tcp.c revision 38ba0a65faf451dd46c7860b4fade84c0b8e444f
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#define pr_fmt(fmt) "TCP: " fmt
249
250#include <linux/kernel.h>
251#include <linux/module.h>
252#include <linux/types.h>
253#include <linux/fcntl.h>
254#include <linux/poll.h>
255#include <linux/init.h>
256#include <linux/fs.h>
257#include <linux/skbuff.h>
258#include <linux/scatterlist.h>
259#include <linux/splice.h>
260#include <linux/net.h>
261#include <linux/socket.h>
262#include <linux/random.h>
263#include <linux/bootmem.h>
264#include <linux/highmem.h>
265#include <linux/swap.h>
266#include <linux/cache.h>
267#include <linux/err.h>
268#include <linux/crypto.h>
269#include <linux/time.h>
270#include <linux/slab.h>
271
272#include <net/icmp.h>
273#include <net/tcp.h>
274#include <net/xfrm.h>
275#include <net/ip.h>
276#include <net/netdma.h>
277#include <net/sock.h>
278
279#include <asm/uaccess.h>
280#include <asm/ioctls.h>
281
282int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
283
284struct percpu_counter tcp_orphan_count;
285EXPORT_SYMBOL_GPL(tcp_orphan_count);
286
287int sysctl_tcp_wmem[3] __read_mostly;
288int sysctl_tcp_rmem[3] __read_mostly;
289
290EXPORT_SYMBOL(sysctl_tcp_rmem);
291EXPORT_SYMBOL(sysctl_tcp_wmem);
292
293atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
294EXPORT_SYMBOL(tcp_memory_allocated);
295
296/*
297 * Current number of TCP sockets.
298 */
299struct percpu_counter tcp_sockets_allocated;
300EXPORT_SYMBOL(tcp_sockets_allocated);
301
302/*
303 * TCP splice context
304 */
305struct tcp_splice_state {
306	struct pipe_inode_info *pipe;
307	size_t len;
308	unsigned int flags;
309};
310
311/*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317int tcp_memory_pressure __read_mostly;
318EXPORT_SYMBOL(tcp_memory_pressure);
319
320void tcp_enter_memory_pressure(struct sock *sk)
321{
322	if (!tcp_memory_pressure) {
323		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324		tcp_memory_pressure = 1;
325	}
326}
327EXPORT_SYMBOL(tcp_enter_memory_pressure);
328
329/* Convert seconds to retransmits based on initial and max timeout */
330static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331{
332	u8 res = 0;
333
334	if (seconds > 0) {
335		int period = timeout;
336
337		res = 1;
338		while (seconds > period && res < 255) {
339			res++;
340			timeout <<= 1;
341			if (timeout > rto_max)
342				timeout = rto_max;
343			period += timeout;
344		}
345	}
346	return res;
347}
348
349/* Convert retransmits to seconds based on initial and max timeout */
350static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351{
352	int period = 0;
353
354	if (retrans > 0) {
355		period = timeout;
356		while (--retrans) {
357			timeout <<= 1;
358			if (timeout > rto_max)
359				timeout = rto_max;
360			period += timeout;
361		}
362	}
363	return period;
364}
365
366/* Address-family independent initialization for a tcp_sock.
367 *
368 * NOTE: A lot of things set to zero explicitly by call to
369 *       sk_alloc() so need not be done here.
370 */
371void tcp_init_sock(struct sock *sk)
372{
373	struct inet_connection_sock *icsk = inet_csk(sk);
374	struct tcp_sock *tp = tcp_sk(sk);
375
376	skb_queue_head_init(&tp->out_of_order_queue);
377	tcp_init_xmit_timers(sk);
378	tcp_prequeue_init(tp);
379
380	icsk->icsk_rto = TCP_TIMEOUT_INIT;
381	tp->mdev = TCP_TIMEOUT_INIT;
382
383	/* So many TCP implementations out there (incorrectly) count the
384	 * initial SYN frame in their delayed-ACK and congestion control
385	 * algorithms that we must have the following bandaid to talk
386	 * efficiently to them.  -DaveM
387	 */
388	tp->snd_cwnd = TCP_INIT_CWND;
389
390	/* See draft-stevens-tcpca-spec-01 for discussion of the
391	 * initialization of these values.
392	 */
393	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
394	tp->snd_cwnd_clamp = ~0;
395	tp->mss_cache = TCP_MSS_DEFAULT;
396
397	tp->reordering = sysctl_tcp_reordering;
398	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
399
400	sk->sk_state = TCP_CLOSE;
401
402	sk->sk_write_space = sk_stream_write_space;
403	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
404
405	icsk->icsk_sync_mss = tcp_sync_mss;
406
407	/* TCP Cookie Transactions */
408	if (sysctl_tcp_cookie_size > 0) {
409		/* Default, cookies without s_data_payload. */
410		tp->cookie_values =
411			kzalloc(sizeof(*tp->cookie_values),
412				sk->sk_allocation);
413		if (tp->cookie_values != NULL)
414			kref_init(&tp->cookie_values->kref);
415	}
416	/* Presumed zeroed, in order of appearance:
417	 *	cookie_in_always, cookie_out_never,
418	 *	s_data_constant, s_data_in, s_data_out
419	 */
420	sk->sk_sndbuf = sysctl_tcp_wmem[1];
421	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422
423	local_bh_disable();
424	sock_update_memcg(sk);
425	sk_sockets_allocated_inc(sk);
426	local_bh_enable();
427}
428EXPORT_SYMBOL(tcp_init_sock);
429
430/*
431 *	Wait for a TCP event.
432 *
433 *	Note that we don't need to lock the socket, as the upper poll layers
434 *	take care of normal races (between the test and the event) and we don't
435 *	go look at any of the socket buffers directly.
436 */
437unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
438{
439	unsigned int mask;
440	struct sock *sk = sock->sk;
441	const struct tcp_sock *tp = tcp_sk(sk);
442
443	sock_poll_wait(file, sk_sleep(sk), wait);
444	if (sk->sk_state == TCP_LISTEN)
445		return inet_csk_listen_poll(sk);
446
447	/* Socket is not locked. We are protected from async events
448	 * by poll logic and correct handling of state changes
449	 * made by other threads is impossible in any case.
450	 */
451
452	mask = 0;
453
454	/*
455	 * POLLHUP is certainly not done right. But poll() doesn't
456	 * have a notion of HUP in just one direction, and for a
457	 * socket the read side is more interesting.
458	 *
459	 * Some poll() documentation says that POLLHUP is incompatible
460	 * with the POLLOUT/POLLWR flags, so somebody should check this
461	 * all. But careful, it tends to be safer to return too many
462	 * bits than too few, and you can easily break real applications
463	 * if you don't tell them that something has hung up!
464	 *
465	 * Check-me.
466	 *
467	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
468	 * our fs/select.c). It means that after we received EOF,
469	 * poll always returns immediately, making impossible poll() on write()
470	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
471	 * if and only if shutdown has been made in both directions.
472	 * Actually, it is interesting to look how Solaris and DUX
473	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
474	 * then we could set it on SND_SHUTDOWN. BTW examples given
475	 * in Stevens' books assume exactly this behaviour, it explains
476	 * why POLLHUP is incompatible with POLLOUT.	--ANK
477	 *
478	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
479	 * blocking on fresh not-connected or disconnected socket. --ANK
480	 */
481	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
482		mask |= POLLHUP;
483	if (sk->sk_shutdown & RCV_SHUTDOWN)
484		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
485
486	/* Connected? */
487	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
488		int target = sock_rcvlowat(sk, 0, INT_MAX);
489
490		if (tp->urg_seq == tp->copied_seq &&
491		    !sock_flag(sk, SOCK_URGINLINE) &&
492		    tp->urg_data)
493			target++;
494
495		/* Potential race condition. If read of tp below will
496		 * escape above sk->sk_state, we can be illegally awaken
497		 * in SYN_* states. */
498		if (tp->rcv_nxt - tp->copied_seq >= target)
499			mask |= POLLIN | POLLRDNORM;
500
501		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
502			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
503				mask |= POLLOUT | POLLWRNORM;
504			} else {  /* send SIGIO later */
505				set_bit(SOCK_ASYNC_NOSPACE,
506					&sk->sk_socket->flags);
507				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
508
509				/* Race breaker. If space is freed after
510				 * wspace test but before the flags are set,
511				 * IO signal will be lost.
512				 */
513				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
514					mask |= POLLOUT | POLLWRNORM;
515			}
516		} else
517			mask |= POLLOUT | POLLWRNORM;
518
519		if (tp->urg_data & TCP_URG_VALID)
520			mask |= POLLPRI;
521	}
522	/* This barrier is coupled with smp_wmb() in tcp_reset() */
523	smp_rmb();
524	if (sk->sk_err)
525		mask |= POLLERR;
526
527	return mask;
528}
529EXPORT_SYMBOL(tcp_poll);
530
531int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
532{
533	struct tcp_sock *tp = tcp_sk(sk);
534	int answ;
535
536	switch (cmd) {
537	case SIOCINQ:
538		if (sk->sk_state == TCP_LISTEN)
539			return -EINVAL;
540
541		lock_sock(sk);
542		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
543			answ = 0;
544		else if (sock_flag(sk, SOCK_URGINLINE) ||
545			 !tp->urg_data ||
546			 before(tp->urg_seq, tp->copied_seq) ||
547			 !before(tp->urg_seq, tp->rcv_nxt)) {
548			struct sk_buff *skb;
549
550			answ = tp->rcv_nxt - tp->copied_seq;
551
552			/* Subtract 1, if FIN is in queue. */
553			skb = skb_peek_tail(&sk->sk_receive_queue);
554			if (answ && skb)
555				answ -= tcp_hdr(skb)->fin;
556		} else
557			answ = tp->urg_seq - tp->copied_seq;
558		release_sock(sk);
559		break;
560	case SIOCATMARK:
561		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
562		break;
563	case SIOCOUTQ:
564		if (sk->sk_state == TCP_LISTEN)
565			return -EINVAL;
566
567		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
568			answ = 0;
569		else
570			answ = tp->write_seq - tp->snd_una;
571		break;
572	case SIOCOUTQNSD:
573		if (sk->sk_state == TCP_LISTEN)
574			return -EINVAL;
575
576		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
577			answ = 0;
578		else
579			answ = tp->write_seq - tp->snd_nxt;
580		break;
581	default:
582		return -ENOIOCTLCMD;
583	}
584
585	return put_user(answ, (int __user *)arg);
586}
587EXPORT_SYMBOL(tcp_ioctl);
588
589static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
590{
591	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
592	tp->pushed_seq = tp->write_seq;
593}
594
595static inline int forced_push(const struct tcp_sock *tp)
596{
597	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
598}
599
600static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
601{
602	struct tcp_sock *tp = tcp_sk(sk);
603	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
604
605	skb->csum    = 0;
606	tcb->seq     = tcb->end_seq = tp->write_seq;
607	tcb->tcp_flags = TCPHDR_ACK;
608	tcb->sacked  = 0;
609	skb_header_release(skb);
610	tcp_add_write_queue_tail(sk, skb);
611	sk->sk_wmem_queued += skb->truesize;
612	sk_mem_charge(sk, skb->truesize);
613	if (tp->nonagle & TCP_NAGLE_PUSH)
614		tp->nonagle &= ~TCP_NAGLE_PUSH;
615}
616
617static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
618{
619	if (flags & MSG_OOB)
620		tp->snd_up = tp->write_seq;
621}
622
623static inline void tcp_push(struct sock *sk, int flags, int mss_now,
624			    int nonagle)
625{
626	if (tcp_send_head(sk)) {
627		struct tcp_sock *tp = tcp_sk(sk);
628
629		if (!(flags & MSG_MORE) || forced_push(tp))
630			tcp_mark_push(tp, tcp_write_queue_tail(sk));
631
632		tcp_mark_urg(tp, flags);
633		__tcp_push_pending_frames(sk, mss_now,
634					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
635	}
636}
637
638static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
639				unsigned int offset, size_t len)
640{
641	struct tcp_splice_state *tss = rd_desc->arg.data;
642	int ret;
643
644	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
645			      tss->flags);
646	if (ret > 0)
647		rd_desc->count -= ret;
648	return ret;
649}
650
651static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
652{
653	/* Store TCP splice context information in read_descriptor_t. */
654	read_descriptor_t rd_desc = {
655		.arg.data = tss,
656		.count	  = tss->len,
657	};
658
659	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
660}
661
662/**
663 *  tcp_splice_read - splice data from TCP socket to a pipe
664 * @sock:	socket to splice from
665 * @ppos:	position (not valid)
666 * @pipe:	pipe to splice to
667 * @len:	number of bytes to splice
668 * @flags:	splice modifier flags
669 *
670 * Description:
671 *    Will read pages from given socket and fill them into a pipe.
