tcp.c revision 074b85175a43a23fdbde60f55feea636e0bf0f85
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#include <linux/kernel.h>
249#include <linux/module.h>
250#include <linux/types.h>
251#include <linux/fcntl.h>
252#include <linux/poll.h>
253#include <linux/init.h>
254#include <linux/fs.h>
255#include <linux/skbuff.h>
256#include <linux/scatterlist.h>
257#include <linux/splice.h>
258#include <linux/net.h>
259#include <linux/socket.h>
260#include <linux/random.h>
261#include <linux/bootmem.h>
262#include <linux/highmem.h>
263#include <linux/swap.h>
264#include <linux/cache.h>
265#include <linux/err.h>
266#include <linux/crypto.h>
267#include <linux/time.h>
268#include <linux/slab.h>
269
270#include <net/icmp.h>
271#include <net/tcp.h>
272#include <net/xfrm.h>
273#include <net/ip.h>
274#include <net/netdma.h>
275#include <net/sock.h>
276
277#include <asm/uaccess.h>
278#include <asm/ioctls.h>
279
280int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
281
282struct percpu_counter tcp_orphan_count;
283EXPORT_SYMBOL_GPL(tcp_orphan_count);
284
285int sysctl_tcp_wmem[3] __read_mostly;
286int sysctl_tcp_rmem[3] __read_mostly;
287
288EXPORT_SYMBOL(sysctl_tcp_rmem);
289EXPORT_SYMBOL(sysctl_tcp_wmem);
290
291atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
292EXPORT_SYMBOL(tcp_memory_allocated);
293
294/*
295 * Current number of TCP sockets.
296 */
297struct percpu_counter tcp_sockets_allocated;
298EXPORT_SYMBOL(tcp_sockets_allocated);
299
300/*
301 * TCP splice context
302 */
303struct tcp_splice_state {
304	struct pipe_inode_info *pipe;
305	size_t len;
306	unsigned int flags;
307};
308
309/*
310 * Pressure flag: try to collapse.
311 * Technical note: it is used by multiple contexts non atomically.
312 * All the __sk_mem_schedule() is of this nature: accounting
313 * is strict, actions are advisory and have some latency.
314 */
315int tcp_memory_pressure __read_mostly;
316EXPORT_SYMBOL(tcp_memory_pressure);
317
318void tcp_enter_memory_pressure(struct sock *sk)
319{
320	if (!tcp_memory_pressure) {
321		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
322		tcp_memory_pressure = 1;
323	}
324}
325EXPORT_SYMBOL(tcp_enter_memory_pressure);
326
327/* Convert seconds to retransmits based on initial and max timeout */
328static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
329{
330	u8 res = 0;
331
332	if (seconds > 0) {
333		int period = timeout;
334
335		res = 1;
336		while (seconds > period && res < 255) {
337			res++;
338			timeout <<= 1;
339			if (timeout > rto_max)
340				timeout = rto_max;
341			period += timeout;
342		}
343	}
344	return res;
345}
346
347/* Convert retransmits to seconds based on initial and max timeout */
348static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
349{
350	int period = 0;
351
352	if (retrans > 0) {
353		period = timeout;
354		while (--retrans) {
355			timeout <<= 1;
356			if (timeout > rto_max)
357				timeout = rto_max;
358			period += timeout;
359		}
360	}
361	return period;
362}
363
364/*
365 *	Wait for a TCP event.
366 *
367 *	Note that we don't need to lock the socket, as the upper poll layers
368 *	take care of normal races (between the test and the event) and we don't
369 *	go look at any of the socket buffers directly.
370 */
371unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
372{
373	unsigned int mask;
374	struct sock *sk = sock->sk;
375	const struct tcp_sock *tp = tcp_sk(sk);
376
377	sock_poll_wait(file, sk_sleep(sk), wait);
378	if (sk->sk_state == TCP_LISTEN)
379		return inet_csk_listen_poll(sk);
380
381	/* Socket is not locked. We are protected from async events
382	 * by poll logic and correct handling of state changes
383	 * made by other threads is impossible in any case.
384	 */
385
386	mask = 0;
387
388	/*
389	 * POLLHUP is certainly not done right. But poll() doesn't
390	 * have a notion of HUP in just one direction, and for a
391	 * socket the read side is more interesting.
392	 *
393	 * Some poll() documentation says that POLLHUP is incompatible
394	 * with the POLLOUT/POLLWR flags, so somebody should check this
395	 * all. But careful, it tends to be safer to return too many
396	 * bits than too few, and you can easily break real applications
397	 * if you don't tell them that something has hung up!
398	 *
399	 * Check-me.
400	 *
401	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
402	 * our fs/select.c). It means that after we received EOF,
403	 * poll always returns immediately, making impossible poll() on write()
404	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
405	 * if and only if shutdown has been made in both directions.
406	 * Actually, it is interesting to look how Solaris and DUX
407	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
408	 * then we could set it on SND_SHUTDOWN. BTW examples given
409	 * in Stevens' books assume exactly this behaviour, it explains
410	 * why POLLHUP is incompatible with POLLOUT.	--ANK
411	 *
412	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
413	 * blocking on fresh not-connected or disconnected socket. --ANK
414	 */
415	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
416		mask |= POLLHUP;
417	if (sk->sk_shutdown & RCV_SHUTDOWN)
418		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
419
420	/* Connected? */
421	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
422		int target = sock_rcvlowat(sk, 0, INT_MAX);
423
424		if (tp->urg_seq == tp->copied_seq &&
425		    !sock_flag(sk, SOCK_URGINLINE) &&
426		    tp->urg_data)
427			target++;
428
429		/* Potential race condition. If read of tp below will
430		 * escape above sk->sk_state, we can be illegally awaken
431		 * in SYN_* states. */
432		if (tp->rcv_nxt - tp->copied_seq >= target)
433			mask |= POLLIN | POLLRDNORM;
434
435		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
436			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
437				mask |= POLLOUT | POLLWRNORM;
438			} else {  /* send SIGIO later */
439				set_bit(SOCK_ASYNC_NOSPACE,
440					&sk->sk_socket->flags);
441				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
442
443				/* Race breaker. If space is freed after
444				 * wspace test but before the flags are set,
445				 * IO signal will be lost.
446				 */
447				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
448					mask |= POLLOUT | POLLWRNORM;
449			}
450		} else
451			mask |= POLLOUT | POLLWRNORM;
452
453		if (tp->urg_data & TCP_URG_VALID)
454			mask |= POLLPRI;
455	}
456	/* This barrier is coupled with smp_wmb() in tcp_reset() */
457	smp_rmb();
458	if (sk->sk_err)
459		mask |= POLLERR;
460
461	return mask;
462}
463EXPORT_SYMBOL(tcp_poll);
464
465int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
466{
467	struct tcp_sock *tp = tcp_sk(sk);
468	int answ;
469
470	switch (cmd) {
471	case SIOCINQ:
472		if (sk->sk_state == TCP_LISTEN)
473			return -EINVAL;
474
475		lock_sock(sk);
476		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
477			answ = 0;
478		else if (sock_flag(sk, SOCK_URGINLINE) ||
479			 !tp->urg_data ||
480			 before(tp->urg_seq, tp->copied_seq) ||
481			 !before(tp->urg_seq, tp->rcv_nxt)) {
482			struct sk_buff *skb;
483
484			answ = tp->rcv_nxt - tp->copied_seq;
485
486			/* Subtract 1, if FIN is in queue. */
487			skb = skb_peek_tail(&sk->sk_receive_queue);
488			if (answ && skb)
489				answ -= tcp_hdr(skb)->fin;
490		} else
491			answ = tp->urg_seq - tp->copied_seq;
492		release_sock(sk);
493		break;
494	case SIOCATMARK:
495		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
496		break;
497	case SIOCOUTQ:
498		if (sk->sk_state == TCP_LISTEN)
499			return -EINVAL;
500
501		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
502			answ = 0;
503		else
504			answ = tp->write_seq - tp->snd_una;
505		break;
506	case SIOCOUTQNSD:
507		if (sk->sk_state == TCP_LISTEN)
508			return -EINVAL;
509
510		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
511			answ = 0;
512		else
513			answ = tp->write_seq - tp->snd_nxt;
514		break;
515	default:
516		return -ENOIOCTLCMD;
517	}
518
519	return put_user(answ, (int __user *)arg);
520}
521EXPORT_SYMBOL(tcp_ioctl);
522
523static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
524{
525	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
526	tp->pushed_seq = tp->write_seq;
527}
528
529static inline int forced_push(const struct tcp_sock *tp)
530{
531	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
532}
533
534static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
535{
536	struct tcp_sock *tp = tcp_sk(sk);
537	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
538
539	skb->csum    = 0;
540	tcb->seq     = tcb->end_seq = tp->write_seq;
541	tcb->tcp_flags = TCPHDR_ACK;
542	tcb->sacked  = 0;
543	skb_header_release(skb);
544	tcp_add_write_queue_tail(sk, skb);
545	sk->sk_wmem_queued += skb->truesize;
546	sk_mem_charge(sk, skb->truesize);
547	if (tp->nonagle & TCP_NAGLE_PUSH)
548		tp->nonagle &= ~TCP_NAGLE_PUSH;
549}
550
551static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
552{
553	if (flags & MSG_OOB)
554		tp->snd_up = tp->write_seq;
555}
556
557static inline void tcp_push(struct sock *sk, int flags, int mss_now,
558			    int nonagle)
559{
560	if (tcp_send_head(sk)) {
561		struct tcp_sock *tp = tcp_sk(sk);
562
563		if (!(flags & MSG_MORE) || forced_push(tp))
564			tcp_mark_push(tp, tcp_write_queue_tail(sk));
565
566		tcp_mark_urg(tp, flags);
567		__tcp_push_pending_frames(sk, mss_now,
568					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
569	}
570}
571
572static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
573				unsigned int offset, size_t len)
574{
575	struct tcp_splice_state *tss = rd_desc->arg.data;
576	int ret;
577
578	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
579			      tss->flags);
580	if (ret > 0)
581		rd_desc->count -= ret;
582	return ret;
583}
584
585static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
586{
587	/* Store TCP splice context information in read_descriptor_t. */
588	read_descriptor_t rd_desc = {
589		.arg.data = tss,
590		.count	  = tss->len,
591	};
592
593	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
594}
595
596/**
597 *  tcp_splice_read - splice data from TCP socket to a pipe
598 * @sock:	socket to splice from
599 * @ppos:	position (not valid)
600 * @pipe:	pipe to splice to
601 * @len:	number of bytes to splice
602 * @flags:	splice modifier flags
603 *
604 * Description:
605 *    Will read pages from given socket and fill them into a pipe.
606 *
607 **/
608ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
609			struct pipe_inode_info *pipe, size_t len,
610			unsigned int flags)
611{
612	struct sock *sk = sock->sk;
613	struct tcp_splice_state tss = {
614		.pipe = pipe,
615		.len = len,
616		.flags = flags,
617	};
618	long timeo;
619	ssize_t spliced;
620	int ret;
621
622	sock_rps_record_flow(sk);
623	/*
624	 * We can't seek on a socket input
625	 */
626	if (unlikely(*ppos))
627		return -ESPIPE;
628
629	ret = spliced = 0;
630
631	lock_sock(sk);
632
633	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
634	while (tss.len) {
635		ret = __tcp_splice_read(sk, &tss);
636		if (ret < 0)
637			break;
638		else if (!ret) {
639			if (spliced)
640				break;
641			if (sock_flag(sk, SOCK_DONE))
642				break;
643			if (sk->sk_err) {
644				ret = sock_error(sk);
645				break;
646			}
647			if (sk->sk_shutdown & RCV_SHUTDOWN)
648				break;
649			if (sk->sk_state == TCP_CLOSE) {
650				/*
651				 * This occurs when user tries to read
652				 * from never connected socket.
