tcp.c revision 089c34827e52346f0303d1e6a7b744c1f4da3095
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#include <linux/kernel.h>
249#include <linux/module.h>
250#include <linux/types.h>
251#include <linux/fcntl.h>
252#include <linux/poll.h>
253#include <linux/init.h>
254#include <linux/fs.h>
255#include <linux/skbuff.h>
256#include <linux/scatterlist.h>
257#include <linux/splice.h>
258#include <linux/net.h>
259#include <linux/socket.h>
260#include <linux/random.h>
261#include <linux/bootmem.h>
262#include <linux/highmem.h>
263#include <linux/swap.h>
264#include <linux/cache.h>
265#include <linux/err.h>
266#include <linux/crypto.h>
267#include <linux/time.h>
268#include <linux/slab.h>
269
270#include <net/icmp.h>
271#include <net/tcp.h>
272#include <net/xfrm.h>
273#include <net/ip.h>
274#include <net/netdma.h>
275#include <net/sock.h>
276
277#include <asm/uaccess.h>
278#include <asm/ioctls.h>
279
280int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
281
282struct percpu_counter tcp_orphan_count;
283EXPORT_SYMBOL_GPL(tcp_orphan_count);
284
285long sysctl_tcp_mem[3] __read_mostly;
286int sysctl_tcp_wmem[3] __read_mostly;
287int sysctl_tcp_rmem[3] __read_mostly;
288
289EXPORT_SYMBOL(sysctl_tcp_mem);
290EXPORT_SYMBOL(sysctl_tcp_rmem);
291EXPORT_SYMBOL(sysctl_tcp_wmem);
292
293atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
294EXPORT_SYMBOL(tcp_memory_allocated);
295
296/*
297 * Current number of TCP sockets.
298 */
299struct percpu_counter tcp_sockets_allocated;
300EXPORT_SYMBOL(tcp_sockets_allocated);
301
302/*
303 * TCP splice context
304 */
305struct tcp_splice_state {
306	struct pipe_inode_info *pipe;
307	size_t len;
308	unsigned int flags;
309};
310
311/*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317int tcp_memory_pressure __read_mostly;
318EXPORT_SYMBOL(tcp_memory_pressure);
319
320void tcp_enter_memory_pressure(struct sock *sk)
321{
322	if (!tcp_memory_pressure) {
323		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324		tcp_memory_pressure = 1;
325	}
326}
327EXPORT_SYMBOL(tcp_enter_memory_pressure);
328
329/* Convert seconds to retransmits based on initial and max timeout */
330static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331{
332	u8 res = 0;
333
334	if (seconds > 0) {
335		int period = timeout;
336
337		res = 1;
338		while (seconds > period && res < 255) {
339			res++;
340			timeout <<= 1;
341			if (timeout > rto_max)
342				timeout = rto_max;
343			period += timeout;
344		}
345	}
346	return res;
347}
348
349/* Convert retransmits to seconds based on initial and max timeout */
350static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351{
352	int period = 0;
353
354	if (retrans > 0) {
355		period = timeout;
356		while (--retrans) {
357			timeout <<= 1;
358			if (timeout > rto_max)
359				timeout = rto_max;
360			period += timeout;
361		}
362	}
363	return period;
364}
365
366/*
367 *	Wait for a TCP event.
368 *
369 *	Note that we don't need to lock the socket, as the upper poll layers
370 *	take care of normal races (between the test and the event) and we don't
371 *	go look at any of the socket buffers directly.
372 */
373unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
374{
375	unsigned int mask;
376	struct sock *sk = sock->sk;
377	struct tcp_sock *tp = tcp_sk(sk);
378
379	sock_poll_wait(file, sk_sleep(sk), wait);
380	if (sk->sk_state == TCP_LISTEN)
381		return inet_csk_listen_poll(sk);
382
383	/* Socket is not locked. We are protected from async events
384	 * by poll logic and correct handling of state changes
385	 * made by other threads is impossible in any case.
386	 */
387
388	mask = 0;
389
390	/*
391	 * POLLHUP is certainly not done right. But poll() doesn't
392	 * have a notion of HUP in just one direction, and for a
393	 * socket the read side is more interesting.
394	 *
395	 * Some poll() documentation says that POLLHUP is incompatible
396	 * with the POLLOUT/POLLWR flags, so somebody should check this
397	 * all. But careful, it tends to be safer to return too many
398	 * bits than too few, and you can easily break real applications
399	 * if you don't tell them that something has hung up!
400	 *
401	 * Check-me.
402	 *
403	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
404	 * our fs/select.c). It means that after we received EOF,
405	 * poll always returns immediately, making impossible poll() on write()
406	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
407	 * if and only if shutdown has been made in both directions.
408	 * Actually, it is interesting to look how Solaris and DUX
409	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
410	 * then we could set it on SND_SHUTDOWN. BTW examples given
411	 * in Stevens' books assume exactly this behaviour, it explains
412	 * why POLLHUP is incompatible with POLLOUT.	--ANK
413	 *
414	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
415	 * blocking on fresh not-connected or disconnected socket. --ANK
416	 */
417	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
418		mask |= POLLHUP;
419	if (sk->sk_shutdown & RCV_SHUTDOWN)
420		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
421
422	/* Connected? */
423	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
424		int target = sock_rcvlowat(sk, 0, INT_MAX);
425
426		if (tp->urg_seq == tp->copied_seq &&
427		    !sock_flag(sk, SOCK_URGINLINE) &&
428		    tp->urg_data)
429			target++;
430
431		/* Potential race condition. If read of tp below will
432		 * escape above sk->sk_state, we can be illegally awaken
433		 * in SYN_* states. */
434		if (tp->rcv_nxt - tp->copied_seq >= target)
435			mask |= POLLIN | POLLRDNORM;
436
437		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
438			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
439				mask |= POLLOUT | POLLWRNORM;
440			} else {  /* send SIGIO later */
441				set_bit(SOCK_ASYNC_NOSPACE,
442					&sk->sk_socket->flags);
443				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
444
445				/* Race breaker. If space is freed after
446				 * wspace test but before the flags are set,
447				 * IO signal will be lost.
448				 */
449				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
450					mask |= POLLOUT | POLLWRNORM;
451			}
452		} else
453			mask |= POLLOUT | POLLWRNORM;
454
455		if (tp->urg_data & TCP_URG_VALID)
456			mask |= POLLPRI;
457	}
458	/* This barrier is coupled with smp_wmb() in tcp_reset() */
459	smp_rmb();
460	if (sk->sk_err)
461		mask |= POLLERR;
462
463	return mask;
464}
465EXPORT_SYMBOL(tcp_poll);
466
467int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
468{
469	struct tcp_sock *tp = tcp_sk(sk);
470	int answ;
471
472	switch (cmd) {
473	case SIOCINQ:
474		if (sk->sk_state == TCP_LISTEN)
475			return -EINVAL;
476
477		lock_sock(sk);
478		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
479			answ = 0;
480		else if (sock_flag(sk, SOCK_URGINLINE) ||
481			 !tp->urg_data ||
482			 before(tp->urg_seq, tp->copied_seq) ||
483			 !before(tp->urg_seq, tp->rcv_nxt)) {
484			struct sk_buff *skb;
485
486			answ = tp->rcv_nxt - tp->copied_seq;
487
488			/* Subtract 1, if FIN is in queue. */
489			skb = skb_peek_tail(&sk->sk_receive_queue);
490			if (answ && skb)
491				answ -= tcp_hdr(skb)->fin;
492		} else
493			answ = tp->urg_seq - tp->copied_seq;
494		release_sock(sk);
495		break;
496	case SIOCATMARK:
497		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
498		break;
499	case SIOCOUTQ:
500		if (sk->sk_state == TCP_LISTEN)
501			return -EINVAL;
502
503		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
504			answ = 0;
505		else
506			answ = tp->write_seq - tp->snd_una;
507		break;
508	default:
509		return -ENOIOCTLCMD;
510	}
511
512	return put_user(answ, (int __user *)arg);
513}
514EXPORT_SYMBOL(tcp_ioctl);
515
516static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
517{
518	TCP_SKB_CB(skb)->flags |= TCPHDR_PSH;
519	tp->pushed_seq = tp->write_seq;
520}
521
522static inline int forced_push(struct tcp_sock *tp)
523{
524	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
525}
526
527static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
528{
529	struct tcp_sock *tp = tcp_sk(sk);
530	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
531
532	skb->csum    = 0;
533	tcb->seq     = tcb->end_seq = tp->write_seq;
534	tcb->flags   = TCPHDR_ACK;
535	tcb->sacked  = 0;
536	skb_header_release(skb);
537	tcp_add_write_queue_tail(sk, skb);
538	sk->sk_wmem_queued += skb->truesize;
539	sk_mem_charge(sk, skb->truesize);
540	if (tp->nonagle & TCP_NAGLE_PUSH)
541		tp->nonagle &= ~TCP_NAGLE_PUSH;
542}
543
544static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
545{
546	if (flags & MSG_OOB)
547		tp->snd_up = tp->write_seq;
548}
549
550static inline void tcp_push(struct sock *sk, int flags, int mss_now,
551			    int nonagle)
552{
553	if (tcp_send_head(sk)) {
554		struct tcp_sock *tp = tcp_sk(sk);
555
556		if (!(flags & MSG_MORE) || forced_push(tp))
557			tcp_mark_push(tp, tcp_write_queue_tail(sk));
558
559		tcp_mark_urg(tp, flags);
560		__tcp_push_pending_frames(sk, mss_now,
561					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
562	}
563}
564
565static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
566				unsigned int offset, size_t len)
567{
568	struct tcp_splice_state *tss = rd_desc->arg.data;
569	int ret;
570
571	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
572			      tss->flags);
573	if (ret > 0)
574		rd_desc->count -= ret;
575	return ret;
576}
577
578static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
579{
580	/* Store TCP splice context information in read_descriptor_t. */
581	read_descriptor_t rd_desc = {
582		.arg.data = tss,
583		.count	  = tss->len,
584	};
585
586	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
587}
588
589/**
590 *  tcp_splice_read - splice data from TCP socket to a pipe
591 * @sock:	socket to splice from
592 * @ppos:	position (not valid)
593 * @pipe:	pipe to splice to
594 * @len:	number of bytes to splice
595 * @flags:	splice modifier flags
596 *
597 * Description:
598 *    Will read pages from given socket and fill them into a pipe.
599 *
600 **/
601ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
602			struct pipe_inode_info *pipe, size_t len,
603			unsigned int flags)
604{
605	struct sock *sk = sock->sk;
606	struct tcp_splice_state tss = {
607		.pipe = pipe,
608		.len = len,
609		.flags = flags,
610	};
611	long timeo;
612	ssize_t spliced;
613	int ret;
614
615	sock_rps_record_flow(sk);
616	/*
617	 * We can't seek on a socket input
618	 */
619	if (unlikely(*ppos))
620		return -ESPIPE;
621
622	ret = spliced = 0;
623
624	lock_sock(sk);
625
626	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
627	while (tss.len) {
628		ret = __tcp_splice_read(sk, &tss);
629		if (ret < 0)
630			break;
631		else if (!ret) {
632			if (spliced)
633				break;
634			if (sock_flag(sk, SOCK_DONE))
635				break;
636			if (sk->sk_err) {
637				ret = sock_error(sk);
638				break;
639			}
640			if (sk->sk_shutdown & RCV_SHUTDOWN)
641				break;
642			if (sk->sk_state == TCP_CLOSE) {
643				/*
644				 * This occurs when user tries to read
645				 * from never connected socket.
