tcp.c revision 292e8d8c853889140ed77b7b37c66979b13080ae
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248#define pr_fmt(fmt) "TCP: " fmt 249 250#include <linux/kernel.h> 251#include <linux/module.h> 252#include <linux/types.h> 253#include <linux/fcntl.h> 254#include <linux/poll.h> 255#include <linux/init.h> 256#include <linux/fs.h> 257#include <linux/skbuff.h> 258#include <linux/scatterlist.h> 259#include <linux/splice.h> 260#include <linux/net.h> 261#include <linux/socket.h> 262#include <linux/random.h> 263#include <linux/bootmem.h> 264#include <linux/highmem.h> 265#include <linux/swap.h> 266#include <linux/cache.h> 267#include <linux/err.h> 268#include <linux/crypto.h> 269#include <linux/time.h> 270#include <linux/slab.h> 271 272#include <net/icmp.h> 273#include <net/tcp.h> 274#include <net/xfrm.h> 275#include <net/ip.h> 276#include <net/netdma.h> 277#include <net/sock.h> 278 279#include <asm/uaccess.h> 280#include <asm/ioctls.h> 281 282int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 283 284struct percpu_counter tcp_orphan_count; 285EXPORT_SYMBOL_GPL(tcp_orphan_count); 286 287int sysctl_tcp_wmem[3] __read_mostly; 288int sysctl_tcp_rmem[3] __read_mostly; 289 290EXPORT_SYMBOL(sysctl_tcp_rmem); 291EXPORT_SYMBOL(sysctl_tcp_wmem); 292 293atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 294EXPORT_SYMBOL(tcp_memory_allocated); 295 296/* 297 * Current number of TCP sockets. 298 */ 299struct percpu_counter tcp_sockets_allocated; 300EXPORT_SYMBOL(tcp_sockets_allocated); 301 302/* 303 * TCP splice context 304 */ 305struct tcp_splice_state { 306 struct pipe_inode_info *pipe; 307 size_t len; 308 unsigned int flags; 309}; 310 311/* 312 * Pressure flag: try to collapse. 313 * Technical note: it is used by multiple contexts non atomically. 314 * All the __sk_mem_schedule() is of this nature: accounting 315 * is strict, actions are advisory and have some latency. 316 */ 317int tcp_memory_pressure __read_mostly; 318EXPORT_SYMBOL(tcp_memory_pressure); 319 320void tcp_enter_memory_pressure(struct sock *sk) 321{ 322 if (!tcp_memory_pressure) { 323 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 324 tcp_memory_pressure = 1; 325 } 326} 327EXPORT_SYMBOL(tcp_enter_memory_pressure); 328 329/* Convert seconds to retransmits based on initial and max timeout */ 330static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 331{ 332 u8 res = 0; 333 334 if (seconds > 0) { 335 int period = timeout; 336 337 res = 1; 338 while (seconds > period && res < 255) { 339 res++; 340 timeout <<= 1; 341 if (timeout > rto_max) 342 timeout = rto_max; 343 period += timeout; 344 } 345 } 346 return res; 347} 348 349/* Convert retransmits to seconds based on initial and max timeout */ 350static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 351{ 352 int period = 0; 353 354 if (retrans > 0) { 355 period = timeout; 356 while (--retrans) { 357 timeout <<= 1; 358 if (timeout > rto_max) 359 timeout = rto_max; 360 period += timeout; 361 } 362 } 363 return period; 364} 365 366/* Address-family independent initialization for a tcp_sock. 367 * 368 * NOTE: A lot of things set to zero explicitly by call to 369 * sk_alloc() so need not be done here. 370 */ 371void tcp_init_sock(struct sock *sk) 372{ 373 struct inet_connection_sock *icsk = inet_csk(sk); 374 struct tcp_sock *tp = tcp_sk(sk); 375 376 skb_queue_head_init(&tp->out_of_order_queue); 377 tcp_init_xmit_timers(sk); 378 tcp_prequeue_init(tp); 379 380 icsk->icsk_rto = TCP_TIMEOUT_INIT; 381 tp->mdev = TCP_TIMEOUT_INIT; 382 383 /* So many TCP implementations out there (incorrectly) count the 384 * initial SYN frame in their delayed-ACK and congestion control 385 * algorithms that we must have the following bandaid to talk 386 * efficiently to them. -DaveM 387 */ 388 tp->snd_cwnd = TCP_INIT_CWND; 389 390 /* See draft-stevens-tcpca-spec-01 for discussion of the 391 * initialization of these values. 392 */ 393 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 394 tp->snd_cwnd_clamp = ~0; 395 tp->mss_cache = TCP_MSS_DEFAULT; 396 397 tp->reordering = sysctl_tcp_reordering; 398 tcp_enable_early_retrans(tp); 399 icsk->icsk_ca_ops = &tcp_init_congestion_ops; 400 401 sk->sk_state = TCP_CLOSE; 402 403 sk->sk_write_space = sk_stream_write_space; 404 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 405 406 icsk->icsk_sync_mss = tcp_sync_mss; 407 408 /* TCP Cookie Transactions */ 409 if (sysctl_tcp_cookie_size > 0) { 410 /* Default, cookies without s_data_payload. */ 411 tp->cookie_values = 412 kzalloc(sizeof(*tp->cookie_values), 413 sk->sk_allocation); 414 if (tp->cookie_values != NULL) 415 kref_init(&tp->cookie_values->kref); 416 } 417 /* Presumed zeroed, in order of appearance: 418 * cookie_in_always, cookie_out_never, 419 * s_data_constant, s_data_in, s_data_out 420 */ 421 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 422 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 423 424 local_bh_disable(); 425 sock_update_memcg(sk); 426 sk_sockets_allocated_inc(sk); 427 local_bh_enable(); 428} 429EXPORT_SYMBOL(tcp_init_sock); 430 431/* 432 * Wait for a TCP event. 433 * 434 * Note that we don't need to lock the socket, as the upper poll layers 435 * take care of normal races (between the test and the event) and we don't 436 * go look at any of the socket buffers directly. 437 */ 438unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 439{ 440 unsigned int mask; 441 struct sock *sk = sock->sk; 442 const struct tcp_sock *tp = tcp_sk(sk); 443 444 sock_poll_wait(file, sk_sleep(sk), wait); 445 if (sk->sk_state == TCP_LISTEN) 446 return inet_csk_listen_poll(sk); 447 448 /* Socket is not locked. We are protected from async events 449 * by poll logic and correct handling of state changes 450 * made by other threads is impossible in any case. 451 */ 452 453 mask = 0; 454 455 /* 456 * POLLHUP is certainly not done right. But poll() doesn't 457 * have a notion of HUP in just one direction, and for a 458 * socket the read side is more interesting. 459 * 460 * Some poll() documentation says that POLLHUP is incompatible 461 * with the POLLOUT/POLLWR flags, so somebody should check this 462 * all. But careful, it tends to be safer to return too many 463 * bits than too few, and you can easily break real applications 464 * if you don't tell them that something has hung up! 465 * 466 * Check-me. 467 * 468 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 469 * our fs/select.c). It means that after we received EOF, 470 * poll always returns immediately, making impossible poll() on write() 471 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 472 * if and only if shutdown has been made in both directions. 473 * Actually, it is interesting to look how Solaris and DUX 474 * solve this dilemma. I would prefer, if POLLHUP were maskable, 475 * then we could set it on SND_SHUTDOWN. BTW examples given 476 * in Stevens' books assume exactly this behaviour, it explains 477 * why POLLHUP is incompatible with POLLOUT. --ANK 478 * 479 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 480 * blocking on fresh not-connected or disconnected socket. --ANK 481 */ 482 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 483 mask |= POLLHUP; 484 if (sk->sk_shutdown & RCV_SHUTDOWN) 485 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 486 487 /* Connected? */ 488 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) { 489 int target = sock_rcvlowat(sk, 0, INT_MAX); 490 491 if (tp->urg_seq == tp->copied_seq && 492 !sock_flag(sk, SOCK_URGINLINE) && 493 tp->urg_data) 494 target++; 495 496 /* Potential race condition. If read of tp below will 497 * escape above sk->sk_state, we can be illegally awaken 498 * in SYN_* states. */ 499 if (tp->rcv_nxt - tp->copied_seq >= target) 500 mask |= POLLIN | POLLRDNORM; 501 502 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 503 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 504 mask |= POLLOUT | POLLWRNORM; 505 } else { /* send SIGIO later */ 506 set_bit(SOCK_ASYNC_NOSPACE, 507 &sk->sk_socket->flags); 508 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 509 510 /* Race breaker. If space is freed after 511 * wspace test but before the flags are set, 512 * IO signal will be lost. 513 */ 514 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 515 mask |= POLLOUT | POLLWRNORM; 516 } 517 } else 518 mask |= POLLOUT | POLLWRNORM; 519 520 if (tp->urg_data & TCP_URG_VALID) 521 mask |= POLLPRI; 522 } 523 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 524 smp_rmb(); 525 if (sk->sk_err) 526 mask |= POLLERR; 527 528 return mask; 529} 530EXPORT_SYMBOL(tcp_poll); 531 532int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 533{ 534 struct tcp_sock *tp = tcp_sk(sk); 535 int answ; 536 537 switch (cmd) { 538 case SIOCINQ: 539 if (sk->sk_state == TCP_LISTEN) 540 return -EINVAL; 541 542 lock_sock(sk); 543 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 544 answ = 0; 545 else if (sock_flag(sk, SOCK_URGINLINE) || 546 !tp->urg_data || 547 before(tp->urg_seq, tp->copied_seq) || 548 !before(tp->urg_seq, tp->rcv_nxt)) { 549 struct sk_buff *skb; 550 551 answ = tp->rcv_nxt - tp->copied_seq; 552 553 /* Subtract 1, if FIN is in queue. */ 554 skb = skb_peek_tail(&sk->sk_receive_queue); 555 if (answ && skb) 556 answ -= tcp_hdr(skb)->fin; 557 } else 558 answ = tp->urg_seq - tp->copied_seq; 559 release_sock(sk); 560 break; 561 case SIOCATMARK: 562 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 563 break; 564 case SIOCOUTQ: 565 if (sk->sk_state == TCP_LISTEN) 566 return -EINVAL; 567 568 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 569 answ = 0; 570 else 571 answ = tp->write_seq - tp->snd_una; 572 break; 573 case SIOCOUTQNSD: 574 if (sk->sk_state == TCP_LISTEN) 575 return -EINVAL; 576 577 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 578 answ = 0; 579 else 580 answ = tp->write_seq - tp->snd_nxt; 581 break; 582 default: 583 return -ENOIOCTLCMD; 584 } 585 586 return put_user(answ, (int __user *)arg); 587} 588EXPORT_SYMBOL(tcp_ioctl); 589 590static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 591{ 592 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 593 tp->pushed_seq = tp->write_seq; 594} 595 596static inline int forced_push(const struct tcp_sock *tp) 597{ 598 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 599} 600 601static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 602{ 603 struct tcp_sock *tp = tcp_sk(sk); 604 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 605 606 skb->csum = 0; 607 tcb->seq = tcb->end_seq = tp->write_seq; 608 tcb->tcp_flags = TCPHDR_ACK; 609 tcb->sacked = 0; 610 skb_header_release(skb); 611 tcp_add_write_queue_tail(sk, skb); 612 sk->sk_wmem_queued += skb->truesize; 613 sk_mem_charge(sk, skb->truesize); 614 if (tp->nonagle & TCP_NAGLE_PUSH) 615 tp->nonagle &= ~TCP_NAGLE_PUSH; 616} 617 618static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 619{ 620 if (flags & MSG_OOB) 621 tp->snd_up = tp->write_seq; 622} 623 624static inline void tcp_push(struct sock *sk, int flags, int mss_now, 625 int nonagle) 626{ 627 if (tcp_send_head(sk)) { 628 struct tcp_sock *tp = tcp_sk(sk); 629 630 if (!