ip_output.c revision daba287b299ec7a2c61ae3a714920e90e8396ad5
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		The Internet Protocol (IP) output module.
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Donald Becker, <becker@super.org>
11 *		Alan Cox, <Alan.Cox@linux.org>
12 *		Richard Underwood
13 *		Stefan Becker, <stefanb@yello.ping.de>
14 *		Jorge Cwik, <jorge@laser.satlink.net>
15 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 *		Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 *	See ip_input.c for original log
19 *
20 *	Fixes:
21 *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22 *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23 *		Bradford Johnson:	Fix faulty handling of some frames when
24 *					no route is found.
25 *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26 *					(in case if packet not accepted by
27 *					output firewall rules)
28 *		Mike McLagan	:	Routing by source
29 *		Alexey Kuznetsov:	use new route cache
30 *		Andi Kleen:		Fix broken PMTU recovery and remove
31 *					some redundant tests.
32 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33 *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34 *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35 *					for decreased register pressure on x86
36 *					and more readibility.
37 *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38 *					silently drop skb instead of failing with -EPERM.
39 *		Detlev Wengorz	:	Copy protocol for fragments.
40 *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41 *					datagrams.
42 *		Hirokazu Takahashi:	sendfile() on UDP works now.
43 */
44
45#include <asm/uaccess.h>
46#include <linux/module.h>
47#include <linux/types.h>
48#include <linux/kernel.h>
49#include <linux/mm.h>
50#include <linux/string.h>
51#include <linux/errno.h>
52#include <linux/highmem.h>
53#include <linux/slab.h>
54
55#include <linux/socket.h>
56#include <linux/sockios.h>
57#include <linux/in.h>
58#include <linux/inet.h>
59#include <linux/netdevice.h>
60#include <linux/etherdevice.h>
61#include <linux/proc_fs.h>
62#include <linux/stat.h>
63#include <linux/init.h>
64
65#include <net/snmp.h>
66#include <net/ip.h>
67#include <net/protocol.h>
68#include <net/route.h>
69#include <net/xfrm.h>
70#include <linux/skbuff.h>
71#include <net/sock.h>
72#include <net/arp.h>
73#include <net/icmp.h>
74#include <net/checksum.h>
75#include <net/inetpeer.h>
76#include <linux/igmp.h>
77#include <linux/netfilter_ipv4.h>
78#include <linux/netfilter_bridge.h>
79#include <linux/mroute.h>
80#include <linux/netlink.h>
81#include <linux/tcp.h>
82
83int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84EXPORT_SYMBOL(sysctl_ip_default_ttl);
85
86/* Generate a checksum for an outgoing IP datagram. */
87void ip_send_check(struct iphdr *iph)
88{
89	iph->check = 0;
90	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91}
92EXPORT_SYMBOL(ip_send_check);
93
94int __ip_local_out(struct sk_buff *skb)
95{
96	struct iphdr *iph = ip_hdr(skb);
97
98	iph->tot_len = htons(skb->len);
99	ip_send_check(iph);
100	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
101		       skb_dst(skb)->dev, dst_output);
102}
103
104int ip_local_out(struct sk_buff *skb)
105{
106	int err;
107
108	err = __ip_local_out(skb);
109	if (likely(err == 1))
110		err = dst_output(skb);
111
112	return err;
113}
114EXPORT_SYMBOL_GPL(ip_local_out);
115
116static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
117{
118	int ttl = inet->uc_ttl;
119
120	if (ttl < 0)
121		ttl = ip4_dst_hoplimit(dst);
122	return ttl;
123}
124
125/*
126 *		Add an ip header to a skbuff and send it out.
127 *
128 */
129int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
130			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
131{
132	struct inet_sock *inet = inet_sk(sk);
133	struct rtable *rt = skb_rtable(skb);
134	struct iphdr *iph;
135
136	/* Build the IP header. */
137	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
138	skb_reset_network_header(skb);
139	iph = ip_hdr(skb);
140	iph->version  = 4;
141	iph->ihl      = 5;
142	iph->tos      = inet->tos;
143	if (ip_dont_fragment(sk, &rt->dst))
144		iph->frag_off = htons(IP_DF);
145	else
146		iph->frag_off = 0;
147	iph->ttl      = ip_select_ttl(inet, &rt->dst);
148	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
149	iph->saddr    = saddr;
150	iph->protocol = sk->sk_protocol;
151	ip_select_ident(skb, &rt->dst, sk);
152
153	if (opt && opt->opt.optlen) {
154		iph->ihl += opt->opt.optlen>>2;
155		ip_options_build(skb, &opt->opt, daddr, rt, 0);
156	}
157
158	skb->priority = sk->sk_priority;
159	skb->mark = sk->sk_mark;
160
161	/* Send it out. */
162	return ip_local_out(skb);
163}
164EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
165
166static inline int ip_finish_output2(struct sk_buff *skb)
167{
168	struct dst_entry *dst = skb_dst(skb);
169	struct rtable *rt = (struct rtable *)dst;
170	struct net_device *dev = dst->dev;
171	unsigned int hh_len = LL_RESERVED_SPACE(dev);
172	struct neighbour *neigh;
173	u32 nexthop;
174
175	if (rt->rt_type == RTN_MULTICAST) {
176		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
177	} else if (rt->rt_type == RTN_BROADCAST)
178		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
179
180	/* Be paranoid, rather than too clever. */
181	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
182		struct sk_buff *skb2;
183
184		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
185		if (skb2 == NULL) {
186			kfree_skb(skb);
187			return -ENOMEM;
188		}
189		if (skb->sk)
190			skb_set_owner_w(skb2, skb->sk);
191		consume_skb(skb);
192		skb = skb2;
193	}
194
195	rcu_read_lock_bh();
196	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
197	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
198	if (unlikely(!neigh))
199		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
200	if (!IS_ERR(neigh)) {
201		int res = dst_neigh_output(dst, neigh, skb);
202
203		rcu_read_unlock_bh();
204		return res;
205	}
206	rcu_read_unlock_bh();
207
208	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
209			    __func__);
210	kfree_skb(skb);
211	return -EINVAL;
212}
213
214static int ip_finish_output(struct sk_buff *skb)
215{
216#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
217	/* Policy lookup after SNAT yielded a new policy */
218	if (skb_dst(skb)->xfrm != NULL) {
219		IPCB(skb)->flags |= IPSKB_REROUTED;
220		return dst_output(skb);
221	}
222#endif
223	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
224		return ip_fragment(skb, ip_finish_output2);
225	else
226		return ip_finish_output2(skb);
227}
228
229int ip_mc_output(struct sk_buff *skb)
230{
231	struct sock *sk = skb->sk;
232	struct rtable *rt = skb_rtable(skb);
233	struct net_device *dev = rt->dst.dev;
234
235	/*
236	 *	If the indicated interface is up and running, send the packet.
