tcp.c revision 42324c62704365d6a3e89138dea55909d2f26afe
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248#include <linux/kernel.h> 249#include <linux/module.h> 250#include <linux/types.h> 251#include <linux/fcntl.h> 252#include <linux/poll.h> 253#include <linux/init.h> 254#include <linux/fs.h> 255#include <linux/skbuff.h> 256#include <linux/scatterlist.h> 257#include <linux/splice.h> 258#include <linux/net.h> 259#include <linux/socket.h> 260#include <linux/random.h> 261#include <linux/bootmem.h> 262#include <linux/highmem.h> 263#include <linux/swap.h> 264#include <linux/cache.h> 265#include <linux/err.h> 266#include <linux/crypto.h> 267 268#include <net/icmp.h> 269#include <net/tcp.h> 270#include <net/xfrm.h> 271#include <net/ip.h> 272#include <net/netdma.h> 273#include <net/sock.h> 274 275#include <asm/uaccess.h> 276#include <asm/ioctls.h> 277 278int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 279 280struct percpu_counter tcp_orphan_count; 281EXPORT_SYMBOL_GPL(tcp_orphan_count); 282 283int sysctl_tcp_mem[3] __read_mostly; 284int sysctl_tcp_wmem[3] __read_mostly; 285int sysctl_tcp_rmem[3] __read_mostly; 286 287EXPORT_SYMBOL(sysctl_tcp_mem); 288EXPORT_SYMBOL(sysctl_tcp_rmem); 289EXPORT_SYMBOL(sysctl_tcp_wmem); 290 291atomic_t tcp_memory_allocated; /* Current allocated memory. */ 292EXPORT_SYMBOL(tcp_memory_allocated); 293 294/* 295 * Current number of TCP sockets. 296 */ 297struct percpu_counter tcp_sockets_allocated; 298EXPORT_SYMBOL(tcp_sockets_allocated); 299 300/* 301 * TCP splice context 302 */ 303struct tcp_splice_state { 304 struct pipe_inode_info *pipe; 305 size_t len; 306 unsigned int flags; 307}; 308 309/* 310 * Pressure flag: try to collapse. 311 * Technical note: it is used by multiple contexts non atomically. 312 * All the __sk_mem_schedule() is of this nature: accounting 313 * is strict, actions are advisory and have some latency. 314 */ 315int tcp_memory_pressure __read_mostly; 316 317EXPORT_SYMBOL(tcp_memory_pressure); 318 319void tcp_enter_memory_pressure(struct sock *sk) 320{ 321 if (!tcp_memory_pressure) { 322 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 323 tcp_memory_pressure = 1; 324 } 325} 326 327EXPORT_SYMBOL(tcp_enter_memory_pressure); 328 329/* 330 * Wait for a TCP event. 331 * 332 * Note that we don't need to lock the socket, as the upper poll layers 333 * take care of normal races (between the test and the event) and we don't 334 * go look at any of the socket buffers directly. 335 */ 336unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 337{ 338 unsigned int mask; 339 struct sock *sk = sock->sk; 340 struct tcp_sock *tp = tcp_sk(sk); 341 342 sock_poll_wait(file, sk->sk_sleep, wait); 343 if (sk->sk_state == TCP_LISTEN) 344 return inet_csk_listen_poll(sk); 345 346 /* Socket is not locked. We are protected from async events 347 * by poll logic and correct handling of state changes 348 * made by other threads is impossible in any case. 349 */ 350 351 mask = 0; 352 if (sk->sk_err) 353 mask = POLLERR; 354 355 /* 356 * POLLHUP is certainly not done right. But poll() doesn't 357 * have a notion of HUP in just one direction, and for a 358 * socket the read side is more interesting. 359 * 360 * Some poll() documentation says that POLLHUP is incompatible 361 * with the POLLOUT/POLLWR flags, so somebody should check this 362 * all. But careful, it tends to be safer to return too many 363 * bits than too few, and you can easily break real applications 364 * if you don't tell them that something has hung up! 365 * 366 * Check-me. 367 * 368 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 369 * our fs/select.c). It means that after we received EOF, 370 * poll always returns immediately, making impossible poll() on write() 371 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 372 * if and only if shutdown has been made in both directions. 373 * Actually, it is interesting to look how Solaris and DUX 374 * solve this dilemma. I would prefer, if POLLHUP were maskable, 375 * then we could set it on SND_SHUTDOWN. BTW examples given 376 * in Stevens' books assume exactly this behaviour, it explains 377 * why POLLHUP is incompatible with POLLOUT. --ANK 378 * 379 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 380 * blocking on fresh not-connected or disconnected socket. --ANK 381 */ 382 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 383 mask |= POLLHUP; 384 if (sk->sk_shutdown & RCV_SHUTDOWN) 385 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 386 387 /* Connected? */ 388 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) { 389 int target = sock_rcvlowat(sk, 0, INT_MAX); 390 391 if (tp->urg_seq == tp->copied_seq && 392 !sock_flag(sk, SOCK_URGINLINE) && 393 tp->urg_data) 394 target--; 395 396 /* Potential race condition. If read of tp below will 397 * escape above sk->sk_state, we can be illegally awaken 398 * in SYN_* states. */ 399 if (tp->rcv_nxt - tp->copied_seq >= target) 400 mask |= POLLIN | POLLRDNORM; 401 402 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 403 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 404 mask |= POLLOUT | POLLWRNORM; 405 } else { /* send SIGIO later */ 406 set_bit(SOCK_ASYNC_NOSPACE, 407 &sk->sk_socket->flags); 408 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 409 410 /* Race breaker. If space is freed after 411 * wspace test but before the flags are set, 412 * IO signal will be lost. 413 */ 414 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 415 mask |= POLLOUT | POLLWRNORM; 416 } 417 } 418 419 if (tp->urg_data & TCP_URG_VALID) 420 mask |= POLLPRI; 421 } 422 return mask; 423} 424 425int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 426{ 427 struct tcp_sock *tp = tcp_sk(sk); 428 int answ; 429 430 switch (cmd) { 431 case SIOCINQ: 432 if (sk->sk_state == TCP_LISTEN) 433 return -EINVAL; 434 435 lock_sock(sk); 436 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 437 answ = 0; 438 else if (sock_flag(sk, SOCK_URGINLINE) || 439 !tp->urg_data || 440 before(tp->urg_seq, tp->copied_seq) || 441 !before(tp->urg_seq, tp->rcv_nxt)) { 442 struct sk_buff *skb; 443 444 answ = tp->rcv_nxt - tp->copied_seq; 445 446 /* Subtract 1, if FIN is in queue. */ 447 skb = skb_peek_tail(&sk->sk_receive_queue); 448 if (answ && skb) 449 answ -= tcp_hdr(skb)->fin; 450 } else 451 answ = tp->urg_seq - tp->copied_seq; 452 release_sock(sk); 453 break; 454 case SIOCATMARK: 455 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 456 break; 457 case SIOCOUTQ: 458 if (sk->sk_state == TCP_LISTEN) 459 return -EINVAL; 460 461 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 462 answ = 0; 463 else 464 answ = tp->write_seq - tp->snd_una; 465 break; 466 default: 467 return -ENOIOCTLCMD; 468 } 469 470 return put_user(answ, (int __user *)arg); 471} 472 473static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 474{ 475 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 476 tp->pushed_seq = tp->write_seq; 477} 478 479static inline int forced_push(struct tcp_sock *tp) 480{ 481 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 482} 483 484static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 485{ 486 struct tcp_sock *tp = tcp_sk(sk); 487 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 488 489 skb->csum = 0; 490 tcb->seq = tcb->end_seq = tp->write_seq; 491 tcb->flags = TCPCB_FLAG_ACK; 492 tcb->sacked = 0; 493 skb_header_release(skb); 494 tcp_add_write_queue_tail(sk, skb); 495 sk->sk_wmem_queued += skb->truesize; 496 sk_mem_charge(sk, skb->truesize); 497 if (tp->nonagle & TCP_NAGLE_PUSH) 498 tp->nonagle &= ~TCP_NAGLE_PUSH; 499} 500 501static inline void tcp_mark_urg(struct tcp_sock *tp, int flags, 502 struct sk_buff *skb) 503{ 504 if (flags & MSG_OOB) 505 tp->snd_up = tp->write_seq; 506} 507 508static inline void tcp_push(struct sock *sk, int flags, int mss_now, 509 int nonagle) 510{ 511 struct tcp_sock *tp = tcp_sk(sk); 512 513 if (tcp_send_head(sk)) { 514 struct sk_buff *skb = tcp_write_queue_tail(sk); 515 if (!(flags & MSG_MORE) || forced_push(tp)) 516 tcp_mark_push(tp, skb); 517 tcp_mark_urg(tp, flags, skb); 518 __tcp_push_pending_frames(sk, mss_now, 519 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 520 } 521} 522 523static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 524 unsigned int offset, size_t len) 525{ 526 struct tcp_splice_state *tss = rd_desc->arg.data; 527 int ret; 528 529 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 530 tss->flags); 531 if (ret > 0) 532 rd_desc->count -= ret; 533 return ret; 534} 535 536static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 537{ 538 /* Store TCP splice context information in read_descriptor_t. */ 539 read_descriptor_t rd_desc = { 540 .arg.data = tss, 541 .count = tss->len, 542 }; 543 544 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 545} 546 547/** 548 * tcp_splice_read - splice data from TCP socket to a pipe 549 * @sock: socket to splice from 550 * @ppos: position (not valid) 551 * @pipe: pipe to splice to 552 * @len: number of bytes to splice 553 * @flags: splice modifier flags 554 * 555 * Description: 556 * Will read pages from given socket and fill them into a pipe. 557 * 558 **/ 559ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 560 struct pipe_inode_info *pipe, size_t len, 561 unsigned int flags) 562{ 563 struct sock *sk = sock->sk; 564 struct tcp_splice_state tss = { 565 .pipe = pipe, 566 .len = len, 567 .flags = flags, 568 }; 569 long timeo; 570 ssize_t spliced; 571 int ret; 572 573 /* 574 * We can't seek on a socket input 575 */ 576 if (unlikely(*ppos)) 577 return -ESPIPE; 578 579 ret = spliced = 0; 580 581 lock_sock(sk); 582 583 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 584 while (tss.len) { 585 ret = __tcp_splice_read(sk, &tss); 586 if (ret < 0) 587 break; 588 else if (!ret) { 589 if (spliced) 590 break; 591 if (sock_flag(sk, SOCK_DONE)) 592 break; 593 if (sk->sk_err) { 594 ret = sock_error(sk); 595 break; 596 } 597 if (sk->sk_shutdown & RCV_SHUTDOWN) 598 break; 599 if (sk->sk_state == TCP_CLOSE) { 600 /* 601 * This occurs when user tries to read 602 * from never connected socket. 603 */ 604 if (!sock_flag(sk, SOCK_DONE)) 605 ret = -ENOTCONN; 606 break; 607 } 608 if (!timeo) { 609 ret = -EAGAIN; 610 break; 611 } 612 sk_wait_data(sk, &timeo); 613 if (signal_pending(current)) { 614 ret = sock_intr_errno(timeo); 615 break; 616 } 617 continue; 618 } 619 tss.len -= ret; 620 spliced += ret; 621 622 if (!timeo) 623 break; 624 release_sock(sk); 625 lock_sock(sk); 626 627 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 628 (sk->sk_shutdown & RCV_SHUTDOWN) || 629 signal_pending(current)) 630 break; 631 } 632 633 release_sock(sk); 634 635 if (spliced) 636 return spliced; 637 638 return ret; 639} 640 641struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 642{ 643 struct sk_buff *skb; 644 645 /* The TCP header must be at least 32-bit aligned. */ 646 size = ALIGN(size, 4); 647 648 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 649 if (skb) { 650 if (sk_wmem_schedule(sk, skb->truesize)) { 651 /* 652 * Make sure that we have exactly size bytes 653 * available to the caller, no more, no less. 654 */ 655 skb_reserve(skb, skb_tailroom(skb) - size); 656 return skb; 657 } 658 __kfree_skb(skb); 659 } else { 660 sk->sk_prot->enter_memory_pressure(sk); 661 sk_stream_moderate_sndbuf(sk); 662 } 663 return NULL; 664} 665 666static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 667 int large_allowed) 668{ 669 struct tcp_sock *tp = tcp_sk(sk); 670 u32 xmit_size_goal, old_size_goal; 671 672 xmit_size_goal = mss_now; 673 674 if (large_allowed && sk_can_gso(sk)) { 675 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 676 inet_csk(sk)->icsk_af_ops->net_header_len - 677 inet_csk(sk)->icsk_ext_hdr_len - 678 tp->tcp_header_len); 679 680 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 681 682 /* We try hard to avoid divides here */ 683 old_size_goal = tp->xmit_size_goal_segs * mss_now; 684 685 if (likely(old_size_goal <= xmit_size_goal && 686 old_size_goal + mss_now > xmit_size_goal)) { 687 xmit_size_goal = old_size_goal; 688 } else { 689 tp->xmit_size_goal_segs = xmit_size_goal / mss_now; 690 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 691 } 692 } 693 694 return max(xmit_size_goal, mss_now); 