672 *
673 **/
674ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
675			struct pipe_inode_info *pipe, size_t len,
676			unsigned int flags)
677{
678	struct sock *sk = sock->sk;
679	struct tcp_splice_state tss = {
680		.pipe = pipe,
681		.len = len,
682		.flags = flags,
683	};
684	long timeo;
685	ssize_t spliced;
686	int ret;
687
688	sock_rps_record_flow(sk);
689	/*
690	 * We can't seek on a socket input
691	 */
692	if (unlikely(*ppos))
693		return -ESPIPE;
694
695	ret = spliced = 0;
696
697	lock_sock(sk);
698
699	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
700	while (tss.len) {
701		ret = __tcp_splice_read(sk, &tss);
702		if (ret < 0)
703			break;
704		else if (!ret) {
705			if (spliced)
706				break;
707			if (sock_flag(sk, SOCK_DONE))
708				break;
709			if (sk->sk_err) {
710				ret = sock_error(sk);
711				break;
712			}
713			if (sk->sk_shutdown & RCV_SHUTDOWN)
714				break;
715			if (sk->sk_state == TCP_CLOSE) {
716				/*
717				 * This occurs when user tries to read
718				 * from never connected socket.
719				 */
720				if (!sock_flag(sk, SOCK_DONE))
721					ret = -ENOTCONN;
722				break;
723			}
724			if (!timeo) {
725				ret = -EAGAIN;
726				break;
727			}
728			sk_wait_data(sk, &timeo);
729			if (signal_pending(current)) {
730				ret = sock_intr_errno(timeo);
731				break;
732			}
733			continue;
734		}
735		tss.len -= ret;
736		spliced += ret;
737
738		if (!timeo)
739			break;
740		release_sock(sk);
741		lock_sock(sk);
742
743		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
744		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
745		    signal_pending(current))
746			break;
747	}
748
749	release_sock(sk);
750
751	if (spliced)
752		return spliced;
753
754	return ret;
755}
756EXPORT_SYMBOL(tcp_splice_read);
757
758struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
759{
760	struct sk_buff *skb;
761
762	/* The TCP header must be at least 32-bit aligned.  */
763	size = ALIGN(size, 4);
764
765	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
766	if (skb) {
767		if (sk_wmem_schedule(sk, skb->truesize)) {
768			skb_reserve(skb, sk->sk_prot->max_header);
769			/*
770			 * Make sure that we have exactly size bytes
771			 * available to the caller, no more, no less.
772			 */
773			skb->avail_size = size;
774			return skb;
775		}
776		__kfree_skb(skb);
777	} else {
778		sk->sk_prot->enter_memory_pressure(sk);
779		sk_stream_moderate_sndbuf(sk);
780	}
781	return NULL;
782}
783
784static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
785				       int large_allowed)
786{
787	struct tcp_sock *tp = tcp_sk(sk);
788	u32 xmit_size_goal, old_size_goal;
789
790	xmit_size_goal = mss_now;
791
792	if (large_allowed && sk_can_gso(sk)) {
793		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
794				  inet_csk(sk)->icsk_af_ops->net_header_len -
795				  inet_csk(sk)->icsk_ext_hdr_len -
796				  tp->tcp_header_len);
797
798		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
799
800		/* We try hard to avoid divides here */
801		old_size_goal = tp->xmit_size_goal_segs * mss_now;
802
803		if (likely(old_size_goal <= xmit_size_goal &&
804			   old_size_goal + mss_now > xmit_size_goal)) {
805			xmit_size_goal = old_size_goal;
806		} else {
807			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
808			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
809		}
810	}
811
812	return max(xmit_size_goal, mss_now);
813}
814
815static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
816{
817	int mss_now;
818
819	mss_now = tcp_current_mss(sk);
820	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
821
822	return mss_now;
823}
824
825static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
826			 size_t psize, int flags)
827{
828	struct tcp_sock *tp = tcp_sk(sk);
829	int mss_now, size_goal;
830	int err;
831	ssize_t copied;
832	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
833
834	/* Wait for a connection to finish. */
835	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
836		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
837			goto out_err;
838
839	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
840
841	mss_now = tcp_send_mss(sk, &size_goal, flags);
842	copied = 0;
843
844	err = -EPIPE;
845	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
846		goto out_err;
847
848	while (psize > 0) {
849		struct sk_buff *skb = tcp_write_queue_tail(sk);
850		struct page *page = pages[poffset / PAGE_SIZE];
851		int copy, i;
852		int offset = poffset % PAGE_SIZE;
853		int size = min_t(size_t, psize, PAGE_SIZE - offset);
854		bool can_coalesce;
855
856		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
857new_segment:
858			if (!sk_stream_memory_free(sk))
859				goto wait_for_sndbuf;
860
861			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
862			if (!skb)
863				goto wait_for_memory;
864
865			skb_entail(sk, skb);
866			copy = size_goal;
867		}
868
869		if (copy > size)
870			copy = size;
871
872		i = skb_shinfo(skb)->nr_frags;
873		can_coalesce = skb_can_coalesce(skb, i, page, offset);
874		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
875			tcp_mark_push(tp, skb);
876			goto new_segment;
877		}
878		if (!sk_wmem_schedule(sk, copy))
879			goto wait_for_memory;
880
881		if (can_coalesce) {
882			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
883		} else {
884			get_page(page);
885			skb_fill_page_desc(skb, i, page, offset, copy);
886		}
887
888		skb->len += copy;
889		skb->data_len += copy;
890		skb->truesize += copy;
891		sk->sk_wmem_queued += copy;
892		sk_mem_charge(sk, copy);
893		skb->ip_summed = CHECKSUM_PARTIAL;
894		tp->write_seq += copy;
895		TCP_SKB_CB(skb)->end_seq += copy;
896		skb_shinfo(skb)->gso_segs = 0;
897
898		if (!copied)
899			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
900
901		copied += copy;
902		poffset += copy;
903		if (!(psize -= copy))
904			goto out;
905
906		if (skb->len < size_goal || (flags & MSG_OOB))
907			continue;
908
909		if (forced_push(tp)) {
910			tcp_mark_push(tp, skb);
911			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
912		} else if (skb == tcp_send_head(sk))
913			tcp_push_one(sk, mss_now);
914		continue;
915
916wait_for_sndbuf:
917		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
918wait_for_memory:
919		if (copied)
920			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
921
922		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
923			goto do_error;
924
925		mss_now = tcp_send_mss(sk, &size_goal, flags);
926	}
927
928out:
929	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
930		tcp_push(sk, flags, mss_now, tp->nonagle);
931	return copied;
932
933do_error:
934	if (copied)
935		goto out;
936out_err:
937	return sk_stream_error(sk, flags, err);
938}
939
940int tcp_sendpage(struct sock *sk, struct page *page, int offset,
941		 size_t size, int flags)
942{
943	ssize_t res;
944
945	if (!(sk->sk_route_caps & NETIF_F_SG) ||
946	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
947		return sock_no_sendpage(sk->sk_socket, page, offset, size,
948					flags);
949
950	lock_sock(sk);
951	res = do_tcp_sendpages(sk, &page, offset, size, flags);
952	release_sock(sk);
953	return res;
954}
955EXPORT_SYMBOL(tcp_sendpage);
956
957static inline int select_size(const struct sock *sk, bool sg)
958{
959	const struct tcp_sock *tp = tcp_sk(sk);
960	int tmp = tp->mss_cache;
961
962	if (sg) {
963		if (sk_can_gso(sk)) {
964			/* Small frames wont use a full page:
965			 * Payload will immediately follow tcp header.
966			 */
967			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
968		} else {
969			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
970
971			if (tmp >= pgbreak &&
972			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
973				tmp = pgbreak;
974		}
975	}
976
977	return tmp;
978}
979
980static int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
981{
982	struct sk_buff *skb;
983	struct tcp_skb_cb *cb;
984	struct tcphdr *th;
985
986	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
987	if (!skb)
988		goto err;
989
990	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
991	skb_reset_transport_header(skb);
992	memset(th, 0, sizeof(*th));
993
994	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
995		goto err_free;
996
997	cb = TCP_SKB_CB(skb);
998
999	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
1000	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
1001	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
1002
1003	tcp_queue_rcv(sk, skb, sizeof(*th));
1004
1005	return size;
1006
1007err_free:
1008	kfree_skb(skb);
1009err:
1010	return -ENOMEM;
1011}
1012
1013int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1014		size_t size)
1015{
1016	struct iovec *iov;
1017	struct tcp_sock *tp = tcp_sk(sk);
1018	struct sk_buff *skb;
1019	int iovlen, flags, err, copied;
1020	int mss_now = 0, size_goal;
1021	bool sg;
1022	long timeo;
1023
1024	lock_sock(sk);
1025
1026	flags = msg->msg_flags;
1027	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1028
1029	/* Wait for a connection to finish. */
1030	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1031		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1032			goto out_err;
1033
1034	if (unlikely(tp->repair)) {
1035		if (tp->repair_queue == TCP_RECV_QUEUE) {
1036			copied = tcp_send_rcvq(sk, msg, size);
1037			goto out;
1038		}
1039
1040		err = -EINVAL;
1041		if (tp->repair_queue == TCP_NO_QUEUE)
1042			goto out_err;
1043
1044		/* 'common' sending to sendq */
1045	}
1046
1047	/* This should be in poll */
1048	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1049
1050	mss_now = tcp_send_mss(sk, &size_goal, flags);
1051
1052	/* Ok commence sending. */
1053	iovlen = msg->msg_iovlen;
1054	iov = msg->msg_iov;
1055	copied = 0;
1056
1057	err = -EPIPE;
1058	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1059		goto out_err;
1060
1061	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1062
1063	while (--iovlen >= 0) {
1064		size_t seglen = iov->iov_len;
1065		unsigned char __user *from = iov->iov_base;
1066
1067		iov++;
1068
1069		while (seglen > 0) {
1070			int copy = 0;
1071			int max = size_goal;
1072
1073			skb = tcp_write_queue_tail(sk);
1074			if (tcp_send_head(sk)) {
1075				if (skb->ip_summed == CHECKSUM_NONE)
1076					max = mss_now;
1077				copy = max - skb->len;
1078			}
1079
1080			if (copy <= 0) {
1081new_segment:
1082				/* Allocate new segment. If the interface is SG,
1083				 * allocate skb fitting to single page.
1084				 */
1085				if (!sk_stream_memory_free(sk))
1086					goto wait_for_sndbuf;
1087
1088				skb = sk_stream_alloc_skb(sk,
1089							  select_size(sk, sg),
1090							  sk->sk_allocation);
1091				if (!skb)
1092					goto wait_for_memory;
1093
1094				/*
1095				 * Check whether we can use HW checksum.
1096				 */
1097				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1098					skb->ip_summed = CHECKSUM_PARTIAL;
1099
1100				skb_entail(sk, skb);
1101				copy = size_goal;
1102				max = size_goal;
1103			}
1104
1105			/* Try to append data to the end of skb. */
1106			if (copy > seglen)
1107				copy = seglen;
1108
1109			/* Where to copy to? */
1110			if (skb_availroom(skb) > 0) {
1111				/* We have some space in skb head. Superb! */
1112				copy = min_t(int, copy, skb_availroom(skb));
1113				err = skb_add_data_nocache(sk, skb, from, copy);
1114				if (err)
1115					goto do_fault;
1116			} else {
1117				int merge = 0;
1118				int i = skb_shinfo(skb)->nr_frags;
1119				struct page *page = sk->sk_sndmsg_page;
1120				int off;
1121
1122				if (page && page_count(page) == 1)
1123					sk->sk_sndmsg_off = 0;
1124
1125				off = sk->sk_sndmsg_off;
1126
1127				if (skb_can_coalesce(skb, i, page, off) &&
1128				    off != PAGE_SIZE) {
1129					/* We can extend the last page
1130					 * fragment. */
1131					merge = 1;
1132				} else if (i == MAX_SKB_FRAGS || !sg) {
1133					/* Need to add new fragment and cannot
1134					 * do this because interface is non-SG,
1135					 * or because all the page slots are
1136					 * busy. */
1137					tcp_mark_push(tp, skb);
1138					goto new_segment;
1139				} else if (page) {
1140					if (off == PAGE_SIZE) {
1141						put_page(page);
1142						sk->sk_sndmsg_page = page = NULL;
1143						off = 0;
1144					}
1145				} else
1146					off = 0;
1147
1148				if (copy > PAGE_SIZE - off)
1149					copy = PAGE_SIZE - off;
1150
1151				if (!sk_wmem_schedule(sk, copy))
1152					goto wait_for_memory;
1153
1154				if (!page) {
1155					/* Allocate new cache page. */
1156					if (!(page = sk_stream_alloc_page(sk)))
1157						goto wait_for_memory;
1158				}
1159
1160				/* Time to copy data. We are close to
1161				 * the end! */
1162				err = skb_copy_to_page_nocache(sk, from, skb,
1163							       page, off, copy);
1164				if (err) {
1165					/* If this page was new, give it to the
1166					 * socket so it does not get leaked.
