tcp.c revision 2af6fd8b18ceed416c9dfa675287c765aabf7d43
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#include <linux/kernel.h>
249#include <linux/module.h>
250#include <linux/types.h>
251#include <linux/fcntl.h>
252#include <linux/poll.h>
253#include <linux/init.h>
254#include <linux/fs.h>
255#include <linux/skbuff.h>
256#include <linux/scatterlist.h>
257#include <linux/splice.h>
258#include <linux/net.h>
259#include <linux/socket.h>
260#include <linux/random.h>
261#include <linux/bootmem.h>
262#include <linux/highmem.h>
263#include <linux/swap.h>
264#include <linux/cache.h>
265#include <linux/err.h>
266#include <linux/crypto.h>
267#include <linux/time.h>
268#include <linux/slab.h>
269
270#include <net/icmp.h>
271#include <net/tcp.h>
272#include <net/xfrm.h>
273#include <net/ip.h>
274#include <net/netdma.h>
275#include <net/sock.h>
276
277#include <asm/uaccess.h>
278#include <asm/ioctls.h>
279
280int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
281
282struct percpu_counter tcp_orphan_count;
283EXPORT_SYMBOL_GPL(tcp_orphan_count);
284
285int sysctl_tcp_mem[3] __read_mostly;
286int sysctl_tcp_wmem[3] __read_mostly;
287int sysctl_tcp_rmem[3] __read_mostly;
288
289EXPORT_SYMBOL(sysctl_tcp_mem);
290EXPORT_SYMBOL(sysctl_tcp_rmem);
291EXPORT_SYMBOL(sysctl_tcp_wmem);
292
293atomic_t tcp_memory_allocated;	/* Current allocated memory. */
294EXPORT_SYMBOL(tcp_memory_allocated);
295
296/*
297 * Current number of TCP sockets.
298 */
299struct percpu_counter tcp_sockets_allocated;
300EXPORT_SYMBOL(tcp_sockets_allocated);
301
302/*
303 * TCP splice context
304 */
305struct tcp_splice_state {
306	struct pipe_inode_info *pipe;
307	size_t len;
308	unsigned int flags;
309};
310
311/*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317int tcp_memory_pressure __read_mostly;
318EXPORT_SYMBOL(tcp_memory_pressure);
319
320void tcp_enter_memory_pressure(struct sock *sk)
321{
322	if (!tcp_memory_pressure) {
323		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324		tcp_memory_pressure = 1;
325	}
326}
327EXPORT_SYMBOL(tcp_enter_memory_pressure);
328
329/* Convert seconds to retransmits based on initial and max timeout */
330static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331{
332	u8 res = 0;
333
334	if (seconds > 0) {
335		int period = timeout;
336
337		res = 1;
338		while (seconds > period && res < 255) {
339			res++;
340			timeout <<= 1;
341			if (timeout > rto_max)
342				timeout = rto_max;
343			period += timeout;
344		}
345	}
346	return res;
347}
348
349/* Convert retransmits to seconds based on initial and max timeout */
350static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351{
352	int period = 0;
353
354	if (retrans > 0) {
355		period = timeout;
356		while (--retrans) {
357			timeout <<= 1;
358			if (timeout > rto_max)
359				timeout = rto_max;
360			period += timeout;
361		}
362	}
363	return period;
364}
365
366/*
367 *	Wait for a TCP event.
368 *
369 *	Note that we don't need to lock the socket, as the upper poll layers
370 *	take care of normal races (between the test and the event) and we don't
371 *	go look at any of the socket buffers directly.
372 */
373unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
374{
375	unsigned int mask;
376	struct sock *sk = sock->sk;
377	struct tcp_sock *tp = tcp_sk(sk);
378
379	sock_poll_wait(file, sk_sleep(sk), wait);
380	if (sk->sk_state == TCP_LISTEN)
381		return inet_csk_listen_poll(sk);
382
383	/* Socket is not locked. We are protected from async events
384	 * by poll logic and correct handling of state changes
385	 * made by other threads is impossible in any case.
386	 */
387
388	mask = 0;
389
390	/*
391	 * POLLHUP is certainly not done right. But poll() doesn't
392	 * have a notion of HUP in just one direction, and for a
393	 * socket the read side is more interesting.
394	 *
395	 * Some poll() documentation says that POLLHUP is incompatible
396	 * with the POLLOUT/POLLWR flags, so somebody should check this
397	 * all. But careful, it tends to be safer to return too many
398	 * bits than too few, and you can easily break real applications
399	 * if you don't tell them that something has hung up!
400	 *
401	 * Check-me.
402	 *
403	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
404	 * our fs/select.c). It means that after we received EOF,
405	 * poll always returns immediately, making impossible poll() on write()
406	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
407	 * if and only if shutdown has been made in both directions.
408	 * Actually, it is interesting to look how Solaris and DUX
409	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
410	 * then we could set it on SND_SHUTDOWN. BTW examples given
411	 * in Stevens' books assume exactly this behaviour, it explains
412	 * why POLLHUP is incompatible with POLLOUT.	--ANK
413	 *
414	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
415	 * blocking on fresh not-connected or disconnected socket. --ANK
416	 */
417	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
418		mask |= POLLHUP;
419	if (sk->sk_shutdown & RCV_SHUTDOWN)
420		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
421
422	/* Connected? */
423	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
424		int target = sock_rcvlowat(sk, 0, INT_MAX);
425
426		if (tp->urg_seq == tp->copied_seq &&
427		    !sock_flag(sk, SOCK_URGINLINE) &&
428		    tp->urg_data)
429			target++;
430
431		/* Potential race condition. If read of tp below will
432		 * escape above sk->sk_state, we can be illegally awaken
433		 * in SYN_* states. */
434		if (tp->rcv_nxt - tp->copied_seq >= target)
435			mask |= POLLIN | POLLRDNORM;
436
437		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
438			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
439				mask |= POLLOUT | POLLWRNORM;
440			} else {  /* send SIGIO later */
441				set_bit(SOCK_ASYNC_NOSPACE,
442					&sk->sk_socket->flags);
443				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
444
445				/* Race breaker. If space is freed after
446				 * wspace test but before the flags are set,
447				 * IO signal will be lost.
448				 */
449				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
450					mask |= POLLOUT | POLLWRNORM;
451			}
452		} else
453			mask |= POLLOUT | POLLWRNORM;
454
455		if (tp->urg_data & TCP_URG_VALID)
456			mask |= POLLPRI;
457	}
458	/* This barrier is coupled with smp_wmb() in tcp_reset() */
459	smp_rmb();
460	if (sk->sk_err)
461		mask |= POLLERR;
462
463	return mask;
464}
465EXPORT_SYMBOL(tcp_poll);
466
467int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
468{
469	struct tcp_sock *tp = tcp_sk(sk);
470	int answ;
471
472	switch (cmd) {
473	case SIOCINQ:
474		if (sk->sk_state == TCP_LISTEN)
475			return -EINVAL;
476
477		lock_sock(sk);
478		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
479			answ = 0;
480		else if (sock_flag(sk, SOCK_URGINLINE) ||
481			 !tp->urg_data ||
482			 before(tp->urg_seq, tp->copied_seq) ||
483			 !before(tp->urg_seq, tp->rcv_nxt)) {
484			struct sk_buff *skb;
485
486			answ = tp->rcv_nxt - tp->copied_seq;
487
488			/* Subtract 1, if FIN is in queue. */
489			skb = skb_peek_tail(&sk->sk_receive_queue);
490			if (answ && skb)
491				answ -= tcp_hdr(skb)->fin;
492		} else
493			answ = tp->urg_seq - tp->copied_seq;
494		release_sock(sk);
495		break;
496	case SIOCATMARK:
497		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
498		break;
499	case SIOCOUTQ:
500		if (sk->sk_state == TCP_LISTEN)
501			return -EINVAL;
502
503		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
504			answ = 0;
505		else
506			answ = tp->write_seq - tp->snd_una;
507		break;
508	default:
509		return -ENOIOCTLCMD;
510	}
511
512	return put_user(answ, (int __user *)arg);
513}
514EXPORT_SYMBOL(tcp_ioctl);
515
516static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
517{
518	TCP_SKB_CB(skb)->flags |= TCPHDR_PSH;
519	tp->pushed_seq = tp->write_seq;
520}
521
522static inline int forced_push(struct tcp_sock *tp)
523{
524	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
525}
526
527static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
528{
529	struct tcp_sock *tp = tcp_sk(sk);
530	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
531
532	skb->csum    = 0;
533	tcb->seq     = tcb->end_seq = tp->write_seq;
534	tcb->flags   = TCPHDR_ACK;
535	tcb->sacked  = 0;
536	skb_header_release(skb);
537	tcp_add_write_queue_tail(sk, skb);
538	sk->sk_wmem_queued += skb->truesize;
539	sk_mem_charge(sk, skb->truesize);
540	if (tp->nonagle & TCP_NAGLE_PUSH)
541		tp->nonagle &= ~TCP_NAGLE_PUSH;
542}
543
544static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
545{
546	if (flags & MSG_OOB)
547		tp->snd_up = tp->write_seq;
548}
549
550static inline void tcp_push(struct sock *sk, int flags, int mss_now,
551			    int nonagle)
552{
553	if (tcp_send_head(sk)) {
554		struct tcp_sock *tp = tcp_sk(sk);
555
556		if (!(flags & MSG_MORE) || forced_push(tp))
557			tcp_mark_push(tp, tcp_write_queue_tail(sk));
558
559		tcp_mark_urg(tp, flags);
560		__tcp_push_pending_frames(sk, mss_now,
561					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
562	}
563}
564
565static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
566				unsigned int offset, size_t len)
567{
568	struct tcp_splice_state *tss = rd_desc->arg.data;
569	int ret;
570
571	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
572			      tss->flags);
573	if (ret > 0)
574		rd_desc->count -= ret;
575	return ret;
576}
577
578static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
579{
580	/* Store TCP splice context information in read_descriptor_t. */
581	read_descriptor_t rd_desc = {
582		.arg.data = tss,
583		.count	  = tss->len,
584	};
585
586	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
587}
588
589/**
590 *  tcp_splice_read - splice data from TCP socket to a pipe
591 * @sock:	socket to splice from
592 * @ppos:	position (not valid)
593 * @pipe:	pipe to splice to
594 * @len:	number of bytes to splice
595 * @flags:	splice modifier flags
596 *
597 * Description:
598 *    Will read pages from given socket and fill them into a pipe.
599 *
600 **/
601ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
602			struct pipe_inode_info *pipe, size_t len,
603			unsigned int flags)
604{
605	struct sock *sk = sock->sk;
606	struct tcp_splice_state tss = {
607		.pipe = pipe,
608		.len = len,
609		.flags = flags,
610	};
611	long timeo;
612	ssize_t spliced;
613	int ret;
614
615	sock_rps_record_flow(sk);
616	/*
617	 * We can't seek on a socket input
618	 */
619	if (unlikely(*ppos))
620		return -ESPIPE;
621
622	ret = spliced = 0;
623
624	lock_sock(sk);
625
626	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
627	while (tss.len) {
628		ret = __tcp_splice_read(sk, &tss);
629		if (ret < 0)
630			break;
631		else if (!ret) {
632			if (spliced)
633				break;
634			if (sock_flag(sk, SOCK_DONE))
635				break;
636			if (sk->sk_err) {
637				ret = sock_error(sk);
638				break;
639			}
640			if (sk->sk_shutdown & RCV_SHUTDOWN)
641				break;
642			if (sk->sk_state == TCP_CLOSE) {
643				/*
644				 * This occurs when user tries to read
645				 * from never connected socket.