695} 696 697static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 698{ 699 int mss_now; 700 701 mss_now = tcp_current_mss(sk); 702 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 703 704 return mss_now; 705} 706 707static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset, 708 size_t psize, int flags) 709{ 710 struct tcp_sock *tp = tcp_sk(sk); 711 int mss_now, size_goal; 712 int err; 713 ssize_t copied; 714 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 715 716 /* Wait for a connection to finish. */ 717 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 718 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 719 goto out_err; 720 721 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 722 723 mss_now = tcp_send_mss(sk, &size_goal, flags); 724 copied = 0; 725 726 err = -EPIPE; 727 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 728 goto out_err; 729 730 while (psize > 0) { 731 struct sk_buff *skb = tcp_write_queue_tail(sk); 732 struct page *page = pages[poffset / PAGE_SIZE]; 733 int copy, i, can_coalesce; 734 int offset = poffset % PAGE_SIZE; 735 int size = min_t(size_t, psize, PAGE_SIZE - offset); 736 737 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 738new_segment: 739 if (!sk_stream_memory_free(sk)) 740 goto wait_for_sndbuf; 741 742 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 743 if (!skb) 744 goto wait_for_memory; 745 746 skb_entail(sk, skb); 747 copy = size_goal; 748 } 749 750 if (copy > size) 751 copy = size; 752 753 i = skb_shinfo(skb)->nr_frags; 754 can_coalesce = skb_can_coalesce(skb, i, page, offset); 755 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 756 tcp_mark_push(tp, skb); 757 goto new_segment; 758 } 759 if (!sk_wmem_schedule(sk, copy)) 760 goto wait_for_memory; 761 762 if (can_coalesce) { 763 skb_shinfo(skb)->frags[i - 1].size += copy; 764 } else { 765 get_page(page); 766 skb_fill_page_desc(skb, i, page, offset, copy); 767 } 768 769 skb->len += copy; 770 skb->data_len += copy; 771 skb->truesize += copy; 772 sk->sk_wmem_queued += copy; 773 sk_mem_charge(sk, copy); 774 skb->ip_summed = CHECKSUM_PARTIAL; 775 tp->write_seq += copy; 776 TCP_SKB_CB(skb)->end_seq += copy; 777 skb_shinfo(skb)->gso_segs = 0; 778 779 if (!copied) 780 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH; 781 782 copied += copy; 783 poffset += copy; 784 if (!(psize -= copy)) 785 goto out; 786 787 if (skb->len < size_goal || (flags & MSG_OOB)) 788 continue; 789 790 if (forced_push(tp)) { 791 tcp_mark_push(tp, skb); 792 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 793 } else if (skb == tcp_send_head(sk)) 794 tcp_push_one(sk, mss_now); 795 continue; 796 797wait_for_sndbuf: 798 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 799wait_for_memory: 800 if (copied) 801 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 802 803 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 804 goto do_error; 805 806 mss_now = tcp_send_mss(sk, &size_goal, flags); 807 } 808 809out: 810 if (copied) 811 tcp_push(sk, flags, mss_now, tp->nonagle); 812 return copied; 813 814do_error: 815 if (copied) 816 goto out; 817out_err: 818 return sk_stream_error(sk, flags, err); 819} 820 821ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset, 822 size_t size, int flags) 823{ 824 ssize_t res; 825 struct sock *sk = sock->sk; 826 827 if (!(sk->sk_route_caps & NETIF_F_SG) || 828 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 829 return sock_no_sendpage(sock, page, offset, size, flags); 830 831 lock_sock(sk); 832 TCP_CHECK_TIMER(sk); 833 res = do_tcp_sendpages(sk, &page, offset, size, flags); 834 TCP_CHECK_TIMER(sk); 835 release_sock(sk); 836 return res; 837} 838 839#define TCP_PAGE(sk) (sk->sk_sndmsg_page) 840#define TCP_OFF(sk) (sk->sk_sndmsg_off) 841 842static inline int select_size(struct sock *sk) 843{ 844 struct tcp_sock *tp = tcp_sk(sk); 845 int tmp = tp->mss_cache; 846 847 if (sk->sk_route_caps & NETIF_F_SG) { 848 if (sk_can_gso(sk)) 849 tmp = 0; 850 else { 851 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 852 853 if (tmp >= pgbreak && 854 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 855 tmp = pgbreak; 856 } 857 } 858 859 return tmp; 860} 861 862int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, 863 size_t size) 864{ 865 struct sock *sk = sock->sk; 866 struct iovec *iov; 867 struct tcp_sock *tp = tcp_sk(sk); 868 struct sk_buff *skb; 869 int iovlen, flags; 870 int mss_now, size_goal; 871 int err, copied; 872 long timeo; 873 874 lock_sock(sk); 875 TCP_CHECK_TIMER(sk); 876 877 flags = msg->msg_flags; 878 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 879 880 /* Wait for a connection to finish. */ 881 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 882 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 883 goto out_err; 884 885 /* This should be in poll */ 886 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 887 888 mss_now = tcp_send_mss(sk, &size_goal, flags); 889 890 /* Ok commence sending. */ 891 iovlen = msg->msg_iovlen; 892 iov = msg->msg_iov; 893 copied = 0; 894 895 err = -EPIPE; 896 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 897 goto out_err; 898 899 while (--iovlen >= 0) { 900 int seglen = iov->iov_len; 901 unsigned char __user *from = iov->iov_base; 902 903 iov++; 904 905 while (seglen > 0) { 906 int copy = 0; 907 int max = size_goal; 908 909 skb = tcp_write_queue_tail(sk); 910 if (tcp_send_head(sk)) { 911 if (skb->ip_summed == CHECKSUM_NONE) 912 max = mss_now; 913 copy = max - skb->len; 914 } 915 916 if (copy <= 0) { 917new_segment: 918 /* Allocate new segment. If the interface is SG, 919 * allocate skb fitting to single page. 920 */ 921 if (!sk_stream_memory_free(sk)) 922 goto wait_for_sndbuf; 923 924 skb = sk_stream_alloc_skb(sk, select_size(sk), 925 sk->sk_allocation); 926 if (!skb) 927 goto wait_for_memory; 928 929 /* 930 * Check whether we can use HW checksum. 