653				 */
654				if (!sock_flag(sk, SOCK_DONE))
655					ret = -ENOTCONN;
656				break;
657			}
658			if (!timeo) {
659				ret = -EAGAIN;
660				break;
661			}
662			sk_wait_data(sk, &timeo);
663			if (signal_pending(current)) {
664				ret = sock_intr_errno(timeo);
665				break;
666			}
667			continue;
668		}
669		tss.len -= ret;
670		spliced += ret;
671
672		if (!timeo)
673			break;
674		release_sock(sk);
675		lock_sock(sk);
676
677		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
678		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
679		    signal_pending(current))
680			break;
681	}
682
683	release_sock(sk);
684
685	if (spliced)
686		return spliced;
687
688	return ret;
689}
690EXPORT_SYMBOL(tcp_splice_read);
691
692struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
693{
694	struct sk_buff *skb;
695
696	/* The TCP header must be at least 32-bit aligned.  */
697	size = ALIGN(size, 4);
698
699	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
700	if (skb) {
701		if (sk_wmem_schedule(sk, skb->truesize)) {
702			/*
703			 * Make sure that we have exactly size bytes
704			 * available to the caller, no more, no less.
705			 */
706			skb_reserve(skb, skb_tailroom(skb) - size);
707			return skb;
708		}
709		__kfree_skb(skb);
710	} else {
711		sk->sk_prot->enter_memory_pressure(sk);
712		sk_stream_moderate_sndbuf(sk);
713	}
714	return NULL;
715}
716
717static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
718				       int large_allowed)
719{
720	struct tcp_sock *tp = tcp_sk(sk);
721	u32 xmit_size_goal, old_size_goal;
722
723	xmit_size_goal = mss_now;
724
725	if (large_allowed && sk_can_gso(sk)) {
726		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
727				  inet_csk(sk)->icsk_af_ops->net_header_len -
728				  inet_csk(sk)->icsk_ext_hdr_len -
729				  tp->tcp_header_len);
730
731		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
732
733		/* We try hard to avoid divides here */
734		old_size_goal = tp->xmit_size_goal_segs * mss_now;
735
736		if (likely(old_size_goal <= xmit_size_goal &&
737			   old_size_goal + mss_now > xmit_size_goal)) {
738			xmit_size_goal = old_size_goal;
739		} else {
740			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
741			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
742		}
743	}
744
745	return max(xmit_size_goal, mss_now);
746}
747
748static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
749{
750	int mss_now;
751
752	mss_now = tcp_current_mss(sk);
753	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
754
755	return mss_now;
756}
757
758static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
759			 size_t psize, int flags)
760{
761	struct tcp_sock *tp = tcp_sk(sk);
762	int mss_now, size_goal;
763	int err;
764	ssize_t copied;
765	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
766
767	/* Wait for a connection to finish. */
768	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
769		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
770			goto out_err;
771
772	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
773
774	mss_now = tcp_send_mss(sk, &size_goal, flags);
775	copied = 0;
776
777	err = -EPIPE;
778	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
779		goto out_err;
780
781	while (psize > 0) {
782		struct sk_buff *skb = tcp_write_queue_tail(sk);
783		struct page *page = pages[poffset / PAGE_SIZE];
784		int copy, i, can_coalesce;
785		int offset = poffset % PAGE_SIZE;
786		int size = min_t(size_t, psize, PAGE_SIZE - offset);
787
788		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
789new_segment:
790			if (!sk_stream_memory_free(sk))
791				goto wait_for_sndbuf;
792
793			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
794			if (!skb)
795				goto wait_for_memory;
796
797			skb_entail(sk, skb);
798			copy = size_goal;
799		}
800
801		if (copy > size)
802			copy = size;
803
804		i = skb_shinfo(skb)->nr_frags;
805		can_coalesce = skb_can_coalesce(skb, i, page, offset);
806		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
807			tcp_mark_push(tp, skb);
808			goto new_segment;
809		}
810		if (!sk_wmem_schedule(sk, copy))
811			goto wait_for_memory;
812
813		if (can_coalesce) {
814			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
815		} else {
816			get_page(page);
817			skb_fill_page_desc(skb, i, page, offset, copy);
818		}
819
820		skb->len += copy;
821		skb->data_len += copy;
822		skb->truesize += copy;
823		sk->sk_wmem_queued += copy;
824		sk_mem_charge(sk, copy);
825		skb->ip_summed = CHECKSUM_PARTIAL;
826		tp->write_seq += copy;
827		TCP_SKB_CB(skb)->end_seq += copy;
828		skb_shinfo(skb)->gso_segs = 0;
829
830		if (!copied)
831			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
832
833		copied += copy;
834		poffset += copy;
835		if (!(psize -= copy))
836			goto out;
837
838		if (skb->len < size_goal || (flags & MSG_OOB))
839			continue;
840
841		if (forced_push(tp)) {
842			tcp_mark_push(tp, skb);
843			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
844		} else if (skb == tcp_send_head(sk))
845			tcp_push_one(sk, mss_now);
846		continue;
847
848wait_for_sndbuf:
849		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
850wait_for_memory:
851		if (copied)
852			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
853
854		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
855			goto do_error;
856
857		mss_now = tcp_send_mss(sk, &size_goal, flags);
858	}
859
860out:
861	if (copied)
862		tcp_push(sk, flags, mss_now, tp->nonagle);
863	return copied;
864
865do_error:
866	if (copied)
867		goto out;
868out_err:
869	return sk_stream_error(sk, flags, err);
870}
871
872int tcp_sendpage(struct sock *sk, struct page *page, int offset,
873		 size_t size, int flags)
874{
875	ssize_t res;
876
877	if (!(sk->sk_route_caps & NETIF_F_SG) ||
878	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
879		return sock_no_sendpage(sk->sk_socket, page, offset, size,
880					flags);
881
882	lock_sock(sk);
883	res = do_tcp_sendpages(sk, &page, offset, size, flags);
884	release_sock(sk);
885	return res;
886}
887EXPORT_SYMBOL(tcp_sendpage);
888
889static inline int select_size(const struct sock *sk, bool sg)
890{
891	const struct tcp_sock *tp = tcp_sk(sk);
892	int tmp = tp->mss_cache;
893
894	if (sg) {
895		if (sk_can_gso(sk)) {
896			/* Small frames wont use a full page:
897			 * Payload will immediately follow tcp header.
898			 */
899			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
900		} else {
901			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
902
903			if (tmp >= pgbreak &&
904			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
905				tmp = pgbreak;
906		}
907	}
908
909	return tmp;
910}
911
912int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
913		size_t size)
914{
915	struct iovec *iov;
916	struct tcp_sock *tp = tcp_sk(sk);
917	struct sk_buff *skb;
918	int iovlen, flags, err, copied;
919	int mss_now, size_goal;
920	bool sg;
921	long timeo;
922
923	lock_sock(sk);
924
925	flags = msg->msg_flags;
926	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
927
928	/* Wait for a connection to finish. */
929	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
930		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
931			goto out_err;
932
933	/* This should be in poll */
934	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
935
936	mss_now = tcp_send_mss(sk, &size_goal, flags);
937
938	/* Ok commence sending. */
939	iovlen = msg->msg_iovlen;
940	iov = msg->msg_iov;
941	copied = 0;
942
943	err = -EPIPE;
944	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
945		goto out_err;
946
947	sg = !!(sk->sk_route_caps & NETIF_F_SG);
948
949	while (--iovlen >= 0) {
950		size_t seglen = iov->iov_len;
951		unsigned char __user *from = iov->iov_base;
952
953		iov++;
954
955		while (seglen > 0) {
956			int copy = 0;
957			int max = size_goal;
958
959			skb = tcp_write_queue_tail(sk);
960			if (tcp_send_head(sk)) {
961				if (skb->ip_summed == CHECKSUM_NONE)
962					max = mss_now;
963				copy = max - skb->len;
964			}
965
966			if (copy <= 0) {
967new_segment:
968				/* Allocate new segment. If the interface is SG,
969				 * allocate skb fitting to single page.
970				 */
971				if (!sk_stream_memory_free(sk))
972					goto wait_for_sndbuf;
973
974				skb = sk_stream_alloc_skb(sk,
975							  select_size(sk, sg),
976							  sk->sk_allocation);
977				if (!skb)
978					goto wait_for_memory;
979
980				/*
981				 * Check whether we can use HW checksum.
982				 */
983				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
984					skb->ip_summed = CHECKSUM_PARTIAL;
985
986				skb_entail(sk, skb);
987				copy = size_goal;
988				max = size_goal;
989			}
990
991			/* Try to append data to the end of skb. */
992			if (copy > seglen)
993				copy = seglen;
994
995			/* Where to copy to? */
996			if (skb_tailroom(skb) > 0) {
997				/* We have some space in skb head. Superb! */
998				if (copy > skb_tailroom(skb))
999					copy = skb_tailroom(skb);
1000				err = skb_add_data_nocache(sk, skb, from, copy);
1001				if (err)
1002					goto do_fault;
1003			} else {
1004				int merge = 0;
1005				int i = skb_shinfo(skb)->nr_frags;
1006				struct page *page = sk->sk_sndmsg_page;
1007				int off;
1008
1009				if (page && page_count(page) == 1)
1010					sk->sk_sndmsg_off = 0;
1011
1012				off = sk->sk_sndmsg_off;
1013
1014				if (skb_can_coalesce(skb, i, page, off) &&
1015				    off != PAGE_SIZE) {
1016					/* We can extend the last page
1017					 * fragment. */
1018					merge = 1;
1019				} else if (i == MAX_SKB_FRAGS || !sg) {
1020					/* Need to add new fragment and cannot
1021					 * do this because interface is non-SG,
1022					 * or because all the page slots are
1023					 * busy. */
1024					tcp_mark_push(tp, skb);
1025					goto new_segment;
1026				} else if (page) {
1027					if (off == PAGE_SIZE) {
1028						put_page(page);
1029						sk->sk_sndmsg_page = page = NULL;
1030						off = 0;
1031					}
1032				} else
1033					off = 0;
1034
1035				if (copy > PAGE_SIZE - off)
1036					copy = PAGE_SIZE - off;
1037
1038				if (!sk_wmem_schedule(sk, copy))
1039					goto wait_for_memory;
1040
1041				if (!page) {
1042					/* Allocate new cache page. */
1043					if (!(page = sk_stream_alloc_page(sk)))
1044						goto wait_for_memory;
1045				}
1046
1047				/* Time to copy data. We are close to
1048				 * the end! */
1049				err = skb_copy_to_page_nocache(sk, from, skb,
1050							       page, off, copy);
1051				if (err) {
1052					/* If this page was new, give it to the
1053					 * socket so it does not get leaked.
1054					 */
1055					if (!sk->sk_sndmsg_page) {
1056						sk->sk_sndmsg_page = page;
1057						sk->sk_sndmsg_off = 0;
1058					}
1059					goto do_error;
1060				}
1061
1062				/* Update the skb. */
1063				if (merge) {
1064					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1065				} else {
1066					skb_fill_page_desc(skb, i, page, off, copy);
1067					if (sk->sk_sndmsg_page) {
1068						get_page(page);
1069					} else if (off + copy < PAGE_SIZE) {
1070						get_page(page);
1071						sk->sk_sndmsg_page = page;
1072					}
1073				}
1074
1075				sk->sk_sndmsg_off = off + copy;
1076			}
1077
1078			if (!copied)
1079				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1080
1081			tp->write_seq += copy;
1082			TCP_SKB_CB(skb)->end_seq += copy;
1083			skb_shinfo(skb)->gso_segs = 0;
1084
1085			from += copy;
1086			copied += copy;
1087			if ((seglen -= copy) == 0 && iovlen == 0)
1088				goto out;
1089
1090			if (skb->len < max || (flags & MSG_OOB))
1091				continue;
1092
1093			if (forced_push(tp)) {
1094				tcp_mark_push(tp, skb);
1095				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1096			} else if (skb == tcp_send_head(sk))
1097				tcp_push_one(sk, mss_now);
1098			continue;
1099
1100wait_for_sndbuf:
1101			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1102wait_for_memory:
1103			if (copied)
1104				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1105
1106			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1107				goto do_error;
1108
1109			mss_now = tcp_send_mss(sk, &size_goal, flags);
1110		}
1111	}
1112
1113out:
1114	if (copied)
1115		tcp_push(sk, flags, mss_now, tp->nonagle);
1116	release_sock(sk);
1117	return copied;
1118
1119do_fault:
1120	if (!skb->len) {
1121		tcp_unlink_write_queue(skb, sk);
1122		/* It is the one place in all of TCP, except connection
1123		 * reset, where we can be unlinking the send_head.