237	 */
238	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
239
240	skb->dev = dev;
241	skb->protocol = htons(ETH_P_IP);
242
243	/*
244	 *	Multicasts are looped back for other local users
245	 */
246
247	if (rt->rt_flags&RTCF_MULTICAST) {
248		if (sk_mc_loop(sk)
249#ifdef CONFIG_IP_MROUTE
250		/* Small optimization: do not loopback not local frames,
251		   which returned after forwarding; they will be  dropped
252		   by ip_mr_input in any case.
253		   Note, that local frames are looped back to be delivered
254		   to local recipients.
255
256		   This check is duplicated in ip_mr_input at the moment.
257		 */
258		    &&
259		    ((rt->rt_flags & RTCF_LOCAL) ||
260		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
261#endif
262		   ) {
263			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
264			if (newskb)
265				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
266					newskb, NULL, newskb->dev,
267					dev_loopback_xmit);
268		}
269
270		/* Multicasts with ttl 0 must not go beyond the host */
271
272		if (ip_hdr(skb)->ttl == 0) {
273			kfree_skb(skb);
274			return 0;
275		}
276	}
277
278	if (rt->rt_flags&RTCF_BROADCAST) {
279		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
280		if (newskb)
281			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
282				NULL, newskb->dev, dev_loopback_xmit);
283	}
284
285	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
286			    skb->dev, ip_finish_output,
287			    !(IPCB(skb)->flags & IPSKB_REROUTED));
288}
289
290int ip_output(struct sk_buff *skb)
291{
292	struct net_device *dev = skb_dst(skb)->dev;
293
294	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
295
296	skb->dev = dev;
297	skb->protocol = htons(ETH_P_IP);
298
299	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
300			    ip_finish_output,
301			    !(IPCB(skb)->flags & IPSKB_REROUTED));
302}
303
304/*
305 * copy saddr and daddr, possibly using 64bit load/stores
306 * Equivalent to :
307 *   iph->saddr = fl4->saddr;
308 *   iph->daddr = fl4->daddr;
309 */
310static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
311{
312	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
313		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
314	memcpy(&iph->saddr, &fl4->saddr,
315	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
316}
317
318int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
319{
320	struct sock *sk = skb->sk;
321	struct inet_sock *inet = inet_sk(sk);
322	struct ip_options_rcu *inet_opt;
323	struct flowi4 *fl4;
324	struct rtable *rt;
325	struct iphdr *iph;
326	int res;
327
328	/* Skip all of this if the packet is already routed,
329	 * f.e. by something like SCTP.
330	 */
331	rcu_read_lock();
332	inet_opt = rcu_dereference(inet->inet_opt);
333	fl4 = &fl->u.ip4;
334	rt = skb_rtable(skb);
335	if (rt != NULL)
336		goto packet_routed;
337
338	/* Make sure we can route this packet. */
339	rt = (struct rtable *)__sk_dst_check(sk, 0);
340	if (rt == NULL) {
341		__be32 daddr;
342
343		/* Use correct destination address if we have options. */
344		daddr = inet->inet_daddr;
345		if (inet_opt && inet_opt->opt.srr)
346			daddr = inet_opt->opt.faddr;
347
348		/* If this fails, retransmit mechanism of transport layer will
349		 * keep trying until route appears or the connection times
350		 * itself out.
351		 */
352		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
353					   daddr, inet->inet_saddr,
354					   inet->inet_dport,
355					   inet->inet_sport,
356					   sk->sk_protocol,
357					   RT_CONN_FLAGS(sk),
358					   sk->sk_bound_dev_if);
359		if (IS_ERR(rt))
360			goto no_route;
361		sk_setup_caps(sk, &rt->dst);
362	}
363	skb_dst_set_noref(skb, &rt->dst);
364
365packet_routed:
366	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
367		goto no_route;
368
369	/* OK, we know where to send it, allocate and build IP header. */
370	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
371	skb_reset_network_header(skb);
372	iph = ip_hdr(skb);
373	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
374	if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
375		iph->frag_off = htons(IP_DF);
376	else
377		iph->frag_off = 0;
378	iph->ttl      = ip_select_ttl(inet, &rt->dst);
379	iph->protocol = sk->sk_protocol;
380	ip_copy_addrs(iph, fl4);
381
382	/* Transport layer set skb->h.foo itself. */
383
384	if (inet_opt && inet_opt->opt.optlen) {
385		iph->ihl += inet_opt->opt.optlen >> 2;
386		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
387	}
388
389	ip_select_ident_more(skb, &rt->dst, sk,
390			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
391
392	skb->priority = sk->sk_priority;
393	skb->mark = sk->sk_mark;
394
395	res = ip_local_out(skb);
396	rcu_read_unlock();
397	return res;
398
399no_route:
400	rcu_read_unlock();
401	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
402	kfree_skb(skb);
403	return -EHOSTUNREACH;
404}
405EXPORT_SYMBOL(ip_queue_xmit);
406
407
408static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
409{
410	to->pkt_type = from->pkt_type;
411	to->priority = from->priority;
412	to->protocol = from->protocol;
413	skb_dst_drop(to);
414	skb_dst_copy(to, from);
415	to->dev = from->dev;
416	to->mark = from->mark;
417
418	/* Copy the flags to each fragment. */
419	IPCB(to)->flags = IPCB(from)->flags;
420
421#ifdef CONFIG_NET_SCHED
422	to->tc_index = from->tc_index;
423#endif
424	nf_copy(to, from);
425#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
426	to->nf_trace = from->nf_trace;
427#endif
428#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
429	to->ipvs_property = from->ipvs_property;
430#endif
431	skb_copy_secmark(to, from);
432}
433
434/*
435 *	This IP datagram is too large to be sent in one piece.  Break it up into
436 *	smaller pieces (each of size equal to IP header plus
437 *	a block of the data of the original IP data part) that will yet fit in a
438 *	single device frame, and queue such a frame for sending.