931 */ 932 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 933 skb->ip_summed = CHECKSUM_PARTIAL; 934 935 skb_entail(sk, skb); 936 copy = size_goal; 937 max = size_goal; 938 } 939 940 /* Try to append data to the end of skb. */ 941 if (copy > seglen) 942 copy = seglen; 943 944 /* Where to copy to? */ 945 if (skb_tailroom(skb) > 0) { 946 /* We have some space in skb head. Superb! */ 947 if (copy > skb_tailroom(skb)) 948 copy = skb_tailroom(skb); 949 if ((err = skb_add_data(skb, from, copy)) != 0) 950 goto do_fault; 951 } else { 952 int merge = 0; 953 int i = skb_shinfo(skb)->nr_frags; 954 struct page *page = TCP_PAGE(sk); 955 int off = TCP_OFF(sk); 956 957 if (skb_can_coalesce(skb, i, page, off) && 958 off != PAGE_SIZE) { 959 /* We can extend the last page 960 * fragment. */ 961 merge = 1; 962 } else if (i == MAX_SKB_FRAGS || 963 (!i && 964 !(sk->sk_route_caps & NETIF_F_SG))) { 965 /* Need to add new fragment and cannot 966 * do this because interface is non-SG, 967 * or because all the page slots are 968 * busy. */ 969 tcp_mark_push(tp, skb); 970 goto new_segment; 971 } else if (page) { 972 if (off == PAGE_SIZE) { 973 put_page(page); 974 TCP_PAGE(sk) = page = NULL; 975 off = 0; 976 } 977 } else 978 off = 0; 979 980 if (copy > PAGE_SIZE - off) 981 copy = PAGE_SIZE - off; 982 983 if (!sk_wmem_schedule(sk, copy)) 984 goto wait_for_memory; 985 986 if (!page) { 987 /* Allocate new cache page. */ 988 if (!(page = sk_stream_alloc_page(sk))) 989 goto wait_for_memory; 990 } 991 992 /* Time to copy data. We are close to 993 * the end! */ 994 err = skb_copy_to_page(sk, from, skb, page, 995 off, copy); 996 if (err) { 997 /* If this page was new, give it to the 998 * socket so it does not get leaked. 999 */ 1000 if (!TCP_PAGE(sk)) { 1001 TCP_PAGE(sk) = page; 1002 TCP_OFF(sk) = 0; 1003 } 1004 goto do_error; 1005 } 1006 1007 /* Update the skb. */ 1008 if (merge) { 1009 skb_shinfo(skb)->frags[i - 1].size += 1010 copy; 1011 } else { 1012 skb_fill_page_desc(skb, i, page, off, copy); 1013 if (TCP_PAGE(sk)) { 1014 get_page(page); 1015 } else if (off + copy < PAGE_SIZE) { 1016 get_page(page); 1017 TCP_PAGE(sk) = page; 1018 } 1019 } 1020 1021 TCP_OFF(sk) = off + copy; 1022 } 1023 1024 if (!copied) 1025 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH; 1026 1027 tp->write_seq += copy; 1028 TCP_SKB_CB(skb)->end_seq += copy; 1029 skb_shinfo(skb)->gso_segs = 0; 1030 1031 from += copy; 1032 copied += copy; 1033 if ((seglen -= copy) == 0 && iovlen == 0) 1034 goto out; 1035 1036 if (skb->len < max || (flags & MSG_OOB)) 1037 continue; 1038 1039 if (forced_push(tp)) { 1040 tcp_mark_push(tp, skb); 1041 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1042 } else if (skb == tcp_send_head(sk)) 1043 tcp_push_one(sk, mss_now); 1044 continue; 1045 1046wait_for_sndbuf: 1047 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1048wait_for_memory: 1049 if (copied) 1050 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1051 1052 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1053 goto do_error; 1054 1055 mss_now = tcp_send_mss(sk, &size_goal, flags); 1056 } 1057 } 1058 1059out: 1060 if (copied) 1061 tcp_push(sk, flags, mss_now, tp->nonagle); 1062 TCP_CHECK_TIMER(sk); 1063 release_sock(sk); 1064 return copied; 1065 1066do_fault: 1067 if (!skb->len) { 1068 tcp_unlink_write_queue(skb, sk); 1069 /* It is the one place in all of TCP, except connection 1070 * reset, where we can be unlinking the send_head. 1071 */ 1072 tcp_check_send_head(sk, skb); 1073 sk_wmem_free_skb(sk, skb); 1074 } 1075 1076do_error: 1077 if (copied) 1078 goto out; 1079out_err: 1080 err = sk_stream_error(sk, flags, err); 1081 TCP_CHECK_TIMER(sk); 1082 release_sock(sk); 1083 return err; 1084} 1085 1086/* 1087 * Handle reading urgent data. BSD has very simple semantics for 1088 * this, no blocking and very strange errors 8) 1089 */ 1090 1091static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1092{ 1093 struct tcp_sock *tp = tcp_sk(sk); 1094 1095 /* No URG data to read. */ 1096 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1097 tp->urg_data == TCP_URG_READ) 1098 return -EINVAL; /* Yes this is right ! */ 1099 1100 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1101 return -ENOTCONN; 1102 1103 if (tp->urg_data & TCP_URG_VALID) { 1104 int err = 0; 1105 char c = tp->urg_data; 1106 1107 if (!(flags & MSG_PEEK)) 1108 tp->urg_data = TCP_URG_READ; 1109 1110 /* Read urgent data. */ 1111 msg->msg_flags |= MSG_OOB; 1112 1113 if (len > 0) { 1114 if (!(flags & MSG_TRUNC)) 1115 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1116 len = 1; 1117 } else 1118 msg->msg_flags |= MSG_TRUNC; 1119 1120 return err ? -EFAULT : len; 1121 } 1122 1123 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1124 return 0; 1125 1126 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1127 * the available implementations agree in this case: 1128 * this call should never block, independent of the 1129 * blocking state of the socket. 1130 * Mike <pall@rz.uni-karlsruhe.de> 1131 */ 1132 return -EAGAIN; 1133} 1134 1135/* Clean up the receive buffer for full frames taken by the user, 1136 * then send an ACK if necessary. COPIED is the number of bytes 1137 * tcp_recvmsg has given to the user so far, it speeds up the 1138 * calculation of whether or not we must ACK for the sake of 1139 * a window update. 1140 */ 1141void tcp_cleanup_rbuf(struct sock *sk, int copied) 1142{ 1143 struct tcp_sock *tp = tcp_sk(sk); 1144 int time_to_ack = 0; 1145 1146#if TCP_DEBUG 1147 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1148 1149 WARN_ON(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)); 1150#endif 1151 1152 if (inet_csk_ack_scheduled(sk)) { 1153 const struct inet_connection_sock *icsk = inet_csk(sk); 1154 /* Delayed ACKs frequently hit locked sockets during bulk 1155 * receive. */ 1156 if (icsk->icsk_ack.blocked || 1157 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1158 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1159 /* 1160 * If this read emptied read buffer, we send ACK, if 1161 * connection is not bidirectional, user drained 1162 * receive buffer and there was a small segment 1163 * in queue. 1164 */ 1165 (copied > 0 && 1166 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1167 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1168 !icsk->icsk_ack.pingpong)) && 1169 !atomic_read(&sk->sk_rmem_alloc))) 1170 time_to_ack = 1; 1171 } 1172 1173 /* We send an ACK if we can now advertise a non-zero window 1174 * which has been raised "significantly". 