646				 */
647				if (!sock_flag(sk, SOCK_DONE))
648					ret = -ENOTCONN;
649				break;
650			}
651			if (!timeo) {
652				ret = -EAGAIN;
653				break;
654			}
655			sk_wait_data(sk, &timeo);
656			if (signal_pending(current)) {
657				ret = sock_intr_errno(timeo);
658				break;
659			}
660			continue;
661		}
662		tss.len -= ret;
663		spliced += ret;
664
665		if (!timeo)
666			break;
667		release_sock(sk);
668		lock_sock(sk);
669
670		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
671		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
672		    signal_pending(current))
673			break;
674	}
675
676	release_sock(sk);
677
678	if (spliced)
679		return spliced;
680
681	return ret;
682}
683EXPORT_SYMBOL(tcp_splice_read);
684
685struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
686{
687	struct sk_buff *skb;
688
689	/* The TCP header must be at least 32-bit aligned.  */
690	size = ALIGN(size, 4);
691
692	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
693	if (skb) {
694		if (sk_wmem_schedule(sk, skb->truesize)) {
695			/*
696			 * Make sure that we have exactly size bytes
697			 * available to the caller, no more, no less.
698			 */
699			skb_reserve(skb, skb_tailroom(skb) - size);
700			return skb;
701		}
702		__kfree_skb(skb);
703	} else {
704		sk->sk_prot->enter_memory_pressure(sk);
705		sk_stream_moderate_sndbuf(sk);
706	}
707	return NULL;
708}
709
710static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
711				       int large_allowed)
712{
713	struct tcp_sock *tp = tcp_sk(sk);
714	u32 xmit_size_goal, old_size_goal;
715
716	xmit_size_goal = mss_now;
717
718	if (large_allowed && sk_can_gso(sk)) {
719		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
720				  inet_csk(sk)->icsk_af_ops->net_header_len -
721				  inet_csk(sk)->icsk_ext_hdr_len -
722				  tp->tcp_header_len);
723
724		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
725
726		/* We try hard to avoid divides here */
727		old_size_goal = tp->xmit_size_goal_segs * mss_now;
728
729		if (likely(old_size_goal <= xmit_size_goal &&
730			   old_size_goal + mss_now > xmit_size_goal)) {
731			xmit_size_goal = old_size_goal;
732		} else {
733			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
734			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
735		}
736	}
737
738	return max(xmit_size_goal, mss_now);
739}
740
741static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
742{
743	int mss_now;
744
745	mss_now = tcp_current_mss(sk);
746	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
747
748	return mss_now;
749}
750
751static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
752			 size_t psize, int flags)
753{
754	struct tcp_sock *tp = tcp_sk(sk);
755	int mss_now, size_goal;
756	int err;
757	ssize_t copied;
758	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
759
760	/* Wait for a connection to finish. */
761	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
762		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
763			goto out_err;
764
765	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
766
767	mss_now = tcp_send_mss(sk, &size_goal, flags);
768	copied = 0;
769
770	err = -EPIPE;
771	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
772		goto out_err;
773
774	while (psize > 0) {
775		struct sk_buff *skb = tcp_write_queue_tail(sk);
776		struct page *page = pages[poffset / PAGE_SIZE];
777		int copy, i, can_coalesce;
778		int offset = poffset % PAGE_SIZE;
779		int size = min_t(size_t, psize, PAGE_SIZE - offset);
780
781		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
782new_segment:
783			if (!sk_stream_memory_free(sk))
784				goto wait_for_sndbuf;
785
786			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
787			if (!skb)
788				goto wait_for_memory;
789
790			skb_entail(sk, skb);
791			copy = size_goal;
792		}
793
794		if (copy > size)
795			copy = size;
796
797		i = skb_shinfo(skb)->nr_frags;
798		can_coalesce = skb_can_coalesce(skb, i, page, offset);
799		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
800			tcp_mark_push(tp, skb);
801			goto new_segment;
802		}
803		if (!sk_wmem_schedule(sk, copy))
804			goto wait_for_memory;
805
806		if (can_coalesce) {
807			skb_shinfo(skb)->frags[i - 1].size += copy;
808		} else {
809			get_page(page);
810			skb_fill_page_desc(skb, i, page, offset, copy);
811		}
812
813		skb->len += copy;
814		skb->data_len += copy;
815		skb->truesize += copy;
816		sk->sk_wmem_queued += copy;
817		sk_mem_charge(sk, copy);
818		skb->ip_summed = CHECKSUM_PARTIAL;
819		tp->write_seq += copy;
820		TCP_SKB_CB(skb)->end_seq += copy;
821		skb_shinfo(skb)->gso_segs = 0;
822
823		if (!copied)
824			TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
825
826		copied += copy;
827		poffset += copy;
828		if (!(psize -= copy))
829			goto out;
830
831		if (skb->len < size_goal || (flags & MSG_OOB))
832			continue;
833
834		if (forced_push(tp)) {
835			tcp_mark_push(tp, skb);
836			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
837		} else if (skb == tcp_send_head(sk))
838			tcp_push_one(sk, mss_now);
839		continue;
840
841wait_for_sndbuf:
842		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
843wait_for_memory:
844		if (copied)
845			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
846
847		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
848			goto do_error;
849
850		mss_now = tcp_send_mss(sk, &size_goal, flags);
851	}
852
853out:
854	if (copied)
855		tcp_push(sk, flags, mss_now, tp->nonagle);
856	return copied;
857
858do_error:
859	if (copied)
860		goto out;
861out_err:
862	return sk_stream_error(sk, flags, err);
863}
864
865int tcp_sendpage(struct sock *sk, struct page *page, int offset,
866		 size_t size, int flags)
867{
868	ssize_t res;
869
870	if (!(sk->sk_route_caps & NETIF_F_SG) ||
871	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
872		return sock_no_sendpage(sk->sk_socket, page, offset, size,
873					flags);
874
875	lock_sock(sk);
876	res = do_tcp_sendpages(sk, &page, offset, size, flags);
877	release_sock(sk);
878	return res;
879}
880EXPORT_SYMBOL(tcp_sendpage);
881
882#define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
883#define TCP_OFF(sk)	(sk->sk_sndmsg_off)
884
885static inline int select_size(struct sock *sk, int sg)
886{
887	struct tcp_sock *tp = tcp_sk(sk);
888	int tmp = tp->mss_cache;
889
890	if (sg) {
891		if (sk_can_gso(sk))
892			tmp = 0;
893		else {
894			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
895
896			if (tmp >= pgbreak &&
897			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
898				tmp = pgbreak;
899		}
900	}
901
902	return tmp;
903}
904
905int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
906		size_t size)
907{
908	struct iovec *iov;
909	struct tcp_sock *tp = tcp_sk(sk);
910	struct sk_buff *skb;
911	int iovlen, flags;
912	int mss_now, size_goal;
913	int sg, err, copied;
914	long timeo;
915
916	lock_sock(sk);
917
918	flags = msg->msg_flags;
919	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
920
921	/* Wait for a connection to finish. */
922	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
923		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
924			goto out_err;
925
926	/* This should be in poll */
927	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
928
929	mss_now = tcp_send_mss(sk, &size_goal, flags);
930
931	/* Ok commence sending. */
932	iovlen = msg->msg_iovlen;
933	iov = msg->msg_iov;
934	copied = 0;
935
936	err = -EPIPE;
937	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
938		goto out_err;
939
940	sg = sk->sk_route_caps & NETIF_F_SG;
941
942	while (--iovlen >= 0) {
943		size_t seglen = iov->iov_len;
944		unsigned char __user *from = iov->iov_base;
945
946		iov++;
947
948		while (seglen > 0) {
949			int copy = 0;
950			int max = size_goal;
951
952			skb = tcp_write_queue_tail(sk);
953			if (tcp_send_head(sk)) {
954				if (skb->ip_summed == CHECKSUM_NONE)
955					max = mss_now;
956				copy = max - skb->len;
957			}
958
959			if (copy <= 0) {
960new_segment:
961				/* Allocate new segment. If the interface is SG,
962				 * allocate skb fitting to single page.
963				 */
964				if (!sk_stream_memory_free(sk))
965					goto wait_for_sndbuf;
966
967				skb = sk_stream_alloc_skb(sk,
968							  select_size(sk, sg),
969							  sk->sk_allocation);
970				if (!skb)
971					goto wait_for_memory;
972
973				/*
974				 * Check whether we can use HW checksum.
975				 */
976				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
977					skb->ip_summed = CHECKSUM_PARTIAL;
978
979				skb_entail(sk, skb);
980				copy = size_goal;
981				max = size_goal;
982			}
983
984			/* Try to append data to the end of skb. */
985			if (copy > seglen)
986				copy = seglen;
987
988			/* Where to copy to? */
989			if (skb_tailroom(skb) > 0) {
990				/* We have some space in skb head. Superb! */
991				if (copy > skb_tailroom(skb))
992					copy = skb_tailroom(skb);
993				if ((err = skb_add_data(skb, from, copy)) != 0)
994					goto do_fault;
995			} else {
996				int merge = 0;
997				int i = skb_shinfo(skb)->nr_frags;
998				struct page *page = TCP_PAGE(sk);
999				int off = TCP_OFF(sk);
1000
1001				if (skb_can_coalesce(skb, i, page, off) &&
1002				    off != PAGE_SIZE) {
1003					/* We can extend the last page
1004					 * fragment. */
1005					merge = 1;
1006				} else if (i == MAX_SKB_FRAGS || !sg) {
1007					/* Need to add new fragment and cannot
1008					 * do this because interface is non-SG,
1009					 * or because all the page slots are
1010					 * busy. */
1011					tcp_mark_push(tp, skb);
1012					goto new_segment;
1013				} else if (page) {
1014					if (off == PAGE_SIZE) {
1015						put_page(page);
1016						TCP_PAGE(sk) = page = NULL;
1017						off = 0;
1018					}
1019				} else
1020					off = 0;
1021
1022				if (copy > PAGE_SIZE - off)
1023					copy = PAGE_SIZE - off;
1024
1025				if (!sk_wmem_schedule(sk, copy))
1026					goto wait_for_memory;
1027
1028				if (!page) {
1029					/* Allocate new cache page. */
1030					if (!(page = sk_stream_alloc_page(sk)))
1031						goto wait_for_memory;
1032				}
1033
1034				/* Time to copy data. We are close to
1035				 * the end! */
1036				err = skb_copy_to_page(sk, from, skb, page,
1037						       off, copy);
1038				if (err) {
1039					/* If this page was new, give it to the
1040					 * socket so it does not get leaked.
1041					 */
1042					if (!TCP_PAGE(sk)) {
1043						TCP_PAGE(sk) = page;
1044						TCP_OFF(sk) = 0;
1045					}
1046					goto do_error;
1047				}
1048
1049				/* Update the skb. */
1050				if (merge) {
1051					skb_shinfo(skb)->frags[i - 1].size +=
1052									copy;
1053				} else {
1054					skb_fill_page_desc(skb, i, page, off, copy);
1055					if (TCP_PAGE(sk)) {
1056						get_page(page);
1057					} else if (off + copy < PAGE_SIZE) {
1058						get_page(page);
1059						TCP_PAGE(sk) = page;
1060					}
1061				}
1062
1063				TCP_OFF(sk) = off + copy;
1064			}
1065
1066			if (!copied)
1067				TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
1068
1069			tp->write_seq += copy;
1070			TCP_SKB_CB(skb)->end_seq += copy;
1071			skb_shinfo(skb)->gso_segs = 0;
1072
1073			from += copy;
1074			copied += copy;
1075			if ((seglen -= copy) == 0 && iovlen == 0)
1076				goto out;
1077
1078			if (skb->len < max || (flags & MSG_OOB))
1079				continue;
1080
1081			if (forced_push(tp)) {
1082				tcp_mark_push(tp, skb);
1083				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1084			} else if (skb == tcp_send_head(sk))
1085				tcp_push_one(sk, mss_now);
1086			continue;
1087
1088wait_for_sndbuf:
1089			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1090wait_for_memory:
1091			if (copied)
1092				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1093
1094			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1095				goto do_error;
1096
1097			mss_now = tcp_send_mss(sk, &size_goal, flags);
1098		}
1099	}
1100
1101out:
1102	if (copied)
1103		tcp_push(sk, flags, mss_now, tp->nonagle);
1104	release_sock(sk);
1105	return copied;
1106
1107do_fault:
1108	if (!skb->len) {
1109		tcp_unlink_write_queue(skb, sk);
1110		/* It is the one place in all of TCP, except connection
1111		 * reset, where we can be unlinking the send_head.
