ip_output.c revision e110861f86094cd78cc85593b873970092deb43a
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		The Internet Protocol (IP) output module.
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Donald Becker, <becker@super.org>
11 *		Alan Cox, <Alan.Cox@linux.org>
12 *		Richard Underwood
13 *		Stefan Becker, <stefanb@yello.ping.de>
14 *		Jorge Cwik, <jorge@laser.satlink.net>
15 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 *		Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 *	See ip_input.c for original log
19 *
20 *	Fixes:
21 *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22 *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23 *		Bradford Johnson:	Fix faulty handling of some frames when
24 *					no route is found.
25 *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26 *					(in case if packet not accepted by
27 *					output firewall rules)
28 *		Mike McLagan	:	Routing by source
29 *		Alexey Kuznetsov:	use new route cache
30 *		Andi Kleen:		Fix broken PMTU recovery and remove
31 *					some redundant tests.
32 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33 *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34 *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35 *					for decreased register pressure on x86
36 *					and more readibility.
37 *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38 *					silently drop skb instead of failing with -EPERM.
39 *		Detlev Wengorz	:	Copy protocol for fragments.
40 *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41 *					datagrams.
42 *		Hirokazu Takahashi:	sendfile() on UDP works now.
43 */
44
45#include <asm/uaccess.h>
46#include <linux/module.h>
47#include <linux/types.h>
48#include <linux/kernel.h>
49#include <linux/mm.h>
50#include <linux/string.h>
51#include <linux/errno.h>
52#include <linux/highmem.h>
53#include <linux/slab.h>
54
55#include <linux/socket.h>
56#include <linux/sockios.h>
57#include <linux/in.h>
58#include <linux/inet.h>
59#include <linux/netdevice.h>
60#include <linux/etherdevice.h>
61#include <linux/proc_fs.h>
62#include <linux/stat.h>
63#include <linux/init.h>
64
65#include <net/snmp.h>
66#include <net/ip.h>
67#include <net/protocol.h>
68#include <net/route.h>
69#include <net/xfrm.h>
70#include <linux/skbuff.h>
71#include <net/sock.h>
72#include <net/arp.h>
73#include <net/icmp.h>
74#include <net/checksum.h>
75#include <net/inetpeer.h>
76#include <linux/igmp.h>
77#include <linux/netfilter_ipv4.h>
78#include <linux/netfilter_bridge.h>
79#include <linux/mroute.h>
80#include <linux/netlink.h>
81#include <linux/tcp.h>
82
83int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84EXPORT_SYMBOL(sysctl_ip_default_ttl);
85
86/* Generate a checksum for an outgoing IP datagram. */
87void ip_send_check(struct iphdr *iph)
88{
89	iph->check = 0;
90	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91}
92EXPORT_SYMBOL(ip_send_check);
93
94int __ip_local_out(struct sk_buff *skb)
95{
96	struct iphdr *iph = ip_hdr(skb);
97
98	iph->tot_len = htons(skb->len);
99	ip_send_check(iph);
100	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
101		       skb_dst(skb)->dev, dst_output);
102}
103
104int ip_local_out_sk(struct sock *sk, struct sk_buff *skb)
105{
106	int err;
107
108	err = __ip_local_out(skb);
109	if (likely(err == 1))
110		err = dst_output_sk(sk, skb);
111
112	return err;
113}
114EXPORT_SYMBOL_GPL(ip_local_out_sk);
115
116static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
117{
118	int ttl = inet->uc_ttl;
119
120	if (ttl < 0)
121		ttl = ip4_dst_hoplimit(dst);
122	return ttl;
123}
124
125/*
126 *		Add an ip header to a skbuff and send it out.
127 *
128 */
129int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
130			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
131{
132	struct inet_sock *inet = inet_sk(sk);
133	struct rtable *rt = skb_rtable(skb);
134	struct iphdr *iph;
135
136	/* Build the IP header. */
137	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
138	skb_reset_network_header(skb);
139	iph = ip_hdr(skb);
140	iph->version  = 4;
141	iph->ihl      = 5;
142	iph->tos      = inet->tos;
143	if (ip_dont_fragment(sk, &rt->dst))
144		iph->frag_off = htons(IP_DF);
145	else
146		iph->frag_off = 0;
147	iph->ttl      = ip_select_ttl(inet, &rt->dst);
148	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
149	iph->saddr    = saddr;
150	iph->protocol = sk->sk_protocol;
151	ip_select_ident(skb, &rt->dst, sk);
152
153	if (opt && opt->opt.optlen) {
154		iph->ihl += opt->opt.optlen>>2;
155		ip_options_build(skb, &opt->opt, daddr, rt, 0);
156	}
157
158	skb->priority = sk->sk_priority;
159	skb->mark = sk->sk_mark;
160
161	/* Send it out. */
162	return ip_local_out(skb);
163}
164EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
165
166static inline int ip_finish_output2(struct sk_buff *skb)
167{
168	struct dst_entry *dst = skb_dst(skb);
169	struct rtable *rt = (struct rtable *)dst;
170	struct net_device *dev = dst->dev;
171	unsigned int hh_len = LL_RESERVED_SPACE(dev);
172	struct neighbour *neigh;
173	u32 nexthop;
174
175	if (rt->rt_type == RTN_MULTICAST) {
176		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
177	} else if (rt->rt_type == RTN_BROADCAST)
178		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
179
180	/* Be paranoid, rather than too clever. */
181	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
182		struct sk_buff *skb2;
183
184		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
185		if (skb2 == NULL) {
186			kfree_skb(skb);
187			return -ENOMEM;
188		}
189		if (skb->sk)
190			skb_set_owner_w(skb2, skb->sk);
191		consume_skb(skb);
192		skb = skb2;
193	}
194
195	rcu_read_lock_bh();
196	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
197	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
198	if (unlikely(!neigh))
199		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
200	if (!IS_ERR(neigh)) {
201		int res = dst_neigh_output(dst, neigh, skb);
202
203		rcu_read_unlock_bh();
204		return res;
205	}
206	rcu_read_unlock_bh();
207
208	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
209			    __func__);
210	kfree_skb(skb);
211	return -EINVAL;
212}
213
214static int ip_finish_output_gso(struct sk_buff *skb)
215{
216	netdev_features_t features;
217	struct sk_buff *segs;
218	int ret = 0;
219
220	/* common case: locally created skb or seglen is <= mtu */
221	if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) ||
222	      skb_gso_network_seglen(skb) <= ip_skb_dst_mtu(skb))
223		return ip_finish_output2(skb);
224
225	/* Slowpath -  GSO segment length is exceeding the dst MTU.
