tcp.c revision 3ab5aee7fe840b5b1b35a8d1ac11c3de5281e611
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#include <linux/kernel.h>
249#include <linux/module.h>
250#include <linux/types.h>
251#include <linux/fcntl.h>
252#include <linux/poll.h>
253#include <linux/init.h>
254#include <linux/fs.h>
255#include <linux/skbuff.h>
256#include <linux/scatterlist.h>
257#include <linux/splice.h>
258#include <linux/net.h>
259#include <linux/socket.h>
260#include <linux/random.h>
261#include <linux/bootmem.h>
262#include <linux/highmem.h>
263#include <linux/swap.h>
264#include <linux/cache.h>
265#include <linux/err.h>
266#include <linux/crypto.h>
267
268#include <net/icmp.h>
269#include <net/tcp.h>
270#include <net/xfrm.h>
271#include <net/ip.h>
272#include <net/netdma.h>
273#include <net/sock.h>
274
275#include <asm/uaccess.h>
276#include <asm/ioctls.h>
277
278int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
279
280atomic_t tcp_orphan_count = ATOMIC_INIT(0);
281
282EXPORT_SYMBOL_GPL(tcp_orphan_count);
283
284int sysctl_tcp_mem[3] __read_mostly;
285int sysctl_tcp_wmem[3] __read_mostly;
286int sysctl_tcp_rmem[3] __read_mostly;
287
288EXPORT_SYMBOL(sysctl_tcp_mem);
289EXPORT_SYMBOL(sysctl_tcp_rmem);
290EXPORT_SYMBOL(sysctl_tcp_wmem);
291
292atomic_t tcp_memory_allocated;	/* Current allocated memory. */
293atomic_t tcp_sockets_allocated;	/* Current number of TCP sockets. */
294
295EXPORT_SYMBOL(tcp_memory_allocated);
296EXPORT_SYMBOL(tcp_sockets_allocated);
297
298/*
299 * TCP splice context
300 */
301struct tcp_splice_state {
302	struct pipe_inode_info *pipe;
303	size_t len;
304	unsigned int flags;
305};
306
307/*
308 * Pressure flag: try to collapse.
309 * Technical note: it is used by multiple contexts non atomically.
310 * All the __sk_mem_schedule() is of this nature: accounting
311 * is strict, actions are advisory and have some latency.
312 */
313int tcp_memory_pressure __read_mostly;
314
315EXPORT_SYMBOL(tcp_memory_pressure);
316
317void tcp_enter_memory_pressure(struct sock *sk)
318{
319	if (!tcp_memory_pressure) {
320		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
321		tcp_memory_pressure = 1;
322	}
323}
324
325EXPORT_SYMBOL(tcp_enter_memory_pressure);
326
327/*
328 *	Wait for a TCP event.
329 *
330 *	Note that we don't need to lock the socket, as the upper poll layers
331 *	take care of normal races (between the test and the event) and we don't
332 *	go look at any of the socket buffers directly.
333 */
334unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
335{
336	unsigned int mask;
337	struct sock *sk = sock->sk;
338	struct tcp_sock *tp = tcp_sk(sk);
339
340	poll_wait(file, sk->sk_sleep, wait);
341	if (sk->sk_state == TCP_LISTEN)
342		return inet_csk_listen_poll(sk);
343
344	/* Socket is not locked. We are protected from async events
345	 * by poll logic and correct handling of state changes
346	 * made by other threads is impossible in any case.
347	 */
348
349	mask = 0;
350	if (sk->sk_err)
351		mask = POLLERR;
352
353	/*
354	 * POLLHUP is certainly not done right. But poll() doesn't
355	 * have a notion of HUP in just one direction, and for a
356	 * socket the read side is more interesting.
357	 *
358	 * Some poll() documentation says that POLLHUP is incompatible
359	 * with the POLLOUT/POLLWR flags, so somebody should check this
360	 * all. But careful, it tends to be safer to return too many
361	 * bits than too few, and you can easily break real applications
362	 * if you don't tell them that something has hung up!
363	 *
364	 * Check-me.
365	 *
366	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
367	 * our fs/select.c). It means that after we received EOF,
368	 * poll always returns immediately, making impossible poll() on write()
369	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
370	 * if and only if shutdown has been made in both directions.
371	 * Actually, it is interesting to look how Solaris and DUX
372	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
373	 * then we could set it on SND_SHUTDOWN. BTW examples given
374	 * in Stevens' books assume exactly this behaviour, it explains
375	 * why POLLHUP is incompatible with POLLOUT.	--ANK
376	 *
377	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
378	 * blocking on fresh not-connected or disconnected socket. --ANK
379	 */
380	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
381		mask |= POLLHUP;
382	if (sk->sk_shutdown & RCV_SHUTDOWN)
383		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
384
385	/* Connected? */
386	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
387		int target = sock_rcvlowat(sk, 0, INT_MAX);
388
389		if (tp->urg_seq == tp->copied_seq &&
390		    !sock_flag(sk, SOCK_URGINLINE) &&
391		    tp->urg_data)
392			target--;
393
394		/* Potential race condition. If read of tp below will
395		 * escape above sk->sk_state, we can be illegally awaken
396		 * in SYN_* states. */
397		if (tp->rcv_nxt - tp->copied_seq >= target)
398			mask |= POLLIN | POLLRDNORM;
399
400		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
401			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
402				mask |= POLLOUT | POLLWRNORM;
403			} else {  /* send SIGIO later */
404				set_bit(SOCK_ASYNC_NOSPACE,
405					&sk->sk_socket->flags);
406				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
407
408				/* Race breaker. If space is freed after
409				 * wspace test but before the flags are set,
410				 * IO signal will be lost.
411				 */
412				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
413					mask |= POLLOUT | POLLWRNORM;
414			}
415		}
416
417		if (tp->urg_data & TCP_URG_VALID)
418			mask |= POLLPRI;
419	}
420	return mask;
421}
422
423int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
424{
425	struct tcp_sock *tp = tcp_sk(sk);
426	int answ;
427
428	switch (cmd) {
429	case SIOCINQ:
430		if (sk->sk_state == TCP_LISTEN)
431			return -EINVAL;
432
433		lock_sock(sk);
434		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
435			answ = 0;
436		else if (sock_flag(sk, SOCK_URGINLINE) ||
437			 !tp->urg_data ||
438			 before(tp->urg_seq, tp->copied_seq) ||
439			 !before(tp->urg_seq, tp->rcv_nxt)) {
440			answ = tp->rcv_nxt - tp->copied_seq;
441
442			/* Subtract 1, if FIN is in queue. */
443			if (answ && !skb_queue_empty(&sk->sk_receive_queue))
444				answ -=
445		       tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
446		} else
447			answ = tp->urg_seq - tp->copied_seq;
448		release_sock(sk);
449		break;
450	case SIOCATMARK:
451		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
452		break;
453	case SIOCOUTQ:
454		if (sk->sk_state == TCP_LISTEN)
455			return -EINVAL;
456
457		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
458			answ = 0;
459		else
460			answ = tp->write_seq - tp->snd_una;
461		break;
462	default:
463		return -ENOIOCTLCMD;
464	}
465
466	return put_user(answ, (int __user *)arg);
467}
468
469static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
470{
471	TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
472	tp->pushed_seq = tp->write_seq;
473}
474
475static inline int forced_push(struct tcp_sock *tp)
476{
477	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
478}
479
480static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
481{
482	struct tcp_sock *tp = tcp_sk(sk);
483	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
484
485	skb->csum    = 0;
486	tcb->seq     = tcb->end_seq = tp->write_seq;
487	tcb->flags   = TCPCB_FLAG_ACK;
488	tcb->sacked  = 0;
489	skb_header_release(skb);
490	tcp_add_write_queue_tail(sk, skb);
491	sk->sk_wmem_queued += skb->truesize;
492	sk_mem_charge(sk, skb->truesize);
493	if (tp->nonagle & TCP_NAGLE_PUSH)
494		tp->nonagle &= ~TCP_NAGLE_PUSH;
495}
496
497static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
498				struct sk_buff *skb)
499{
500	if (flags & MSG_OOB)
501		tp->snd_up = tp->write_seq;
502}
503
504static inline void tcp_push(struct sock *sk, int flags, int mss_now,
505			    int nonagle)
506{
507	struct tcp_sock *tp = tcp_sk(sk);
508
509	if (tcp_send_head(sk)) {
510		struct sk_buff *skb = tcp_write_queue_tail(sk);
511		if (!(flags & MSG_MORE) || forced_push(tp))
512			tcp_mark_push(tp, skb);
513		tcp_mark_urg(tp, flags, skb);
514		__tcp_push_pending_frames(sk, mss_now,
515					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
516	}
517}
518
519static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
520				unsigned int offset, size_t len)
521{
522	struct tcp_splice_state *tss = rd_desc->arg.data;
523
524	return skb_splice_bits(skb, offset, tss->pipe, tss->len, tss->flags);
525}
526
527static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
528{
529	/* Store TCP splice context information in read_descriptor_t. */
530	read_descriptor_t rd_desc = {
531		.arg.data = tss,
532	};
533
534	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
535}
536
537/**
538 *  tcp_splice_read - splice data from TCP socket to a pipe
539 * @sock:	socket to splice from
540 * @ppos:	position (not valid)
541 * @pipe:	pipe to splice to
542 * @len:	number of bytes to splice
543 * @flags:	splice modifier flags
544 *
545 * Description:
546 *    Will read pages from given socket and fill them into a pipe.