1112		 */
1113		tcp_check_send_head(sk, skb);
1114		sk_wmem_free_skb(sk, skb);
1115	}
1116
1117do_error:
1118	if (copied)
1119		goto out;
1120out_err:
1121	err = sk_stream_error(sk, flags, err);
1122	release_sock(sk);
1123	return err;
1124}
1125EXPORT_SYMBOL(tcp_sendmsg);
1126
1127/*
1128 *	Handle reading urgent data. BSD has very simple semantics for
1129 *	this, no blocking and very strange errors 8)
1130 */
1131
1132static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1133{
1134	struct tcp_sock *tp = tcp_sk(sk);
1135
1136	/* No URG data to read. */
1137	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1138	    tp->urg_data == TCP_URG_READ)
1139		return -EINVAL;	/* Yes this is right ! */
1140
1141	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1142		return -ENOTCONN;
1143
1144	if (tp->urg_data & TCP_URG_VALID) {
1145		int err = 0;
1146		char c = tp->urg_data;
1147
1148		if (!(flags & MSG_PEEK))
1149			tp->urg_data = TCP_URG_READ;
1150
1151		/* Read urgent data. */
1152		msg->msg_flags |= MSG_OOB;
1153
1154		if (len > 0) {
1155			if (!(flags & MSG_TRUNC))
1156				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1157			len = 1;
1158		} else
1159			msg->msg_flags |= MSG_TRUNC;
1160
1161		return err ? -EFAULT : len;
1162	}
1163
1164	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1165		return 0;
1166
1167	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1168	 * the available implementations agree in this case:
1169	 * this call should never block, independent of the
1170	 * blocking state of the socket.
1171	 * Mike <pall@rz.uni-karlsruhe.de>
1172	 */
1173	return -EAGAIN;
1174}
1175
1176/* Clean up the receive buffer for full frames taken by the user,
1177 * then send an ACK if necessary.  COPIED is the number of bytes
1178 * tcp_recvmsg has given to the user so far, it speeds up the
1179 * calculation of whether or not we must ACK for the sake of
1180 * a window update.
1181 */
1182void tcp_cleanup_rbuf(struct sock *sk, int copied)
1183{
1184	struct tcp_sock *tp = tcp_sk(sk);
1185	int time_to_ack = 0;
1186
1187#if TCP_DEBUG
1188	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1189
1190	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1191	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1192	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1193#endif
1194
1195	if (inet_csk_ack_scheduled(sk)) {
1196		const struct inet_connection_sock *icsk = inet_csk(sk);
1197		   /* Delayed ACKs frequently hit locked sockets during bulk
1198		    * receive. */
1199		if (icsk->icsk_ack.blocked ||
1200		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1201		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1202		    /*
1203		     * If this read emptied read buffer, we send ACK, if
1204		     * connection is not bidirectional, user drained
1205		     * receive buffer and there was a small segment
1206		     * in queue.
1207		     */
1208		    (copied > 0 &&
1209		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1210		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1211		       !icsk->icsk_ack.pingpong)) &&
1212		      !atomic_read(&sk->sk_rmem_alloc)))
1213			time_to_ack = 1;
1214	}
1215
1216	/* We send an ACK if we can now advertise a non-zero window
1217	 * which has been raised "significantly".
1218	 *
1219	 * Even if window raised up to infinity, do not send window open ACK
1220	 * in states, where we will not receive more. It is useless.
1221	 */
1222	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1223		__u32 rcv_window_now = tcp_receive_window(tp);
1224
1225		/* Optimize, __tcp_select_window() is not cheap. */
1226		if (2*rcv_window_now <= tp->window_clamp) {
1227			__u32 new_window = __tcp_select_window(sk);
1228
1229			/* Send ACK now, if this read freed lots of space
1230			 * in our buffer. Certainly, new_window is new window.
1231			 * We can advertise it now, if it is not less than current one.
1232			 * "Lots" means "at least twice" here.
1233			 */
1234			if (new_window && new_window >= 2 * rcv_window_now)
1235				time_to_ack = 1;
1236		}
1237	}
1238	if (time_to_ack)
1239		tcp_send_ack(sk);
1240}
1241
1242static void tcp_prequeue_process(struct sock *sk)
1243{
1244	struct sk_buff *skb;
1245	struct tcp_sock *tp = tcp_sk(sk);
1246
1247	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1248
1249	/* RX process wants to run with disabled BHs, though it is not
1250	 * necessary */
1251	local_bh_disable();
1252	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1253		sk_backlog_rcv(sk, skb);
1254	local_bh_enable();
1255
1256	/* Clear memory counter. */
1257	tp->ucopy.memory = 0;
1258}
1259
1260#ifdef CONFIG_NET_DMA
1261static void tcp_service_net_dma(struct sock *sk, bool wait)
1262{
1263	dma_cookie_t done, used;
1264	dma_cookie_t last_issued;
1265	struct tcp_sock *tp = tcp_sk(sk);
1266
1267	if (!tp->ucopy.dma_chan)
1268		return;
1269
1270	last_issued = tp->ucopy.dma_cookie;
1271	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1272
1273	do {
1274		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1275					      last_issued, &done,
1276					      &used) == DMA_SUCCESS) {
1277			/* Safe to free early-copied skbs now */
1278			__skb_queue_purge(&sk->sk_async_wait_queue);
1279			break;
1280		} else {
1281			struct sk_buff *skb;
1282			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1283			       (dma_async_is_complete(skb->dma_cookie, done,
1284						      used) == DMA_SUCCESS)) {
1285				__skb_dequeue(&sk->sk_async_wait_queue);
1286				kfree_skb(skb);
1287			}
1288		}
1289	} while (wait);
1290}
1291#endif
1292
1293static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1294{
1295	struct sk_buff *skb;
1296	u32 offset;
1297
1298	skb_queue_walk(&sk->sk_receive_queue, skb) {
1299		offset = seq - TCP_SKB_CB(skb)->seq;
1300		if (tcp_hdr(skb)->syn)
1301			offset--;
1302		if (offset < skb->len || tcp_hdr(skb)->fin) {
1303			*off = offset;
1304			return skb;
1305		}
1306	}
1307	return NULL;
1308}
1309
1310/*
1311 * This routine provides an alternative to tcp_recvmsg() for routines
1312 * that would like to handle copying from skbuffs directly in 'sendfile'
1313 * fashion.
1314 * Note:
1315 *	- It is assumed that the socket was locked by the caller.
1316 *	- The routine does not block.
1317 *	- At present, there is no support for reading OOB data
1318 *	  or for 'peeking' the socket using this routine
1319 *	  (although both would be easy to implement).
1320 */
1321int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1322		  sk_read_actor_t recv_actor)
1323{
1324	struct sk_buff *skb;
1325	struct tcp_sock *tp = tcp_sk(sk);
1326	u32 seq = tp->copied_seq;
1327	u32 offset;
1328	int copied = 0;
1329
1330	if (sk->sk_state == TCP_LISTEN)
1331		return -ENOTCONN;
1332	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1333		if (offset < skb->len) {
1334			int used;
1335			size_t len;
1336
1337			len = skb->len - offset;
1338			/* Stop reading if we hit a patch of urgent data */
1339			if (tp->urg_data) {
1340				u32 urg_offset = tp->urg_seq - seq;
1341				if (urg_offset < len)
1342					len = urg_offset;
1343				if (!len)
1344					break;
1345			}
1346			used = recv_actor(desc, skb, offset, len);
1347			if (used < 0) {
1348				if (!copied)
1349					copied = used;
1350				break;
1351			} else if (used <= len) {
1352				seq += used;
1353				copied += used;
1354				offset += used;
1355			}
1356			/*
1357			 * If recv_actor drops the lock (e.g. TCP splice
1358			 * receive) the skb pointer might be invalid when
1359			 * getting here: tcp_collapse might have deleted it
1360			 * while aggregating skbs from the socket queue.
1361			 */
1362			skb = tcp_recv_skb(sk, seq-1, &offset);
1363			if (!skb || (offset+1 != skb->len))
1364				break;
1365		}
1366		if (tcp_hdr(skb)->fin) {
1367			sk_eat_skb(sk, skb, 0);
1368			++seq;
1369			break;
1370		}
1371		sk_eat_skb(sk, skb, 0);
1372		if (!desc->count)
1373			break;
1374		tp->copied_seq = seq;
1375	}
1376	tp->copied_seq = seq;
1377
1378	tcp_rcv_space_adjust(sk);
1379
1380	/* Clean up data we have read: This will do ACK frames. */
1381	if (copied > 0)
1382		tcp_cleanup_rbuf(sk, copied);
1383	return copied;
1384}
1385EXPORT_SYMBOL(tcp_read_sock);
1386
1387/*
1388 *	This routine copies from a sock struct into the user buffer.
1389 *
1390 *	Technical note: in 2.3 we work on _locked_ socket, so that
1391 *	tricks with *seq access order and skb->users are not required.
1392 *	Probably, code can be easily improved even more.
1393 */
1394
1395int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1396		size_t len, int nonblock, int flags, int *addr_len)
1397{
1398	struct tcp_sock *tp = tcp_sk(sk);
1399	int copied = 0;
1400	u32 peek_seq;
1401	u32 *seq;
1402	unsigned long used;
1403	int err;
1404	int target;		/* Read at least this many bytes */
1405	long timeo;
1406	struct task_struct *user_recv = NULL;
1407	int copied_early = 0;
1408	struct sk_buff *skb;
1409	u32 urg_hole = 0;
1410
1411	lock_sock(sk);
1412
1413	err = -ENOTCONN;
1414	if (sk->sk_state == TCP_LISTEN)
1415		goto out;
1416
1417	timeo = sock_rcvtimeo(sk, nonblock);
1418
1419	/* Urgent data needs to be handled specially. */
1420	if (flags & MSG_OOB)
1421		goto recv_urg;
1422
1423	seq = &tp->copied_seq;
1424	if (flags & MSG_PEEK) {
1425		peek_seq = tp->copied_seq;
1426		seq = &peek_seq;
1427	}
1428
1429	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1430
1431#ifdef CONFIG_NET_DMA
1432	tp->ucopy.dma_chan = NULL;
1433	preempt_disable();
1434	skb = skb_peek_tail(&sk->sk_receive_queue);
1435	{
1436		int available = 0;
1437
1438		if (skb)
1439			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1440		if ((available < target) &&
1441		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1442		    !sysctl_tcp_low_latency &&
1443		    dma_find_channel(DMA_MEMCPY)) {
1444			preempt_enable_no_resched();
1445			tp->ucopy.pinned_list =
1446					dma_pin_iovec_pages(msg->msg_iov, len);
1447		} else {
1448			preempt_enable_no_resched();
1449		}
1450	}
1451#endif
1452
1453	do {
1454		u32 offset;
1455
1456		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1457		if (tp->urg_data && tp->urg_seq == *seq) {
1458			if (copied)
1459				break;
1460			if (signal_pending(current)) {
1461				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1462				break;
1463			}
1464		}
1465
1466		/* Next get a buffer. */
1467
1468		skb_queue_walk(&sk->sk_receive_queue, skb) {
1469			/* Now that we have two receive queues this
1470			 * shouldn't happen.