646				 */
647				if (!sock_flag(sk, SOCK_DONE))
648					ret = -ENOTCONN;
649				break;
650			}
651			if (!timeo) {
652				ret = -EAGAIN;
653				break;
654			}
655			sk_wait_data(sk, &timeo);
656			if (signal_pending(current)) {
657				ret = sock_intr_errno(timeo);
658				break;
659			}
660			continue;
661		}
662		tss.len -= ret;
663		spliced += ret;
664
665		if (!timeo)
666			break;
667		release_sock(sk);
668		lock_sock(sk);
669
670		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
671		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
672		    signal_pending(current))
673			break;
674	}
675
676	release_sock(sk);
677
678	if (spliced)
679		return spliced;
680
681	return ret;
682}
683EXPORT_SYMBOL(tcp_splice_read);
684
685struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
686{
687	struct sk_buff *skb;
688
689	/* The TCP header must be at least 32-bit aligned.  */
690	size = ALIGN(size, 4);
691
692	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
693	if (skb) {
694		if (sk_wmem_schedule(sk, skb->truesize)) {
695			/*
696			 * Make sure that we have exactly size bytes
697			 * available to the caller, no more, no less.
698			 */
699			skb_reserve(skb, skb_tailroom(skb) - size);
700			return skb;
701		}
702		__kfree_skb(skb);
703	} else {
704		sk->sk_prot->enter_memory_pressure(sk);
705		sk_stream_moderate_sndbuf(sk);
706	}
707	return NULL;
708}
709
710static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
711				       int large_allowed)
712{
713	struct tcp_sock *tp = tcp_sk(sk);
714	u32 xmit_size_goal, old_size_goal;
715
716	xmit_size_goal = mss_now;
717
718	if (large_allowed && sk_can_gso(sk)) {
719		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
720				  inet_csk(sk)->icsk_af_ops->net_header_len -
721				  inet_csk(sk)->icsk_ext_hdr_len -
722				  tp->tcp_header_len);
723
724		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
725
726		/* We try hard to avoid divides here */
727		old_size_goal = tp->xmit_size_goal_segs * mss_now;
728
729		if (likely(old_size_goal <= xmit_size_goal &&
730			   old_size_goal + mss_now > xmit_size_goal)) {
731			xmit_size_goal = old_size_goal;
732		} else {
733			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
734			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
735		}
736	}
737
738	return max(xmit_size_goal, mss_now);
739}
740
741static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
742{
743	int mss_now;
744
745	mss_now = tcp_current_mss(sk);
746	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
747
748	return mss_now;
749}
750
751static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
752			 size_t psize, int flags)
753{
754	struct tcp_sock *tp = tcp_sk(sk);
755	int mss_now, size_goal;
756	int err;
757	ssize_t copied;
758	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
759
760	/* Wait for a connection to finish. */
761	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
762		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
763			goto out_err;
764
765	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
766
767	mss_now = tcp_send_mss(sk, &size_goal, flags);
768	copied = 0;
769
770	err = -EPIPE;
771	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
772		goto out_err;
773
774	while (psize > 0) {
775		struct sk_buff *skb = tcp_write_queue_tail(sk);
776		struct page *page = pages[poffset / PAGE_SIZE];
777		int copy, i, can_coalesce;
778		int offset = poffset % PAGE_SIZE;
779		int size = min_t(size_t, psize, PAGE_SIZE - offset);
780
781		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
782new_segment:
783			if (!sk_stream_memory_free(sk))
784				goto wait_for_sndbuf;
785
786			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
787			if (!skb)
788				goto wait_for_memory;
789
790			skb_entail(sk, skb);
791			copy = size_goal;
792		}
793
794		if (copy > size)
795			copy = size;
796
797		i = skb_shinfo(skb)->nr_frags;
798		can_coalesce = skb_can_coalesce(skb, i, page, offset);
799		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
800			tcp_mark_push(tp, skb);
801			goto new_segment;
802		}
803		if (!sk_wmem_schedule(sk, copy))
804			goto wait_for_memory;
805
806		if (can_coalesce) {
807			skb_shinfo(skb)->frags[i - 1].size += copy;
808		} else {
809			get_page(page);
810			skb_fill_page_desc(skb, i, page, offset, copy);
811		}
812
813		skb->len += copy;
814		skb->data_len += copy;
815		skb->truesize += copy;
816		sk->sk_wmem_queued += copy;
817		sk_mem_charge(sk, copy);
818		skb->ip_summed = CHECKSUM_PARTIAL;
819		tp->write_seq += copy;
820		TCP_SKB_CB(skb)->end_seq += copy;
821		skb_shinfo(skb)->gso_segs = 0;
822
823		if (!copied)
824			TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
825
826		copied += copy;
827		poffset += copy;
828		if (!(psize -= copy))
829			goto out;
830
831		if (skb->len < size_goal || (flags & MSG_OOB))
832			continue;
833
834		if (forced_push(tp)) {
835			tcp_mark_push(tp, skb);
836			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
837		} else if (skb == tcp_send_head(sk))
838			tcp_push_one(sk, mss_now);
839		continue;
840
841wait_for_sndbuf:
842		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
843wait_for_memory:
844		if (copied)
845			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
846
847		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
848			goto do_error;
849
850		mss_now = tcp_send_mss(sk, &size_goal, flags);
851	}
852
853out:
854	if (copied)
855		tcp_push(sk, flags, mss_now, tp->nonagle);
856	return copied;
857
858do_error:
859	if (copied)
860		goto out;
861out_err:
862	return sk_stream_error(sk, flags, err);
863}
864
865int tcp_sendpage(struct sock *sk, struct page *page, int offset,
866		 size_t size, int flags)
867{
868	ssize_t res;
869
870	if (!(sk->sk_route_caps & NETIF_F_SG) ||
871	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
872		return sock_no_sendpage(sk->sk_socket, page, offset, size,
873					flags);
874
875	lock_sock(sk);
876	TCP_CHECK_TIMER(sk);
877	res = do_tcp_sendpages(sk, &page, offset, size, flags);
878	TCP_CHECK_TIMER(sk);
879	release_sock(sk);
880	return res;
881}
882EXPORT_SYMBOL(tcp_sendpage);
883
884#define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
885#define TCP_OFF(sk)	(sk->sk_sndmsg_off)
886
887static inline int select_size(struct sock *sk, int sg)
888{
889	struct tcp_sock *tp = tcp_sk(sk);
890	int tmp = tp->mss_cache;
891
892	if (sg) {
893		if (sk_can_gso(sk))
894			tmp = 0;
895		else {
896			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
897
898			if (tmp >= pgbreak &&
899			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
900				tmp = pgbreak;
901		}
902	}
903
904	return tmp;
905}
906
907int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
908		size_t size)
909{
910	struct iovec *iov;
911	struct tcp_sock *tp = tcp_sk(sk);
912	struct sk_buff *skb;
913	int iovlen, flags;
914	int mss_now, size_goal;
915	int sg, err, copied;
916	long timeo;
917
918	lock_sock(sk);
919	TCP_CHECK_TIMER(sk);
920
921	flags = msg->msg_flags;
922	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
923
924	/* Wait for a connection to finish. */
925	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
926		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
927			goto out_err;
928
929	/* This should be in poll */
930	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
931
932	mss_now = tcp_send_mss(sk, &size_goal, flags);
933
934	/* Ok commence sending. */
935	iovlen = msg->msg_iovlen;
936	iov = msg->msg_iov;
937	copied = 0;
938
939	err = -EPIPE;
940	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
941		goto out_err;
942
943	sg = sk->sk_route_caps & NETIF_F_SG;
944
945	while (--iovlen >= 0) {
946		size_t seglen = iov->iov_len;
947		unsigned char __user *from = iov->iov_base;
948
949		iov++;
950
951		while (seglen > 0) {
952			int copy = 0;
953			int max = size_goal;
954
955			skb = tcp_write_queue_tail(sk);
956			if (tcp_send_head(sk)) {
957				if (skb->ip_summed == CHECKSUM_NONE)
958					max = mss_now;
959				copy = max - skb->len;
960			}
961
962			if (copy <= 0) {
963new_segment:
964				/* Allocate new segment. If the interface is SG,
965				 * allocate skb fitting to single page.
966				 */
967				if (!sk_stream_memory_free(sk))
968					goto wait_for_sndbuf;
969
970				skb = sk_stream_alloc_skb(sk,
971							  select_size(sk, sg),
972							  sk->sk_allocation);
973				if (!skb)
974					goto wait_for_memory;
975
976				/*
977				 * Check whether we can use HW checksum.
978				 */
979				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
980					skb->ip_summed = CHECKSUM_PARTIAL;
981
982				skb_entail(sk, skb);
983				copy = size_goal;
984				max = size_goal;
985			}
986
987			/* Try to append data to the end of skb. */
988			if (copy > seglen)
989				copy = seglen;
990
991			/* Where to copy to? */
992			if (skb_tailroom(skb) > 0) {
993				/* We have some space in skb head. Superb! */
994				if (copy > skb_tailroom(skb))
995					copy = skb_tailroom(skb);
996				if ((err = skb_add_data(skb, from, copy)) != 0)
997					goto do_fault;
998			} else {
999				int merge = 0;
1000				int i = skb_shinfo(skb)->nr_frags;
1001				struct page *page = TCP_PAGE(sk);
1002				int off = TCP_OFF(sk);
1003
1004				if (skb_can_coalesce(skb, i, page, off) &&
1005				    off != PAGE_SIZE) {
1006					/* We can extend the last page
1007					 * fragment. */
1008					merge = 1;
1009				} else if (i == MAX_SKB_FRAGS || !sg) {
1010					/* Need to add new fragment and cannot
1011					 * do this because interface is non-SG,
1012					 * or because all the page slots are
1013					 * busy. */
1014					tcp_mark_push(tp, skb);
1015					goto new_segment;
1016				} else if (page) {
1017					if (off == PAGE_SIZE) {
1018						put_page(page);
1019						TCP_PAGE(sk) = page = NULL;
1020						off = 0;
1021					}
1022				} else
1023					off = 0;
1024
1025				if (copy > PAGE_SIZE - off)
1026					copy = PAGE_SIZE - off;
1027
1028				if (!sk_wmem_schedule(sk, copy))
1029					goto wait_for_memory;
1030
1031				if (!page) {
1032					/* Allocate new cache page. */
1033					if (!(page = sk_stream_alloc_page(sk)))
1034						goto wait_for_memory;
1035				}
1036
1037				/* Time to copy data. We are close to
1038				 * the end! */
1039				err = skb_copy_to_page(sk, from, skb, page,
1040						       off, copy);
1041				if (err) {
1042					/* If this page was new, give it to the
1043					 * socket so it does not get leaked.
1044					 */
1045					if (!TCP_PAGE(sk)) {
1046						TCP_PAGE(sk) = page;
1047						TCP_OFF(sk) = 0;
1048					}
1049					goto do_error;
1050				}
1051
1052				/* Update the skb. */
1053				if (merge) {
1054					skb_shinfo(skb)->frags[i - 1].size +=
1055									copy;
1056				} else {
1057					skb_fill_page_desc(skb, i, page, off, copy);
1058					if (TCP_PAGE(sk)) {
1059						get_page(page);
1060					} else if (off + copy < PAGE_SIZE) {
1061						get_page(page);
1062						TCP_PAGE(sk) = page;
1063					}
1064				}
1065
1066				TCP_OFF(sk) = off + copy;
1067			}
1068
1069			if (!copied)
1070				TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
1071
1072			tp->write_seq += copy;
1073			TCP_SKB_CB(skb)->end_seq += copy;
1074			skb_shinfo(skb)->gso_segs = 0;
1075
1076			from += copy;
1077			copied += copy;
1078			if ((seglen -= copy) == 0 && iovlen == 0)
1079				goto out;
1080
1081			if (skb->len < max || (flags & MSG_OOB))
1082				continue;
1083
1084			if (forced_push(tp)) {
1085				tcp_mark_push(tp, skb);
1086				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1087			} else if (skb == tcp_send_head(sk))
1088				tcp_push_one(sk, mss_now);
1089			continue;
1090
1091wait_for_sndbuf:
1092			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1093wait_for_memory:
1094			if (copied)
1095				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1096
1097			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1098				goto do_error;
1099
1100			mss_now = tcp_send_mss(sk, &size_goal, flags);
1101		}
1102	}
1103
1104out:
1105	if (copied)
1106		tcp_push(sk, flags, mss_now, tp->nonagle);
1107	TCP_CHECK_TIMER(sk);
1108	release_sock(sk);
1109	return copied;
1110
1111do_fault:
1112	if (!skb->len) {
1113		tcp_unlink_write_queue(skb, sk);
1114		/* It is the one place in all of TCP, except connection
1115		 * reset, where we can be unlinking the send_head.