226	 *
227	 * This can happen in two cases:
228	 * 1) TCP GRO packet, DF bit not set
229	 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
230	 * from host network stack.
231	 */
232	features = netif_skb_features(skb);
233	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
234	if (IS_ERR(segs)) {
235		kfree_skb(skb);
236		return -ENOMEM;
237	}
238
239	consume_skb(skb);
240
241	do {
242		struct sk_buff *nskb = segs->next;
243		int err;
244
245		segs->next = NULL;
246		err = ip_fragment(segs, ip_finish_output2);
247
248		if (err && ret == 0)
249			ret = err;
250		segs = nskb;
251	} while (segs);
252
253	return ret;
254}
255
256static int ip_finish_output(struct sk_buff *skb)
257{
258#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
259	/* Policy lookup after SNAT yielded a new policy */
260	if (skb_dst(skb)->xfrm != NULL) {
261		IPCB(skb)->flags |= IPSKB_REROUTED;
262		return dst_output(skb);
263	}
264#endif
265	if (skb_is_gso(skb))
266		return ip_finish_output_gso(skb);
267
268	if (skb->len > ip_skb_dst_mtu(skb))
269		return ip_fragment(skb, ip_finish_output2);
270
271	return ip_finish_output2(skb);
272}
273
274int ip_mc_output(struct sock *sk, struct sk_buff *skb)
275{
276	struct rtable *rt = skb_rtable(skb);
277	struct net_device *dev = rt->dst.dev;
278
279	/*
280	 *	If the indicated interface is up and running, send the packet.
281	 */
282	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
283
284	skb->dev = dev;
285	skb->protocol = htons(ETH_P_IP);
286
287	/*
288	 *	Multicasts are looped back for other local users
289	 */
290
291	if (rt->rt_flags&RTCF_MULTICAST) {
292		if (sk_mc_loop(sk)
293#ifdef CONFIG_IP_MROUTE
294		/* Small optimization: do not loopback not local frames,
295		   which returned after forwarding; they will be  dropped
296		   by ip_mr_input in any case.
297		   Note, that local frames are looped back to be delivered
298		   to local recipients.
299
300		   This check is duplicated in ip_mr_input at the moment.
301		 */
302		    &&
303		    ((rt->rt_flags & RTCF_LOCAL) ||
304		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
305#endif
306		   ) {
307			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
308			if (newskb)
309				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
310					newskb, NULL, newskb->dev,
311					dev_loopback_xmit);
312		}
313
314		/* Multicasts with ttl 0 must not go beyond the host */
315
316		if (ip_hdr(skb)->ttl == 0) {
317			kfree_skb(skb);
318			return 0;
319		}
320	}
321
322	if (rt->rt_flags&RTCF_BROADCAST) {
323		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
324		if (newskb)
325			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
326				NULL, newskb->dev, dev_loopback_xmit);
327	}
328
329	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
330			    skb->dev, ip_finish_output,
331			    !(IPCB(skb)->flags & IPSKB_REROUTED));
332}
333
334int ip_output(struct sock *sk, struct sk_buff *skb)
335{
336	struct net_device *dev = skb_dst(skb)->dev;
337
338	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
339
340	skb->dev = dev;
341	skb->protocol = htons(ETH_P_IP);
342
343	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
344			    ip_finish_output,
345			    !(IPCB(skb)->flags & IPSKB_REROUTED));
346}
347
348/*
349 * copy saddr and daddr, possibly using 64bit load/stores
350 * Equivalent to :
351 *   iph->saddr = fl4->saddr;
352 *   iph->daddr = fl4->daddr;
353 */
354static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
355{
356	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
357		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
358	memcpy(&iph->saddr, &fl4->saddr,
359	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
360}
361
362/* Note: skb->sk can be different from sk, in case of tunnels */
363int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
364{
365	struct inet_sock *inet = inet_sk(sk);
366	struct ip_options_rcu *inet_opt;
367	struct flowi4 *fl4;
368	struct rtable *rt;
369	struct iphdr *iph;
370	int res;
371
372	/* Skip all of this if the packet is already routed,
373	 * f.e. by something like SCTP.
374	 */
375	rcu_read_lock();
376	inet_opt = rcu_dereference(inet->inet_opt);
377	fl4 = &fl->u.ip4;
378	rt = skb_rtable(skb);
379	if (rt != NULL)
380		goto packet_routed;
381
382	/* Make sure we can route this packet. */
383	rt = (struct rtable *)__sk_dst_check(sk, 0);
384	if (rt == NULL) {
385		__be32 daddr;
386
387		/* Use correct destination address if we have options. */
388		daddr = inet->inet_daddr;
389		if (inet_opt && inet_opt->opt.srr)
390			daddr = inet_opt->opt.faddr;
391
392		/* If this fails, retransmit mechanism of transport layer will
393		 * keep trying until route appears or the connection times
394		 * itself out.
