			if (skb_shared(frag))
512				goto slow_path_clean;
513
514			BUG_ON(frag->sk);
515			if (skb->sk) {
516				frag->sk = skb->sk;
517				frag->destructor = sock_wfree;
518			}
519			skb->truesize -= frag->truesize;
520		}
521
522		/* Everything is OK. Generate! */
523
524		err = 0;
525		offset = 0;
526		frag = skb_shinfo(skb)->frag_list;
527		skb_frag_list_init(skb);
528		skb->data_len = first_len - skb_headlen(skb);
529		skb->len = first_len;
530		iph->tot_len = htons(first_len);
531		iph->frag_off = htons(IP_MF);
532		ip_send_check(iph);
533
534		for (;;) {
535			/* Prepare header of the next frame,
536			 * before previous one went down. */
537			if (frag) {
538				frag->ip_summed = CHECKSUM_NONE;
539				skb_reset_transport_header(frag);
540				__skb_push(frag, hlen);
541				skb_reset_network_header(frag);
542				memcpy(skb_network_header(frag), iph, hlen);
543				iph = ip_hdr(frag);
544				iph->tot_len = htons(frag->len);
545				ip_copy_metadata(frag, skb);
546				if (offset == 0)
547					ip_options_fragment(frag);
548				offset += skb->len - hlen;
549				iph->frag_off = htons(offset>>3);
550				if (frag->next != NULL)
551					iph->frag_off |= htons(IP_MF);
552				/* Ready, complete checksum */
553				ip_send_check(iph);
554			}
555
556			err = output(skb);
557
558			if (!err)
559				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
560			if (err || !frag)
561				break;
562
563			skb = frag;
564			frag = skb->next;
565			skb->next = NULL;
566		}
567
568		if (err == 0) {
569			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
570			return 0;
571		}
572
573		while (frag) {
574			skb = frag->next;
575			kfree_skb(frag);
576			frag = skb;
577		}
578		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
579		return err;
580
581slow_path_clean:
582		skb_walk_frags(skb, frag2) {
583			if (frag2 == frag)
584				break;
585			frag2->sk = NULL;
586			frag2->destructor = NULL;
587			skb->truesize += frag2->truesize;
588		}
589	}
590
591slow_path:
592	left = skb->len - hlen;		/* Space per frame */
593	ptr = hlen;		/* Where to start from */
594
595	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
596	 * we need to make room for the encapsulating header
597	 */
598	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
599
600	/*
601	 *	Fragment the datagram.
602	 */
603
604	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
605	not_last_frag = iph->frag_off & htons(IP_MF);
606
607	/*
608	 *	Keep copying data until we run out.
609	 */
610
611	while (left > 0) {
612		len = left;
613		/* IF: it doesn't fit, use 'mtu' - the data space left */
614		if (len > mtu)
615			len = mtu;
616		/* IF: we are not sending up to and including the packet end
617		   then align the next start on an eight byte boundary */
618		if (len < left)	{
619			len &= ~7;
620		}
621		/*
622		 *	Allocate buffer.
623		 */
624
625		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
626			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
627			err = -ENOMEM;
628			goto fail;
629		}
630
631		/*
632		 *	Set up data on packet
633		 */
634
635		ip_copy_metadata(skb2, skb);
636		skb_reserve(skb2, ll_rs);
637		skb_put(skb2, len + hlen);
638		skb_reset_network_header(skb2);
639		skb2->transport_header = skb2->network_header + hlen;
640
641		/*
642		 *	Charge the memory for the fragment to any owner
643		 *	it might possess
644		 */
645
646		if (skb->sk)
647			skb_set_owner_w(skb2, skb->sk);
648
649		/*
650		 *	Copy the packet header into the new buffer.
651		 */
652
653		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
654
655		/*
656		 *	Copy a block of the IP datagram.
657		 */
658		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
659			BUG();
660		left -= len;
661
662		/*
663		 *	Fill in the new header fields.