1116		 */
1117		tcp_check_send_head(sk, skb);
1118		sk_wmem_free_skb(sk, skb);
1119	}
1120
1121do_error:
1122	if (copied)
1123		goto out;
1124out_err:
1125	err = sk_stream_error(sk, flags, err);
1126	TCP_CHECK_TIMER(sk);
1127	release_sock(sk);
1128	return err;
1129}
1130EXPORT_SYMBOL(tcp_sendmsg);
1131
1132/*
1133 *	Handle reading urgent data. BSD has very simple semantics for
1134 *	this, no blocking and very strange errors 8)
1135 */
1136
1137static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1138{
1139	struct tcp_sock *tp = tcp_sk(sk);
1140
1141	/* No URG data to read. */
1142	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1143	    tp->urg_data == TCP_URG_READ)
1144		return -EINVAL;	/* Yes this is right ! */
1145
1146	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1147		return -ENOTCONN;
1148
1149	if (tp->urg_data & TCP_URG_VALID) {
1150		int err = 0;
1151		char c = tp->urg_data;
1152
1153		if (!(flags & MSG_PEEK))
1154			tp->urg_data = TCP_URG_READ;
1155
1156		/* Read urgent data. */
1157		msg->msg_flags |= MSG_OOB;
1158
1159		if (len > 0) {
1160			if (!(flags & MSG_TRUNC))
1161				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1162			len = 1;
1163		} else
1164			msg->msg_flags |= MSG_TRUNC;
1165
1166		return err ? -EFAULT : len;
1167	}
1168
1169	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1170		return 0;
1171
1172	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1173	 * the available implementations agree in this case:
1174	 * this call should never block, independent of the
1175	 * blocking state of the socket.
1176	 * Mike <pall@rz.uni-karlsruhe.de>
1177	 */
1178	return -EAGAIN;
1179}
1180
1181/* Clean up the receive buffer for full frames taken by the user,
1182 * then send an ACK if necessary.  COPIED is the number of bytes
1183 * tcp_recvmsg has given to the user so far, it speeds up the
1184 * calculation of whether or not we must ACK for the sake of
1185 * a window update.
1186 */
1187void tcp_cleanup_rbuf(struct sock *sk, int copied)
1188{
1189	struct tcp_sock *tp = tcp_sk(sk);
1190	int time_to_ack = 0;
1191
1192#if TCP_DEBUG
1193	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1194
1195	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1196	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1197	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1198#endif
1199
1200	if (inet_csk_ack_scheduled(sk)) {
1201		const struct inet_connection_sock *icsk = inet_csk(sk);
1202		   /* Delayed ACKs frequently hit locked sockets during bulk
1203		    * receive. */
1204		if (icsk->icsk_ack.blocked ||
1205		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1206		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1207		    /*
1208		     * If this read emptied read buffer, we send ACK, if
1209		     * connection is not bidirectional, user drained
1210		     * receive buffer and there was a small segment
1211		     * in queue.
1212		     */
1213		    (copied > 0 &&
1214		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1215		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1216		       !icsk->icsk_ack.pingpong)) &&
1217		      !atomic_read(&sk->sk_rmem_alloc)))
1218			time_to_ack = 1;
1219	}
1220
1221	/* We send an ACK if we can now advertise a non-zero window
1222	 * which has been raised "significantly".
1223	 *
1224	 * Even if window raised up to infinity, do not send window open ACK
1225	 * in states, where we will not receive more. It is useless.
1226	 */
1227	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1228		__u32 rcv_window_now = tcp_receive_window(tp);
1229
1230		/* Optimize, __tcp_select_window() is not cheap. */
1231		if (2*rcv_window_now <= tp->window_clamp) {
1232			__u32 new_window = __tcp_select_window(sk);
1233
1234			/* Send ACK now, if this read freed lots of space
1235			 * in our buffer. Certainly, new_window is new window.
1236			 * We can advertise it now, if it is not less than current one.
1237			 * "Lots" means "at least twice" here.
1238			 */
1239			if (new_window && new_window >= 2 * rcv_window_now)
1240				time_to_ack = 1;
1241		}
1242	}
1243	if (time_to_ack)
1244		tcp_send_ack(sk);
1245}
1246
1247static void tcp_prequeue_process(struct sock *sk)
1248{
1249	struct sk_buff *skb;
1250	struct tcp_sock *tp = tcp_sk(sk);
1251
1252	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1253
1254	/* RX process wants to run with disabled BHs, though it is not
1255	 * necessary */
1256	local_bh_disable();
1257	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1258		sk_backlog_rcv(sk, skb);
1259	local_bh_enable();
1260
1261	/* Clear memory counter. */
1262	tp->ucopy.memory = 0;
1263}
1264
1265#ifdef CONFIG_NET_DMA
1266static void tcp_service_net_dma(struct sock *sk, bool wait)
1267{
1268	dma_cookie_t done, used;
1269	dma_cookie_t last_issued;
1270	struct tcp_sock *tp = tcp_sk(sk);
1271
1272	if (!tp->ucopy.dma_chan)
1273		return;
1274
1275	last_issued = tp->ucopy.dma_cookie;
1276	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1277
1278	do {
1279		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1280					      last_issued, &done,
1281					      &used) == DMA_SUCCESS) {
1282			/* Safe to free early-copied skbs now */
1283			__skb_queue_purge(&sk->sk_async_wait_queue);
1284			break;
1285		} else {
1286			struct sk_buff *skb;
1287			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1288			       (dma_async_is_complete(skb->dma_cookie, done,
1289						      used) == DMA_SUCCESS)) {
1290				__skb_dequeue(&sk->sk_async_wait_queue);
1291				kfree_skb(skb);
1292			}
1293		}
1294	} while (wait);
1295}
1296#endif
1297
1298static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1299{
1300	struct sk_buff *skb;
1301	u32 offset;
1302
1303	skb_queue_walk(&sk->sk_receive_queue, skb) {
1304		offset = seq - TCP_SKB_CB(skb)->seq;
1305		if (tcp_hdr(skb)->syn)
1306			offset--;
1307		if (offset < skb->len || tcp_hdr(skb)->fin) {
1308			*off = offset;
1309			return skb;
1310		}
1311	}
1312	return NULL;
1313}
1314
1315/*
1316 * This routine provides an alternative to tcp_recvmsg() for routines
1317 * that would like to handle copying from skbuffs directly in 'sendfile'
1318 * fashion.
1319 * Note:
1320 *	- It is assumed that the socket was locked by the caller.
1321 *	- The routine does not block.
1322 *	- At present, there is no support for reading OOB data
1323 *	  or for 'peeking' the socket using this routine
1324 *	  (although both would be easy to implement).
1325 */
1326int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1327		  sk_read_actor_t recv_actor)
1328{
1329	struct sk_buff *skb;
1330	struct tcp_sock *tp = tcp_sk(sk);
1331	u32 seq = tp->copied_seq;
1332	u32 offset;
1333	int copied = 0;
1334
1335	if (sk->sk_state == TCP_LISTEN)
1336		return -ENOTCONN;
1337	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1338		if (offset < skb->len) {
1339			int used;
1340			size_t len;
1341
1342			len = skb->len - offset;
1343			/* Stop reading if we hit a patch of urgent data */
1344			if (tp->urg_data) {
1345				u32 urg_offset = tp->urg_seq - seq;
1346				if (urg_offset < len)
1347					len = urg_offset;
1348				if (!len)
1349					break;
1350			}
1351			used = recv_actor(desc, skb, offset, len);
1352			if (used < 0) {
1353				if (!copied)
1354					copied = used;
1355				break;
1356			} else if (used <= len) {
1357				seq += used;
1358				copied += used;
1359				offset += used;
1360			}
1361			/*
1362			 * If recv_actor drops the lock (e.g. TCP splice
1363			 * receive) the skb pointer might be invalid when
1364			 * getting here: tcp_collapse might have deleted it
1365			 * while aggregating skbs from the socket queue.
1366			 */
1367			skb = tcp_recv_skb(sk, seq-1, &offset);
1368			if (!skb || (offset+1 != skb->len))
1369				break;
1370		}
1371		if (tcp_hdr(skb)->fin) {
1372			sk_eat_skb(sk, skb, 0);
1373			++seq;
1374			break;
1375		}
1376		sk_eat_skb(sk, skb, 0);
1377		if (!desc->count)
1378			break;
1379		tp->copied_seq = seq;
1380	}
1381	tp->copied_seq = seq;
1382
1383	tcp_rcv_space_adjust(sk);
1384
1385	/* Clean up data we have read: This will do ACK frames. */
1386	if (copied > 0)
1387		tcp_cleanup_rbuf(sk, copied);
1388	return copied;
1389}
1390EXPORT_SYMBOL(tcp_read_sock);
1391
1392/*
1393 *	This routine copies from a sock struct into the user buffer.
1394 *
1395 *	Technical note: in 2.3 we work on _locked_ socket, so that
1396 *	tricks with *seq access order and skb->users are not required.
1397 *	Probably, code can be easily improved even more.
1398 */
1399
1400int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1401		size_t len, int nonblock, int flags, int *addr_len)
1402{
1403	struct tcp_sock *tp = tcp_sk(sk);
1404	int copied = 0;
1405	u32 peek_seq;
1406	u32 *seq;
1407	unsigned long used;
1408	int err;
1409	int target;		/* Read at least this many bytes */
1410	long timeo;
1411	struct task_struct *user_recv = NULL;
1412	int copied_early = 0;
1413	struct sk_buff *skb;
1414	u32 urg_hole = 0;
1415
1416	lock_sock(sk);
1417
1418	TCP_CHECK_TIMER(sk);
1419
1420	err = -ENOTCONN;
1421	if (sk->sk_state == TCP_LISTEN)
1422		goto out;
1423
1424	timeo = sock_rcvtimeo(sk, nonblock);
1425
1426	/* Urgent data needs to be handled specially. */
1427	if (flags & MSG_OOB)
1428		goto recv_urg;
1429
1430	seq = &tp->copied_seq;
1431	if (flags & MSG_PEEK) {
1432		peek_seq = tp->copied_seq;
1433		seq = &peek_seq;
1434	}
1435
1436	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1437
1438#ifdef CONFIG_NET_DMA
1439	tp->ucopy.dma_chan = NULL;
1440	preempt_disable();
1441	skb = skb_peek_tail(&sk->sk_receive_queue);
1442	{
1443		int available = 0;
1444
1445		if (skb)
1446			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1447		if ((available < target) &&
1448		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1449		    !sysctl_tcp_low_latency &&
1450		    dma_find_channel(DMA_MEMCPY)) {
1451			preempt_enable_no_resched();
1452			tp->ucopy.pinned_list =
1453					dma_pin_iovec_pages(msg->msg_iov, len);
1454		} else {
1455			preempt_enable_no_resched();
1456		}
1457	}
1458#endif
1459
1460	do {
1461		u32 offset;
1462
1463		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1464		if (tp->urg_data && tp->urg_seq == *seq) {
1465			if (copied)
1466				break;
1467			if (signal_pending(current)) {
1468				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1469				break;
1470			}
1471		}
1472
1473		/* Next get a buffer. */
1474
1475		skb_queue_walk(&sk->sk_receive_queue, skb) {
1476			/* Now that we have two receive queues this
1477			 * shouldn't happen.