(flags & MSG_MORE) || forced_push(tp)) 631 tcp_mark_push(tp, tcp_write_queue_tail(sk)); 632 633 tcp_mark_urg(tp, flags); 634 __tcp_push_pending_frames(sk, mss_now, 635 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 636 } 637} 638 639static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 640 unsigned int offset, size_t len) 641{ 642 struct tcp_splice_state *tss = rd_desc->arg.data; 643 int ret; 644 645 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 646 tss->flags); 647 if (ret > 0) 648 rd_desc->count -= ret; 649 return ret; 650} 651 652static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 653{ 654 /* Store TCP splice context information in read_descriptor_t. */ 655 read_descriptor_t rd_desc = { 656 .arg.data = tss, 657 .count = tss->len, 658 }; 659 660 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 661} 662 663/** 664 * tcp_splice_read - splice data from TCP socket to a pipe 665 * @sock: socket to splice from 666 * @ppos: position (not valid) 667 * @pipe: pipe to splice to 668 * @len: number of bytes to splice 669 * @flags: splice modifier flags 670 * 671 * Description: 672 * Will read pages from given socket and fill them into a pipe. 673 * 674 **/ 675ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 676 struct pipe_inode_info *pipe, size_t len, 677 unsigned int flags) 678{ 679 struct sock *sk = sock->sk; 680 struct tcp_splice_state tss = { 681 .pipe = pipe, 682 .len = len, 683 .flags = flags, 684 }; 685 long timeo; 686 ssize_t spliced; 687 int ret; 688 689 sock_rps_record_flow(sk); 690 /* 691 * We can't seek on a socket input 692 */ 693 if (unlikely(*ppos)) 694 return -ESPIPE; 695 696 ret = spliced = 0; 697 698 lock_sock(sk); 699 700 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 701 while (tss.len) { 702 ret = __tcp_splice_read(sk, &tss); 703 if (ret < 0) 704 break; 705 else if (!ret) { 706 if (spliced) 707 break; 708 if (sock_flag(sk, SOCK_DONE)) 709 break; 710 if (sk->sk_err) { 711 ret = sock_error(sk); 712 break; 713 } 714 if (sk->sk_shutdown & RCV_SHUTDOWN) 715 break; 716 if (sk->sk_state == TCP_CLOSE) { 717 /* 718 * This occurs when user tries to read 719 * from never connected socket. 720 */ 721 if (!sock_flag(sk, SOCK_DONE)) 722 ret = -ENOTCONN; 723 break; 724 } 725 if (!timeo) { 726 ret = -EAGAIN; 727 break; 728 } 729 sk_wait_data(sk, &timeo); 730 if (signal_pending(current)) { 731 ret = sock_intr_errno(timeo); 732 break; 733 } 734 continue; 735 } 736 tss.len -= ret; 737 spliced += ret; 738 739 if (!timeo) 740 break; 741 release_sock(sk); 742 lock_sock(sk); 743 744 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 745 (sk->sk_shutdown & RCV_SHUTDOWN) || 746 signal_pending(current)) 747 break; 748 } 749 750 release_sock(sk); 751 752 if (spliced) 753 return spliced; 754 755 return ret; 756} 757EXPORT_SYMBOL(tcp_splice_read); 758 759struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 760{ 761 struct sk_buff *skb; 762 763 /* The TCP header must be at least 32-bit aligned. */ 764 size = ALIGN(size, 4); 765 766 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 767 if (skb) { 768 if (sk_wmem_schedule(sk, skb->truesize)) { 769 skb_reserve(skb, sk->sk_prot->max_header); 770 /* 771 * Make sure that we have exactly size bytes 772 * available to the caller, no more, no less. 773 */ 774 skb->avail_size = size; 775 return skb; 776 } 777 __kfree_skb(skb); 778 } else { 779 sk->sk_prot->enter_memory_pressure(sk); 780 sk_stream_moderate_sndbuf(sk); 781 } 782 return NULL; 783} 784 785static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 786 int large_allowed) 787{ 788 struct tcp_sock *tp = tcp_sk(sk); 789 u32 xmit_size_goal, old_size_goal; 790 791 xmit_size_goal = mss_now; 792 793 if (large_allowed && sk_can_gso(sk)) { 794 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 795 inet_csk(sk)->icsk_af_ops->net_header_len - 796 inet_csk(sk)->icsk_ext_hdr_len - 797 tp->tcp_header_len); 798 799 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 800 801 /* We try hard to avoid divides here */ 802 old_size_goal = tp->xmit_size_goal_segs * mss_now; 803 804 if (likely(old_size_goal <= xmit_size_goal && 805 old_size_goal + mss_now > xmit_size_goal)) { 806 xmit_size_goal = old_size_goal; 807 } else { 808 tp->xmit_size_goal_segs = xmit_size_goal / mss_now; 809 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 810 } 811 } 812 813 return max(xmit_size_goal, mss_now); 814} 815 816static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 817{ 818 int mss_now; 819 820 mss_now = tcp_current_mss(sk); 821 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 822 823 return mss_now; 824} 825 826static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset, 827 size_t psize, int flags) 828{ 829 struct tcp_sock *tp = tcp_sk(sk); 830 int mss_now, size_goal; 831 int err; 832 ssize_t copied; 833 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 834 835 /* Wait for a connection to finish. */ 836 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 837 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 838 goto out_err; 839 840 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 841 842 mss_now = tcp_send_mss(sk, &size_goal, flags); 843 copied = 0; 844 845 err = -EPIPE; 846 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 847 goto out_err; 848 849 while (psize > 0) { 850 struct sk_buff *skb = tcp_write_queue_tail(sk); 851 struct page *page = pages[poffset / PAGE_SIZE]; 852 int copy, i; 853 int offset = poffset % PAGE_SIZE; 854 int size = min_t(size_t, psize, PAGE_SIZE - offset); 855 bool can_coalesce; 856 857 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 858new_segment: 859 if (!sk_stream_memory_free(sk)) 860 goto wait_for_sndbuf; 861 862 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 863 if (!skb) 864 goto wait_for_memory; 865 866 skb_entail(sk, skb); 867 copy = size_goal; 868 } 869 870 if (copy > size) 871 copy = size; 872 873 i = skb_shinfo(skb)->nr_frags; 874 can_coalesce = skb_can_coalesce(skb, i, page, offset); 875 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 876 tcp_mark_push(tp, skb); 877 goto new_segment; 878 } 879 if (!sk_wmem_schedule(sk, copy)) 880 goto wait_for_memory; 881 882 if (can_coalesce) { 883 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 884 } else { 885 get_page(page); 886 skb_fill_page_desc(skb, i, page, offset, copy); 887 } 888 889 skb->len += copy; 890 skb->data_len += copy; 891 skb->truesize += copy; 892 sk->sk_wmem_queued += copy; 893 sk_mem_charge(sk, copy); 894 skb->ip_summed = CHECKSUM_PARTIAL; 895 tp->write_seq += copy; 896 TCP_SKB_CB(skb)->end_seq += copy; 897 skb_shinfo(skb)->gso_segs = 0; 898 899 if (!copied) 900 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 901 902 copied += copy; 903 poffset += copy; 904 if (!(psize -= copy)) 905 goto out; 906 907 if (skb->len < size_goal || (flags & MSG_OOB)) 908 continue; 909 910 if (forced_push(tp)) { 911 tcp_mark_push(tp, skb); 912 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 913 } else if (skb == tcp_send_head(sk)) 914 tcp_push_one(sk, mss_now); 915 continue; 916 917wait_for_sndbuf: 918 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 919wait_for_memory: 920 if (copied) 921 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 922 923 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 924 goto do_error; 925 926 mss_now = tcp_send_mss(sk, &size_goal, flags); 927 } 928 929out: 930 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 931 tcp_push(sk, flags, mss_now, tp->nonagle); 932 return copied; 933 934do_error: 935 if (copied) 936 goto out; 937out_err: 938 return sk_stream_error(sk, flags, err); 939} 940 941int tcp_sendpage(struct sock *sk, struct page *page, int offset, 942 size_t size, int flags) 943{ 944 ssize_t res; 945 946 if (!(sk->sk_route_caps & NETIF_F_SG) || 947 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 948 return sock_no_sendpage(sk->sk_socket, page, offset, size, 949 flags); 950 951 lock_sock(sk); 952 res = do_tcp_sendpages(sk, &page, offset, size, flags); 953 release_sock(sk); 954 return res; 955} 956EXPORT_SYMBOL(tcp_sendpage); 957 958static inline int select_size(const struct sock *sk, bool sg) 959{ 960 const struct tcp_sock *tp = tcp_sk(sk); 961 int tmp = tp->mss_cache; 962 963 if (sg) { 964 if (sk_can_gso(sk)) { 965 /* Small frames wont use a full page: 966 * Payload will immediately follow tcp header. 967 */ 968 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 969 } else { 970 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 971 972 if (tmp >= pgbreak && 973 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 974 tmp = pgbreak; 975 } 976 } 977 978 return tmp; 979} 980 981int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 982 size_t size) 983{ 984 struct iovec *iov; 985 struct tcp_sock *tp = tcp_sk(sk); 986 struct sk_buff *skb; 987 int iovlen, flags, err, copied; 988 int mss_now = 0, size_goal; 989 bool sg; 990 long timeo; 991 992 lock_sock(sk); 993 994 flags = msg->msg_flags; 995 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 996 997 /* Wait for a connection to finish. */ 998 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 999 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 1000 goto out_err; 1001 1002 if (unlikely(tp->repair)) { 1003 if (tp->repair_queue == TCP_RECV_QUEUE) { 1004 copied = tcp_send_rcvq(sk, msg, size); 1005 goto out; 1006 } 1007 1008 err = -EINVAL; 1009 if (tp->repair_queue == TCP_NO_QUEUE) 1010 goto out_err; 1011 1012 /* 'common' sending to sendq */ 1013 } 1014 1015 /* This should be in poll */ 1016 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1017 1018 mss_now = tcp_send_mss(sk, &size_goal, flags); 1019 1020 /* Ok commence sending. */ 1021 iovlen = msg->msg_iovlen; 1022 iov = msg->msg_iov; 1023 copied = 0; 1024 1025 err = -EPIPE; 1026 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1027 goto out_err; 1028 1029 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1030 1031 while (--iovlen >= 0) { 1032 size_t seglen = iov->iov_len; 1033 unsigned char __user *from = iov->iov_base; 1034 1035 iov++; 1036 1037 while (seglen > 0) { 1038 int copy = 0; 1039 int max = size_goal; 1040 1041 skb = tcp_write_queue_tail(sk); 1042 if (tcp_send_head(sk)) { 1043 if (skb->ip_summed == CHECKSUM_NONE) 1044 max = mss_now; 1045 copy = max - skb->len; 1046 } 1047 1048 if (copy <= 0) { 1049new_segment: 1050 /* Allocate new segment. If the interface is SG, 1051 * allocate skb fitting to single page. 1052 */ 1053 if (!sk_stream_memory_free(sk)) 1054 goto wait_for_sndbuf; 1055 1056 skb = sk_stream_alloc_skb(sk, 1057 select_size(sk, sg), 1058 sk->sk_allocation); 1059 if (!skb) 1060 goto wait_for_memory; 1061 1062 /* 1063 * Check whether we can use HW checksum. 1064 */ 1065 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 1066 skb->ip_summed = CHECKSUM_PARTIAL; 1067 1068 skb_entail(sk, skb); 1069 copy = size_goal; 1070 max = size_goal; 1071 } 1072 1073 /* Try to append data to the end of skb. */ 1074 if (copy > seglen) 1075 copy = seglen; 1076 1077 /* Where to copy to? */ 1078 if (skb_availroom(skb) > 0) { 1079 /* We have some space in skb head. Superb! */ 1080 copy = min_t(int, copy, skb_availroom(skb)); 1081 err = skb_add_data_nocache(sk, skb, from, copy); 1082 if (err) 1083 goto do_fault; 1084 } else { 1085 int merge = 0; 1086 int i = skb_shinfo(skb)->nr_frags; 1087 struct page *page = sk->sk_sndmsg_page; 1088 int off; 1089 1090 if (page && page_count(page) == 1) 1091 sk->sk_sndmsg_off = 0; 1092 1093 off = sk->sk_sndmsg_off; 1094 1095 if (skb_can_coalesce(skb, i, page, off) && 1096 off != PAGE_SIZE) { 1097 /* We can extend the last page 1098 * fragment. */ 1099 merge = 1; 1100 } else if (i == MAX_SKB_FRAGS || !sg) { 1101 /* Need to add new fragment and cannot 1102 * do this because interface is non-SG, 1103 * or because all the page slots are 1104 * busy. */ 1105 tcp_mark_push(tp, skb); 1106 goto new_segment; 1107 } else if (page) { 1108 if (off == PAGE_SIZE) { 1109 put_page(page); 1110 sk->sk_sndmsg_page = page = NULL; 1111 off = 0; 1112 } 1113 } else 1114 off = 0; 1115 1116 if (copy > PAGE_SIZE - off) 1117 copy = PAGE_SIZE - off; 1118 1119 if (!sk_wmem_schedule(sk, copy)) 1120 goto wait_for_memory; 1121 1122 if (!page) { 1123 /* Allocate new cache page. */ 1124 if (!