1124		 */
1125		tcp_check_send_head(sk, skb);
1126		sk_wmem_free_skb(sk, skb);
1127	}
1128
1129do_error:
1130	if (copied)
1131		goto out;
1132out_err:
1133	err = sk_stream_error(sk, flags, err);
1134	release_sock(sk);
1135	return err;
1136}
1137EXPORT_SYMBOL(tcp_sendmsg);
1138
1139/*
1140 *	Handle reading urgent data. BSD has very simple semantics for
1141 *	this, no blocking and very strange errors 8)
1142 */
1143
1144static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1145{
1146	struct tcp_sock *tp = tcp_sk(sk);
1147
1148	/* No URG data to read. */
1149	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1150	    tp->urg_data == TCP_URG_READ)
1151		return -EINVAL;	/* Yes this is right ! */
1152
1153	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1154		return -ENOTCONN;
1155
1156	if (tp->urg_data & TCP_URG_VALID) {
1157		int err = 0;
1158		char c = tp->urg_data;
1159
1160		if (!(flags & MSG_PEEK))
1161			tp->urg_data = TCP_URG_READ;
1162
1163		/* Read urgent data. */
1164		msg->msg_flags |= MSG_OOB;
1165
1166		if (len > 0) {
1167			if (!(flags & MSG_TRUNC))
1168				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1169			len = 1;
1170		} else
1171			msg->msg_flags |= MSG_TRUNC;
1172
1173		return err ? -EFAULT : len;
1174	}
1175
1176	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1177		return 0;
1178
1179	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1180	 * the available implementations agree in this case:
1181	 * this call should never block, independent of the
1182	 * blocking state of the socket.
1183	 * Mike <pall@rz.uni-karlsruhe.de>
1184	 */
1185	return -EAGAIN;
1186}
1187
1188/* Clean up the receive buffer for full frames taken by the user,
1189 * then send an ACK if necessary.  COPIED is the number of bytes
1190 * tcp_recvmsg has given to the user so far, it speeds up the
1191 * calculation of whether or not we must ACK for the sake of
1192 * a window update.
1193 */
1194void tcp_cleanup_rbuf(struct sock *sk, int copied)
1195{
1196	struct tcp_sock *tp = tcp_sk(sk);
1197	int time_to_ack = 0;
1198
1199	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1200
1201	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1202	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1203	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1204
1205	if (inet_csk_ack_scheduled(sk)) {
1206		const struct inet_connection_sock *icsk = inet_csk(sk);
1207		   /* Delayed ACKs frequently hit locked sockets during bulk
1208		    * receive. */
1209		if (icsk->icsk_ack.blocked ||
1210		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1211		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1212		    /*
1213		     * If this read emptied read buffer, we send ACK, if
1214		     * connection is not bidirectional, user drained
1215		     * receive buffer and there was a small segment
1216		     * in queue.
1217		     */
1218		    (copied > 0 &&
1219		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1220		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1221		       !icsk->icsk_ack.pingpong)) &&
1222		      !atomic_read(&sk->sk_rmem_alloc)))
1223			time_to_ack = 1;
1224	}
1225
1226	/* We send an ACK if we can now advertise a non-zero window
1227	 * which has been raised "significantly".
1228	 *
1229	 * Even if window raised up to infinity, do not send window open ACK
1230	 * in states, where we will not receive more. It is useless.
1231	 */
1232	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1233		__u32 rcv_window_now = tcp_receive_window(tp);
1234
1235		/* Optimize, __tcp_select_window() is not cheap. */
1236		if (2*rcv_window_now <= tp->window_clamp) {
1237			__u32 new_window = __tcp_select_window(sk);
1238
1239			/* Send ACK now, if this read freed lots of space
1240			 * in our buffer. Certainly, new_window is new window.
1241			 * We can advertise it now, if it is not less than current one.
1242			 * "Lots" means "at least twice" here.
1243			 */
1244			if (new_window && new_window >= 2 * rcv_window_now)
1245				time_to_ack = 1;
1246		}
1247	}
1248	if (time_to_ack)
1249		tcp_send_ack(sk);
1250}
1251
1252static void tcp_prequeue_process(struct sock *sk)
1253{
1254	struct sk_buff *skb;
1255	struct tcp_sock *tp = tcp_sk(sk);
1256
1257	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1258
1259	/* RX process wants to run with disabled BHs, though it is not
1260	 * necessary */
1261	local_bh_disable();
1262	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1263		sk_backlog_rcv(sk, skb);
1264	local_bh_enable();
1265
1266	/* Clear memory counter. */
1267	tp->ucopy.memory = 0;
1268}
1269
1270#ifdef CONFIG_NET_DMA
1271static void tcp_service_net_dma(struct sock *sk, bool wait)
1272{
1273	dma_cookie_t done, used;
1274	dma_cookie_t last_issued;
1275	struct tcp_sock *tp = tcp_sk(sk);
1276
1277	if (!tp->ucopy.dma_chan)
1278		return;
1279
1280	last_issued = tp->ucopy.dma_cookie;
1281	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1282
1283	do {
1284		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1285					      last_issued, &done,
1286					      &used) == DMA_SUCCESS) {
1287			/* Safe to free early-copied skbs now */
1288			__skb_queue_purge(&sk->sk_async_wait_queue);
1289			break;
1290		} else {
1291			struct sk_buff *skb;
1292			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1293			       (dma_async_is_complete(skb->dma_cookie, done,
1294						      used) == DMA_SUCCESS)) {
1295				__skb_dequeue(&sk->sk_async_wait_queue);
1296				kfree_skb(skb);
1297			}
1298		}
1299	} while (wait);
1300}
1301#endif
1302
1303static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1304{
1305	struct sk_buff *skb;
1306	u32 offset;
1307
1308	skb_queue_walk(&sk->sk_receive_queue, skb) {
1309		offset = seq - TCP_SKB_CB(skb)->seq;
1310		if (tcp_hdr(skb)->syn)
1311			offset--;
1312		if (offset < skb->len || tcp_hdr(skb)->fin) {
1313			*off = offset;
1314			return skb;
1315		}
1316	}
1317	return NULL;
1318}
1319
1320/*
1321 * This routine provides an alternative to tcp_recvmsg() for routines
1322 * that would like to handle copying from skbuffs directly in 'sendfile'
1323 * fashion.
1324 * Note:
1325 *	- It is assumed that the socket was locked by the caller.
1326 *	- The routine does not block.
1327 *	- At present, there is no support for reading OOB data
1328 *	  or for 'peeking' the socket using this routine
1329 *	  (although both would be easy to implement).
1330 */
1331int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1332		  sk_read_actor_t recv_actor)
1333{
1334	struct sk_buff *skb;
1335	struct tcp_sock *tp = tcp_sk(sk);
1336	u32 seq = tp->copied_seq;
1337	u32 offset;
1338	int copied = 0;
1339
1340	if (sk->sk_state == TCP_LISTEN)
1341		return -ENOTCONN;
1342	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1343		if (offset < skb->len) {
1344			int used;
1345			size_t len;
1346
1347			len = skb->len - offset;
1348			/* Stop reading if we hit a patch of urgent data */
1349			if (tp->urg_data) {
1350				u32 urg_offset = tp->urg_seq - seq;
1351				if (urg_offset < len)
1352					len = urg_offset;
1353				if (!len)
1354					break;
1355			}
1356			used = recv_actor(desc, skb, offset, len);
1357			if (used < 0) {
1358				if (!copied)
1359					copied = used;
1360				break;
1361			} else if (used <= len) {
1362				seq += used;
1363				copied += used;
1364				offset += used;
1365			}
1366			/*
1367			 * If recv_actor drops the lock (e.g. TCP splice
1368			 * receive) the skb pointer might be invalid when
1369			 * getting here: tcp_collapse might have deleted it
1370			 * while aggregating skbs from the socket queue.
1371			 */
1372			skb = tcp_recv_skb(sk, seq-1, &offset);
1373			if (!skb || (offset+1 != skb->len))
1374				break;
1375		}
1376		if (tcp_hdr(skb)->fin) {
1377			sk_eat_skb(sk, skb, 0);
1378			++seq;
1379			break;
1380		}
1381		sk_eat_skb(sk, skb, 0);
1382		if (!desc->count)
1383			break;
1384		tp->copied_seq = seq;
1385	}
1386	tp->copied_seq = seq;
1387
1388	tcp_rcv_space_adjust(sk);
1389
1390	/* Clean up data we have read: This will do ACK frames. */
1391	if (copied > 0)
1392		tcp_cleanup_rbuf(sk, copied);
1393	return copied;
1394}
1395EXPORT_SYMBOL(tcp_read_sock);
1396
1397/*
1398 *	This routine copies from a sock struct into the user buffer.
1399 *
1400 *	Technical note: in 2.3 we work on _locked_ socket, so that
1401 *	tricks with *seq access order and skb->users are not required.
1402 *	Probably, code can be easily improved even more.
1403 */
1404
1405int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1406		size_t len, int nonblock, int flags, int *addr_len)
1407{
1408	struct tcp_sock *tp = tcp_sk(sk);
1409	int copied = 0;
1410	u32 peek_seq;
1411	u32 *seq;
1412	unsigned long used;
1413	int err;
1414	int target;		/* Read at least this many bytes */
1415	long timeo;
1416	struct task_struct *user_recv = NULL;
1417	int copied_early = 0;
1418	struct sk_buff *skb;
1419	u32 urg_hole = 0;
1420
1421	lock_sock(sk);
1422
1423	err = -ENOTCONN;
1424	if (sk->sk_state == TCP_LISTEN)
1425		goto out;
1426
1427	timeo = sock_rcvtimeo(sk, nonblock);
1428
1429	/* Urgent data needs to be handled specially. */
1430	if (flags & MSG_OOB)
1431		goto recv_urg;
1432
1433	seq = &tp->copied_seq;
1434	if (flags & MSG_PEEK) {
1435		peek_seq = tp->copied_seq;
1436		seq = &peek_seq;
1437	}
1438
1439	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1440
1441#ifdef CONFIG_NET_DMA
1442	tp->ucopy.dma_chan = NULL;
1443	preempt_disable();
1444	skb = skb_peek_tail(&sk->sk_receive_queue);
1445	{
1446		int available = 0;
1447
1448		if (skb)
1449			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1450		if ((available < target) &&
1451		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1452		    !sysctl_tcp_low_latency &&
1453		    dma_find_channel(DMA_MEMCPY)) {
1454			preempt_enable_no_resched();
1455			tp->ucopy.pinned_list =
1456					dma_pin_iovec_pages(msg->msg_iov, len);
1457		} else {
1458			preempt_enable_no_resched();
1459		}
1460	}
1461#endif
1462
1463	do {
1464		u32 offset;
1465
1466		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1467		if (tp->urg_data && tp->urg_seq == *seq) {
1468			if (copied)
1469				break;
1470			if (signal_pending(current)) {
1471				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1472				break;
1473			}
1474		}
1475
1476		/* Next get a buffer. */
1477
1478		skb_queue_walk(&sk->sk_receive_queue, skb) {
1479			/* Now that we have two receive queues this
1480			 * shouldn't happen.