1478			 */
1479			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1480				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1481				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1482				 flags))
1483				break;
1484
1485			offset = *seq - TCP_SKB_CB(skb)->seq;
1486			if (tcp_hdr(skb)->syn)
1487				offset--;
1488			if (offset < skb->len)
1489				goto found_ok_skb;
1490			if (tcp_hdr(skb)->fin)
1491				goto found_fin_ok;
1492			WARN(!(flags & MSG_PEEK),
1493			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1494			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1495		}
1496
1497		/* Well, if we have backlog, try to process it now yet. */
1498
1499		if (copied >= target && !sk->sk_backlog.tail)
1500			break;
1501
1502		if (copied) {
1503			if (sk->sk_err ||
1504			    sk->sk_state == TCP_CLOSE ||
1505			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1506			    !timeo ||
1507			    signal_pending(current))
1508				break;
1509		} else {
1510			if (sock_flag(sk, SOCK_DONE))
1511				break;
1512
1513			if (sk->sk_err) {
1514				copied = sock_error(sk);
1515				break;
1516			}
1517
1518			if (sk->sk_shutdown & RCV_SHUTDOWN)
1519				break;
1520
1521			if (sk->sk_state == TCP_CLOSE) {
1522				if (!sock_flag(sk, SOCK_DONE)) {
1523					/* This occurs when user tries to read
1524					 * from never connected socket.
1525					 */
1526					copied = -ENOTCONN;
1527					break;
1528				}
1529				break;
1530			}
1531
1532			if (!timeo) {
1533				copied = -EAGAIN;
1534				break;
1535			}
1536
1537			if (signal_pending(current)) {
1538				copied = sock_intr_errno(timeo);
1539				break;
1540			}
1541		}
1542
1543		tcp_cleanup_rbuf(sk, copied);
1544
1545		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1546			/* Install new reader */
1547			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1548				user_recv = current;
1549				tp->ucopy.task = user_recv;
1550				tp->ucopy.iov = msg->msg_iov;
1551			}
1552
1553			tp->ucopy.len = len;
1554
1555			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1556				!(flags & (MSG_PEEK | MSG_TRUNC)));
1557
1558			/* Ugly... If prequeue is not empty, we have to
1559			 * process it before releasing socket, otherwise
1560			 * order will be broken at second iteration.
1561			 * More elegant solution is required!!!
1562			 *
1563			 * Look: we have the following (pseudo)queues:
1564			 *
1565			 * 1. packets in flight
1566			 * 2. backlog
1567			 * 3. prequeue
1568			 * 4. receive_queue
1569			 *
1570			 * Each queue can be processed only if the next ones
1571			 * are empty. At this point we have empty receive_queue.
1572			 * But prequeue _can_ be not empty after 2nd iteration,
1573			 * when we jumped to start of loop because backlog
1574			 * processing added something to receive_queue.
1575			 * We cannot release_sock(), because backlog contains
1576			 * packets arrived _after_ prequeued ones.
1577			 *
1578			 * Shortly, algorithm is clear --- to process all
1579			 * the queues in order. We could make it more directly,
1580			 * requeueing packets from backlog to prequeue, if
1581			 * is not empty. It is more elegant, but eats cycles,
1582			 * unfortunately.
1583			 */
1584			if (!skb_queue_empty(&tp->ucopy.prequeue))
1585				goto do_prequeue;
1586
1587			/* __ Set realtime policy in scheduler __ */
1588		}
1589
1590#ifdef CONFIG_NET_DMA
1591		if (tp->ucopy.dma_chan)
1592			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1593#endif
1594		if (copied >= target) {
1595			/* Do not sleep, just process backlog. */
1596			release_sock(sk);
1597			lock_sock(sk);
1598		} else
1599			sk_wait_data(sk, &timeo);
1600
1601#ifdef CONFIG_NET_DMA
1602		tcp_service_net_dma(sk, false);  /* Don't block */
1603		tp->ucopy.wakeup = 0;
1604#endif
1605
1606		if (user_recv) {
1607			int chunk;
1608
1609			/* __ Restore normal policy in scheduler __ */
1610
1611			if ((chunk = len - tp->ucopy.len) != 0) {
1612				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1613				len -= chunk;
1614				copied += chunk;
1615			}
1616
1617			if (tp->rcv_nxt == tp->copied_seq &&
1618			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1619do_prequeue:
1620				tcp_prequeue_process(sk);
1621
1622				if ((chunk = len - tp->ucopy.len) != 0) {
1623					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1624					len -= chunk;
1625					copied += chunk;
1626				}
1627			}
1628		}
1629		if ((flags & MSG_PEEK) &&
1630		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1631			if (net_ratelimit())
1632				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1633				       current->comm, task_pid_nr(current));
1634			peek_seq = tp->copied_seq;
1635		}
1636		continue;
1637
1638	found_ok_skb:
1639		/* Ok so how much can we use? */
1640		used = skb->len - offset;
1641		if (len < used)
1642			used = len;
1643
1644		/* Do we have urgent data here? */
1645		if (tp->urg_data) {
1646			u32 urg_offset = tp->urg_seq - *seq;
1647			if (urg_offset < used) {
1648				if (!urg_offset) {
1649					if (!sock_flag(sk, SOCK_URGINLINE)) {
1650						++*seq;
1651						urg_hole++;
1652						offset++;
1653						used--;
1654						if (!used)
1655							goto skip_copy;
1656					}
1657				} else
1658					used = urg_offset;
1659			}
1660		}
1661
1662		if (!(flags & MSG_TRUNC)) {
1663#ifdef CONFIG_NET_DMA
1664			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1665				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1666
1667			if (tp->ucopy.dma_chan) {
1668				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1669					tp->ucopy.dma_chan, skb, offset,
1670					msg->msg_iov, used,
1671					tp->ucopy.pinned_list);
1672
1673				if (tp->ucopy.dma_cookie < 0) {
1674
1675					printk(KERN_ALERT "dma_cookie < 0\n");
1676
1677					/* Exception. Bailout! */
1678					if (!copied)
1679						copied = -EFAULT;
1680					break;
1681				}
1682
1683				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1684
1685				if ((offset + used) == skb->len)
1686					copied_early = 1;
1687
1688			} else
1689#endif
1690			{
1691				err = skb_copy_datagram_iovec(skb, offset,
1692						msg->msg_iov, used);
1693				if (err) {
1694					/* Exception. Bailout! */
1695					if (!copied)
1696						copied = -EFAULT;
1697					break;
1698				}
1699			}
1700		}
1701
1702		*seq += used;
1703		copied += used;
1704		len -= used;
1705
1706		tcp_rcv_space_adjust(sk);
1707
1708skip_copy:
1709		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1710			tp->urg_data = 0;
1711			tcp_fast_path_check(sk);
1712		}
1713		if (used + offset < skb->len)
1714			continue;
1715
1716		if (tcp_hdr(skb)->fin)
1717			goto found_fin_ok;
1718		if (!(flags & MSG_PEEK)) {
1719			sk_eat_skb(sk, skb, copied_early);
1720			copied_early = 0;
1721		}
1722		continue;
1723
1724	found_fin_ok:
1725		/* Process the FIN. */
1726		++*seq;
1727		if (!(flags & MSG_PEEK)) {
1728			sk_eat_skb(sk, skb, copied_early);
1729			copied_early = 0;
1730		}
1731		break;
1732	} while (len > 0);
1733
1734	if (user_recv) {
1735		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1736			int chunk;
1737
1738			tp->ucopy.len = copied > 0 ? len : 0;
1739
1740			tcp_prequeue_process(sk);
1741
1742			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1743				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1744				len -= chunk;
1745				copied += chunk;
1746			}
1747		}
1748
1749		tp->ucopy.task = NULL;
1750		tp->ucopy.len = 0;
1751	}
1752
1753#ifdef CONFIG_NET_DMA
1754	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1755	tp->ucopy.dma_chan = NULL;
1756
1757	if (tp->ucopy.pinned_list) {
1758		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1759		tp->ucopy.pinned_list = NULL;
1760	}
1761#endif
1762
1763	/* According to UNIX98, msg_name/msg_namelen are ignored
1764	 * on connected socket. I was just happy when found this 8) --ANK
1765	 */
1766
1767	/* Clean up data we have read: This will do ACK frames. */
1768	tcp_cleanup_rbuf(sk, copied);
1769
1770	TCP_CHECK_TIMER(sk);
1771	release_sock(sk);
1772	return copied;
1773
1774out:
1775	TCP_CHECK_TIMER(sk);
1776	release_sock(sk);
1777	return err;
1778
1779recv_urg:
1780	err = tcp_recv_urg(sk, msg, len, flags);
1781	goto out;
1782}
1783EXPORT_SYMBOL(tcp_recvmsg);
1784
1785void tcp_set_state(struct sock *sk, int state)
1786{
1787	int oldstate = sk->sk_state;
1788
1789	switch (state) {
1790	case TCP_ESTABLISHED:
1791		if (oldstate != TCP_ESTABLISHED)
1792			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1793		break;
1794
1795	case TCP_CLOSE:
1796		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1797			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1798
1799		sk->sk_prot->unhash(sk);
1800		if (inet_csk(sk)->icsk_bind_hash &&
1801		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1802			inet_put_port(sk);
1803		/* fall through */
1804	default:
1805		if (oldstate == TCP_ESTABLISHED)
1806			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1807	}
1808
1809	/* Change state AFTER socket is unhashed to avoid closed
1810	 * socket sitting in hash tables.
1811	 */
1812	sk->sk_state = state;
1813
1814#ifdef STATE_TRACE
1815	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1816#endif
1817}
1818EXPORT_SYMBOL_GPL(tcp_set_state);
1819
1820/*
1821 *	State processing on a close. This implements the state shift for
1822 *	sending our FIN frame. Note that we only send a FIN for some
1823 *	states. A shutdown() may have already sent the FIN, or we may be
1824 *	closed.
1825 */
1826
1827static const unsigned char new_state[16] = {
1828  /* current state:        new state:      action:	*/
1829  /* (Invalid)		*/ TCP_CLOSE,
1830  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1831  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1832  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1833  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1834  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1835  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1836  /* TCP_CLOSE		*/ TCP_CLOSE,
1837  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1838  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1839  /* TCP_LISTEN		*/ TCP_CLOSE,
1840  /* TCP_CLOSING	*/ TCP_CLOSING,
1841};
1842
1843static int tcp_close_state(struct sock *sk)
1844{
1845	int next = (int)new_state[sk->sk_state];
1846	int ns = next & TCP_STATE_MASK;
1847
1848	tcp_set_state(sk, ns);
1849
1850	return next & TCP_ACTION_FIN;
1851}
1852
1853/*
1854 *	Shutdown the sending side of a connection. Much like close except
1855 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1856 */
1857
1858void tcp_shutdown(struct sock *sk, int how)
1859{
1860	/*	We need to grab some memory, and put together a FIN,
1861	 *	and then put it into the queue to be sent.