439 */
440
441int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
442{
443	struct iphdr *iph;
444	int ptr;
445	struct net_device *dev;
446	struct sk_buff *skb2;
447	unsigned int mtu, hlen, left, len, ll_rs;
448	int offset;
449	__be16 not_last_frag;
450	struct rtable *rt = skb_rtable(skb);
451	int err = 0;
452
453	dev = rt->dst.dev;
454
455	/*
456	 *	Point into the IP datagram header.
457	 */
458
459	iph = ip_hdr(skb);
460
461	if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->local_df) ||
462		     (IPCB(skb)->frag_max_size &&
463		      IPCB(skb)->frag_max_size > dst_mtu(&rt->dst)))) {
464		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
465		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
466			  htonl(ip_skb_dst_mtu(skb)));
467		kfree_skb(skb);
468		return -EMSGSIZE;
469	}
470
471	/*
472	 *	Setup starting values.
473	 */
474
475	hlen = iph->ihl * 4;
476	mtu = dst_mtu(&rt->dst) - hlen;	/* Size of data space */
477#ifdef CONFIG_BRIDGE_NETFILTER
478	if (skb->nf_bridge)
479		mtu -= nf_bridge_mtu_reduction(skb);
480#endif
481	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
482
483	/* When frag_list is given, use it. First, check its validity:
484	 * some transformers could create wrong frag_list or break existing
485	 * one, it is not prohibited. In this case fall back to copying.
486	 *
487	 * LATER: this step can be merged to real generation of fragments,
488	 * we can switch to copy when see the first bad fragment.
489	 */
490	if (skb_has_frag_list(skb)) {
491		struct sk_buff *frag, *frag2;
492		int first_len = skb_pagelen(skb);
493
494		if (first_len - hlen > mtu ||
495		    ((first_len - hlen) & 7) ||
496		    ip_is_fragment(iph) ||
497		    skb_cloned(skb))
498			goto slow_path;
499
500		skb_walk_frags(skb, frag) {
501			/* Correct geometry. */
502			if (frag->len > mtu ||
503			    ((frag->len & 7) && frag->next) ||
504			    skb_headroom(frag) < hlen)
505				goto slow_path_clean;
506
507			/* Partially cloned skb? */
508			if (skb_shared(frag))
509				goto slow_path_clean;
510
511			BUG_ON(frag->sk);
512			if (skb->sk) {
513				frag->sk = skb->sk;
514				frag->destructor = sock_wfree;
515			}
516			skb->truesize -= frag->truesize;
517		}
518
519		/* Everything is OK. Generate! */
520
521		err = 0;
522		offset = 0;
523		frag = skb_shinfo(skb)->frag_list;
524		skb_frag_list_init(skb);
525		skb->data_len = first_len - skb_headlen(skb);
526		skb->len = first_len;
527		iph->tot_len = htons(first_len);
528		iph->frag_off = htons(IP_MF);
529		ip_send_check(iph);
530
531		for (;;) {
532			/* Prepare header of the next frame,
533			 * before previous one went down. */
534			if (frag) {
535				frag->ip_summed = CHECKSUM_NONE;
536				skb_reset_transport_header(frag);
537				__skb_push(frag, hlen);
538				skb_reset_network_header(frag);
539				memcpy(skb_network_header(frag), iph, hlen);
540				iph = ip_hdr(frag);
541				iph->tot_len = htons(frag->len);
542				ip_copy_metadata(frag, skb);
543				if (offset == 0)
544					ip_options_fragment(frag);
545				offset += skb->len - hlen;
546				iph->frag_off = htons(offset>>3);
547				if (frag->next != NULL)
548					iph->frag_off |= htons(IP_MF);
549				/* Ready, complete checksum */
550				ip_send_check(iph);
551			}
552
553			err = output(skb);
554
555			if (!err)
556				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
557			if (err || !frag)
558				break;
559
560			skb = frag;
561			frag = skb->next;
562			skb->next = NULL;
563		}
564
565		if (err == 0) {
566			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
567			return 0;
568		}
569
570		while (frag) {
571			skb = frag->next;
572			kfree_skb(frag);
573			frag = skb;
574		}
575		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
576		return err;
577
578slow_path_clean:
579		skb_walk_frags(skb, frag2) {
580			if (frag2 == frag)
581				break;
582			frag2->sk = NULL;
583			frag2->destructor = NULL;
584			skb->truesize += frag2->truesize;
585		}
586	}
587
588slow_path:
589	/* for offloaded checksums cleanup checksum before fragmentation */
590	if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb))
591		goto fail;
592	iph = ip_hdr(skb);
593
594	left = skb->len - hlen;		/* Space per frame */
595	ptr = hlen;		/* Where to start from */
596
597	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
598	 * we need to make room for the encapsulating header
599	 */
600	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
601
602	/*
603	 *	Fragment the datagram.