1471			 */
1472			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1473				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1474				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1475				 flags))
1476				break;
1477
1478			offset = *seq - TCP_SKB_CB(skb)->seq;
1479			if (tcp_hdr(skb)->syn)
1480				offset--;
1481			if (offset < skb->len)
1482				goto found_ok_skb;
1483			if (tcp_hdr(skb)->fin)
1484				goto found_fin_ok;
1485			WARN(!(flags & MSG_PEEK),
1486			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1487			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1488		}
1489
1490		/* Well, if we have backlog, try to process it now yet. */
1491
1492		if (copied >= target && !sk->sk_backlog.tail)
1493			break;
1494
1495		if (copied) {
1496			if (sk->sk_err ||
1497			    sk->sk_state == TCP_CLOSE ||
1498			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1499			    !timeo ||
1500			    signal_pending(current))
1501				break;
1502		} else {
1503			if (sock_flag(sk, SOCK_DONE))
1504				break;
1505
1506			if (sk->sk_err) {
1507				copied = sock_error(sk);
1508				break;
1509			}
1510
1511			if (sk->sk_shutdown & RCV_SHUTDOWN)
1512				break;
1513
1514			if (sk->sk_state == TCP_CLOSE) {
1515				if (!sock_flag(sk, SOCK_DONE)) {
1516					/* This occurs when user tries to read
1517					 * from never connected socket.
1518					 */
1519					copied = -ENOTCONN;
1520					break;
1521				}
1522				break;
1523			}
1524
1525			if (!timeo) {
1526				copied = -EAGAIN;
1527				break;
1528			}
1529
1530			if (signal_pending(current)) {
1531				copied = sock_intr_errno(timeo);
1532				break;
1533			}
1534		}
1535
1536		tcp_cleanup_rbuf(sk, copied);
1537
1538		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1539			/* Install new reader */
1540			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1541				user_recv = current;
1542				tp->ucopy.task = user_recv;
1543				tp->ucopy.iov = msg->msg_iov;
1544			}
1545
1546			tp->ucopy.len = len;
1547
1548			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1549				!(flags & (MSG_PEEK | MSG_TRUNC)));
1550
1551			/* Ugly... If prequeue is not empty, we have to
1552			 * process it before releasing socket, otherwise
1553			 * order will be broken at second iteration.
1554			 * More elegant solution is required!!!
1555			 *
1556			 * Look: we have the following (pseudo)queues:
1557			 *
1558			 * 1. packets in flight
1559			 * 2. backlog
1560			 * 3. prequeue
1561			 * 4. receive_queue
1562			 *
1563			 * Each queue can be processed only if the next ones
1564			 * are empty. At this point we have empty receive_queue.
1565			 * But prequeue _can_ be not empty after 2nd iteration,
1566			 * when we jumped to start of loop because backlog
1567			 * processing added something to receive_queue.
1568			 * We cannot release_sock(), because backlog contains
1569			 * packets arrived _after_ prequeued ones.
1570			 *
1571			 * Shortly, algorithm is clear --- to process all
1572			 * the queues in order. We could make it more directly,
1573			 * requeueing packets from backlog to prequeue, if
1574			 * is not empty. It is more elegant, but eats cycles,
1575			 * unfortunately.
1576			 */
1577			if (!skb_queue_empty(&tp->ucopy.prequeue))
1578				goto do_prequeue;
1579
1580			/* __ Set realtime policy in scheduler __ */
1581		}
1582
1583#ifdef CONFIG_NET_DMA
1584		if (tp->ucopy.dma_chan)
1585			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1586#endif
1587		if (copied >= target) {
1588			/* Do not sleep, just process backlog. */
1589			release_sock(sk);
1590			lock_sock(sk);
1591		} else
1592			sk_wait_data(sk, &timeo);
1593
1594#ifdef CONFIG_NET_DMA
1595		tcp_service_net_dma(sk, false);  /* Don't block */
1596		tp->ucopy.wakeup = 0;
1597#endif
1598
1599		if (user_recv) {
1600			int chunk;
1601
1602			/* __ Restore normal policy in scheduler __ */
1603
1604			if ((chunk = len - tp->ucopy.len) != 0) {
1605				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1606				len -= chunk;
1607				copied += chunk;
1608			}
1609
1610			if (tp->rcv_nxt == tp->copied_seq &&
1611			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1612do_prequeue:
1613				tcp_prequeue_process(sk);
1614
1615				if ((chunk = len - tp->ucopy.len) != 0) {
1616					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1617					len -= chunk;
1618					copied += chunk;
1619				}
1620			}
1621		}
1622		if ((flags & MSG_PEEK) &&
1623		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1624			if (net_ratelimit())
1625				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1626				       current->comm, task_pid_nr(current));
1627			peek_seq = tp->copied_seq;
1628		}
1629		continue;
1630
1631	found_ok_skb:
1632		/* Ok so how much can we use? */
1633		used = skb->len - offset;
1634		if (len < used)
1635			used = len;
1636
1637		/* Do we have urgent data here? */
1638		if (tp->urg_data) {
1639			u32 urg_offset = tp->urg_seq - *seq;
1640			if (urg_offset < used) {
1641				if (!urg_offset) {
1642					if (!sock_flag(sk, SOCK_URGINLINE)) {
1643						++*seq;
1644						urg_hole++;
1645						offset++;
1646						used--;
1647						if (!used)
1648							goto skip_copy;
1649					}
1650				} else
1651					used = urg_offset;
1652			}
1653		}
1654
1655		if (!(flags & MSG_TRUNC)) {
1656#ifdef CONFIG_NET_DMA
1657			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1658				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1659
1660			if (tp->ucopy.dma_chan) {
1661				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1662					tp->ucopy.dma_chan, skb, offset,
1663					msg->msg_iov, used,
1664					tp->ucopy.pinned_list);
1665
1666				if (tp->ucopy.dma_cookie < 0) {
1667
1668					printk(KERN_ALERT "dma_cookie < 0\n");
1669
1670					/* Exception. Bailout! */
1671					if (!copied)
1672						copied = -EFAULT;
1673					break;
1674				}
1675
1676				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1677
1678				if ((offset + used) == skb->len)
1679					copied_early = 1;
1680
1681			} else
1682#endif
1683			{
1684				err = skb_copy_datagram_iovec(skb, offset,
1685						msg->msg_iov, used);
1686				if (err) {
1687					/* Exception. Bailout! */
1688					if (!copied)
1689						copied = -EFAULT;
1690					break;
1691				}
1692			}
1693		}
1694
1695		*seq += used;
1696		copied += used;
1697		len -= used;
1698
1699		tcp_rcv_space_adjust(sk);
1700
1701skip_copy:
1702		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1703			tp->urg_data = 0;
1704			tcp_fast_path_check(sk);
1705		}
1706		if (used + offset < skb->len)
1707			continue;
1708
1709		if (tcp_hdr(skb)->fin)
1710			goto found_fin_ok;
1711		if (!(flags & MSG_PEEK)) {
1712			sk_eat_skb(sk, skb, copied_early);
1713			copied_early = 0;
1714		}
1715		continue;
1716
1717	found_fin_ok:
1718		/* Process the FIN. */
1719		++*seq;
1720		if (!(flags & MSG_PEEK)) {
1721			sk_eat_skb(sk, skb, copied_early);
1722			copied_early = 0;
1723		}
1724		break;
1725	} while (len > 0);
1726
1727	if (user_recv) {
1728		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1729			int chunk;
1730
1731			tp->ucopy.len = copied > 0 ? len : 0;
1732
1733			tcp_prequeue_process(sk);
1734
1735			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1736				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1737				len -= chunk;
1738				copied += chunk;
1739			}
1740		}
1741
1742		tp->ucopy.task = NULL;
1743		tp->ucopy.len = 0;
1744	}
1745
1746#ifdef CONFIG_NET_DMA
1747	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1748	tp->ucopy.dma_chan = NULL;
1749
1750	if (tp->ucopy.pinned_list) {
1751		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1752		tp->ucopy.pinned_list = NULL;
1753	}
1754#endif
1755
1756	/* According to UNIX98, msg_name/msg_namelen are ignored
1757	 * on connected socket. I was just happy when found this 8) --ANK
1758	 */
1759
1760	/* Clean up data we have read: This will do ACK frames. */
1761	tcp_cleanup_rbuf(sk, copied);
1762
1763	release_sock(sk);
1764	return copied;
1765
1766out:
1767	release_sock(sk);
1768	return err;
1769
1770recv_urg:
1771	err = tcp_recv_urg(sk, msg, len, flags);
1772	goto out;
1773}
1774EXPORT_SYMBOL(tcp_recvmsg);
1775
1776void tcp_set_state(struct sock *sk, int state)
1777{
1778	int oldstate = sk->sk_state;
1779
1780	switch (state) {
1781	case TCP_ESTABLISHED:
1782		if (oldstate != TCP_ESTABLISHED)
1783			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1784		break;
1785
1786	case TCP_CLOSE:
1787		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1788			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1789
1790		sk->sk_prot->unhash(sk);
1791		if (inet_csk(sk)->icsk_bind_hash &&
1792		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1793			inet_put_port(sk);
1794		/* fall through */
1795	default:
1796		if (oldstate == TCP_ESTABLISHED)
1797			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1798	}
1799
1800	/* Change state AFTER socket is unhashed to avoid closed
1801	 * socket sitting in hash tables.
1802	 */
1803	sk->sk_state = state;
1804
1805#ifdef STATE_TRACE
1806	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1807#endif
1808}
1809EXPORT_SYMBOL_GPL(tcp_set_state);
1810
1811/*
1812 *	State processing on a close. This implements the state shift for
1813 *	sending our FIN frame. Note that we only send a FIN for some
1814 *	states. A shutdown() may have already sent the FIN, or we may be
1815 *	closed.
1816 */
1817
1818static const unsigned char new_state[16] = {
1819  /* current state:        new state:      action:	*/
1820  /* (Invalid)		*/ TCP_CLOSE,
1821  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1822  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1823  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1824  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1825  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1826  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1827  /* TCP_CLOSE		*/ TCP_CLOSE,
1828  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1829  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1830  /* TCP_LISTEN		*/ TCP_CLOSE,
1831  /* TCP_CLOSING	*/ TCP_CLOSING,
1832};
1833
1834static int tcp_close_state(struct sock *sk)
1835{
1836	int next = (int)new_state[sk->sk_state];
1837	int ns = next & TCP_STATE_MASK;
1838
1839	tcp_set_state(sk, ns);
1840
1841	return next & TCP_ACTION_FIN;
1842}
1843
1844/*
1845 *	Shutdown the sending side of a connection. Much like close except
1846 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1847 */
1848
1849void tcp_shutdown(struct sock *sk, int how)
1850{
1851	/*	We need to grab some memory, and put together a FIN,
1852	 *	and then put it into the queue to be sent.
1853	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1854	 */
1855	if (!(how & SEND_SHUTDOWN))
1856		return;
1857
1858	/* If we've already sent a FIN, or it's a closed state, skip this. */
1859	if ((1 << sk->sk_state) &
1860	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1861	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1862		/* Clear out any half completed packets.  FIN if needed. */
1863		if (tcp_close_state(sk))
1864			tcp_send_fin(sk);
1865	}
1866}
1867EXPORT_SYMBOL(tcp_shutdown);
1868
1869void tcp_close(struct sock *sk, long timeout)
1870{
1871	struct sk_buff *skb;
1872	int data_was_unread = 0;
1873	int state;
1874
1875	lock_sock(sk);
1876	sk->sk_shutdown = SHUTDOWN_MASK;
1877
1878	if (sk->sk_state == TCP_LISTEN) {
1879		tcp_set_state(sk, TCP_CLOSE);
1880
1881		/* Special case. */
1882		inet_csk_listen_stop(sk);
1883
1884		goto adjudge_to_death;
1885	}
1886
1887	/*  We need to flush the recv. buffs.  We do this only on the
1888	 *  descriptor close, not protocol-sourced closes, because the
1889	 *  reader process may not have drained the data yet!