1167					 */
1168					if (!sk->sk_sndmsg_page) {
1169						sk->sk_sndmsg_page = page;
1170						sk->sk_sndmsg_off = 0;
1171					}
1172					goto do_error;
1173				}
1174
1175				/* Update the skb. */
1176				if (merge) {
1177					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1178				} else {
1179					skb_fill_page_desc(skb, i, page, off, copy);
1180					if (sk->sk_sndmsg_page) {
1181						get_page(page);
1182					} else if (off + copy < PAGE_SIZE) {
1183						get_page(page);
1184						sk->sk_sndmsg_page = page;
1185					}
1186				}
1187
1188				sk->sk_sndmsg_off = off + copy;
1189			}
1190
1191			if (!copied)
1192				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1193
1194			tp->write_seq += copy;
1195			TCP_SKB_CB(skb)->end_seq += copy;
1196			skb_shinfo(skb)->gso_segs = 0;
1197
1198			from += copy;
1199			copied += copy;
1200			if ((seglen -= copy) == 0 && iovlen == 0)
1201				goto out;
1202
1203			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1204				continue;
1205
1206			if (forced_push(tp)) {
1207				tcp_mark_push(tp, skb);
1208				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1209			} else if (skb == tcp_send_head(sk))
1210				tcp_push_one(sk, mss_now);
1211			continue;
1212
1213wait_for_sndbuf:
1214			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1215wait_for_memory:
1216			if (copied && likely(!tp->repair))
1217				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1218
1219			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1220				goto do_error;
1221
1222			mss_now = tcp_send_mss(sk, &size_goal, flags);
1223		}
1224	}
1225
1226out:
1227	if (copied && likely(!tp->repair))
1228		tcp_push(sk, flags, mss_now, tp->nonagle);
1229	release_sock(sk);
1230	return copied;
1231
1232do_fault:
1233	if (!skb->len) {
1234		tcp_unlink_write_queue(skb, sk);
1235		/* It is the one place in all of TCP, except connection
1236		 * reset, where we can be unlinking the send_head.
1237		 */
1238		tcp_check_send_head(sk, skb);
1239		sk_wmem_free_skb(sk, skb);
1240	}
1241
1242do_error:
1243	if (copied)
1244		goto out;
1245out_err:
1246	err = sk_stream_error(sk, flags, err);
1247	release_sock(sk);
1248	return err;
1249}
1250EXPORT_SYMBOL(tcp_sendmsg);
1251
1252/*
1253 *	Handle reading urgent data. BSD has very simple semantics for
1254 *	this, no blocking and very strange errors 8)
1255 */
1256
1257static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1258{
1259	struct tcp_sock *tp = tcp_sk(sk);
1260
1261	/* No URG data to read. */
1262	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1263	    tp->urg_data == TCP_URG_READ)
1264		return -EINVAL;	/* Yes this is right ! */
1265
1266	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1267		return -ENOTCONN;
1268
1269	if (tp->urg_data & TCP_URG_VALID) {
1270		int err = 0;
1271		char c = tp->urg_data;
1272
1273		if (!(flags & MSG_PEEK))
1274			tp->urg_data = TCP_URG_READ;
1275
1276		/* Read urgent data. */
1277		msg->msg_flags |= MSG_OOB;
1278
1279		if (len > 0) {
1280			if (!(flags & MSG_TRUNC))
1281				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1282			len = 1;
1283		} else
1284			msg->msg_flags |= MSG_TRUNC;
1285
1286		return err ? -EFAULT : len;
1287	}
1288
1289	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1290		return 0;
1291
1292	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1293	 * the available implementations agree in this case:
1294	 * this call should never block, independent of the
1295	 * blocking state of the socket.
1296	 * Mike <pall@rz.uni-karlsruhe.de>
1297	 */
1298	return -EAGAIN;
1299}
1300
1301static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1302{
1303	struct sk_buff *skb;
1304	int copied = 0, err = 0;
1305
1306	/* XXX -- need to support SO_PEEK_OFF */
1307
1308	skb_queue_walk(&sk->sk_write_queue, skb) {
1309		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1310		if (err)
1311			break;
1312
1313		copied += skb->len;
1314	}
1315
1316	return err ?: copied;
1317}
1318
1319/* Clean up the receive buffer for full frames taken by the user,
1320 * then send an ACK if necessary.  COPIED is the number of bytes
1321 * tcp_recvmsg has given to the user so far, it speeds up the
1322 * calculation of whether or not we must ACK for the sake of
1323 * a window update.
1324 */
1325void tcp_cleanup_rbuf(struct sock *sk, int copied)
1326{
1327	struct tcp_sock *tp = tcp_sk(sk);
1328	int time_to_ack = 0;
1329
1330	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1331
1332	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1333	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1334	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1335
1336	if (inet_csk_ack_scheduled(sk)) {
1337		const struct inet_connection_sock *icsk = inet_csk(sk);
1338		   /* Delayed ACKs frequently hit locked sockets during bulk
1339		    * receive. */
1340		if (icsk->icsk_ack.blocked ||
1341		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1342		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1343		    /*
1344		     * If this read emptied read buffer, we send ACK, if
1345		     * connection is not bidirectional, user drained
1346		     * receive buffer and there was a small segment
1347		     * in queue.
1348		     */
1349		    (copied > 0 &&
1350		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1351		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1352		       !icsk->icsk_ack.pingpong)) &&
1353		      !atomic_read(&sk->sk_rmem_alloc)))
1354			time_to_ack = 1;
1355	}
1356
1357	/* We send an ACK if we can now advertise a non-zero window
1358	 * which has been raised "significantly".
1359	 *
1360	 * Even if window raised up to infinity, do not send window open ACK
1361	 * in states, where we will not receive more. It is useless.
1362	 */
1363	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1364		__u32 rcv_window_now = tcp_receive_window(tp);
1365
1366		/* Optimize, __tcp_select_window() is not cheap. */
1367		if (2*rcv_window_now <= tp->window_clamp) {
1368			__u32 new_window = __tcp_select_window(sk);
1369
1370			/* Send ACK now, if this read freed lots of space
1371			 * in our buffer. Certainly, new_window is new window.
1372			 * We can advertise it now, if it is not less than current one.
1373			 * "Lots" means "at least twice" here.
1374			 */
1375			if (new_window && new_window >= 2 * rcv_window_now)
1376				time_to_ack = 1;
1377		}
1378	}
1379	if (time_to_ack)
1380		tcp_send_ack(sk);
1381}
1382
1383static void tcp_prequeue_process(struct sock *sk)
1384{
1385	struct sk_buff *skb;
1386	struct tcp_sock *tp = tcp_sk(sk);
1387
1388	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1389
1390	/* RX process wants to run with disabled BHs, though it is not
1391	 * necessary */
1392	local_bh_disable();
1393	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1394		sk_backlog_rcv(sk, skb);
1395	local_bh_enable();
1396
1397	/* Clear memory counter. */
1398	tp->ucopy.memory = 0;
1399}
1400
1401#ifdef CONFIG_NET_DMA
1402static void tcp_service_net_dma(struct sock *sk, bool wait)
1403{
1404	dma_cookie_t done, used;
1405	dma_cookie_t last_issued;
1406	struct tcp_sock *tp = tcp_sk(sk);
1407
1408	if (!tp->ucopy.dma_chan)
1409		return;
1410
1411	last_issued = tp->ucopy.dma_cookie;
1412	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1413
1414	do {
1415		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1416					      last_issued, &done,
1417					      &used) == DMA_SUCCESS) {
1418			/* Safe to free early-copied skbs now */
1419			__skb_queue_purge(&sk->sk_async_wait_queue);
1420			break;
1421		} else {
1422			struct sk_buff *skb;
1423			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1424			       (dma_async_is_complete(skb->dma_cookie, done,
1425						      used) == DMA_SUCCESS)) {
1426				__skb_dequeue(&sk->sk_async_wait_queue);
1427				kfree_skb(skb);
1428			}
1429		}
1430	} while (wait);
1431}
1432#endif
1433
1434static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1435{
1436	struct sk_buff *skb;
1437	u32 offset;
1438
1439	skb_queue_walk(&sk->sk_receive_queue, skb) {
1440		offset = seq - TCP_SKB_CB(skb)->seq;
1441		if (tcp_hdr(skb)->syn)
1442			offset--;
1443		if (offset < skb->len || tcp_hdr(skb)->fin) {
1444			*off = offset;
1445			return skb;
1446		}
1447	}
1448	return NULL;
1449}
1450
1451/*
1452 * This routine provides an alternative to tcp_recvmsg() for routines
1453 * that would like to handle copying from skbuffs directly in 'sendfile'
1454 * fashion.
1455 * Note:
1456 *	- It is assumed that the socket was locked by the caller.
1457 *	- The routine does not block.
1458 *	- At present, there is no support for reading OOB data
1459 *	  or for 'peeking' the socket using this routine
1460 *	  (although both would be easy to implement).
1461 */
1462int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1463		  sk_read_actor_t recv_actor)
1464{
1465	struct sk_buff *skb;
1466	struct tcp_sock *tp = tcp_sk(sk);
1467	u32 seq = tp->copied_seq;
1468	u32 offset;
1469	int copied = 0;
1470
1471	if (sk->sk_state == TCP_LISTEN)
1472		return -ENOTCONN;
1473	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1474		if (offset < skb->len) {
1475			int used;
1476			size_t len;
1477
1478			len = skb->len - offset;
1479			/* Stop reading if we hit a patch of urgent data */
1480			if (tp->urg_data) {
1481				u32 urg_offset = tp->urg_seq - seq;
1482				if (urg_offset < len)
1483					len = urg_offset;
1484				if (!len)
1485					break;
1486			}
1487			used = recv_actor(desc, skb, offset, len);
1488			if (used < 0) {
1489				if (!copied)
1490					copied = used;
1491				break;
1492			} else if (used <= len) {
1493				seq += used;
1494				copied += used;
1495				offset += used;
1496			}
1497			/*
1498			 * If recv_actor drops the lock (e.g. TCP splice
1499			 * receive) the skb pointer might be invalid when
1500			 * getting here: tcp_collapse might have deleted it
1501			 * while aggregating skbs from the socket queue.
1502			 */
1503			skb = tcp_recv_skb(sk, seq-1, &offset);
1504			if (!skb || (offset+1 != skb->len))
1505				break;
1506		}
1507		if (tcp_hdr(skb)->fin) {
1508			sk_eat_skb(sk, skb, 0);
1509			++seq;
1510			break;
1511		}
1512		sk_eat_skb(sk, skb, 0);
1513		if (!desc->count)
1514			break;
1515		tp->copied_seq = seq;
1516	}
1517	tp->copied_seq = seq;
1518
1519	tcp_rcv_space_adjust(sk);
1520
1521	/* Clean up data we have read: This will do ACK frames. */
1522	if (copied > 0)
1523		tcp_cleanup_rbuf(sk, copied);
1524	return copied;
1525}
1526EXPORT_SYMBOL(tcp_read_sock);
1527
1528/*
1529 *	This routine copies from a sock struct into the user buffer.
1530 *
1531 *	Technical note: in 2.3 we work on _locked_ socket, so that
1532 *	tricks with *seq access order and skb->users are not required.
1533 *	Probably, code can be easily improved even more.
1534 */
1535
1536int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1537		size_t len, int nonblock, int flags, int *addr_len)
1538{
1539	struct tcp_sock *tp = tcp_sk(sk);
1540	int copied = 0;
1541	u32 peek_seq;
1542	u32 *seq;
1543	unsigned long used;
1544	int err;
1545	int target;		/* Read at least this many bytes */
1546	long timeo;
1547	struct task_struct *user_recv = NULL;
1548	int copied_early = 0;
1549	struct sk_buff *skb;
1550	u32 urg_hole = 0;
1551
1552	lock_sock(sk);
1553
1554	err = -ENOTCONN;
1555	if (sk->sk_state == TCP_LISTEN)
1556		goto out;
1557
1558	timeo = sock_rcvtimeo(sk, nonblock);
1559
1560	/* Urgent data needs to be handled specially. */
1561	if (flags & MSG_OOB)
1562		goto recv_urg;
1563
1564	if (unlikely(tp->repair)) {
1565		err = -EPERM;
1566		if (!(flags & MSG_PEEK))
1567			goto out;
1568
1569		if (tp->repair_queue == TCP_SEND_QUEUE)
1570			goto recv_sndq;
1571
1572		err = -EINVAL;
1573		if (tp->repair_queue == TCP_NO_QUEUE)
1574			goto out;
1575
1576		/* 'common' recv queue MSG_PEEK-ing */
1577	}
1578
1579	seq = &tp->copied_seq;
1580	if (flags & MSG_PEEK) {
1581		peek_seq = tp->copied_seq;
1582		seq = &peek_seq;
1583	}
1584
1585	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1586
1587#ifdef CONFIG_NET_DMA
1588	tp->ucopy.dma_chan = NULL;
1589	preempt_disable();
1590	skb = skb_peek_tail(&sk->sk_receive_queue);
1591	{
1592		int available = 0;
1593
1594		if (skb)
1595			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1596		if ((available < target) &&
1597		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1598		    !sysctl_tcp_low_latency &&
1599		    net_dma_find_channel()) {
1600			preempt_enable_no_resched();
1601			tp->ucopy.pinned_list =
1602					dma_pin_iovec_pages(msg->msg_iov, len);
1603		} else {
1604			preempt_enable_no_resched();
1605		}
1606	}
1607#endif
1608
1609	do {
1610		u32 offset;
1611
1612		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1613		if (tp->urg_data && tp->urg_seq == *seq) {
1614			if (copied)
1615				break;
1616			if (signal_pending(current)) {
1617				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1618				break;
1619			}
1620		}
1621
1622		/* Next get a buffer. */
1623
1624		skb_queue_walk(&sk->sk_receive_queue, skb) {
1625			/* Now that we have two receive queues this
1626			 * shouldn't happen.