1862	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1863	 */
1864	if (!(how & SEND_SHUTDOWN))
1865		return;
1866
1867	/* If we've already sent a FIN, or it's a closed state, skip this. */
1868	if ((1 << sk->sk_state) &
1869	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1870	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1871		/* Clear out any half completed packets.  FIN if needed. */
1872		if (tcp_close_state(sk))
1873			tcp_send_fin(sk);
1874	}
1875}
1876EXPORT_SYMBOL(tcp_shutdown);
1877
1878void tcp_close(struct sock *sk, long timeout)
1879{
1880	struct sk_buff *skb;
1881	int data_was_unread = 0;
1882	int state;
1883
1884	lock_sock(sk);
1885	sk->sk_shutdown = SHUTDOWN_MASK;
1886
1887	if (sk->sk_state == TCP_LISTEN) {
1888		tcp_set_state(sk, TCP_CLOSE);
1889
1890		/* Special case. */
1891		inet_csk_listen_stop(sk);
1892
1893		goto adjudge_to_death;
1894	}
1895
1896	/*  We need to flush the recv. buffs.  We do this only on the
1897	 *  descriptor close, not protocol-sourced closes, because the
1898	 *  reader process may not have drained the data yet!
1899	 */
1900	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1901		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1902			  tcp_hdr(skb)->fin;
1903		data_was_unread += len;
1904		__kfree_skb(skb);
1905	}
1906
1907	sk_mem_reclaim(sk);
1908
1909	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1910	if (sk->sk_state == TCP_CLOSE)
1911		goto adjudge_to_death;
1912
1913	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1914	 * data was lost. To witness the awful effects of the old behavior of
1915	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1916	 * GET in an FTP client, suspend the process, wait for the client to
1917	 * advertise a zero window, then kill -9 the FTP client, wheee...
1918	 * Note: timeout is always zero in such a case.
1919	 */
1920	if (data_was_unread) {
1921		/* Unread data was tossed, zap the connection. */
1922		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1923		tcp_set_state(sk, TCP_CLOSE);
1924		tcp_send_active_reset(sk, sk->sk_allocation);
1925	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1926		/* Check zero linger _after_ checking for unread data. */
1927		sk->sk_prot->disconnect(sk, 0);
1928		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1929	} else if (tcp_close_state(sk)) {
1930		/* We FIN if the application ate all the data before
1931		 * zapping the connection.
1932		 */
1933
1934		/* RED-PEN. Formally speaking, we have broken TCP state
1935		 * machine. State transitions:
1936		 *
1937		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1938		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1939		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1940		 *
1941		 * are legal only when FIN has been sent (i.e. in window),
1942		 * rather than queued out of window. Purists blame.
1943		 *
1944		 * F.e. "RFC state" is ESTABLISHED,
1945		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1946		 *
1947		 * The visible declinations are that sometimes
1948		 * we enter time-wait state, when it is not required really
1949		 * (harmless), do not send active resets, when they are
1950		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1951		 * they look as CLOSING or LAST_ACK for Linux)
1952		 * Probably, I missed some more holelets.
1953		 * 						--ANK
1954		 */
1955		tcp_send_fin(sk);
1956	}
1957
1958	sk_stream_wait_close(sk, timeout);
1959
1960adjudge_to_death:
1961	state = sk->sk_state;
1962	sock_hold(sk);
1963	sock_orphan(sk);
1964
1965	/* It is the last release_sock in its life. It will remove backlog. */
1966	release_sock(sk);
1967
1968
1969	/* Now socket is owned by kernel and we acquire BH lock
1970	   to finish close. No need to check for user refs.
1971	 */
1972	local_bh_disable();
1973	bh_lock_sock(sk);
1974	WARN_ON(sock_owned_by_user(sk));
1975
1976	percpu_counter_inc(sk->sk_prot->orphan_count);
1977
1978	/* Have we already been destroyed by a softirq or backlog? */
1979	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1980		goto out;
1981
1982	/*	This is a (useful) BSD violating of the RFC. There is a
1983	 *	problem with TCP as specified in that the other end could
1984	 *	keep a socket open forever with no application left this end.
1985	 *	We use a 3 minute timeout (about the same as BSD) then kill
1986	 *	our end. If they send after that then tough - BUT: long enough
1987	 *	that we won't make the old 4*rto = almost no time - whoops
1988	 *	reset mistake.
1989	 *
1990	 *	Nope, it was not mistake. It is really desired behaviour
1991	 *	f.e. on http servers, when such sockets are useless, but
1992	 *	consume significant resources. Let's do it with special
1993	 *	linger2	option.					--ANK
1994	 */
1995
1996	if (sk->sk_state == TCP_FIN_WAIT2) {
1997		struct tcp_sock *tp = tcp_sk(sk);
1998		if (tp->linger2 < 0) {
1999			tcp_set_state(sk, TCP_CLOSE);
2000			tcp_send_active_reset(sk, GFP_ATOMIC);
2001			NET_INC_STATS_BH(sock_net(sk),
2002					LINUX_MIB_TCPABORTONLINGER);
2003		} else {
2004			const int tmo = tcp_fin_time(sk);
2005
2006			if (tmo > TCP_TIMEWAIT_LEN) {
2007				inet_csk_reset_keepalive_timer(sk,
2008						tmo - TCP_TIMEWAIT_LEN);
2009			} else {
2010				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2011				goto out;
2012			}
2013		}
2014	}
2015	if (sk->sk_state != TCP_CLOSE) {
2016		sk_mem_reclaim(sk);
2017		if (tcp_too_many_orphans(sk, 0)) {
2018			if (net_ratelimit())
2019				printk(KERN_INFO "TCP: too many of orphaned "
2020				       "sockets\n");
2021			tcp_set_state(sk, TCP_CLOSE);
2022			tcp_send_active_reset(sk, GFP_ATOMIC);
2023			NET_INC_STATS_BH(sock_net(sk),
2024					LINUX_MIB_TCPABORTONMEMORY);
2025		}
2026	}
2027
2028	if (sk->sk_state == TCP_CLOSE)
2029		inet_csk_destroy_sock(sk);
2030	/* Otherwise, socket is reprieved until protocol close. */
2031
2032out:
2033	bh_unlock_sock(sk);
2034	local_bh_enable();
2035	sock_put(sk);
2036}
2037EXPORT_SYMBOL(tcp_close);
2038
2039/* These states need RST on ABORT according to RFC793 */
2040
2041static inline int tcp_need_reset(int state)
2042{
2043	return (1 << state) &
2044	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2045		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2046}
2047
2048int tcp_disconnect(struct sock *sk, int flags)
2049{
2050	struct inet_sock *inet = inet_sk(sk);
2051	struct inet_connection_sock *icsk = inet_csk(sk);
2052	struct tcp_sock *tp = tcp_sk(sk);
2053	int err = 0;
2054	int old_state = sk->sk_state;
2055
2056	if (old_state != TCP_CLOSE)
2057		tcp_set_state(sk, TCP_CLOSE);
2058
2059	/* ABORT function of RFC793 */
2060	if (old_state == TCP_LISTEN) {
2061		inet_csk_listen_stop(sk);
2062	} else if (tcp_need_reset(old_state) ||
2063		   (tp->snd_nxt != tp->write_seq &&
2064		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2065		/* The last check adjusts for discrepancy of Linux wrt. RFC
2066		 * states
2067		 */
2068		tcp_send_active_reset(sk, gfp_any());
2069		sk->sk_err = ECONNRESET;
2070	} else if (old_state == TCP_SYN_SENT)
2071		sk->sk_err = ECONNRESET;
2072
2073	tcp_clear_xmit_timers(sk);
2074	__skb_queue_purge(&sk->sk_receive_queue);
2075	tcp_write_queue_purge(sk);
2076	__skb_queue_purge(&tp->out_of_order_queue);
2077#ifdef CONFIG_NET_DMA
2078	__skb_queue_purge(&sk->sk_async_wait_queue);
2079#endif
2080
2081	inet->inet_dport = 0;
2082
2083	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2084		inet_reset_saddr(sk);
2085
2086	sk->sk_shutdown = 0;
2087	sock_reset_flag(sk, SOCK_DONE);
2088	tp->srtt = 0;
2089	if ((tp->write_seq += tp->max_window + 2) == 0)
2090		tp->write_seq = 1;
2091	icsk->icsk_backoff = 0;
2092	tp->snd_cwnd = 2;
2093	icsk->icsk_probes_out = 0;
2094	tp->packets_out = 0;
2095	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2096	tp->snd_cwnd_cnt = 0;
2097	tp->bytes_acked = 0;
2098	tp->window_clamp = 0;
2099	tcp_set_ca_state(sk, TCP_CA_Open);
2100	tcp_clear_retrans(tp);
2101	inet_csk_delack_init(sk);
2102	tcp_init_send_head(sk);
2103	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2104	__sk_dst_reset(sk);
2105
2106	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2107
2108	sk->sk_error_report(sk);
2109	return err;
2110}
2111EXPORT_SYMBOL(tcp_disconnect);
2112
2113/*
2114 *	Socket option code for TCP.
2115 */
2116static int do_tcp_setsockopt(struct sock *sk, int level,
2117		int optname, char __user *optval, unsigned int optlen)
2118{
2119	struct tcp_sock *tp = tcp_sk(sk);
2120	struct inet_connection_sock *icsk = inet_csk(sk);
2121	int val;
2122	int err = 0;
2123
2124	/* These are data/string values, all the others are ints */
2125	switch (optname) {
2126	case TCP_CONGESTION: {
2127		char name[TCP_CA_NAME_MAX];
2128
2129		if (optlen < 1)
2130			return -EINVAL;
2131
2132		val = strncpy_from_user(name, optval,
2133					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2134		if (val < 0)
2135			return -EFAULT;
2136		name[val] = 0;
2137
2138		lock_sock(sk);
2139		err = tcp_set_congestion_control(sk, name);
2140		release_sock(sk);
2141		return err;
2142	}
2143	case TCP_COOKIE_TRANSACTIONS: {
2144		struct tcp_cookie_transactions ctd;
2145		struct tcp_cookie_values *cvp = NULL;
2146
2147		if (sizeof(ctd) > optlen)
2148			return -EINVAL;
2149		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2150			return -EFAULT;
2151
2152		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2153		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2154			return -EINVAL;
2155
2156		if (ctd.tcpct_cookie_desired == 0) {
2157			/* default to global value */
2158		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2159			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2160			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2161			return -EINVAL;
2162		}
2163
2164		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2165			/* Supercedes all other values */
2166			lock_sock(sk);
2167			if (tp->cookie_values != NULL) {
2168				kref_put(&tp->cookie_values->kref,
2169					 tcp_cookie_values_release);
2170				tp->cookie_values = NULL;
2171			}
2172			tp->rx_opt.cookie_in_always = 0; /* false */
2173			tp->rx_opt.cookie_out_never = 1; /* true */
2174			release_sock(sk);
2175			return err;
2176		}
2177
2178		/* Allocate ancillary memory before locking.
2179		 */
2180		if (ctd.tcpct_used > 0 ||
2181		    (tp->cookie_values == NULL &&
2182		     (sysctl_tcp_cookie_size > 0 ||
2183		      ctd.tcpct_cookie_desired > 0 ||
2184		      ctd.tcpct_s_data_desired > 0))) {
2185			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2186				      GFP_KERNEL);
2187			if (cvp == NULL)
2188				return -ENOMEM;
2189
2190			kref_init(&cvp->kref);
2191		}
2192		lock_sock(sk);
2193		tp->rx_opt.cookie_in_always =
2194			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2195		tp->rx_opt.cookie_out_never = 0; /* false */
2196
2197		if (tp->cookie_values != NULL) {
2198			if (cvp != NULL) {
2199				/* Changed values are recorded by a changed
2200				 * pointer, ensuring the cookie will differ,
2201				 * without separately hashing each value later.