547 *
548 **/
549ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
550			struct pipe_inode_info *pipe, size_t len,
551			unsigned int flags)
552{
553	struct sock *sk = sock->sk;
554	struct tcp_splice_state tss = {
555		.pipe = pipe,
556		.len = len,
557		.flags = flags,
558	};
559	long timeo;
560	ssize_t spliced;
561	int ret;
562
563	/*
564	 * We can't seek on a socket input
565	 */
566	if (unlikely(*ppos))
567		return -ESPIPE;
568
569	ret = spliced = 0;
570
571	lock_sock(sk);
572
573	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
574	while (tss.len) {
575		ret = __tcp_splice_read(sk, &tss);
576		if (ret < 0)
577			break;
578		else if (!ret) {
579			if (spliced)
580				break;
581			if (flags & SPLICE_F_NONBLOCK) {
582				ret = -EAGAIN;
583				break;
584			}
585			if (sock_flag(sk, SOCK_DONE))
586				break;
587			if (sk->sk_err) {
588				ret = sock_error(sk);
589				break;
590			}
591			if (sk->sk_shutdown & RCV_SHUTDOWN)
592				break;
593			if (sk->sk_state == TCP_CLOSE) {
594				/*
595				 * This occurs when user tries to read
596				 * from never connected socket.
597				 */
598				if (!sock_flag(sk, SOCK_DONE))
599					ret = -ENOTCONN;
600				break;
601			}
602			if (!timeo) {
603				ret = -EAGAIN;
604				break;
605			}
606			sk_wait_data(sk, &timeo);
607			if (signal_pending(current)) {
608				ret = sock_intr_errno(timeo);
609				break;
610			}
611			continue;
612		}
613		tss.len -= ret;
614		spliced += ret;
615
616		release_sock(sk);
617		lock_sock(sk);
618
619		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
620		    (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo ||
621		    signal_pending(current))
622			break;
623	}
624
625	release_sock(sk);
626
627	if (spliced)
628		return spliced;
629
630	return ret;
631}
632
633struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
634{
635	struct sk_buff *skb;
636
637	/* The TCP header must be at least 32-bit aligned.  */
638	size = ALIGN(size, 4);
639
640	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
641	if (skb) {
642		if (sk_wmem_schedule(sk, skb->truesize)) {
643			/*
644			 * Make sure that we have exactly size bytes
645			 * available to the caller, no more, no less.
646			 */
647			skb_reserve(skb, skb_tailroom(skb) - size);
648			return skb;
649		}
650		__kfree_skb(skb);
651	} else {
652		sk->sk_prot->enter_memory_pressure(sk);
653		sk_stream_moderate_sndbuf(sk);
654	}
655	return NULL;
656}
657
658static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
659			 size_t psize, int flags)
660{
661	struct tcp_sock *tp = tcp_sk(sk);
662	int mss_now, size_goal;
663	int err;
664	ssize_t copied;
665	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
666
667	/* Wait for a connection to finish. */
668	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
669		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
670			goto out_err;
671
672	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
673
674	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
675	size_goal = tp->xmit_size_goal;
676	copied = 0;
677
678	err = -EPIPE;
679	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
680		goto do_error;
681
682	while (psize > 0) {
683		struct sk_buff *skb = tcp_write_queue_tail(sk);
684		struct page *page = pages[poffset / PAGE_SIZE];
685		int copy, i, can_coalesce;
686		int offset = poffset % PAGE_SIZE;
687		int size = min_t(size_t, psize, PAGE_SIZE - offset);
688
689		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
690new_segment:
691			if (!sk_stream_memory_free(sk))
692				goto wait_for_sndbuf;
693
694			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
695			if (!skb)
696				goto wait_for_memory;
697
698			skb_entail(sk, skb);
699			copy = size_goal;
700		}
701
702		if (copy > size)
703			copy = size;
704
705		i = skb_shinfo(skb)->nr_frags;
706		can_coalesce = skb_can_coalesce(skb, i, page, offset);
707		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
708			tcp_mark_push(tp, skb);
709			goto new_segment;
710		}
711		if (!sk_wmem_schedule(sk, copy))
712			goto wait_for_memory;
713
714		if (can_coalesce) {
715			skb_shinfo(skb)->frags[i - 1].size += copy;
716		} else {
717			get_page(page);
718			skb_fill_page_desc(skb, i, page, offset, copy);
719		}
720
721		skb->len += copy;
722		skb->data_len += copy;
723		skb->truesize += copy;
724		sk->sk_wmem_queued += copy;
725		sk_mem_charge(sk, copy);
726		skb->ip_summed = CHECKSUM_PARTIAL;
727		tp->write_seq += copy;
728		TCP_SKB_CB(skb)->end_seq += copy;
729		skb_shinfo(skb)->gso_segs = 0;
730
731		if (!copied)
732			TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
733
734		copied += copy;
735		poffset += copy;
736		if (!(psize -= copy))
737			goto out;
738
739		if (skb->len < size_goal || (flags & MSG_OOB))
740			continue;
741
742		if (forced_push(tp)) {
743			tcp_mark_push(tp, skb);
744			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
745		} else if (skb == tcp_send_head(sk))
746			tcp_push_one(sk, mss_now);
747		continue;
748
749wait_for_sndbuf:
750		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
751wait_for_memory:
752		if (copied)
753			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
754
755		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
756			goto do_error;
757
758		mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
759		size_goal = tp->xmit_size_goal;
760	}
761
762out:
763	if (copied)
764		tcp_push(sk, flags, mss_now, tp->nonagle);
765	return copied;
766
767do_error:
768	if (copied)
769		goto out;
770out_err:
771	return sk_stream_error(sk, flags, err);
772}
773
774ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
775		     size_t size, int flags)
776{
777	ssize_t res;
778	struct sock *sk = sock->sk;
779
780	if (!(sk->sk_route_caps & NETIF_F_SG) ||
781	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
782		return sock_no_sendpage(sock, page, offset, size, flags);
783
784	lock_sock(sk);
785	TCP_CHECK_TIMER(sk);
786	res = do_tcp_sendpages(sk, &page, offset, size, flags);
787	TCP_CHECK_TIMER(sk);
788	release_sock(sk);
789	return res;
790}
791
792#define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
793#define TCP_OFF(sk)	(sk->sk_sndmsg_off)
794
795static inline int select_size(struct sock *sk)
796{
797	struct tcp_sock *tp = tcp_sk(sk);
798	int tmp = tp->mss_cache;
799
800	if (sk->sk_route_caps & NETIF_F_SG) {
801		if (sk_can_gso(sk))
802			tmp = 0;
803		else {
804			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
805
806			if (tmp >= pgbreak &&
807			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
808				tmp = pgbreak;
809		}
810	}
811
812	return tmp;
813}
814
815int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
816		size_t size)
817{
818	struct sock *sk = sock->sk;
819	struct iovec *iov;
820	struct tcp_sock *tp = tcp_sk(sk);
821	struct sk_buff *skb;
822	int iovlen, flags;
823	int mss_now, size_goal;
824	int err, copied;
825	long timeo;
826
827	lock_sock(sk);
828	TCP_CHECK_TIMER(sk);
829
830	flags = msg->msg_flags;
831	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
832
833	/* Wait for a connection to finish. */
834	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
835		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
836			goto out_err;
837
838	/* This should be in poll */
839	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
840
841	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
842	size_goal = tp->xmit_size_goal;
843
844	/* Ok commence sending. */
845	iovlen = msg->msg_iovlen;
846	iov = msg->msg_iov;
847	copied = 0;
848
849	err = -EPIPE;
850	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
851		goto do_error;
852
853	while (--iovlen >= 0) {
854		int seglen = iov->iov_len;
855		unsigned char __user *from = iov->iov_base;
856
857		iov++;
858
859		while (seglen > 0) {
860			int copy;
861
862			skb = tcp_write_queue_tail(sk);
863
864			if (!tcp_send_head(sk) ||
865			    (copy = size_goal - skb->len) <= 0) {
866
867new_segment:
868				/* Allocate new segment. If the interface is SG,
869				 * allocate skb fitting to single page.
870				 */
871				if (!sk_stream_memory_free(sk))
872					goto wait_for_sndbuf;
873
874				skb = sk_stream_alloc_skb(sk, select_size(sk),
875						sk->sk_allocation);
876				if (!skb)
877					goto wait_for_memory;
878
879				/*
880				 * Check whether we can use HW checksum.
881				 */
882				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
883					skb->ip_summed = CHECKSUM_PARTIAL;
884
885				skb_entail(sk, skb);
886				copy = size_goal;
887			}
888
889			/* Try to append data to the end of skb. */
890			if (copy > seglen)
891				copy = seglen;
892
893			/* Where to copy to? */
894			if (skb_tailroom(skb) > 0) {
895				/* We have some space in skb head. Superb! */
896				if (copy > skb_tailroom(skb))
897					copy = skb_tailroom(skb);
898				if ((err = skb_add_data(skb, from, copy)) != 0)
899					goto do_fault;
900			} else {
901				int merge = 0;
902				int i = skb_shinfo(skb)->nr_frags;
903				struct page *page = TCP_PAGE(sk);
904				int off = TCP_OFF(sk);
905
906				if (skb_can_coalesce(skb, i, page, off) &&
907				    off != PAGE_SIZE) {
908					/* We can extend the last page
909					 * fragment. */
910					merge = 1;
911				} else if (i == MAX_SKB_FRAGS ||
912					   (!i &&
913					   !(sk->sk_route_caps & NETIF_F_SG))) {
914					/* Need to add new fragment and cannot
915					 * do this because interface is non-SG,
916					 * or because all the page slots are
917					 * busy. */
918					tcp_mark_push(tp, skb);
919					goto new_segment;
920				} else if (page) {
921					if (off == PAGE_SIZE) {
922						put_page(page);
923						TCP_PAGE(sk) = page = NULL;
924						off = 0;
925					}
926				} else
927					off = 0;
928
929				if (copy > PAGE_SIZE - off)
930					copy = PAGE_SIZE - off;
931
932				if (!sk_wmem_schedule(sk, copy))
933					goto wait_for_memory;
934
935				if (!page) {
936					/* Allocate new cache page. */
937					if (!(page = sk_stream_alloc_page(sk)))
938						goto wait_for_memory;
939				}
940
941				/* Time to copy data. We are close to
942				 * the end! */
943				err = skb_copy_to_page(sk, from, skb, page,
944						       off, copy);
945				if (err) {
946					/* If this page was new, give it to the
947					 * socket so it does not get leaked.