604	 */
605
606	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
607	not_last_frag = iph->frag_off & htons(IP_MF);
608
609	/*
610	 *	Keep copying data until we run out.
611	 */
612
613	while (left > 0) {
614		len = left;
615		/* IF: it doesn't fit, use 'mtu' - the data space left */
616		if (len > mtu)
617			len = mtu;
618		/* IF: we are not sending up to and including the packet end
619		   then align the next start on an eight byte boundary */
620		if (len < left)	{
621			len &= ~7;
622		}
623		/*
624		 *	Allocate buffer.
625		 */
626
627		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
628			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
629			err = -ENOMEM;
630			goto fail;
631		}
632
633		/*
634		 *	Set up data on packet
635		 */
636
637		ip_copy_metadata(skb2, skb);
638		skb_reserve(skb2, ll_rs);
639		skb_put(skb2, len + hlen);
640		skb_reset_network_header(skb2);
641		skb2->transport_header = skb2->network_header + hlen;
642
643		/*
644		 *	Charge the memory for the fragment to any owner
645		 *	it might possess
646		 */
647
648		if (skb->sk)
649			skb_set_owner_w(skb2, skb->sk);
650
651		/*
652		 *	Copy the packet header into the new buffer.
653		 */
654
655		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
656
657		/*
658		 *	Copy a block of the IP datagram.
659		 */
660		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
661			BUG();
662		left -= len;
663
664		/*
665		 *	Fill in the new header fields.
666		 */
667		iph = ip_hdr(skb2);
668		iph->frag_off = htons((offset >> 3));
669
670		/* ANK: dirty, but effective trick. Upgrade options only if
671		 * the segment to be fragmented was THE FIRST (otherwise,
672		 * options are already fixed) and make it ONCE
673		 * on the initial skb, so that all the following fragments
674		 * will inherit fixed options.
675		 */
676		if (offset == 0)
677			ip_options_fragment(skb);
678
679		/*
680		 *	Added AC : If we are fragmenting a fragment that's not the
681		 *		   last fragment then keep MF on each bit
682		 */
683		if (left > 0 || not_last_frag)
684			iph->frag_off |= htons(IP_MF);
685		ptr += len;
686		offset += len;
687
688		/*
689		 *	Put this fragment into the sending queue.
690		 */
691		iph->tot_len = htons(len + hlen);
692
693		ip_send_check(iph);
694
695		err = output(skb2);
696		if (err)
697			goto fail;
698
699		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
700	}
701	consume_skb(skb);
702	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
703	return err;
704
705fail:
706	kfree_skb(skb);
707	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
708	return err;
709}
710EXPORT_SYMBOL(ip_fragment);
711
712int
713ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
714{
715	struct iovec *iov = from;
716
717	if (skb->ip_summed == CHECKSUM_PARTIAL) {
718		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
719			return -EFAULT;
720	} else {
721		__wsum csum = 0;
722		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
723			return -EFAULT;
724		skb->csum = csum_block_add(skb->csum, csum, odd);
725	}
726	return 0;
727}
728EXPORT_SYMBOL(ip_generic_getfrag);
729
730static inline __wsum
731csum_page(struct page *page, int offset, int copy)
732{
733	char *kaddr;
734	__wsum csum;
735	kaddr = kmap(page);
736	csum = csum_partial(kaddr + offset, copy, 0);
737	kunmap(page);
738	return csum;
739}
740
741static inline int ip_ufo_append_data(struct sock *sk,
742			struct sk_buff_head *queue,
743			int getfrag(void *from, char *to, int offset, int len,
744			       int odd, struct sk_buff *skb),
745			void *from, int length, int hh_len, int fragheaderlen,
746			int transhdrlen, int maxfraglen, unsigned int flags)
747{
748	struct sk_buff *skb;
749	int err;
750
751	/* There is support for UDP fragmentation offload by network
752	 * device, so create one single skb packet containing complete
753	 * udp datagram
754	 */
755	if ((skb = skb_peek_tail(queue)) == NULL) {
756		skb = sock_alloc_send_skb(sk,
757			hh_len + fragheaderlen + transhdrlen + 20,
758			(flags & MSG_DONTWAIT), &err);
759
760		if (skb == NULL)
761			return err;
762
763		/* reserve space for Hardware header */
764		skb_reserve(skb, hh_len);
765
766		/* create space for UDP/IP header */
767		skb_put(skb, fragheaderlen + transhdrlen);
768
769		/* initialize network header pointer */
770		skb_reset_network_header(skb);
771
772		/* initialize protocol header pointer */
773		skb->transport_header = skb->network_header + fragheaderlen;
774
775		skb->csum = 0;
776
777
778		__skb_queue_tail(queue, skb);
779	} else if (skb_is_gso(skb)) {
780		goto append;
781	}
782
783	skb->ip_summed = CHECKSUM_PARTIAL;
784	/* specify the length of each IP datagram fragment */
785	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
786	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
787
788append:
789	return skb_append_datato_frags(sk, skb, getfrag, from,
790				       (length - transhdrlen));
791}
792
793static int __ip_append_data(struct sock *sk,
794			    struct flowi4 *fl4,
795			    struct sk_buff_head *queue,
796			    struct inet_cork *cork,
797			    struct page_frag *pfrag,
798			    int getfrag(void *from, char *to, int offset,
799					int len, int odd, struct sk_buff *skb),
800			    void *from, int length, int transhdrlen,
801			    unsigned int flags)
802{
803	struct inet_sock *inet = inet_sk(sk);
804	struct sk_buff *skb;
805
806	struct ip_options *opt = cork->opt;
807	int hh_len;
808	int exthdrlen;
809	int mtu;
810	int copy;
811	int err;
812	int offset = 0;
813	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
814	int csummode = CHECKSUM_NONE;
815	struct rtable *rt = (struct rtable *)cork->dst;
816
817	skb = skb_peek_tail(queue);
818
819	exthdrlen = !skb ? rt->dst.header_len : 0;
820	mtu = cork->fragsize;
821
822	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
823
824	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
825	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
826	maxnonfragsize = (inet->pmtudisc >= IP_PMTUDISC_DO) ?