1481			 */
1482			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1483				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1484				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1485				 flags))
1486				break;
1487
1488			offset = *seq - TCP_SKB_CB(skb)->seq;
1489			if (tcp_hdr(skb)->syn)
1490				offset--;
1491			if (offset < skb->len)
1492				goto found_ok_skb;
1493			if (tcp_hdr(skb)->fin)
1494				goto found_fin_ok;
1495			WARN(!(flags & MSG_PEEK),
1496			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1497			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1498		}
1499
1500		/* Well, if we have backlog, try to process it now yet. */
1501
1502		if (copied >= target && !sk->sk_backlog.tail)
1503			break;
1504
1505		if (copied) {
1506			if (sk->sk_err ||
1507			    sk->sk_state == TCP_CLOSE ||
1508			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1509			    !timeo ||
1510			    signal_pending(current))
1511				break;
1512		} else {
1513			if (sock_flag(sk, SOCK_DONE))
1514				break;
1515
1516			if (sk->sk_err) {
1517				copied = sock_error(sk);
1518				break;
1519			}
1520
1521			if (sk->sk_shutdown & RCV_SHUTDOWN)
1522				break;
1523
1524			if (sk->sk_state == TCP_CLOSE) {
1525				if (!sock_flag(sk, SOCK_DONE)) {
1526					/* This occurs when user tries to read
1527					 * from never connected socket.
1528					 */
1529					copied = -ENOTCONN;
1530					break;
1531				}
1532				break;
1533			}
1534
1535			if (!timeo) {
1536				copied = -EAGAIN;
1537				break;
1538			}
1539
1540			if (signal_pending(current)) {
1541				copied = sock_intr_errno(timeo);
1542				break;
1543			}
1544		}
1545
1546		tcp_cleanup_rbuf(sk, copied);
1547
1548		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1549			/* Install new reader */
1550			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1551				user_recv = current;
1552				tp->ucopy.task = user_recv;
1553				tp->ucopy.iov = msg->msg_iov;
1554			}
1555
1556			tp->ucopy.len = len;
1557
1558			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1559				!(flags & (MSG_PEEK | MSG_TRUNC)));
1560
1561			/* Ugly... If prequeue is not empty, we have to
1562			 * process it before releasing socket, otherwise
1563			 * order will be broken at second iteration.
1564			 * More elegant solution is required!!!
1565			 *
1566			 * Look: we have the following (pseudo)queues:
1567			 *
1568			 * 1. packets in flight
1569			 * 2. backlog
1570			 * 3. prequeue
1571			 * 4. receive_queue
1572			 *
1573			 * Each queue can be processed only if the next ones
1574			 * are empty. At this point we have empty receive_queue.
1575			 * But prequeue _can_ be not empty after 2nd iteration,
1576			 * when we jumped to start of loop because backlog
1577			 * processing added something to receive_queue.
1578			 * We cannot release_sock(), because backlog contains
1579			 * packets arrived _after_ prequeued ones.
1580			 *
1581			 * Shortly, algorithm is clear --- to process all
1582			 * the queues in order. We could make it more directly,
1583			 * requeueing packets from backlog to prequeue, if
1584			 * is not empty. It is more elegant, but eats cycles,
1585			 * unfortunately.
1586			 */
1587			if (!skb_queue_empty(&tp->ucopy.prequeue))
1588				goto do_prequeue;
1589
1590			/* __ Set realtime policy in scheduler __ */
1591		}
1592
1593#ifdef CONFIG_NET_DMA
1594		if (tp->ucopy.dma_chan)
1595			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1596#endif
1597		if (copied >= target) {
1598			/* Do not sleep, just process backlog. */
1599			release_sock(sk);
1600			lock_sock(sk);
1601		} else
1602			sk_wait_data(sk, &timeo);
1603
1604#ifdef CONFIG_NET_DMA
1605		tcp_service_net_dma(sk, false);  /* Don't block */
1606		tp->ucopy.wakeup = 0;
1607#endif
1608
1609		if (user_recv) {
1610			int chunk;
1611
1612			/* __ Restore normal policy in scheduler __ */
1613
1614			if ((chunk = len - tp->ucopy.len) != 0) {
1615				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1616				len -= chunk;
1617				copied += chunk;
1618			}
1619
1620			if (tp->rcv_nxt == tp->copied_seq &&
1621			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1622do_prequeue:
1623				tcp_prequeue_process(sk);
1624
1625				if ((chunk = len - tp->ucopy.len) != 0) {
1626					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1627					len -= chunk;
1628					copied += chunk;
1629				}
1630			}
1631		}
1632		if ((flags & MSG_PEEK) &&
1633		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1634			if (net_ratelimit())
1635				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1636				       current->comm, task_pid_nr(current));
1637			peek_seq = tp->copied_seq;
1638		}
1639		continue;
1640
1641	found_ok_skb:
1642		/* Ok so how much can we use? */
1643		used = skb->len - offset;
1644		if (len < used)
1645			used = len;
1646
1647		/* Do we have urgent data here? */
1648		if (tp->urg_data) {
1649			u32 urg_offset = tp->urg_seq - *seq;
1650			if (urg_offset < used) {
1651				if (!urg_offset) {
1652					if (!sock_flag(sk, SOCK_URGINLINE)) {
1653						++*seq;
1654						urg_hole++;
1655						offset++;
1656						used--;
1657						if (!used)
1658							goto skip_copy;
1659					}
1660				} else
1661					used = urg_offset;
1662			}
1663		}
1664
1665		if (!(flags & MSG_TRUNC)) {
1666#ifdef CONFIG_NET_DMA
1667			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1668				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1669
1670			if (tp->ucopy.dma_chan) {
1671				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1672					tp->ucopy.dma_chan, skb, offset,
1673					msg->msg_iov, used,
1674					tp->ucopy.pinned_list);
1675
1676				if (tp->ucopy.dma_cookie < 0) {
1677
1678					printk(KERN_ALERT "dma_cookie < 0\n");
1679
1680					/* Exception. Bailout! */
1681					if (!copied)
1682						copied = -EFAULT;
1683					break;
1684				}
1685
1686				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1687
1688				if ((offset + used) == skb->len)
1689					copied_early = 1;
1690
1691			} else
1692#endif
1693			{
1694				err = skb_copy_datagram_iovec(skb, offset,
1695						msg->msg_iov, used);
1696				if (err) {
1697					/* Exception. Bailout! */
1698					if (!copied)
1699						copied = -EFAULT;
1700					break;
1701				}
1702			}
1703		}
1704
1705		*seq += used;
1706		copied += used;
1707		len -= used;
1708
1709		tcp_rcv_space_adjust(sk);
1710
1711skip_copy:
1712		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1713			tp->urg_data = 0;
1714			tcp_fast_path_check(sk);
1715		}
1716		if (used + offset < skb->len)
1717			continue;
1718
1719		if (tcp_hdr(skb)->fin)
1720			goto found_fin_ok;
1721		if (!(flags & MSG_PEEK)) {
1722			sk_eat_skb(sk, skb, copied_early);
1723			copied_early = 0;
1724		}
1725		continue;
1726
1727	found_fin_ok:
1728		/* Process the FIN. */
1729		++*seq;
1730		if (!(flags & MSG_PEEK)) {
1731			sk_eat_skb(sk, skb, copied_early);
1732			copied_early = 0;
1733		}
1734		break;
1735	} while (len > 0);
1736
1737	if (user_recv) {
1738		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1739			int chunk;
1740
1741			tp->ucopy.len = copied > 0 ? len : 0;
1742
1743			tcp_prequeue_process(sk);
1744
1745			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1746				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1747				len -= chunk;
1748				copied += chunk;
1749			}
1750		}
1751
1752		tp->ucopy.task = NULL;
1753		tp->ucopy.len = 0;
1754	}
1755
1756#ifdef CONFIG_NET_DMA
1757	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1758	tp->ucopy.dma_chan = NULL;
1759
1760	if (tp->ucopy.pinned_list) {
1761		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1762		tp->ucopy.pinned_list = NULL;
1763	}
1764#endif
1765
1766	/* According to UNIX98, msg_name/msg_namelen are ignored
1767	 * on connected socket. I was just happy when found this 8) --ANK
1768	 */
1769
1770	/* Clean up data we have read: This will do ACK frames. */
1771	tcp_cleanup_rbuf(sk, copied);
1772
1773	release_sock(sk);
1774	return copied;
1775
1776out:
1777	release_sock(sk);
1778	return err;
1779
1780recv_urg:
1781	err = tcp_recv_urg(sk, msg, len, flags);
1782	goto out;
1783}
1784EXPORT_SYMBOL(tcp_recvmsg);
1785
1786void tcp_set_state(struct sock *sk, int state)
1787{
1788	int oldstate = sk->sk_state;
1789
1790	switch (state) {
1791	case TCP_ESTABLISHED:
1792		if (oldstate != TCP_ESTABLISHED)
1793			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1794		break;
1795
1796	case TCP_CLOSE:
1797		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1798			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1799
1800		sk->sk_prot->unhash(sk);
1801		if (inet_csk(sk)->icsk_bind_hash &&
1802		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1803			inet_put_port(sk);
1804		/* fall through */
1805	default:
1806		if (oldstate == TCP_ESTABLISHED)
1807			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1808	}
1809
1810	/* Change state AFTER socket is unhashed to avoid closed
1811	 * socket sitting in hash tables.
1812	 */
1813	sk->sk_state = state;
1814
1815#ifdef STATE_TRACE
1816	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1817#endif
1818}
1819EXPORT_SYMBOL_GPL(tcp_set_state);
1820
1821/*
1822 *	State processing on a close. This implements the state shift for
1823 *	sending our FIN frame. Note that we only send a FIN for some
1824 *	states. A shutdown() may have already sent the FIN, or we may be
1825 *	closed.
1826 */
1827
1828static const unsigned char new_state[16] = {
1829  /* current state:        new state:      action:	*/
1830  /* (Invalid)		*/ TCP_CLOSE,
1831  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1832  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1833  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1834  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1835  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1836  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1837  /* TCP_CLOSE		*/ TCP_CLOSE,
1838  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1839  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1840  /* TCP_LISTEN		*/ TCP_CLOSE,
1841  /* TCP_CLOSING	*/ TCP_CLOSING,
1842};
1843
1844static int tcp_close_state(struct sock *sk)
1845{
1846	int next = (int)new_state[sk->sk_state];
1847	int ns = next & TCP_STATE_MASK;
1848
1849	tcp_set_state(sk, ns);
1850
1851	return next & TCP_ACTION_FIN;
1852}
1853
1854/*
1855 *	Shutdown the sending side of a connection. Much like close except
1856 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1857 */
1858
1859void tcp_shutdown(struct sock *sk, int how)
1860{
1861	/*	We need to grab some memory, and put together a FIN,
1862	 *	and then put it into the queue to be sent.