664		 */
665		iph = ip_hdr(skb2);
666		iph->frag_off = htons((offset >> 3));
667
668		/* ANK: dirty, but effective trick. Upgrade options only if
669		 * the segment to be fragmented was THE FIRST (otherwise,
670		 * options are already fixed) and make it ONCE
671		 * on the initial skb, so that all the following fragments
672		 * will inherit fixed options.
673		 */
674		if (offset == 0)
675			ip_options_fragment(skb);
676
677		/*
678		 *	Added AC : If we are fragmenting a fragment that's not the
679		 *		   last fragment then keep MF on each bit
680		 */
681		if (left > 0 || not_last_frag)
682			iph->frag_off |= htons(IP_MF);
683		ptr += len;
684		offset += len;
685
686		/*
687		 *	Put this fragment into the sending queue.
688		 */
689		iph->tot_len = htons(len + hlen);
690
691		ip_send_check(iph);
692
693		err = output(skb2);
694		if (err)
695			goto fail;
696
697		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
698	}
699	consume_skb(skb);
700	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
701	return err;
702
703fail:
704	kfree_skb(skb);
705	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
706	return err;
707}
708EXPORT_SYMBOL(ip_fragment);
709
710int
711ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
712{
713	struct iovec *iov = from;
714
715	if (skb->ip_summed == CHECKSUM_PARTIAL) {
716		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
717			return -EFAULT;
718	} else {
719		__wsum csum = 0;
720		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
721			return -EFAULT;
722		skb->csum = csum_block_add(skb->csum, csum, odd);
723	}
724	return 0;
725}
726EXPORT_SYMBOL(ip_generic_getfrag);
727
728static inline __wsum
729csum_page(struct page *page, int offset, int copy)
730{
731	char *kaddr;
732	__wsum csum;
733	kaddr = kmap(page);
734	csum = csum_partial(kaddr + offset, copy, 0);
735	kunmap(page);
736	return csum;
737}
738
739static inline int ip_ufo_append_data(struct sock *sk,
740			struct sk_buff_head *queue,
741			int getfrag(void *from, char *to, int offset, int len,
742			       int odd, struct sk_buff *skb),
743			void *from, int length, int hh_len, int fragheaderlen,
744			int transhdrlen, int maxfraglen, unsigned int flags)
745{
746	struct sk_buff *skb;
747	int err;
748
749	/* There is support for UDP fragmentation offload by network
750	 * device, so create one single skb packet containing complete
751	 * udp datagram
752	 */
753	if ((skb = skb_peek_tail(queue)) == NULL) {
754		skb = sock_alloc_send_skb(sk,
755			hh_len + fragheaderlen + transhdrlen + 20,
756			(flags & MSG_DONTWAIT), &err);
757
758		if (skb == NULL)
759			return err;
760
761		/* reserve space for Hardware header */
762		skb_reserve(skb, hh_len);
763
764		/* create space for UDP/IP header */
765		skb_put(skb, fragheaderlen + transhdrlen);
766
767		/* initialize network header pointer */
768		skb_reset_network_header(skb);
769
770		/* initialize protocol header pointer */
771		skb->transport_header = skb->network_header + fragheaderlen;
772
773		skb->ip_summed = CHECKSUM_PARTIAL;
774		skb->csum = 0;
775
776		/* specify the length of each IP datagram fragment */
777		skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
778		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
779		__skb_queue_tail(queue, skb);
780	}
781
782	return skb_append_datato_frags(sk, skb, getfrag, from,
783				       (length - transhdrlen));
784}
785
786static int __ip_append_data(struct sock *sk,
787			    struct flowi4 *fl4,
788			    struct sk_buff_head *queue,
789			    struct inet_cork *cork,
790			    int getfrag(void *from, char *to, int offset,
791					int len, int odd, struct sk_buff *skb),
792			    void *from, int length, int transhdrlen,
793			    unsigned int flags)
794{
795	struct inet_sock *inet = inet_sk(sk);
796	struct sk_buff *skb;
797
798	struct ip_options *opt = cork->opt;
799	int hh_len;
800	int exthdrlen;
801	int mtu;
802	int copy;
803	int err;
804	int offset = 0;
805	unsigned int maxfraglen, fragheaderlen;
806	int csummode = CHECKSUM_NONE;
807	struct rtable *rt = (struct rtable *)cork->dst;
808
809	skb = skb_peek_tail(queue);
810
811	exthdrlen = !skb ? rt->dst.header_len : 0;
812	mtu = cork->fragsize;
813
814	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
815
816	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
817	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
818
819	if (cork->length + length > 0xFFFF - fragheaderlen) {
820		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
821			       mtu-exthdrlen);
822		return -EMSGSIZE;
823	}
824
825	/*
826	 * transhdrlen > 0 means that this is the first fragment and we wish
827	 * it won't be fragmented in the future.