1175 * 1176 * Even if window raised up to infinity, do not send window open ACK 1177 * in states, where we will not receive more. It is useless. 1178 */ 1179 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1180 __u32 rcv_window_now = tcp_receive_window(tp); 1181 1182 /* Optimize, __tcp_select_window() is not cheap. */ 1183 if (2*rcv_window_now <= tp->window_clamp) { 1184 __u32 new_window = __tcp_select_window(sk); 1185 1186 /* Send ACK now, if this read freed lots of space 1187 * in our buffer. Certainly, new_window is new window. 1188 * We can advertise it now, if it is not less than current one. 1189 * "Lots" means "at least twice" here. 1190 */ 1191 if (new_window && new_window >= 2 * rcv_window_now) 1192 time_to_ack = 1; 1193 } 1194 } 1195 if (time_to_ack) 1196 tcp_send_ack(sk); 1197} 1198 1199static void tcp_prequeue_process(struct sock *sk) 1200{ 1201 struct sk_buff *skb; 1202 struct tcp_sock *tp = tcp_sk(sk); 1203 1204 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1205 1206 /* RX process wants to run with disabled BHs, though it is not 1207 * necessary */ 1208 local_bh_disable(); 1209 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1210 sk_backlog_rcv(sk, skb); 1211 local_bh_enable(); 1212 1213 /* Clear memory counter. */ 1214 tp->ucopy.memory = 0; 1215} 1216 1217static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1218{ 1219 struct sk_buff *skb; 1220 u32 offset; 1221 1222 skb_queue_walk(&sk->sk_receive_queue, skb) { 1223 offset = seq - TCP_SKB_CB(skb)->seq; 1224 if (tcp_hdr(skb)->syn) 1225 offset--; 1226 if (offset < skb->len || tcp_hdr(skb)->fin) { 1227 *off = offset; 1228 return skb; 1229 } 1230 } 1231 return NULL; 1232} 1233 1234/* 1235 * This routine provides an alternative to tcp_recvmsg() for routines 1236 * that would like to handle copying from skbuffs directly in 'sendfile' 1237 * fashion. 1238 * Note: 1239 * - It is assumed that the socket was locked by the caller. 1240 * - The routine does not block. 1241 * - At present, there is no support for reading OOB data 1242 * or for 'peeking' the socket using this routine 1243 * (although both would be easy to implement). 1244 */ 1245int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1246 sk_read_actor_t recv_actor) 1247{ 1248 struct sk_buff *skb; 1249 struct tcp_sock *tp = tcp_sk(sk); 1250 u32 seq = tp->copied_seq; 1251 u32 offset; 1252 int copied = 0; 1253 1254 if (sk->sk_state == TCP_LISTEN) 1255 return -ENOTCONN; 1256 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1257 if (offset < skb->len) { 1258 int used; 1259 size_t len; 1260 1261 len = skb->len - offset; 1262 /* Stop reading if we hit a patch of urgent data */ 1263 if (tp->urg_data) { 1264 u32 urg_offset = tp->urg_seq - seq; 1265 if (urg_offset < len) 1266 len = urg_offset; 1267 if (!len) 1268 break; 1269 } 1270 used = recv_actor(desc, skb, offset, len); 1271 if (used < 0) { 1272 if (!copied) 1273 copied = used; 1274 break; 1275 } else if (used <= len) { 1276 seq += used; 1277 copied += used; 1278 offset += used; 1279 } 1280 /* 1281 * If recv_actor drops the lock (e.g. TCP splice 1282 * receive) the skb pointer might be invalid when 1283 * getting here: tcp_collapse might have deleted it 1284 * while aggregating skbs from the socket queue. 1285 */ 1286 skb = tcp_recv_skb(sk, seq-1, &offset); 1287 if (!skb || (offset+1 != skb->len)) 1288 break; 1289 } 1290 if (tcp_hdr(skb)->fin) { 1291 sk_eat_skb(sk, skb, 0); 1292 ++seq; 1293 break; 1294 } 1295 sk_eat_skb(sk, skb, 0); 1296 if (!desc->count) 1297 break; 1298 } 1299 tp->copied_seq = seq; 1300 1301 tcp_rcv_space_adjust(sk); 1302 1303 /* Clean up data we have read: This will do ACK frames. */ 1304 if (copied > 0) 1305 tcp_cleanup_rbuf(sk, copied); 1306 return copied; 1307} 1308 1309/* 1310 * This routine copies from a sock struct into the user buffer. 1311 * 1312 * Technical note: in 2.3 we work on _locked_ socket, so that 1313 * tricks with *seq access order and skb->users are not required. 1314 * Probably, code can be easily improved even more. 1315 */ 1316 1317int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1318 size_t len, int nonblock, int flags, int *addr_len) 1319{ 1320 struct tcp_sock *tp = tcp_sk(sk); 1321 int copied = 0; 1322 u32 peek_seq; 1323 u32 *seq; 1324 unsigned long used; 1325 int err; 1326 int target; /* Read at least this many bytes */ 1327 long timeo; 1328 struct task_struct *user_recv = NULL; 1329 int copied_early = 0; 1330 struct sk_buff *skb; 1331 u32 urg_hole = 0; 1332 1333 lock_sock(sk); 1334 1335 TCP_CHECK_TIMER(sk); 1336 1337 err = -ENOTCONN; 1338 if (sk->sk_state == TCP_LISTEN) 1339 goto out; 1340 1341 timeo = sock_rcvtimeo(sk, nonblock); 1342 1343 /* Urgent data needs to be handled specially. */ 1344 if (flags & MSG_OOB) 1345 goto recv_urg; 1346 1347 seq = &tp->copied_seq; 1348 if (flags & MSG_PEEK) { 1349 peek_seq = tp->copied_seq; 1350 seq = &peek_seq; 1351 } 1352 1353 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1354 1355#ifdef CONFIG_NET_DMA 1356 tp->ucopy.dma_chan = NULL; 1357 preempt_disable(); 1358 skb = skb_peek_tail(&sk->sk_receive_queue); 1359 { 1360 int available = 0; 1361 1362 if (skb) 1363 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1364 if ((available < target) && 1365 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1366 !sysctl_tcp_low_latency && 1367 dma_find_channel(DMA_MEMCPY)) { 1368 preempt_enable_no_resched(); 1369 tp->ucopy.pinned_list = 1370 dma_pin_iovec_pages(msg->msg_iov, len); 1371 } else { 1372 preempt_enable_no_resched(); 1373 } 1374 } 1375#endif 1376 1377 do { 1378 u32 offset; 1379 1380 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1381 if (tp->urg_data && tp->urg_seq == *seq) { 1382 if (copied) 1383 break; 1384 if (signal_pending(current)) { 1385 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1386 break; 1387 } 1388 } 1389 1390 /* Next get a buffer. */ 1391 1392 skb_queue_walk(&sk->sk_receive_queue, skb) { 1393 /* Now that we have two receive queues this 1394 * shouldn't happen. 