395		 */
396		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
397					   daddr, inet->inet_saddr,
398					   inet->inet_dport,
399					   inet->inet_sport,
400					   sk->sk_protocol,
401					   RT_CONN_FLAGS(sk),
402					   sk->sk_bound_dev_if);
403		if (IS_ERR(rt))
404			goto no_route;
405		sk_setup_caps(sk, &rt->dst);
406	}
407	skb_dst_set_noref(skb, &rt->dst);
408
409packet_routed:
410	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
411		goto no_route;
412
413	/* OK, we know where to send it, allocate and build IP header. */
414	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
415	skb_reset_network_header(skb);
416	iph = ip_hdr(skb);
417	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
418	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
419		iph->frag_off = htons(IP_DF);
420	else
421		iph->frag_off = 0;
422	iph->ttl      = ip_select_ttl(inet, &rt->dst);
423	iph->protocol = sk->sk_protocol;
424	ip_copy_addrs(iph, fl4);
425
426	/* Transport layer set skb->h.foo itself. */
427
428	if (inet_opt && inet_opt->opt.optlen) {
429		iph->ihl += inet_opt->opt.optlen >> 2;
430		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
431	}
432
433	ip_select_ident_more(skb, &rt->dst, sk,
434			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
435
436	/* TODO : should we use skb->sk here instead of sk ? */
437	skb->priority = sk->sk_priority;
438	skb->mark = sk->sk_mark;
439
440	res = ip_local_out(skb);
441	rcu_read_unlock();
442	return res;
443
444no_route:
445	rcu_read_unlock();
446	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
447	kfree_skb(skb);
448	return -EHOSTUNREACH;
449}
450EXPORT_SYMBOL(ip_queue_xmit);
451
452
453static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
454{
455	to->pkt_type = from->pkt_type;
456	to->priority = from->priority;
457	to->protocol = from->protocol;
458	skb_dst_drop(to);
459	skb_dst_copy(to, from);
460	to->dev = from->dev;
461	to->mark = from->mark;
462
463	/* Copy the flags to each fragment. */
464	IPCB(to)->flags = IPCB(from)->flags;
465
466#ifdef CONFIG_NET_SCHED
467	to->tc_index = from->tc_index;
468#endif
469	nf_copy(to, from);
470#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
471	to->ipvs_property = from->ipvs_property;
472#endif
473	skb_copy_secmark(to, from);
474}
475
476/*
477 *	This IP datagram is too large to be sent in one piece.  Break it up into
478 *	smaller pieces (each of size equal to IP header plus
479 *	a block of the data of the original IP data part) that will yet fit in a
480 *	single device frame, and queue such a frame for sending.
481 */
482
483int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
484{
485	struct iphdr *iph;
486	int ptr;
487	struct net_device *dev;
488	struct sk_buff *skb2;
489	unsigned int mtu, hlen, left, len, ll_rs;
490	int offset;
491	__be16 not_last_frag;
492	struct rtable *rt = skb_rtable(skb);
493	int err = 0;
494
495	dev = rt->dst.dev;
496
497	/*
498	 *	Point into the IP datagram header.
499	 */
500
501	iph = ip_hdr(skb);
502
503	mtu = ip_skb_dst_mtu(skb);
504	if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) ||
505		     (IPCB(skb)->frag_max_size &&
506		      IPCB(skb)->frag_max_size > mtu))) {
507		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
508		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
509			  htonl(mtu));
510		kfree_skb(skb);
511		return -EMSGSIZE;
512	}
513
514	/*
515	 *	Setup starting values.
516	 */
517
518	hlen = iph->ihl * 4;
519	mtu = mtu - hlen;	/* Size of data space */
520#ifdef CONFIG_BRIDGE_NETFILTER
521	if (skb->nf_bridge)
522		mtu -= nf_bridge_mtu_reduction(skb);
523#endif
524	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
525
526	/* When frag_list is given, use it. First, check its validity:
527	 * some transformers could create wrong frag_list or break existing
528	 * one, it is not prohibited. In this case fall back to copying.
529	 *
530	 * LATER: this step can be merged to real generation of fragments,
531	 * we can switch to copy when see the first bad fragment.
532	 */
533	if (skb_has_frag_list(skb)) {
534		struct sk_buff *frag, *frag2;
535		int first_len = skb_pagelen(skb);
536
537		if (first_len - hlen > mtu ||
538		    ((first_len - hlen) & 7) ||
539		    ip_is_fragment(iph) ||
540		    skb_cloned(skb))
541			goto slow_path;
542
543		skb_walk_frags(skb, frag) {
544			/* Correct geometry. */
545			if (frag->len > mtu ||
546			    ((frag->len & 7) && frag->next) ||
547			    skb_headroom(frag) < hlen)
548				goto slow_path_clean;
549
550			/* Partially cloned skb? */
551			if (skb_shared(frag))
552				goto slow_path_clean;
553
554			BUG_ON(frag->sk);
555			if (skb->sk) {
556				frag->sk = skb->sk;
557				frag->destructor = sock_wfree;
558			}
559			skb->truesize -= frag->truesize;
560		}
561
562		/* Everything is OK. Generate! */
563
564		err = 0;
565		offset = 0;
566		frag = skb_shinfo(skb)->frag_list;
567		skb_frag_list_init(skb);
568		skb->data_len = first_len - skb_headlen(skb);
569		skb->len = first_len;
570		iph->tot_len = htons(first_len);
571		iph->frag_off = htons(IP_MF);
572		ip_send_check(iph);
573
574		for (;;) {
575			/* Prepare header of the next frame,
576			 * before previous one went down. */
577			if (frag) {
578				frag->ip_summed = CHECKSUM_NONE;
579				skb_reset_transport_header(frag);
580				__skb_push(frag, hlen);
581				skb_reset_network_header(frag);
582				memcpy(skb_network_header(frag), iph, hlen);
583				iph = ip_hdr(frag);
584				iph->tot_len = htons(frag->len);
585				ip_copy_metadata(frag, skb);
586				if (offset == 0)
587					ip_options_fragment(frag);
588				offset += skb->len - hlen;
589				iph->frag_off = htons(offset>>3);
590				if (frag->next != NULL)
591					iph->frag_off |= htons(IP_MF);
592				/* Ready, complete checksum */
593				ip_send_check(iph);
594			}
595
596			err = output(skb);
597
598			if (!err)
599				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
600			if (err || !frag)
601				break;
602
603			skb = frag;
604			frag = skb->next;
605			skb->next = NULL;
606		}
607
608		if (err == 0) {
609			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
610			return 0;
611		}
612
613		while (frag) {
614			skb = frag->next;
615			kfree_skb(frag);
616			frag = skb;
617		}
618		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
619		return err;
620
621slow_path_clean:
622		skb_walk_frags(skb, frag2) {
623			if (frag2 == frag)
624				break;
625			frag2->sk = NULL;
626			frag2->destructor = NULL;
627			skb->truesize += frag2->truesize;
628		}
629	}
630
631slow_path:
632	/* for offloaded checksums cleanup checksum before fragmentation */
633	if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb))
634		goto fail;
635	iph = ip_hdr(skb);
636
637	left = skb->len - hlen;		/* Space per frame */
638	ptr = hlen;		/* Where to start from */
639
640	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
641	 * we need to make room for the encapsulating header
642	 */
643	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
644
645	/*
646	 *	Fragment the datagram.