828	 */
829	if (transhdrlen &&
830	    length + fragheaderlen <= mtu &&
831	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
832	    !exthdrlen)
833		csummode = CHECKSUM_PARTIAL;
834
835	cork->length += length;
836	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
837	    (sk->sk_protocol == IPPROTO_UDP) &&
838	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
839		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
840					 hh_len, fragheaderlen, transhdrlen,
841					 maxfraglen, flags);
842		if (err)
843			goto error;
844		return 0;
845	}
846
847	/* So, what's going on in the loop below?
848	 *
849	 * We use calculated fragment length to generate chained skb,
850	 * each of segments is IP fragment ready for sending to network after
851	 * adding appropriate IP header.
852	 */
853
854	if (!skb)
855		goto alloc_new_skb;
856
857	while (length > 0) {
858		/* Check if the remaining data fits into current packet. */
859		copy = mtu - skb->len;
860		if (copy < length)
861			copy = maxfraglen - skb->len;
862		if (copy <= 0) {
863			char *data;
864			unsigned int datalen;
865			unsigned int fraglen;
866			unsigned int fraggap;
867			unsigned int alloclen;
868			struct sk_buff *skb_prev;
869alloc_new_skb:
870			skb_prev = skb;
871			if (skb_prev)
872				fraggap = skb_prev->len - maxfraglen;
873			else
874				fraggap = 0;
875
876			/*
877			 * If remaining data exceeds the mtu,
878			 * we know we need more fragment(s).
879			 */
880			datalen = length + fraggap;
881			if (datalen > mtu - fragheaderlen)
882				datalen = maxfraglen - fragheaderlen;
883			fraglen = datalen + fragheaderlen;
884
885			if ((flags & MSG_MORE) &&
886			    !(rt->dst.dev->features&NETIF_F_SG))
887				alloclen = mtu;
888			else
889				alloclen = fraglen;
890
891			alloclen += exthdrlen;
892
893			/* The last fragment gets additional space at tail.
894			 * Note, with MSG_MORE we overallocate on fragments,
895			 * because we have no idea what fragment will be
896			 * the last.
897			 */
898			if (datalen == length + fraggap)
899				alloclen += rt->dst.trailer_len;
900
901			if (transhdrlen) {
902				skb = sock_alloc_send_skb(sk,
903						alloclen + hh_len + 15,
904						(flags & MSG_DONTWAIT), &err);
905			} else {
906				skb = NULL;
907				if (atomic_read(&sk->sk_wmem_alloc) <=
908				    2 * sk->sk_sndbuf)
909					skb = sock_wmalloc(sk,
910							   alloclen + hh_len + 15, 1,
911							   sk->sk_allocation);
912				if (unlikely(skb == NULL))
913					err = -ENOBUFS;
914				else
915					/* only the initial fragment is
916					   time stamped */
917					cork->tx_flags = 0;
918			}
919			if (skb == NULL)
920				goto error;
921
922			/*
923			 *	Fill in the control structures
924			 */
925			skb->ip_summed = csummode;
926			skb->csum = 0;
927			skb_reserve(skb, hh_len);
928			skb_shinfo(skb)->tx_flags = cork->tx_flags;
929
930			/*
931			 *	Find where to start putting bytes.