1395 */ 1396 if (before(*seq, TCP_SKB_CB(skb)->seq)) { 1397 printk(KERN_INFO "recvmsg bug: copied %X " 1398 "seq %X\n", *seq, TCP_SKB_CB(skb)->seq); 1399 break; 1400 } 1401 offset = *seq - TCP_SKB_CB(skb)->seq; 1402 if (tcp_hdr(skb)->syn) 1403 offset--; 1404 if (offset < skb->len) 1405 goto found_ok_skb; 1406 if (tcp_hdr(skb)->fin) 1407 goto found_fin_ok; 1408 WARN_ON(!(flags & MSG_PEEK)); 1409 } 1410 1411 /* Well, if we have backlog, try to process it now yet. */ 1412 1413 if (copied >= target && !sk->sk_backlog.tail) 1414 break; 1415 1416 if (copied) { 1417 if (sk->sk_err || 1418 sk->sk_state == TCP_CLOSE || 1419 (sk->sk_shutdown & RCV_SHUTDOWN) || 1420 !timeo || 1421 signal_pending(current)) 1422 break; 1423 } else { 1424 if (sock_flag(sk, SOCK_DONE)) 1425 break; 1426 1427 if (sk->sk_err) { 1428 copied = sock_error(sk); 1429 break; 1430 } 1431 1432 if (sk->sk_shutdown & RCV_SHUTDOWN) 1433 break; 1434 1435 if (sk->sk_state == TCP_CLOSE) { 1436 if (!sock_flag(sk, SOCK_DONE)) { 1437 /* This occurs when user tries to read 1438 * from never connected socket. 1439 */ 1440 copied = -ENOTCONN; 1441 break; 1442 } 1443 break; 1444 } 1445 1446 if (!timeo) { 1447 copied = -EAGAIN; 1448 break; 1449 } 1450 1451 if (signal_pending(current)) { 1452 copied = sock_intr_errno(timeo); 1453 break; 1454 } 1455 } 1456 1457 tcp_cleanup_rbuf(sk, copied); 1458 1459 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1460 /* Install new reader */ 1461 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1462 user_recv = current; 1463 tp->ucopy.task = user_recv; 1464 tp->ucopy.iov = msg->msg_iov; 1465 } 1466 1467 tp->ucopy.len = len; 1468 1469 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1470 !(flags & (MSG_PEEK | MSG_TRUNC))); 1471 1472 /* Ugly... If prequeue is not empty, we have to 1473 * process it before releasing socket, otherwise 1474 * order will be broken at second iteration. 1475 * More elegant solution is required!!! 1476 * 1477 * Look: we have the following (pseudo)queues: 1478 * 1479 * 1. packets in flight 1480 * 2. backlog 1481 * 3. prequeue 1482 * 4. receive_queue 1483 * 1484 * Each queue can be processed only if the next ones 1485 * are empty. At this point we have empty receive_queue. 1486 * But prequeue _can_ be not empty after 2nd iteration, 1487 * when we jumped to start of loop because backlog 1488 * processing added something to receive_queue. 1489 * We cannot release_sock(), because backlog contains 1490 * packets arrived _after_ prequeued ones. 1491 * 1492 * Shortly, algorithm is clear --- to process all 1493 * the queues in order. We could make it more directly, 1494 * requeueing packets from backlog to prequeue, if 1495 * is not empty. It is more elegant, but eats cycles, 1496 * unfortunately. 1497 */ 1498 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1499 goto do_prequeue; 1500 1501 /* __ Set realtime policy in scheduler __ */ 1502 } 1503 1504 if (copied >= target) { 1505 /* Do not sleep, just process backlog. */ 1506 release_sock(sk); 1507 lock_sock(sk); 1508 } else 1509 sk_wait_data(sk, &timeo); 1510 1511#ifdef CONFIG_NET_DMA 1512 tp->ucopy.wakeup = 0; 1513#endif 1514 1515 if (user_recv) { 1516 int chunk; 1517 1518 /* __ Restore normal policy in scheduler __ */ 1519 1520 if ((chunk = len - tp->ucopy.len) != 0) { 1521 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1522 len -= chunk; 1523 copied += chunk; 1524 } 1525 1526 if (tp->rcv_nxt == tp->copied_seq && 1527 !skb_queue_empty(&tp->ucopy.prequeue)) { 1528do_prequeue: 1529 tcp_prequeue_process(sk); 1530 1531 if ((chunk = len - tp->ucopy.len) != 0) { 1532 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1533 len -= chunk; 1534 copied += chunk; 1535 } 1536 } 1537 } 1538 if ((flags & MSG_PEEK) && 1539 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1540 if (net_ratelimit()) 1541 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n", 1542 current->comm, task_pid_nr(current)); 1543 peek_seq = tp->copied_seq; 1544 } 1545 continue; 1546 1547 found_ok_skb: 1548 /* Ok so how much can we use? */ 1549 used = skb->len - offset; 1550 if (len < used) 1551 used = len; 1552 1553 /* Do we have urgent data here? */ 1554 if (tp->urg_data) { 1555 u32 urg_offset = tp->urg_seq - *seq; 1556 if (urg_offset < used) { 1557 if (!urg_offset) { 1558 if (!sock_flag(sk, SOCK_URGINLINE)) { 1559 ++*seq; 1560 urg_hole++; 1561 offset++; 1562 used--; 1563 if (!used) 1564 goto skip_copy; 1565 } 1566 } else 1567 used = urg_offset; 1568 } 1569 } 1570 1571 if (!(flags & MSG_TRUNC)) { 1572#ifdef CONFIG_NET_DMA 1573 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1574 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 1575 1576 if (tp->ucopy.dma_chan) { 1577 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1578 tp->ucopy.dma_chan, skb, offset, 1579 msg->msg_iov, used, 1580 tp->ucopy.pinned_list); 1581 1582 if (tp->ucopy.dma_cookie < 0) { 1583 1584 printk(KERN_ALERT "dma_cookie < 0\n"); 1585 1586 /* Exception. Bailout! */ 1587 if (!copied) 1588 copied = -EFAULT; 1589 break; 1590 } 1591 if ((offset + used) == skb->len) 1592 copied_early = 1; 1593 1594 } else 1595#endif 1596 { 1597 err = skb_copy_datagram_iovec(skb, offset, 1598 msg->msg_iov, used); 1599 if (err) { 1600 /* Exception. Bailout! */ 1601 if (!copied) 1602 copied = -EFAULT; 1603 break; 1604 } 1605 } 1606 } 1607 1608 *seq += used; 1609 copied += used; 1610 len -= used; 1611 1612 tcp_rcv_space_adjust(sk); 1613 1614skip_copy: 1615 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1616 tp->urg_data = 0; 1617 tcp_fast_path_check(sk); 1618 } 1619 if (used + offset < skb->len) 1620 continue; 1621 1622 if (tcp_hdr(skb)->fin) 1623 goto found_fin_ok; 1624 if (!(flags & MSG_PEEK)) { 1625 sk_eat_skb(sk, skb, copied_early); 1626 copied_early = 0; 1627 } 1628 continue; 1629 1630 found_fin_ok: 1631 /* Process the FIN. */ 1632 ++*seq; 1633 if (!