948					 */
949					if (!TCP_PAGE(sk)) {
950						TCP_PAGE(sk) = page;
951						TCP_OFF(sk) = 0;
952					}
953					goto do_error;
954				}
955
956				/* Update the skb. */
957				if (merge) {
958					skb_shinfo(skb)->frags[i - 1].size +=
959									copy;
960				} else {
961					skb_fill_page_desc(skb, i, page, off, copy);
962					if (TCP_PAGE(sk)) {
963						get_page(page);
964					} else if (off + copy < PAGE_SIZE) {
965						get_page(page);
966						TCP_PAGE(sk) = page;
967					}
968				}
969
970				TCP_OFF(sk) = off + copy;
971			}
972
973			if (!copied)
974				TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
975
976			tp->write_seq += copy;
977			TCP_SKB_CB(skb)->end_seq += copy;
978			skb_shinfo(skb)->gso_segs = 0;
979
980			from += copy;
981			copied += copy;
982			if ((seglen -= copy) == 0 && iovlen == 0)
983				goto out;
984
985			if (skb->len < size_goal || (flags & MSG_OOB))
986				continue;
987
988			if (forced_push(tp)) {
989				tcp_mark_push(tp, skb);
990				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
991			} else if (skb == tcp_send_head(sk))
992				tcp_push_one(sk, mss_now);
993			continue;
994
995wait_for_sndbuf:
996			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
997wait_for_memory:
998			if (copied)
999				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1000
1001			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1002				goto do_error;
1003
1004			mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
1005			size_goal = tp->xmit_size_goal;
1006		}
1007	}
1008
1009out:
1010	if (copied)
1011		tcp_push(sk, flags, mss_now, tp->nonagle);
1012	TCP_CHECK_TIMER(sk);
1013	release_sock(sk);
1014	return copied;
1015
1016do_fault:
1017	if (!skb->len) {
1018		tcp_unlink_write_queue(skb, sk);
1019		/* It is the one place in all of TCP, except connection
1020		 * reset, where we can be unlinking the send_head.
1021		 */
1022		tcp_check_send_head(sk, skb);
1023		sk_wmem_free_skb(sk, skb);
1024	}
1025
1026do_error:
1027	if (copied)
1028		goto out;
1029out_err:
1030	err = sk_stream_error(sk, flags, err);
1031	TCP_CHECK_TIMER(sk);
1032	release_sock(sk);
1033	return err;
1034}
1035
1036/*
1037 *	Handle reading urgent data. BSD has very simple semantics for
1038 *	this, no blocking and very strange errors 8)
1039 */
1040
1041static int tcp_recv_urg(struct sock *sk, long timeo,
1042			struct msghdr *msg, int len, int flags,
1043			int *addr_len)
1044{
1045	struct tcp_sock *tp = tcp_sk(sk);
1046
1047	/* No URG data to read. */
1048	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1049	    tp->urg_data == TCP_URG_READ)
1050		return -EINVAL;	/* Yes this is right ! */
1051
1052	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1053		return -ENOTCONN;
1054
1055	if (tp->urg_data & TCP_URG_VALID) {
1056		int err = 0;
1057		char c = tp->urg_data;
1058
1059		if (!(flags & MSG_PEEK))
1060			tp->urg_data = TCP_URG_READ;
1061
1062		/* Read urgent data. */
1063		msg->msg_flags |= MSG_OOB;
1064
1065		if (len > 0) {
1066			if (!(flags & MSG_TRUNC))
1067				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1068			len = 1;
1069		} else
1070			msg->msg_flags |= MSG_TRUNC;
1071
1072		return err ? -EFAULT : len;
1073	}
1074
1075	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1076		return 0;
1077
1078	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1079	 * the available implementations agree in this case:
1080	 * this call should never block, independent of the
1081	 * blocking state of the socket.
1082	 * Mike <pall@rz.uni-karlsruhe.de>
1083	 */
1084	return -EAGAIN;
1085}
1086
1087/* Clean up the receive buffer for full frames taken by the user,
1088 * then send an ACK if necessary.  COPIED is the number of bytes
1089 * tcp_recvmsg has given to the user so far, it speeds up the
1090 * calculation of whether or not we must ACK for the sake of
1091 * a window update.
1092 */
1093void tcp_cleanup_rbuf(struct sock *sk, int copied)
1094{
1095	struct tcp_sock *tp = tcp_sk(sk);
1096	int time_to_ack = 0;
1097
1098#if TCP_DEBUG
1099	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1100
1101	WARN_ON(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1102#endif
1103
1104	if (inet_csk_ack_scheduled(sk)) {
1105		const struct inet_connection_sock *icsk = inet_csk(sk);
1106		   /* Delayed ACKs frequently hit locked sockets during bulk
1107		    * receive. */
1108		if (icsk->icsk_ack.blocked ||
1109		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1110		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1111		    /*
1112		     * If this read emptied read buffer, we send ACK, if
1113		     * connection is not bidirectional, user drained
1114		     * receive buffer and there was a small segment
1115		     * in queue.
1116		     */
1117		    (copied > 0 &&
1118		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1119		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1120		       !icsk->icsk_ack.pingpong)) &&
1121		      !atomic_read(&sk->sk_rmem_alloc)))
1122			time_to_ack = 1;
1123	}
1124
1125	/* We send an ACK if we can now advertise a non-zero window
1126	 * which has been raised "significantly".
1127	 *
1128	 * Even if window raised up to infinity, do not send window open ACK
1129	 * in states, where we will not receive more. It is useless.
1130	 */
1131	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1132		__u32 rcv_window_now = tcp_receive_window(tp);
1133
1134		/* Optimize, __tcp_select_window() is not cheap. */
1135		if (2*rcv_window_now <= tp->window_clamp) {
1136			__u32 new_window = __tcp_select_window(sk);
1137
1138			/* Send ACK now, if this read freed lots of space
1139			 * in our buffer. Certainly, new_window is new window.
1140			 * We can advertise it now, if it is not less than current one.
1141			 * "Lots" means "at least twice" here.
1142			 */
1143			if (new_window && new_window >= 2 * rcv_window_now)
1144				time_to_ack = 1;
1145		}
1146	}
1147	if (time_to_ack)
1148		tcp_send_ack(sk);
1149}
1150
1151static void tcp_prequeue_process(struct sock *sk)
1152{
1153	struct sk_buff *skb;
1154	struct tcp_sock *tp = tcp_sk(sk);
1155
1156	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1157
1158	/* RX process wants to run with disabled BHs, though it is not
1159	 * necessary */
1160	local_bh_disable();
1161	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1162		sk_backlog_rcv(sk, skb);
1163	local_bh_enable();
1164
1165	/* Clear memory counter. */
1166	tp->ucopy.memory = 0;
1167}
1168
1169static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1170{
1171	struct sk_buff *skb;
1172	u32 offset;
1173
1174	skb_queue_walk(&sk->sk_receive_queue, skb) {
1175		offset = seq - TCP_SKB_CB(skb)->seq;
1176		if (tcp_hdr(skb)->syn)
1177			offset--;
1178		if (offset < skb->len || tcp_hdr(skb)->fin) {
1179			*off = offset;
1180			return skb;
1181		}
1182	}
1183	return NULL;
1184}
1185
1186/*
1187 * This routine provides an alternative to tcp_recvmsg() for routines
1188 * that would like to handle copying from skbuffs directly in 'sendfile'
1189 * fashion.
1190 * Note:
1191 *	- It is assumed that the socket was locked by the caller.
1192 *	- The routine does not block.
1193 *	- At present, there is no support for reading OOB data
1194 *	  or for 'peeking' the socket using this routine
1195 *	  (although both would be easy to implement).
1196 */
1197int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1198		  sk_read_actor_t recv_actor)
1199{
1200	struct sk_buff *skb;
1201	struct tcp_sock *tp = tcp_sk(sk);
1202	u32 seq = tp->copied_seq;
1203	u32 offset;
1204	int copied = 0;
1205
1206	if (sk->sk_state == TCP_LISTEN)
1207		return -ENOTCONN;
1208	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1209		if (offset < skb->len) {
1210			int used;
1211			size_t len;
1212
1213			len = skb->len - offset;
1214			/* Stop reading if we hit a patch of urgent data */
1215			if (tp->urg_data) {
1216				u32 urg_offset = tp->urg_seq - seq;
1217				if (urg_offset < len)
1218					len = urg_offset;
1219				if (!len)
1220					break;
1221			}
1222			used = recv_actor(desc, skb, offset, len);
1223			if (used < 0) {
1224				if (!copied)
1225					copied = used;
1226				break;
1227			} else if (used <= len) {
1228				seq += used;
1229				copied += used;
1230				offset += used;
1231			}
1232			/*
1233			 * If recv_actor drops the lock (e.g. TCP splice
1234			 * receive) the skb pointer might be invalid when
1235			 * getting here: tcp_collapse might have deleted it
1236			 * while aggregating skbs from the socket queue.
1237			 */
1238			skb = tcp_recv_skb(sk, seq-1, &offset);
1239			if (!skb || (offset+1 != skb->len))
1240				break;
1241		}
1242		if (tcp_hdr(skb)->fin) {
1243			sk_eat_skb(sk, skb, 0);
1244			++seq;
1245			break;
1246		}
1247		sk_eat_skb(sk, skb, 0);
1248		if (!desc->count)
1249			break;
1250	}
1251	tp->copied_seq = seq;
1252
1253	tcp_rcv_space_adjust(sk);
1254
1255	/* Clean up data we have read: This will do ACK frames. */
1256	if (copied > 0)
1257		tcp_cleanup_rbuf(sk, copied);
1258	return copied;
1259}
1260
1261/*
1262 *	This routine copies from a sock struct into the user buffer.