647	 */
648
649	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
650	not_last_frag = iph->frag_off & htons(IP_MF);
651
652	/*
653	 *	Keep copying data until we run out.
654	 */
655
656	while (left > 0) {
657		len = left;
658		/* IF: it doesn't fit, use 'mtu' - the data space left */
659		if (len > mtu)
660			len = mtu;
661		/* IF: we are not sending up to and including the packet end
662		   then align the next start on an eight byte boundary */
663		if (len < left)	{
664			len &= ~7;
665		}
666		/*
667		 *	Allocate buffer.
668		 */
669
670		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
671			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
672			err = -ENOMEM;
673			goto fail;
674		}
675
676		/*
677		 *	Set up data on packet
678		 */
679
680		ip_copy_metadata(skb2, skb);
681		skb_reserve(skb2, ll_rs);
682		skb_put(skb2, len + hlen);
683		skb_reset_network_header(skb2);
684		skb2->transport_header = skb2->network_header + hlen;
685
686		/*
687		 *	Charge the memory for the fragment to any owner
688		 *	it might possess
689		 */
690
691		if (skb->sk)
692			skb_set_owner_w(skb2, skb->sk);
693
694		/*
695		 *	Copy the packet header into the new buffer.
696		 */
697
698		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
699
700		/*
701		 *	Copy a block of the IP datagram.
702		 */
703		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
704			BUG();
705		left -= len;
706
707		/*
708		 *	Fill in the new header fields.
709		 */
710		iph = ip_hdr(skb2);
711		iph->frag_off = htons((offset >> 3));
712
713		/* ANK: dirty, but effective trick. Upgrade options only if
714		 * the segment to be fragmented was THE FIRST (otherwise,
715		 * options are already fixed) and make it ONCE
716		 * on the initial skb, so that all the following fragments
717		 * will inherit fixed options.
718		 */
719		if (offset == 0)
720			ip_options_fragment(skb);
721
722		/*
723		 *	Added AC : If we are fragmenting a fragment that's not the
724		 *		   last fragment then keep MF on each bit
725		 */
726		if (left > 0 || not_last_frag)
727			iph->frag_off |= htons(IP_MF);
728		ptr += len;
729		offset += len;
730
731		/*
732		 *	Put this fragment into the sending queue.
733		 */
734		iph->tot_len = htons(len + hlen);
735
736		ip_send_check(iph);
737
738		err = output(skb2);
739		if (err)
740			goto fail;
741
742		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
743	}
744	consume_skb(skb);
745	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
746	return err;
747
748fail:
749	kfree_skb(skb);
750	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
751	return err;
752}
753EXPORT_SYMBOL(ip_fragment);
754
755int
756ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
757{
758	struct iovec *iov = from;
759
760	if (skb->ip_summed == CHECKSUM_PARTIAL) {
761		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
762			return -EFAULT;
763	} else {
764		__wsum csum = 0;
765		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
766			return -EFAULT;
767		skb->csum = csum_block_add(skb->csum, csum, odd);
768	}
769	return 0;
770}
771EXPORT_SYMBOL(ip_generic_getfrag);
772
773static inline __wsum
774csum_page(struct page *page, int offset, int copy)
775{
776	char *kaddr;
777	__wsum csum;
778	kaddr = kmap(page);
779	csum = csum_partial(kaddr + offset, copy, 0);
780	kunmap(page);
781	return csum;
782}
783
784static inline int ip_ufo_append_data(struct sock *sk,
785			struct sk_buff_head *queue,
786			int getfrag(void *from, char *to, int offset, int len,
787			       int odd, struct sk_buff *skb),
788			void *from, int length, int hh_len, int fragheaderlen,
789			int transhdrlen, int maxfraglen, unsigned int flags)
790{
791	struct sk_buff *skb;
792	int err;
793
794	/* There is support for UDP fragmentation offload by network
795	 * device, so create one single skb packet containing complete
796	 * udp datagram
797	 */
798	if ((skb = skb_peek_tail(queue)) == NULL) {
799		skb = sock_alloc_send_skb(sk,
800			hh_len + fragheaderlen + transhdrlen + 20,
801			(flags & MSG_DONTWAIT), &err);
802
803		if (skb == NULL)
804			return err;
805
806		/* reserve space for Hardware header */
807		skb_reserve(skb, hh_len);
808
809		/* create space for UDP/IP header */
810		skb_put(skb, fragheaderlen + transhdrlen);
811
812		/* initialize network header pointer */
813		skb_reset_network_header(skb);
814
815		/* initialize protocol header pointer */
816		skb->transport_header = skb->network_header + fragheaderlen;
817
818		skb->csum = 0;
819
820
821		__skb_queue_tail(queue, skb);
822	} else if (skb_is_gso(skb)) {
823		goto append;
824	}
825
826	skb->ip_summed = CHECKSUM_PARTIAL;
827	/* specify the length of each IP datagram fragment */
828	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
829	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
830
831append:
832	return skb_append_datato_frags(sk, skb, getfrag, from,
833				       (length - transhdrlen));
834}
835
836static int __ip_append_data(struct sock *sk,
837			    struct flowi4 *fl4,
838			    struct sk_buff_head *queue,
839			    struct inet_cork *cork,
840			    struct page_frag *pfrag,
841			    int getfrag(void *from, char *to, int offset,
842					int len, int odd, struct sk_buff *skb),
843			    void *from, int length, int transhdrlen,
844			    unsigned int flags)
845{
846	struct inet_sock *inet = inet_sk(sk);
847	struct sk_buff *skb;
848
849	struct ip_options *opt = cork->opt;
850	int hh_len;
851	int exthdrlen;
852	int mtu;
853	int copy;
854	int err;
855	int offset = 0;
856	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
857	int csummode = CHECKSUM_NONE;
858	struct rtable *rt = (struct rtable *)cork->dst;
859
860	skb = skb_peek_tail(queue);
861
862	exthdrlen = !skb ? rt->dst.header_len : 0;
863	mtu = cork->fragsize;
864
865	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
866
867	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
868	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
869	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
870
871	if (cork->length + length > maxnonfragsize - fragheaderlen) {
872		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
873			       mtu - (opt ? opt->optlen : 0));
874		return -EMSGSIZE;
875	}
876
877	/*
878	 * transhdrlen > 0 means that this is the first fragment and we wish
879	 * it won't be fragmented in the future.