827			 mtu : 0xFFFF;
828
829	if (cork->length + length > maxnonfragsize - fragheaderlen) {
830		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
831			       mtu-exthdrlen);
832		return -EMSGSIZE;
833	}
834
835	/*
836	 * transhdrlen > 0 means that this is the first fragment and we wish
837	 * it won't be fragmented in the future.
838	 */
839	if (transhdrlen &&
840	    length + fragheaderlen <= mtu &&
841	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
842	    !exthdrlen)
843		csummode = CHECKSUM_PARTIAL;
844
845	cork->length += length;
846	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
847	    (sk->sk_protocol == IPPROTO_UDP) &&
848	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
849		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
850					 hh_len, fragheaderlen, transhdrlen,
851					 maxfraglen, flags);
852		if (err)
853			goto error;
854		return 0;
855	}
856
857	/* So, what's going on in the loop below?
858	 *
859	 * We use calculated fragment length to generate chained skb,
860	 * each of segments is IP fragment ready for sending to network after
861	 * adding appropriate IP header.
862	 */
863
864	if (!skb)
865		goto alloc_new_skb;
866
867	while (length > 0) {
868		/* Check if the remaining data fits into current packet. */
869		copy = mtu - skb->len;
870		if (copy < length)
871			copy = maxfraglen - skb->len;
872		if (copy <= 0) {
873			char *data;
874			unsigned int datalen;
875			unsigned int fraglen;
876			unsigned int fraggap;
877			unsigned int alloclen;
878			struct sk_buff *skb_prev;
879alloc_new_skb:
880			skb_prev = skb;
881			if (skb_prev)
882				fraggap = skb_prev->len - maxfraglen;
883			else
884				fraggap = 0;
885
886			/*
887			 * If remaining data exceeds the mtu,
888			 * we know we need more fragment(s).
889			 */
890			datalen = length + fraggap;
891			if (datalen > mtu - fragheaderlen)
892				datalen = maxfraglen - fragheaderlen;
893			fraglen = datalen + fragheaderlen;
894
895			if ((flags & MSG_MORE) &&
896			    !(rt->dst.dev->features&NETIF_F_SG))
897				alloclen = mtu;
898			else
899				alloclen = fraglen;
900
901			alloclen += exthdrlen;
902
903			/* The last fragment gets additional space at tail.
904			 * Note, with MSG_MORE we overallocate on fragments,
905			 * because we have no idea what fragment will be
906			 * the last.
907			 */
908			if (datalen == length + fraggap)
909				alloclen += rt->dst.trailer_len;
910
911			if (transhdrlen) {
912				skb = sock_alloc_send_skb(sk,
913						alloclen + hh_len + 15,
914						(flags & MSG_DONTWAIT), &err);
915			} else {
916				skb = NULL;
917				if (atomic_read(&sk->sk_wmem_alloc) <=
918				    2 * sk->sk_sndbuf)
919					skb = sock_wmalloc(sk,
920							   alloclen + hh_len + 15, 1,
921							   sk->sk_allocation);
922				if (unlikely(skb == NULL))
923					err = -ENOBUFS;
924				else
925					/* only the initial fragment is
926					   time stamped */
927					cork->tx_flags = 0;
928			}
929			if (skb == NULL)
930				goto error;
931
932			/*
933			 *	Fill in the control structures
934			 */
935			skb->ip_summed = csummode;
936			skb->csum = 0;
937			skb_reserve(skb, hh_len);
938			skb_shinfo(skb)->tx_flags = cork->tx_flags;
939
940			/*
941			 *	Find where to start putting bytes.
942			 */
943			data = skb_put(skb, fraglen + exthdrlen);
944			skb_set_network_header(skb, exthdrlen);
945			skb->transport_header = (skb->network_header +
946						 fragheaderlen);
947			data += fragheaderlen + exthdrlen;
948
949			if (fraggap) {
950				skb->csum = skb_copy_and_csum_bits(
951					skb_prev, maxfraglen,
952					data + transhdrlen, fraggap, 0);
953				skb_prev->csum = csum_sub(skb_prev->csum,
954							  skb->csum);
955				data += fraggap;
956				pskb_trim_unique(skb_prev, maxfraglen);
957			}
958
959			copy = datalen - transhdrlen - fraggap;
960			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
961				err = -EFAULT;
962				kfree_skb(skb);
963				goto error;
964			}
965
966			offset += copy;
967			length -= datalen - fraggap;
968			transhdrlen = 0;
969			exthdrlen = 0;
970			csummode = CHECKSUM_NONE;
971
972			/*
973			 * Put the packet on the pending queue.