1263 *
1264 *	Technical note: in 2.3 we work on _locked_ socket, so that
1265 *	tricks with *seq access order and skb->users are not required.
1266 *	Probably, code can be easily improved even more.
1267 */
1268
1269int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1270		size_t len, int nonblock, int flags, int *addr_len)
1271{
1272	struct tcp_sock *tp = tcp_sk(sk);
1273	int copied = 0;
1274	u32 peek_seq;
1275	u32 *seq;
1276	unsigned long used;
1277	int err;
1278	int target;		/* Read at least this many bytes */
1279	long timeo;
1280	struct task_struct *user_recv = NULL;
1281	int copied_early = 0;
1282	struct sk_buff *skb;
1283
1284	lock_sock(sk);
1285
1286	TCP_CHECK_TIMER(sk);
1287
1288	err = -ENOTCONN;
1289	if (sk->sk_state == TCP_LISTEN)
1290		goto out;
1291
1292	timeo = sock_rcvtimeo(sk, nonblock);
1293
1294	/* Urgent data needs to be handled specially. */
1295	if (flags & MSG_OOB)
1296		goto recv_urg;
1297
1298	seq = &tp->copied_seq;
1299	if (flags & MSG_PEEK) {
1300		peek_seq = tp->copied_seq;
1301		seq = &peek_seq;
1302	}
1303
1304	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1305
1306#ifdef CONFIG_NET_DMA
1307	tp->ucopy.dma_chan = NULL;
1308	preempt_disable();
1309	skb = skb_peek_tail(&sk->sk_receive_queue);
1310	{
1311		int available = 0;
1312
1313		if (skb)
1314			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1315		if ((available < target) &&
1316		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1317		    !sysctl_tcp_low_latency &&
1318		    __get_cpu_var(softnet_data).net_dma) {
1319			preempt_enable_no_resched();
1320			tp->ucopy.pinned_list =
1321					dma_pin_iovec_pages(msg->msg_iov, len);
1322		} else {
1323			preempt_enable_no_resched();
1324		}
1325	}
1326#endif
1327
1328	do {
1329		u32 offset;
1330
1331		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1332		if (tp->urg_data && tp->urg_seq == *seq) {
1333			if (copied)
1334				break;
1335			if (signal_pending(current)) {
1336				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1337				break;
1338			}
1339		}
1340
1341		/* Next get a buffer. */
1342
1343		skb = skb_peek(&sk->sk_receive_queue);
1344		do {
1345			if (!skb)
1346				break;
1347
1348			/* Now that we have two receive queues this
1349			 * shouldn't happen.
1350			 */
1351			if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1352				printk(KERN_INFO "recvmsg bug: copied %X "
1353				       "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1354				break;
1355			}
1356			offset = *seq - TCP_SKB_CB(skb)->seq;
1357			if (tcp_hdr(skb)->syn)
1358				offset--;
1359			if (offset < skb->len)
1360				goto found_ok_skb;
1361			if (tcp_hdr(skb)->fin)
1362				goto found_fin_ok;
1363			WARN_ON(!(flags & MSG_PEEK));
1364			skb = skb->next;
1365		} while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1366
1367		/* Well, if we have backlog, try to process it now yet. */
1368
1369		if (copied >= target && !sk->sk_backlog.tail)
1370			break;
1371
1372		if (copied) {
1373			if (sk->sk_err ||
1374			    sk->sk_state == TCP_CLOSE ||
1375			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1376			    !timeo ||
1377			    signal_pending(current))
1378				break;
1379		} else {
1380			if (sock_flag(sk, SOCK_DONE))
1381				break;
1382
1383			if (sk->sk_err) {
1384				copied = sock_error(sk);
1385				break;
1386			}
1387
1388			if (sk->sk_shutdown & RCV_SHUTDOWN)
1389				break;
1390
1391			if (sk->sk_state == TCP_CLOSE) {
1392				if (!sock_flag(sk, SOCK_DONE)) {
1393					/* This occurs when user tries to read
1394					 * from never connected socket.
1395					 */
1396					copied = -ENOTCONN;
1397					break;
1398				}
1399				break;
1400			}
1401
1402			if (!timeo) {
1403				copied = -EAGAIN;
1404				break;
1405			}
1406
1407			if (signal_pending(current)) {
1408				copied = sock_intr_errno(timeo);
1409				break;
1410			}
1411		}
1412
1413		tcp_cleanup_rbuf(sk, copied);
1414
1415		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1416			/* Install new reader */
1417			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1418				user_recv = current;
1419				tp->ucopy.task = user_recv;
1420				tp->ucopy.iov = msg->msg_iov;
1421			}
1422
1423			tp->ucopy.len = len;
1424
1425			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1426				!(flags & (MSG_PEEK | MSG_TRUNC)));
1427
1428			/* Ugly... If prequeue is not empty, we have to
1429			 * process it before releasing socket, otherwise
1430			 * order will be broken at second iteration.
1431			 * More elegant solution is required!!!
1432			 *
1433			 * Look: we have the following (pseudo)queues:
1434			 *
1435			 * 1. packets in flight
1436			 * 2. backlog
1437			 * 3. prequeue
1438			 * 4. receive_queue
1439			 *
1440			 * Each queue can be processed only if the next ones
1441			 * are empty. At this point we have empty receive_queue.
1442			 * But prequeue _can_ be not empty after 2nd iteration,
1443			 * when we jumped to start of loop because backlog
1444			 * processing added something to receive_queue.
1445			 * We cannot release_sock(), because backlog contains
1446			 * packets arrived _after_ prequeued ones.
1447			 *
1448			 * Shortly, algorithm is clear --- to process all
1449			 * the queues in order. We could make it more directly,
1450			 * requeueing packets from backlog to prequeue, if
1451			 * is not empty. It is more elegant, but eats cycles,
1452			 * unfortunately.
1453			 */
1454			if (!skb_queue_empty(&tp->ucopy.prequeue))
1455				goto do_prequeue;
1456
1457			/* __ Set realtime policy in scheduler __ */
1458		}
1459
1460		if (copied >= target) {
1461			/* Do not sleep, just process backlog. */
1462			release_sock(sk);
1463			lock_sock(sk);
1464		} else
1465			sk_wait_data(sk, &timeo);
1466
1467#ifdef CONFIG_NET_DMA
1468		tp->ucopy.wakeup = 0;
1469#endif
1470
1471		if (user_recv) {
1472			int chunk;
1473
1474			/* __ Restore normal policy in scheduler __ */
1475
1476			if ((chunk = len - tp->ucopy.len) != 0) {
1477				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1478				len -= chunk;
1479				copied += chunk;
1480			}
1481
1482			if (tp->rcv_nxt == tp->copied_seq &&
1483			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1484do_prequeue:
1485				tcp_prequeue_process(sk);
1486
1487				if ((chunk = len - tp->ucopy.len) != 0) {
1488					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1489					len -= chunk;
1490					copied += chunk;
1491				}
1492			}
1493		}
1494		if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1495			if (net_ratelimit())
1496				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1497				       current->comm, task_pid_nr(current));
1498			peek_seq = tp->copied_seq;
1499		}
1500		continue;
1501
1502	found_ok_skb:
1503		/* Ok so how much can we use? */
1504		used = skb->len - offset;
1505		if (len < used)
1506			used = len;
1507
1508		/* Do we have urgent data here? */
1509		if (tp->urg_data) {
1510			u32 urg_offset = tp->urg_seq - *seq;
1511			if (urg_offset < used) {
1512				if (!urg_offset) {
1513					if (!sock_flag(sk, SOCK_URGINLINE)) {
1514						++*seq;
1515						offset++;
1516						used--;
1517						if (!used)
1518							goto skip_copy;
1519					}
1520				} else
1521					used = urg_offset;
1522			}
1523		}
1524
1525		if (!(flags & MSG_TRUNC)) {
1526#ifdef CONFIG_NET_DMA
1527			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1528				tp->ucopy.dma_chan = get_softnet_dma();
1529
1530			if (tp->ucopy.dma_chan) {
1531				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1532					tp->ucopy.dma_chan, skb, offset,
1533					msg->msg_iov, used,
1534					tp->ucopy.pinned_list);
1535
1536				if (tp->ucopy.dma_cookie < 0) {
1537
1538					printk(KERN_ALERT "dma_cookie < 0\n");
1539
1540					/* Exception. Bailout! */
1541					if (!copied)
1542						copied = -EFAULT;
1543					break;
1544				}
1545				if ((offset + used) == skb->len)
1546					copied_early = 1;
1547
1548			} else
1549#endif
1550			{
1551				err = skb_copy_datagram_iovec(skb, offset,
1552						msg->msg_iov, used);
1553				if (err) {
1554					/* Exception. Bailout! */
1555					if (!copied)
1556						copied = -EFAULT;
1557					break;
1558				}
1559			}
1560		}
1561
1562		*seq += used;
1563		copied += used;
1564		len -= used;
1565
1566		tcp_rcv_space_adjust(sk);
1567
1568skip_copy:
1569		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1570			tp->urg_data = 0;
1571			tcp_fast_path_check(sk);
1572		}
1573		if (used + offset < skb->len)
1574			continue;
1575
1576		if (tcp_hdr(skb)->fin)
1577			goto found_fin_ok;
1578		if (!(flags & MSG_PEEK)) {
1579			sk_eat_skb(sk, skb, copied_early);
1580			copied_early = 0;
1581		}
1582		continue;
1583
1584	found_fin_ok:
1585		/* Process the FIN. */
1586		++*seq;
1587		if (!(flags & MSG_PEEK)) {
1588			sk_eat_skb(sk, skb, copied_early);
1589			copied_early = 0;