1863	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1864	 */
1865	if (!(how & SEND_SHUTDOWN))
1866		return;
1867
1868	/* If we've already sent a FIN, or it's a closed state, skip this. */
1869	if ((1 << sk->sk_state) &
1870	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1871	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1872		/* Clear out any half completed packets.  FIN if needed. */
1873		if (tcp_close_state(sk))
1874			tcp_send_fin(sk);
1875	}
1876}
1877EXPORT_SYMBOL(tcp_shutdown);
1878
1879bool tcp_check_oom(struct sock *sk, int shift)
1880{
1881	bool too_many_orphans, out_of_socket_memory;
1882
1883	too_many_orphans = tcp_too_many_orphans(sk, shift);
1884	out_of_socket_memory = tcp_out_of_memory(sk);
1885
1886	if (too_many_orphans && net_ratelimit())
1887		pr_info("TCP: too many orphaned sockets\n");
1888	if (out_of_socket_memory && net_ratelimit())
1889		pr_info("TCP: out of memory -- consider tuning tcp_mem\n");
1890	return too_many_orphans || out_of_socket_memory;
1891}
1892
1893void tcp_close(struct sock *sk, long timeout)
1894{
1895	struct sk_buff *skb;
1896	int data_was_unread = 0;
1897	int state;
1898
1899	lock_sock(sk);
1900	sk->sk_shutdown = SHUTDOWN_MASK;
1901
1902	if (sk->sk_state == TCP_LISTEN) {
1903		tcp_set_state(sk, TCP_CLOSE);
1904
1905		/* Special case. */
1906		inet_csk_listen_stop(sk);
1907
1908		goto adjudge_to_death;
1909	}
1910
1911	/*  We need to flush the recv. buffs.  We do this only on the
1912	 *  descriptor close, not protocol-sourced closes, because the
1913	 *  reader process may not have drained the data yet!
1914	 */
1915	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1916		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1917			  tcp_hdr(skb)->fin;
1918		data_was_unread += len;
1919		__kfree_skb(skb);
1920	}
1921
1922	sk_mem_reclaim(sk);
1923
1924	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1925	if (sk->sk_state == TCP_CLOSE)
1926		goto adjudge_to_death;
1927
1928	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1929	 * data was lost. To witness the awful effects of the old behavior of
1930	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1931	 * GET in an FTP client, suspend the process, wait for the client to
1932	 * advertise a zero window, then kill -9 the FTP client, wheee...
1933	 * Note: timeout is always zero in such a case.
1934	 */
1935	if (data_was_unread) {
1936		/* Unread data was tossed, zap the connection. */
1937		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1938		tcp_set_state(sk, TCP_CLOSE);
1939		tcp_send_active_reset(sk, sk->sk_allocation);
1940	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1941		/* Check zero linger _after_ checking for unread data. */
1942		sk->sk_prot->disconnect(sk, 0);
1943		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1944	} else if (tcp_close_state(sk)) {
1945		/* We FIN if the application ate all the data before
1946		 * zapping the connection.
1947		 */
1948
1949		/* RED-PEN. Formally speaking, we have broken TCP state
1950		 * machine. State transitions:
1951		 *
1952		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1953		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1954		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1955		 *
1956		 * are legal only when FIN has been sent (i.e. in window),
1957		 * rather than queued out of window. Purists blame.
1958		 *
1959		 * F.e. "RFC state" is ESTABLISHED,
1960		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1961		 *
1962		 * The visible declinations are that sometimes
1963		 * we enter time-wait state, when it is not required really
1964		 * (harmless), do not send active resets, when they are
1965		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1966		 * they look as CLOSING or LAST_ACK for Linux)
1967		 * Probably, I missed some more holelets.
1968		 * 						--ANK
1969		 */
1970		tcp_send_fin(sk);
1971	}
1972
1973	sk_stream_wait_close(sk, timeout);
1974
1975adjudge_to_death:
1976	state = sk->sk_state;
1977	sock_hold(sk);
1978	sock_orphan(sk);
1979
1980	/* It is the last release_sock in its life. It will remove backlog. */
1981	release_sock(sk);
1982
1983
1984	/* Now socket is owned by kernel and we acquire BH lock
1985	   to finish close. No need to check for user refs.
1986	 */
1987	local_bh_disable();
1988	bh_lock_sock(sk);
1989	WARN_ON(sock_owned_by_user(sk));
1990
1991	percpu_counter_inc(sk->sk_prot->orphan_count);
1992
1993	/* Have we already been destroyed by a softirq or backlog? */
1994	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1995		goto out;
1996
1997	/*	This is a (useful) BSD violating of the RFC. There is a
1998	 *	problem with TCP as specified in that the other end could
1999	 *	keep a socket open forever with no application left this end.
2000	 *	We use a 3 minute timeout (about the same as BSD) then kill
2001	 *	our end. If they send after that then tough - BUT: long enough
2002	 *	that we won't make the old 4*rto = almost no time - whoops
2003	 *	reset mistake.
2004	 *
2005	 *	Nope, it was not mistake. It is really desired behaviour
2006	 *	f.e. on http servers, when such sockets are useless, but
2007	 *	consume significant resources. Let's do it with special
2008	 *	linger2	option.					--ANK
2009	 */
2010
2011	if (sk->sk_state == TCP_FIN_WAIT2) {
2012		struct tcp_sock *tp = tcp_sk(sk);
2013		if (tp->linger2 < 0) {
2014			tcp_set_state(sk, TCP_CLOSE);
2015			tcp_send_active_reset(sk, GFP_ATOMIC);
2016			NET_INC_STATS_BH(sock_net(sk),
2017					LINUX_MIB_TCPABORTONLINGER);
2018		} else {
2019			const int tmo = tcp_fin_time(sk);
2020
2021			if (tmo > TCP_TIMEWAIT_LEN) {
2022				inet_csk_reset_keepalive_timer(sk,
2023						tmo - TCP_TIMEWAIT_LEN);
2024			} else {
2025				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2026				goto out;
2027			}
2028		}
2029	}
2030	if (sk->sk_state != TCP_CLOSE) {
2031		sk_mem_reclaim(sk);
2032		if (tcp_check_oom(sk, 0)) {
2033			tcp_set_state(sk, TCP_CLOSE);
2034			tcp_send_active_reset(sk, GFP_ATOMIC);
2035			NET_INC_STATS_BH(sock_net(sk),
2036					LINUX_MIB_TCPABORTONMEMORY);
2037		}
2038	}
2039
2040	if (sk->sk_state == TCP_CLOSE)
2041		inet_csk_destroy_sock(sk);
2042	/* Otherwise, socket is reprieved until protocol close. */
2043
2044out:
2045	bh_unlock_sock(sk);
2046	local_bh_enable();
2047	sock_put(sk);
2048}
2049EXPORT_SYMBOL(tcp_close);
2050
2051/* These states need RST on ABORT according to RFC793 */
2052
2053static inline int tcp_need_reset(int state)
2054{
2055	return (1 << state) &
2056	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2057		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2058}
2059
2060int tcp_disconnect(struct sock *sk, int flags)
2061{
2062	struct inet_sock *inet = inet_sk(sk);
2063	struct inet_connection_sock *icsk = inet_csk(sk);
2064	struct tcp_sock *tp = tcp_sk(sk);
2065	int err = 0;
2066	int old_state = sk->sk_state;
2067
2068	if (old_state != TCP_CLOSE)
2069		tcp_set_state(sk, TCP_CLOSE);
2070
2071	/* ABORT function of RFC793 */
2072	if (old_state == TCP_LISTEN) {
2073		inet_csk_listen_stop(sk);
2074	} else if (tcp_need_reset(old_state) ||
2075		   (tp->snd_nxt != tp->write_seq &&
2076		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2077		/* The last check adjusts for discrepancy of Linux wrt. RFC
2078		 * states
2079		 */
2080		tcp_send_active_reset(sk, gfp_any());
2081		sk->sk_err = ECONNRESET;
2082	} else if (old_state == TCP_SYN_SENT)
2083		sk->sk_err = ECONNRESET;
2084
2085	tcp_clear_xmit_timers(sk);
2086	__skb_queue_purge(&sk->sk_receive_queue);
2087	tcp_write_queue_purge(sk);
2088	__skb_queue_purge(&tp->out_of_order_queue);
2089#ifdef CONFIG_NET_DMA
2090	__skb_queue_purge(&sk->sk_async_wait_queue);
2091#endif
2092
2093	inet->inet_dport = 0;
2094
2095	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2096		inet_reset_saddr(sk);
2097
2098	sk->sk_shutdown = 0;
2099	sock_reset_flag(sk, SOCK_DONE);
2100	tp->srtt = 0;
2101	if ((tp->write_seq += tp->max_window + 2) == 0)
2102		tp->write_seq = 1;
2103	icsk->icsk_backoff = 0;
2104	tp->snd_cwnd = 2;
2105	icsk->icsk_probes_out = 0;
2106	tp->packets_out = 0;
2107	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2108	tp->snd_cwnd_cnt = 0;
2109	tp->bytes_acked = 0;
2110	tp->window_clamp = 0;
2111	tcp_set_ca_state(sk, TCP_CA_Open);
2112	tcp_clear_retrans(tp);
2113	inet_csk_delack_init(sk);
2114	tcp_init_send_head(sk);
2115	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2116	__sk_dst_reset(sk);
2117
2118	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2119
2120	sk->sk_error_report(sk);
2121	return err;
2122}
2123EXPORT_SYMBOL(tcp_disconnect);
2124
2125/*
2126 *	Socket option code for TCP.
2127 */
2128static int do_tcp_setsockopt(struct sock *sk, int level,
2129		int optname, char __user *optval, unsigned int optlen)
2130{
2131	struct tcp_sock *tp = tcp_sk(sk);
2132	struct inet_connection_sock *icsk = inet_csk(sk);
2133	int val;
2134	int err = 0;
2135
2136	/* These are data/string values, all the others are ints */
2137	switch (optname) {
2138	case TCP_CONGESTION: {
2139		char name[TCP_CA_NAME_MAX];
2140
2141		if (optlen < 1)
2142			return -EINVAL;
2143
2144		val = strncpy_from_user(name, optval,
2145					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2146		if (val < 0)
2147			return -EFAULT;
2148		name[val] = 0;
2149
2150		lock_sock(sk);
2151		err = tcp_set_congestion_control(sk, name);
2152		release_sock(sk);
2153		return err;
2154	}
2155	case TCP_COOKIE_TRANSACTIONS: {
2156		struct tcp_cookie_transactions ctd;
2157		struct tcp_cookie_values *cvp = NULL;
2158
2159		if (sizeof(ctd) > optlen)
2160			return -EINVAL;
2161		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2162			return -EFAULT;
2163
2164		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2165		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2166			return -EINVAL;
2167
2168		if (ctd.tcpct_cookie_desired == 0) {
2169			/* default to global value */
2170		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2171			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2172			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2173			return -EINVAL;
2174		}
2175
2176		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2177			/* Supercedes all other values */
2178			lock_sock(sk);
2179			if (tp->cookie_values != NULL) {
2180				kref_put(&tp->cookie_values->kref,
2181					 tcp_cookie_values_release);
2182				tp->cookie_values = NULL;
2183			}
2184			tp->rx_opt.cookie_in_always = 0; /* false */
2185			tp->rx_opt.cookie_out_never = 1; /* true */
2186			release_sock(sk);
2187			return err;
2188		}
2189
2190		/* Allocate ancillary memory before locking.
2191		 */
2192		if (ctd.tcpct_used > 0 ||
2193		    (tp->cookie_values == NULL &&
2194		     (sysctl_tcp_cookie_size > 0 ||
2195		      ctd.tcpct_cookie_desired > 0 ||
2196		      ctd.tcpct_s_data_desired > 0))) {
2197			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2198				      GFP_KERNEL);
2199			if (cvp == NULL)
2200				return -ENOMEM;
2201
2202			kref_init(&cvp->kref);
2203		}
2204		lock_sock(sk);
2205		tp->rx_opt.cookie_in_always =
2206			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2207		tp->rx_opt.cookie_out_never = 0; /* false */
2208
2209		if (tp->cookie_values != NULL) {
2210			if (cvp != NULL) {
2211				/* Changed values are recorded by a changed
2212				 * pointer, ensuring the cookie will differ,
2213				 * without separately hashing each value later.