(flags & MSG_PEEK)) { 1634 sk_eat_skb(sk, skb, copied_early); 1635 copied_early = 0; 1636 } 1637 break; 1638 } while (len > 0); 1639 1640 if (user_recv) { 1641 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1642 int chunk; 1643 1644 tp->ucopy.len = copied > 0 ? len : 0; 1645 1646 tcp_prequeue_process(sk); 1647 1648 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1649 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1650 len -= chunk; 1651 copied += chunk; 1652 } 1653 } 1654 1655 tp->ucopy.task = NULL; 1656 tp->ucopy.len = 0; 1657 } 1658 1659#ifdef CONFIG_NET_DMA 1660 if (tp->ucopy.dma_chan) { 1661 dma_cookie_t done, used; 1662 1663 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1664 1665 while (dma_async_memcpy_complete(tp->ucopy.dma_chan, 1666 tp->ucopy.dma_cookie, &done, 1667 &used) == DMA_IN_PROGRESS) { 1668 /* do partial cleanup of sk_async_wait_queue */ 1669 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1670 (dma_async_is_complete(skb->dma_cookie, done, 1671 used) == DMA_SUCCESS)) { 1672 __skb_dequeue(&sk->sk_async_wait_queue); 1673 kfree_skb(skb); 1674 } 1675 } 1676 1677 /* Safe to free early-copied skbs now */ 1678 __skb_queue_purge(&sk->sk_async_wait_queue); 1679 tp->ucopy.dma_chan = NULL; 1680 } 1681 if (tp->ucopy.pinned_list) { 1682 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1683 tp->ucopy.pinned_list = NULL; 1684 } 1685#endif 1686 1687 /* According to UNIX98, msg_name/msg_namelen are ignored 1688 * on connected socket. I was just happy when found this 8) --ANK 1689 */ 1690 1691 /* Clean up data we have read: This will do ACK frames. */ 1692 tcp_cleanup_rbuf(sk, copied); 1693 1694 TCP_CHECK_TIMER(sk); 1695 release_sock(sk); 1696 return copied; 1697 1698out: 1699 TCP_CHECK_TIMER(sk); 1700 release_sock(sk); 1701 return err; 1702 1703recv_urg: 1704 err = tcp_recv_urg(sk, msg, len, flags); 1705 goto out; 1706} 1707 1708void tcp_set_state(struct sock *sk, int state) 1709{ 1710 int oldstate = sk->sk_state; 1711 1712 switch (state) { 1713 case TCP_ESTABLISHED: 1714 if (oldstate != TCP_ESTABLISHED) 1715 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1716 break; 1717 1718 case TCP_CLOSE: 1719 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1720 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1721 1722 sk->sk_prot->unhash(sk); 1723 if (inet_csk(sk)->icsk_bind_hash && 1724 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1725 inet_put_port(sk); 1726 /* fall through */ 1727 default: 1728 if (oldstate == TCP_ESTABLISHED) 1729 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1730 } 1731 1732 /* Change state AFTER socket is unhashed to avoid closed 1733 * socket sitting in hash tables. 1734 */ 1735 sk->sk_state = state; 1736 1737#ifdef STATE_TRACE 1738 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1739#endif 1740} 1741EXPORT_SYMBOL_GPL(tcp_set_state); 1742 1743/* 1744 * State processing on a close. This implements the state shift for 1745 * sending our FIN frame. Note that we only send a FIN for some 1746 * states. A shutdown() may have already sent the FIN, or we may be 1747 * closed. 1748 */ 1749 1750static const unsigned char new_state[16] = { 1751 /* current state: new state: action: */ 1752 /* (Invalid) */ TCP_CLOSE, 1753 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1754 /* TCP_SYN_SENT */ TCP_CLOSE, 1755 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1756 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 1757 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 1758 /* TCP_TIME_WAIT */ TCP_CLOSE, 1759 /* TCP_CLOSE */ TCP_CLOSE, 1760 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 1761 /* TCP_LAST_ACK */ TCP_LAST_ACK, 1762 /* TCP_LISTEN */ TCP_CLOSE, 1763 /* TCP_CLOSING */ TCP_CLOSING, 1764}; 1765 1766static int tcp_close_state(struct sock *sk) 1767{ 1768 int next = (int)new_state[sk->sk_state]; 1769 int ns = next & TCP_STATE_MASK; 1770 1771 tcp_set_state(sk, ns); 1772 1773 return next & TCP_ACTION_FIN; 1774} 1775 1776/* 1777 * Shutdown the sending side of a connection. Much like close except 1778 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1779 */ 1780 1781void tcp_shutdown(struct sock *sk, int how) 1782{ 1783 /* We need to grab some memory, and put together a FIN, 1784 * and then put it into the queue to be sent. 1785 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1786 */ 1787 if (!(how & SEND_SHUTDOWN)) 1788 return; 1789 1790 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1791 if ((1 << sk->sk_state) & 1792 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1793 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1794 /* Clear out any half completed packets. FIN if needed. */ 1795 if (tcp_close_state(sk)) 1796 tcp_send_fin(sk); 1797 } 1798} 1799 1800void tcp_close(struct sock *sk, long timeout) 1801{ 1802 struct sk_buff *skb; 1803 int data_was_unread = 0; 1804 int state; 1805 1806 lock_sock(sk); 1807 sk->sk_shutdown = SHUTDOWN_MASK; 1808 1809 if (sk->sk_state == TCP_LISTEN) { 1810 tcp_set_state(sk, TCP_CLOSE); 1811 1812 /* Special case. */ 1813 inet_csk_listen_stop(sk); 1814 1815 goto adjudge_to_death; 1816 } 1817 1818 /* We need to flush the recv. buffs. We do this only on the 1819 * descriptor close, not protocol-sourced closes, because the 1820 * reader process may not have drained the data yet! 1821 */ 1822 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 1823 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 1824 tcp_hdr(skb)->fin; 1825 data_was_unread += len; 1826 __kfree_skb(skb); 1827 } 1828 1829 sk_mem_reclaim(sk); 1830 1831 /* As outlined in RFC 2525, section 2.17, we send a RST here because 1832 * data was lost. To witness the awful effects of the old behavior of 1833 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 1834 * GET in an FTP client, suspend the process, wait for the client to 1835 * advertise a zero window, then kill -9 the FTP client, wheee... 1836 * Note: timeout is always zero in such a case. 1837 */ 1838 if (data_was_unread) { 1839 /* Unread data was tossed, zap the connection. */ 1840 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 1841 tcp_set_state(sk, TCP_CLOSE); 1842 tcp_send_active_reset(sk, sk->sk_allocation); 1843 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1844 /* Check zero linger _after_ checking for unread data. */ 1845 sk->sk_prot->disconnect(sk, 0); 1846 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 1847 } else if (tcp_close_state(sk)) { 1848 /* We FIN if the application ate all the data before 1849 * zapping the connection. 