1590		}
1591		break;
1592	} while (len > 0);
1593
1594	if (user_recv) {
1595		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1596			int chunk;
1597
1598			tp->ucopy.len = copied > 0 ? len : 0;
1599
1600			tcp_prequeue_process(sk);
1601
1602			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1603				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1604				len -= chunk;
1605				copied += chunk;
1606			}
1607		}
1608
1609		tp->ucopy.task = NULL;
1610		tp->ucopy.len = 0;
1611	}
1612
1613#ifdef CONFIG_NET_DMA
1614	if (tp->ucopy.dma_chan) {
1615		dma_cookie_t done, used;
1616
1617		dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1618
1619		while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1620						 tp->ucopy.dma_cookie, &done,
1621						 &used) == DMA_IN_PROGRESS) {
1622			/* do partial cleanup of sk_async_wait_queue */
1623			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1624			       (dma_async_is_complete(skb->dma_cookie, done,
1625						      used) == DMA_SUCCESS)) {
1626				__skb_dequeue(&sk->sk_async_wait_queue);
1627				kfree_skb(skb);
1628			}
1629		}
1630
1631		/* Safe to free early-copied skbs now */
1632		__skb_queue_purge(&sk->sk_async_wait_queue);
1633		dma_chan_put(tp->ucopy.dma_chan);
1634		tp->ucopy.dma_chan = NULL;
1635	}
1636	if (tp->ucopy.pinned_list) {
1637		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1638		tp->ucopy.pinned_list = NULL;
1639	}
1640#endif
1641
1642	/* According to UNIX98, msg_name/msg_namelen are ignored
1643	 * on connected socket. I was just happy when found this 8) --ANK
1644	 */
1645
1646	/* Clean up data we have read: This will do ACK frames. */
1647	tcp_cleanup_rbuf(sk, copied);
1648
1649	TCP_CHECK_TIMER(sk);
1650	release_sock(sk);
1651	return copied;
1652
1653out:
1654	TCP_CHECK_TIMER(sk);
1655	release_sock(sk);
1656	return err;
1657
1658recv_urg:
1659	err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1660	goto out;
1661}
1662
1663void tcp_set_state(struct sock *sk, int state)
1664{
1665	int oldstate = sk->sk_state;
1666
1667	switch (state) {
1668	case TCP_ESTABLISHED:
1669		if (oldstate != TCP_ESTABLISHED)
1670			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1671		break;
1672
1673	case TCP_CLOSE:
1674		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1675			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1676
1677		sk->sk_prot->unhash(sk);
1678		if (inet_csk(sk)->icsk_bind_hash &&
1679		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1680			inet_put_port(sk);
1681		/* fall through */
1682	default:
1683		if (oldstate == TCP_ESTABLISHED)
1684			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1685	}
1686
1687	/* Change state AFTER socket is unhashed to avoid closed
1688	 * socket sitting in hash tables.
1689	 */
1690	sk->sk_state = state;
1691
1692#ifdef STATE_TRACE
1693	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1694#endif
1695}
1696EXPORT_SYMBOL_GPL(tcp_set_state);
1697
1698/*
1699 *	State processing on a close. This implements the state shift for
1700 *	sending our FIN frame. Note that we only send a FIN for some
1701 *	states. A shutdown() may have already sent the FIN, or we may be
1702 *	closed.
1703 */
1704
1705static const unsigned char new_state[16] = {
1706  /* current state:        new state:      action:	*/
1707  /* (Invalid)		*/ TCP_CLOSE,
1708  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1709  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1710  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1711  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1712  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1713  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1714  /* TCP_CLOSE		*/ TCP_CLOSE,
1715  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1716  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1717  /* TCP_LISTEN		*/ TCP_CLOSE,
1718  /* TCP_CLOSING	*/ TCP_CLOSING,
1719};
1720
1721static int tcp_close_state(struct sock *sk)
1722{
1723	int next = (int)new_state[sk->sk_state];
1724	int ns = next & TCP_STATE_MASK;
1725
1726	tcp_set_state(sk, ns);
1727
1728	return next & TCP_ACTION_FIN;
1729}
1730
1731/*
1732 *	Shutdown the sending side of a connection. Much like close except
1733 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1734 */
1735
1736void tcp_shutdown(struct sock *sk, int how)
1737{
1738	/*	We need to grab some memory, and put together a FIN,
1739	 *	and then put it into the queue to be sent.
1740	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1741	 */
1742	if (!(how & SEND_SHUTDOWN))
1743		return;
1744
1745	/* If we've already sent a FIN, or it's a closed state, skip this. */
1746	if ((1 << sk->sk_state) &
1747	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1748	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1749		/* Clear out any half completed packets.  FIN if needed. */
1750		if (tcp_close_state(sk))
1751			tcp_send_fin(sk);
1752	}
1753}
1754
1755void tcp_close(struct sock *sk, long timeout)
1756{
1757	struct sk_buff *skb;
1758	int data_was_unread = 0;
1759	int state;
1760
1761	lock_sock(sk);
1762	sk->sk_shutdown = SHUTDOWN_MASK;
1763
1764	if (sk->sk_state == TCP_LISTEN) {
1765		tcp_set_state(sk, TCP_CLOSE);
1766
1767		/* Special case. */
1768		inet_csk_listen_stop(sk);
1769
1770		goto adjudge_to_death;
1771	}
1772
1773	/*  We need to flush the recv. buffs.  We do this only on the
1774	 *  descriptor close, not protocol-sourced closes, because the
1775	 *  reader process may not have drained the data yet!
1776	 */
1777	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1778		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1779			  tcp_hdr(skb)->fin;
1780		data_was_unread += len;
1781		__kfree_skb(skb);
1782	}
1783
1784	sk_mem_reclaim(sk);
1785
1786	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1787	 * data was lost. To witness the awful effects of the old behavior of
1788	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1789	 * GET in an FTP client, suspend the process, wait for the client to
1790	 * advertise a zero window, then kill -9 the FTP client, wheee...
1791	 * Note: timeout is always zero in such a case.
1792	 */
1793	if (data_was_unread) {
1794		/* Unread data was tossed, zap the connection. */
1795		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1796		tcp_set_state(sk, TCP_CLOSE);
1797		tcp_send_active_reset(sk, GFP_KERNEL);
1798	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1799		/* Check zero linger _after_ checking for unread data. */
1800		sk->sk_prot->disconnect(sk, 0);
1801		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1802	} else if (tcp_close_state(sk)) {
1803		/* We FIN if the application ate all the data before
1804		 * zapping the connection.
1805		 */
1806
1807		/* RED-PEN. Formally speaking, we have broken TCP state
1808		 * machine. State transitions:
1809		 *
1810		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1811		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1812		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1813		 *
1814		 * are legal only when FIN has been sent (i.e. in window),
1815		 * rather than queued out of window. Purists blame.
1816		 *
1817		 * F.e. "RFC state" is ESTABLISHED,
1818		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1819		 *
1820		 * The visible declinations are that sometimes
1821		 * we enter time-wait state, when it is not required really
1822		 * (harmless), do not send active resets, when they are
1823		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1824		 * they look as CLOSING or LAST_ACK for Linux)
1825		 * Probably, I missed some more holelets.
1826		 * 						--ANK
1827		 */
1828		tcp_send_fin(sk);
1829	}
1830
1831	sk_stream_wait_close(sk, timeout);
1832
1833adjudge_to_death:
1834	state = sk->sk_state;
1835	sock_hold(sk);
1836	sock_orphan(sk);
1837	atomic_inc(sk->sk_prot->orphan_count);
1838
1839	/* It is the last release_sock in its life. It will remove backlog. */
1840	release_sock(sk);
1841
1842
1843	/* Now socket is owned by kernel and we acquire BH lock
1844	   to finish close. No need to check for user refs.
1845	 */
1846	local_bh_disable();
1847	bh_lock_sock(sk);
1848	WARN_ON(sock_owned_by_user(sk));
1849
1850	/* Have we already been destroyed by a softirq or backlog? */
1851	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1852		goto out;
1853
1854	/*	This is a (useful) BSD violating of the RFC. There is a
1855	 *	problem with TCP as specified in that the other end could
1856	 *	keep a socket open forever with no application left this end.
1857	 *	We use a 3 minute timeout (about the same as BSD) then kill
1858	 *	our end. If they send after that then tough - BUT: long enough
1859	 *	that we won't make the old 4*rto = almost no time - whoops
1860	 *	reset mistake.