1627			 */
1628			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1629				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1630				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1631				 flags))
1632				break;
1633
1634			offset = *seq - TCP_SKB_CB(skb)->seq;
1635			if (tcp_hdr(skb)->syn)
1636				offset--;
1637			if (offset < skb->len)
1638				goto found_ok_skb;
1639			if (tcp_hdr(skb)->fin)
1640				goto found_fin_ok;
1641			WARN(!(flags & MSG_PEEK),
1642			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1643			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1644		}
1645
1646		/* Well, if we have backlog, try to process it now yet. */
1647
1648		if (copied >= target && !sk->sk_backlog.tail)
1649			break;
1650
1651		if (copied) {
1652			if (sk->sk_err ||
1653			    sk->sk_state == TCP_CLOSE ||
1654			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1655			    !timeo ||
1656			    signal_pending(current))
1657				break;
1658		} else {
1659			if (sock_flag(sk, SOCK_DONE))
1660				break;
1661
1662			if (sk->sk_err) {
1663				copied = sock_error(sk);
1664				break;
1665			}
1666
1667			if (sk->sk_shutdown & RCV_SHUTDOWN)
1668				break;
1669
1670			if (sk->sk_state == TCP_CLOSE) {
1671				if (!sock_flag(sk, SOCK_DONE)) {
1672					/* This occurs when user tries to read
1673					 * from never connected socket.
1674					 */
1675					copied = -ENOTCONN;
1676					break;
1677				}
1678				break;
1679			}
1680
1681			if (!timeo) {
1682				copied = -EAGAIN;
1683				break;
1684			}
1685
1686			if (signal_pending(current)) {
1687				copied = sock_intr_errno(timeo);
1688				break;
1689			}
1690		}
1691
1692		tcp_cleanup_rbuf(sk, copied);
1693
1694		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1695			/* Install new reader */
1696			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1697				user_recv = current;
1698				tp->ucopy.task = user_recv;
1699				tp->ucopy.iov = msg->msg_iov;
1700			}
1701
1702			tp->ucopy.len = len;
1703
1704			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1705				!(flags & (MSG_PEEK | MSG_TRUNC)));
1706
1707			/* Ugly... If prequeue is not empty, we have to
1708			 * process it before releasing socket, otherwise
1709			 * order will be broken at second iteration.
1710			 * More elegant solution is required!!!
1711			 *
1712			 * Look: we have the following (pseudo)queues:
1713			 *
1714			 * 1. packets in flight
1715			 * 2. backlog
1716			 * 3. prequeue
1717			 * 4. receive_queue
1718			 *
1719			 * Each queue can be processed only if the next ones
1720			 * are empty. At this point we have empty receive_queue.
1721			 * But prequeue _can_ be not empty after 2nd iteration,
1722			 * when we jumped to start of loop because backlog
1723			 * processing added something to receive_queue.
1724			 * We cannot release_sock(), because backlog contains
1725			 * packets arrived _after_ prequeued ones.
1726			 *
1727			 * Shortly, algorithm is clear --- to process all
1728			 * the queues in order. We could make it more directly,
1729			 * requeueing packets from backlog to prequeue, if
1730			 * is not empty. It is more elegant, but eats cycles,
1731			 * unfortunately.
1732			 */
1733			if (!skb_queue_empty(&tp->ucopy.prequeue))
1734				goto do_prequeue;
1735
1736			/* __ Set realtime policy in scheduler __ */
1737		}
1738
1739#ifdef CONFIG_NET_DMA
1740		if (tp->ucopy.dma_chan)
1741			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1742#endif
1743		if (copied >= target) {
1744			/* Do not sleep, just process backlog. */
1745			release_sock(sk);
1746			lock_sock(sk);
1747		} else
1748			sk_wait_data(sk, &timeo);
1749
1750#ifdef CONFIG_NET_DMA
1751		tcp_service_net_dma(sk, false);  /* Don't block */
1752		tp->ucopy.wakeup = 0;
1753#endif
1754
1755		if (user_recv) {
1756			int chunk;
1757
1758			/* __ Restore normal policy in scheduler __ */
1759
1760			if ((chunk = len - tp->ucopy.len) != 0) {
1761				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1762				len -= chunk;
1763				copied += chunk;
1764			}
1765
1766			if (tp->rcv_nxt == tp->copied_seq &&
1767			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1768do_prequeue:
1769				tcp_prequeue_process(sk);
1770
1771				if ((chunk = len - tp->ucopy.len) != 0) {
1772					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1773					len -= chunk;
1774					copied += chunk;
1775				}
1776			}
1777		}
1778		if ((flags & MSG_PEEK) &&
1779		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1780			if (net_ratelimit())
1781				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1782				       current->comm, task_pid_nr(current));
1783			peek_seq = tp->copied_seq;
1784		}
1785		continue;
1786
1787	found_ok_skb:
1788		/* Ok so how much can we use? */
1789		used = skb->len - offset;
1790		if (len < used)
1791			used = len;
1792
1793		/* Do we have urgent data here? */
1794		if (tp->urg_data) {
1795			u32 urg_offset = tp->urg_seq - *seq;
1796			if (urg_offset < used) {
1797				if (!urg_offset) {
1798					if (!sock_flag(sk, SOCK_URGINLINE)) {
1799						++*seq;
1800						urg_hole++;
1801						offset++;
1802						used--;
1803						if (!used)
1804							goto skip_copy;
1805					}
1806				} else
1807					used = urg_offset;
1808			}
1809		}
1810
1811		if (!(flags & MSG_TRUNC)) {
1812#ifdef CONFIG_NET_DMA
1813			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1814				tp->ucopy.dma_chan = net_dma_find_channel();
1815
1816			if (tp->ucopy.dma_chan) {
1817				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1818					tp->ucopy.dma_chan, skb, offset,
1819					msg->msg_iov, used,
1820					tp->ucopy.pinned_list);
1821
1822				if (tp->ucopy.dma_cookie < 0) {
1823
1824					pr_alert("%s: dma_cookie < 0\n",
1825						 __func__);
1826
1827					/* Exception. Bailout! */
1828					if (!copied)
1829						copied = -EFAULT;
1830					break;
1831				}
1832
1833				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1834
1835				if ((offset + used) == skb->len)
1836					copied_early = 1;
1837
1838			} else
1839#endif
1840			{
1841				err = skb_copy_datagram_iovec(skb, offset,
1842						msg->msg_iov, used);
1843				if (err) {
1844					/* Exception. Bailout! */
1845					if (!copied)
1846						copied = -EFAULT;
1847					break;
1848				}
1849			}
1850		}
1851
1852		*seq += used;
1853		copied += used;
1854		len -= used;
1855
1856		tcp_rcv_space_adjust(sk);
1857
1858skip_copy:
1859		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1860			tp->urg_data = 0;
1861			tcp_fast_path_check(sk);
1862		}
1863		if (used + offset < skb->len)
1864			continue;
1865
1866		if (tcp_hdr(skb)->fin)
1867			goto found_fin_ok;
1868		if (!(flags & MSG_PEEK)) {
1869			sk_eat_skb(sk, skb, copied_early);
1870			copied_early = 0;
1871		}
1872		continue;
1873
1874	found_fin_ok:
1875		/* Process the FIN. */
1876		++*seq;
1877		if (!(flags & MSG_PEEK)) {
1878			sk_eat_skb(sk, skb, copied_early);
1879			copied_early = 0;
1880		}
1881		break;
1882	} while (len > 0);
1883
1884	if (user_recv) {
1885		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1886			int chunk;
1887
1888			tp->ucopy.len = copied > 0 ? len : 0;
1889
1890			tcp_prequeue_process(sk);
1891
1892			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1893				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1894				len -= chunk;
1895				copied += chunk;
1896			}
1897		}
1898
1899		tp->ucopy.task = NULL;
1900		tp->ucopy.len = 0;
1901	}
1902
1903#ifdef CONFIG_NET_DMA
1904	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1905	tp->ucopy.dma_chan = NULL;
1906
1907	if (tp->ucopy.pinned_list) {
1908		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1909		tp->ucopy.pinned_list = NULL;
1910	}
1911#endif
1912
1913	/* According to UNIX98, msg_name/msg_namelen are ignored
1914	 * on connected socket. I was just happy when found this 8) --ANK
1915	 */
1916
1917	/* Clean up data we have read: This will do ACK frames. */
1918	tcp_cleanup_rbuf(sk, copied);
1919
1920	release_sock(sk);
1921	return copied;
1922
1923out:
1924	release_sock(sk);
1925	return err;
1926
1927recv_urg:
1928	err = tcp_recv_urg(sk, msg, len, flags);
1929	goto out;
1930
1931recv_sndq:
1932	err = tcp_peek_sndq(sk, msg, len);
1933	goto out;
1934}
1935EXPORT_SYMBOL(tcp_recvmsg);
1936
1937void tcp_set_state(struct sock *sk, int state)
1938{
1939	int oldstate = sk->sk_state;
1940
1941	switch (state) {
1942	case TCP_ESTABLISHED:
1943		if (oldstate != TCP_ESTABLISHED)
1944			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1945		break;
1946
1947	case TCP_CLOSE:
1948		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1949			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1950
1951		sk->sk_prot->unhash(sk);
1952		if (inet_csk(sk)->icsk_bind_hash &&
1953		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1954			inet_put_port(sk);
1955		/* fall through */
1956	default:
1957		if (oldstate == TCP_ESTABLISHED)
1958			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1959	}
1960
1961	/* Change state AFTER socket is unhashed to avoid closed
1962	 * socket sitting in hash tables.
1963	 */
1964	sk->sk_state = state;
1965
1966#ifdef STATE_TRACE
1967	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1968#endif
1969}
1970EXPORT_SYMBOL_GPL(tcp_set_state);
1971
1972/*
1973 *	State processing on a close. This implements the state shift for
1974 *	sending our FIN frame. Note that we only send a FIN for some
1975 *	states. A shutdown() may have already sent the FIN, or we may be
1976 *	closed.
1977 */
1978
1979static const unsigned char new_state[16] = {
1980  /* current state:        new state:      action:	*/
1981  /* (Invalid)		*/ TCP_CLOSE,
1982  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1983  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1984  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1985  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1986  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1987  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1988  /* TCP_CLOSE		*/ TCP_CLOSE,
1989  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1990  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1991  /* TCP_LISTEN		*/ TCP_CLOSE,
1992  /* TCP_CLOSING	*/ TCP_CLOSING,
1993};
1994
1995static int tcp_close_state(struct sock *sk)
1996{
1997	int next = (int)new_state[sk->sk_state];
1998	int ns = next & TCP_STATE_MASK;
1999
2000	tcp_set_state(sk, ns);
2001
2002	return next & TCP_ACTION_FIN;
2003}
2004
2005/*
2006 *	Shutdown the sending side of a connection. Much like close except
2007 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2008 */
2009
2010void tcp_shutdown(struct sock *sk, int how)
2011{
2012	/*	We need to grab some memory, and put together a FIN,
2013	 *	and then put it into the queue to be sent.