1890	 */
1891	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1892		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1893			  tcp_hdr(skb)->fin;
1894		data_was_unread += len;
1895		__kfree_skb(skb);
1896	}
1897
1898	sk_mem_reclaim(sk);
1899
1900	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1901	if (sk->sk_state == TCP_CLOSE)
1902		goto adjudge_to_death;
1903
1904	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1905	 * data was lost. To witness the awful effects of the old behavior of
1906	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1907	 * GET in an FTP client, suspend the process, wait for the client to
1908	 * advertise a zero window, then kill -9 the FTP client, wheee...
1909	 * Note: timeout is always zero in such a case.
1910	 */
1911	if (data_was_unread) {
1912		/* Unread data was tossed, zap the connection. */
1913		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1914		tcp_set_state(sk, TCP_CLOSE);
1915		tcp_send_active_reset(sk, sk->sk_allocation);
1916	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1917		/* Check zero linger _after_ checking for unread data. */
1918		sk->sk_prot->disconnect(sk, 0);
1919		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1920	} else if (tcp_close_state(sk)) {
1921		/* We FIN if the application ate all the data before
1922		 * zapping the connection.
1923		 */
1924
1925		/* RED-PEN. Formally speaking, we have broken TCP state
1926		 * machine. State transitions:
1927		 *
1928		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1929		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1930		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1931		 *
1932		 * are legal only when FIN has been sent (i.e. in window),
1933		 * rather than queued out of window. Purists blame.
1934		 *
1935		 * F.e. "RFC state" is ESTABLISHED,
1936		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1937		 *
1938		 * The visible declinations are that sometimes
1939		 * we enter time-wait state, when it is not required really
1940		 * (harmless), do not send active resets, when they are
1941		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1942		 * they look as CLOSING or LAST_ACK for Linux)
1943		 * Probably, I missed some more holelets.
1944		 * 						--ANK
1945		 */
1946		tcp_send_fin(sk);
1947	}
1948
1949	sk_stream_wait_close(sk, timeout);
1950
1951adjudge_to_death:
1952	state = sk->sk_state;
1953	sock_hold(sk);
1954	sock_orphan(sk);
1955
1956	/* It is the last release_sock in its life. It will remove backlog. */
1957	release_sock(sk);
1958
1959
1960	/* Now socket is owned by kernel and we acquire BH lock
1961	   to finish close. No need to check for user refs.
1962	 */
1963	local_bh_disable();
1964	bh_lock_sock(sk);
1965	WARN_ON(sock_owned_by_user(sk));
1966
1967	percpu_counter_inc(sk->sk_prot->orphan_count);
1968
1969	/* Have we already been destroyed by a softirq or backlog? */
1970	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1971		goto out;
1972
1973	/*	This is a (useful) BSD violating of the RFC. There is a
1974	 *	problem with TCP as specified in that the other end could
1975	 *	keep a socket open forever with no application left this end.
1976	 *	We use a 3 minute timeout (about the same as BSD) then kill
1977	 *	our end. If they send after that then tough - BUT: long enough
1978	 *	that we won't make the old 4*rto = almost no time - whoops
1979	 *	reset mistake.
1980	 *
1981	 *	Nope, it was not mistake. It is really desired behaviour
1982	 *	f.e. on http servers, when such sockets are useless, but
1983	 *	consume significant resources. Let's do it with special
1984	 *	linger2	option.					--ANK
1985	 */
1986
1987	if (sk->sk_state == TCP_FIN_WAIT2) {
1988		struct tcp_sock *tp = tcp_sk(sk);
1989		if (tp->linger2 < 0) {
1990			tcp_set_state(sk, TCP_CLOSE);
1991			tcp_send_active_reset(sk, GFP_ATOMIC);
1992			NET_INC_STATS_BH(sock_net(sk),
1993					LINUX_MIB_TCPABORTONLINGER);
1994		} else {
1995			const int tmo = tcp_fin_time(sk);
1996
1997			if (tmo > TCP_TIMEWAIT_LEN) {
1998				inet_csk_reset_keepalive_timer(sk,
1999						tmo - TCP_TIMEWAIT_LEN);
2000			} else {
2001				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2002				goto out;
2003			}
2004		}
2005	}
2006	if (sk->sk_state != TCP_CLOSE) {
2007		sk_mem_reclaim(sk);
2008		if (tcp_too_many_orphans(sk, 0)) {
2009			if (net_ratelimit())
2010				printk(KERN_INFO "TCP: too many of orphaned "
2011				       "sockets\n");
2012			tcp_set_state(sk, TCP_CLOSE);
2013			tcp_send_active_reset(sk, GFP_ATOMIC);
2014			NET_INC_STATS_BH(sock_net(sk),
2015					LINUX_MIB_TCPABORTONMEMORY);
2016		}
2017	}
2018
2019	if (sk->sk_state == TCP_CLOSE)
2020		inet_csk_destroy_sock(sk);
2021	/* Otherwise, socket is reprieved until protocol close. */
2022
2023out:
2024	bh_unlock_sock(sk);
2025	local_bh_enable();
2026	sock_put(sk);
2027}
2028EXPORT_SYMBOL(tcp_close);
2029
2030/* These states need RST on ABORT according to RFC793 */
2031
2032static inline int tcp_need_reset(int state)
2033{
2034	return (1 << state) &
2035	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2036		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2037}
2038
2039int tcp_disconnect(struct sock *sk, int flags)
2040{
2041	struct inet_sock *inet = inet_sk(sk);
2042	struct inet_connection_sock *icsk = inet_csk(sk);
2043	struct tcp_sock *tp = tcp_sk(sk);
2044	int err = 0;
2045	int old_state = sk->sk_state;
2046
2047	if (old_state != TCP_CLOSE)
2048		tcp_set_state(sk, TCP_CLOSE);
2049
2050	/* ABORT function of RFC793 */
2051	if (old_state == TCP_LISTEN) {
2052		inet_csk_listen_stop(sk);
2053	} else if (tcp_need_reset(old_state) ||
2054		   (tp->snd_nxt != tp->write_seq &&
2055		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2056		/* The last check adjusts for discrepancy of Linux wrt. RFC
2057		 * states
2058		 */
2059		tcp_send_active_reset(sk, gfp_any());
2060		sk->sk_err = ECONNRESET;
2061	} else if (old_state == TCP_SYN_SENT)
2062		sk->sk_err = ECONNRESET;
2063
2064	tcp_clear_xmit_timers(sk);
2065	__skb_queue_purge(&sk->sk_receive_queue);
2066	tcp_write_queue_purge(sk);
2067	__skb_queue_purge(&tp->out_of_order_queue);
2068#ifdef CONFIG_NET_DMA
2069	__skb_queue_purge(&sk->sk_async_wait_queue);
2070#endif
2071
2072	inet->inet_dport = 0;
2073
2074	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2075		inet_reset_saddr(sk);
2076
2077	sk->sk_shutdown = 0;
2078	sock_reset_flag(sk, SOCK_DONE);
2079	tp->srtt = 0;
2080	if ((tp->write_seq += tp->max_window + 2) == 0)
2081		tp->write_seq = 1;
2082	icsk->icsk_backoff = 0;
2083	tp->snd_cwnd = 2;
2084	icsk->icsk_probes_out = 0;
2085	tp->packets_out = 0;
2086	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2087	tp->snd_cwnd_cnt = 0;
2088	tp->bytes_acked = 0;
2089	tp->window_clamp = 0;
2090	tcp_set_ca_state(sk, TCP_CA_Open);
2091	tcp_clear_retrans(tp);
2092	inet_csk_delack_init(sk);
2093	tcp_init_send_head(sk);
2094	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2095	__sk_dst_reset(sk);
2096
2097	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2098
2099	sk->sk_error_report(sk);
2100	return err;
2101}
2102EXPORT_SYMBOL(tcp_disconnect);
2103
2104/*
2105 *	Socket option code for TCP.
2106 */
2107static int do_tcp_setsockopt(struct sock *sk, int level,
2108		int optname, char __user *optval, unsigned int optlen)
2109{
2110	struct tcp_sock *tp = tcp_sk(sk);
2111	struct inet_connection_sock *icsk = inet_csk(sk);
2112	int val;
2113	int err = 0;
2114
2115	/* These are data/string values, all the others are ints */
2116	switch (optname) {
2117	case TCP_CONGESTION: {
2118		char name[TCP_CA_NAME_MAX];
2119
2120		if (optlen < 1)
2121			return -EINVAL;
2122
2123		val = strncpy_from_user(name, optval,
2124					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2125		if (val < 0)
2126			return -EFAULT;
2127		name[val] = 0;
2128
2129		lock_sock(sk);
2130		err = tcp_set_congestion_control(sk, name);
2131		release_sock(sk);
2132		return err;
2133	}
2134	case TCP_COOKIE_TRANSACTIONS: {
2135		struct tcp_cookie_transactions ctd;
2136		struct tcp_cookie_values *cvp = NULL;
2137
2138		if (sizeof(ctd) > optlen)
2139			return -EINVAL;
2140		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2141			return -EFAULT;
2142
2143		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2144		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2145			return -EINVAL;
2146
2147		if (ctd.tcpct_cookie_desired == 0) {
2148			/* default to global value */
2149		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2150			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2151			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2152			return -EINVAL;
2153		}
2154
2155		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2156			/* Supercedes all other values */
2157			lock_sock(sk);
2158			if (tp->cookie_values != NULL) {
2159				kref_put(&tp->cookie_values->kref,
2160					 tcp_cookie_values_release);
2161				tp->cookie_values = NULL;
2162			}
2163			tp->rx_opt.cookie_in_always = 0; /* false */
2164			tp->rx_opt.cookie_out_never = 1; /* true */
2165			release_sock(sk);
2166			return err;
2167		}
2168
2169		/* Allocate ancillary memory before locking.
2170		 */
2171		if (ctd.tcpct_used > 0 ||
2172		    (tp->cookie_values == NULL &&
2173		     (sysctl_tcp_cookie_size > 0 ||
2174		      ctd.tcpct_cookie_desired > 0 ||
2175		      ctd.tcpct_s_data_desired > 0))) {
2176			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2177				      GFP_KERNEL);
2178			if (cvp == NULL)
2179				return -ENOMEM;
2180
2181			kref_init(&cvp->kref);
2182		}
2183		lock_sock(sk);
2184		tp->rx_opt.cookie_in_always =
2185			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2186		tp->rx_opt.cookie_out_never = 0; /* false */
2187
2188		if (tp->cookie_values != NULL) {
2189			if (cvp != NULL) {
2190				/* Changed values are recorded by a changed
2191				 * pointer, ensuring the cookie will differ,
2192				 * without separately hashing each value later.