(page = sk_stream_alloc_page(sk))) 1125 goto wait_for_memory; 1126 } 1127 1128 /* Time to copy data. We are close to 1129 * the end! */ 1130 err = skb_copy_to_page_nocache(sk, from, skb, 1131 page, off, copy); 1132 if (err) { 1133 /* If this page was new, give it to the 1134 * socket so it does not get leaked. 1135 */ 1136 if (!sk->sk_sndmsg_page) { 1137 sk->sk_sndmsg_page = page; 1138 sk->sk_sndmsg_off = 0; 1139 } 1140 goto do_error; 1141 } 1142 1143 /* Update the skb. */ 1144 if (merge) { 1145 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1146 } else { 1147 skb_fill_page_desc(skb, i, page, off, copy); 1148 if (sk->sk_sndmsg_page) { 1149 get_page(page); 1150 } else if (off + copy < PAGE_SIZE) { 1151 get_page(page); 1152 sk->sk_sndmsg_page = page; 1153 } 1154 } 1155 1156 sk->sk_sndmsg_off = off + copy; 1157 } 1158 1159 if (!copied) 1160 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1161 1162 tp->write_seq += copy; 1163 TCP_SKB_CB(skb)->end_seq += copy; 1164 skb_shinfo(skb)->gso_segs = 0; 1165 1166 from += copy; 1167 copied += copy; 1168 if ((seglen -= copy) == 0 && iovlen == 0) 1169 goto out; 1170 1171 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1172 continue; 1173 1174 if (forced_push(tp)) { 1175 tcp_mark_push(tp, skb); 1176 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1177 } else if (skb == tcp_send_head(sk)) 1178 tcp_push_one(sk, mss_now); 1179 continue; 1180 1181wait_for_sndbuf: 1182 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1183wait_for_memory: 1184 if (copied && likely(!tp->repair)) 1185 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1186 1187 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1188 goto do_error; 1189 1190 mss_now = tcp_send_mss(sk, &size_goal, flags); 1191 } 1192 } 1193 1194out: 1195 if (copied && likely(!tp->repair)) 1196 tcp_push(sk, flags, mss_now, tp->nonagle); 1197 release_sock(sk); 1198 return copied; 1199 1200do_fault: 1201 if (!skb->len) { 1202 tcp_unlink_write_queue(skb, sk); 1203 /* It is the one place in all of TCP, except connection 1204 * reset, where we can be unlinking the send_head. 1205 */ 1206 tcp_check_send_head(sk, skb); 1207 sk_wmem_free_skb(sk, skb); 1208 } 1209 1210do_error: 1211 if (copied) 1212 goto out; 1213out_err: 1214 err = sk_stream_error(sk, flags, err); 1215 release_sock(sk); 1216 return err; 1217} 1218EXPORT_SYMBOL(tcp_sendmsg); 1219 1220/* 1221 * Handle reading urgent data. BSD has very simple semantics for 1222 * this, no blocking and very strange errors 8) 1223 */ 1224 1225static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1226{ 1227 struct tcp_sock *tp = tcp_sk(sk); 1228 1229 /* No URG data to read. */ 1230 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1231 tp->urg_data == TCP_URG_READ) 1232 return -EINVAL; /* Yes this is right ! */ 1233 1234 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1235 return -ENOTCONN; 1236 1237 if (tp->urg_data & TCP_URG_VALID) { 1238 int err = 0; 1239 char c = tp->urg_data; 1240 1241 if (!(flags & MSG_PEEK)) 1242 tp->urg_data = TCP_URG_READ; 1243 1244 /* Read urgent data. */ 1245 msg->msg_flags |= MSG_OOB; 1246 1247 if (len > 0) { 1248 if (!(flags & MSG_TRUNC)) 1249 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1250 len = 1; 1251 } else 1252 msg->msg_flags |= MSG_TRUNC; 1253 1254 return err ? -EFAULT : len; 1255 } 1256 1257 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1258 return 0; 1259 1260 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1261 * the available implementations agree in this case: 1262 * this call should never block, independent of the 1263 * blocking state of the socket. 1264 * Mike <pall@rz.uni-karlsruhe.de> 1265 */ 1266 return -EAGAIN; 1267} 1268 1269static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1270{ 1271 struct sk_buff *skb; 1272 int copied = 0, err = 0; 1273 1274 /* XXX -- need to support SO_PEEK_OFF */ 1275 1276 skb_queue_walk(&sk->sk_write_queue, skb) { 1277 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len); 1278 if (err) 1279 break; 1280 1281 copied += skb->len; 1282 } 1283 1284 return err ?: copied; 1285} 1286 1287/* Clean up the receive buffer for full frames taken by the user, 1288 * then send an ACK if necessary. COPIED is the number of bytes 1289 * tcp_recvmsg has given to the user so far, it speeds up the 1290 * calculation of whether or not we must ACK for the sake of 1291 * a window update. 1292 */ 1293void tcp_cleanup_rbuf(struct sock *sk, int copied) 1294{ 1295 struct tcp_sock *tp = tcp_sk(sk); 1296 int time_to_ack = 0; 1297 1298 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1299 1300 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1301 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1302 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1303 1304 if (inet_csk_ack_scheduled(sk)) { 1305 const struct inet_connection_sock *icsk = inet_csk(sk); 1306 /* Delayed ACKs frequently hit locked sockets during bulk 1307 * receive. */ 1308 if (icsk->icsk_ack.blocked || 1309 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1310 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1311 /* 1312 * If this read emptied read buffer, we send ACK, if 1313 * connection is not bidirectional, user drained 1314 * receive buffer and there was a small segment 1315 * in queue. 1316 */ 1317 (copied > 0 && 1318 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1319 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1320 !icsk->icsk_ack.pingpong)) && 1321 !atomic_read(&sk->sk_rmem_alloc))) 1322 time_to_ack = 1; 1323 } 1324 1325 /* We send an ACK if we can now advertise a non-zero window 1326 * which has been raised "significantly". 1327 * 1328 * Even if window raised up to infinity, do not send window open ACK 1329 * in states, where we will not receive more. It is useless. 1330 */ 1331 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1332 __u32 rcv_window_now = tcp_receive_window(tp); 1333 1334 /* Optimize, __tcp_select_window() is not cheap. */ 1335 if (2*rcv_window_now <= tp->window_clamp) { 1336 __u32 new_window = __tcp_select_window(sk); 1337 1338 /* Send ACK now, if this read freed lots of space 1339 * in our buffer. Certainly, new_window is new window. 1340 * We can advertise it now, if it is not less than current one. 1341 * "Lots" means "at least twice" here. 1342 */ 1343 if (new_window && new_window >= 2 * rcv_window_now) 1344 time_to_ack = 1; 1345 } 1346 } 1347 if (time_to_ack) 1348 tcp_send_ack(sk); 1349} 1350 1351static void tcp_prequeue_process(struct sock *sk) 1352{ 1353 struct sk_buff *skb; 1354 struct tcp_sock *tp = tcp_sk(sk); 1355 1356 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1357 1358 /* RX process wants to run with disabled BHs, though it is not 1359 * necessary */ 1360 local_bh_disable(); 1361 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1362 sk_backlog_rcv(sk, skb); 1363 local_bh_enable(); 1364 1365 /* Clear memory counter. */ 1366 tp->ucopy.memory = 0; 1367} 1368 1369#ifdef CONFIG_NET_DMA 1370static void tcp_service_net_dma(struct sock *sk, bool wait) 1371{ 1372 dma_cookie_t done, used; 1373 dma_cookie_t last_issued; 1374 struct tcp_sock *tp = tcp_sk(sk); 1375 1376 if (!tp->ucopy.dma_chan) 1377 return; 1378 1379 last_issued = tp->ucopy.dma_cookie; 1380 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1381 1382 do { 1383 if (dma_async_memcpy_complete(tp->ucopy.dma_chan, 1384 last_issued, &done, 1385 &used) == DMA_SUCCESS) { 1386 /* Safe to free early-copied skbs now */ 1387 __skb_queue_purge(&sk->sk_async_wait_queue); 1388 break; 1389 } else { 1390 struct sk_buff *skb; 1391 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1392 (dma_async_is_complete(skb->dma_cookie, done, 1393 used) == DMA_SUCCESS)) { 1394 __skb_dequeue(&sk->sk_async_wait_queue); 1395 kfree_skb(skb); 1396 } 1397 } 1398 } while (wait); 1399} 1400#endif 1401 1402static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1403{ 1404 struct sk_buff *skb; 1405 u32 offset; 1406 1407 skb_queue_walk(&sk->sk_receive_queue, skb) { 1408 offset = seq - TCP_SKB_CB(skb)->seq; 1409 if (tcp_hdr(skb)->syn) 1410 offset--; 1411 if (offset < skb->len || tcp_hdr(skb)->fin) { 1412 *off = offset; 1413 return skb; 1414 } 1415 } 1416 return NULL; 1417} 1418 1419/* 1420 * This routine provides an alternative to tcp_recvmsg() for routines 1421 * that would like to handle copying from skbuffs directly in 'sendfile' 1422 * fashion. 1423 * Note: 1424 * - It is assumed that the socket was locked by the caller. 1425 * - The routine does not block. 1426 * - At present, there is no support for reading OOB data 1427 * or for 'peeking' the socket using this routine 1428 * (although both would be easy to implement). 1429 */ 1430int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1431 sk_read_actor_t recv_actor) 1432{ 1433 struct sk_buff *skb; 1434 struct tcp_sock *tp = tcp_sk(sk); 1435 u32 seq = tp->copied_seq; 1436 u32 offset; 1437 int copied = 0; 1438 1439 if (sk->sk_state == TCP_LISTEN) 1440 return -ENOTCONN; 1441 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1442 if (offset < skb->len) { 1443 int used; 1444 size_t len; 1445 1446 len = skb->len - offset; 1447 /* Stop reading if we hit a patch of urgent data */ 1448 if (tp->urg_data) { 1449 u32 urg_offset = tp->urg_seq - seq; 1450 if (urg_offset < len) 1451 len = urg_offset; 1452 if (!len) 1453 break; 1454 } 1455 used = recv_actor(desc, skb, offset, len); 1456 if (used < 0) { 1457 if (!copied) 1458 copied = used; 1459 break; 1460 } else if (used <= len) { 1461 seq += used; 1462 copied += used; 1463 offset += used; 1464 } 1465 /* 1466 * If recv_actor drops the lock (e.g. TCP splice 1467 * receive) the skb pointer might be invalid when 1468 * getting here: tcp_collapse might have deleted it 1469 * while aggregating skbs from the socket queue. 1470 */ 1471 skb = tcp_recv_skb(sk, seq-1, &offset); 1472 if (!skb || (offset+1 != skb->len)) 1473 break; 1474 } 1475 if (tcp_hdr(skb)->fin) { 1476 sk_eat_skb(sk, skb, 0); 1477 ++seq; 1478 break; 1479 } 1480 sk_eat_skb(sk, skb, 0); 1481 if (!desc->count) 1482 break; 1483 tp->copied_seq = seq; 1484 } 1485 tp->copied_seq = seq; 1486 1487 tcp_rcv_space_adjust(sk); 1488 1489 /* Clean up data we have read: This will do ACK frames. */ 1490 if (copied > 0) 1491 tcp_cleanup_rbuf(sk, copied); 1492 return copied; 1493} 1494EXPORT_SYMBOL(tcp_read_sock); 1495 1496/* 1497 * This routine copies from a sock struct into the user buffer. 1498 * 1499 * Technical note: in 2.3 we work on _locked_ socket, so that 1500 * tricks with *seq access order and skb->users are not required. 1501 * Probably, code can be easily improved even more. 1502 */ 1503 1504int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1505 size_t len, int nonblock, int flags, int *addr_len) 1506{ 1507 struct tcp_sock *tp = tcp_sk(sk); 1508 int copied = 0; 1509 u32 peek_seq; 1510 u32 *seq; 1511 unsigned long used; 1512 int err; 1513 int target; /* Read at least this many bytes */ 1514 long timeo; 1515 struct task_struct *user_recv = NULL; 1516 int copied_early = 0; 1517 struct sk_buff *skb; 1518 u32 urg_hole = 0; 1519 1520 lock_sock(sk); 1521 1522 err = -ENOTCONN; 1523 if (sk->sk_state == TCP_LISTEN) 1524 goto out; 1525 1526 timeo = sock_rcvtimeo(sk, nonblock); 1527 1528 /* Urgent data needs to be handled specially. */ 1529 if (flags & MSG_OOB) 1530 goto recv_urg; 1531 1532 if (unlikely(tp->repair)) { 1533 err = -EPERM; 1534 if (!