974			 */
975			__skb_queue_tail(queue, skb);
976			continue;
977		}
978
979		if (copy > length)
980			copy = length;
981
982		if (!(rt->dst.dev->features&NETIF_F_SG)) {
983			unsigned int off;
984
985			off = skb->len;
986			if (getfrag(from, skb_put(skb, copy),
987					offset, copy, off, skb) < 0) {
988				__skb_trim(skb, off);
989				err = -EFAULT;
990				goto error;
991			}
992		} else {
993			int i = skb_shinfo(skb)->nr_frags;
994
995			err = -ENOMEM;
996			if (!sk_page_frag_refill(sk, pfrag))
997				goto error;
998
999			if (!skb_can_coalesce(skb, i, pfrag->page,
1000					      pfrag->offset)) {
1001				err = -EMSGSIZE;
1002				if (i == MAX_SKB_FRAGS)
1003					goto error;
1004
1005				__skb_fill_page_desc(skb, i, pfrag->page,
1006						     pfrag->offset, 0);
1007				skb_shinfo(skb)->nr_frags = ++i;
1008				get_page(pfrag->page);
1009			}
1010			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1011			if (getfrag(from,
1012				    page_address(pfrag->page) + pfrag->offset,
1013				    offset, copy, skb->len, skb) < 0)
1014				goto error_efault;
1015
1016			pfrag->offset += copy;
1017			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1018			skb->len += copy;
1019			skb->data_len += copy;
1020			skb->truesize += copy;
1021			atomic_add(copy, &sk->sk_wmem_alloc);
1022		}
1023		offset += copy;
1024		length -= copy;
1025	}
1026
1027	return 0;
1028
1029error_efault:
1030	err = -EFAULT;
1031error:
1032	cork->length -= length;
1033	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1034	return err;
1035}
1036
1037static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1038			 struct ipcm_cookie *ipc, struct rtable **rtp)
1039{
1040	struct inet_sock *inet = inet_sk(sk);
1041	struct ip_options_rcu *opt;
1042	struct rtable *rt;
1043
1044	/*
1045	 * setup for corking.
1046	 */
1047	opt = ipc->opt;
1048	if (opt) {
1049		if (cork->opt == NULL) {
1050			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1051					    sk->sk_allocation);
1052			if (unlikely(cork->opt == NULL))
1053				return -ENOBUFS;
1054		}
1055		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1056		cork->flags |= IPCORK_OPT;
1057		cork->addr = ipc->addr;
1058	}
1059	rt = *rtp;
1060	if (unlikely(!rt))
1061		return -EFAULT;
1062	/*
1063	 * We steal reference to this route, caller should not release it
1064	 */
1065	*rtp = NULL;
1066	cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1067			 rt->dst.dev->mtu : dst_mtu(&rt->dst);
1068	cork->dst = &rt->dst;
1069	cork->length = 0;
1070	cork->ttl = ipc->ttl;
1071	cork->tos = ipc->tos;
1072	cork->priority = ipc->priority;
1073	cork->tx_flags = ipc->tx_flags;
1074
1075	return 0;
1076}
1077
1078/*
1079 *	ip_append_data() and ip_append_page() can make one large IP datagram
1080 *	from many pieces of data. Each pieces will be holded on the socket
1081 *	until ip_push_pending_frames() is called. Each piece can be a page
1082 *	or non-page data.
1083 *
1084 *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1085 *	this interface potentially.
1086 *
1087 *	LATER: length must be adjusted by pad at tail, when it is required.
1088 */
1089int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1090		   int getfrag(void *from, char *to, int offset, int len,
1091			       int odd, struct sk_buff *skb),
1092		   void *from, int length, int transhdrlen,
1093		   struct ipcm_cookie *ipc, struct rtable **rtp,
1094		   unsigned int flags)
1095{
1096	struct inet_sock *inet = inet_sk(sk);
1097	int err;
1098
1099	if (flags&MSG_PROBE)
1100		return 0;
1101
1102	if (skb_queue_empty(&sk->sk_write_queue)) {
1103		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1104		if (err)
1105			return err;
1106	} else {
1107		transhdrlen = 0;
1108	}
1109
1110	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1111				sk_page_frag(sk), getfrag,
1112				from, length, transhdrlen, flags);
1113}
1114
1115ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1116		       int offset, size_t size, int flags)
1117{
1118	struct inet_sock *inet = inet_sk(sk);
1119	struct sk_buff *skb;
1120	struct rtable *rt;
1121	struct ip_options *opt = NULL;
1122	struct inet_cork *cork;
1123	int hh_len;
1124	int mtu;
1125	int len;
1126	int err;
1127	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1128
1129	if (inet->hdrincl)
1130		return -EPERM;
1131
1132	if (flags&MSG_PROBE)
1133		return 0;
1134
1135	if (skb_queue_empty(&sk->sk_write_queue))
1136		return -EINVAL;
1137
1138	cork = &inet->cork.base;
1139	rt = (struct rtable *)cork->dst;
1140	if (cork->flags & IPCORK_OPT)
1141		opt = cork->opt;
1142
1143	if (!(rt->dst.dev->features&NETIF_F_SG))
1144		return -EOPNOTSUPP;
1145
1146	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1147	mtu = cork->fragsize;
1148
1149	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1150	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1151	maxnonfragsize = (inet->pmtudisc >= IP_PMTUDISC_DO) ?
1152			 mtu : 0xFFFF;
1153
1154	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1155		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
1156		return -EMSGSIZE;
1157	}
1158
1159	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1160		return -EINVAL;
1161
1162	cork->length += size;
1163	if ((size + skb->len > mtu) &&
1164	    (sk->sk_protocol == IPPROTO_UDP) &&
1165	    (rt->dst.dev->features & NETIF_F_UFO)) {
1166		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1167		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1168	}
1169
1170
1171	while (size > 0) {
1172		int i;
1173
1174		if (skb_is_gso(skb))
1175			len = size;
1176		else {
1177
1178			/* Check if the remaining data fits into current packet. */
1179			len = mtu - skb->len;
1180			if (len < size)
1181				len = maxfraglen - skb->len;
1182		}
1183		if (len <= 0) {
1184			struct sk_buff *skb_prev;
1185			int alloclen;
1186
1187			skb_prev = skb;
1188			fraggap = skb_prev->len - maxfraglen;
1189
1190			alloclen = fragheaderlen + hh_len + fraggap + 15;
1191			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1192			if (unlikely(!skb)) {
1193				err = -ENOBUFS;
1194				goto error;
1195			}
1196
1197			/*
1198			 *	Fill in the control structures
1199			 */
1200			skb->ip_summed = CHECKSUM_NONE;
1201			skb->csum = 0;
1202			skb_reserve(skb, hh_len);
1203
1204			/*
1205			 *	Find where to start putting bytes.