2214				 */
2215				kref_put(&tp->cookie_values->kref,
2216					 tcp_cookie_values_release);
2217			} else {
2218				cvp = tp->cookie_values;
2219			}
2220		}
2221
2222		if (cvp != NULL) {
2223			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2224
2225			if (ctd.tcpct_used > 0) {
2226				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2227				       ctd.tcpct_used);
2228				cvp->s_data_desired = ctd.tcpct_used;
2229				cvp->s_data_constant = 1; /* true */
2230			} else {
2231				/* No constant payload data. */
2232				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2233				cvp->s_data_constant = 0; /* false */
2234			}
2235
2236			tp->cookie_values = cvp;
2237		}
2238		release_sock(sk);
2239		return err;
2240	}
2241	default:
2242		/* fallthru */
2243		break;
2244	}
2245
2246	if (optlen < sizeof(int))
2247		return -EINVAL;
2248
2249	if (get_user(val, (int __user *)optval))
2250		return -EFAULT;
2251
2252	lock_sock(sk);
2253
2254	switch (optname) {
2255	case TCP_MAXSEG:
2256		/* Values greater than interface MTU won't take effect. However
2257		 * at the point when this call is done we typically don't yet
2258		 * know which interface is going to be used */
2259		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2260			err = -EINVAL;
2261			break;
2262		}
2263		tp->rx_opt.user_mss = val;
2264		break;
2265
2266	case TCP_NODELAY:
2267		if (val) {
2268			/* TCP_NODELAY is weaker than TCP_CORK, so that
2269			 * this option on corked socket is remembered, but
2270			 * it is not activated until cork is cleared.
2271			 *
2272			 * However, when TCP_NODELAY is set we make
2273			 * an explicit push, which overrides even TCP_CORK
2274			 * for currently queued segments.
2275			 */
2276			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2277			tcp_push_pending_frames(sk);
2278		} else {
2279			tp->nonagle &= ~TCP_NAGLE_OFF;
2280		}
2281		break;
2282
2283	case TCP_THIN_LINEAR_TIMEOUTS:
2284		if (val < 0 || val > 1)
2285			err = -EINVAL;
2286		else
2287			tp->thin_lto = val;
2288		break;
2289
2290	case TCP_THIN_DUPACK:
2291		if (val < 0 || val > 1)
2292			err = -EINVAL;
2293		else
2294			tp->thin_dupack = val;
2295		break;
2296
2297	case TCP_CORK:
2298		/* When set indicates to always queue non-full frames.
2299		 * Later the user clears this option and we transmit
2300		 * any pending partial frames in the queue.  This is
2301		 * meant to be used alongside sendfile() to get properly
2302		 * filled frames when the user (for example) must write
2303		 * out headers with a write() call first and then use
2304		 * sendfile to send out the data parts.
2305		 *
2306		 * TCP_CORK can be set together with TCP_NODELAY and it is
2307		 * stronger than TCP_NODELAY.
2308		 */
2309		if (val) {
2310			tp->nonagle |= TCP_NAGLE_CORK;
2311		} else {
2312			tp->nonagle &= ~TCP_NAGLE_CORK;
2313			if (tp->nonagle&TCP_NAGLE_OFF)
2314				tp->nonagle |= TCP_NAGLE_PUSH;
2315			tcp_push_pending_frames(sk);
2316		}
2317		break;
2318
2319	case TCP_KEEPIDLE:
2320		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2321			err = -EINVAL;
2322		else {
2323			tp->keepalive_time = val * HZ;
2324			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2325			    !((1 << sk->sk_state) &
2326			      (TCPF_CLOSE | TCPF_LISTEN))) {
2327				u32 elapsed = keepalive_time_elapsed(tp);
2328				if (tp->keepalive_time > elapsed)
2329					elapsed = tp->keepalive_time - elapsed;
2330				else
2331					elapsed = 0;
2332				inet_csk_reset_keepalive_timer(sk, elapsed);
2333			}
2334		}
2335		break;
2336	case TCP_KEEPINTVL:
2337		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2338			err = -EINVAL;
2339		else
2340			tp->keepalive_intvl = val * HZ;
2341		break;
2342	case TCP_KEEPCNT:
2343		if (val < 1 || val > MAX_TCP_KEEPCNT)
2344			err = -EINVAL;
2345		else
2346			tp->keepalive_probes = val;
2347		break;
2348	case TCP_SYNCNT:
2349		if (val < 1 || val > MAX_TCP_SYNCNT)
2350			err = -EINVAL;
2351		else
2352			icsk->icsk_syn_retries = val;
2353		break;
2354
2355	case TCP_LINGER2:
2356		if (val < 0)
2357			tp->linger2 = -1;
2358		else if (val > sysctl_tcp_fin_timeout / HZ)
2359			tp->linger2 = 0;
2360		else
2361			tp->linger2 = val * HZ;
2362		break;
2363
2364	case TCP_DEFER_ACCEPT:
2365		/* Translate value in seconds to number of retransmits */
2366		icsk->icsk_accept_queue.rskq_defer_accept =
2367			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2368					TCP_RTO_MAX / HZ);
2369		break;
2370
2371	case TCP_WINDOW_CLAMP:
2372		if (!val) {
2373			if (sk->sk_state != TCP_CLOSE) {
2374				err = -EINVAL;
2375				break;
2376			}
2377			tp->window_clamp = 0;
2378		} else
2379			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2380						SOCK_MIN_RCVBUF / 2 : val;
2381		break;
2382
2383	case TCP_QUICKACK:
2384		if (!val) {
2385			icsk->icsk_ack.pingpong = 1;
2386		} else {
2387			icsk->icsk_ack.pingpong = 0;
2388			if ((1 << sk->sk_state) &
2389			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2390			    inet_csk_ack_scheduled(sk)) {
2391				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2392				tcp_cleanup_rbuf(sk, 1);
2393				if (!(val & 1))
2394					icsk->icsk_ack.pingpong = 1;
2395			}
2396		}
2397		break;
2398
2399#ifdef CONFIG_TCP_MD5SIG
2400	case TCP_MD5SIG:
2401		/* Read the IP->Key mappings from userspace */
2402		err = tp->af_specific->md5_parse(sk, optval, optlen);
2403		break;
2404#endif
2405	case TCP_USER_TIMEOUT:
2406		/* Cap the max timeout in ms TCP will retry/retrans
2407		 * before giving up and aborting (ETIMEDOUT) a connection.
2408		 */
2409		icsk->icsk_user_timeout = msecs_to_jiffies(val);
2410		break;
2411	default:
2412		err = -ENOPROTOOPT;
2413		break;
2414	}
2415
2416	release_sock(sk);
2417	return err;
2418}
2419
2420int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2421		   unsigned int optlen)
2422{
2423	const struct inet_connection_sock *icsk = inet_csk(sk);
2424
2425	if (level != SOL_TCP)
2426		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2427						     optval, optlen);
2428	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2429}
2430EXPORT_SYMBOL(tcp_setsockopt);
2431
2432#ifdef CONFIG_COMPAT
2433int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2434			  char __user *optval, unsigned int optlen)
2435{
2436	if (level != SOL_TCP)
2437		return inet_csk_compat_setsockopt(sk, level, optname,
2438						  optval, optlen);
2439	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2440}
2441EXPORT_SYMBOL(compat_tcp_setsockopt);
2442#endif
2443
2444/* Return information about state of tcp endpoint in API format. */
2445void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2446{
2447	const struct tcp_sock *tp = tcp_sk(sk);
2448	const struct inet_connection_sock *icsk = inet_csk(sk);
2449	u32 now = tcp_time_stamp;
2450
2451	memset(info, 0, sizeof(*info));
2452
2453	info->tcpi_state = sk->sk_state;
2454	info->tcpi_ca_state = icsk->icsk_ca_state;
2455	info->tcpi_retransmits = icsk->icsk_retransmits;
2456	info->tcpi_probes = icsk->icsk_probes_out;
2457	info->tcpi_backoff = icsk->icsk_backoff;
2458
2459	if (tp->rx_opt.tstamp_ok)
2460		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2461	if (tcp_is_sack(tp))
2462		info->tcpi_options |= TCPI_OPT_SACK;
2463	if (tp->rx_opt.wscale_ok) {
2464		info->tcpi_options |= TCPI_OPT_WSCALE;
2465		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2466		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2467	}
2468
2469	if (tp->ecn_flags & TCP_ECN_OK)
2470		info->tcpi_options |= TCPI_OPT_ECN;
2471	if (tp->ecn_flags & TCP_ECN_SEEN)
2472		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2473
2474	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2475	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2476	info->tcpi_snd_mss = tp->mss_cache;
2477	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2478
2479	if (sk->sk_state == TCP_LISTEN) {
2480		info->tcpi_unacked = sk->sk_ack_backlog;
2481		info->tcpi_sacked = sk->sk_max_ack_backlog;
2482	} else {
2483		info->tcpi_unacked = tp->packets_out;
2484		info->tcpi_sacked = tp->sacked_out;
2485	}
2486	info->tcpi_lost = tp->lost_out;
2487	info->tcpi_retrans = tp->retrans_out;
2488	info->tcpi_fackets = tp->fackets_out;
2489
2490	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2491	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2492	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2493
2494	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2495	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2496	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2497	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2498	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2499	info->tcpi_snd_cwnd = tp->snd_cwnd;
2500	info->tcpi_advmss = tp->advmss;
2501	info->tcpi_reordering = tp->reordering;
2502
2503	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2504	info->tcpi_rcv_space = tp->rcvq_space.space;
2505
2506	info->tcpi_total_retrans = tp->total_retrans;
2507}
2508EXPORT_SYMBOL_GPL(tcp_get_info);
2509
2510static int do_tcp_getsockopt(struct sock *sk, int level,
2511		int optname, char __user *optval, int __user *optlen)
2512{
2513	struct inet_connection_sock *icsk = inet_csk(sk);
2514	struct tcp_sock *tp = tcp_sk(sk);
2515	int val, len;
2516
2517	if (get_user(len, optlen))
2518		return -EFAULT;
2519
2520	len = min_t(unsigned int, len, sizeof(int));
2521
2522	if (len < 0)
2523		return -EINVAL;
2524
2525	switch (optname) {
2526	case TCP_MAXSEG:
2527		val = tp->mss_cache;
2528		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2529			val = tp->rx_opt.user_mss;
2530		break;
2531	case TCP_NODELAY:
2532		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2533		break;
2534	case TCP_CORK:
2535		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2536		break;
2537	case TCP_KEEPIDLE:
2538		val = keepalive_time_when(tp) / HZ;
2539		break;
2540	case TCP_KEEPINTVL:
2541		val = keepalive_intvl_when(tp) / HZ;
2542		break;
2543	case TCP_KEEPCNT:
2544		val = keepalive_probes(tp);
2545		break;
2546	case TCP_SYNCNT:
2547		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2548		break;
2549	case TCP_LINGER2:
2550		val = tp->linger2;
2551		if (val >= 0)
2552			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2553		break;
2554	case TCP_DEFER_ACCEPT:
2555		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2556				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2557		break;
2558	case TCP_WINDOW_CLAMP:
2559		val = tp->window_clamp;
2560		break;
2561	case TCP_INFO: {
2562		struct tcp_info info;
2563
2564		if (get_user(len, optlen))
2565			return -EFAULT;
2566
2567		tcp_get_info(sk, &info);
2568
2569		len = min_t(unsigned int, len, sizeof(info));
2570		if (put_user(len, optlen))
2571			return -EFAULT;
2572		if (copy_to_user(optval, &info, len))
2573			return -EFAULT;
2574		return 0;
2575	}
2576	case TCP_QUICKACK:
2577		val = !icsk->icsk_ack.pingpong;
2578		break;
2579
2580	case TCP_CONGESTION:
2581		if (get_user(len, optlen))
2582			return -EFAULT;
2583		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2584		if (put_user(len, optlen))
2585			return -EFAULT;
2586		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2587			return -EFAULT;
2588		return 0;
2589
2590	case TCP_COOKIE_TRANSACTIONS: {
2591		struct tcp_cookie_transactions ctd;
2592		struct tcp_cookie_values *cvp = tp->cookie_values;
2593
2594		if (get_user(len, optlen))
2595			return -EFAULT;
2596		if (len < sizeof(ctd))
2597			return -EINVAL;
2598
2599		memset(&ctd, 0, sizeof(ctd));
2600		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2601				   TCP_COOKIE_IN_ALWAYS : 0)
2602				| (tp->rx_opt.cookie_out_never ?