932			 */
933			data = skb_put(skb, fraglen + exthdrlen);
934			skb_set_network_header(skb, exthdrlen);
935			skb->transport_header = (skb->network_header +
936						 fragheaderlen);
937			data += fragheaderlen + exthdrlen;
938
939			if (fraggap) {
940				skb->csum = skb_copy_and_csum_bits(
941					skb_prev, maxfraglen,
942					data + transhdrlen, fraggap, 0);
943				skb_prev->csum = csum_sub(skb_prev->csum,
944							  skb->csum);
945				data += fraggap;
946				pskb_trim_unique(skb_prev, maxfraglen);
947			}
948
949			copy = datalen - transhdrlen - fraggap;
950			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
951				err = -EFAULT;
952				kfree_skb(skb);
953				goto error;
954			}
955
956			offset += copy;
957			length -= datalen - fraggap;
958			transhdrlen = 0;
959			exthdrlen = 0;
960			csummode = CHECKSUM_NONE;
961
962			/*
963			 * Put the packet on the pending queue.
964			 */
965			__skb_queue_tail(queue, skb);
966			continue;
967		}
968
969		if (copy > length)
970			copy = length;
971
972		if (!(rt->dst.dev->features&NETIF_F_SG)) {
973			unsigned int off;
974
975			off = skb->len;
976			if (getfrag(from, skb_put(skb, copy),
977					offset, copy, off, skb) < 0) {
978				__skb_trim(skb, off);
979				err = -EFAULT;
980				goto error;
981			}
982		} else {
983			int i = skb_shinfo(skb)->nr_frags;
984			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
985			struct page *page = cork->page;
986			int off = cork->off;
987			unsigned int left;
988
989			if (page && (left = PAGE_SIZE - off) > 0) {
990				if (copy >= left)
991					copy = left;
992				if (page != skb_frag_page(frag)) {
993					if (i == MAX_SKB_FRAGS) {
994						err = -EMSGSIZE;
995						goto error;
996					}
997					skb_fill_page_desc(skb, i, page, off, 0);
998					skb_frag_ref(skb, i);
999					frag = &skb_shinfo(skb)->frags[i];
1000				}
1001			} else if (i < MAX_SKB_FRAGS) {
1002				if (copy > PAGE_SIZE)
1003					copy = PAGE_SIZE;
1004				page = alloc_pages(sk->sk_allocation, 0);
1005				if (page == NULL)  {
1006					err = -ENOMEM;
1007					goto error;
1008				}
1009				cork->page = page;
1010				cork->off = 0;
1011
1012				skb_fill_page_desc(skb, i, page, 0, 0);
1013				frag = &skb_shinfo(skb)->frags[i];
1014			} else {
1015				err = -EMSGSIZE;
1016				goto error;
1017			}
1018			if (getfrag(from, skb_frag_address(frag)+skb_frag_size(frag),
1019				    offset, copy, skb->len, skb) < 0) {
1020				err = -EFAULT;
1021				goto error;
1022			}
1023			cork->off += copy;
1024			skb_frag_size_add(frag, copy);
1025			skb->len += copy;
1026			skb->data_len += copy;
1027			skb->truesize += copy;
1028			atomic_add(copy, &sk->sk_wmem_alloc);
1029		}
1030		offset += copy;
1031		length -= copy;
1032	}
1033
1034	return 0;
1035
1036error:
1037	cork->length -= length;
1038	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1039	return err;
1040}
1041
1042static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1043			 struct ipcm_cookie *ipc, struct rtable **rtp)
1044{
1045	struct inet_sock *inet = inet_sk(sk);
1046	struct ip_options_rcu *opt;
1047	struct rtable *rt;
1048
1049	/*
1050	 * setup for corking.