880	 */
881	if (transhdrlen &&
882	    length + fragheaderlen <= mtu &&
883	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
884	    !exthdrlen)
885		csummode = CHECKSUM_PARTIAL;
886
887	cork->length += length;
888	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
889	    (sk->sk_protocol == IPPROTO_UDP) &&
890	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
891		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
892					 hh_len, fragheaderlen, transhdrlen,
893					 maxfraglen, flags);
894		if (err)
895			goto error;
896		return 0;
897	}
898
899	/* So, what's going on in the loop below?
900	 *
901	 * We use calculated fragment length to generate chained skb,
902	 * each of segments is IP fragment ready for sending to network after
903	 * adding appropriate IP header.
904	 */
905
906	if (!skb)
907		goto alloc_new_skb;
908
909	while (length > 0) {
910		/* Check if the remaining data fits into current packet. */
911		copy = mtu - skb->len;
912		if (copy < length)
913			copy = maxfraglen - skb->len;
914		if (copy <= 0) {
915			char *data;
916			unsigned int datalen;
917			unsigned int fraglen;
918			unsigned int fraggap;
919			unsigned int alloclen;
920			struct sk_buff *skb_prev;
921alloc_new_skb:
922			skb_prev = skb;
923			if (skb_prev)
924				fraggap = skb_prev->len - maxfraglen;
925			else
926				fraggap = 0;
927
928			/*
929			 * If remaining data exceeds the mtu,
930			 * we know we need more fragment(s).
931			 */
932			datalen = length + fraggap;
933			if (datalen > mtu - fragheaderlen)
934				datalen = maxfraglen - fragheaderlen;
935			fraglen = datalen + fragheaderlen;
936
937			if ((flags & MSG_MORE) &&
938			    !(rt->dst.dev->features&NETIF_F_SG))
939				alloclen = mtu;
940			else
941				alloclen = fraglen;
942
943			alloclen += exthdrlen;
944
945			/* The last fragment gets additional space at tail.
946			 * Note, with MSG_MORE we overallocate on fragments,
947			 * because we have no idea what fragment will be
948			 * the last.
949			 */
950			if (datalen == length + fraggap)
951				alloclen += rt->dst.trailer_len;
952
953			if (transhdrlen) {
954				skb = sock_alloc_send_skb(sk,
955						alloclen + hh_len + 15,
956						(flags & MSG_DONTWAIT), &err);
957			} else {
958				skb = NULL;
959				if (atomic_read(&sk->sk_wmem_alloc) <=
960				    2 * sk->sk_sndbuf)
961					skb = sock_wmalloc(sk,
962							   alloclen + hh_len + 15, 1,
963							   sk->sk_allocation);
964				if (unlikely(skb == NULL))
965					err = -ENOBUFS;
966				else
967					/* only the initial fragment is
968					   time stamped */
969					cork->tx_flags = 0;
970			}
971			if (skb == NULL)
972				goto error;
973
974			/*
975			 *	Fill in the control structures
976			 */
977			skb->ip_summed = csummode;
978			skb->csum = 0;
979			skb_reserve(skb, hh_len);
980			skb_shinfo(skb)->tx_flags = cork->tx_flags;
981
982			/*
983			 *	Find where to start putting bytes.
984			 */
985			data = skb_put(skb, fraglen + exthdrlen);
986			skb_set_network_header(skb, exthdrlen);
987			skb->transport_header = (skb->network_header +
988						 fragheaderlen);
989			data += fragheaderlen + exthdrlen;
990
991			if (fraggap) {
992				skb->csum = skb_copy_and_csum_bits(
993					skb_prev, maxfraglen,
994					data + transhdrlen, fraggap, 0);
995				skb_prev->csum = csum_sub(skb_prev->csum,
996							  skb->csum);
997				data += fraggap;
998				pskb_trim_unique(skb_prev, maxfraglen);
999			}
1000
1001			copy = datalen - transhdrlen - fraggap;
1002			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1003				err = -EFAULT;
1004				kfree_skb(skb);
1005				goto error;
1006			}
1007
1008			offset += copy;
1009			length -= datalen - fraggap;
1010			transhdrlen = 0;
1011			exthdrlen = 0;
1012			csummode = CHECKSUM_NONE;
1013
1014			/*
1015			 * Put the packet on the pending queue.