2193				 */
2194				kref_put(&tp->cookie_values->kref,
2195					 tcp_cookie_values_release);
2196			} else {
2197				cvp = tp->cookie_values;
2198			}
2199		}
2200
2201		if (cvp != NULL) {
2202			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2203
2204			if (ctd.tcpct_used > 0) {
2205				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2206				       ctd.tcpct_used);
2207				cvp->s_data_desired = ctd.tcpct_used;
2208				cvp->s_data_constant = 1; /* true */
2209			} else {
2210				/* No constant payload data. */
2211				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2212				cvp->s_data_constant = 0; /* false */
2213			}
2214
2215			tp->cookie_values = cvp;
2216		}
2217		release_sock(sk);
2218		return err;
2219	}
2220	default:
2221		/* fallthru */
2222		break;
2223	}
2224
2225	if (optlen < sizeof(int))
2226		return -EINVAL;
2227
2228	if (get_user(val, (int __user *)optval))
2229		return -EFAULT;
2230
2231	lock_sock(sk);
2232
2233	switch (optname) {
2234	case TCP_MAXSEG:
2235		/* Values greater than interface MTU won't take effect. However
2236		 * at the point when this call is done we typically don't yet
2237		 * know which interface is going to be used */
2238		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2239			err = -EINVAL;
2240			break;
2241		}
2242		tp->rx_opt.user_mss = val;
2243		break;
2244
2245	case TCP_NODELAY:
2246		if (val) {
2247			/* TCP_NODELAY is weaker than TCP_CORK, so that
2248			 * this option on corked socket is remembered, but
2249			 * it is not activated until cork is cleared.
2250			 *
2251			 * However, when TCP_NODELAY is set we make
2252			 * an explicit push, which overrides even TCP_CORK
2253			 * for currently queued segments.
2254			 */
2255			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2256			tcp_push_pending_frames(sk);
2257		} else {
2258			tp->nonagle &= ~TCP_NAGLE_OFF;
2259		}
2260		break;
2261
2262	case TCP_THIN_LINEAR_TIMEOUTS:
2263		if (val < 0 || val > 1)
2264			err = -EINVAL;
2265		else
2266			tp->thin_lto = val;
2267		break;
2268
2269	case TCP_THIN_DUPACK:
2270		if (val < 0 || val > 1)
2271			err = -EINVAL;
2272		else
2273			tp->thin_dupack = val;
2274		break;
2275
2276	case TCP_CORK:
2277		/* When set indicates to always queue non-full frames.
2278		 * Later the user clears this option and we transmit
2279		 * any pending partial frames in the queue.  This is
2280		 * meant to be used alongside sendfile() to get properly
2281		 * filled frames when the user (for example) must write
2282		 * out headers with a write() call first and then use
2283		 * sendfile to send out the data parts.
2284		 *
2285		 * TCP_CORK can be set together with TCP_NODELAY and it is
2286		 * stronger than TCP_NODELAY.
2287		 */
2288		if (val) {
2289			tp->nonagle |= TCP_NAGLE_CORK;
2290		} else {
2291			tp->nonagle &= ~TCP_NAGLE_CORK;
2292			if (tp->nonagle&TCP_NAGLE_OFF)
2293				tp->nonagle |= TCP_NAGLE_PUSH;
2294			tcp_push_pending_frames(sk);
2295		}
2296		break;
2297
2298	case TCP_KEEPIDLE:
2299		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2300			err = -EINVAL;
2301		else {
2302			tp->keepalive_time = val * HZ;
2303			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2304			    !((1 << sk->sk_state) &
2305			      (TCPF_CLOSE | TCPF_LISTEN))) {
2306				u32 elapsed = keepalive_time_elapsed(tp);
2307				if (tp->keepalive_time > elapsed)
2308					elapsed = tp->keepalive_time - elapsed;
2309				else
2310					elapsed = 0;
2311				inet_csk_reset_keepalive_timer(sk, elapsed);
2312			}
2313		}
2314		break;
2315	case TCP_KEEPINTVL:
2316		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2317			err = -EINVAL;
2318		else
2319			tp->keepalive_intvl = val * HZ;
2320		break;
2321	case TCP_KEEPCNT:
2322		if (val < 1 || val > MAX_TCP_KEEPCNT)
2323			err = -EINVAL;
2324		else
2325			tp->keepalive_probes = val;
2326		break;
2327	case TCP_SYNCNT:
2328		if (val < 1 || val > MAX_TCP_SYNCNT)
2329			err = -EINVAL;
2330		else
2331			icsk->icsk_syn_retries = val;
2332		break;
2333
2334	case TCP_LINGER2:
2335		if (val < 0)
2336			tp->linger2 = -1;
2337		else if (val > sysctl_tcp_fin_timeout / HZ)
2338			tp->linger2 = 0;
2339		else
2340			tp->linger2 = val * HZ;
2341		break;
2342
2343	case TCP_DEFER_ACCEPT:
2344		/* Translate value in seconds to number of retransmits */
2345		icsk->icsk_accept_queue.rskq_defer_accept =
2346			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2347					TCP_RTO_MAX / HZ);
2348		break;
2349
2350	case TCP_WINDOW_CLAMP:
2351		if (!val) {
2352			if (sk->sk_state != TCP_CLOSE) {
2353				err = -EINVAL;
2354				break;
2355			}
2356			tp->window_clamp = 0;
2357		} else
2358			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2359						SOCK_MIN_RCVBUF / 2 : val;
2360		break;
2361
2362	case TCP_QUICKACK:
2363		if (!val) {
2364			icsk->icsk_ack.pingpong = 1;
2365		} else {
2366			icsk->icsk_ack.pingpong = 0;
2367			if ((1 << sk->sk_state) &
2368			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2369			    inet_csk_ack_scheduled(sk)) {
2370				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2371				tcp_cleanup_rbuf(sk, 1);
2372				if (!(val & 1))
2373					icsk->icsk_ack.pingpong = 1;
2374			}
2375		}
2376		break;
2377
2378#ifdef CONFIG_TCP_MD5SIG
2379	case TCP_MD5SIG:
2380		/* Read the IP->Key mappings from userspace */
2381		err = tp->af_specific->md5_parse(sk, optval, optlen);
2382		break;
2383#endif
2384	case TCP_USER_TIMEOUT:
2385		/* Cap the max timeout in ms TCP will retry/retrans
2386		 * before giving up and aborting (ETIMEDOUT) a connection.
2387		 */
2388		icsk->icsk_user_timeout = msecs_to_jiffies(val);
2389		break;
2390	default:
2391		err = -ENOPROTOOPT;
2392		break;
2393	}
2394
2395	release_sock(sk);
2396	return err;
2397}
2398
2399int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2400		   unsigned int optlen)
2401{
2402	struct inet_connection_sock *icsk = inet_csk(sk);
2403
2404	if (level != SOL_TCP)
2405		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2406						     optval, optlen);
2407	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2408}
2409EXPORT_SYMBOL(tcp_setsockopt);
2410
2411#ifdef CONFIG_COMPAT
2412int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2413			  char __user *optval, unsigned int optlen)
2414{
2415	if (level != SOL_TCP)
2416		return inet_csk_compat_setsockopt(sk, level, optname,
2417						  optval, optlen);
2418	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2419}
2420EXPORT_SYMBOL(compat_tcp_setsockopt);
2421#endif
2422
2423/* Return information about state of tcp endpoint in API format. */
2424void tcp_get_info(struct sock *sk, struct tcp_info *info)
2425{
2426	struct tcp_sock *tp = tcp_sk(sk);
2427	const struct inet_connection_sock *icsk = inet_csk(sk);
2428	u32 now = tcp_time_stamp;
2429
2430	memset(info, 0, sizeof(*info));
2431
2432	info->tcpi_state = sk->sk_state;
2433	info->tcpi_ca_state = icsk->icsk_ca_state;
2434	info->tcpi_retransmits = icsk->icsk_retransmits;
2435	info->tcpi_probes = icsk->icsk_probes_out;
2436	info->tcpi_backoff = icsk->icsk_backoff;
2437
2438	if (tp->rx_opt.tstamp_ok)
2439		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2440	if (tcp_is_sack(tp))
2441		info->tcpi_options |= TCPI_OPT_SACK;
2442	if (tp->rx_opt.wscale_ok) {
2443		info->tcpi_options |= TCPI_OPT_WSCALE;
2444		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2445		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2446	}
2447
2448	if (tp->ecn_flags&TCP_ECN_OK)
2449		info->tcpi_options |= TCPI_OPT_ECN;
2450
2451	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2452	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2453	info->tcpi_snd_mss = tp->mss_cache;
2454	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2455
2456	if (sk->sk_state == TCP_LISTEN) {
2457		info->tcpi_unacked = sk->sk_ack_backlog;
2458		info->tcpi_sacked = sk->sk_max_ack_backlog;
2459	} else {
2460		info->tcpi_unacked = tp->packets_out;
2461		info->tcpi_sacked = tp->sacked_out;
2462	}
2463	info->tcpi_lost = tp->lost_out;
2464	info->tcpi_retrans = tp->retrans_out;
2465	info->tcpi_fackets = tp->fackets_out;
2466
2467	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2468	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2469	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2470
2471	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2472	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2473	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2474	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2475	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2476	info->tcpi_snd_cwnd = tp->snd_cwnd;
2477	info->tcpi_advmss = tp->advmss;
2478	info->tcpi_reordering = tp->reordering;
2479
2480	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2481	info->tcpi_rcv_space = tp->rcvq_space.space;
2482
2483	info->tcpi_total_retrans = tp->total_retrans;
2484}
2485EXPORT_SYMBOL_GPL(tcp_get_info);
2486
2487static int do_tcp_getsockopt(struct sock *sk, int level,
2488		int optname, char __user *optval, int __user *optlen)
2489{
2490	struct inet_connection_sock *icsk = inet_csk(sk);
2491	struct tcp_sock *tp = tcp_sk(sk);
2492	int val, len;
2493
2494	if (get_user(len, optlen))
2495		return -EFAULT;
2496
2497	len = min_t(unsigned int, len, sizeof(int));
2498
2499	if (len < 0)
2500		return -EINVAL;
2501
2502	switch (optname) {
2503	case TCP_MAXSEG:
2504		val = tp->mss_cache;
2505		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2506			val = tp->rx_opt.user_mss;
2507		break;
2508	case TCP_NODELAY:
2509		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2510		break;
2511	case TCP_CORK:
2512		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2513		break;
2514	case TCP_KEEPIDLE:
2515		val = keepalive_time_when(tp) / HZ;
2516		break;
2517	case TCP_KEEPINTVL:
2518		val = keepalive_intvl_when(tp) / HZ;
2519		break;
2520	case TCP_KEEPCNT:
2521		val = keepalive_probes(tp);
2522		break;
2523	case TCP_SYNCNT:
2524		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2525		break;
2526	case TCP_LINGER2:
2527		val = tp->linger2;
2528		if (val >= 0)
2529			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2530		break;
2531	case TCP_DEFER_ACCEPT:
2532		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2533				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2534		break;
2535	case TCP_WINDOW_CLAMP:
2536		val = tp->window_clamp;
2537		break;
2538	case TCP_INFO: {
2539		struct tcp_info info;
2540
2541		if (get_user(len, optlen))
2542			return -EFAULT;
2543
2544		tcp_get_info(sk, &info);
2545
2546		len = min_t(unsigned int, len, sizeof(info));
2547		if (put_user(len, optlen))
2548			return -EFAULT;
2549		if (copy_to_user(optval, &info, len))
2550			return -EFAULT;
2551		return 0;
2552	}
2553	case TCP_QUICKACK:
2554		val = !icsk->icsk_ack.pingpong;
2555		break;
2556
2557	case TCP_CONGESTION:
2558		if (get_user(len, optlen))
2559			return -EFAULT;
2560		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2561		if (put_user(len, optlen))
2562			return -EFAULT;
2563		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2564			return -EFAULT;
2565		return 0;
2566
2567	case TCP_COOKIE_TRANSACTIONS: {
2568		struct tcp_cookie_transactions ctd;
2569		struct tcp_cookie_values *cvp = tp->cookie_values;
2570
2571		if (get_user(len, optlen))
2572			return -EFAULT;
2573		if (len < sizeof(ctd))
2574			return -EINVAL;
2575
2576		memset(&ctd, 0, sizeof(ctd));
2577		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2578				   TCP_COOKIE_IN_ALWAYS : 0)
2579				| (tp->rx_opt.cookie_out_never ?