1861	 *
1862	 *	Nope, it was not mistake. It is really desired behaviour
1863	 *	f.e. on http servers, when such sockets are useless, but
1864	 *	consume significant resources. Let's do it with special
1865	 *	linger2	option.					--ANK
1866	 */
1867
1868	if (sk->sk_state == TCP_FIN_WAIT2) {
1869		struct tcp_sock *tp = tcp_sk(sk);
1870		if (tp->linger2 < 0) {
1871			tcp_set_state(sk, TCP_CLOSE);
1872			tcp_send_active_reset(sk, GFP_ATOMIC);
1873			NET_INC_STATS_BH(sock_net(sk),
1874					LINUX_MIB_TCPABORTONLINGER);
1875		} else {
1876			const int tmo = tcp_fin_time(sk);
1877
1878			if (tmo > TCP_TIMEWAIT_LEN) {
1879				inet_csk_reset_keepalive_timer(sk,
1880						tmo - TCP_TIMEWAIT_LEN);
1881			} else {
1882				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1883				goto out;
1884			}
1885		}
1886	}
1887	if (sk->sk_state != TCP_CLOSE) {
1888		sk_mem_reclaim(sk);
1889		if (tcp_too_many_orphans(sk,
1890				atomic_read(sk->sk_prot->orphan_count))) {
1891			if (net_ratelimit())
1892				printk(KERN_INFO "TCP: too many of orphaned "
1893				       "sockets\n");
1894			tcp_set_state(sk, TCP_CLOSE);
1895			tcp_send_active_reset(sk, GFP_ATOMIC);
1896			NET_INC_STATS_BH(sock_net(sk),
1897					LINUX_MIB_TCPABORTONMEMORY);
1898		}
1899	}
1900
1901	if (sk->sk_state == TCP_CLOSE)
1902		inet_csk_destroy_sock(sk);
1903	/* Otherwise, socket is reprieved until protocol close. */
1904
1905out:
1906	bh_unlock_sock(sk);
1907	local_bh_enable();
1908	sock_put(sk);
1909}
1910
1911/* These states need RST on ABORT according to RFC793 */
1912
1913static inline int tcp_need_reset(int state)
1914{
1915	return (1 << state) &
1916	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1917		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1918}
1919
1920int tcp_disconnect(struct sock *sk, int flags)
1921{
1922	struct inet_sock *inet = inet_sk(sk);
1923	struct inet_connection_sock *icsk = inet_csk(sk);
1924	struct tcp_sock *tp = tcp_sk(sk);
1925	int err = 0;
1926	int old_state = sk->sk_state;
1927
1928	if (old_state != TCP_CLOSE)
1929		tcp_set_state(sk, TCP_CLOSE);
1930
1931	/* ABORT function of RFC793 */
1932	if (old_state == TCP_LISTEN) {
1933		inet_csk_listen_stop(sk);
1934	} else if (tcp_need_reset(old_state) ||
1935		   (tp->snd_nxt != tp->write_seq &&
1936		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1937		/* The last check adjusts for discrepancy of Linux wrt. RFC
1938		 * states
1939		 */
1940		tcp_send_active_reset(sk, gfp_any());
1941		sk->sk_err = ECONNRESET;
1942	} else if (old_state == TCP_SYN_SENT)
1943		sk->sk_err = ECONNRESET;
1944
1945	tcp_clear_xmit_timers(sk);
1946	__skb_queue_purge(&sk->sk_receive_queue);
1947	tcp_write_queue_purge(sk);
1948	__skb_queue_purge(&tp->out_of_order_queue);
1949#ifdef CONFIG_NET_DMA
1950	__skb_queue_purge(&sk->sk_async_wait_queue);
1951#endif
1952
1953	inet->dport = 0;
1954
1955	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1956		inet_reset_saddr(sk);
1957
1958	sk->sk_shutdown = 0;
1959	sock_reset_flag(sk, SOCK_DONE);
1960	tp->srtt = 0;
1961	if ((tp->write_seq += tp->max_window + 2) == 0)
1962		tp->write_seq = 1;
1963	icsk->icsk_backoff = 0;
1964	tp->snd_cwnd = 2;
1965	icsk->icsk_probes_out = 0;
1966	tp->packets_out = 0;
1967	tp->snd_ssthresh = 0x7fffffff;
1968	tp->snd_cwnd_cnt = 0;
1969	tp->bytes_acked = 0;
1970	tcp_set_ca_state(sk, TCP_CA_Open);
1971	tcp_clear_retrans(tp);
1972	inet_csk_delack_init(sk);
1973	tcp_init_send_head(sk);
1974	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
1975	__sk_dst_reset(sk);
1976
1977	WARN_ON(inet->num && !icsk->icsk_bind_hash);
1978
1979	sk->sk_error_report(sk);
1980	return err;
1981}
1982
1983/*
1984 *	Socket option code for TCP.
1985 */
1986static int do_tcp_setsockopt(struct sock *sk, int level,
1987		int optname, char __user *optval, int optlen)
1988{
1989	struct tcp_sock *tp = tcp_sk(sk);
1990	struct inet_connection_sock *icsk = inet_csk(sk);
1991	int val;
1992	int err = 0;
1993
1994	/* This is a string value all the others are int's */
1995	if (optname == TCP_CONGESTION) {
1996		char name[TCP_CA_NAME_MAX];
1997
1998		if (optlen < 1)
1999			return -EINVAL;
2000
2001		val = strncpy_from_user(name, optval,
2002					min(TCP_CA_NAME_MAX-1, optlen));
2003		if (val < 0)
2004			return -EFAULT;
2005		name[val] = 0;
2006
2007		lock_sock(sk);
2008		err = tcp_set_congestion_control(sk, name);
2009		release_sock(sk);
2010		return err;
2011	}
2012
2013	if (optlen < sizeof(int))
2014		return -EINVAL;
2015
2016	if (get_user(val, (int __user *)optval))
2017		return -EFAULT;
2018
2019	lock_sock(sk);
2020
2021	switch (optname) {
2022	case TCP_MAXSEG:
2023		/* Values greater than interface MTU won't take effect. However
2024		 * at the point when this call is done we typically don't yet
2025		 * know which interface is going to be used */
2026		if (val < 8 || val > MAX_TCP_WINDOW) {
2027			err = -EINVAL;
2028			break;
2029		}
2030		tp->rx_opt.user_mss = val;
2031		break;
2032
2033	case TCP_NODELAY:
2034		if (val) {
2035			/* TCP_NODELAY is weaker than TCP_CORK, so that
2036			 * this option on corked socket is remembered, but
2037			 * it is not activated until cork is cleared.
2038			 *
2039			 * However, when TCP_NODELAY is set we make
2040			 * an explicit push, which overrides even TCP_CORK
2041			 * for currently queued segments.
2042			 */
2043			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2044			tcp_push_pending_frames(sk);
2045		} else {
2046			tp->nonagle &= ~TCP_NAGLE_OFF;
2047		}
2048		break;
2049
2050	case TCP_CORK:
2051		/* When set indicates to always queue non-full frames.
2052		 * Later the user clears this option and we transmit
2053		 * any pending partial frames in the queue.  This is
2054		 * meant to be used alongside sendfile() to get properly
2055		 * filled frames when the user (for example) must write
2056		 * out headers with a write() call first and then use
2057		 * sendfile to send out the data parts.
2058		 *
2059		 * TCP_CORK can be set together with TCP_NODELAY and it is
2060		 * stronger than TCP_NODELAY.
2061		 */
2062		if (val) {
2063			tp->nonagle |= TCP_NAGLE_CORK;
2064		} else {
2065			tp->nonagle &= ~TCP_NAGLE_CORK;
2066			if (tp->nonagle&TCP_NAGLE_OFF)
2067				tp->nonagle |= TCP_NAGLE_PUSH;
2068			tcp_push_pending_frames(sk);
2069		}
2070		break;
2071
2072	case TCP_KEEPIDLE:
2073		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2074			err = -EINVAL;
2075		else {
2076			tp->keepalive_time = val * HZ;
2077			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2078			    !((1 << sk->sk_state) &
2079			      (TCPF_CLOSE | TCPF_LISTEN))) {
2080				__u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2081				if (tp->keepalive_time > elapsed)
2082					elapsed = tp->keepalive_time - elapsed;
2083				else
2084					elapsed = 0;
2085				inet_csk_reset_keepalive_timer(sk, elapsed);
2086			}
2087		}
2088		break;
2089	case TCP_KEEPINTVL:
2090		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2091			err = -EINVAL;
2092		else
2093			tp->keepalive_intvl = val * HZ;
2094		break;
2095	case TCP_KEEPCNT:
2096		if (val < 1 || val > MAX_TCP_KEEPCNT)
2097			err = -EINVAL;
2098		else
2099			tp->keepalive_probes = val;
2100		break;
2101	case TCP_SYNCNT:
2102		if (val < 1 || val > MAX_TCP_SYNCNT)
2103			err = -EINVAL;
2104		else
2105			icsk->icsk_syn_retries = val;
2106		break;
2107
2108	case TCP_LINGER2:
2109		if (val < 0)
2110			tp->linger2 = -1;
2111		else if (val > sysctl_tcp_fin_timeout / HZ)
2112			tp->linger2 = 0;
2113		else
2114			tp->linger2 = val * HZ;
2115		break;
2116
2117	case TCP_DEFER_ACCEPT:
2118		icsk->icsk_accept_queue.rskq_defer_accept = 0;
2119		if (val > 0) {
2120			/* Translate value in seconds to number of
2121			 * retransmits */
2122			while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
2123			       val > ((TCP_TIMEOUT_INIT / HZ) <<
2124				       icsk->icsk_accept_queue.rskq_defer_accept))
2125				icsk->icsk_accept_queue.rskq_defer_accept++;
2126			icsk->icsk_accept_queue.rskq_defer_accept++;
2127		}
2128		break;
2129
2130	case TCP_WINDOW_CLAMP:
2131		if (!val) {
2132			if (sk->sk_state != TCP_CLOSE) {
2133				err = -EINVAL;
2134				break;
2135			}
2136			tp->window_clamp = 0;
2137		} else
2138			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2139						SOCK_MIN_RCVBUF / 2 : val;
2140		break;
2141
2142	case TCP_QUICKACK:
2143		if (!val) {
2144			icsk->icsk_ack.pingpong = 1;
2145		} else {
2146			icsk->icsk_ack.pingpong = 0;
2147			if ((1 << sk->sk_state) &
2148			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2149			    inet_csk_ack_scheduled(sk)) {
2150				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2151				tcp_cleanup_rbuf(sk, 1);
2152				if (!(val & 1))
2153					icsk->icsk_ack.pingpong = 1;
2154			}
2155		}
2156		break;
2157
2158#ifdef CONFIG_TCP_MD5SIG
2159	case TCP_MD5SIG:
2160		/* Read the IP->Key mappings from userspace */
2161		err = tp->af_specific->md5_parse(sk, optval, optlen);
2162		break;
2163#endif
2164
2165	default:
2166		err = -ENOPROTOOPT;
2167		break;
2168	}
2169
2170	release_sock(sk);
2171	return err;
2172}
2173