2202				 */
2203				kref_put(&tp->cookie_values->kref,
2204					 tcp_cookie_values_release);
2205			} else {
2206				cvp = tp->cookie_values;
2207			}
2208		}
2209
2210		if (cvp != NULL) {
2211			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2212
2213			if (ctd.tcpct_used > 0) {
2214				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2215				       ctd.tcpct_used);
2216				cvp->s_data_desired = ctd.tcpct_used;
2217				cvp->s_data_constant = 1; /* true */
2218			} else {
2219				/* No constant payload data. */
2220				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2221				cvp->s_data_constant = 0; /* false */
2222			}
2223
2224			tp->cookie_values = cvp;
2225		}
2226		release_sock(sk);
2227		return err;
2228	}
2229	default:
2230		/* fallthru */
2231		break;
2232	}
2233
2234	if (optlen < sizeof(int))
2235		return -EINVAL;
2236
2237	if (get_user(val, (int __user *)optval))
2238		return -EFAULT;
2239
2240	lock_sock(sk);
2241
2242	switch (optname) {
2243	case TCP_MAXSEG:
2244		/* Values greater than interface MTU won't take effect. However
2245		 * at the point when this call is done we typically don't yet
2246		 * know which interface is going to be used */
2247		if (val < 8 || val > MAX_TCP_WINDOW) {
2248			err = -EINVAL;
2249			break;
2250		}
2251		tp->rx_opt.user_mss = val;
2252		break;
2253
2254	case TCP_NODELAY:
2255		if (val) {
2256			/* TCP_NODELAY is weaker than TCP_CORK, so that
2257			 * this option on corked socket is remembered, but
2258			 * it is not activated until cork is cleared.
2259			 *
2260			 * However, when TCP_NODELAY is set we make
2261			 * an explicit push, which overrides even TCP_CORK
2262			 * for currently queued segments.
2263			 */
2264			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2265			tcp_push_pending_frames(sk);
2266		} else {
2267			tp->nonagle &= ~TCP_NAGLE_OFF;
2268		}
2269		break;
2270
2271	case TCP_THIN_LINEAR_TIMEOUTS:
2272		if (val < 0 || val > 1)
2273			err = -EINVAL;
2274		else
2275			tp->thin_lto = val;
2276		break;
2277
2278	case TCP_THIN_DUPACK:
2279		if (val < 0 || val > 1)
2280			err = -EINVAL;
2281		else
2282			tp->thin_dupack = val;
2283		break;
2284
2285	case TCP_CORK:
2286		/* When set indicates to always queue non-full frames.
2287		 * Later the user clears this option and we transmit
2288		 * any pending partial frames in the queue.  This is
2289		 * meant to be used alongside sendfile() to get properly
2290		 * filled frames when the user (for example) must write
2291		 * out headers with a write() call first and then use
2292		 * sendfile to send out the data parts.
2293		 *
2294		 * TCP_CORK can be set together with TCP_NODELAY and it is
2295		 * stronger than TCP_NODELAY.
2296		 */
2297		if (val) {
2298			tp->nonagle |= TCP_NAGLE_CORK;
2299		} else {
2300			tp->nonagle &= ~TCP_NAGLE_CORK;
2301			if (tp->nonagle&TCP_NAGLE_OFF)
2302				tp->nonagle |= TCP_NAGLE_PUSH;
2303			tcp_push_pending_frames(sk);
2304		}
2305		break;
2306
2307	case TCP_KEEPIDLE:
2308		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2309			err = -EINVAL;
2310		else {
2311			tp->keepalive_time = val * HZ;
2312			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2313			    !((1 << sk->sk_state) &
2314			      (TCPF_CLOSE | TCPF_LISTEN))) {
2315				u32 elapsed = keepalive_time_elapsed(tp);
2316				if (tp->keepalive_time > elapsed)
2317					elapsed = tp->keepalive_time - elapsed;
2318				else
2319					elapsed = 0;
2320				inet_csk_reset_keepalive_timer(sk, elapsed);
2321			}
2322		}
2323		break;
2324	case TCP_KEEPINTVL:
2325		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2326			err = -EINVAL;
2327		else
2328			tp->keepalive_intvl = val * HZ;
2329		break;
2330	case TCP_KEEPCNT:
2331		if (val < 1 || val > MAX_TCP_KEEPCNT)
2332			err = -EINVAL;
2333		else
2334			tp->keepalive_probes = val;
2335		break;
2336	case TCP_SYNCNT:
2337		if (val < 1 || val > MAX_TCP_SYNCNT)
2338			err = -EINVAL;
2339		else
2340			icsk->icsk_syn_retries = val;
2341		break;
2342
2343	case TCP_LINGER2:
2344		if (val < 0)
2345			tp->linger2 = -1;
2346		else if (val > sysctl_tcp_fin_timeout / HZ)
2347			tp->linger2 = 0;
2348		else
2349			tp->linger2 = val * HZ;
2350		break;
2351
2352	case TCP_DEFER_ACCEPT:
2353		/* Translate value in seconds to number of retransmits */
2354		icsk->icsk_accept_queue.rskq_defer_accept =
2355			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2356					TCP_RTO_MAX / HZ);
2357		break;
2358
2359	case TCP_WINDOW_CLAMP:
2360		if (!val) {
2361			if (sk->sk_state != TCP_CLOSE) {
2362				err = -EINVAL;
2363				break;
2364			}
2365			tp->window_clamp = 0;
2366		} else
2367			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2368						SOCK_MIN_RCVBUF / 2 : val;
2369		break;
2370
2371	case TCP_QUICKACK:
2372		if (!val) {
2373			icsk->icsk_ack.pingpong = 1;
2374		} else {
2375			icsk->icsk_ack.pingpong = 0;
2376			if ((1 << sk->sk_state) &
2377			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2378			    inet_csk_ack_scheduled(sk)) {
2379				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2380				tcp_cleanup_rbuf(sk, 1);
2381				if (!(val & 1))
2382					icsk->icsk_ack.pingpong = 1;
2383			}
2384		}
2385		break;
2386
2387#ifdef CONFIG_TCP_MD5SIG
2388	case TCP_MD5SIG:
2389		/* Read the IP->Key mappings from userspace */
2390		err = tp->af_specific->md5_parse(sk, optval, optlen);
2391		break;
2392#endif
2393	case TCP_USER_TIMEOUT:
2394		/* Cap the max timeout in ms TCP will retry/retrans
2395		 * before giving up and aborting (ETIMEDOUT) a connection.
2396		 */
2397		icsk->icsk_user_timeout = msecs_to_jiffies(val);
2398		break;
2399	default:
2400		err = -ENOPROTOOPT;
2401		break;
2402	}
2403
2404	release_sock(sk);
2405	return err;
2406}
2407
2408int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2409		   unsigned int optlen)
2410{
2411	struct inet_connection_sock *icsk = inet_csk(sk);
2412
2413	if (level != SOL_TCP)
2414		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2415						     optval, optlen);
2416	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2417}
2418EXPORT_SYMBOL(tcp_setsockopt);
2419
2420#ifdef CONFIG_COMPAT
2421int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2422			  char __user *optval, unsigned int optlen)
2423{
2424	if (level != SOL_TCP)
2425		return inet_csk_compat_setsockopt(sk, level, optname,
2426						  optval, optlen);
2427	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2428}
2429EXPORT_SYMBOL(compat_tcp_setsockopt);
2430#endif
2431
2432/* Return information about state of tcp endpoint in API format. */
2433void tcp_get_info(struct sock *sk, struct tcp_info *info)
2434{
2435	struct tcp_sock *tp = tcp_sk(sk);
2436	const struct inet_connection_sock *icsk = inet_csk(sk);
2437	u32 now = tcp_time_stamp;
2438
2439	memset(info, 0, sizeof(*info));
2440
2441	info->tcpi_state = sk->sk_state;
2442	info->tcpi_ca_state = icsk->icsk_ca_state;
2443	info->tcpi_retransmits = icsk->icsk_retransmits;
2444	info->tcpi_probes = icsk->icsk_probes_out;
2445	info->tcpi_backoff = icsk->icsk_backoff;
2446
2447	if (tp->rx_opt.tstamp_ok)
2448		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2449	if (tcp_is_sack(tp))
2450		info->tcpi_options |= TCPI_OPT_SACK;
2451	if (tp->rx_opt.wscale_ok) {
2452		info->tcpi_options |= TCPI_OPT_WSCALE;
2453		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2454		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2455	}
2456
2457	if (tp->ecn_flags&TCP_ECN_OK)
2458		info->tcpi_options |= TCPI_OPT_ECN;
2459
2460	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2461	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2462	info->tcpi_snd_mss = tp->mss_cache;
2463	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2464
2465	if (sk->sk_state == TCP_LISTEN) {
2466		info->tcpi_unacked = sk->sk_ack_backlog;
2467		info->tcpi_sacked = sk->sk_max_ack_backlog;
2468	} else {
2469		info->tcpi_unacked = tp->packets_out;
2470		info->tcpi_sacked = tp->sacked_out;
2471	}
2472	info->tcpi_lost = tp->lost_out;
2473	info->tcpi_retrans = tp->retrans_out;
2474	info->tcpi_fackets = tp->fackets_out;
2475
2476	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2477	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2478	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2479
2480	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2481	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2482	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2483	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2484	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2485	info->tcpi_snd_cwnd = tp->snd_cwnd;
2486	info->tcpi_advmss = tp->advmss;
2487	info->tcpi_reordering = tp->reordering;
2488
2489	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2490	info->tcpi_rcv_space = tp->rcvq_space.space;
2491
2492	info->tcpi_total_retrans = tp->total_retrans;
2493}
2494EXPORT_SYMBOL_GPL(tcp_get_info);
2495
2496static int do_tcp_getsockopt(struct sock *sk, int level,
2497		int optname, char __user *optval, int __user *optlen)
2498{
2499	struct inet_connection_sock *icsk = inet_csk(sk);
2500	struct tcp_sock *tp = tcp_sk(sk);
2501	int val, len;
2502
2503	if (get_user(len, optlen))
2504		return -EFAULT;
2505
2506	len = min_t(unsigned int, len, sizeof(int));
2507
2508	if (len < 0)
2509		return -EINVAL;
2510
2511	switch (optname) {
2512	case TCP_MAXSEG:
2513		val = tp->mss_cache;
2514		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2515			val = tp->rx_opt.user_mss;
2516		break;
2517	case TCP_NODELAY:
2518		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2519		break;
2520	case TCP_CORK:
2521		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2522		break;
2523	case TCP_KEEPIDLE:
2524		val = keepalive_time_when(tp) / HZ;
2525		break;
2526	case TCP_KEEPINTVL:
2527		val = keepalive_intvl_when(tp) / HZ;
2528		break;
2529	case TCP_KEEPCNT:
2530		val = keepalive_probes(tp);
2531		break;
2532	case TCP_SYNCNT:
2533		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2534		break;
2535	case TCP_LINGER2:
2536		val = tp->linger2;
2537		if (val >= 0)
2538			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2539		break;
2540	case TCP_DEFER_ACCEPT:
2541		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2542				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2543		break;
2544	case TCP_WINDOW_CLAMP:
2545		val = tp->window_clamp;
2546		break;
2547	case TCP_INFO: {
2548		struct tcp_info info;
2549
2550		if (get_user(len, optlen))
2551			return -EFAULT;
2552
2553		tcp_get_info(sk, &info);
2554
2555		len = min_t(unsigned int, len, sizeof(info));
2556		if (put_user(len, optlen))
2557			return -EFAULT;
2558		if (copy_to_user(optval, &info, len))
2559			return -EFAULT;
2560		return 0;
2561	}
2562	case TCP_QUICKACK:
2563		val = !icsk->icsk_ack.pingpong;
2564		break;
2565
2566	case TCP_CONGESTION:
2567		if (get_user(len, optlen))
2568			return -EFAULT;
2569		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2570		if (put_user(len, optlen))
2571			return -EFAULT;
2572		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2573			return -EFAULT;
2574		return 0;
2575
2576	case TCP_COOKIE_TRANSACTIONS: {
2577		struct tcp_cookie_transactions ctd;
2578		struct tcp_cookie_values *cvp = tp->cookie_values;
2579
2580		if (get_user(len, optlen))
2581			return -EFAULT;
2582		if (len < sizeof(ctd))
2583			return -EINVAL;
2584
2585		memset(&ctd, 0, sizeof(ctd));
2586		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2587				   TCP_COOKIE_IN_ALWAYS : 0)
2588				| (tp->rx_opt.cookie_out_never ?