(flags & MSG_PEEK)) 1535 goto out; 1536 1537 if (tp->repair_queue == TCP_SEND_QUEUE) 1538 goto recv_sndq; 1539 1540 err = -EINVAL; 1541 if (tp->repair_queue == TCP_NO_QUEUE) 1542 goto out; 1543 1544 /* 'common' recv queue MSG_PEEK-ing */ 1545 } 1546 1547 seq = &tp->copied_seq; 1548 if (flags & MSG_PEEK) { 1549 peek_seq = tp->copied_seq; 1550 seq = &peek_seq; 1551 } 1552 1553 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1554 1555#ifdef CONFIG_NET_DMA 1556 tp->ucopy.dma_chan = NULL; 1557 preempt_disable(); 1558 skb = skb_peek_tail(&sk->sk_receive_queue); 1559 { 1560 int available = 0; 1561 1562 if (skb) 1563 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1564 if ((available < target) && 1565 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1566 !sysctl_tcp_low_latency && 1567 net_dma_find_channel()) { 1568 preempt_enable_no_resched(); 1569 tp->ucopy.pinned_list = 1570 dma_pin_iovec_pages(msg->msg_iov, len); 1571 } else { 1572 preempt_enable_no_resched(); 1573 } 1574 } 1575#endif 1576 1577 do { 1578 u32 offset; 1579 1580 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1581 if (tp->urg_data && tp->urg_seq == *seq) { 1582 if (copied) 1583 break; 1584 if (signal_pending(current)) { 1585 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1586 break; 1587 } 1588 } 1589 1590 /* Next get a buffer. */ 1591 1592 skb_queue_walk(&sk->sk_receive_queue, skb) { 1593 /* Now that we have two receive queues this 1594 * shouldn't happen. 1595 */ 1596 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1597 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1598 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1599 flags)) 1600 break; 1601 1602 offset = *seq - TCP_SKB_CB(skb)->seq; 1603 if (tcp_hdr(skb)->syn) 1604 offset--; 1605 if (offset < skb->len) 1606 goto found_ok_skb; 1607 if (tcp_hdr(skb)->fin) 1608 goto found_fin_ok; 1609 WARN(!(flags & MSG_PEEK), 1610 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1611 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1612 } 1613 1614 /* Well, if we have backlog, try to process it now yet. */ 1615 1616 if (copied >= target && !sk->sk_backlog.tail) 1617 break; 1618 1619 if (copied) { 1620 if (sk->sk_err || 1621 sk->sk_state == TCP_CLOSE || 1622 (sk->sk_shutdown & RCV_SHUTDOWN) || 1623 !timeo || 1624 signal_pending(current)) 1625 break; 1626 } else { 1627 if (sock_flag(sk, SOCK_DONE)) 1628 break; 1629 1630 if (sk->sk_err) { 1631 copied = sock_error(sk); 1632 break; 1633 } 1634 1635 if (sk->sk_shutdown & RCV_SHUTDOWN) 1636 break; 1637 1638 if (sk->sk_state == TCP_CLOSE) { 1639 if (!sock_flag(sk, SOCK_DONE)) { 1640 /* This occurs when user tries to read 1641 * from never connected socket. 1642 */ 1643 copied = -ENOTCONN; 1644 break; 1645 } 1646 break; 1647 } 1648 1649 if (!timeo) { 1650 copied = -EAGAIN; 1651 break; 1652 } 1653 1654 if (signal_pending(current)) { 1655 copied = sock_intr_errno(timeo); 1656 break; 1657 } 1658 } 1659 1660 tcp_cleanup_rbuf(sk, copied); 1661 1662 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1663 /* Install new reader */ 1664 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1665 user_recv = current; 1666 tp->ucopy.task = user_recv; 1667 tp->ucopy.iov = msg->msg_iov; 1668 } 1669 1670 tp->ucopy.len = len; 1671 1672 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1673 !(flags & (MSG_PEEK | MSG_TRUNC))); 1674 1675 /* Ugly... If prequeue is not empty, we have to 1676 * process it before releasing socket, otherwise 1677 * order will be broken at second iteration. 1678 * More elegant solution is required!!! 1679 * 1680 * Look: we have the following (pseudo)queues: 1681 * 1682 * 1. packets in flight 1683 * 2. backlog 1684 * 3. prequeue 1685 * 4. receive_queue 1686 * 1687 * Each queue can be processed only if the next ones 1688 * are empty. At this point we have empty receive_queue. 1689 * But prequeue _can_ be not empty after 2nd iteration, 1690 * when we jumped to start of loop because backlog 1691 * processing added something to receive_queue. 1692 * We cannot release_sock(), because backlog contains 1693 * packets arrived _after_ prequeued ones. 1694 * 1695 * Shortly, algorithm is clear --- to process all 1696 * the queues in order. We could make it more directly, 1697 * requeueing packets from backlog to prequeue, if 1698 * is not empty. It is more elegant, but eats cycles, 1699 * unfortunately. 1700 */ 1701 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1702 goto do_prequeue; 1703 1704 /* __ Set realtime policy in scheduler __ */ 1705 } 1706 1707#ifdef CONFIG_NET_DMA 1708 if (tp->ucopy.dma_chan) 1709 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1710#endif 1711 if (copied >= target) { 1712 /* Do not sleep, just process backlog. */ 1713 release_sock(sk); 1714 lock_sock(sk); 1715 } else 1716 sk_wait_data(sk, &timeo); 1717 1718#ifdef CONFIG_NET_DMA 1719 tcp_service_net_dma(sk, false); /* Don't block */ 1720 tp->ucopy.wakeup = 0; 1721#endif 1722 1723 if (user_recv) { 1724 int chunk; 1725 1726 /* __ Restore normal policy in scheduler __ */ 1727 1728 if ((chunk = len - tp->ucopy.len) != 0) { 1729 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1730 len -= chunk; 1731 copied += chunk; 1732 } 1733 1734 if (tp->rcv_nxt == tp->copied_seq && 1735 !skb_queue_empty(&tp->ucopy.prequeue)) { 1736do_prequeue: 1737 tcp_prequeue_process(sk); 1738 1739 if ((chunk = len - tp->ucopy.len) != 0) { 1740 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1741 len -= chunk; 1742 copied += chunk; 1743 } 1744 } 1745 } 1746 if ((flags & MSG_PEEK) && 1747 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1748 if (net_ratelimit()) 1749 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n", 1750 current->comm, task_pid_nr(current)); 1751 peek_seq = tp->copied_seq; 1752 } 1753 continue; 1754 1755 found_ok_skb: 1756 /* Ok so how much can we use? */ 1757 used = skb->len - offset; 1758 if (len < used) 1759 used = len; 1760 1761 /* Do we have urgent data here? */ 1762 if (tp->urg_data) { 1763 u32 urg_offset = tp->urg_seq - *seq; 1764 if (urg_offset < used) { 1765 if (!urg_offset) { 1766 if (!sock_flag(sk, SOCK_URGINLINE)) { 1767 ++*seq; 1768 urg_hole++; 1769 offset++; 1770 used--; 1771 if (!used) 1772 goto skip_copy; 1773 } 1774 } else 1775 used = urg_offset; 1776 } 1777 } 1778 1779 if (!(flags & MSG_TRUNC)) { 1780#ifdef CONFIG_NET_DMA 1781 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1782 tp->ucopy.dma_chan = net_dma_find_channel(); 1783 1784 if (tp->ucopy.dma_chan) { 1785 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1786 tp->ucopy.dma_chan, skb, offset, 1787 msg->msg_iov, used, 1788 tp->ucopy.pinned_list); 1789 1790 if (tp->ucopy.dma_cookie < 0) { 1791 1792 pr_alert("%s: dma_cookie < 0\n", 1793 __func__); 1794 1795 /* Exception. Bailout! */ 1796 if (!copied) 1797 copied = -EFAULT; 1798 break; 1799 } 1800 1801 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1802 1803 if ((offset + used) == skb->len) 1804 copied_early = 1; 1805 1806 } else 1807#endif 1808 { 1809 err = skb_copy_datagram_iovec(skb, offset, 1810 msg->msg_iov, used); 1811 if (err) { 1812 /* Exception. Bailout! */ 1813 if (!copied) 1814 copied = -EFAULT; 1815 break; 1816 } 1817 } 1818 } 1819 1820 *seq += used; 1821 copied += used; 1822 len -= used; 1823 1824 tcp_rcv_space_adjust(sk); 1825 1826skip_copy: 1827 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1828 tp->urg_data = 0; 1829 tcp_fast_path_check(sk); 1830 } 1831 if (used + offset < skb->len) 1832 continue; 1833 1834 if (tcp_hdr(skb)->fin) 1835 goto found_fin_ok; 1836 if (!(flags & MSG_PEEK)) { 1837 sk_eat_skb(sk, skb, copied_early); 1838 copied_early = 0; 1839 } 1840 continue; 1841 1842 found_fin_ok: 1843 /* Process the FIN. */ 1844 ++*seq; 1845 if (!(flags & MSG_PEEK)) { 1846 sk_eat_skb(sk, skb, copied_early); 1847 copied_early = 0; 1848 } 1849 break; 1850 } while (len > 0); 1851 1852 if (user_recv) { 1853 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1854 int chunk; 1855 1856 tp->ucopy.len = copied > 0 ? len : 0; 1857 1858 tcp_prequeue_process(sk); 1859 1860 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1861 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1862 len -= chunk; 1863 copied += chunk; 1864 } 1865 } 1866 1867 tp->ucopy.task = NULL; 1868 tp->ucopy.len = 0; 1869 } 1870 1871#ifdef CONFIG_NET_DMA 1872 tcp_service_net_dma(sk, true); /* Wait for queue to drain */ 1873 tp->ucopy.dma_chan = NULL; 1874 1875 if (tp->ucopy.pinned_list) { 1876 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1877 tp->ucopy.pinned_list = NULL; 1878 } 1879#endif 1880 1881 /* According to UNIX98, msg_name/msg_namelen are ignored 1882 * on connected socket. I was just happy when found this 8) --ANK 1883 */ 1884 1885 /* Clean up data we have read: This will do ACK frames. */ 1886 tcp_cleanup_rbuf(sk, copied); 1887 1888 release_sock(sk); 1889 return copied; 1890 1891out: 1892 release_sock(sk); 1893 return err; 1894 1895recv_urg: 1896 err = tcp_recv_urg(sk, msg, len, flags); 1897 goto out; 1898 1899recv_sndq: 1900 err = tcp_peek_sndq(sk, msg, len); 1901 goto out; 1902} 1903EXPORT_SYMBOL(tcp_recvmsg); 1904 1905void tcp_set_state(struct sock *sk, int state) 1906{ 1907 int oldstate = sk->sk_state; 1908 1909 switch (state) { 1910 case TCP_ESTABLISHED: 1911 if (oldstate != TCP_ESTABLISHED) 1912 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1913 break; 1914 1915 case TCP_CLOSE: 1916 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1917 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1918 1919 sk->sk_prot->unhash(sk); 1920 if (inet_csk(sk)->icsk_bind_hash && 1921 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1922 inet_put_port(sk); 1923 /* fall through */ 1924 default: 1925 if (oldstate == TCP_ESTABLISHED) 1926 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1927 } 1928 1929 /* Change state AFTER socket is unhashed to avoid closed 1930 * socket sitting in hash tables. 1931 */ 1932 sk->sk_state = state; 1933 1934#ifdef STATE_TRACE 1935 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1936#endif 1937} 1938EXPORT_SYMBOL_GPL(tcp_set_state); 1939 1940/* 1941 * State processing on a close. This implements the state shift for 1942 * sending our FIN frame. Note that we only send a FIN for some 1943 * states. A shutdown() may have already sent the FIN, or we may be 1944 * closed. 1945 */ 1946 1947static const unsigned char new_state[16] = { 1948 /* current state: new state: action: */ 1949 /* (Invalid) */ TCP_CLOSE, 1950 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1951 /* TCP_SYN_SENT */ TCP_CLOSE, 1952 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1953 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 1954 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 1955 /* TCP_TIME_WAIT */ TCP_CLOSE, 1956 /* TCP_CLOSE */ TCP_CLOSE, 1957 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 1958 /* TCP_LAST_ACK */ TCP_LAST_ACK, 1959 /* TCP_LISTEN */ TCP_CLOSE, 1960 /* TCP_CLOSING */ TCP_CLOSING, 1961}; 1962 1963static int tcp_close_state(struct sock *sk) 1964{ 1965 int next = (int)new_state[sk->sk_state]; 1966 int ns = next & TCP_STATE_MASK; 1967 1968 tcp_set_state(sk, ns); 1969 1970 return next & TCP_ACTION_FIN; 1971} 1972 1973/* 1974 * Shutdown the sending side of a connection. Much like close except 1975 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1976 */ 1977 1978void tcp_shutdown(struct sock *sk, int how) 1979{ 1980 /* We need to grab some memory, and put together a FIN, 1981 * and then put it into the queue to be sent. 1982 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1983 */ 1984 if (!