2603				   TCP_COOKIE_OUT_NEVER : 0);
2604
2605		if (cvp != NULL) {
2606			ctd.tcpct_flags |= (cvp->s_data_in ?
2607					    TCP_S_DATA_IN : 0)
2608					 | (cvp->s_data_out ?
2609					    TCP_S_DATA_OUT : 0);
2610
2611			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2612			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2613
2614			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2615			       cvp->cookie_pair_size);
2616			ctd.tcpct_used = cvp->cookie_pair_size;
2617		}
2618
2619		if (put_user(sizeof(ctd), optlen))
2620			return -EFAULT;
2621		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2622			return -EFAULT;
2623		return 0;
2624	}
2625	case TCP_THIN_LINEAR_TIMEOUTS:
2626		val = tp->thin_lto;
2627		break;
2628	case TCP_THIN_DUPACK:
2629		val = tp->thin_dupack;
2630		break;
2631
2632	case TCP_USER_TIMEOUT:
2633		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2634		break;
2635	default:
2636		return -ENOPROTOOPT;
2637	}
2638
2639	if (put_user(len, optlen))
2640		return -EFAULT;
2641	if (copy_to_user(optval, &val, len))
2642		return -EFAULT;
2643	return 0;
2644}
2645
2646int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2647		   int __user *optlen)
2648{
2649	struct inet_connection_sock *icsk = inet_csk(sk);
2650
2651	if (level != SOL_TCP)
2652		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2653						     optval, optlen);
2654	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2655}
2656EXPORT_SYMBOL(tcp_getsockopt);
2657
2658#ifdef CONFIG_COMPAT
2659int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2660			  char __user *optval, int __user *optlen)
2661{
2662	if (level != SOL_TCP)
2663		return inet_csk_compat_getsockopt(sk, level, optname,
2664						  optval, optlen);
2665	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2666}
2667EXPORT_SYMBOL(compat_tcp_getsockopt);
2668#endif
2669
2670struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2671	netdev_features_t features)
2672{
2673	struct sk_buff *segs = ERR_PTR(-EINVAL);
2674	struct tcphdr *th;
2675	unsigned thlen;
2676	unsigned int seq;
2677	__be32 delta;
2678	unsigned int oldlen;
2679	unsigned int mss;
2680
2681	if (!pskb_may_pull(skb, sizeof(*th)))
2682		goto out;
2683
2684	th = tcp_hdr(skb);
2685	thlen = th->doff * 4;
2686	if (thlen < sizeof(*th))
2687		goto out;
2688
2689	if (!pskb_may_pull(skb, thlen))
2690		goto out;
2691
2692	oldlen = (u16)~skb->len;
2693	__skb_pull(skb, thlen);
2694
2695	mss = skb_shinfo(skb)->gso_size;
2696	if (unlikely(skb->len <= mss))
2697		goto out;
2698
2699	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2700		/* Packet is from an untrusted source, reset gso_segs. */
2701		int type = skb_shinfo(skb)->gso_type;
2702
2703		if (unlikely(type &
2704			     ~(SKB_GSO_TCPV4 |
2705			       SKB_GSO_DODGY |
2706			       SKB_GSO_TCP_ECN |
2707			       SKB_GSO_TCPV6 |
2708			       0) ||
2709			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2710			goto out;
2711
2712		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2713
2714		segs = NULL;
2715		goto out;
2716	}
2717
2718	segs = skb_segment(skb, features);
2719	if (IS_ERR(segs))
2720		goto out;
2721
2722	delta = htonl(oldlen + (thlen + mss));
2723
2724	skb = segs;
2725	th = tcp_hdr(skb);
2726	seq = ntohl(th->seq);
2727
2728	do {
2729		th->fin = th->psh = 0;
2730
2731		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2732				       (__force u32)delta));
2733		if (skb->ip_summed != CHECKSUM_PARTIAL)
2734			th->check =
2735			     csum_fold(csum_partial(skb_transport_header(skb),
2736						    thlen, skb->csum));
2737
2738		seq += mss;
2739		skb = skb->next;
2740		th = tcp_hdr(skb);
2741
2742		th->seq = htonl(seq);
2743		th->cwr = 0;
2744	} while (skb->next);
2745
2746	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2747		      skb->data_len);
2748	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2749				(__force u32)delta));
2750	if (skb->ip_summed != CHECKSUM_PARTIAL)
2751		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2752						   thlen, skb->csum));
2753
2754out:
2755	return segs;
2756}
2757EXPORT_SYMBOL(tcp_tso_segment);
2758
2759struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2760{
2761	struct sk_buff **pp = NULL;
2762	struct sk_buff *p;
2763	struct tcphdr *th;
2764	struct tcphdr *th2;
2765	unsigned int len;
2766	unsigned int thlen;
2767	__be32 flags;
2768	unsigned int mss = 1;
2769	unsigned int hlen;
2770	unsigned int off;
2771	int flush = 1;
2772	int i;
2773
2774	off = skb_gro_offset(skb);
2775	hlen = off + sizeof(*th);
2776	th = skb_gro_header_fast(skb, off);
2777	if (skb_gro_header_hard(skb, hlen)) {
2778		th = skb_gro_header_slow(skb, hlen, off);
2779		if (unlikely(!th))
2780			goto out;
2781	}
2782
2783	thlen = th->doff * 4;
2784	if (thlen < sizeof(*th))
2785		goto out;
2786
2787	hlen = off + thlen;
2788	if (skb_gro_header_hard(skb, hlen)) {
2789		th = skb_gro_header_slow(skb, hlen, off);
2790		if (unlikely(!th))
2791			goto out;
2792	}
2793
2794	skb_gro_pull(skb, thlen);
2795
2796	len = skb_gro_len(skb);
2797	flags = tcp_flag_word(th);
2798
2799	for (; (p = *head); head = &p->next) {
2800		if (!NAPI_GRO_CB(p)->same_flow)
2801			continue;
2802
2803		th2 = tcp_hdr(p);
2804
2805		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2806			NAPI_GRO_CB(p)->same_flow = 0;
2807			continue;
2808		}
2809
2810		goto found;
2811	}
2812
2813	goto out_check_final;
2814
2815found:
2816	flush = NAPI_GRO_CB(p)->flush;
2817	flush |= (__force int)(flags & TCP_FLAG_CWR);
2818	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2819		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2820	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2821	for (i = sizeof(*th); i < thlen; i += 4)
2822		flush |= *(u32 *)((u8 *)th + i) ^
2823			 *(u32 *)((u8 *)th2 + i);
2824
2825	mss = skb_shinfo(p)->gso_size;
2826
2827	flush |= (len - 1) >= mss;
2828	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2829
2830	if (flush || skb_gro_receive(head, skb)) {
2831		mss = 1;
2832		goto out_check_final;
2833	}
2834
2835	p = *head;
2836	th2 = tcp_hdr(p);
2837	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2838
2839out_check_final:
2840	flush = len < mss;
2841	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2842					TCP_FLAG_RST | TCP_FLAG_SYN |
2843					TCP_FLAG_FIN));
2844
2845	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2846		pp = head;
2847
2848out:
2849	NAPI_GRO_CB(skb)->flush |= flush;
2850
2851	return pp;
2852}
2853EXPORT_SYMBOL(tcp_gro_receive);
2854
2855int tcp_gro_complete(struct sk_buff *skb)
2856{
2857	struct tcphdr *th = tcp_hdr(skb);
2858
2859	skb->csum_start = skb_transport_header(skb) - skb->head;
2860	skb->csum_offset = offsetof(struct tcphdr, check);
2861	skb->ip_summed = CHECKSUM_PARTIAL;
2862
2863	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2864
2865	if (th->cwr)
2866		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2867
2868	return 0;
2869}
2870EXPORT_SYMBOL(tcp_gro_complete);
2871
2872#ifdef CONFIG_TCP_MD5SIG
2873static unsigned long tcp_md5sig_users;
2874static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
2875static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2876
2877static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
2878{
2879	int cpu;
2880
2881	for_each_possible_cpu(cpu) {
2882		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
2883
2884		if (p->md5_desc.tfm)
2885			crypto_free_hash(p->md5_desc.tfm);
2886	}
2887	free_percpu(pool);
2888}
2889
2890void tcp_free_md5sig_pool(void)
2891{
2892	struct tcp_md5sig_pool __percpu *pool = NULL;
2893
2894	spin_lock_bh(&tcp_md5sig_pool_lock);
2895	if (--tcp_md5sig_users == 0) {
2896		pool = tcp_md5sig_pool;
2897		tcp_md5sig_pool = NULL;
2898	}
2899	spin_unlock_bh(&tcp_md5sig_pool_lock);
2900	if (pool)
2901		__tcp_free_md5sig_pool(pool);
2902}
2903EXPORT_SYMBOL(tcp_free_md5sig_pool);
2904
2905static struct tcp_md5sig_pool __percpu *
2906__tcp_alloc_md5sig_pool(struct sock *sk)
2907{
2908	int cpu;
2909	struct tcp_md5sig_pool __percpu *pool;
2910
2911	pool = alloc_percpu(struct tcp_md5sig_pool);
2912	if (!pool)
2913		return NULL;
2914
2915	for_each_possible_cpu(cpu) {
2916		struct crypto_hash *hash;
2917
2918		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2919		if (!hash || IS_ERR(hash))
2920			goto out_free;
2921
2922		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
2923	}
2924	return pool;
2925out_free:
2926	__tcp_free_md5sig_pool(pool);
2927	return NULL;
2928}
2929
2930struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2931{
2932	struct tcp_md5sig_pool __percpu *pool;
2933	int alloc = 0;
2934
2935retry:
2936	spin_lock_bh(&tcp_md5sig_pool_lock);
2937	pool = tcp_md5sig_pool;
2938	if (tcp_md5sig_users++ == 0) {
2939		alloc = 1;
2940		spin_unlock_bh(&tcp_md5sig_pool_lock);
2941	} else if (!pool) {
2942		tcp_md5sig_users--;
2943		spin_unlock_bh(&tcp_md5sig_pool_lock);
2944		cpu_relax();
2945		goto retry;
2946	} else
2947		spin_unlock_bh(&tcp_md5sig_pool_lock);
2948
2949	if (alloc) {
2950		/* we cannot hold spinlock here because this may sleep. */
2951		struct tcp_md5sig_pool __percpu *p;
2952
2953		p = __tcp_alloc_md5sig_pool(sk);
2954		spin_lock_bh(&tcp_md5sig_pool_lock);
2955		if (!p) {
2956			tcp_md5sig_users--;
2957			spin_unlock_bh(&tcp_md5sig_pool_lock);
2958			return NULL;
2959		}
2960		pool = tcp_md5sig_pool;
2961		if (pool) {
2962			/* oops, it has already been assigned. */
2963			spin_unlock_bh(&tcp_md5sig_pool_lock);
2964			__tcp_free_md5sig_pool(p);
2965		} else {
2966			tcp_md5sig_pool = pool = p;
2967			spin_unlock_bh(&tcp_md5sig_pool_lock);
2968		}
2969	}
2970	return pool;
2971}
2972EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2973
2974
2975/**
2976 *	tcp_get_md5sig_pool - get md5sig_pool for this user
2977 *
2978 *	We use percpu structure, so if we succeed, we exit with preemption
2979 *	and BH disabled, to make sure another thread or softirq handling
2980 *	wont try to get same context.