2589				   TCP_COOKIE_OUT_NEVER : 0);
2590
2591		if (cvp != NULL) {
2592			ctd.tcpct_flags |= (cvp->s_data_in ?
2593					    TCP_S_DATA_IN : 0)
2594					 | (cvp->s_data_out ?
2595					    TCP_S_DATA_OUT : 0);
2596
2597			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2598			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2599
2600			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2601			       cvp->cookie_pair_size);
2602			ctd.tcpct_used = cvp->cookie_pair_size;
2603		}
2604
2605		if (put_user(sizeof(ctd), optlen))
2606			return -EFAULT;
2607		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2608			return -EFAULT;
2609		return 0;
2610	}
2611	case TCP_THIN_LINEAR_TIMEOUTS:
2612		val = tp->thin_lto;
2613		break;
2614	case TCP_THIN_DUPACK:
2615		val = tp->thin_dupack;
2616		break;
2617
2618	case TCP_USER_TIMEOUT:
2619		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2620		break;
2621	default:
2622		return -ENOPROTOOPT;
2623	}
2624
2625	if (put_user(len, optlen))
2626		return -EFAULT;
2627	if (copy_to_user(optval, &val, len))
2628		return -EFAULT;
2629	return 0;
2630}
2631
2632int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2633		   int __user *optlen)
2634{
2635	struct inet_connection_sock *icsk = inet_csk(sk);
2636
2637	if (level != SOL_TCP)
2638		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2639						     optval, optlen);
2640	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2641}
2642EXPORT_SYMBOL(tcp_getsockopt);
2643
2644#ifdef CONFIG_COMPAT
2645int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2646			  char __user *optval, int __user *optlen)
2647{
2648	if (level != SOL_TCP)
2649		return inet_csk_compat_getsockopt(sk, level, optname,
2650						  optval, optlen);
2651	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2652}
2653EXPORT_SYMBOL(compat_tcp_getsockopt);
2654#endif
2655
2656struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2657{
2658	struct sk_buff *segs = ERR_PTR(-EINVAL);
2659	struct tcphdr *th;
2660	unsigned thlen;
2661	unsigned int seq;
2662	__be32 delta;
2663	unsigned int oldlen;
2664	unsigned int mss;
2665
2666	if (!pskb_may_pull(skb, sizeof(*th)))
2667		goto out;
2668
2669	th = tcp_hdr(skb);
2670	thlen = th->doff * 4;
2671	if (thlen < sizeof(*th))
2672		goto out;
2673
2674	if (!pskb_may_pull(skb, thlen))
2675		goto out;
2676
2677	oldlen = (u16)~skb->len;
2678	__skb_pull(skb, thlen);
2679
2680	mss = skb_shinfo(skb)->gso_size;
2681	if (unlikely(skb->len <= mss))
2682		goto out;
2683
2684	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2685		/* Packet is from an untrusted source, reset gso_segs. */
2686		int type = skb_shinfo(skb)->gso_type;
2687
2688		if (unlikely(type &
2689			     ~(SKB_GSO_TCPV4 |
2690			       SKB_GSO_DODGY |
2691			       SKB_GSO_TCP_ECN |
2692			       SKB_GSO_TCPV6 |
2693			       0) ||
2694			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2695			goto out;
2696
2697		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2698
2699		segs = NULL;
2700		goto out;
2701	}
2702
2703	segs = skb_segment(skb, features);
2704	if (IS_ERR(segs))
2705		goto out;
2706
2707	delta = htonl(oldlen + (thlen + mss));
2708
2709	skb = segs;
2710	th = tcp_hdr(skb);
2711	seq = ntohl(th->seq);
2712
2713	do {
2714		th->fin = th->psh = 0;
2715
2716		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2717				       (__force u32)delta));
2718		if (skb->ip_summed != CHECKSUM_PARTIAL)
2719			th->check =
2720			     csum_fold(csum_partial(skb_transport_header(skb),
2721						    thlen, skb->csum));
2722
2723		seq += mss;
2724		skb = skb->next;
2725		th = tcp_hdr(skb);
2726
2727		th->seq = htonl(seq);
2728		th->cwr = 0;
2729	} while (skb->next);
2730
2731	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2732		      skb->data_len);
2733	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2734				(__force u32)delta));
2735	if (skb->ip_summed != CHECKSUM_PARTIAL)
2736		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2737						   thlen, skb->csum));
2738
2739out:
2740	return segs;
2741}
2742EXPORT_SYMBOL(tcp_tso_segment);
2743
2744struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2745{
2746	struct sk_buff **pp = NULL;
2747	struct sk_buff *p;
2748	struct tcphdr *th;
2749	struct tcphdr *th2;
2750	unsigned int len;
2751	unsigned int thlen;
2752	__be32 flags;
2753	unsigned int mss = 1;
2754	unsigned int hlen;
2755	unsigned int off;
2756	int flush = 1;
2757	int i;
2758
2759	off = skb_gro_offset(skb);
2760	hlen = off + sizeof(*th);
2761	th = skb_gro_header_fast(skb, off);
2762	if (skb_gro_header_hard(skb, hlen)) {
2763		th = skb_gro_header_slow(skb, hlen, off);
2764		if (unlikely(!th))
2765			goto out;
2766	}
2767
2768	thlen = th->doff * 4;
2769	if (thlen < sizeof(*th))
2770		goto out;
2771
2772	hlen = off + thlen;
2773	if (skb_gro_header_hard(skb, hlen)) {
2774		th = skb_gro_header_slow(skb, hlen, off);
2775		if (unlikely(!th))
2776			goto out;
2777	}
2778
2779	skb_gro_pull(skb, thlen);
2780
2781	len = skb_gro_len(skb);
2782	flags = tcp_flag_word(th);
2783
2784	for (; (p = *head); head = &p->next) {
2785		if (!NAPI_GRO_CB(p)->same_flow)
2786			continue;
2787
2788		th2 = tcp_hdr(p);
2789
2790		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2791			NAPI_GRO_CB(p)->same_flow = 0;
2792			continue;
2793		}
2794
2795		goto found;
2796	}
2797
2798	goto out_check_final;
2799
2800found:
2801	flush = NAPI_GRO_CB(p)->flush;
2802	flush |= (__force int)(flags & TCP_FLAG_CWR);
2803	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2804		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2805	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2806	for (i = sizeof(*th); i < thlen; i += 4)
2807		flush |= *(u32 *)((u8 *)th + i) ^
2808			 *(u32 *)((u8 *)th2 + i);
2809
2810	mss = skb_shinfo(p)->gso_size;
2811
2812	flush |= (len - 1) >= mss;
2813	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2814
2815	if (flush || skb_gro_receive(head, skb)) {
2816		mss = 1;
2817		goto out_check_final;
2818	}
2819
2820	p = *head;
2821	th2 = tcp_hdr(p);
2822	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2823
2824out_check_final:
2825	flush = len < mss;
2826	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2827					TCP_FLAG_RST | TCP_FLAG_SYN |
2828					TCP_FLAG_FIN));
2829
2830	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2831		pp = head;
2832
2833out:
2834	NAPI_GRO_CB(skb)->flush |= flush;
2835
2836	return pp;
2837}
2838EXPORT_SYMBOL(tcp_gro_receive);
2839
2840int tcp_gro_complete(struct sk_buff *skb)
2841{
2842	struct tcphdr *th = tcp_hdr(skb);
2843
2844	skb->csum_start = skb_transport_header(skb) - skb->head;
2845	skb->csum_offset = offsetof(struct tcphdr, check);
2846	skb->ip_summed = CHECKSUM_PARTIAL;
2847
2848	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2849
2850	if (th->cwr)
2851		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2852
2853	return 0;
2854}
2855EXPORT_SYMBOL(tcp_gro_complete);
2856
2857#ifdef CONFIG_TCP_MD5SIG
2858static unsigned long tcp_md5sig_users;
2859static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool;
2860static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2861
2862static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool)
2863{
2864	int cpu;
2865	for_each_possible_cpu(cpu) {
2866		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2867		if (p) {
2868			if (p->md5_desc.tfm)
2869				crypto_free_hash(p->md5_desc.tfm);
2870			kfree(p);
2871		}
2872	}
2873	free_percpu(pool);
2874}
2875
2876void tcp_free_md5sig_pool(void)
2877{
2878	struct tcp_md5sig_pool * __percpu *pool = NULL;
2879
2880	spin_lock_bh(&tcp_md5sig_pool_lock);
2881	if (--tcp_md5sig_users == 0) {
2882		pool = tcp_md5sig_pool;
2883		tcp_md5sig_pool = NULL;
2884	}
2885	spin_unlock_bh(&tcp_md5sig_pool_lock);
2886	if (pool)
2887		__tcp_free_md5sig_pool(pool);
2888}
2889EXPORT_SYMBOL(tcp_free_md5sig_pool);
2890
2891static struct tcp_md5sig_pool * __percpu *
2892__tcp_alloc_md5sig_pool(struct sock *sk)
2893{
2894	int cpu;
2895	struct tcp_md5sig_pool * __percpu *pool;
2896
2897	pool = alloc_percpu(struct tcp_md5sig_pool *);
2898	if (!pool)
2899		return NULL;
2900
2901	for_each_possible_cpu(cpu) {
2902		struct tcp_md5sig_pool *p;
2903		struct crypto_hash *hash;
2904
2905		p = kzalloc(sizeof(*p), sk->sk_allocation);
2906		if (!p)
2907			goto out_free;
2908		*per_cpu_ptr(pool, cpu) = p;
2909
2910		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2911		if (!hash || IS_ERR(hash))
2912			goto out_free;
2913
2914		p->md5_desc.tfm = hash;
2915	}
2916	return pool;
2917out_free:
2918	__tcp_free_md5sig_pool(pool);
2919	return NULL;
2920}
2921
2922struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2923{
2924	struct tcp_md5sig_pool * __percpu *pool;
2925	int alloc = 0;
2926
2927retry:
2928	spin_lock_bh(&tcp_md5sig_pool_lock);
2929	pool = tcp_md5sig_pool;
2930	if (tcp_md5sig_users++ == 0) {
2931		alloc = 1;
2932		spin_unlock_bh(&tcp_md5sig_pool_lock);
2933	} else if (!pool) {
2934		tcp_md5sig_users--;
2935		spin_unlock_bh(&tcp_md5sig_pool_lock);
2936		cpu_relax();
2937		goto retry;
2938	} else
2939		spin_unlock_bh(&tcp_md5sig_pool_lock);
2940
2941	if (alloc) {
2942		/* we cannot hold spinlock here because this may sleep. */
2943		struct tcp_md5sig_pool * __percpu *p;
2944
2945		p = __tcp_alloc_md5sig_pool(sk);
2946		spin_lock_bh(&tcp_md5sig_pool_lock);
2947		if (!p) {
2948			tcp_md5sig_users--;
2949			spin_unlock_bh(&tcp_md5sig_pool_lock);
2950			return NULL;
2951		}
2952		pool = tcp_md5sig_pool;
2953		if (pool) {
2954			/* oops, it has already been assigned. */
2955			spin_unlock_bh(&tcp_md5sig_pool_lock);
2956			__tcp_free_md5sig_pool(p);
2957		} else {
2958			tcp_md5sig_pool = pool = p;
2959			spin_unlock_bh(&tcp_md5sig_pool_lock);
2960		}
2961	}
2962	return pool;
2963}
2964EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2965
2966
2967/**
2968 *	tcp_get_md5sig_pool - get md5sig_pool for this user
2969 *
2970 *	We use percpu structure, so if we succeed, we exit with preemption
2971 *	and BH disabled, to make sure another thread or softirq handling
2972 *	wont try to get same context.