2014	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2015	 */
2016	if (!(how & SEND_SHUTDOWN))
2017		return;
2018
2019	/* If we've already sent a FIN, or it's a closed state, skip this. */
2020	if ((1 << sk->sk_state) &
2021	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2022	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2023		/* Clear out any half completed packets.  FIN if needed. */
2024		if (tcp_close_state(sk))
2025			tcp_send_fin(sk);
2026	}
2027}
2028EXPORT_SYMBOL(tcp_shutdown);
2029
2030bool tcp_check_oom(struct sock *sk, int shift)
2031{
2032	bool too_many_orphans, out_of_socket_memory;
2033
2034	too_many_orphans = tcp_too_many_orphans(sk, shift);
2035	out_of_socket_memory = tcp_out_of_memory(sk);
2036
2037	if (too_many_orphans && net_ratelimit())
2038		pr_info("too many orphaned sockets\n");
2039	if (out_of_socket_memory && net_ratelimit())
2040		pr_info("out of memory -- consider tuning tcp_mem\n");
2041	return too_many_orphans || out_of_socket_memory;
2042}
2043
2044void tcp_close(struct sock *sk, long timeout)
2045{
2046	struct sk_buff *skb;
2047	int data_was_unread = 0;
2048	int state;
2049
2050	lock_sock(sk);
2051	sk->sk_shutdown = SHUTDOWN_MASK;
2052
2053	if (sk->sk_state == TCP_LISTEN) {
2054		tcp_set_state(sk, TCP_CLOSE);
2055
2056		/* Special case. */
2057		inet_csk_listen_stop(sk);
2058
2059		goto adjudge_to_death;
2060	}
2061
2062	/*  We need to flush the recv. buffs.  We do this only on the
2063	 *  descriptor close, not protocol-sourced closes, because the
2064	 *  reader process may not have drained the data yet!
2065	 */
2066	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2067		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2068			  tcp_hdr(skb)->fin;
2069		data_was_unread += len;
2070		__kfree_skb(skb);
2071	}
2072
2073	sk_mem_reclaim(sk);
2074
2075	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2076	if (sk->sk_state == TCP_CLOSE)
2077		goto adjudge_to_death;
2078
2079	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2080	 * data was lost. To witness the awful effects of the old behavior of
2081	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2082	 * GET in an FTP client, suspend the process, wait for the client to
2083	 * advertise a zero window, then kill -9 the FTP client, wheee...
2084	 * Note: timeout is always zero in such a case.
2085	 */
2086	if (unlikely(tcp_sk(sk)->repair)) {
2087		sk->sk_prot->disconnect(sk, 0);
2088	} else if (data_was_unread) {
2089		/* Unread data was tossed, zap the connection. */
2090		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2091		tcp_set_state(sk, TCP_CLOSE);
2092		tcp_send_active_reset(sk, sk->sk_allocation);
2093	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2094		/* Check zero linger _after_ checking for unread data. */
2095		sk->sk_prot->disconnect(sk, 0);
2096		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2097	} else if (tcp_close_state(sk)) {
2098		/* We FIN if the application ate all the data before
2099		 * zapping the connection.
2100		 */
2101
2102		/* RED-PEN. Formally speaking, we have broken TCP state
2103		 * machine. State transitions:
2104		 *
2105		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2106		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2107		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2108		 *
2109		 * are legal only when FIN has been sent (i.e. in window),
2110		 * rather than queued out of window. Purists blame.
2111		 *
2112		 * F.e. "RFC state" is ESTABLISHED,
2113		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2114		 *
2115		 * The visible declinations are that sometimes
2116		 * we enter time-wait state, when it is not required really
2117		 * (harmless), do not send active resets, when they are
2118		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2119		 * they look as CLOSING or LAST_ACK for Linux)
2120		 * Probably, I missed some more holelets.
2121		 * 						--ANK
2122		 */
2123		tcp_send_fin(sk);
2124	}
2125
2126	sk_stream_wait_close(sk, timeout);
2127
2128adjudge_to_death:
2129	state = sk->sk_state;
2130	sock_hold(sk);
2131	sock_orphan(sk);
2132
2133	/* It is the last release_sock in its life. It will remove backlog. */
2134	release_sock(sk);
2135
2136
2137	/* Now socket is owned by kernel and we acquire BH lock
2138	   to finish close. No need to check for user refs.
2139	 */
2140	local_bh_disable();
2141	bh_lock_sock(sk);
2142	WARN_ON(sock_owned_by_user(sk));
2143
2144	percpu_counter_inc(sk->sk_prot->orphan_count);
2145
2146	/* Have we already been destroyed by a softirq or backlog? */
2147	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2148		goto out;
2149
2150	/*	This is a (useful) BSD violating of the RFC. There is a
2151	 *	problem with TCP as specified in that the other end could
2152	 *	keep a socket open forever with no application left this end.
2153	 *	We use a 3 minute timeout (about the same as BSD) then kill
2154	 *	our end. If they send after that then tough - BUT: long enough
2155	 *	that we won't make the old 4*rto = almost no time - whoops
2156	 *	reset mistake.
2157	 *
2158	 *	Nope, it was not mistake. It is really desired behaviour
2159	 *	f.e. on http servers, when such sockets are useless, but
2160	 *	consume significant resources. Let's do it with special
2161	 *	linger2	option.					--ANK
2162	 */
2163
2164	if (sk->sk_state == TCP_FIN_WAIT2) {
2165		struct tcp_sock *tp = tcp_sk(sk);
2166		if (tp->linger2 < 0) {
2167			tcp_set_state(sk, TCP_CLOSE);
2168			tcp_send_active_reset(sk, GFP_ATOMIC);
2169			NET_INC_STATS_BH(sock_net(sk),
2170					LINUX_MIB_TCPABORTONLINGER);
2171		} else {
2172			const int tmo = tcp_fin_time(sk);
2173
2174			if (tmo > TCP_TIMEWAIT_LEN) {
2175				inet_csk_reset_keepalive_timer(sk,
2176						tmo - TCP_TIMEWAIT_LEN);
2177			} else {
2178				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2179				goto out;
2180			}
2181		}
2182	}
2183	if (sk->sk_state != TCP_CLOSE) {
2184		sk_mem_reclaim(sk);
2185		if (tcp_check_oom(sk, 0)) {
2186			tcp_set_state(sk, TCP_CLOSE);
2187			tcp_send_active_reset(sk, GFP_ATOMIC);
2188			NET_INC_STATS_BH(sock_net(sk),
2189					LINUX_MIB_TCPABORTONMEMORY);
2190		}
2191	}
2192
2193	if (sk->sk_state == TCP_CLOSE)
2194		inet_csk_destroy_sock(sk);
2195	/* Otherwise, socket is reprieved until protocol close. */
2196
2197out:
2198	bh_unlock_sock(sk);
2199	local_bh_enable();
2200	sock_put(sk);
2201}
2202EXPORT_SYMBOL(tcp_close);
2203
2204/* These states need RST on ABORT according to RFC793 */
2205
2206static inline int tcp_need_reset(int state)
2207{
2208	return (1 << state) &
2209	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2210		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2211}
2212
2213int tcp_disconnect(struct sock *sk, int flags)
2214{
2215	struct inet_sock *inet = inet_sk(sk);
2216	struct inet_connection_sock *icsk = inet_csk(sk);
2217	struct tcp_sock *tp = tcp_sk(sk);
2218	int err = 0;
2219	int old_state = sk->sk_state;
2220
2221	if (old_state != TCP_CLOSE)
2222		tcp_set_state(sk, TCP_CLOSE);
2223
2224	/* ABORT function of RFC793 */
2225	if (old_state == TCP_LISTEN) {
2226		inet_csk_listen_stop(sk);
2227	} else if (unlikely(tp->repair)) {
2228		sk->sk_err = ECONNABORTED;
2229	} else if (tcp_need_reset(old_state) ||
2230		   (tp->snd_nxt != tp->write_seq &&
2231		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2232		/* The last check adjusts for discrepancy of Linux wrt. RFC
2233		 * states
2234		 */
2235		tcp_send_active_reset(sk, gfp_any());
2236		sk->sk_err = ECONNRESET;
2237	} else if (old_state == TCP_SYN_SENT)
2238		sk->sk_err = ECONNRESET;
2239
2240	tcp_clear_xmit_timers(sk);
2241	__skb_queue_purge(&sk->sk_receive_queue);
2242	tcp_write_queue_purge(sk);
2243	__skb_queue_purge(&tp->out_of_order_queue);
2244#ifdef CONFIG_NET_DMA
2245	__skb_queue_purge(&sk->sk_async_wait_queue);
2246#endif
2247
2248	inet->inet_dport = 0;
2249
2250	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2251		inet_reset_saddr(sk);
2252
2253	sk->sk_shutdown = 0;
2254	sock_reset_flag(sk, SOCK_DONE);
2255	tp->srtt = 0;
2256	if ((tp->write_seq += tp->max_window + 2) == 0)
2257		tp->write_seq = 1;
2258	icsk->icsk_backoff = 0;
2259	tp->snd_cwnd = 2;
2260	icsk->icsk_probes_out = 0;
2261	tp->packets_out = 0;
2262	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2263	tp->snd_cwnd_cnt = 0;
2264	tp->bytes_acked = 0;
2265	tp->window_clamp = 0;
2266	tcp_set_ca_state(sk, TCP_CA_Open);
2267	tcp_clear_retrans(tp);
2268	inet_csk_delack_init(sk);
2269	tcp_init_send_head(sk);
2270	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2271	__sk_dst_reset(sk);
2272
2273	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2274
2275	sk->sk_error_report(sk);
2276	return err;
2277}
2278EXPORT_SYMBOL(tcp_disconnect);
2279
2280static inline int tcp_can_repair_sock(struct sock *sk)
2281{
2282	return capable(CAP_NET_ADMIN) &&
2283		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2284}
2285
2286static int tcp_repair_options_est(struct tcp_sock *tp, char __user *optbuf, unsigned int len)
2287{
2288	/*
2289	 * Options are stored in CODE:VALUE form where CODE is 8bit and VALUE
2290	 * fits the respective TCPOLEN_ size
2291	 */
2292
2293	while (len > 0) {
2294		u8 opcode;
2295
2296		if (get_user(opcode, optbuf))
2297			return -EFAULT;
2298
2299		optbuf++;
2300		len--;
2301
2302		switch (opcode) {
2303		case TCPOPT_MSS: {
2304			u16 in_mss;
2305
2306			if (len < sizeof(in_mss))
2307				return -ENODATA;
2308			if (get_user(in_mss, optbuf))
2309				return -EFAULT;
2310
2311			tp->rx_opt.mss_clamp = in_mss;
2312
2313			optbuf += sizeof(in_mss);
2314			len -= sizeof(in_mss);
2315			break;
2316		}
2317		case TCPOPT_WINDOW: {
2318			u8 wscale;
2319
2320			if (len < sizeof(wscale))
2321				return -ENODATA;
2322			if (get_user(wscale, optbuf))
2323				return -EFAULT;
2324
2325			if (wscale > 14)
2326				return -EFBIG;
2327
2328			tp->rx_opt.snd_wscale = wscale;
2329
2330			optbuf += sizeof(wscale);
2331			len -= sizeof(wscale);
2332			break;
2333		}
2334		case TCPOPT_SACK_PERM:
2335			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2336			if (sysctl_tcp_fack)
2337				tcp_enable_fack(tp);
2338			break;
2339		case TCPOPT_TIMESTAMP:
2340			tp->rx_opt.tstamp_ok = 1;
2341			break;
2342		}
2343	}
2344
2345	return 0;
2346}
2347
2348/*
2349 *	Socket option code for TCP.
2350 */
2351static int do_tcp_setsockopt(struct sock *sk, int level,
2352		int optname, char __user *optval, unsigned int optlen)
2353{
2354	struct tcp_sock *tp = tcp_sk(sk);
2355	struct inet_connection_sock *icsk = inet_csk(sk);
2356	int val;
2357	int err = 0;
2358
2359	/* These are data/string values, all the others are ints */
2360	switch (optname) {
2361	case TCP_CONGESTION: {
2362		char name[TCP_CA_NAME_MAX];
2363
2364		if (optlen < 1)
2365			return -EINVAL;
2366
2367		val = strncpy_from_user(name, optval,
2368					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2369		if (val < 0)
2370			return -EFAULT;
2371		name[val] = 0;
2372
2373		lock_sock(sk);
2374		err = tcp_set_congestion_control(sk, name);
2375		release_sock(sk);
2376		return err;
2377	}
2378	case TCP_COOKIE_TRANSACTIONS: {
2379		struct tcp_cookie_transactions ctd;
2380		struct tcp_cookie_values *cvp = NULL;
2381
2382		if (sizeof(ctd) > optlen)
2383			return -EINVAL;
2384		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2385			return -EFAULT;
2386
2387		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2388		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2389			return -EINVAL;
2390
2391		if (ctd.tcpct_cookie_desired == 0) {
2392			/* default to global value */
2393		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2394			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2395			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2396			return -EINVAL;
2397		}
2398
2399		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2400			/* Supercedes all other values */
2401			lock_sock(sk);
2402			if (tp->cookie_values != NULL) {
2403				kref_put(&tp->cookie_values->kref,
2404					 tcp_cookie_values_release);
2405				tp->cookie_values = NULL;
2406			}
2407			tp->rx_opt.cookie_in_always = 0; /* false */
2408			tp->rx_opt.cookie_out_never = 1; /* true */
2409			release_sock(sk);
2410			return err;
2411		}
2412
2413		/* Allocate ancillary memory before locking.