1016			 */
1017			__skb_queue_tail(queue, skb);
1018			continue;
1019		}
1020
1021		if (copy > length)
1022			copy = length;
1023
1024		if (!(rt->dst.dev->features&NETIF_F_SG)) {
1025			unsigned int off;
1026
1027			off = skb->len;
1028			if (getfrag(from, skb_put(skb, copy),
1029					offset, copy, off, skb) < 0) {
1030				__skb_trim(skb, off);
1031				err = -EFAULT;
1032				goto error;
1033			}
1034		} else {
1035			int i = skb_shinfo(skb)->nr_frags;
1036
1037			err = -ENOMEM;
1038			if (!sk_page_frag_refill(sk, pfrag))
1039				goto error;
1040
1041			if (!skb_can_coalesce(skb, i, pfrag->page,
1042					      pfrag->offset)) {
1043				err = -EMSGSIZE;
1044				if (i == MAX_SKB_FRAGS)
1045					goto error;
1046
1047				__skb_fill_page_desc(skb, i, pfrag->page,
1048						     pfrag->offset, 0);
1049				skb_shinfo(skb)->nr_frags = ++i;
1050				get_page(pfrag->page);
1051			}
1052			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1053			if (getfrag(from,
1054				    page_address(pfrag->page) + pfrag->offset,
1055				    offset, copy, skb->len, skb) < 0)
1056				goto error_efault;
1057
1058			pfrag->offset += copy;
1059			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1060			skb->len += copy;
1061			skb->data_len += copy;
1062			skb->truesize += copy;
1063			atomic_add(copy, &sk->sk_wmem_alloc);
1064		}
1065		offset += copy;
1066		length -= copy;
1067	}
1068
1069	return 0;
1070
1071error_efault:
1072	err = -EFAULT;
1073error:
1074	cork->length -= length;
1075	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1076	return err;
1077}
1078
1079static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1080			 struct ipcm_cookie *ipc, struct rtable **rtp)
1081{
1082	struct ip_options_rcu *opt;
1083	struct rtable *rt;
1084
1085	/*
1086	 * setup for corking.
1087	 */
1088	opt = ipc->opt;
1089	if (opt) {
1090		if (cork->opt == NULL) {
1091			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1092					    sk->sk_allocation);
1093			if (unlikely(cork->opt == NULL))
1094				return -ENOBUFS;
1095		}
1096		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1097		cork->flags |= IPCORK_OPT;
1098		cork->addr = ipc->addr;
1099	}
1100	rt = *rtp;
1101	if (unlikely(!rt))
1102		return -EFAULT;
1103	/*
1104	 * We steal reference to this route, caller should not release it
1105	 */
1106	*rtp = NULL;
1107	cork->fragsize = ip_sk_use_pmtu(sk) ?
1108			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1109	cork->dst = &rt->dst;
1110	cork->length = 0;
1111	cork->ttl = ipc->ttl;
1112	cork->tos = ipc->tos;
1113	cork->priority = ipc->priority;
1114	cork->tx_flags = ipc->tx_flags;
1115
1116	return 0;
1117}
1118
1119/*
1120 *	ip_append_data() and ip_append_page() can make one large IP datagram
1121 *	from many pieces of data. Each pieces will be holded on the socket
1122 *	until ip_push_pending_frames() is called. Each piece can be a page
1123 *	or non-page data.
1124 *
1125 *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1126 *	this interface potentially.
1127 *
1128 *	LATER: length must be adjusted by pad at tail, when it is required.
1129 */
1130int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1131		   int getfrag(void *from, char *to, int offset, int len,
1132			       int odd, struct sk_buff *skb),
1133		   void *from, int length, int transhdrlen,
1134		   struct ipcm_cookie *ipc, struct rtable **rtp,
1135		   unsigned int flags)
1136{
1137	struct inet_sock *inet = inet_sk(sk);
1138	int err;
1139
1140	if (flags&MSG_PROBE)
1141		return 0;
1142
1143	if (skb_queue_empty(&sk->sk_write_queue)) {
1144		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1145		if (err)
1146			return err;
1147	} else {
1148		transhdrlen = 0;
1149	}
1150
1151	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1152				sk_page_frag(sk), getfrag,
1153				from, length, transhdrlen, flags);
1154}
1155
1156ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1157		       int offset, size_t size, int flags)
1158{
1159	struct inet_sock *inet = inet_sk(sk);
1160	struct sk_buff *skb;
1161	struct rtable *rt;
1162	struct ip_options *opt = NULL;
1163	struct inet_cork *cork;
1164	int hh_len;
1165	int mtu;
1166	int len;
1167	int err;
1168	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1169
1170	if (inet->hdrincl)
1171		return -EPERM;
1172
1173	if (flags&MSG_PROBE)
1174		return 0;
1175
1176	if (skb_queue_empty(&sk->sk_write_queue))
1177		return -EINVAL;
1178
1179	cork = &inet->cork.base;
1180	rt = (struct rtable *)cork->dst;
1181	if (cork->flags & IPCORK_OPT)
1182		opt = cork->opt;
1183
1184	if (!(rt->dst.dev->features&NETIF_F_SG))
1185		return -EOPNOTSUPP;
1186
1187	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1188	mtu = cork->fragsize;
1189
1190	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1191	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1192	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1193
1194	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1195		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1196			       mtu - (opt ? opt->optlen : 0));
1197		return -EMSGSIZE;
1198	}
1199
1200	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1201		return -EINVAL;
1202
1203	cork->length += size;
1204	if ((size + skb->len > mtu) &&
1205	    (sk->sk_protocol == IPPROTO_UDP) &&
1206	    (rt->dst.dev->features & NETIF_F_UFO)) {
1207		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1208		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1209	}
1210
1211
1212	while (size > 0) {
1213		int i;
1214
1215		if (skb_is_gso(skb))
1216			len = size;
1217		else {
1218
1219			/* Check if the remaining data fits into current packet. */
1220			len = mtu - skb->len;
1221			if (len < size)
1222				len = maxfraglen - skb->len;
1223		}
1224		if (len <= 0) {
1225			struct sk_buff *skb_prev;
1226			int alloclen;
1227
1228			skb_prev = skb;
1229			fraggap = skb_prev->len - maxfraglen;
1230
1231			alloclen = fragheaderlen + hh_len + fraggap + 15;
1232			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1233			if (unlikely(!skb)) {
1234				err = -ENOBUFS;
1235				goto error;
1236			}
1237
1238			/*
1239			 *	Fill in the control structures
1240			 */
1241			skb->ip_summed = CHECKSUM_NONE;
1242			skb->csum = 0;
1243			skb_reserve(skb, hh_len);
1244
1245			/*
1246			 *	Find where to start putting bytes.