(how & SEND_SHUTDOWN)) 1985 return; 1986 1987 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1988 if ((1 << sk->sk_state) & 1989 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1990 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1991 /* Clear out any half completed packets. FIN if needed. */ 1992 if (tcp_close_state(sk)) 1993 tcp_send_fin(sk); 1994 } 1995} 1996EXPORT_SYMBOL(tcp_shutdown); 1997 1998bool tcp_check_oom(struct sock *sk, int shift) 1999{ 2000 bool too_many_orphans, out_of_socket_memory; 2001 2002 too_many_orphans = tcp_too_many_orphans(sk, shift); 2003 out_of_socket_memory = tcp_out_of_memory(sk); 2004 2005 if (too_many_orphans && net_ratelimit()) 2006 pr_info("too many orphaned sockets\n"); 2007 if (out_of_socket_memory && net_ratelimit()) 2008 pr_info("out of memory -- consider tuning tcp_mem\n"); 2009 return too_many_orphans || out_of_socket_memory; 2010} 2011 2012void tcp_close(struct sock *sk, long timeout) 2013{ 2014 struct sk_buff *skb; 2015 int data_was_unread = 0; 2016 int state; 2017 2018 lock_sock(sk); 2019 sk->sk_shutdown = SHUTDOWN_MASK; 2020 2021 if (sk->sk_state == TCP_LISTEN) { 2022 tcp_set_state(sk, TCP_CLOSE); 2023 2024 /* Special case. */ 2025 inet_csk_listen_stop(sk); 2026 2027 goto adjudge_to_death; 2028 } 2029 2030 /* We need to flush the recv. buffs. We do this only on the 2031 * descriptor close, not protocol-sourced closes, because the 2032 * reader process may not have drained the data yet! 2033 */ 2034 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2035 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 2036 tcp_hdr(skb)->fin; 2037 data_was_unread += len; 2038 __kfree_skb(skb); 2039 } 2040 2041 sk_mem_reclaim(sk); 2042 2043 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2044 if (sk->sk_state == TCP_CLOSE) 2045 goto adjudge_to_death; 2046 2047 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2048 * data was lost. To witness the awful effects of the old behavior of 2049 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2050 * GET in an FTP client, suspend the process, wait for the client to 2051 * advertise a zero window, then kill -9 the FTP client, wheee... 2052 * Note: timeout is always zero in such a case. 2053 */ 2054 if (unlikely(tcp_sk(sk)->repair)) { 2055 sk->sk_prot->disconnect(sk, 0); 2056 } else if (data_was_unread) { 2057 /* Unread data was tossed, zap the connection. */ 2058 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2059 tcp_set_state(sk, TCP_CLOSE); 2060 tcp_send_active_reset(sk, sk->sk_allocation); 2061 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2062 /* Check zero linger _after_ checking for unread data. */ 2063 sk->sk_prot->disconnect(sk, 0); 2064 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2065 } else if (tcp_close_state(sk)) { 2066 /* We FIN if the application ate all the data before 2067 * zapping the connection. 2068 */ 2069 2070 /* RED-PEN. Formally speaking, we have broken TCP state 2071 * machine. State transitions: 2072 * 2073 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2074 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2075 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2076 * 2077 * are legal only when FIN has been sent (i.e. in window), 2078 * rather than queued out of window. Purists blame. 2079 * 2080 * F.e. "RFC state" is ESTABLISHED, 2081 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2082 * 2083 * The visible declinations are that sometimes 2084 * we enter time-wait state, when it is not required really 2085 * (harmless), do not send active resets, when they are 2086 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2087 * they look as CLOSING or LAST_ACK for Linux) 2088 * Probably, I missed some more holelets. 2089 * --ANK 2090 */ 2091 tcp_send_fin(sk); 2092 } 2093 2094 sk_stream_wait_close(sk, timeout); 2095 2096adjudge_to_death: 2097 state = sk->sk_state; 2098 sock_hold(sk); 2099 sock_orphan(sk); 2100 2101 /* It is the last release_sock in its life. It will remove backlog. */ 2102 release_sock(sk); 2103 2104 2105 /* Now socket is owned by kernel and we acquire BH lock 2106 to finish close. No need to check for user refs. 2107 */ 2108 local_bh_disable(); 2109 bh_lock_sock(sk); 2110 WARN_ON(sock_owned_by_user(sk)); 2111 2112 percpu_counter_inc(sk->sk_prot->orphan_count); 2113 2114 /* Have we already been destroyed by a softirq or backlog? */ 2115 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2116 goto out; 2117 2118 /* This is a (useful) BSD violating of the RFC. There is a 2119 * problem with TCP as specified in that the other end could 2120 * keep a socket open forever with no application left this end. 2121 * We use a 3 minute timeout (about the same as BSD) then kill 2122 * our end. If they send after that then tough - BUT: long enough 2123 * that we won't make the old 4*rto = almost no time - whoops 2124 * reset mistake. 2125 * 2126 * Nope, it was not mistake. It is really desired behaviour 2127 * f.e. on http servers, when such sockets are useless, but 2128 * consume significant resources. Let's do it with special 2129 * linger2 option. --ANK 2130 */ 2131 2132 if (sk->sk_state == TCP_FIN_WAIT2) { 2133 struct tcp_sock *tp = tcp_sk(sk); 2134 if (tp->linger2 < 0) { 2135 tcp_set_state(sk, TCP_CLOSE); 2136 tcp_send_active_reset(sk, GFP_ATOMIC); 2137 NET_INC_STATS_BH(sock_net(sk), 2138 LINUX_MIB_TCPABORTONLINGER); 2139 } else { 2140 const int tmo = tcp_fin_time(sk); 2141 2142 if (tmo > TCP_TIMEWAIT_LEN) { 2143 inet_csk_reset_keepalive_timer(sk, 2144 tmo - TCP_TIMEWAIT_LEN); 2145 } else { 2146 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2147 goto out; 2148 } 2149 } 2150 } 2151 if (sk->sk_state != TCP_CLOSE) { 2152 sk_mem_reclaim(sk); 2153 if (tcp_check_oom(sk, 0)) { 2154 tcp_set_state(sk, TCP_CLOSE); 2155 tcp_send_active_reset(sk, GFP_ATOMIC); 2156 NET_INC_STATS_BH(sock_net(sk), 2157 LINUX_MIB_TCPABORTONMEMORY); 2158 } 2159 } 2160 2161 if (sk->sk_state == TCP_CLOSE) 2162 inet_csk_destroy_sock(sk); 2163 /* Otherwise, socket is reprieved until protocol close. */ 2164 2165out: 2166 bh_unlock_sock(sk); 2167 local_bh_enable(); 2168 sock_put(sk); 2169} 2170EXPORT_SYMBOL(tcp_close); 2171 2172/* These states need RST on ABORT according to RFC793 */ 2173 2174static inline int tcp_need_reset(int state) 2175{ 2176 return (1 << state) & 2177 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2178 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2179} 2180 2181int tcp_disconnect(struct sock *sk, int flags) 2182{ 2183 struct inet_sock *inet = inet_sk(sk); 2184 struct inet_connection_sock *icsk = inet_csk(sk); 2185 struct tcp_sock *tp = tcp_sk(sk); 2186 int err = 0; 2187 int old_state = sk->sk_state; 2188 2189 if (old_state != TCP_CLOSE) 2190 tcp_set_state(sk, TCP_CLOSE); 2191 2192 /* ABORT function of RFC793 */ 2193 if (old_state == TCP_LISTEN) { 2194 inet_csk_listen_stop(sk); 2195 } else if (unlikely(tp->repair)) { 2196 sk->sk_err = ECONNABORTED; 2197 } else if (tcp_need_reset(old_state) || 2198 (tp->snd_nxt != tp->write_seq && 2199 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2200 /* The last check adjusts for discrepancy of Linux wrt. RFC 2201 * states 2202 */ 2203 tcp_send_active_reset(sk, gfp_any()); 2204 sk->sk_err = ECONNRESET; 2205 } else if (old_state == TCP_SYN_SENT) 2206 sk->sk_err = ECONNRESET; 2207 2208 tcp_clear_xmit_timers(sk); 2209 __skb_queue_purge(&sk->sk_receive_queue); 2210 tcp_write_queue_purge(sk); 2211 __skb_queue_purge(&tp->out_of_order_queue); 2212#ifdef CONFIG_NET_DMA 2213 __skb_queue_purge(&sk->sk_async_wait_queue); 2214#endif 2215 2216 inet->inet_dport = 0; 2217 2218 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2219 inet_reset_saddr(sk); 2220 2221 sk->sk_shutdown = 0; 2222 sock_reset_flag(sk, SOCK_DONE); 2223 tp->srtt = 0; 2224 if ((tp->write_seq += tp->max_window + 2) == 0) 2225 tp->write_seq = 1; 2226 icsk->icsk_backoff = 0; 2227 tp->snd_cwnd = 2; 2228 icsk->icsk_probes_out = 0; 2229 tp->packets_out = 0; 2230 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2231 tp->snd_cwnd_cnt = 0; 2232 tp->bytes_acked = 0; 2233 tp->window_clamp = 0; 2234 tcp_set_ca_state(sk, TCP_CA_Open); 2235 tcp_clear_retrans(tp); 2236 inet_csk_delack_init(sk); 2237 tcp_init_send_head(sk); 2238 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2239 __sk_dst_reset(sk); 2240 2241 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2242 2243 sk->sk_error_report(sk); 2244 return err; 2245} 2246EXPORT_SYMBOL(tcp_disconnect); 2247 2248static inline int tcp_can_repair_sock(struct sock *sk) 2249{ 2250 return capable(CAP_NET_ADMIN) && 2251 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2252} 2253 2254static int tcp_repair_options_est(struct tcp_sock *tp, 2255 struct tcp_repair_opt __user *optbuf, unsigned int len) 2256{ 2257 struct tcp_repair_opt opt; 2258 2259 while (len >= sizeof(opt)) { 2260 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2261 return -EFAULT; 2262 2263 optbuf++; 2264 len -= sizeof(opt); 2265 2266 switch (opt.opt_code) { 2267 case TCPOPT_MSS: 2268 tp->rx_opt.mss_clamp = opt.opt_val; 2269 break; 2270 case TCPOPT_WINDOW: 2271 if (opt.opt_val > 14) 2272 return -EFBIG; 2273 2274 tp->rx_opt.snd_wscale = opt.opt_val; 2275 break; 2276 case TCPOPT_SACK_PERM: 2277 if (opt.opt_val != 0) 2278 return -EINVAL; 2279 2280 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2281 if (sysctl_tcp_fack) 2282 tcp_enable_fack(tp); 2283 break; 2284 case TCPOPT_TIMESTAMP: 2285 if (opt.opt_val != 0) 2286 return -EINVAL; 2287 2288 tp->rx_opt.tstamp_ok = 1; 2289 break; 2290 } 2291 } 2292 2293 return 0; 2294} 2295 2296/* 2297 * Socket option code for TCP. 2298 */ 2299static int do_tcp_setsockopt(struct sock *sk, int level, 2300 int optname, char __user *optval, unsigned int optlen) 2301{ 2302 struct tcp_sock *tp = tcp_sk(sk); 2303 struct inet_connection_sock *icsk = inet_csk(sk); 2304 int val; 2305 int err = 0; 2306 2307 /* These are data/string values, all the others are ints */ 2308 switch (optname) { 2309 case TCP_CONGESTION: { 2310 char name[TCP_CA_NAME_MAX]; 2311 2312 if (optlen < 1) 2313 return -EINVAL; 2314 2315 val = strncpy_from_user(name, optval, 2316 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2317 if (val < 0) 2318 return -EFAULT; 2319 name[val] = 0; 2320 2321 lock_sock(sk); 2322 err = tcp_set_congestion_control(sk, name); 2323 release_sock(sk); 2324 return err; 2325 } 2326 case TCP_COOKIE_TRANSACTIONS: { 2327 struct tcp_cookie_transactions ctd; 2328 struct tcp_cookie_values *cvp = NULL; 2329 2330 if (sizeof(ctd) > optlen) 2331 return -EINVAL; 2332 if (copy_from_user(&ctd, optval, sizeof(ctd))) 2333 return -EFAULT; 2334 2335 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) || 2336 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED) 2337 return -EINVAL; 2338 2339 if (ctd.tcpct_cookie_desired == 0) { 2340 /* default to global value */ 2341 } else if ((0x1 & ctd.tcpct_cookie_desired) || 2342 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX || 2343 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) { 2344 return -EINVAL; 2345 } 2346 2347 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) { 2348 /* Supercedes all other values */ 2349 lock_sock(sk); 2350 if (tp->cookie_values != NULL) { 2351 kref_put(&tp->cookie_values->kref, 2352 tcp_cookie_values_release); 2353 tp->cookie_values = NULL; 2354 } 2355 tp->rx_opt.cookie_in_always = 0; /* false */ 2356 tp->rx_opt.cookie_out_never = 1; /* true */ 2357 release_sock(sk); 2358 return err; 2359 } 2360 2361 /* Allocate ancillary memory before locking. 