2414		 */
2415		if (ctd.tcpct_used > 0 ||
2416		    (tp->cookie_values == NULL &&
2417		     (sysctl_tcp_cookie_size > 0 ||
2418		      ctd.tcpct_cookie_desired > 0 ||
2419		      ctd.tcpct_s_data_desired > 0))) {
2420			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2421				      GFP_KERNEL);
2422			if (cvp == NULL)
2423				return -ENOMEM;
2424
2425			kref_init(&cvp->kref);
2426		}
2427		lock_sock(sk);
2428		tp->rx_opt.cookie_in_always =
2429			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2430		tp->rx_opt.cookie_out_never = 0; /* false */
2431
2432		if (tp->cookie_values != NULL) {
2433			if (cvp != NULL) {
2434				/* Changed values are recorded by a changed
2435				 * pointer, ensuring the cookie will differ,
2436				 * without separately hashing each value later.
2437				 */
2438				kref_put(&tp->cookie_values->kref,
2439					 tcp_cookie_values_release);
2440			} else {
2441				cvp = tp->cookie_values;
2442			}
2443		}
2444
2445		if (cvp != NULL) {
2446			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2447
2448			if (ctd.tcpct_used > 0) {
2449				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2450				       ctd.tcpct_used);
2451				cvp->s_data_desired = ctd.tcpct_used;
2452				cvp->s_data_constant = 1; /* true */
2453			} else {
2454				/* No constant payload data. */
2455				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2456				cvp->s_data_constant = 0; /* false */
2457			}
2458
2459			tp->cookie_values = cvp;
2460		}
2461		release_sock(sk);
2462		return err;
2463	}
2464	default:
2465		/* fallthru */
2466		break;
2467	}
2468
2469	if (optlen < sizeof(int))
2470		return -EINVAL;
2471
2472	if (get_user(val, (int __user *)optval))
2473		return -EFAULT;
2474
2475	lock_sock(sk);
2476
2477	switch (optname) {
2478	case TCP_MAXSEG:
2479		/* Values greater than interface MTU won't take effect. However
2480		 * at the point when this call is done we typically don't yet
2481		 * know which interface is going to be used */
2482		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2483			err = -EINVAL;
2484			break;
2485		}
2486		tp->rx_opt.user_mss = val;
2487		break;
2488
2489	case TCP_NODELAY:
2490		if (val) {
2491			/* TCP_NODELAY is weaker than TCP_CORK, so that
2492			 * this option on corked socket is remembered, but
2493			 * it is not activated until cork is cleared.
2494			 *
2495			 * However, when TCP_NODELAY is set we make
2496			 * an explicit push, which overrides even TCP_CORK
2497			 * for currently queued segments.
2498			 */
2499			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2500			tcp_push_pending_frames(sk);
2501		} else {
2502			tp->nonagle &= ~TCP_NAGLE_OFF;
2503		}
2504		break;
2505
2506	case TCP_THIN_LINEAR_TIMEOUTS:
2507		if (val < 0 || val > 1)
2508			err = -EINVAL;
2509		else
2510			tp->thin_lto = val;
2511		break;
2512
2513	case TCP_THIN_DUPACK:
2514		if (val < 0 || val > 1)
2515			err = -EINVAL;
2516		else
2517			tp->thin_dupack = val;
2518		break;
2519
2520	case TCP_REPAIR:
2521		if (!tcp_can_repair_sock(sk))
2522			err = -EPERM;
2523		else if (val == 1) {
2524			tp->repair = 1;
2525			sk->sk_reuse = SK_FORCE_REUSE;
2526			tp->repair_queue = TCP_NO_QUEUE;
2527		} else if (val == 0) {
2528			tp->repair = 0;
2529			sk->sk_reuse = SK_NO_REUSE;
2530			tcp_send_window_probe(sk);
2531		} else
2532			err = -EINVAL;
2533
2534		break;
2535
2536	case TCP_REPAIR_QUEUE:
2537		if (!tp->repair)
2538			err = -EPERM;
2539		else if (val < TCP_QUEUES_NR)
2540			tp->repair_queue = val;
2541		else
2542			err = -EINVAL;
2543		break;
2544
2545	case TCP_QUEUE_SEQ:
2546		if (sk->sk_state != TCP_CLOSE)
2547			err = -EPERM;
2548		else if (tp->repair_queue == TCP_SEND_QUEUE)
2549			tp->write_seq = val;
2550		else if (tp->repair_queue == TCP_RECV_QUEUE)
2551			tp->rcv_nxt = val;
2552		else
2553			err = -EINVAL;
2554		break;
2555
2556	case TCP_REPAIR_OPTIONS:
2557		if (!tp->repair)
2558			err = -EINVAL;
2559		else if (sk->sk_state == TCP_ESTABLISHED)
2560			err = tcp_repair_options_est(tp, optval, optlen);
2561		else
2562			err = -EPERM;
2563		break;
2564
2565	case TCP_CORK:
2566		/* When set indicates to always queue non-full frames.
2567		 * Later the user clears this option and we transmit
2568		 * any pending partial frames in the queue.  This is
2569		 * meant to be used alongside sendfile() to get properly
2570		 * filled frames when the user (for example) must write
2571		 * out headers with a write() call first and then use
2572		 * sendfile to send out the data parts.
2573		 *
2574		 * TCP_CORK can be set together with TCP_NODELAY and it is
2575		 * stronger than TCP_NODELAY.
2576		 */
2577		if (val) {
2578			tp->nonagle |= TCP_NAGLE_CORK;
2579		} else {
2580			tp->nonagle &= ~TCP_NAGLE_CORK;
2581			if (tp->nonagle&TCP_NAGLE_OFF)
2582				tp->nonagle |= TCP_NAGLE_PUSH;
2583			tcp_push_pending_frames(sk);
2584		}
2585		break;
2586
2587	case TCP_KEEPIDLE:
2588		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2589			err = -EINVAL;
2590		else {
2591			tp->keepalive_time = val * HZ;
2592			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2593			    !((1 << sk->sk_state) &
2594			      (TCPF_CLOSE | TCPF_LISTEN))) {
2595				u32 elapsed = keepalive_time_elapsed(tp);
2596				if (tp->keepalive_time > elapsed)
2597					elapsed = tp->keepalive_time - elapsed;
2598				else
2599					elapsed = 0;
2600				inet_csk_reset_keepalive_timer(sk, elapsed);
2601			}
2602		}
2603		break;
2604	case TCP_KEEPINTVL:
2605		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2606			err = -EINVAL;
2607		else
2608			tp->keepalive_intvl = val * HZ;
2609		break;
2610	case TCP_KEEPCNT:
2611		if (val < 1 || val > MAX_TCP_KEEPCNT)
2612			err = -EINVAL;
2613		else
2614			tp->keepalive_probes = val;
2615		break;
2616	case TCP_SYNCNT:
2617		if (val < 1 || val > MAX_TCP_SYNCNT)
2618			err = -EINVAL;
2619		else
2620			icsk->icsk_syn_retries = val;
2621		break;
2622
2623	case TCP_LINGER2:
2624		if (val < 0)
2625			tp->linger2 = -1;
2626		else if (val > sysctl_tcp_fin_timeout / HZ)
2627			tp->linger2 = 0;
2628		else
2629			tp->linger2 = val * HZ;
2630		break;
2631
2632	case TCP_DEFER_ACCEPT:
2633		/* Translate value in seconds to number of retransmits */
2634		icsk->icsk_accept_queue.rskq_defer_accept =
2635			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2636					TCP_RTO_MAX / HZ);
2637		break;
2638
2639	case TCP_WINDOW_CLAMP:
2640		if (!val) {
2641			if (sk->sk_state != TCP_CLOSE) {
2642				err = -EINVAL;
2643				break;
2644			}
2645			tp->window_clamp = 0;
2646		} else
2647			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2648						SOCK_MIN_RCVBUF / 2 : val;
2649		break;
2650
2651	case TCP_QUICKACK:
2652		if (!val) {
2653			icsk->icsk_ack.pingpong = 1;
2654		} else {
2655			icsk->icsk_ack.pingpong = 0;
2656			if ((1 << sk->sk_state) &
2657			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2658			    inet_csk_ack_scheduled(sk)) {
2659				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2660				tcp_cleanup_rbuf(sk, 1);
2661				if (!(val & 1))
2662					icsk->icsk_ack.pingpong = 1;
2663			}
2664		}
2665		break;
2666
2667#ifdef CONFIG_TCP_MD5SIG
2668	case TCP_MD5SIG:
2669		/* Read the IP->Key mappings from userspace */
2670		err = tp->af_specific->md5_parse(sk, optval, optlen);
2671		break;
2672#endif
2673	case TCP_USER_TIMEOUT:
2674		/* Cap the max timeout in ms TCP will retry/retrans
2675		 * before giving up and aborting (ETIMEDOUT) a connection.
2676		 */
2677		icsk->icsk_user_timeout = msecs_to_jiffies(val);
2678		break;
2679	default:
2680		err = -ENOPROTOOPT;
2681		break;
2682	}
2683
2684	release_sock(sk);
2685	return err;
2686}
2687
2688int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2689		   unsigned int optlen)
2690{
2691	const struct inet_connection_sock *icsk = inet_csk(sk);
2692
2693	if (level != SOL_TCP)
2694		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2695						     optval, optlen);
2696	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2697}
2698EXPORT_SYMBOL(tcp_setsockopt);
2699
2700#ifdef CONFIG_COMPAT
2701int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2702			  char __user *optval, unsigned int optlen)
2703{
2704	if (level != SOL_TCP)
2705		return inet_csk_compat_setsockopt(sk, level, optname,
2706						  optval, optlen);
2707	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2708}
2709EXPORT_SYMBOL(compat_tcp_setsockopt);
2710#endif
2711
2712/* Return information about state of tcp endpoint in API format. */
2713void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2714{
2715	const struct tcp_sock *tp = tcp_sk(sk);
2716	const struct inet_connection_sock *icsk = inet_csk(sk);
2717	u32 now = tcp_time_stamp;
2718
2719	memset(info, 0, sizeof(*info));
2720
2721	info->tcpi_state = sk->sk_state;
2722	info->tcpi_ca_state = icsk->icsk_ca_state;
2723	info->tcpi_retransmits = icsk->icsk_retransmits;
2724	info->tcpi_probes = icsk->icsk_probes_out;
2725	info->tcpi_backoff = icsk->icsk_backoff;
2726
2727	if (tp->rx_opt.tstamp_ok)
2728		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2729	if (tcp_is_sack(tp))
2730		info->tcpi_options |= TCPI_OPT_SACK;
2731	if (tp->rx_opt.wscale_ok) {
2732		info->tcpi_options |= TCPI_OPT_WSCALE;
2733		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2734		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2735	}
2736
2737	if (tp->ecn_flags & TCP_ECN_OK)
2738		info->tcpi_options |= TCPI_OPT_ECN;
2739	if (tp->ecn_flags & TCP_ECN_SEEN)
2740		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2741
2742	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2743	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2744	info->tcpi_snd_mss = tp->mss_cache;
2745	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2746
2747	if (sk->sk_state == TCP_LISTEN) {
2748		info->tcpi_unacked = sk->sk_ack_backlog;
2749		info->tcpi_sacked = sk->sk_max_ack_backlog;
2750	} else {
2751		info->tcpi_unacked = tp->packets_out;
2752		info->tcpi_sacked = tp->sacked_out;
2753	}
2754	info->tcpi_lost = tp->lost_out;
2755	info->tcpi_retrans = tp->retrans_out;
2756	info->tcpi_fackets = tp->fackets_out;
2757
2758	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2759	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2760	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2761
2762	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2763	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2764	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2765	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2766	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2767	info->tcpi_snd_cwnd = tp->snd_cwnd;
2768	info->tcpi_advmss = tp->advmss;
2769	info->tcpi_reordering = tp->reordering;
2770
2771	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2772	info->tcpi_rcv_space = tp->rcvq_space.space;
2773
2774	info->tcpi_total_retrans = tp->total_retrans;
2775}
2776EXPORT_SYMBOL_GPL(tcp_get_info);
2777
2778static int do_tcp_getsockopt(struct sock *sk, int level,
2779		int optname, char __user *optval, int __user *optlen)
2780{
2781	struct inet_connection_sock *icsk = inet_csk(sk);
2782	struct tcp_sock *tp = tcp_sk(sk);
2783	int val, len;
2784
2785	if (get_user(len, optlen))
2786		return -EFAULT;
2787
2788	len = min_t(unsigned int, len, sizeof(int));
2789
2790	if (len < 0)
2791		return -EINVAL;
2792
2793	switch (optname) {
2794	case TCP_MAXSEG:
2795		val = tp->mss_cache;
2796		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2797			val = tp->rx_opt.user_mss;
2798		if (tp->repair)
2799			val = tp->rx_opt.mss_clamp;
2800		break;
2801	case TCP_NODELAY:
2802		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2803		break;
2804	case TCP_CORK:
2805		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2806		break;
2807	case TCP_KEEPIDLE:
2808		val = keepalive_time_when(tp) / HZ;
2809		break;
2810	case TCP_KEEPINTVL:
2811		val = keepalive_intvl_when(tp) / HZ;
2812		break;
2813	case TCP_KEEPCNT:
2814		val = keepalive_probes(tp);
2815		break;
2816	case TCP_SYNCNT:
2817		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2818		break;
2819	case TCP_LINGER2:
2820		val = tp->linger2;
2821		if (val >= 0)
2822			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2823		break;
2824	case TCP_DEFER_ACCEPT:
2825		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2826				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2827		break;
2828	case TCP_WINDOW_CLAMP:
2829		val = tp->window_clamp;
2830		break;
2831	case TCP_INFO: {
2832		struct tcp_info info;
2833
2834		if (get_user(len, optlen))
2835			return -EFAULT;
2836
2837		tcp_get_info(sk, &info);
2838
2839		len = min_t(unsigned int, len, sizeof(info));
2840		if (put_user(len, optlen))
2841			return -EFAULT;
2842		if (copy_to_user(optval, &info, len))
2843			return -EFAULT;
2844		return 0;
2845	}
2846	case TCP_QUICKACK:
2847		val = !icsk->icsk_ack.pingpong;
2848		break;
2849
2850	case TCP_CONGESTION:
2851		if (get_user(len, optlen))
2852			return -EFAULT;
2853		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2854		if (put_user(len, optlen))
2855			return -EFAULT;
2856		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2857			return -EFAULT;
2858		return 0;
2859
2860	case TCP_COOKIE_TRANSACTIONS: {
2861		struct tcp_cookie_transactions ctd;
2862		struct tcp_cookie_values *cvp = tp->cookie_values;
2863
2864		if (get_user(len, optlen))
2865			return -EFAULT;
2866		if (len < sizeof(ctd))
2867			return -EINVAL;
2868
2869		memset(&ctd, 0, sizeof(ctd));
2870		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2871				   TCP_COOKIE_IN_ALWAYS : 0)
2872				| (tp->rx_opt.cookie_out_never ?