2174int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2175		   int optlen)
2176{
2177	struct inet_connection_sock *icsk = inet_csk(sk);
2178
2179	if (level != SOL_TCP)
2180		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2181						     optval, optlen);
2182	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2183}
2184
2185#ifdef CONFIG_COMPAT
2186int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2187			  char __user *optval, int optlen)
2188{
2189	if (level != SOL_TCP)
2190		return inet_csk_compat_setsockopt(sk, level, optname,
2191						  optval, optlen);
2192	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2193}
2194
2195EXPORT_SYMBOL(compat_tcp_setsockopt);
2196#endif
2197
2198/* Return information about state of tcp endpoint in API format. */
2199void tcp_get_info(struct sock *sk, struct tcp_info *info)
2200{
2201	struct tcp_sock *tp = tcp_sk(sk);
2202	const struct inet_connection_sock *icsk = inet_csk(sk);
2203	u32 now = tcp_time_stamp;
2204
2205	memset(info, 0, sizeof(*info));
2206
2207	info->tcpi_state = sk->sk_state;
2208	info->tcpi_ca_state = icsk->icsk_ca_state;
2209	info->tcpi_retransmits = icsk->icsk_retransmits;
2210	info->tcpi_probes = icsk->icsk_probes_out;
2211	info->tcpi_backoff = icsk->icsk_backoff;
2212
2213	if (tp->rx_opt.tstamp_ok)
2214		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2215	if (tcp_is_sack(tp))
2216		info->tcpi_options |= TCPI_OPT_SACK;
2217	if (tp->rx_opt.wscale_ok) {
2218		info->tcpi_options |= TCPI_OPT_WSCALE;
2219		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2220		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2221	}
2222
2223	if (tp->ecn_flags&TCP_ECN_OK)
2224		info->tcpi_options |= TCPI_OPT_ECN;
2225
2226	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2227	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2228	info->tcpi_snd_mss = tp->mss_cache;
2229	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2230
2231	if (sk->sk_state == TCP_LISTEN) {
2232		info->tcpi_unacked = sk->sk_ack_backlog;
2233		info->tcpi_sacked = sk->sk_max_ack_backlog;
2234	} else {
2235		info->tcpi_unacked = tp->packets_out;
2236		info->tcpi_sacked = tp->sacked_out;
2237	}
2238	info->tcpi_lost = tp->lost_out;
2239	info->tcpi_retrans = tp->retrans_out;
2240	info->tcpi_fackets = tp->fackets_out;
2241
2242	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2243	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2244	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2245
2246	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2247	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2248	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2249	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2250	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2251	info->tcpi_snd_cwnd = tp->snd_cwnd;
2252	info->tcpi_advmss = tp->advmss;
2253	info->tcpi_reordering = tp->reordering;
2254
2255	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2256	info->tcpi_rcv_space = tp->rcvq_space.space;
2257
2258	info->tcpi_total_retrans = tp->total_retrans;
2259}
2260
2261EXPORT_SYMBOL_GPL(tcp_get_info);
2262
2263static int do_tcp_getsockopt(struct sock *sk, int level,
2264		int optname, char __user *optval, int __user *optlen)
2265{
2266	struct inet_connection_sock *icsk = inet_csk(sk);
2267	struct tcp_sock *tp = tcp_sk(sk);
2268	int val, len;
2269
2270	if (get_user(len, optlen))
2271		return -EFAULT;
2272
2273	len = min_t(unsigned int, len, sizeof(int));
2274
2275	if (len < 0)
2276		return -EINVAL;
2277
2278	switch (optname) {
2279	case TCP_MAXSEG:
2280		val = tp->mss_cache;
2281		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2282			val = tp->rx_opt.user_mss;
2283		break;
2284	case TCP_NODELAY:
2285		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2286		break;
2287	case TCP_CORK:
2288		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2289		break;
2290	case TCP_KEEPIDLE:
2291		val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2292		break;
2293	case TCP_KEEPINTVL:
2294		val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2295		break;
2296	case TCP_KEEPCNT:
2297		val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2298		break;
2299	case TCP_SYNCNT:
2300		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2301		break;
2302	case TCP_LINGER2:
2303		val = tp->linger2;
2304		if (val >= 0)
2305			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2306		break;
2307	case TCP_DEFER_ACCEPT:
2308		val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2309			((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2310		break;
2311	case TCP_WINDOW_CLAMP:
2312		val = tp->window_clamp;
2313		break;
2314	case TCP_INFO: {
2315		struct tcp_info info;
2316
2317		if (get_user(len, optlen))
2318			return -EFAULT;
2319
2320		tcp_get_info(sk, &info);
2321
2322		len = min_t(unsigned int, len, sizeof(info));
2323		if (put_user(len, optlen))
2324			return -EFAULT;
2325		if (copy_to_user(optval, &info, len))
2326			return -EFAULT;
2327		return 0;
2328	}
2329	case TCP_QUICKACK:
2330		val = !icsk->icsk_ack.pingpong;
2331		break;
2332
2333	case TCP_CONGESTION:
2334		if (get_user(len, optlen))
2335			return -EFAULT;
2336		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2337		if (put_user(len, optlen))
2338			return -EFAULT;
2339		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2340			return -EFAULT;
2341		return 0;
2342	default:
2343		return -ENOPROTOOPT;
2344	}
2345
2346	if (put_user(len, optlen))
2347		return -EFAULT;
2348	if (copy_to_user(optval, &val, len))
2349		return -EFAULT;
2350	return 0;
2351}
2352
2353int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2354		   int __user *optlen)
2355{
2356	struct inet_connection_sock *icsk = inet_csk(sk);
2357
2358	if (level != SOL_TCP)
2359		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2360						     optval, optlen);
2361	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2362}
2363
2364#ifdef CONFIG_COMPAT
2365int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2366			  char __user *optval, int __user *optlen)
2367{
2368	if (level != SOL_TCP)
2369		return inet_csk_compat_getsockopt(sk, level, optname,
2370						  optval, optlen);
2371	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2372}
2373
2374EXPORT_SYMBOL(compat_tcp_getsockopt);
2375#endif
2376
2377struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2378{
2379	struct sk_buff *segs = ERR_PTR(-EINVAL);
2380	struct tcphdr *th;
2381	unsigned thlen;
2382	unsigned int seq;
2383	__be32 delta;
2384	unsigned int oldlen;
2385	unsigned int len;
2386
2387	if (!pskb_may_pull(skb, sizeof(*th)))
2388		goto out;
2389
2390	th = tcp_hdr(skb);
2391	thlen = th->doff * 4;
2392	if (thlen < sizeof(*th))
2393		goto out;
2394
2395	if (!pskb_may_pull(skb, thlen))
2396		goto out;
2397
2398	oldlen = (u16)~skb->len;
2399	__skb_pull(skb, thlen);
2400
2401	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2402		/* Packet is from an untrusted source, reset gso_segs. */
2403		int type = skb_shinfo(skb)->gso_type;
2404		int mss;
2405
2406		if (unlikely(type &
2407			     ~(SKB_GSO_TCPV4 |
2408			       SKB_GSO_DODGY |
2409			       SKB_GSO_TCP_ECN |
2410			       SKB_GSO_TCPV6 |
2411			       0) ||
2412			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2413			goto out;
2414
2415		mss = skb_shinfo(skb)->gso_size;
2416		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2417
2418		segs = NULL;
2419		goto out;
2420	}
2421
2422	segs = skb_segment(skb, features);
2423	if (IS_ERR(segs))
2424		goto out;
2425
2426	len = skb_shinfo(skb)->gso_size;
2427	delta = htonl(oldlen + (thlen + len));
2428
2429	skb = segs;
2430	th = tcp_hdr(skb);
2431	seq = ntohl(th->seq);
2432
2433	do {
2434		th->fin = th->psh = 0;
2435
2436		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2437				       (__force u32)delta));
2438		if (skb->ip_summed != CHECKSUM_PARTIAL)
2439			th->check =
2440			     csum_fold(csum_partial(skb_transport_header(skb),
2441						    thlen, skb->csum));
2442
2443		seq += len;
2444		skb = skb->next;
2445		th = tcp_hdr(skb);
2446
2447		th->seq = htonl(seq);
2448		th->cwr = 0;
2449	} while (skb->next);
2450
2451	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2452		      skb->data_len);
2453	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2454				(__force u32)delta));
2455	if (skb->ip_summed != CHECKSUM_PARTIAL)
2456		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2457						   thlen, skb->csum));
2458
2459out:
2460	return segs;
2461}
2462EXPORT_SYMBOL(tcp_tso_segment);
2463
2464#ifdef CONFIG_TCP_MD5SIG
2465static unsigned long tcp_md5sig_users;
2466static struct tcp_md5sig_pool **tcp_md5sig_pool;
2467static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2468
2469static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2470{
2471	int cpu;
2472	for_each_possible_cpu(cpu) {
2473		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2474		if (p) {
2475			if (p->md5_desc.tfm)
2476				crypto_free_hash(p->md5_desc.tfm);
2477			kfree(p);
2478			p = NULL;
2479		}
2480	}
2481	free_percpu(pool);
2482}
2483
2484void tcp_free_md5sig_pool(void)
2485{