2362 */ 2363 if (ctd.tcpct_used > 0 || 2364 (tp->cookie_values == NULL && 2365 (sysctl_tcp_cookie_size > 0 || 2366 ctd.tcpct_cookie_desired > 0 || 2367 ctd.tcpct_s_data_desired > 0))) { 2368 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used, 2369 GFP_KERNEL); 2370 if (cvp == NULL) 2371 return -ENOMEM; 2372 2373 kref_init(&cvp->kref); 2374 } 2375 lock_sock(sk); 2376 tp->rx_opt.cookie_in_always = 2377 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags); 2378 tp->rx_opt.cookie_out_never = 0; /* false */ 2379 2380 if (tp->cookie_values != NULL) { 2381 if (cvp != NULL) { 2382 /* Changed values are recorded by a changed 2383 * pointer, ensuring the cookie will differ, 2384 * without separately hashing each value later. 2385 */ 2386 kref_put(&tp->cookie_values->kref, 2387 tcp_cookie_values_release); 2388 } else { 2389 cvp = tp->cookie_values; 2390 } 2391 } 2392 2393 if (cvp != NULL) { 2394 cvp->cookie_desired = ctd.tcpct_cookie_desired; 2395 2396 if (ctd.tcpct_used > 0) { 2397 memcpy(cvp->s_data_payload, ctd.tcpct_value, 2398 ctd.tcpct_used); 2399 cvp->s_data_desired = ctd.tcpct_used; 2400 cvp->s_data_constant = 1; /* true */ 2401 } else { 2402 /* No constant payload data. */ 2403 cvp->s_data_desired = ctd.tcpct_s_data_desired; 2404 cvp->s_data_constant = 0; /* false */ 2405 } 2406 2407 tp->cookie_values = cvp; 2408 } 2409 release_sock(sk); 2410 return err; 2411 } 2412 default: 2413 /* fallthru */ 2414 break; 2415 } 2416 2417 if (optlen < sizeof(int)) 2418 return -EINVAL; 2419 2420 if (get_user(val, (int __user *)optval)) 2421 return -EFAULT; 2422 2423 lock_sock(sk); 2424 2425 switch (optname) { 2426 case TCP_MAXSEG: 2427 /* Values greater than interface MTU won't take effect. However 2428 * at the point when this call is done we typically don't yet 2429 * know which interface is going to be used */ 2430 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2431 err = -EINVAL; 2432 break; 2433 } 2434 tp->rx_opt.user_mss = val; 2435 break; 2436 2437 case TCP_NODELAY: 2438 if (val) { 2439 /* TCP_NODELAY is weaker than TCP_CORK, so that 2440 * this option on corked socket is remembered, but 2441 * it is not activated until cork is cleared. 2442 * 2443 * However, when TCP_NODELAY is set we make 2444 * an explicit push, which overrides even TCP_CORK 2445 * for currently queued segments. 2446 */ 2447 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2448 tcp_push_pending_frames(sk); 2449 } else { 2450 tp->nonagle &= ~TCP_NAGLE_OFF; 2451 } 2452 break; 2453 2454 case TCP_THIN_LINEAR_TIMEOUTS: 2455 if (val < 0 || val > 1) 2456 err = -EINVAL; 2457 else 2458 tp->thin_lto = val; 2459 break; 2460 2461 case TCP_THIN_DUPACK: 2462 if (val < 0 || val > 1) 2463 err = -EINVAL; 2464 else 2465 tp->thin_dupack = val; 2466 if (tp->thin_dupack) 2467 tcp_disable_early_retrans(tp); 2468 break; 2469 2470 case TCP_REPAIR: 2471 if (!tcp_can_repair_sock(sk)) 2472 err = -EPERM; 2473 else if (val == 1) { 2474 tp->repair = 1; 2475 sk->sk_reuse = SK_FORCE_REUSE; 2476 tp->repair_queue = TCP_NO_QUEUE; 2477 } else if (val == 0) { 2478 tp->repair = 0; 2479 sk->sk_reuse = SK_NO_REUSE; 2480 tcp_send_window_probe(sk); 2481 } else 2482 err = -EINVAL; 2483 2484 break; 2485 2486 case TCP_REPAIR_QUEUE: 2487 if (!tp->repair) 2488 err = -EPERM; 2489 else if (val < TCP_QUEUES_NR) 2490 tp->repair_queue = val; 2491 else 2492 err = -EINVAL; 2493 break; 2494 2495 case TCP_QUEUE_SEQ: 2496 if (sk->sk_state != TCP_CLOSE) 2497 err = -EPERM; 2498 else if (tp->repair_queue == TCP_SEND_QUEUE) 2499 tp->write_seq = val; 2500 else if (tp->repair_queue == TCP_RECV_QUEUE) 2501 tp->rcv_nxt = val; 2502 else 2503 err = -EINVAL; 2504 break; 2505 2506 case TCP_REPAIR_OPTIONS: 2507 if (!tp->repair) 2508 err = -EINVAL; 2509 else if (sk->sk_state == TCP_ESTABLISHED) 2510 err = tcp_repair_options_est(tp, 2511 (struct tcp_repair_opt __user *)optval, 2512 optlen); 2513 else 2514 err = -EPERM; 2515 break; 2516 2517 case TCP_CORK: 2518 /* When set indicates to always queue non-full frames. 2519 * Later the user clears this option and we transmit 2520 * any pending partial frames in the queue. This is 2521 * meant to be used alongside sendfile() to get properly 2522 * filled frames when the user (for example) must write 2523 * out headers with a write() call first and then use 2524 * sendfile to send out the data parts. 2525 * 2526 * TCP_CORK can be set together with TCP_NODELAY and it is 2527 * stronger than TCP_NODELAY. 2528 */ 2529 if (val) { 2530 tp->nonagle |= TCP_NAGLE_CORK; 2531 } else { 2532 tp->nonagle &= ~TCP_NAGLE_CORK; 2533 if (tp->nonagle&TCP_NAGLE_OFF) 2534 tp->nonagle |= TCP_NAGLE_PUSH; 2535 tcp_push_pending_frames(sk); 2536 } 2537 break; 2538 2539 case TCP_KEEPIDLE: 2540 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2541 err = -EINVAL; 2542 else { 2543 tp->keepalive_time = val * HZ; 2544 if (sock_flag(sk, SOCK_KEEPOPEN) && 2545 !((1 << sk->sk_state) & 2546 (TCPF_CLOSE | TCPF_LISTEN))) { 2547 u32 elapsed = keepalive_time_elapsed(tp); 2548 if (tp->keepalive_time > elapsed) 2549 elapsed = tp->keepalive_time - elapsed; 2550 else 2551 elapsed = 0; 2552 inet_csk_reset_keepalive_timer(sk, elapsed); 2553 } 2554 } 2555 break; 2556 case TCP_KEEPINTVL: 2557 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2558 err = -EINVAL; 2559 else 2560 tp->keepalive_intvl = val * HZ; 2561 break; 2562 case TCP_KEEPCNT: 2563 if (val < 1 || val > MAX_TCP_KEEPCNT) 2564 err = -EINVAL; 2565 else 2566 tp->keepalive_probes = val; 2567 break; 2568 case TCP_SYNCNT: 2569 if (val < 1 || val > MAX_TCP_SYNCNT) 2570 err = -EINVAL; 2571 else 2572 icsk->icsk_syn_retries = val; 2573 break; 2574 2575 case TCP_LINGER2: 2576 if (val < 0) 2577 tp->linger2 = -1; 2578 else if (val > sysctl_tcp_fin_timeout / HZ) 2579 tp->linger2 = 0; 2580 else 2581 tp->linger2 = val * HZ; 2582 break; 2583 2584 case TCP_DEFER_ACCEPT: 2585 /* Translate value in seconds to number of retransmits */ 2586 icsk->icsk_accept_queue.rskq_defer_accept = 2587 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2588 TCP_RTO_MAX / HZ); 2589 break; 2590 2591 case TCP_WINDOW_CLAMP: 2592 if (!val) { 2593 if (sk->sk_state != TCP_CLOSE) { 2594 err = -EINVAL; 2595 break; 2596 } 2597 tp->window_clamp = 0; 2598 } else 2599 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2600 SOCK_MIN_RCVBUF / 2 : val; 2601 break; 2602 2603 case TCP_QUICKACK: 2604 if (!val) { 2605 icsk->icsk_ack.pingpong = 1; 2606 } else { 2607 icsk->icsk_ack.pingpong = 0; 2608 if ((1 << sk->sk_state) & 2609 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2610 inet_csk_ack_scheduled(sk)) { 2611 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2612 tcp_cleanup_rbuf(sk, 1); 2613 if (!(val & 1)) 2614 icsk->icsk_ack.pingpong = 1; 2615 } 2616 } 2617 break; 2618 2619#ifdef CONFIG_TCP_MD5SIG 2620 case TCP_MD5SIG: 2621 /* Read the IP->Key mappings from userspace */ 2622 err = tp->af_specific->md5_parse(sk, optval, optlen); 2623 break; 2624#endif 2625 case TCP_USER_TIMEOUT: 2626 /* Cap the max timeout in ms TCP will retry/retrans 2627 * before giving up and aborting (ETIMEDOUT) a connection. 2628 */ 2629 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2630 break; 2631 default: 2632 err = -ENOPROTOOPT; 2633 break; 2634 } 2635 2636 release_sock(sk); 2637 return err; 2638} 2639 2640int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2641 unsigned int optlen) 2642{ 2643 const struct inet_connection_sock *icsk = inet_csk(sk); 2644 2645 if (level != SOL_TCP) 2646 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2647 optval, optlen); 2648 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2649} 2650EXPORT_SYMBOL(tcp_setsockopt); 2651 2652#ifdef CONFIG_COMPAT 2653int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2654 char __user *optval, unsigned int optlen) 2655{ 2656 if (level != SOL_TCP) 2657 return inet_csk_compat_setsockopt(sk, level, optname, 2658 optval, optlen); 2659 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2660} 2661EXPORT_SYMBOL(compat_tcp_setsockopt); 2662#endif 2663 2664/* Return information about state of tcp endpoint in API format. */ 2665void tcp_get_info(const struct sock *sk, struct tcp_info *info) 2666{ 2667 const struct tcp_sock *tp = tcp_sk(sk); 2668 const struct inet_connection_sock *icsk = inet_csk(sk); 2669 u32 now = tcp_time_stamp; 2670 2671 memset(info, 0, sizeof(*info)); 2672 2673 info->tcpi_state = sk->sk_state; 2674 info->tcpi_ca_state = icsk->icsk_ca_state; 2675 info->tcpi_retransmits = icsk->icsk_retransmits; 2676 info->tcpi_probes = icsk->icsk_probes_out; 2677 info->tcpi_backoff = icsk->icsk_backoff; 2678 2679 if (tp->rx_opt.tstamp_ok) 2680 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2681 if (tcp_is_sack(tp)) 2682 info->tcpi_options |= TCPI_OPT_SACK; 2683 if (tp->rx_opt.wscale_ok) { 2684 info->tcpi_options |= TCPI_OPT_WSCALE; 2685 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2686 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2687 } 2688 2689 if (tp->ecn_flags & TCP_ECN_OK) 2690 info->tcpi_options |= TCPI_OPT_ECN; 2691 if (tp->ecn_flags & TCP_ECN_SEEN) 2692 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2693 2694 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2695 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2696 info->tcpi_snd_mss = tp->mss_cache; 2697 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2698 2699 if (sk->sk_state == TCP_LISTEN) { 2700 info->tcpi_unacked = sk->sk_ack_backlog; 2701 info->tcpi_sacked = sk->sk_max_ack_backlog; 2702 } else { 2703 info->tcpi_unacked = tp->packets_out; 2704 info->tcpi_sacked = tp->sacked_out; 2705 } 2706 info->tcpi_lost = tp->lost_out; 2707 info->tcpi_retrans = tp->retrans_out; 2708 info->tcpi_fackets = tp->fackets_out; 2709 2710 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2711 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2712 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2713 2714 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2715 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2716 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2717 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2718 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2719 info->tcpi_snd_cwnd = tp->snd_cwnd; 2720 info->tcpi_advmss = tp->advmss; 2721 info->tcpi_reordering = tp->reordering; 2722 2723 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2724 info->tcpi_rcv_space = tp->rcvq_space.space; 2725 2726 info->tcpi_total_retrans = tp->total_retrans; 2727} 2728EXPORT_SYMBOL_GPL(tcp_get_info); 2729 2730static int do_tcp_getsockopt(struct sock *sk, int level, 2731 int optname, char __user *optval, int __user *optlen) 2732{ 2733 struct inet_connection_sock *icsk = inet_csk(sk); 2734 struct tcp_sock *tp = tcp_sk(sk); 2735 int val, len; 2736 2737 if (get_user(len, optlen)) 2738 return -EFAULT; 2739 2740 len = min_t(unsigned int, len, sizeof(int)); 2741 2742 if (len < 0) 2743 return -EINVAL; 2744 2745 switch (optname) { 2746 case TCP_MAXSEG: 2747 val = tp->mss_cache; 2748 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2749 val = tp->rx_opt.user_mss; 2750 if (tp->repair) 2751 val = tp->rx_opt.mss_clamp; 2752 break; 2753 case TCP_NODELAY: 2754 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2755 break; 2756 case TCP_CORK: 2757 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2758 break; 2759 case TCP_KEEPIDLE: 2760 val = keepalive_time_when(tp) / HZ; 2761 break; 2762 case TCP_KEEPINTVL: 2763 val = keepalive_intvl_when(tp) / HZ; 2764 break; 2765 case TCP_KEEPCNT: 2766 val = keepalive_probes(tp); 2767 break; 2768 case TCP_SYNCNT: 2769 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2770 break; 2771 case TCP_LINGER2: 2772 val = tp->linger2; 2773 if (val >= 0) 2774 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2775 break; 2776 case TCP_DEFER_ACCEPT: 2777 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2778 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2779 break; 2780 case TCP_WINDOW_CLAMP: 2781 val = tp->window_clamp; 2782 break; 2783 case TCP_INFO: { 2784 struct tcp_info info; 2785 2786 if (get_user(len, optlen)) 2787 return -EFAULT; 2788 2789 tcp_get_info(sk, &info); 2790 2791 len = min_t(unsigned int, len, sizeof(info)); 2792 if (put_user(len, optlen)) 2793 return -EFAULT; 2794 if (copy_to_user(optval, &info, len)) 2795 return -EFAULT; 2796 return 0; 2797 } 2798 case TCP_QUICKACK: 2799 val = !icsk->icsk_ack.pingpong; 2800 break; 2801 2802 case TCP_CONGESTION: 2803 if (get_user(len, optlen)) 2804 return -EFAULT; 2805 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2806 if (put_user(len, optlen)) 2807 return -EFAULT; 2808 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2809 return -EFAULT; 2810 return 0; 2811 2812 case TCP_COOKIE_TRANSACTIONS: { 2813 struct tcp_cookie_transactions ctd; 2814 struct tcp_cookie_values *cvp = tp->cookie_values; 2815 2816 if (get_user(len, optlen)) 2817 return -EFAULT; 2818 if (len < sizeof(ctd)) 2819 return -EINVAL; 2820 2821 memset(&ctd, 0, sizeof(ctd)); 2822 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ? 