1206			 */
1207			skb_put(skb, fragheaderlen + fraggap);
1208			skb_reset_network_header(skb);
1209			skb->transport_header = (skb->network_header +
1210						 fragheaderlen);
1211			if (fraggap) {
1212				skb->csum = skb_copy_and_csum_bits(skb_prev,
1213								   maxfraglen,
1214						    skb_transport_header(skb),
1215								   fraggap, 0);
1216				skb_prev->csum = csum_sub(skb_prev->csum,
1217							  skb->csum);
1218				pskb_trim_unique(skb_prev, maxfraglen);
1219			}
1220
1221			/*
1222			 * Put the packet on the pending queue.
1223			 */
1224			__skb_queue_tail(&sk->sk_write_queue, skb);
1225			continue;
1226		}
1227
1228		i = skb_shinfo(skb)->nr_frags;
1229		if (len > size)
1230			len = size;
1231		if (skb_can_coalesce(skb, i, page, offset)) {
1232			skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1233		} else if (i < MAX_SKB_FRAGS) {
1234			get_page(page);
1235			skb_fill_page_desc(skb, i, page, offset, len);
1236		} else {
1237			err = -EMSGSIZE;
1238			goto error;
1239		}
1240
1241		if (skb->ip_summed == CHECKSUM_NONE) {
1242			__wsum csum;
1243			csum = csum_page(page, offset, len);
1244			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1245		}
1246
1247		skb->len += len;
1248		skb->data_len += len;
1249		skb->truesize += len;
1250		atomic_add(len, &sk->sk_wmem_alloc);
1251		offset += len;
1252		size -= len;
1253	}
1254	return 0;
1255
1256error:
1257	cork->length -= size;
1258	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1259	return err;
1260}
1261
1262static void ip_cork_release(struct inet_cork *cork)
1263{
1264	cork->flags &= ~IPCORK_OPT;
1265	kfree(cork->opt);
1266	cork->opt = NULL;
1267	dst_release(cork->dst);
1268	cork->dst = NULL;
1269}
1270
1271/*
1272 *	Combined all pending IP fragments on the socket as one IP datagram
1273 *	and push them out.
1274 */
1275struct sk_buff *__ip_make_skb(struct sock *sk,
1276			      struct flowi4 *fl4,
1277			      struct sk_buff_head *queue,
1278			      struct inet_cork *cork)
1279{
1280	struct sk_buff *skb, *tmp_skb;
1281	struct sk_buff **tail_skb;
1282	struct inet_sock *inet = inet_sk(sk);
1283	struct net *net = sock_net(sk);
1284	struct ip_options *opt = NULL;
1285	struct rtable *rt = (struct rtable *)cork->dst;
1286	struct iphdr *iph;
1287	__be16 df = 0;
1288	__u8 ttl;
1289
1290	if ((skb = __skb_dequeue(queue)) == NULL)
1291		goto out;
1292	tail_skb = &(skb_shinfo(skb)->frag_list);
1293
1294	/* move skb->data to ip header from ext header */
1295	if (skb->data < skb_network_header(skb))
1296		__skb_pull(skb, skb_network_offset(skb));
1297	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1298		__skb_pull(tmp_skb, skb_network_header_len(skb));
1299		*tail_skb = tmp_skb;
1300		tail_skb = &(tmp_skb->next);
1301		skb->len += tmp_skb->len;
1302		skb->data_len += tmp_skb->len;
1303		skb->truesize += tmp_skb->truesize;
1304		tmp_skb->destructor = NULL;
1305		tmp_skb->sk = NULL;
1306	}
1307
1308	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1309	 * to fragment the frame generated here. No matter, what transforms
1310	 * how transforms change size of the packet, it will come out.
1311	 */
1312	if (inet->pmtudisc < IP_PMTUDISC_DO)
1313		skb->local_df = 1;
1314
1315	/* DF bit is set when we want to see DF on outgoing frames.
1316	 * If local_df is set too, we still allow to fragment this frame
1317	 * locally. */
1318	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1319	    (skb->len <= dst_mtu(&rt->dst) &&
1320	     ip_dont_fragment(sk, &rt->dst)))
1321		df = htons(IP_DF);
1322
1323	if (cork->flags & IPCORK_OPT)
1324		opt = cork->opt;
1325
1326	if (cork->ttl != 0)
1327		ttl = cork->ttl;
1328	else if (rt->rt_type == RTN_MULTICAST)
1329		ttl = inet->mc_ttl;
1330	else
1331		ttl = ip_select_ttl(inet, &rt->dst);
1332
1333	iph = ip_hdr(skb);
1334	iph->version = 4;
1335	iph->ihl = 5;
1336	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1337	iph->frag_off = df;
1338	iph->ttl = ttl;
1339	iph->protocol = sk->sk_protocol;
1340	ip_copy_addrs(iph, fl4);
1341	ip_select_ident(skb, &rt->dst, sk);
1342
1343	if (opt) {
1344		iph->ihl += opt->optlen>>2;
1345		ip_options_build(skb, opt, cork->addr, rt, 0);
1346	}
1347
1348	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1349	skb->mark = sk->sk_mark;
1350	/*
1351	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1352	 * on dst refcount
1353	 */
1354	cork->dst = NULL;
1355	skb_dst_set(skb, &rt->dst);
1356
1357	if (iph->protocol == IPPROTO_ICMP)
1358		icmp_out_count(net, ((struct icmphdr *)
1359			skb_transport_header(skb))->type);
1360
1361	ip_cork_release(cork);
1362out:
1363	return skb;
1364}
1365
1366int ip_send_skb(struct net *net, struct sk_buff *skb)
1367{
1368	int err;
1369
1370	err = ip_local_out(skb);
1371	if (err) {
1372		if (err > 0)
1373			err = net_xmit_errno(err);
1374		if (err)
1375			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1376	}
1377
1378	return err;
1379}
1380
1381int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1382{
1383	struct sk_buff *skb;
1384
1385	skb = ip_finish_skb(sk, fl4);
1386	if (!skb)
1387		return 0;
1388
1389	/* Netfilter gets whole the not fragmented skb. */
1390	return ip_send_skb(sock_net(sk), skb);
1391}
1392
1393/*
1394 *	Throw away all pending data on the socket.