1247			 */
1248			skb_put(skb, fragheaderlen + fraggap);
1249			skb_reset_network_header(skb);
1250			skb->transport_header = (skb->network_header +
1251						 fragheaderlen);
1252			if (fraggap) {
1253				skb->csum = skb_copy_and_csum_bits(skb_prev,
1254								   maxfraglen,
1255						    skb_transport_header(skb),
1256								   fraggap, 0);
1257				skb_prev->csum = csum_sub(skb_prev->csum,
1258							  skb->csum);
1259				pskb_trim_unique(skb_prev, maxfraglen);
1260			}
1261
1262			/*
1263			 * Put the packet on the pending queue.
1264			 */
1265			__skb_queue_tail(&sk->sk_write_queue, skb);
1266			continue;
1267		}
1268
1269		i = skb_shinfo(skb)->nr_frags;
1270		if (len > size)
1271			len = size;
1272		if (skb_can_coalesce(skb, i, page, offset)) {
1273			skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1274		} else if (i < MAX_SKB_FRAGS) {
1275			get_page(page);
1276			skb_fill_page_desc(skb, i, page, offset, len);
1277		} else {
1278			err = -EMSGSIZE;
1279			goto error;
1280		}
1281
1282		if (skb->ip_summed == CHECKSUM_NONE) {
1283			__wsum csum;
1284			csum = csum_page(page, offset, len);
1285			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1286		}
1287
1288		skb->len += len;
1289		skb->data_len += len;
1290		skb->truesize += len;
1291		atomic_add(len, &sk->sk_wmem_alloc);
1292		offset += len;
1293		size -= len;
1294	}
1295	return 0;
1296
1297error:
1298	cork->length -= size;
1299	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1300	return err;
1301}
1302
1303static void ip_cork_release(struct inet_cork *cork)
1304{
1305	cork->flags &= ~IPCORK_OPT;
1306	kfree(cork->opt);
1307	cork->opt = NULL;
1308	dst_release(cork->dst);
1309	cork->dst = NULL;
1310}
1311
1312/*
1313 *	Combined all pending IP fragments on the socket as one IP datagram
1314 *	and push them out.
1315 */
1316struct sk_buff *__ip_make_skb(struct sock *sk,
1317			      struct flowi4 *fl4,
1318			      struct sk_buff_head *queue,
1319			      struct inet_cork *cork)
1320{
1321	struct sk_buff *skb, *tmp_skb;
1322	struct sk_buff **tail_skb;
1323	struct inet_sock *inet = inet_sk(sk);
1324	struct net *net = sock_net(sk);
1325	struct ip_options *opt = NULL;
1326	struct rtable *rt = (struct rtable *)cork->dst;
1327	struct iphdr *iph;
1328	__be16 df = 0;
1329	__u8 ttl;
1330
1331	if ((skb = __skb_dequeue(queue)) == NULL)
1332		goto out;
1333	tail_skb = &(skb_shinfo(skb)->frag_list);
1334
1335	/* move skb->data to ip header from ext header */
1336	if (skb->data < skb_network_header(skb))
1337		__skb_pull(skb, skb_network_offset(skb));
1338	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1339		__skb_pull(tmp_skb, skb_network_header_len(skb));
1340		*tail_skb = tmp_skb;
1341		tail_skb = &(tmp_skb->next);
1342		skb->len += tmp_skb->len;
1343		skb->data_len += tmp_skb->len;
1344		skb->truesize += tmp_skb->truesize;
1345		tmp_skb->destructor = NULL;
1346		tmp_skb->sk = NULL;
1347	}
1348
1349	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1350	 * to fragment the frame generated here. No matter, what transforms
1351	 * how transforms change size of the packet, it will come out.
1352	 */
1353	skb->ignore_df = ip_sk_ignore_df(sk);
1354
1355	/* DF bit is set when we want to see DF on outgoing frames.
1356	 * If ignore_df is set too, we still allow to fragment this frame
1357	 * locally. */
1358	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1359	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1360	    (skb->len <= dst_mtu(&rt->dst) &&
1361	     ip_dont_fragment(sk, &rt->dst)))
1362		df = htons(IP_DF);
1363
1364	if (cork->flags & IPCORK_OPT)
1365		opt = cork->opt;
1366
1367	if (cork->ttl != 0)
1368		ttl = cork->ttl;
1369	else if (rt->rt_type == RTN_MULTICAST)
1370		ttl = inet->mc_ttl;
1371	else
1372		ttl = ip_select_ttl(inet, &rt->dst);
1373
1374	iph = ip_hdr(skb);
1375	iph->version = 4;
1376	iph->ihl = 5;
1377	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1378	iph->frag_off = df;
1379	iph->ttl = ttl;
1380	iph->protocol = sk->sk_protocol;
1381	ip_copy_addrs(iph, fl4);
1382	ip_select_ident(skb, &rt->dst, sk);
1383
1384	if (opt) {
1385		iph->ihl += opt->optlen>>2;
1386		ip_options_build(skb, opt, cork->addr, rt, 0);
1387	}
1388
1389	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1390	skb->mark = sk->sk_mark;
1391	/*
1392	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1393	 * on dst refcount
1394	 */
1395	cork->dst = NULL;
1396	skb_dst_set(skb, &rt->dst);
1397
1398	if (iph->protocol == IPPROTO_ICMP)
1399		icmp_out_count(net, ((struct icmphdr *)
1400			skb_transport_header(skb))->type);
1401
1402	ip_cork_release(cork);
1403out:
1404	return skb;
1405}
1406
1407int ip_send_skb(struct net *net, struct sk_buff *skb)
1408{
1409	int err;
1410
1411	err = ip_local_out(skb);
1412	if (err) {
1413		if (err > 0)
1414			err = net_xmit_errno(err);
1415		if (err)
1416			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1417	}
1418
1419	return err;
1420}
1421
1422int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1423{
1424	struct sk_buff *skb;
1425
1426	skb = ip_finish_skb(sk, fl4);
1427	if (!skb)
1428		return 0;
1429
1430	/* Netfilter gets whole the not fragmented skb. */
1431	return ip_send_skb(sock_net(sk), skb);
1432}
1433
1434/*
1435 *	Throw away all pending data on the socket.