2580				   TCP_COOKIE_OUT_NEVER : 0);
2581
2582		if (cvp != NULL) {
2583			ctd.tcpct_flags |= (cvp->s_data_in ?
2584					    TCP_S_DATA_IN : 0)
2585					 | (cvp->s_data_out ?
2586					    TCP_S_DATA_OUT : 0);
2587
2588			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2589			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2590
2591			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2592			       cvp->cookie_pair_size);
2593			ctd.tcpct_used = cvp->cookie_pair_size;
2594		}
2595
2596		if (put_user(sizeof(ctd), optlen))
2597			return -EFAULT;
2598		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2599			return -EFAULT;
2600		return 0;
2601	}
2602	case TCP_THIN_LINEAR_TIMEOUTS:
2603		val = tp->thin_lto;
2604		break;
2605	case TCP_THIN_DUPACK:
2606		val = tp->thin_dupack;
2607		break;
2608
2609	case TCP_USER_TIMEOUT:
2610		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2611		break;
2612	default:
2613		return -ENOPROTOOPT;
2614	}
2615
2616	if (put_user(len, optlen))
2617		return -EFAULT;
2618	if (copy_to_user(optval, &val, len))
2619		return -EFAULT;
2620	return 0;
2621}
2622
2623int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2624		   int __user *optlen)
2625{
2626	struct inet_connection_sock *icsk = inet_csk(sk);
2627
2628	if (level != SOL_TCP)
2629		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2630						     optval, optlen);
2631	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2632}
2633EXPORT_SYMBOL(tcp_getsockopt);
2634
2635#ifdef CONFIG_COMPAT
2636int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2637			  char __user *optval, int __user *optlen)
2638{
2639	if (level != SOL_TCP)
2640		return inet_csk_compat_getsockopt(sk, level, optname,
2641						  optval, optlen);
2642	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2643}
2644EXPORT_SYMBOL(compat_tcp_getsockopt);
2645#endif
2646
2647struct sk_buff *tcp_tso_segment(struct sk_buff *skb, u32 features)
2648{
2649	struct sk_buff *segs = ERR_PTR(-EINVAL);
2650	struct tcphdr *th;
2651	unsigned thlen;
2652	unsigned int seq;
2653	__be32 delta;
2654	unsigned int oldlen;
2655	unsigned int mss;
2656
2657	if (!pskb_may_pull(skb, sizeof(*th)))
2658		goto out;
2659
2660	th = tcp_hdr(skb);
2661	thlen = th->doff * 4;
2662	if (thlen < sizeof(*th))
2663		goto out;
2664
2665	if (!pskb_may_pull(skb, thlen))
2666		goto out;
2667
2668	oldlen = (u16)~skb->len;
2669	__skb_pull(skb, thlen);
2670
2671	mss = skb_shinfo(skb)->gso_size;
2672	if (unlikely(skb->len <= mss))
2673		goto out;
2674
2675	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2676		/* Packet is from an untrusted source, reset gso_segs. */
2677		int type = skb_shinfo(skb)->gso_type;
2678
2679		if (unlikely(type &
2680			     ~(SKB_GSO_TCPV4 |
2681			       SKB_GSO_DODGY |
2682			       SKB_GSO_TCP_ECN |
2683			       SKB_GSO_TCPV6 |
2684			       0) ||
2685			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2686			goto out;
2687
2688		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2689
2690		segs = NULL;
2691		goto out;
2692	}
2693
2694	segs = skb_segment(skb, features);
2695	if (IS_ERR(segs))
2696		goto out;
2697
2698	delta = htonl(oldlen + (thlen + mss));
2699
2700	skb = segs;
2701	th = tcp_hdr(skb);
2702	seq = ntohl(th->seq);
2703
2704	do {
2705		th->fin = th->psh = 0;
2706
2707		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2708				       (__force u32)delta));
2709		if (skb->ip_summed != CHECKSUM_PARTIAL)
2710			th->check =
2711			     csum_fold(csum_partial(skb_transport_header(skb),
2712						    thlen, skb->csum));
2713
2714		seq += mss;
2715		skb = skb->next;
2716		th = tcp_hdr(skb);
2717
2718		th->seq = htonl(seq);
2719		th->cwr = 0;
2720	} while (skb->next);
2721
2722	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2723		      skb->data_len);
2724	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2725				(__force u32)delta));
2726	if (skb->ip_summed != CHECKSUM_PARTIAL)
2727		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2728						   thlen, skb->csum));
2729
2730out:
2731	return segs;
2732}
2733EXPORT_SYMBOL(tcp_tso_segment);
2734
2735struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2736{
2737	struct sk_buff **pp = NULL;
2738	struct sk_buff *p;
2739	struct tcphdr *th;
2740	struct tcphdr *th2;
2741	unsigned int len;
2742	unsigned int thlen;
2743	__be32 flags;
2744	unsigned int mss = 1;
2745	unsigned int hlen;
2746	unsigned int off;
2747	int flush = 1;
2748	int i;
2749
2750	off = skb_gro_offset(skb);
2751	hlen = off + sizeof(*th);
2752	th = skb_gro_header_fast(skb, off);
2753	if (skb_gro_header_hard(skb, hlen)) {
2754		th = skb_gro_header_slow(skb, hlen, off);
2755		if (unlikely(!th))
2756			goto out;
2757	}
2758
2759	thlen = th->doff * 4;
2760	if (thlen < sizeof(*th))
2761		goto out;
2762
2763	hlen = off + thlen;
2764	if (skb_gro_header_hard(skb, hlen)) {
2765		th = skb_gro_header_slow(skb, hlen, off);
2766		if (unlikely(!th))
2767			goto out;
2768	}
2769
2770	skb_gro_pull(skb, thlen);
2771
2772	len = skb_gro_len(skb);
2773	flags = tcp_flag_word(th);
2774
2775	for (; (p = *head); head = &p->next) {
2776		if (!NAPI_GRO_CB(p)->same_flow)
2777			continue;
2778
2779		th2 = tcp_hdr(p);
2780
2781		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2782			NAPI_GRO_CB(p)->same_flow = 0;
2783			continue;
2784		}
2785
2786		goto found;
2787	}
2788
2789	goto out_check_final;
2790
2791found:
2792	flush = NAPI_GRO_CB(p)->flush;
2793	flush |= (__force int)(flags & TCP_FLAG_CWR);
2794	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2795		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2796	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2797	for (i = sizeof(*th); i < thlen; i += 4)
2798		flush |= *(u32 *)((u8 *)th + i) ^
2799			 *(u32 *)((u8 *)th2 + i);
2800
2801	mss = skb_shinfo(p)->gso_size;
2802
2803	flush |= (len - 1) >= mss;
2804	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2805
2806	if (flush || skb_gro_receive(head, skb)) {
2807		mss = 1;
2808		goto out_check_final;
2809	}
2810
2811	p = *head;
2812	th2 = tcp_hdr(p);
2813	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2814
2815out_check_final:
2816	flush = len < mss;
2817	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2818					TCP_FLAG_RST | TCP_FLAG_SYN |
2819					TCP_FLAG_FIN));
2820
2821	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2822		pp = head;
2823
2824out:
2825	NAPI_GRO_CB(skb)->flush |= flush;
2826
2827	return pp;
2828}
2829EXPORT_SYMBOL(tcp_gro_receive);
2830
2831int tcp_gro_complete(struct sk_buff *skb)
2832{
2833	struct tcphdr *th = tcp_hdr(skb);
2834
2835	skb->csum_start = skb_transport_header(skb) - skb->head;
2836	skb->csum_offset = offsetof(struct tcphdr, check);
2837	skb->ip_summed = CHECKSUM_PARTIAL;
2838
2839	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2840
2841	if (th->cwr)
2842		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2843
2844	return 0;
2845}
2846EXPORT_SYMBOL(tcp_gro_complete);
2847
2848#ifdef CONFIG_TCP_MD5SIG
2849static unsigned long tcp_md5sig_users;
2850static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool;
2851static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2852
2853static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool)
2854{
2855	int cpu;
2856	for_each_possible_cpu(cpu) {
2857		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2858		if (p) {
2859			if (p->md5_desc.tfm)
2860				crypto_free_hash(p->md5_desc.tfm);
2861			kfree(p);
2862		}
2863	}
2864	free_percpu(pool);
2865}
2866
2867void tcp_free_md5sig_pool(void)
2868{
2869	struct tcp_md5sig_pool * __percpu *pool = NULL;
2870
2871	spin_lock_bh(&tcp_md5sig_pool_lock);
2872	if (--tcp_md5sig_users == 0) {
2873		pool = tcp_md5sig_pool;
2874		tcp_md5sig_pool = NULL;
2875	}
2876	spin_unlock_bh(&tcp_md5sig_pool_lock);
2877	if (pool)
2878		__tcp_free_md5sig_pool(pool);
2879}
2880EXPORT_SYMBOL(tcp_free_md5sig_pool);
2881
2882static struct tcp_md5sig_pool * __percpu *
2883__tcp_alloc_md5sig_pool(struct sock *sk)
2884{
2885	int cpu;
2886	struct tcp_md5sig_pool * __percpu *pool;
2887
2888	pool = alloc_percpu(struct tcp_md5sig_pool *);
2889	if (!pool)
2890		return NULL;
2891
2892	for_each_possible_cpu(cpu) {
2893		struct tcp_md5sig_pool *p;
2894		struct crypto_hash *hash;
2895
2896		p = kzalloc(sizeof(*p), sk->sk_allocation);
2897		if (!p)
2898			goto out_free;
2899		*per_cpu_ptr(pool, cpu) = p;
2900
2901		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2902		if (!hash || IS_ERR(hash))
2903			goto out_free;
2904
2905		p->md5_desc.tfm = hash;
2906	}
2907	return pool;
2908out_free:
2909	__tcp_free_md5sig_pool(pool);
2910	return NULL;
2911}
2912
2913struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2914{
2915	struct tcp_md5sig_pool * __percpu *pool;
2916	int alloc = 0;
2917
2918retry:
2919	spin_lock_bh(&tcp_md5sig_pool_lock);
2920	pool = tcp_md5sig_pool;
2921	if (tcp_md5sig_users++ == 0) {
2922		alloc = 1;
2923		spin_unlock_bh(&tcp_md5sig_pool_lock);
2924	} else if (!pool) {
2925		tcp_md5sig_users--;
2926		spin_unlock_bh(&tcp_md5sig_pool_lock);
2927		cpu_relax();
2928		goto retry;
2929	} else
2930		spin_unlock_bh(&tcp_md5sig_pool_lock);
2931
2932	if (alloc) {
2933		/* we cannot hold spinlock here because this may sleep. */
2934		struct tcp_md5sig_pool * __percpu *p;
2935
2936		p = __tcp_alloc_md5sig_pool(sk);
2937		spin_lock_bh(&tcp_md5sig_pool_lock);
2938		if (!p) {
2939			tcp_md5sig_users--;
2940			spin_unlock_bh(&tcp_md5sig_pool_lock);
2941			return NULL;
2942		}
2943		pool = tcp_md5sig_pool;
2944		if (pool) {
2945			/* oops, it has already been assigned. */
2946			spin_unlock_bh(&tcp_md5sig_pool_lock);
2947			__tcp_free_md5sig_pool(p);
2948		} else {
2949			tcp_md5sig_pool = pool = p;
2950			spin_unlock_bh(&tcp_md5sig_pool_lock);
2951		}
2952	}
2953	return pool;
2954}
2955EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2956
2957
2958/**
2959 *	tcp_get_md5sig_pool - get md5sig_pool for this user
2960 *
2961 *	We use percpu structure, so if we succeed, we exit with preemption
2962 *	and BH disabled, to make sure another thread or softirq handling
2963 *	wont try to get same context.