2873				   TCP_COOKIE_OUT_NEVER : 0);
2874
2875		if (cvp != NULL) {
2876			ctd.tcpct_flags |= (cvp->s_data_in ?
2877					    TCP_S_DATA_IN : 0)
2878					 | (cvp->s_data_out ?
2879					    TCP_S_DATA_OUT : 0);
2880
2881			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2882			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2883
2884			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2885			       cvp->cookie_pair_size);
2886			ctd.tcpct_used = cvp->cookie_pair_size;
2887		}
2888
2889		if (put_user(sizeof(ctd), optlen))
2890			return -EFAULT;
2891		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2892			return -EFAULT;
2893		return 0;
2894	}
2895	case TCP_THIN_LINEAR_TIMEOUTS:
2896		val = tp->thin_lto;
2897		break;
2898	case TCP_THIN_DUPACK:
2899		val = tp->thin_dupack;
2900		break;
2901
2902	case TCP_REPAIR:
2903		val = tp->repair;
2904		break;
2905
2906	case TCP_REPAIR_QUEUE:
2907		if (tp->repair)
2908			val = tp->repair_queue;
2909		else
2910			return -EINVAL;
2911		break;
2912
2913	case TCP_QUEUE_SEQ:
2914		if (tp->repair_queue == TCP_SEND_QUEUE)
2915			val = tp->write_seq;
2916		else if (tp->repair_queue == TCP_RECV_QUEUE)
2917			val = tp->rcv_nxt;
2918		else
2919			return -EINVAL;
2920		break;
2921
2922	case TCP_USER_TIMEOUT:
2923		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2924		break;
2925	default:
2926		return -ENOPROTOOPT;
2927	}
2928
2929	if (put_user(len, optlen))
2930		return -EFAULT;
2931	if (copy_to_user(optval, &val, len))
2932		return -EFAULT;
2933	return 0;
2934}
2935
2936int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2937		   int __user *optlen)
2938{
2939	struct inet_connection_sock *icsk = inet_csk(sk);
2940
2941	if (level != SOL_TCP)
2942		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2943						     optval, optlen);
2944	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2945}
2946EXPORT_SYMBOL(tcp_getsockopt);
2947
2948#ifdef CONFIG_COMPAT
2949int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2950			  char __user *optval, int __user *optlen)
2951{
2952	if (level != SOL_TCP)
2953		return inet_csk_compat_getsockopt(sk, level, optname,
2954						  optval, optlen);
2955	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2956}
2957EXPORT_SYMBOL(compat_tcp_getsockopt);
2958#endif
2959
2960struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2961	netdev_features_t features)
2962{
2963	struct sk_buff *segs = ERR_PTR(-EINVAL);
2964	struct tcphdr *th;
2965	unsigned int thlen;
2966	unsigned int seq;
2967	__be32 delta;
2968	unsigned int oldlen;
2969	unsigned int mss;
2970
2971	if (!pskb_may_pull(skb, sizeof(*th)))
2972		goto out;
2973
2974	th = tcp_hdr(skb);
2975	thlen = th->doff * 4;
2976	if (thlen < sizeof(*th))
2977		goto out;
2978
2979	if (!pskb_may_pull(skb, thlen))
2980		goto out;
2981
2982	oldlen = (u16)~skb->len;
2983	__skb_pull(skb, thlen);
2984
2985	mss = skb_shinfo(skb)->gso_size;
2986	if (unlikely(skb->len <= mss))
2987		goto out;
2988
2989	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2990		/* Packet is from an untrusted source, reset gso_segs. */
2991		int type = skb_shinfo(skb)->gso_type;
2992
2993		if (unlikely(type &
2994			     ~(SKB_GSO_TCPV4 |
2995			       SKB_GSO_DODGY |
2996			       SKB_GSO_TCP_ECN |
2997			       SKB_GSO_TCPV6 |
2998			       0) ||
2999			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3000			goto out;
3001
3002		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3003
3004		segs = NULL;
3005		goto out;
3006	}
3007
3008	segs = skb_segment(skb, features);
3009	if (IS_ERR(segs))
3010		goto out;
3011
3012	delta = htonl(oldlen + (thlen + mss));
3013
3014	skb = segs;
3015	th = tcp_hdr(skb);
3016	seq = ntohl(th->seq);
3017
3018	do {
3019		th->fin = th->psh = 0;
3020
3021		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3022				       (__force u32)delta));
3023		if (skb->ip_summed != CHECKSUM_PARTIAL)
3024			th->check =
3025			     csum_fold(csum_partial(skb_transport_header(skb),
3026						    thlen, skb->csum));
3027
3028		seq += mss;
3029		skb = skb->next;
3030		th = tcp_hdr(skb);
3031
3032		th->seq = htonl(seq);
3033		th->cwr = 0;
3034	} while (skb->next);
3035
3036	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3037		      skb->data_len);
3038	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3039				(__force u32)delta));
3040	if (skb->ip_summed != CHECKSUM_PARTIAL)
3041		th->check = csum_fold(csum_partial(skb_transport_header(skb),
3042						   thlen, skb->csum));
3043
3044out:
3045	return segs;
3046}
3047EXPORT_SYMBOL(tcp_tso_segment);
3048
3049struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3050{
3051	struct sk_buff **pp = NULL;
3052	struct sk_buff *p;
3053	struct tcphdr *th;
3054	struct tcphdr *th2;
3055	unsigned int len;
3056	unsigned int thlen;
3057	__be32 flags;
3058	unsigned int mss = 1;
3059	unsigned int hlen;
3060	unsigned int off;
3061	int flush = 1;
3062	int i;
3063
3064	off = skb_gro_offset(skb);
3065	hlen = off + sizeof(*th);
3066	th = skb_gro_header_fast(skb, off);
3067	if (skb_gro_header_hard(skb, hlen)) {
3068		th = skb_gro_header_slow(skb, hlen, off);
3069		if (unlikely(!th))
3070			goto out;
3071	}
3072
3073	thlen = th->doff * 4;
3074	if (thlen < sizeof(*th))
3075		goto out;
3076
3077	hlen = off + thlen;
3078	if (skb_gro_header_hard(skb, hlen)) {
3079		th = skb_gro_header_slow(skb, hlen, off);
3080		if (unlikely(!th))
3081			goto out;
3082	}
3083
3084	skb_gro_pull(skb, thlen);
3085
3086	len = skb_gro_len(skb);
3087	flags = tcp_flag_word(th);
3088
3089	for (; (p = *head); head = &p->next) {
3090		if (!NAPI_GRO_CB(p)->same_flow)
3091			continue;
3092
3093		th2 = tcp_hdr(p);
3094
3095		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3096			NAPI_GRO_CB(p)->same_flow = 0;
3097			continue;
3098		}
3099
3100		goto found;
3101	}
3102
3103	goto out_check_final;
3104
3105found:
3106	flush = NAPI_GRO_CB(p)->flush;
3107	flush |= (__force int)(flags & TCP_FLAG_CWR);
3108	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3109		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3110	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3111	for (i = sizeof(*th); i < thlen; i += 4)
3112		flush |= *(u32 *)((u8 *)th + i) ^
3113			 *(u32 *)((u8 *)th2 + i);
3114
3115	mss = skb_shinfo(p)->gso_size;
3116
3117	flush |= (len - 1) >= mss;
3118	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3119
3120	if (flush || skb_gro_receive(head, skb)) {
3121		mss = 1;
3122		goto out_check_final;
3123	}
3124
3125	p = *head;
3126	th2 = tcp_hdr(p);
3127	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3128
3129out_check_final:
3130	flush = len < mss;
3131	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3132					TCP_FLAG_RST | TCP_FLAG_SYN |
3133					TCP_FLAG_FIN));
3134
3135	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3136		pp = head;
3137
3138out:
3139	NAPI_GRO_CB(skb)->flush |= flush;
3140
3141	return pp;
3142}
3143EXPORT_SYMBOL(tcp_gro_receive);
3144
3145int tcp_gro_complete(struct sk_buff *skb)
3146{
3147	struct tcphdr *th = tcp_hdr(skb);
3148
3149	skb->csum_start = skb_transport_header(skb) - skb->head;
3150	skb->csum_offset = offsetof(struct tcphdr, check);
3151	skb->ip_summed = CHECKSUM_PARTIAL;
3152
3153	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3154
3155	if (th->cwr)
3156		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3157
3158	return 0;
3159}
3160EXPORT_SYMBOL(tcp_gro_complete);
3161
3162#ifdef CONFIG_TCP_MD5SIG
3163static unsigned long tcp_md5sig_users;
3164static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3165static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3166
3167static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3168{
3169	int cpu;
3170
3171	for_each_possible_cpu(cpu) {
3172		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3173
3174		if (p->md5_desc.tfm)
3175			crypto_free_hash(p->md5_desc.tfm);
3176	}
3177	free_percpu(pool);
3178}
3179
3180void tcp_free_md5sig_pool(void)
3181{
3182	struct tcp_md5sig_pool __percpu *pool = NULL;
3183
3184	spin_lock_bh(&tcp_md5sig_pool_lock);
3185	if (--tcp_md5sig_users == 0) {
3186		pool = tcp_md5sig_pool;
3187		tcp_md5sig_pool = NULL;
3188	}
3189	spin_unlock_bh(&tcp_md5sig_pool_lock);
3190	if (pool)
3191		__tcp_free_md5sig_pool(pool);
3192}
3193EXPORT_SYMBOL(tcp_free_md5sig_pool);
3194
3195static struct tcp_md5sig_pool __percpu *
3196__tcp_alloc_md5sig_pool(struct sock *sk)
3197{
3198	int cpu;
3199	struct tcp_md5sig_pool __percpu *pool;
3200
3201	pool = alloc_percpu(struct tcp_md5sig_pool);
3202	if (!pool)
3203		return NULL;
3204
3205	for_each_possible_cpu(cpu) {
3206		struct crypto_hash *hash;
3207
3208		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3209		if (!hash || IS_ERR(hash))
3210			goto out_free;
3211
3212		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3213	}
3214	return pool;
3215out_free:
3216	__tcp_free_md5sig_pool(pool);
3217	return NULL;
3218}
3219
3220struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3221{
3222	struct tcp_md5sig_pool __percpu *pool;
3223	int alloc = 0;
3224
3225retry:
3226	spin_lock_bh(&tcp_md5sig_pool_lock);
3227	pool = tcp_md5sig_pool;
3228	if (tcp_md5sig_users++ == 0) {
3229		alloc = 1;
3230		spin_unlock_bh(&tcp_md5sig_pool_lock);
3231	} else if (!pool) {
3232		tcp_md5sig_users--;
3233		spin_unlock_bh(&tcp_md5sig_pool_lock);
3234		cpu_relax();
3235		goto retry;
3236	} else
3237		spin_unlock_bh(&tcp_md5sig_pool_lock);
3238
3239	if (alloc) {
3240		/* we cannot hold spinlock here because this may sleep. */
3241		struct tcp_md5sig_pool __percpu *p;
3242
3243		p = __tcp_alloc_md5sig_pool(sk);
3244		spin_lock_bh(&tcp_md5sig_pool_lock);
3245		if (!p) {
3246			tcp_md5sig_users--;
3247			spin_unlock_bh(&tcp_md5sig_pool_lock);
3248			return NULL;
3249		}
3250		pool = tcp_md5sig_pool;
3251		if (pool) {
3252			/* oops, it has already been assigned. */
3253			spin_unlock_bh(&tcp_md5sig_pool_lock);
3254			__tcp_free_md5sig_pool(p);
3255		} else {
3256			tcp_md5sig_pool = pool = p;
3257			spin_unlock_bh(&tcp_md5sig_pool_lock);
3258		}
3259	}
3260	return pool;
3261}
3262EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3263
3264
3265/**
3266 *	tcp_get_md5sig_pool - get md5sig_pool for this user
3267 *
3268 *	We use percpu structure, so if we succeed, we exit with preemption
3269 *	and BH disabled, to make sure another thread or softirq handling
3270 *	wont try to get same context.