1051	 */
1052	opt = ipc->opt;
1053	if (opt) {
1054		if (cork->opt == NULL) {
1055			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1056					    sk->sk_allocation);
1057			if (unlikely(cork->opt == NULL))
1058				return -ENOBUFS;
1059		}
1060		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1061		cork->flags |= IPCORK_OPT;
1062		cork->addr = ipc->addr;
1063	}
1064	rt = *rtp;
1065	if (unlikely(!rt))
1066		return -EFAULT;
1067	/*
1068	 * We steal reference to this route, caller should not release it
1069	 */
1070	*rtp = NULL;
1071	cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1072			 rt->dst.dev->mtu : dst_mtu(&rt->dst);
1073	cork->dst = &rt->dst;
1074	cork->length = 0;
1075	cork->tx_flags = ipc->tx_flags;
1076	cork->page = NULL;
1077	cork->off = 0;
1078
1079	return 0;
1080}
1081
1082/*
1083 *	ip_append_data() and ip_append_page() can make one large IP datagram
1084 *	from many pieces of data. Each pieces will be holded on the socket
1085 *	until ip_push_pending_frames() is called. Each piece can be a page
1086 *	or non-page data.
1087 *
1088 *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1089 *	this interface potentially.
1090 *
1091 *	LATER: length must be adjusted by pad at tail, when it is required.
1092 */
1093int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1094		   int getfrag(void *from, char *to, int offset, int len,
1095			       int odd, struct sk_buff *skb),
1096		   void *from, int length, int transhdrlen,
1097		   struct ipcm_cookie *ipc, struct rtable **rtp,
1098		   unsigned int flags)
1099{
1100	struct inet_sock *inet = inet_sk(sk);
1101	int err;
1102
1103	if (flags&MSG_PROBE)
1104		return 0;
1105
1106	if (skb_queue_empty(&sk->sk_write_queue)) {
1107		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1108		if (err)
1109			return err;
1110	} else {
1111		transhdrlen = 0;
1112	}
1113
1114	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, getfrag,
1115				from, length, transhdrlen, flags);
1116}
1117
1118ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1119		       int offset, size_t size, int flags)
1120{
1121	struct inet_sock *inet = inet_sk(sk);
1122	struct sk_buff *skb;
1123	struct rtable *rt;
1124	struct ip_options *opt = NULL;
1125	struct inet_cork *cork;
1126	int hh_len;
1127	int mtu;
1128	int len;
1129	int err;
1130	unsigned int maxfraglen, fragheaderlen, fraggap;
1131
1132	if (inet->hdrincl)
1133		return -EPERM;
1134
1135	if (flags&MSG_PROBE)
1136		return 0;
1137
1138	if (skb_queue_empty(&sk->sk_write_queue))
1139		return -EINVAL;
1140
1141	cork = &inet->cork.base;
1142	rt = (struct rtable *)cork->dst;
1143	if (cork->flags & IPCORK_OPT)
1144		opt = cork->opt;
1145
1146	if (!(rt->dst.dev->features&NETIF_F_SG))
1147		return -EOPNOTSUPP;
1148
1149	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1150	mtu = cork->fragsize;
1151
1152	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1153	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1154
1155	if (cork->length + size > 0xFFFF - fragheaderlen) {
1156		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
1157		return -EMSGSIZE;
1158	}
1159
1160	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1161		return -EINVAL;
1162
1163	cork->length += size;
1164	if ((size + skb->len > mtu) &&
1165	    (sk->sk_protocol == IPPROTO_UDP) &&
1166	    (rt->dst.dev->features & NETIF_F_UFO)) {
1167		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1168		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1169	}
1170
1171
1172	while (size > 0) {
1173		int i;
1174
1175		if (skb_is_gso(skb))
1176			len = size;
1177		else {
1178
1179			/* Check if the remaining data fits into current packet. */
1180			len = mtu - skb->len;
1181			if (len < size)
1182				len = maxfraglen - skb->len;
1183		}
1184		if (len <= 0) {
1185			struct sk_buff *skb_prev;
1186			int alloclen;
1187
1188			skb_prev = skb;
1189			fraggap = skb_prev->len - maxfraglen;
1190
1191			alloclen = fragheaderlen + hh_len + fraggap + 15;
1192			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1193			if (unlikely(!skb)) {
1194				err = -ENOBUFS;
1195				goto error;
1196			}
1197
1198			/*
1199			 *	Fill in the control structures
1200			 */
1201			skb->ip_summed = CHECKSUM_NONE;
1202			skb->csum = 0;
1203			skb_reserve(skb, hh_len);
1204
1205			/*
1206			 *	Find where to start putting bytes.