2964 */
2965struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2966{
2967	struct tcp_md5sig_pool * __percpu *p;
2968
2969	local_bh_disable();
2970
2971	spin_lock(&tcp_md5sig_pool_lock);
2972	p = tcp_md5sig_pool;
2973	if (p)
2974		tcp_md5sig_users++;
2975	spin_unlock(&tcp_md5sig_pool_lock);
2976
2977	if (p)
2978		return *this_cpu_ptr(p);
2979
2980	local_bh_enable();
2981	return NULL;
2982}
2983EXPORT_SYMBOL(tcp_get_md5sig_pool);
2984
2985void tcp_put_md5sig_pool(void)
2986{
2987	local_bh_enable();
2988	tcp_free_md5sig_pool();
2989}
2990EXPORT_SYMBOL(tcp_put_md5sig_pool);
2991
2992int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2993			struct tcphdr *th)
2994{
2995	struct scatterlist sg;
2996	int err;
2997
2998	__sum16 old_checksum = th->check;
2999	th->check = 0;
3000	/* options aren't included in the hash */
3001	sg_init_one(&sg, th, sizeof(struct tcphdr));
3002	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
3003	th->check = old_checksum;
3004	return err;
3005}
3006EXPORT_SYMBOL(tcp_md5_hash_header);
3007
3008int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3009			  struct sk_buff *skb, unsigned header_len)
3010{
3011	struct scatterlist sg;
3012	const struct tcphdr *tp = tcp_hdr(skb);
3013	struct hash_desc *desc = &hp->md5_desc;
3014	unsigned i;
3015	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3016				       skb_headlen(skb) - header_len : 0;
3017	const struct skb_shared_info *shi = skb_shinfo(skb);
3018	struct sk_buff *frag_iter;
3019
3020	sg_init_table(&sg, 1);
3021
3022	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3023	if (crypto_hash_update(desc, &sg, head_data_len))
3024		return 1;
3025
3026	for (i = 0; i < shi->nr_frags; ++i) {
3027		const struct skb_frag_struct *f = &shi->frags[i];
3028		sg_set_page(&sg, f->page, f->size, f->page_offset);
3029		if (crypto_hash_update(desc, &sg, f->size))
3030			return 1;
3031	}
3032
3033	skb_walk_frags(skb, frag_iter)
3034		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3035			return 1;
3036
3037	return 0;
3038}
3039EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3040
3041int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
3042{
3043	struct scatterlist sg;
3044
3045	sg_init_one(&sg, key->key, key->keylen);
3046	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3047}
3048EXPORT_SYMBOL(tcp_md5_hash_key);
3049
3050#endif
3051
3052/**
3053 * Each Responder maintains up to two secret values concurrently for
3054 * efficient secret rollover.  Each secret value has 4 states:
3055 *
3056 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3057 *    Generates new Responder-Cookies, but not yet used for primary
3058 *    verification.  This is a short-term state, typically lasting only
3059 *    one round trip time (RTT).
3060 *
3061 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3062 *    Used both for generation and primary verification.
3063 *
3064 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3065 *    Used for verification, until the first failure that can be
3066 *    verified by the newer Generating secret.  At that time, this
3067 *    cookie's state is changed to Secondary, and the Generating
3068 *    cookie's state is changed to Primary.  This is a short-term state,
3069 *    typically lasting only one round trip time (RTT).
3070 *
3071 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3072 *    Used for secondary verification, after primary verification
3073 *    failures.  This state lasts no more than twice the Maximum Segment
3074 *    Lifetime (2MSL).  Then, the secret is discarded.
3075 */
3076struct tcp_cookie_secret {
3077	/* The secret is divided into two parts.  The digest part is the
3078	 * equivalent of previously hashing a secret and saving the state,
3079	 * and serves as an initialization vector (IV).  The message part
3080	 * serves as the trailing secret.
3081	 */
3082	u32				secrets[COOKIE_WORKSPACE_WORDS];
3083	unsigned long			expires;
3084};
3085
3086#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3087#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3088#define TCP_SECRET_LIFE (HZ * 600)
3089
3090static struct tcp_cookie_secret tcp_secret_one;
3091static struct tcp_cookie_secret tcp_secret_two;
3092
3093/* Essentially a circular list, without dynamic allocation. */
3094static struct tcp_cookie_secret *tcp_secret_generating;
3095static struct tcp_cookie_secret *tcp_secret_primary;
3096static struct tcp_cookie_secret *tcp_secret_retiring;
3097static struct tcp_cookie_secret *tcp_secret_secondary;
3098
3099static DEFINE_SPINLOCK(tcp_secret_locker);
3100
3101/* Select a pseudo-random word in the cookie workspace.
3102 */
3103static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3104{
3105	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3106}
3107
3108/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3109 * Called in softirq context.
3110 * Returns: 0 for success.
3111 */
3112int tcp_cookie_generator(u32 *bakery)
3113{
3114	unsigned long jiffy = jiffies;
3115
3116	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3117		spin_lock_bh(&tcp_secret_locker);
3118		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3119			/* refreshed by another */
3120			memcpy(bakery,
3121			       &tcp_secret_generating->secrets[0],
3122			       COOKIE_WORKSPACE_WORDS);
3123		} else {
3124			/* still needs refreshing */
3125			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3126
3127			/* The first time, paranoia assumes that the
3128			 * randomization function isn't as strong.  But,
3129			 * this secret initialization is delayed until
3130			 * the last possible moment (packet arrival).
3131			 * Although that time is observable, it is
3132			 * unpredictably variable.  Mash in the most
3133			 * volatile clock bits available, and expire the
3134			 * secret extra quickly.
3135			 */
3136			if (unlikely(tcp_secret_primary->expires ==
3137				     tcp_secret_secondary->expires)) {
3138				struct timespec tv;
3139
3140				getnstimeofday(&tv);
3141				bakery[COOKIE_DIGEST_WORDS+0] ^=
3142					(u32)tv.tv_nsec;
3143
3144				tcp_secret_secondary->expires = jiffy
3145					+ TCP_SECRET_1MSL
3146					+ (0x0f & tcp_cookie_work(bakery, 0));
3147			} else {
3148				tcp_secret_secondary->expires = jiffy
3149					+ TCP_SECRET_LIFE
3150					+ (0xff & tcp_cookie_work(bakery, 1));
3151				tcp_secret_primary->expires = jiffy
3152					+ TCP_SECRET_2MSL
3153					+ (0x1f & tcp_cookie_work(bakery, 2));
3154			}
3155			memcpy(&tcp_secret_secondary->secrets[0],
3156			       bakery, COOKIE_WORKSPACE_WORDS);
3157
3158			rcu_assign_pointer(tcp_secret_generating,
3159					   tcp_secret_secondary);
3160			rcu_assign_pointer(tcp_secret_retiring,
3161					   tcp_secret_primary);
3162			/*
3163			 * Neither call_rcu() nor synchronize_rcu() needed.
3164			 * Retiring data is not freed.  It is replaced after
3165			 * further (locked) pointer updates, and a quiet time
3166			 * (minimum 1MSL, maximum LIFE - 2MSL).
3167			 */
3168		}
3169		spin_unlock_bh(&tcp_secret_locker);
3170	} else {
3171		rcu_read_lock_bh();
3172		memcpy(bakery,
3173		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3174		       COOKIE_WORKSPACE_WORDS);
3175		rcu_read_unlock_bh();
3176	}
3177	return 0;
3178}
3179EXPORT_SYMBOL(tcp_cookie_generator);
3180
3181void tcp_done(struct sock *sk)
3182{
3183	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3184		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3185
3186	tcp_set_state(sk, TCP_CLOSE);
3187	tcp_clear_xmit_timers(sk);
3188
3189	sk->sk_shutdown = SHUTDOWN_MASK;
3190
3191	if (!sock_flag(sk, SOCK_DEAD))
3192		sk->sk_state_change(sk);
3193	else
3194		inet_csk_destroy_sock(sk);
3195}
3196EXPORT_SYMBOL_GPL(tcp_done);
3197
3198extern struct tcp_congestion_ops tcp_reno;
3199
3200static __initdata unsigned long thash_entries;
3201static int __init set_thash_entries(char *str)
3202{
3203	if (!str)
3204		return 0;
3205	thash_entries = simple_strtoul(str, &str, 0);
3206	return 1;
3207}
3208__setup("thash_entries=", set_thash_entries);
3209
3210void __init tcp_init(void)
3211{
3212	struct sk_buff *skb = NULL;
3213	unsigned long nr_pages, limit;
3214	int i, max_share, cnt;
3215	unsigned long jiffy = jiffies;
3216
3217	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3218
3219	percpu_counter_init(&tcp_sockets_allocated, 0);
3220	percpu_counter_init(&tcp_orphan_count, 0);
3221	tcp_hashinfo.bind_bucket_cachep =
3222		kmem_cache_create("tcp_bind_bucket",
3223				  sizeof(struct inet_bind_bucket), 0,
3224				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3225
3226	/* Size and allocate the main established and bind bucket
3227	 * hash tables.
3228	 *
3229	 * The methodology is similar to that of the buffer cache.
3230	 */
3231	tcp_hashinfo.ehash =
3232		alloc_large_system_hash("TCP established",
3233					sizeof(struct inet_ehash_bucket),
3234					thash_entries,
3235					(totalram_pages >= 128 * 1024) ?
3236					13 : 15,
3237					0,
3238					NULL,
3239					&tcp_hashinfo.ehash_mask,
3240					thash_entries ? 0 : 512 * 1024);
3241	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3242		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3243		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3244	}
3245	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3246		panic("TCP: failed to alloc ehash_locks");
3247	tcp_hashinfo.bhash =
3248		alloc_large_system_hash("TCP bind",
3249					sizeof(struct inet_bind_hashbucket),
3250					tcp_hashinfo.ehash_mask + 1,
3251					(totalram_pages >= 128 * 1024) ?
3252					13 : 15,
3253					0,
3254					&tcp_hashinfo.bhash_size,
3255					NULL,
3256					64 * 1024);
3257	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
3258	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3259		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3260		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3261	}
3262
3263
3264	cnt = tcp_hashinfo.ehash_mask + 1;
3265
3266	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3267	sysctl_tcp_max_orphans = cnt / 2;
3268	sysctl_max_syn_backlog = max(128, cnt / 256);
3269
3270	/* Set the pressure threshold to be a fraction of global memory that
3271	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
3272	 * memory, with a floor of 128 pages.
3273	 */
3274	nr_pages = totalram_pages - totalhigh_pages;
3275	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
3276	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
3277	limit = max(limit, 128UL);
3278	sysctl_tcp_mem[0] = limit / 4 * 3;
3279	sysctl_tcp_mem[1] = limit;
3280	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3281
3282	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3283	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
3284	max_share = min(4UL*1024*1024, limit);
3285
3286	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3287	sysctl_tcp_wmem[1] = 16*1024;
3288	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3289
3290	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3291	sysctl_tcp_rmem[1] = 87380;
3292	sysctl_tcp_rmem[2] = max(87380, max_share);
3293
3294	printk(KERN_INFO "TCP: Hash tables configured "
3295	       "(established %u bind %u)\n",
3296	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3297
3298	tcp_register_congestion_control(&tcp_reno);
3299
3300	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3301	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3302	tcp_secret_one.expires = jiffy; /* past due */
3303	tcp_secret_two.expires = jiffy; /* past due */
3304	tcp_secret_generating = &tcp_secret_one;
3305	tcp_secret_primary = &tcp_secret_one;
3306	tcp_secret_retiring = &tcp_secret_two;
3307	tcp_secret_secondary = &tcp_secret_two;
3308}
3309