2486	struct tcp_md5sig_pool **pool = NULL;
2487
2488	spin_lock_bh(&tcp_md5sig_pool_lock);
2489	if (--tcp_md5sig_users == 0) {
2490		pool = tcp_md5sig_pool;
2491		tcp_md5sig_pool = NULL;
2492	}
2493	spin_unlock_bh(&tcp_md5sig_pool_lock);
2494	if (pool)
2495		__tcp_free_md5sig_pool(pool);
2496}
2497
2498EXPORT_SYMBOL(tcp_free_md5sig_pool);
2499
2500static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2501{
2502	int cpu;
2503	struct tcp_md5sig_pool **pool;
2504
2505	pool = alloc_percpu(struct tcp_md5sig_pool *);
2506	if (!pool)
2507		return NULL;
2508
2509	for_each_possible_cpu(cpu) {
2510		struct tcp_md5sig_pool *p;
2511		struct crypto_hash *hash;
2512
2513		p = kzalloc(sizeof(*p), GFP_KERNEL);
2514		if (!p)
2515			goto out_free;
2516		*per_cpu_ptr(pool, cpu) = p;
2517
2518		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2519		if (!hash || IS_ERR(hash))
2520			goto out_free;
2521
2522		p->md5_desc.tfm = hash;
2523	}
2524	return pool;
2525out_free:
2526	__tcp_free_md5sig_pool(pool);
2527	return NULL;
2528}
2529
2530struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2531{
2532	struct tcp_md5sig_pool **pool;
2533	int alloc = 0;
2534
2535retry:
2536	spin_lock_bh(&tcp_md5sig_pool_lock);
2537	pool = tcp_md5sig_pool;
2538	if (tcp_md5sig_users++ == 0) {
2539		alloc = 1;
2540		spin_unlock_bh(&tcp_md5sig_pool_lock);
2541	} else if (!pool) {
2542		tcp_md5sig_users--;
2543		spin_unlock_bh(&tcp_md5sig_pool_lock);
2544		cpu_relax();
2545		goto retry;
2546	} else
2547		spin_unlock_bh(&tcp_md5sig_pool_lock);
2548
2549	if (alloc) {
2550		/* we cannot hold spinlock here because this may sleep. */
2551		struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2552		spin_lock_bh(&tcp_md5sig_pool_lock);
2553		if (!p) {
2554			tcp_md5sig_users--;
2555			spin_unlock_bh(&tcp_md5sig_pool_lock);
2556			return NULL;
2557		}
2558		pool = tcp_md5sig_pool;
2559		if (pool) {
2560			/* oops, it has already been assigned. */
2561			spin_unlock_bh(&tcp_md5sig_pool_lock);
2562			__tcp_free_md5sig_pool(p);
2563		} else {
2564			tcp_md5sig_pool = pool = p;
2565			spin_unlock_bh(&tcp_md5sig_pool_lock);
2566		}
2567	}
2568	return pool;
2569}
2570
2571EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2572
2573struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2574{
2575	struct tcp_md5sig_pool **p;
2576	spin_lock_bh(&tcp_md5sig_pool_lock);
2577	p = tcp_md5sig_pool;
2578	if (p)
2579		tcp_md5sig_users++;
2580	spin_unlock_bh(&tcp_md5sig_pool_lock);
2581	return (p ? *per_cpu_ptr(p, cpu) : NULL);
2582}
2583
2584EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2585
2586void __tcp_put_md5sig_pool(void)
2587{
2588	tcp_free_md5sig_pool();
2589}
2590
2591EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2592
2593int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2594			struct tcphdr *th)
2595{
2596	struct scatterlist sg;
2597	int err;
2598
2599	__sum16 old_checksum = th->check;
2600	th->check = 0;
2601	/* options aren't included in the hash */
2602	sg_init_one(&sg, th, sizeof(struct tcphdr));
2603	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
2604	th->check = old_checksum;
2605	return err;
2606}
2607
2608EXPORT_SYMBOL(tcp_md5_hash_header);
2609
2610int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2611			  struct sk_buff *skb, unsigned header_len)
2612{
2613	struct scatterlist sg;
2614	const struct tcphdr *tp = tcp_hdr(skb);
2615	struct hash_desc *desc = &hp->md5_desc;
2616	unsigned i;
2617	const unsigned head_data_len = skb_headlen(skb) > header_len ?
2618				       skb_headlen(skb) - header_len : 0;
2619	const struct skb_shared_info *shi = skb_shinfo(skb);
2620
2621	sg_init_table(&sg, 1);
2622
2623	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2624	if (crypto_hash_update(desc, &sg, head_data_len))
2625		return 1;
2626
2627	for (i = 0; i < shi->nr_frags; ++i) {
2628		const struct skb_frag_struct *f = &shi->frags[i];
2629		sg_set_page(&sg, f->page, f->size, f->page_offset);
2630		if (crypto_hash_update(desc, &sg, f->size))
2631			return 1;
2632	}
2633
2634	return 0;
2635}
2636
2637EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2638
2639int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
2640{
2641	struct scatterlist sg;
2642
2643	sg_init_one(&sg, key->key, key->keylen);
2644	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2645}
2646
2647EXPORT_SYMBOL(tcp_md5_hash_key);
2648
2649#endif
2650
2651void tcp_done(struct sock *sk)
2652{
2653	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2654		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
2655
2656	tcp_set_state(sk, TCP_CLOSE);
2657	tcp_clear_xmit_timers(sk);
2658
2659	sk->sk_shutdown = SHUTDOWN_MASK;
2660
2661	if (!sock_flag(sk, SOCK_DEAD))
2662		sk->sk_state_change(sk);
2663	else
2664		inet_csk_destroy_sock(sk);
2665}
2666EXPORT_SYMBOL_GPL(tcp_done);
2667
2668extern struct tcp_congestion_ops tcp_reno;
2669
2670static __initdata unsigned long thash_entries;
2671static int __init set_thash_entries(char *str)
2672{
2673	if (!str)
2674		return 0;
2675	thash_entries = simple_strtoul(str, &str, 0);
2676	return 1;
2677}
2678__setup("thash_entries=", set_thash_entries);
2679
2680void __init tcp_init(void)
2681{
2682	struct sk_buff *skb = NULL;
2683	unsigned long nr_pages, limit;
2684	int order, i, max_share;
2685
2686	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
2687
2688	tcp_hashinfo.bind_bucket_cachep =
2689		kmem_cache_create("tcp_bind_bucket",
2690				  sizeof(struct inet_bind_bucket), 0,
2691				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2692
2693	/* Size and allocate the main established and bind bucket
2694	 * hash tables.
2695	 *
2696	 * The methodology is similar to that of the buffer cache.
2697	 */
2698	tcp_hashinfo.ehash =
2699		alloc_large_system_hash("TCP established",
2700					sizeof(struct inet_ehash_bucket),
2701					thash_entries,
2702					(num_physpages >= 128 * 1024) ?
2703					13 : 15,
2704					0,
2705					&tcp_hashinfo.ehash_size,
2706					NULL,
2707					thash_entries ? 0 : 512 * 1024);
2708	tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2709	for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2710		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
2711		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
2712	}
2713	if (inet_ehash_locks_alloc(&tcp_hashinfo))
2714		panic("TCP: failed to alloc ehash_locks");
2715	tcp_hashinfo.bhash =
2716		alloc_large_system_hash("TCP bind",
2717					sizeof(struct inet_bind_hashbucket),
2718					tcp_hashinfo.ehash_size,
2719					(num_physpages >= 128 * 1024) ?
2720					13 : 15,
2721					0,
2722					&tcp_hashinfo.bhash_size,
2723					NULL,
2724					64 * 1024);
2725	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2726	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2727		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2728		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2729	}
2730
2731	/* Try to be a bit smarter and adjust defaults depending
2732	 * on available memory.
2733	 */
2734	for (order = 0; ((1 << order) << PAGE_SHIFT) <
2735			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2736			order++)
2737		;
2738	if (order >= 4) {
2739		tcp_death_row.sysctl_max_tw_buckets = 180000;
2740		sysctl_tcp_max_orphans = 4096 << (order - 4);
2741		sysctl_max_syn_backlog = 1024;
2742	} else if (order < 3) {
2743		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2744		sysctl_tcp_max_orphans >>= (3 - order);
2745		sysctl_max_syn_backlog = 128;
2746	}
2747
2748	/* Set the pressure threshold to be a fraction of global memory that
2749	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2750	 * memory, with a floor of 128 pages.
2751	 */
2752	nr_pages = totalram_pages - totalhigh_pages;
2753	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2754	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2755	limit = max(limit, 128UL);
2756	sysctl_tcp_mem[0] = limit / 4 * 3;
2757	sysctl_tcp_mem[1] = limit;
2758	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2759
2760	/* Set per-socket limits to no more than 1/128 the pressure threshold */
2761	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2762	max_share = min(4UL*1024*1024, limit);
2763
2764	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
2765	sysctl_tcp_wmem[1] = 16*1024;
2766	sysctl_tcp_wmem[2] = max(64*1024, max_share);
2767
2768	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
2769	sysctl_tcp_rmem[1] = 87380;
2770	sysctl_tcp_rmem[2] = max(87380, max_share);
2771
2772	printk(KERN_INFO "TCP: Hash tables configured "
2773	       "(established %d bind %d)\n",
2774	       tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2775
2776	tcp_register_congestion_control(&tcp_reno);
2777}
2778
2779EXPORT_SYMBOL(tcp_close);
2780EXPORT_SYMBOL(tcp_disconnect);
2781EXPORT_SYMBOL(tcp_getsockopt);
2782EXPORT_SYMBOL(tcp_ioctl);
2783EXPORT_SYMBOL(tcp_poll);
2784EXPORT_SYMBOL(tcp_read_sock);
2785EXPORT_SYMBOL(tcp_recvmsg);
2786EXPORT_SYMBOL(tcp_sendmsg);
2787EXPORT_SYMBOL(tcp_splice_read);
2788EXPORT_SYMBOL(tcp_sendpage);
2789EXPORT_SYMBOL(tcp_setsockopt);
2790EXPORT_SYMBOL(tcp_shutdown);
2791