2823 TCP_COOKIE_IN_ALWAYS : 0) 2824 | (tp->rx_opt.cookie_out_never ? 2825 TCP_COOKIE_OUT_NEVER : 0); 2826 2827 if (cvp != NULL) { 2828 ctd.tcpct_flags |= (cvp->s_data_in ? 2829 TCP_S_DATA_IN : 0) 2830 | (cvp->s_data_out ? 2831 TCP_S_DATA_OUT : 0); 2832 2833 ctd.tcpct_cookie_desired = cvp->cookie_desired; 2834 ctd.tcpct_s_data_desired = cvp->s_data_desired; 2835 2836 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0], 2837 cvp->cookie_pair_size); 2838 ctd.tcpct_used = cvp->cookie_pair_size; 2839 } 2840 2841 if (put_user(sizeof(ctd), optlen)) 2842 return -EFAULT; 2843 if (copy_to_user(optval, &ctd, sizeof(ctd))) 2844 return -EFAULT; 2845 return 0; 2846 } 2847 case TCP_THIN_LINEAR_TIMEOUTS: 2848 val = tp->thin_lto; 2849 break; 2850 case TCP_THIN_DUPACK: 2851 val = tp->thin_dupack; 2852 break; 2853 2854 case TCP_REPAIR: 2855 val = tp->repair; 2856 break; 2857 2858 case TCP_REPAIR_QUEUE: 2859 if (tp->repair) 2860 val = tp->repair_queue; 2861 else 2862 return -EINVAL; 2863 break; 2864 2865 case TCP_QUEUE_SEQ: 2866 if (tp->repair_queue == TCP_SEND_QUEUE) 2867 val = tp->write_seq; 2868 else if (tp->repair_queue == TCP_RECV_QUEUE) 2869 val = tp->rcv_nxt; 2870 else 2871 return -EINVAL; 2872 break; 2873 2874 case TCP_USER_TIMEOUT: 2875 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2876 break; 2877 default: 2878 return -ENOPROTOOPT; 2879 } 2880 2881 if (put_user(len, optlen)) 2882 return -EFAULT; 2883 if (copy_to_user(optval, &val, len)) 2884 return -EFAULT; 2885 return 0; 2886} 2887 2888int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2889 int __user *optlen) 2890{ 2891 struct inet_connection_sock *icsk = inet_csk(sk); 2892 2893 if (level != SOL_TCP) 2894 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2895 optval, optlen); 2896 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2897} 2898EXPORT_SYMBOL(tcp_getsockopt); 2899 2900#ifdef CONFIG_COMPAT 2901int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2902 char __user *optval, int __user *optlen) 2903{ 2904 if (level != SOL_TCP) 2905 return inet_csk_compat_getsockopt(sk, level, optname, 2906 optval, optlen); 2907 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2908} 2909EXPORT_SYMBOL(compat_tcp_getsockopt); 2910#endif 2911 2912struct sk_buff *tcp_tso_segment(struct sk_buff *skb, 2913 netdev_features_t features) 2914{ 2915 struct sk_buff *segs = ERR_PTR(-EINVAL); 2916 struct tcphdr *th; 2917 unsigned int thlen; 2918 unsigned int seq; 2919 __be32 delta; 2920 unsigned int oldlen; 2921 unsigned int mss; 2922 2923 if (!pskb_may_pull(skb, sizeof(*th))) 2924 goto out; 2925 2926 th = tcp_hdr(skb); 2927 thlen = th->doff * 4; 2928 if (thlen < sizeof(*th)) 2929 goto out; 2930 2931 if (!pskb_may_pull(skb, thlen)) 2932 goto out; 2933 2934 oldlen = (u16)~skb->len; 2935 __skb_pull(skb, thlen); 2936 2937 mss = skb_shinfo(skb)->gso_size; 2938 if (unlikely(skb->len <= mss)) 2939 goto out; 2940 2941 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 2942 /* Packet is from an untrusted source, reset gso_segs. */ 2943 int type = skb_shinfo(skb)->gso_type; 2944 2945 if (unlikely(type & 2946 ~(SKB_GSO_TCPV4 | 2947 SKB_GSO_DODGY | 2948 SKB_GSO_TCP_ECN | 2949 SKB_GSO_TCPV6 | 2950 0) || 2951 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) 2952 goto out; 2953 2954 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 2955 2956 segs = NULL; 2957 goto out; 2958 } 2959 2960 segs = skb_segment(skb, features); 2961 if (IS_ERR(segs)) 2962 goto out; 2963 2964 delta = htonl(oldlen + (thlen + mss)); 2965 2966 skb = segs; 2967 th = tcp_hdr(skb); 2968 seq = ntohl(th->seq); 2969 2970 do { 2971 th->fin = th->psh = 0; 2972 2973 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2974 (__force u32)delta)); 2975 if (skb->ip_summed != CHECKSUM_PARTIAL) 2976 th->check = 2977 csum_fold(csum_partial(skb_transport_header(skb), 2978 thlen, skb->csum)); 2979 2980 seq += mss; 2981 skb = skb->next; 2982 th = tcp_hdr(skb); 2983 2984 th->seq = htonl(seq); 2985 th->cwr = 0; 2986 } while (skb->next); 2987 2988 delta = htonl(oldlen + (skb->tail - skb->transport_header) + 2989 skb->data_len); 2990 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2991 (__force u32)delta)); 2992 if (skb->ip_summed != CHECKSUM_PARTIAL) 2993 th->check = csum_fold(csum_partial(skb_transport_header(skb), 2994 thlen, skb->csum)); 2995 2996out: 2997 return segs; 2998} 2999EXPORT_SYMBOL(tcp_tso_segment); 3000 3001struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3002{ 3003 struct sk_buff **pp = NULL; 3004 struct sk_buff *p; 3005 struct tcphdr *th; 3006 struct tcphdr *th2; 3007 unsigned int len; 3008 unsigned int thlen; 3009 __be32 flags; 3010 unsigned int mss = 1; 3011 unsigned int hlen; 3012 unsigned int off; 3013 int flush = 1; 3014 int i; 3015 3016 off = skb_gro_offset(skb); 3017 hlen = off + sizeof(*th); 3018 th = skb_gro_header_fast(skb, off); 3019 if (skb_gro_header_hard(skb, hlen)) { 3020 th = skb_gro_header_slow(skb, hlen, off); 3021 if (unlikely(!th)) 3022 goto out; 3023 } 3024 3025 thlen = th->doff * 4; 3026 if (thlen < sizeof(*th)) 3027 goto out; 3028 3029 hlen = off + thlen; 3030 if (skb_gro_header_hard(skb, hlen)) { 3031 th = skb_gro_header_slow(skb, hlen, off); 3032 if (unlikely(!th)) 3033 goto out; 3034 } 3035 3036 skb_gro_pull(skb, thlen); 3037 3038 len = skb_gro_len(skb); 3039 flags = tcp_flag_word(th); 3040 3041 for (; (p = *head); head = &p->next) { 3042 if (!NAPI_GRO_CB(p)->same_flow) 3043 continue; 3044 3045 th2 = tcp_hdr(p); 3046 3047 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) { 3048 NAPI_GRO_CB(p)->same_flow = 0; 3049 continue; 3050 } 3051 3052 goto found; 3053 } 3054 3055 goto out_check_final; 3056 3057found: 3058 flush = NAPI_GRO_CB(p)->flush; 3059 flush |= (__force int)(flags & TCP_FLAG_CWR); 3060 flush |= (__force int)((flags ^ tcp_flag_word(th2)) & 3061 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH)); 3062 flush |= (__force int)(th->ack_seq ^ th2->ack_seq); 3063 for (i = sizeof(*th); i < thlen; i += 4) 3064 flush |= *(u32 *)((u8 *)th + i) ^ 3065 *(u32 *)((u8 *)th2 + i); 3066 3067 mss = skb_shinfo(p)->gso_size; 3068 3069 flush |= (len - 1) >= mss; 3070 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); 3071 3072 if (flush || skb_gro_receive(head, skb)) { 3073 mss = 1; 3074 goto out_check_final; 3075 } 3076 3077 p = *head; 3078 th2 = tcp_hdr(p); 3079 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); 3080 3081out_check_final: 3082 flush = len < mss; 3083 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH | 3084 TCP_FLAG_RST | TCP_FLAG_SYN | 3085 TCP_FLAG_FIN)); 3086 3087 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) 3088 pp = head; 3089 3090out: 3091 NAPI_GRO_CB(skb)->flush |= flush; 3092 3093 return pp; 3094} 3095EXPORT_SYMBOL(tcp_gro_receive); 3096 3097int tcp_gro_complete(struct sk_buff *skb) 3098{ 3099 struct tcphdr *th = tcp_hdr(skb); 3100 3101 skb->csum_start = skb_transport_header(skb) - skb->head; 3102 skb->csum_offset = offsetof(struct tcphdr, check); 3103 skb->ip_summed = CHECKSUM_PARTIAL; 3104 3105 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 3106 3107 if (th->cwr) 3108 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 3109 3110 return 0; 3111} 3112EXPORT_SYMBOL(tcp_gro_complete); 3113 3114#ifdef CONFIG_TCP_MD5SIG 3115static unsigned long tcp_md5sig_users; 3116static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool; 3117static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); 3118 3119static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool) 3120{ 3121 int cpu; 3122 3123 for_each_possible_cpu(cpu) { 3124 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu); 3125 3126 if (p->md5_desc.tfm) 3127 crypto_free_hash(p->md5_desc.tfm); 3128 } 3129 free_percpu(pool); 3130} 3131 3132void tcp_free_md5sig_pool(void) 3133{ 3134 struct tcp_md5sig_pool __percpu *pool = NULL; 3135 3136 spin_lock_bh(&tcp_md5sig_pool_lock); 3137 if (--tcp_md5sig_users == 0) { 3138 pool = tcp_md5sig_pool; 3139 tcp_md5sig_pool = NULL; 3140 } 3141 spin_unlock_bh(&tcp_md5sig_pool_lock); 3142 if (pool) 3143 __tcp_free_md5sig_pool(pool); 3144} 3145EXPORT_SYMBOL(tcp_free_md5sig_pool); 3146 3147static struct tcp_md5sig_pool __percpu * 3148__tcp_alloc_md5sig_pool(struct sock *sk) 3149{ 3150 int cpu; 3151 struct tcp_md5sig_pool __percpu *pool; 3152 3153 pool = alloc_percpu(struct tcp_md5sig_pool); 3154 if (!pool) 3155 return NULL; 3156 3157 for_each_possible_cpu(cpu) { 3158 struct crypto_hash *hash; 3159 3160 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 3161 if (!hash || IS_ERR(hash)) 3162 goto out_free; 3163 3164 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash; 3165 } 3166 return pool; 3167out_free: 3168 __tcp_free_md5sig_pool(pool); 3169 return NULL; 3170} 3171 3172struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk) 3173{ 3174 struct tcp_md5sig_pool __percpu *pool; 3175 int alloc = 0; 3176 3177retry: 3178 spin_lock_bh(&tcp_md5sig_pool_lock); 3179 pool = tcp_md5sig_pool; 3180 if (tcp_md5sig_users++ == 0) { 3181 alloc = 1; 3182 spin_unlock_bh(&tcp_md5sig_pool_lock); 3183 } else if (!pool) { 3184 tcp_md5sig_users--; 3185 spin_unlock_bh(&tcp_md5sig_pool_lock); 3186 cpu_relax(); 3187 goto retry; 3188 } else 3189 spin_unlock_bh(&tcp_md5sig_pool_lock); 3190 3191 if (alloc) { 3192 /* we cannot hold spinlock here because this may sleep. */ 3193 struct tcp_md5sig_pool __percpu *p; 3194 3195 p = __tcp_alloc_md5sig_pool(sk); 3196 spin_lock_bh(&tcp_md5sig_pool_lock); 3197 if (!p) { 3198 tcp_md5sig_users--; 3199 spin_unlock_bh(&tcp_md5sig_pool_lock); 3200 return NULL; 3201 } 3202 pool = tcp_md5sig_pool; 3203 if (pool) { 3204 /* oops, it has already been assigned. */ 3205 spin_unlock_bh(&tcp_md5sig_pool_lock); 3206 __tcp_free_md5sig_pool(p); 3207 } else { 3208 tcp_md5sig_pool = pool = p; 3209 spin_unlock_bh(&tcp_md5sig_pool_lock); 3210 } 3211 } 3212 return pool; 3213} 3214EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3215 3216 3217/** 3218 * tcp_get_md5sig_pool - get md5sig_pool for this user 3219 * 3220 * We use percpu structure, so if we succeed, we exit with preemption 3221 * and BH disabled, to make sure another thread or softirq handling 3222 * wont try to get same context. 