1436 */
1437static void __ip_flush_pending_frames(struct sock *sk,
1438				      struct sk_buff_head *queue,
1439				      struct inet_cork *cork)
1440{
1441	struct sk_buff *skb;
1442
1443	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1444		kfree_skb(skb);
1445
1446	ip_cork_release(cork);
1447}
1448
1449void ip_flush_pending_frames(struct sock *sk)
1450{
1451	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1452}
1453
1454struct sk_buff *ip_make_skb(struct sock *sk,
1455			    struct flowi4 *fl4,
1456			    int getfrag(void *from, char *to, int offset,
1457					int len, int odd, struct sk_buff *skb),
1458			    void *from, int length, int transhdrlen,
1459			    struct ipcm_cookie *ipc, struct rtable **rtp,
1460			    unsigned int flags)
1461{
1462	struct inet_cork cork;
1463	struct sk_buff_head queue;
1464	int err;
1465
1466	if (flags & MSG_PROBE)
1467		return NULL;
1468
1469	__skb_queue_head_init(&queue);
1470
1471	cork.flags = 0;
1472	cork.addr = 0;
1473	cork.opt = NULL;
1474	err = ip_setup_cork(sk, &cork, ipc, rtp);
1475	if (err)
1476		return ERR_PTR(err);
1477
1478	err = __ip_append_data(sk, fl4, &queue, &cork,
1479			       &current->task_frag, getfrag,
1480			       from, length, transhdrlen, flags);
1481	if (err) {
1482		__ip_flush_pending_frames(sk, &queue, &cork);
1483		return ERR_PTR(err);
1484	}
1485
1486	return __ip_make_skb(sk, fl4, &queue, &cork);
1487}
1488
1489/*
1490 *	Fetch data from kernel space and fill in checksum if needed.
1491 */
1492static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1493			      int len, int odd, struct sk_buff *skb)
1494{
1495	__wsum csum;
1496
1497	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1498	skb->csum = csum_block_add(skb->csum, csum, odd);
1499	return 0;
1500}
1501
1502/*
1503 *	Generic function to send a packet as reply to another packet.
1504 *	Used to send some TCP resets/acks so far.
1505 *
1506 *	Use a fake percpu inet socket to avoid false sharing and contention.
1507 */
1508static DEFINE_PER_CPU(struct inet_sock, unicast_sock) = {
1509	.sk = {
1510		.__sk_common = {
1511			.skc_refcnt = ATOMIC_INIT(1),
1512		},
1513		.sk_wmem_alloc	= ATOMIC_INIT(1),
1514		.sk_allocation	= GFP_ATOMIC,
1515		.sk_flags	= (1UL << SOCK_USE_WRITE_QUEUE),
1516	},
1517	.pmtudisc	= IP_PMTUDISC_WANT,
1518	.uc_ttl		= -1,
1519};
1520
1521void ip_send_unicast_reply(struct net *net, struct sk_buff *skb, __be32 daddr,
1522			   __be32 saddr, const struct ip_reply_arg *arg,
1523			   unsigned int len)
1524{
1525	struct ip_options_data replyopts;
1526	struct ipcm_cookie ipc;
1527	struct flowi4 fl4;
1528	struct rtable *rt = skb_rtable(skb);
1529	struct sk_buff *nskb;
1530	struct sock *sk;
1531	struct inet_sock *inet;
1532
1533	if (ip_options_echo(&replyopts.opt.opt, skb))
1534		return;
1535
1536	ipc.addr = daddr;
1537	ipc.opt = NULL;
1538	ipc.tx_flags = 0;
1539	ipc.ttl = 0;
1540	ipc.tos = -1;
1541
1542	if (replyopts.opt.opt.optlen) {
1543		ipc.opt = &replyopts.opt;
1544
1545		if (replyopts.opt.opt.srr)
1546			daddr = replyopts.opt.opt.faddr;
1547	}
1548
1549	flowi4_init_output(&fl4, arg->bound_dev_if,
1550			   IP4_REPLY_MARK(net, skb->mark),
1551			   RT_TOS(arg->tos),
1552			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1553			   ip_reply_arg_flowi_flags(arg),
1554			   daddr, saddr,
1555			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1556	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1557	rt = ip_route_output_key(net, &fl4);
1558	if (IS_ERR(rt))
1559		return;
1560
1561	inet = &get_cpu_var(unicast_sock);
1562
1563	inet->tos = arg->tos;
1564	sk = &inet->sk;
1565	sk->sk_priority = skb->priority;
1566	sk->sk_protocol = ip_hdr(skb)->protocol;
1567	sk->sk_bound_dev_if = arg->bound_dev_if;
1568	sock_net_set(sk, net);
1569	__skb_queue_head_init(&sk->sk_write_queue);
1570	sk->sk_sndbuf = sysctl_wmem_default;
1571	ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1572		       &ipc, &rt, MSG_DONTWAIT);
1573	nskb = skb_peek(&sk->sk_write_queue);
1574	if (nskb) {
1575		if (arg->csumoffset >= 0)
1576			*((__sum16 *)skb_transport_header(nskb) +
1577			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1578								arg->csum));
1579		nskb->ip_summed = CHECKSUM_NONE;
1580		skb_orphan(nskb);
1581		skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1582		ip_push_pending_frames(sk, &fl4);
1583	}
1584
1585	put_cpu_var(unicast_sock);
1586
1587	ip_rt_put(rt);
1588}
1589
1590void __init ip_init(void)
1591{
1592	ip_rt_init();
1593	inet_initpeers();
1594
1595#if defined(CONFIG_IP_MULTICAST)
1596	igmp_mc_init();
1597#endif
1598}
1599