1395 */
1396static void __ip_flush_pending_frames(struct sock *sk,
1397				      struct sk_buff_head *queue,
1398				      struct inet_cork *cork)
1399{
1400	struct sk_buff *skb;
1401
1402	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1403		kfree_skb(skb);
1404
1405	ip_cork_release(cork);
1406}
1407
1408void ip_flush_pending_frames(struct sock *sk)
1409{
1410	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1411}
1412
1413struct sk_buff *ip_make_skb(struct sock *sk,
1414			    struct flowi4 *fl4,
1415			    int getfrag(void *from, char *to, int offset,
1416					int len, int odd, struct sk_buff *skb),
1417			    void *from, int length, int transhdrlen,
1418			    struct ipcm_cookie *ipc, struct rtable **rtp,
1419			    unsigned int flags)
1420{
1421	struct inet_cork cork;
1422	struct sk_buff_head queue;
1423	int err;
1424
1425	if (flags & MSG_PROBE)
1426		return NULL;
1427
1428	__skb_queue_head_init(&queue);
1429
1430	cork.flags = 0;
1431	cork.addr = 0;
1432	cork.opt = NULL;
1433	err = ip_setup_cork(sk, &cork, ipc, rtp);
1434	if (err)
1435		return ERR_PTR(err);
1436
1437	err = __ip_append_data(sk, fl4, &queue, &cork,
1438			       &current->task_frag, getfrag,
1439			       from, length, transhdrlen, flags);
1440	if (err) {
1441		__ip_flush_pending_frames(sk, &queue, &cork);
1442		return ERR_PTR(err);
1443	}
1444
1445	return __ip_make_skb(sk, fl4, &queue, &cork);
1446}
1447
1448/*
1449 *	Fetch data from kernel space and fill in checksum if needed.
1450 */
1451static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1452			      int len, int odd, struct sk_buff *skb)
1453{
1454	__wsum csum;
1455
1456	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1457	skb->csum = csum_block_add(skb->csum, csum, odd);
1458	return 0;
1459}
1460
1461/*
1462 *	Generic function to send a packet as reply to another packet.
1463 *	Used to send some TCP resets/acks so far.
1464 *
1465 *	Use a fake percpu inet socket to avoid false sharing and contention.
1466 */
1467static DEFINE_PER_CPU(struct inet_sock, unicast_sock) = {
1468	.sk = {
1469		.__sk_common = {
1470			.skc_refcnt = ATOMIC_INIT(1),
1471		},
1472		.sk_wmem_alloc	= ATOMIC_INIT(1),
1473		.sk_allocation	= GFP_ATOMIC,
1474		.sk_flags	= (1UL << SOCK_USE_WRITE_QUEUE),
1475	},
1476	.pmtudisc	= IP_PMTUDISC_WANT,
1477	.uc_ttl		= -1,
1478};
1479
1480void ip_send_unicast_reply(struct net *net, struct sk_buff *skb, __be32 daddr,
1481			   __be32 saddr, const struct ip_reply_arg *arg,
1482			   unsigned int len)
1483{
1484	struct ip_options_data replyopts;
1485	struct ipcm_cookie ipc;
1486	struct flowi4 fl4;
1487	struct rtable *rt = skb_rtable(skb);
1488	struct sk_buff *nskb;
1489	struct sock *sk;
1490	struct inet_sock *inet;
1491
1492	if (ip_options_echo(&replyopts.opt.opt, skb))
1493		return;
1494
1495	ipc.addr = daddr;
1496	ipc.opt = NULL;
1497	ipc.tx_flags = 0;
1498	ipc.ttl = 0;
1499	ipc.tos = -1;
1500
1501	if (replyopts.opt.opt.optlen) {
1502		ipc.opt = &replyopts.opt;
1503
1504		if (replyopts.opt.opt.srr)
1505			daddr = replyopts.opt.opt.faddr;
1506	}
1507
1508	flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1509			   RT_TOS(arg->tos),
1510			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1511			   ip_reply_arg_flowi_flags(arg),
1512			   daddr, saddr,
1513			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1514	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1515	rt = ip_route_output_key(net, &fl4);
1516	if (IS_ERR(rt))
1517		return;
1518
1519	inet = &get_cpu_var(unicast_sock);
1520
1521	inet->tos = arg->tos;
1522	sk = &inet->sk;
1523	sk->sk_priority = skb->priority;
1524	sk->sk_protocol = ip_hdr(skb)->protocol;
1525	sk->sk_bound_dev_if = arg->bound_dev_if;
1526	sock_net_set(sk, net);
1527	__skb_queue_head_init(&sk->sk_write_queue);
1528	sk->sk_sndbuf = sysctl_wmem_default;
1529	ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1530		       &ipc, &rt, MSG_DONTWAIT);
1531	nskb = skb_peek(&sk->sk_write_queue);
1532	if (nskb) {
1533		if (arg->csumoffset >= 0)
1534			*((__sum16 *)skb_transport_header(nskb) +
1535			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1536								arg->csum));
1537		nskb->ip_summed = CHECKSUM_NONE;
1538		skb_orphan(nskb);
1539		skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1540		ip_push_pending_frames(sk, &fl4);
1541	}
1542
1543	put_cpu_var(unicast_sock);
1544
1545	ip_rt_put(rt);
1546}
1547
1548void __init ip_init(void)
1549{
1550	ip_rt_init();
1551	inet_initpeers();
1552
1553#if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1554	igmp_mc_proc_init();
1555#endif
1556}
1557