3223 */ 3224struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3225{ 3226 struct tcp_md5sig_pool __percpu *p; 3227 3228 local_bh_disable(); 3229 3230 spin_lock(&tcp_md5sig_pool_lock); 3231 p = tcp_md5sig_pool; 3232 if (p) 3233 tcp_md5sig_users++; 3234 spin_unlock(&tcp_md5sig_pool_lock); 3235 3236 if (p) 3237 return this_cpu_ptr(p); 3238 3239 local_bh_enable(); 3240 return NULL; 3241} 3242EXPORT_SYMBOL(tcp_get_md5sig_pool); 3243 3244void tcp_put_md5sig_pool(void) 3245{ 3246 local_bh_enable(); 3247 tcp_free_md5sig_pool(); 3248} 3249EXPORT_SYMBOL(tcp_put_md5sig_pool); 3250 3251int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 3252 const struct tcphdr *th) 3253{ 3254 struct scatterlist sg; 3255 struct tcphdr hdr; 3256 int err; 3257 3258 /* We are not allowed to change tcphdr, make a local copy */ 3259 memcpy(&hdr, th, sizeof(hdr)); 3260 hdr.check = 0; 3261 3262 /* options aren't included in the hash */ 3263 sg_init_one(&sg, &hdr, sizeof(hdr)); 3264 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3265 return err; 3266} 3267EXPORT_SYMBOL(tcp_md5_hash_header); 3268 3269int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3270 const struct sk_buff *skb, unsigned int header_len) 3271{ 3272 struct scatterlist sg; 3273 const struct tcphdr *tp = tcp_hdr(skb); 3274 struct hash_desc *desc = &hp->md5_desc; 3275 unsigned int i; 3276 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3277 skb_headlen(skb) - header_len : 0; 3278 const struct skb_shared_info *shi = skb_shinfo(skb); 3279 struct sk_buff *frag_iter; 3280 3281 sg_init_table(&sg, 1); 3282 3283 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3284 if (crypto_hash_update(desc, &sg, head_data_len)) 3285 return 1; 3286 3287 for (i = 0; i < shi->nr_frags; ++i) { 3288 const struct skb_frag_struct *f = &shi->frags[i]; 3289 struct page *page = skb_frag_page(f); 3290 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset); 3291 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3292 return 1; 3293 } 3294 3295 skb_walk_frags(skb, frag_iter) 3296 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3297 return 1; 3298 3299 return 0; 3300} 3301EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3302 3303int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3304{ 3305 struct scatterlist sg; 3306 3307 sg_init_one(&sg, key->key, key->keylen); 3308 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3309} 3310EXPORT_SYMBOL(tcp_md5_hash_key); 3311 3312#endif 3313 3314/** 3315 * Each Responder maintains up to two secret values concurrently for 3316 * efficient secret rollover. Each secret value has 4 states: 3317 * 3318 * Generating. (tcp_secret_generating != tcp_secret_primary) 3319 * Generates new Responder-Cookies, but not yet used for primary 3320 * verification. This is a short-term state, typically lasting only 3321 * one round trip time (RTT). 3322 * 3323 * Primary. (tcp_secret_generating == tcp_secret_primary) 3324 * Used both for generation and primary verification. 3325 * 3326 * Retiring. (tcp_secret_retiring != tcp_secret_secondary) 3327 * Used for verification, until the first failure that can be 3328 * verified by the newer Generating secret. At that time, this 3329 * cookie's state is changed to Secondary, and the Generating 3330 * cookie's state is changed to Primary. This is a short-term state, 3331 * typically lasting only one round trip time (RTT). 3332 * 3333 * Secondary. (tcp_secret_retiring == tcp_secret_secondary) 3334 * Used for secondary verification, after primary verification 3335 * failures. This state lasts no more than twice the Maximum Segment 3336 * Lifetime (2MSL). Then, the secret is discarded. 3337 */ 3338struct tcp_cookie_secret { 3339 /* The secret is divided into two parts. The digest part is the 3340 * equivalent of previously hashing a secret and saving the state, 3341 * and serves as an initialization vector (IV). The message part 3342 * serves as the trailing secret. 3343 */ 3344 u32 secrets[COOKIE_WORKSPACE_WORDS]; 3345 unsigned long expires; 3346}; 3347 3348#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL) 3349#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2) 3350#define TCP_SECRET_LIFE (HZ * 600) 3351 3352static struct tcp_cookie_secret tcp_secret_one; 3353static struct tcp_cookie_secret tcp_secret_two; 3354 3355/* Essentially a circular list, without dynamic allocation. */ 3356static struct tcp_cookie_secret *tcp_secret_generating; 3357static struct tcp_cookie_secret *tcp_secret_primary; 3358static struct tcp_cookie_secret *tcp_secret_retiring; 3359static struct tcp_cookie_secret *tcp_secret_secondary; 3360 3361static DEFINE_SPINLOCK(tcp_secret_locker); 3362 3363/* Select a pseudo-random word in the cookie workspace. 3364 */ 3365static inline u32 tcp_cookie_work(const u32 *ws, const int n) 3366{ 3367 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])]; 3368} 3369 3370/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed. 3371 * Called in softirq context. 3372 * Returns: 0 for success. 3373 */ 3374int tcp_cookie_generator(u32 *bakery) 3375{ 3376 unsigned long jiffy = jiffies; 3377 3378 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) { 3379 spin_lock_bh(&tcp_secret_locker); 3380 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) { 3381 /* refreshed by another */ 3382 memcpy(bakery, 3383 &tcp_secret_generating->secrets[0], 3384 COOKIE_WORKSPACE_WORDS); 3385 } else { 3386 /* still needs refreshing */ 3387 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS); 3388 3389 /* The first time, paranoia assumes that the 3390 * randomization function isn't as strong. But, 3391 * this secret initialization is delayed until 3392 * the last possible moment (packet arrival). 3393 * Although that time is observable, it is 3394 * unpredictably variable. Mash in the most 3395 * volatile clock bits available, and expire the 3396 * secret extra quickly. 3397 */ 3398 if (unlikely(tcp_secret_primary->expires == 3399 tcp_secret_secondary->expires)) { 3400 struct timespec tv; 3401 3402 getnstimeofday(&tv); 3403 bakery[COOKIE_DIGEST_WORDS+0] ^= 3404 (u32)tv.tv_nsec; 3405 3406 tcp_secret_secondary->expires = jiffy 3407 + TCP_SECRET_1MSL 3408 + (0x0f & tcp_cookie_work(bakery, 0)); 3409 } else { 3410 tcp_secret_secondary->expires = jiffy 3411 + TCP_SECRET_LIFE 3412 + (0xff & tcp_cookie_work(bakery, 1)); 3413 tcp_secret_primary->expires = jiffy 3414 + TCP_SECRET_2MSL 3415 + (0x1f & tcp_cookie_work(bakery, 2)); 3416 } 3417 memcpy(&tcp_secret_secondary->secrets[0], 3418 bakery, COOKIE_WORKSPACE_WORDS); 3419 3420 rcu_assign_pointer(tcp_secret_generating, 3421 tcp_secret_secondary); 3422 rcu_assign_pointer(tcp_secret_retiring, 3423 tcp_secret_primary); 3424 /* 3425 * Neither call_rcu() nor synchronize_rcu() needed. 3426 * Retiring data is not freed. It is replaced after 3427 * further (locked) pointer updates, and a quiet time 3428 * (minimum 1MSL, maximum LIFE - 2MSL). 3429 */ 3430 } 3431 spin_unlock_bh(&tcp_secret_locker); 3432 } else { 3433 rcu_read_lock_bh(); 3434 memcpy(bakery, 3435 &rcu_dereference(tcp_secret_generating)->secrets[0], 3436 COOKIE_WORKSPACE_WORDS); 3437 rcu_read_unlock_bh(); 3438 } 3439 return 0; 3440} 3441EXPORT_SYMBOL(tcp_cookie_generator); 3442 3443void tcp_done(struct sock *sk) 3444{ 3445 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3446 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3447 3448 tcp_set_state(sk, TCP_CLOSE); 3449 tcp_clear_xmit_timers(sk); 3450 3451 sk->sk_shutdown = SHUTDOWN_MASK; 3452 3453 if (!sock_flag(sk, SOCK_DEAD)) 3454 sk->sk_state_change(sk); 3455 else 3456 inet_csk_destroy_sock(sk); 3457} 3458EXPORT_SYMBOL_GPL(tcp_done); 3459 3460extern struct tcp_congestion_ops tcp_reno; 3461 3462static __initdata unsigned long thash_entries; 3463static int __init set_thash_entries(char *str) 3464{ 3465 if (!str) 3466 return 0; 3467 thash_entries = simple_strtoul(str, &str, 0); 3468 return 1; 3469} 3470__setup("thash_entries=", set_thash_entries); 3471 3472void tcp_init_mem(struct net *net) 3473{ 3474 unsigned long limit = nr_free_buffer_pages() / 8; 3475 limit = max(limit, 128UL); 3476 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3; 3477 net->ipv4.sysctl_tcp_mem[1] = limit; 3478 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2; 3479} 3480 3481void __init tcp_init(void) 3482{ 3483 struct sk_buff *skb = NULL; 3484 unsigned long limit; 3485 int max_rshare, max_wshare, cnt; 3486 unsigned int i; 3487 unsigned long jiffy = jiffies; 3488 3489 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3490 3491 percpu_counter_init(&tcp_sockets_allocated, 0); 3492 percpu_counter_init(&tcp_orphan_count, 0); 3493 tcp_hashinfo.bind_bucket_cachep = 3494 kmem_cache_create("tcp_bind_bucket", 3495 sizeof(struct inet_bind_bucket), 0, 3496 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3497 3498 /* Size and allocate the main established and bind bucket 3499 * hash tables. 3500 * 3501 * The methodology is similar to that of the buffer cache. 3502 */ 3503 tcp_hashinfo.ehash = 3504 alloc_large_system_hash("TCP established", 3505 sizeof(struct inet_ehash_bucket), 3506 thash_entries, 3507 (totalram_pages >= 128 * 1024) ? 3508 13 : 15, 3509 0, 3510 NULL, 3511 &tcp_hashinfo.ehash_mask, 3512 thash_entries ? 0 : 512 * 1024); 3513 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) { 3514 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3515 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 3516 } 3517 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3518 panic("TCP: failed to alloc ehash_locks"); 3519 tcp_hashinfo.bhash = 3520 alloc_large_system_hash("TCP bind", 3521 sizeof(struct inet_bind_hashbucket), 3522 tcp_hashinfo.ehash_mask + 1, 3523 (totalram_pages >= 128 * 1024) ? 3524 13 : 15, 3525 0, 3526 &tcp_hashinfo.bhash_size, 3527 NULL, 3528 64 * 1024); 3529 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3530 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3531 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3532 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3533 } 3534 3535 3536 cnt = tcp_hashinfo.ehash_mask + 1; 3537 3538 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3539 sysctl_tcp_max_orphans = cnt / 2; 3540 sysctl_max_syn_backlog = max(128, cnt / 256); 3541 3542 tcp_init_mem(&init_net); 3543 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3544 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3545 max_wshare = min(4UL*1024*1024, limit); 3546 max_rshare = min(6UL*1024*1024, limit); 3547 3548 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3549 sysctl_tcp_wmem[1] = 16*1024; 3550 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3551 3552 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3553 sysctl_tcp_rmem[1] = 87380; 3554 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3555 3556 pr_info("Hash tables configured (established %u bind %u)\n", 3557 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3558 3559 tcp_register_congestion_control(&tcp_reno); 3560 3561 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets)); 3562 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets)); 3563 tcp_secret_one.expires = jiffy; /* past due */ 3564 tcp_secret_two.expires = jiffy; /* past due */ 3565 tcp_secret_generating = &tcp_secret_one; 3566 tcp_secret_primary = &tcp_secret_one; 3567 tcp_secret_retiring = &tcp_secret_two; 3568 tcp_secret_secondary = &tcp_secret_two; 3569} 3570