1207			 */
1208			skb_put(skb, fragheaderlen + fraggap);
1209			skb_reset_network_header(skb);
1210			skb->transport_header = (skb->network_header +
1211						 fragheaderlen);
1212			if (fraggap) {
1213				skb->csum = skb_copy_and_csum_bits(skb_prev,
1214								   maxfraglen,
1215						    skb_transport_header(skb),
1216								   fraggap, 0);
1217				skb_prev->csum = csum_sub(skb_prev->csum,
1218							  skb->csum);
1219				pskb_trim_unique(skb_prev, maxfraglen);
1220			}
1221
1222			/*
1223			 * Put the packet on the pending queue.
1224			 */
1225			__skb_queue_tail(&sk->sk_write_queue, skb);
1226			continue;
1227		}
1228
1229		i = skb_shinfo(skb)->nr_frags;
1230		if (len > size)
1231			len = size;
1232		if (skb_can_coalesce(skb, i, page, offset)) {
1233			skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1234		} else if (i < MAX_SKB_FRAGS) {
1235			get_page(page);
1236			skb_fill_page_desc(skb, i, page, offset, len);
1237		} else {
1238			err = -EMSGSIZE;
1239			goto error;
1240		}
1241
1242		if (skb->ip_summed == CHECKSUM_NONE) {
1243			__wsum csum;
1244			csum = csum_page(page, offset, len);
1245			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1246		}
1247
1248		skb->len += len;
1249		skb->data_len += len;
1250		skb->truesize += len;
1251		atomic_add(len, &sk->sk_wmem_alloc);
1252		offset += len;
1253		size -= len;
1254	}
1255	return 0;
1256
1257error:
1258	cork->length -= size;
1259	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1260	return err;
1261}
1262
1263static void ip_cork_release(struct inet_cork *cork)
1264{
1265	cork->flags &= ~IPCORK_OPT;
1266	kfree(cork->opt);
1267	cork->opt = NULL;
1268	dst_release(cork->dst);
1269	cork->dst = NULL;
1270}
1271
1272/*
1273 *	Combined all pending IP fragments on the socket as one IP datagram
1274 *	and push them out.
1275 */
1276struct sk_buff *__ip_make_skb(struct sock *sk,
1277			      struct flowi4 *fl4,
1278			      struct sk_buff_head *queue,
1279			      struct inet_cork *cork)
1280{
1281	struct sk_buff *skb, *tmp_skb;
1282	struct sk_buff **tail_skb;
1283	struct inet_sock *inet = inet_sk(sk);
1284	struct net *net = sock_net(sk);
1285	struct ip_options *opt = NULL;
1286	struct rtable *rt = (struct rtable *)cork->dst;
1287	struct iphdr *iph;
1288	__be16 df = 0;
1289	__u8 ttl;
1290
1291	if ((skb = __skb_dequeue(queue)) == NULL)
1292		goto out;
1293	tail_skb = &(skb_shinfo(skb)->frag_list);
1294
1295	/* move skb->data to ip header from ext header */
1296	if (skb->data < skb_network_header(skb))
1297		__skb_pull(skb, skb_network_offset(skb));
1298	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1299		__skb_pull(tmp_skb, skb_network_header_len(skb));
1300		*tail_skb = tmp_skb;
1301		tail_skb = &(tmp_skb->next);
1302		skb->len += tmp_skb->len;
1303		skb->data_len += tmp_skb->len;
1304		skb->truesize += tmp_skb->truesize;
1305		tmp_skb->destructor = NULL;
1306		tmp_skb->sk = NULL;
1307	}
1308
1309	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1310	 * to fragment the frame generated here. No matter, what transforms
1311	 * how transforms change size of the packet, it will come out.