3271 */
3272struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3273{
3274	struct tcp_md5sig_pool __percpu *p;
3275
3276	local_bh_disable();
3277
3278	spin_lock(&tcp_md5sig_pool_lock);
3279	p = tcp_md5sig_pool;
3280	if (p)
3281		tcp_md5sig_users++;
3282	spin_unlock(&tcp_md5sig_pool_lock);
3283
3284	if (p)
3285		return this_cpu_ptr(p);
3286
3287	local_bh_enable();
3288	return NULL;
3289}
3290EXPORT_SYMBOL(tcp_get_md5sig_pool);
3291
3292void tcp_put_md5sig_pool(void)
3293{
3294	local_bh_enable();
3295	tcp_free_md5sig_pool();
3296}
3297EXPORT_SYMBOL(tcp_put_md5sig_pool);
3298
3299int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3300			const struct tcphdr *th)
3301{
3302	struct scatterlist sg;
3303	struct tcphdr hdr;
3304	int err;
3305
3306	/* We are not allowed to change tcphdr, make a local copy */
3307	memcpy(&hdr, th, sizeof(hdr));
3308	hdr.check = 0;
3309
3310	/* options aren't included in the hash */
3311	sg_init_one(&sg, &hdr, sizeof(hdr));
3312	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3313	return err;
3314}
3315EXPORT_SYMBOL(tcp_md5_hash_header);
3316
3317int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3318			  const struct sk_buff *skb, unsigned int header_len)
3319{
3320	struct scatterlist sg;
3321	const struct tcphdr *tp = tcp_hdr(skb);
3322	struct hash_desc *desc = &hp->md5_desc;
3323	unsigned int i;
3324	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3325					   skb_headlen(skb) - header_len : 0;
3326	const struct skb_shared_info *shi = skb_shinfo(skb);
3327	struct sk_buff *frag_iter;
3328
3329	sg_init_table(&sg, 1);
3330
3331	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3332	if (crypto_hash_update(desc, &sg, head_data_len))
3333		return 1;
3334
3335	for (i = 0; i < shi->nr_frags; ++i) {
3336		const struct skb_frag_struct *f = &shi->frags[i];
3337		struct page *page = skb_frag_page(f);
3338		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3339		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3340			return 1;
3341	}
3342
3343	skb_walk_frags(skb, frag_iter)
3344		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3345			return 1;
3346
3347	return 0;
3348}
3349EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3350
3351int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3352{
3353	struct scatterlist sg;
3354
3355	sg_init_one(&sg, key->key, key->keylen);
3356	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3357}
3358EXPORT_SYMBOL(tcp_md5_hash_key);
3359
3360#endif
3361
3362/**
3363 * Each Responder maintains up to two secret values concurrently for
3364 * efficient secret rollover.  Each secret value has 4 states:
3365 *
3366 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3367 *    Generates new Responder-Cookies, but not yet used for primary
3368 *    verification.  This is a short-term state, typically lasting only
3369 *    one round trip time (RTT).
3370 *
3371 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3372 *    Used both for generation and primary verification.
3373 *
3374 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3375 *    Used for verification, until the first failure that can be
3376 *    verified by the newer Generating secret.  At that time, this
3377 *    cookie's state is changed to Secondary, and the Generating
3378 *    cookie's state is changed to Primary.  This is a short-term state,
3379 *    typically lasting only one round trip time (RTT).
3380 *
3381 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3382 *    Used for secondary verification, after primary verification
3383 *    failures.  This state lasts no more than twice the Maximum Segment
3384 *    Lifetime (2MSL).  Then, the secret is discarded.
3385 */
3386struct tcp_cookie_secret {
3387	/* The secret is divided into two parts.  The digest part is the
3388	 * equivalent of previously hashing a secret and saving the state,
3389	 * and serves as an initialization vector (IV).  The message part
3390	 * serves as the trailing secret.
3391	 */
3392	u32				secrets[COOKIE_WORKSPACE_WORDS];
3393	unsigned long			expires;
3394};
3395
3396#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3397#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3398#define TCP_SECRET_LIFE (HZ * 600)
3399
3400static struct tcp_cookie_secret tcp_secret_one;
3401static struct tcp_cookie_secret tcp_secret_two;
3402
3403/* Essentially a circular list, without dynamic allocation. */
3404static struct tcp_cookie_secret *tcp_secret_generating;
3405static struct tcp_cookie_secret *tcp_secret_primary;
3406static struct tcp_cookie_secret *tcp_secret_retiring;
3407static struct tcp_cookie_secret *tcp_secret_secondary;
3408
3409static DEFINE_SPINLOCK(tcp_secret_locker);
3410
3411/* Select a pseudo-random word in the cookie workspace.
3412 */
3413static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3414{
3415	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3416}
3417
3418/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3419 * Called in softirq context.
3420 * Returns: 0 for success.
3421 */
3422int tcp_cookie_generator(u32 *bakery)
3423{
3424	unsigned long jiffy = jiffies;
3425
3426	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3427		spin_lock_bh(&tcp_secret_locker);
3428		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3429			/* refreshed by another */
3430			memcpy(bakery,
3431			       &tcp_secret_generating->secrets[0],
3432			       COOKIE_WORKSPACE_WORDS);
3433		} else {
3434			/* still needs refreshing */
3435			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3436
3437			/* The first time, paranoia assumes that the
3438			 * randomization function isn't as strong.  But,
3439			 * this secret initialization is delayed until
3440			 * the last possible moment (packet arrival).
3441			 * Although that time is observable, it is
3442			 * unpredictably variable.  Mash in the most
3443			 * volatile clock bits available, and expire the
3444			 * secret extra quickly.
3445			 */
3446			if (unlikely(tcp_secret_primary->expires ==
3447				     tcp_secret_secondary->expires)) {
3448				struct timespec tv;
3449
3450				getnstimeofday(&tv);
3451				bakery[COOKIE_DIGEST_WORDS+0] ^=
3452					(u32)tv.tv_nsec;
3453
3454				tcp_secret_secondary->expires = jiffy
3455					+ TCP_SECRET_1MSL
3456					+ (0x0f & tcp_cookie_work(bakery, 0));
3457			} else {
3458				tcp_secret_secondary->expires = jiffy
3459					+ TCP_SECRET_LIFE
3460					+ (0xff & tcp_cookie_work(bakery, 1));
3461				tcp_secret_primary->expires = jiffy
3462					+ TCP_SECRET_2MSL
3463					+ (0x1f & tcp_cookie_work(bakery, 2));
3464			}
3465			memcpy(&tcp_secret_secondary->secrets[0],
3466			       bakery, COOKIE_WORKSPACE_WORDS);
3467
3468			rcu_assign_pointer(tcp_secret_generating,
3469					   tcp_secret_secondary);
3470			rcu_assign_pointer(tcp_secret_retiring,
3471					   tcp_secret_primary);
3472			/*
3473			 * Neither call_rcu() nor synchronize_rcu() needed.
3474			 * Retiring data is not freed.  It is replaced after
3475			 * further (locked) pointer updates, and a quiet time
3476			 * (minimum 1MSL, maximum LIFE - 2MSL).
3477			 */
3478		}
3479		spin_unlock_bh(&tcp_secret_locker);
3480	} else {
3481		rcu_read_lock_bh();
3482		memcpy(bakery,
3483		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3484		       COOKIE_WORKSPACE_WORDS);
3485		rcu_read_unlock_bh();
3486	}
3487	return 0;
3488}
3489EXPORT_SYMBOL(tcp_cookie_generator);
3490
3491void tcp_done(struct sock *sk)
3492{
3493	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3494		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3495
3496	tcp_set_state(sk, TCP_CLOSE);
3497	tcp_clear_xmit_timers(sk);
3498
3499	sk->sk_shutdown = SHUTDOWN_MASK;
3500
3501	if (!sock_flag(sk, SOCK_DEAD))
3502		sk->sk_state_change(sk);
3503	else
3504		inet_csk_destroy_sock(sk);
3505}
3506EXPORT_SYMBOL_GPL(tcp_done);
3507
3508extern struct tcp_congestion_ops tcp_reno;
3509
3510static __initdata unsigned long thash_entries;
3511static int __init set_thash_entries(char *str)
3512{
3513	if (!str)
3514		return 0;
3515	thash_entries = simple_strtoul(str, &str, 0);
3516	return 1;
3517}
3518__setup("thash_entries=", set_thash_entries);
3519
3520void tcp_init_mem(struct net *net)
3521{
3522	unsigned long limit = nr_free_buffer_pages() / 8;
3523	limit = max(limit, 128UL);
3524	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3525	net->ipv4.sysctl_tcp_mem[1] = limit;
3526	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3527}
3528
3529void __init tcp_init(void)
3530{
3531	struct sk_buff *skb = NULL;
3532	unsigned long limit;
3533	int max_share, cnt;
3534	unsigned int i;
3535	unsigned long jiffy = jiffies;
3536
3537	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3538
3539	percpu_counter_init(&tcp_sockets_allocated, 0);
3540	percpu_counter_init(&tcp_orphan_count, 0);
3541	tcp_hashinfo.bind_bucket_cachep =
3542		kmem_cache_create("tcp_bind_bucket",
3543				  sizeof(struct inet_bind_bucket), 0,
3544				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3545
3546	/* Size and allocate the main established and bind bucket
3547	 * hash tables.
3548	 *
3549	 * The methodology is similar to that of the buffer cache.
3550	 */
3551	tcp_hashinfo.ehash =
3552		alloc_large_system_hash("TCP established",
3553					sizeof(struct inet_ehash_bucket),
3554					thash_entries,
3555					(totalram_pages >= 128 * 1024) ?
3556					13 : 15,
3557					0,
3558					NULL,
3559					&tcp_hashinfo.ehash_mask,
3560					thash_entries ? 0 : 512 * 1024);
3561	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3562		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3563		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3564	}
3565	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3566		panic("TCP: failed to alloc ehash_locks");
3567	tcp_hashinfo.bhash =
3568		alloc_large_system_hash("TCP bind",
3569					sizeof(struct inet_bind_hashbucket),
3570					tcp_hashinfo.ehash_mask + 1,
3571					(totalram_pages >= 128 * 1024) ?
3572					13 : 15,
3573					0,
3574					&tcp_hashinfo.bhash_size,
3575					NULL,
3576					64 * 1024);
3577	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3578	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3579		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3580		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3581	}
3582
3583
3584	cnt = tcp_hashinfo.ehash_mask + 1;
3585
3586	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3587	sysctl_tcp_max_orphans = cnt / 2;
3588	sysctl_max_syn_backlog = max(128, cnt / 256);
3589
3590	tcp_init_mem(&init_net);
3591	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3592	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3593	max_share = min(4UL*1024*1024, limit);
3594
3595	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3596	sysctl_tcp_wmem[1] = 16*1024;
3597	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3598
3599	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3600	sysctl_tcp_rmem[1] = 87380;
3601	sysctl_tcp_rmem[2] = max(87380, max_share);
3602
3603	pr_info("Hash tables configured (established %u bind %u)\n",
3604		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3605
3606	tcp_register_congestion_control(&tcp_reno);
3607
3608	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3609	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3610	tcp_secret_one.expires = jiffy; /* past due */
3611	tcp_secret_two.expires = jiffy; /* past due */
3612	tcp_secret_generating = &tcp_secret_one;
3613	tcp_secret_primary = &tcp_secret_one;
3614	tcp_secret_retiring = &tcp_secret_two;
3615	tcp_secret_secondary = &tcp_secret_two;
3616}
3617