2981 */
2982struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2983{
2984	struct tcp_md5sig_pool __percpu *p;
2985
2986	local_bh_disable();
2987
2988	spin_lock(&tcp_md5sig_pool_lock);
2989	p = tcp_md5sig_pool;
2990	if (p)
2991		tcp_md5sig_users++;
2992	spin_unlock(&tcp_md5sig_pool_lock);
2993
2994	if (p)
2995		return this_cpu_ptr(p);
2996
2997	local_bh_enable();
2998	return NULL;
2999}
3000EXPORT_SYMBOL(tcp_get_md5sig_pool);
3001
3002void tcp_put_md5sig_pool(void)
3003{
3004	local_bh_enable();
3005	tcp_free_md5sig_pool();
3006}
3007EXPORT_SYMBOL(tcp_put_md5sig_pool);
3008
3009int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3010			const struct tcphdr *th)
3011{
3012	struct scatterlist sg;
3013	struct tcphdr hdr;
3014	int err;
3015
3016	/* We are not allowed to change tcphdr, make a local copy */
3017	memcpy(&hdr, th, sizeof(hdr));
3018	hdr.check = 0;
3019
3020	/* options aren't included in the hash */
3021	sg_init_one(&sg, &hdr, sizeof(hdr));
3022	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3023	return err;
3024}
3025EXPORT_SYMBOL(tcp_md5_hash_header);
3026
3027int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3028			  const struct sk_buff *skb, unsigned int header_len)
3029{
3030	struct scatterlist sg;
3031	const struct tcphdr *tp = tcp_hdr(skb);
3032	struct hash_desc *desc = &hp->md5_desc;
3033	unsigned i;
3034	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3035				       skb_headlen(skb) - header_len : 0;
3036	const struct skb_shared_info *shi = skb_shinfo(skb);
3037	struct sk_buff *frag_iter;
3038
3039	sg_init_table(&sg, 1);
3040
3041	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3042	if (crypto_hash_update(desc, &sg, head_data_len))
3043		return 1;
3044
3045	for (i = 0; i < shi->nr_frags; ++i) {
3046		const struct skb_frag_struct *f = &shi->frags[i];
3047		struct page *page = skb_frag_page(f);
3048		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3049		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3050			return 1;
3051	}
3052
3053	skb_walk_frags(skb, frag_iter)
3054		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3055			return 1;
3056
3057	return 0;
3058}
3059EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3060
3061int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3062{
3063	struct scatterlist sg;
3064
3065	sg_init_one(&sg, key->key, key->keylen);
3066	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3067}
3068EXPORT_SYMBOL(tcp_md5_hash_key);
3069
3070#endif
3071
3072/**
3073 * Each Responder maintains up to two secret values concurrently for
3074 * efficient secret rollover.  Each secret value has 4 states:
3075 *
3076 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3077 *    Generates new Responder-Cookies, but not yet used for primary
3078 *    verification.  This is a short-term state, typically lasting only
3079 *    one round trip time (RTT).
3080 *
3081 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3082 *    Used both for generation and primary verification.
3083 *
3084 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3085 *    Used for verification, until the first failure that can be
3086 *    verified by the newer Generating secret.  At that time, this
3087 *    cookie's state is changed to Secondary, and the Generating
3088 *    cookie's state is changed to Primary.  This is a short-term state,
3089 *    typically lasting only one round trip time (RTT).
3090 *
3091 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3092 *    Used for secondary verification, after primary verification
3093 *    failures.  This state lasts no more than twice the Maximum Segment
3094 *    Lifetime (2MSL).  Then, the secret is discarded.
3095 */
3096struct tcp_cookie_secret {
3097	/* The secret is divided into two parts.  The digest part is the
3098	 * equivalent of previously hashing a secret and saving the state,
3099	 * and serves as an initialization vector (IV).  The message part
3100	 * serves as the trailing secret.
3101	 */
3102	u32				secrets[COOKIE_WORKSPACE_WORDS];
3103	unsigned long			expires;
3104};
3105
3106#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3107#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3108#define TCP_SECRET_LIFE (HZ * 600)
3109
3110static struct tcp_cookie_secret tcp_secret_one;
3111static struct tcp_cookie_secret tcp_secret_two;
3112
3113/* Essentially a circular list, without dynamic allocation. */
3114static struct tcp_cookie_secret *tcp_secret_generating;
3115static struct tcp_cookie_secret *tcp_secret_primary;
3116static struct tcp_cookie_secret *tcp_secret_retiring;
3117static struct tcp_cookie_secret *tcp_secret_secondary;
3118
3119static DEFINE_SPINLOCK(tcp_secret_locker);
3120
3121/* Select a pseudo-random word in the cookie workspace.
3122 */
3123static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3124{
3125	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3126}
3127
3128/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3129 * Called in softirq context.
3130 * Returns: 0 for success.
3131 */
3132int tcp_cookie_generator(u32 *bakery)
3133{
3134	unsigned long jiffy = jiffies;
3135
3136	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3137		spin_lock_bh(&tcp_secret_locker);
3138		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3139			/* refreshed by another */
3140			memcpy(bakery,
3141			       &tcp_secret_generating->secrets[0],
3142			       COOKIE_WORKSPACE_WORDS);
3143		} else {
3144			/* still needs refreshing */
3145			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3146
3147			/* The first time, paranoia assumes that the
3148			 * randomization function isn't as strong.  But,
3149			 * this secret initialization is delayed until
3150			 * the last possible moment (packet arrival).
3151			 * Although that time is observable, it is
3152			 * unpredictably variable.  Mash in the most
3153			 * volatile clock bits available, and expire the
3154			 * secret extra quickly.
3155			 */
3156			if (unlikely(tcp_secret_primary->expires ==
3157				     tcp_secret_secondary->expires)) {
3158				struct timespec tv;
3159
3160				getnstimeofday(&tv);
3161				bakery[COOKIE_DIGEST_WORDS+0] ^=
3162					(u32)tv.tv_nsec;
3163
3164				tcp_secret_secondary->expires = jiffy
3165					+ TCP_SECRET_1MSL
3166					+ (0x0f & tcp_cookie_work(bakery, 0));
3167			} else {
3168				tcp_secret_secondary->expires = jiffy
3169					+ TCP_SECRET_LIFE
3170					+ (0xff & tcp_cookie_work(bakery, 1));
3171				tcp_secret_primary->expires = jiffy
3172					+ TCP_SECRET_2MSL
3173					+ (0x1f & tcp_cookie_work(bakery, 2));
3174			}
3175			memcpy(&tcp_secret_secondary->secrets[0],
3176			       bakery, COOKIE_WORKSPACE_WORDS);
3177
3178			rcu_assign_pointer(tcp_secret_generating,
3179					   tcp_secret_secondary);
3180			rcu_assign_pointer(tcp_secret_retiring,
3181					   tcp_secret_primary);
3182			/*
3183			 * Neither call_rcu() nor synchronize_rcu() needed.
3184			 * Retiring data is not freed.  It is replaced after
3185			 * further (locked) pointer updates, and a quiet time
3186			 * (minimum 1MSL, maximum LIFE - 2MSL).
3187			 */
3188		}
3189		spin_unlock_bh(&tcp_secret_locker);
3190	} else {
3191		rcu_read_lock_bh();
3192		memcpy(bakery,
3193		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3194		       COOKIE_WORKSPACE_WORDS);
3195		rcu_read_unlock_bh();
3196	}
3197	return 0;
3198}
3199EXPORT_SYMBOL(tcp_cookie_generator);
3200
3201void tcp_done(struct sock *sk)
3202{
3203	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3204		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3205
3206	tcp_set_state(sk, TCP_CLOSE);
3207	tcp_clear_xmit_timers(sk);
3208
3209	sk->sk_shutdown = SHUTDOWN_MASK;
3210
3211	if (!sock_flag(sk, SOCK_DEAD))
3212		sk->sk_state_change(sk);
3213	else
3214		inet_csk_destroy_sock(sk);
3215}
3216EXPORT_SYMBOL_GPL(tcp_done);
3217
3218extern struct tcp_congestion_ops tcp_reno;
3219
3220static __initdata unsigned long thash_entries;
3221static int __init set_thash_entries(char *str)
3222{
3223	if (!str)
3224		return 0;
3225	thash_entries = simple_strtoul(str, &str, 0);
3226	return 1;
3227}
3228__setup("thash_entries=", set_thash_entries);
3229
3230void tcp_init_mem(struct net *net)
3231{
3232	unsigned long limit = nr_free_buffer_pages() / 8;
3233	limit = max(limit, 128UL);
3234	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3235	net->ipv4.sysctl_tcp_mem[1] = limit;
3236	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3237}
3238
3239void __init tcp_init(void)
3240{
3241	struct sk_buff *skb = NULL;
3242	unsigned long limit;
3243	int max_share, cnt;
3244	unsigned int i;
3245	unsigned long jiffy = jiffies;
3246
3247	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3248
3249	percpu_counter_init(&tcp_sockets_allocated, 0);
3250	percpu_counter_init(&tcp_orphan_count, 0);
3251	tcp_hashinfo.bind_bucket_cachep =
3252		kmem_cache_create("tcp_bind_bucket",
3253				  sizeof(struct inet_bind_bucket), 0,
3254				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3255
3256	/* Size and allocate the main established and bind bucket
3257	 * hash tables.
3258	 *
3259	 * The methodology is similar to that of the buffer cache.
3260	 */
3261	tcp_hashinfo.ehash =
3262		alloc_large_system_hash("TCP established",
3263					sizeof(struct inet_ehash_bucket),
3264					thash_entries,
3265					(totalram_pages >= 128 * 1024) ?
3266					13 : 15,
3267					0,
3268					NULL,
3269					&tcp_hashinfo.ehash_mask,
3270					thash_entries ? 0 : 512 * 1024);
3271	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3272		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3273		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3274	}
3275	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3276		panic("TCP: failed to alloc ehash_locks");
3277	tcp_hashinfo.bhash =
3278		alloc_large_system_hash("TCP bind",
3279					sizeof(struct inet_bind_hashbucket),
3280					tcp_hashinfo.ehash_mask + 1,
3281					(totalram_pages >= 128 * 1024) ?
3282					13 : 15,
3283					0,
3284					&tcp_hashinfo.bhash_size,
3285					NULL,
3286					64 * 1024);
3287	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3288	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3289		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3290		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3291	}
3292
3293
3294	cnt = tcp_hashinfo.ehash_mask + 1;
3295
3296	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3297	sysctl_tcp_max_orphans = cnt / 2;
3298	sysctl_max_syn_backlog = max(128, cnt / 256);
3299
3300	tcp_init_mem(&init_net);
3301	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3302	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 10);
3303	limit = max(limit, 128UL);
3304	max_share = min(4UL*1024*1024, limit);
3305
3306	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3307	sysctl_tcp_wmem[1] = 16*1024;
3308	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3309
3310	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3311	sysctl_tcp_rmem[1] = 87380;
3312	sysctl_tcp_rmem[2] = max(87380, max_share);
3313
3314	printk(KERN_INFO "TCP: Hash tables configured "
3315	       "(established %u bind %u)\n",
3316	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3317
3318	tcp_register_congestion_control(&tcp_reno);
3319
3320	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3321	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3322	tcp_secret_one.expires = jiffy; /* past due */
3323	tcp_secret_two.expires = jiffy; /* past due */
3324	tcp_secret_generating = &tcp_secret_one;
3325	tcp_secret_primary = &tcp_secret_one;
3326	tcp_secret_retiring = &tcp_secret_two;
3327	tcp_secret_secondary = &tcp_secret_two;
3328}
3329