1312	 */
1313	if (inet->pmtudisc < IP_PMTUDISC_DO)
1314		skb->local_df = 1;
1315
1316	/* DF bit is set when we want to see DF on outgoing frames.
1317	 * If local_df is set too, we still allow to fragment this frame
1318	 * locally. */
1319	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1320	    (skb->len <= dst_mtu(&rt->dst) &&
1321	     ip_dont_fragment(sk, &rt->dst)))
1322		df = htons(IP_DF);
1323
1324	if (cork->flags & IPCORK_OPT)
1325		opt = cork->opt;
1326
1327	if (rt->rt_type == RTN_MULTICAST)
1328		ttl = inet->mc_ttl;
1329	else
1330		ttl = ip_select_ttl(inet, &rt->dst);
1331
1332	iph = (struct iphdr *)skb->data;
1333	iph->version = 4;
1334	iph->ihl = 5;
1335	iph->tos = inet->tos;
1336	iph->frag_off = df;
1337	ip_select_ident(iph, &rt->dst, sk);
1338	iph->ttl = ttl;
1339	iph->protocol = sk->sk_protocol;
1340	ip_copy_addrs(iph, fl4);
1341
1342	if (opt) {
1343		iph->ihl += opt->optlen>>2;
1344		ip_options_build(skb, opt, cork->addr, rt, 0);
1345	}
1346
1347	skb->priority = sk->sk_priority;
1348	skb->mark = sk->sk_mark;
1349	/*
1350	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1351	 * on dst refcount
1352	 */
1353	cork->dst = NULL;
1354	skb_dst_set(skb, &rt->dst);
1355
1356	if (iph->protocol == IPPROTO_ICMP)
1357		icmp_out_count(net, ((struct icmphdr *)
1358			skb_transport_header(skb))->type);
1359
1360	ip_cork_release(cork);
1361out:
1362	return skb;
1363}
1364
1365int ip_send_skb(struct sk_buff *skb)
1366{
1367	struct net *net = sock_net(skb->sk);
1368	int err;
1369
1370	err = ip_local_out(skb);
1371	if (err) {
1372		if (err > 0)
1373			err = net_xmit_errno(err);
1374		if (err)
1375			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1376	}
1377
1378	return err;
1379}
1380
1381int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1382{
1383	struct sk_buff *skb;
1384
1385	skb = ip_finish_skb(sk, fl4);
1386	if (!skb)
1387		return 0;
1388
1389	/* Netfilter gets whole the not fragmented skb. */
1390	return ip_send_skb(skb);
1391}
1392
1393/*
1394 *	Throw away all pending data on the socket.