2973 */
2974struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2975{
2976	struct tcp_md5sig_pool * __percpu *p;
2977
2978	local_bh_disable();
2979
2980	spin_lock(&tcp_md5sig_pool_lock);
2981	p = tcp_md5sig_pool;
2982	if (p)
2983		tcp_md5sig_users++;
2984	spin_unlock(&tcp_md5sig_pool_lock);
2985
2986	if (p)
2987		return *this_cpu_ptr(p);
2988
2989	local_bh_enable();
2990	return NULL;
2991}
2992EXPORT_SYMBOL(tcp_get_md5sig_pool);
2993
2994void tcp_put_md5sig_pool(void)
2995{
2996	local_bh_enable();
2997	tcp_free_md5sig_pool();
2998}
2999EXPORT_SYMBOL(tcp_put_md5sig_pool);
3000
3001int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3002			struct tcphdr *th)
3003{
3004	struct scatterlist sg;
3005	int err;
3006
3007	__sum16 old_checksum = th->check;
3008	th->check = 0;
3009	/* options aren't included in the hash */
3010	sg_init_one(&sg, th, sizeof(struct tcphdr));
3011	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
3012	th->check = old_checksum;
3013	return err;
3014}
3015EXPORT_SYMBOL(tcp_md5_hash_header);
3016
3017int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3018			  struct sk_buff *skb, unsigned header_len)
3019{
3020	struct scatterlist sg;
3021	const struct tcphdr *tp = tcp_hdr(skb);
3022	struct hash_desc *desc = &hp->md5_desc;
3023	unsigned i;
3024	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3025				       skb_headlen(skb) - header_len : 0;
3026	const struct skb_shared_info *shi = skb_shinfo(skb);
3027	struct sk_buff *frag_iter;
3028
3029	sg_init_table(&sg, 1);
3030
3031	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3032	if (crypto_hash_update(desc, &sg, head_data_len))
3033		return 1;
3034
3035	for (i = 0; i < shi->nr_frags; ++i) {
3036		const struct skb_frag_struct *f = &shi->frags[i];
3037		sg_set_page(&sg, f->page, f->size, f->page_offset);
3038		if (crypto_hash_update(desc, &sg, f->size))
3039			return 1;
3040	}
3041
3042	skb_walk_frags(skb, frag_iter)
3043		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3044			return 1;
3045
3046	return 0;
3047}
3048EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3049
3050int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
3051{
3052	struct scatterlist sg;
3053
3054	sg_init_one(&sg, key->key, key->keylen);
3055	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3056}
3057EXPORT_SYMBOL(tcp_md5_hash_key);
3058
3059#endif
3060
3061/**
3062 * Each Responder maintains up to two secret values concurrently for
3063 * efficient secret rollover.  Each secret value has 4 states:
3064 *
3065 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3066 *    Generates new Responder-Cookies, but not yet used for primary
3067 *    verification.  This is a short-term state, typically lasting only
3068 *    one round trip time (RTT).
3069 *
3070 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3071 *    Used both for generation and primary verification.
3072 *
3073 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3074 *    Used for verification, until the first failure that can be
3075 *    verified by the newer Generating secret.  At that time, this
3076 *    cookie's state is changed to Secondary, and the Generating
3077 *    cookie's state is changed to Primary.  This is a short-term state,
3078 *    typically lasting only one round trip time (RTT).
3079 *
3080 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3081 *    Used for secondary verification, after primary verification
3082 *    failures.  This state lasts no more than twice the Maximum Segment
3083 *    Lifetime (2MSL).  Then, the secret is discarded.
3084 */
3085struct tcp_cookie_secret {
3086	/* The secret is divided into two parts.  The digest part is the
3087	 * equivalent of previously hashing a secret and saving the state,
3088	 * and serves as an initialization vector (IV).  The message part
3089	 * serves as the trailing secret.
3090	 */
3091	u32				secrets[COOKIE_WORKSPACE_WORDS];
3092	unsigned long			expires;
3093};
3094
3095#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3096#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3097#define TCP_SECRET_LIFE (HZ * 600)
3098
3099static struct tcp_cookie_secret tcp_secret_one;
3100static struct tcp_cookie_secret tcp_secret_two;
3101
3102/* Essentially a circular list, without dynamic allocation. */
3103static struct tcp_cookie_secret *tcp_secret_generating;
3104static struct tcp_cookie_secret *tcp_secret_primary;
3105static struct tcp_cookie_secret *tcp_secret_retiring;
3106static struct tcp_cookie_secret *tcp_secret_secondary;
3107
3108static DEFINE_SPINLOCK(tcp_secret_locker);
3109
3110/* Select a pseudo-random word in the cookie workspace.
3111 */
3112static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3113{
3114	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3115}
3116
3117/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3118 * Called in softirq context.
3119 * Returns: 0 for success.
3120 */
3121int tcp_cookie_generator(u32 *bakery)
3122{
3123	unsigned long jiffy = jiffies;
3124
3125	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3126		spin_lock_bh(&tcp_secret_locker);
3127		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3128			/* refreshed by another */
3129			memcpy(bakery,
3130			       &tcp_secret_generating->secrets[0],
3131			       COOKIE_WORKSPACE_WORDS);
3132		} else {
3133			/* still needs refreshing */
3134			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3135
3136			/* The first time, paranoia assumes that the
3137			 * randomization function isn't as strong.  But,
3138			 * this secret initialization is delayed until
3139			 * the last possible moment (packet arrival).
3140			 * Although that time is observable, it is
3141			 * unpredictably variable.  Mash in the most
3142			 * volatile clock bits available, and expire the
3143			 * secret extra quickly.
3144			 */
3145			if (unlikely(tcp_secret_primary->expires ==
3146				     tcp_secret_secondary->expires)) {
3147				struct timespec tv;
3148
3149				getnstimeofday(&tv);
3150				bakery[COOKIE_DIGEST_WORDS+0] ^=
3151					(u32)tv.tv_nsec;
3152
3153				tcp_secret_secondary->expires = jiffy
3154					+ TCP_SECRET_1MSL
3155					+ (0x0f & tcp_cookie_work(bakery, 0));
3156			} else {
3157				tcp_secret_secondary->expires = jiffy
3158					+ TCP_SECRET_LIFE
3159					+ (0xff & tcp_cookie_work(bakery, 1));
3160				tcp_secret_primary->expires = jiffy
3161					+ TCP_SECRET_2MSL
3162					+ (0x1f & tcp_cookie_work(bakery, 2));
3163			}
3164			memcpy(&tcp_secret_secondary->secrets[0],
3165			       bakery, COOKIE_WORKSPACE_WORDS);
3166
3167			rcu_assign_pointer(tcp_secret_generating,
3168					   tcp_secret_secondary);
3169			rcu_assign_pointer(tcp_secret_retiring,
3170					   tcp_secret_primary);
3171			/*
3172			 * Neither call_rcu() nor synchronize_rcu() needed.
3173			 * Retiring data is not freed.  It is replaced after
3174			 * further (locked) pointer updates, and a quiet time
3175			 * (minimum 1MSL, maximum LIFE - 2MSL).
3176			 */
3177		}
3178		spin_unlock_bh(&tcp_secret_locker);
3179	} else {
3180		rcu_read_lock_bh();
3181		memcpy(bakery,
3182		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3183		       COOKIE_WORKSPACE_WORDS);
3184		rcu_read_unlock_bh();
3185	}
3186	return 0;
3187}
3188EXPORT_SYMBOL(tcp_cookie_generator);
3189
3190void tcp_done(struct sock *sk)
3191{
3192	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3193		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3194
3195	tcp_set_state(sk, TCP_CLOSE);
3196	tcp_clear_xmit_timers(sk);
3197
3198	sk->sk_shutdown = SHUTDOWN_MASK;
3199
3200	if (!sock_flag(sk, SOCK_DEAD))
3201		sk->sk_state_change(sk);
3202	else
3203		inet_csk_destroy_sock(sk);
3204}
3205EXPORT_SYMBOL_GPL(tcp_done);
3206
3207extern struct tcp_congestion_ops tcp_reno;
3208
3209static __initdata unsigned long thash_entries;
3210static int __init set_thash_entries(char *str)
3211{
3212	if (!str)
3213		return 0;
3214	thash_entries = simple_strtoul(str, &str, 0);
3215	return 1;
3216}
3217__setup("thash_entries=", set_thash_entries);
3218
3219void __init tcp_init(void)
3220{
3221	struct sk_buff *skb = NULL;
3222	unsigned long nr_pages, limit;
3223	int i, max_share, cnt;
3224	unsigned long jiffy = jiffies;
3225
3226	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3227
3228	percpu_counter_init(&tcp_sockets_allocated, 0);
3229	percpu_counter_init(&tcp_orphan_count, 0);
3230	tcp_hashinfo.bind_bucket_cachep =
3231		kmem_cache_create("tcp_bind_bucket",
3232				  sizeof(struct inet_bind_bucket), 0,
3233				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3234
3235	/* Size and allocate the main established and bind bucket
3236	 * hash tables.
3237	 *
3238	 * The methodology is similar to that of the buffer cache.
3239	 */
3240	tcp_hashinfo.ehash =
3241		alloc_large_system_hash("TCP established",
3242					sizeof(struct inet_ehash_bucket),
3243					thash_entries,
3244					(totalram_pages >= 128 * 1024) ?
3245					13 : 15,
3246					0,
3247					NULL,
3248					&tcp_hashinfo.ehash_mask,
3249					thash_entries ? 0 : 512 * 1024);
3250	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3251		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3252		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3253	}
3254	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3255		panic("TCP: failed to alloc ehash_locks");
3256	tcp_hashinfo.bhash =
3257		alloc_large_system_hash("TCP bind",
3258					sizeof(struct inet_bind_hashbucket),
3259					tcp_hashinfo.ehash_mask + 1,
3260					(totalram_pages >= 128 * 1024) ?
3261					13 : 15,
3262					0,
3263					&tcp_hashinfo.bhash_size,
3264					NULL,
3265					64 * 1024);
3266	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
3267	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3268		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3269		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3270	}
3271
3272
3273	cnt = tcp_hashinfo.ehash_mask + 1;
3274
3275	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3276	sysctl_tcp_max_orphans = cnt / 2;
3277	sysctl_max_syn_backlog = max(128, cnt / 256);
3278
3279	/* Set the pressure threshold to be a fraction of global memory that
3280	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
3281	 * memory, with a floor of 128 pages.
3282	 */
3283	nr_pages = totalram_pages - totalhigh_pages;
3284	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
3285	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
3286	limit = max(limit, 128UL);
3287	sysctl_tcp_mem[0] = limit / 4 * 3;
3288	sysctl_tcp_mem[1] = limit;
3289	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3290
3291	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3292	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
3293	max_share = min(4UL*1024*1024, limit);
3294
3295	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3296	sysctl_tcp_wmem[1] = 16*1024;
3297	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3298
3299	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3300	sysctl_tcp_rmem[1] = 87380;
3301	sysctl_tcp_rmem[2] = max(87380, max_share);
3302
3303	printk(KERN_INFO "TCP: Hash tables configured "
3304	       "(established %u bind %u)\n",
3305	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3306
3307	tcp_register_congestion_control(&tcp_reno);
3308
3309	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3310	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3311	tcp_secret_one.expires = jiffy; /* past due */
3312	tcp_secret_two.expires = jiffy; /* past due */
3313	tcp_secret_generating = &tcp_secret_one;
3314	tcp_secret_primary = &tcp_secret_one;
3315	tcp_secret_retiring = &tcp_secret_two;
3316	tcp_secret_secondary = &tcp_secret_two;
3317}
3318