1395 */
1396static void __ip_flush_pending_frames(struct sock *sk,
1397				      struct sk_buff_head *queue,
1398				      struct inet_cork *cork)
1399{
1400	struct sk_buff *skb;
1401
1402	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1403		kfree_skb(skb);
1404
1405	ip_cork_release(cork);
1406}
1407
1408void ip_flush_pending_frames(struct sock *sk)
1409{
1410	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1411}
1412
1413struct sk_buff *ip_make_skb(struct sock *sk,
1414			    struct flowi4 *fl4,
1415			    int getfrag(void *from, char *to, int offset,
1416					int len, int odd, struct sk_buff *skb),
1417			    void *from, int length, int transhdrlen,
1418			    struct ipcm_cookie *ipc, struct rtable **rtp,
1419			    unsigned int flags)
1420{
1421	struct inet_cork cork;
1422	struct sk_buff_head queue;
1423	int err;
1424
1425	if (flags & MSG_PROBE)
1426		return NULL;
1427
1428	__skb_queue_head_init(&queue);
1429
1430	cork.flags = 0;
1431	cork.addr = 0;
1432	cork.opt = NULL;
1433	err = ip_setup_cork(sk, &cork, ipc, rtp);
1434	if (err)
1435		return ERR_PTR(err);
1436
1437	err = __ip_append_data(sk, fl4, &queue, &cork, getfrag,
1438			       from, length, transhdrlen, flags);
1439	if (err) {
1440		__ip_flush_pending_frames(sk, &queue, &cork);
1441		return ERR_PTR(err);
1442	}
1443
1444	return __ip_make_skb(sk, fl4, &queue, &cork);
1445}
1446
1447/*
1448 *	Fetch data from kernel space and fill in checksum if needed.
1449 */
1450static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1451			      int len, int odd, struct sk_buff *skb)
1452{
1453	__wsum csum;
1454
1455	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1456	skb->csum = csum_block_add(skb->csum, csum, odd);
1457	return 0;
1458}
1459
1460/*
1461 *	Generic function to send a packet as reply to another packet.
1462 *	Used to send TCP resets so far. ICMP should use this function too.
1463 *
1464 *	Should run single threaded per socket because it uses the sock
1465 *     	structure to pass arguments.
1466 */
1467void ip_send_reply(struct sock *sk, struct sk_buff *skb, __be32 daddr,
1468		   const struct ip_reply_arg *arg, unsigned int len)
1469{
1470	struct inet_sock *inet = inet_sk(sk);
1471	struct ip_options_data replyopts;
1472	struct ipcm_cookie ipc;
1473	struct flowi4 fl4;
1474	struct rtable *rt = skb_rtable(skb);
1475
1476	if (ip_options_echo(&replyopts.opt.opt, skb))
1477		return;
1478
1479	ipc.addr = daddr;
1480	ipc.opt = NULL;
1481	ipc.tx_flags = 0;
1482
1483	if (replyopts.opt.opt.optlen) {
1484		ipc.opt = &replyopts.opt;
1485
1486		if (replyopts.opt.opt.srr)
1487			daddr = replyopts.opt.opt.faddr;
1488	}
1489
1490	flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1491			   RT_TOS(arg->tos),
1492			   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1493			   ip_reply_arg_flowi_flags(arg),
1494			   daddr, rt->rt_spec_dst,
1495			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1496	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1497	rt = ip_route_output_key(sock_net(sk), &fl4);
1498	if (IS_ERR(rt))
1499		return;
1500
1501	/* And let IP do all the hard work.
1502
1503	   This chunk is not reenterable, hence spinlock.
1504	   Note that it uses the fact, that this function is called
1505	   with locally disabled BH and that sk cannot be already spinlocked.
1506	 */
1507	bh_lock_sock(sk);
1508	inet->tos = arg->tos;
1509	sk->sk_priority = skb->priority;
1510	sk->sk_protocol = ip_hdr(skb)->protocol;
1511	sk->sk_bound_dev_if = arg->bound_dev_if;
1512	ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1513		       &ipc, &rt, MSG_DONTWAIT);
1514	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1515		if (arg->csumoffset >= 0)
1516			*((__sum16 *)skb_transport_header(skb) +
1517			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1518								arg->csum));
1519		skb->ip_summed = CHECKSUM_NONE;
1520		ip_push_pending_frames(sk, &fl4);
1521	}
1522
1523	bh_unlock_sock(sk);
1524
1525	ip_rt_put(rt);
1526}
1527
1528void __init ip_init(void)
1529{
1530	ip_rt_init();
1531	inet_initpeers();
1532
1533#if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1534	igmp_mc_proc_init();
1535#endif
1536}
1537