1850 */ 1851 1852 /* RED-PEN. Formally speaking, we have broken TCP state 1853 * machine. State transitions: 1854 * 1855 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 1856 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 1857 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 1858 * 1859 * are legal only when FIN has been sent (i.e. in window), 1860 * rather than queued out of window. Purists blame. 1861 * 1862 * F.e. "RFC state" is ESTABLISHED, 1863 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 1864 * 1865 * The visible declinations are that sometimes 1866 * we enter time-wait state, when it is not required really 1867 * (harmless), do not send active resets, when they are 1868 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 1869 * they look as CLOSING or LAST_ACK for Linux) 1870 * Probably, I missed some more holelets. 1871 * --ANK 1872 */ 1873 tcp_send_fin(sk); 1874 } 1875 1876 sk_stream_wait_close(sk, timeout); 1877 1878adjudge_to_death: 1879 state = sk->sk_state; 1880 sock_hold(sk); 1881 sock_orphan(sk); 1882 1883 /* It is the last release_sock in its life. It will remove backlog. */ 1884 release_sock(sk); 1885 1886 1887 /* Now socket is owned by kernel and we acquire BH lock 1888 to finish close. No need to check for user refs. 1889 */ 1890 local_bh_disable(); 1891 bh_lock_sock(sk); 1892 WARN_ON(sock_owned_by_user(sk)); 1893 1894 percpu_counter_inc(sk->sk_prot->orphan_count); 1895 1896 /* Have we already been destroyed by a softirq or backlog? */ 1897 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 1898 goto out; 1899 1900 /* This is a (useful) BSD violating of the RFC. There is a 1901 * problem with TCP as specified in that the other end could 1902 * keep a socket open forever with no application left this end. 1903 * We use a 3 minute timeout (about the same as BSD) then kill 1904 * our end. If they send after that then tough - BUT: long enough 1905 * that we won't make the old 4*rto = almost no time - whoops 1906 * reset mistake. 1907 * 1908 * Nope, it was not mistake. It is really desired behaviour 1909 * f.e. on http servers, when such sockets are useless, but 1910 * consume significant resources. Let's do it with special 1911 * linger2 option. --ANK 1912 */ 1913 1914 if (sk->sk_state == TCP_FIN_WAIT2) { 1915 struct tcp_sock *tp = tcp_sk(sk); 1916 if (tp->linger2 < 0) { 1917 tcp_set_state(sk, TCP_CLOSE); 1918 tcp_send_active_reset(sk, GFP_ATOMIC); 1919 NET_INC_STATS_BH(sock_net(sk), 1920 LINUX_MIB_TCPABORTONLINGER); 1921 } else { 1922 const int tmo = tcp_fin_time(sk); 1923 1924 if (tmo > TCP_TIMEWAIT_LEN) { 1925 inet_csk_reset_keepalive_timer(sk, 1926 tmo - TCP_TIMEWAIT_LEN); 1927 } else { 1928 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 1929 goto out; 1930 } 1931 } 1932 } 1933 if (sk->sk_state != TCP_CLOSE) { 1934 int orphan_count = percpu_counter_read_positive( 1935 sk->sk_prot->orphan_count); 1936 1937 sk_mem_reclaim(sk); 1938 if (tcp_too_many_orphans(sk, orphan_count)) { 1939 if (net_ratelimit()) 1940 printk(KERN_INFO "TCP: too many of orphaned " 1941 "sockets\n"); 1942 tcp_set_state(sk, TCP_CLOSE); 1943 tcp_send_active_reset(sk, GFP_ATOMIC); 1944 NET_INC_STATS_BH(sock_net(sk), 1945 LINUX_MIB_TCPABORTONMEMORY); 1946 } 1947 } 1948 1949 if (sk->sk_state == TCP_CLOSE) 1950 inet_csk_destroy_sock(sk); 1951 /* Otherwise, socket is reprieved until protocol close. */ 1952 1953out: 1954 bh_unlock_sock(sk); 1955 local_bh_enable(); 1956 sock_put(sk); 1957} 1958 1959/* These states need RST on ABORT according to RFC793 */ 1960 1961static inline int tcp_need_reset(int state) 1962{ 1963 return (1 << state) & 1964 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 1965 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 1966} 1967 1968int tcp_disconnect(struct sock *sk, int flags) 1969{ 1970 struct inet_sock *inet = inet_sk(sk); 1971 struct inet_connection_sock *icsk = inet_csk(sk); 1972 struct tcp_sock *tp = tcp_sk(sk); 1973 int err = 0; 1974 int old_state = sk->sk_state; 1975 1976 if (old_state != TCP_CLOSE) 1977 tcp_set_state(sk, TCP_CLOSE); 1978 1979 /* ABORT function of RFC793 */ 1980 if (old_state == TCP_LISTEN) { 1981 inet_csk_listen_stop(sk); 1982 } else if (tcp_need_reset(old_state) || 1983 (tp->snd_nxt != tp->write_seq && 1984 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 1985 /* The last check adjusts for discrepancy of Linux wrt. RFC 1986 * states 1987 */ 1988 tcp_send_active_reset(sk, gfp_any()); 1989 sk->sk_err = ECONNRESET; 1990 } else if (old_state == TCP_SYN_SENT) 1991 sk->sk_err = ECONNRESET; 1992 1993 tcp_clear_xmit_timers(sk); 1994 __skb_queue_purge(&sk->sk_receive_queue); 1995 tcp_write_queue_purge(sk); 1996 __skb_queue_purge(&tp->out_of_order_queue); 1997#ifdef CONFIG_NET_DMA 1998 __skb_queue_purge(&sk->sk_async_wait_queue); 1999#endif 2000 2001 inet->dport = 0; 2002 2003 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2004 inet_reset_saddr(sk); 2005 2006 sk->sk_shutdown = 0; 2007 sock_reset_flag(sk, SOCK_DONE); 2008 tp->srtt = 0; 2009 if ((tp->write_seq += tp->max_window + 2) == 0) 2010 tp->write_seq = 1; 2011 icsk->icsk_backoff = 0; 2012 tp->snd_cwnd = 2; 2013 icsk->icsk_probes_out = 0; 2014 tp->packets_out = 0; 2015 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2016 tp->snd_cwnd_cnt = 0; 2017 tp->bytes_acked = 0; 2018 tcp_set_ca_state(sk, TCP_CA_Open); 2019 tcp_clear_retrans(tp); 2020 inet_csk_delack_init(sk); 2021 tcp_init_send_head(sk); 2022 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2023 __sk_dst_reset(sk); 2024 2025 WARN_ON(inet->num && !icsk->icsk_bind_hash); 2026 2027 sk->sk_error_report(sk); 2028 return err; 2029} 2030 2031/* 2032 * Socket option code for TCP. 2033 */ 2034static int do_tcp_setsockopt(struct sock *sk, int level, 2035 int optname, char __user *optval, unsigned int optlen) 2036{ 2037 struct tcp_sock *tp = tcp_sk(sk); 2038 struct inet_connection_sock *icsk = inet_csk(sk); 2039 int val; 2040 int err = 0; 2041 2042 /* This is a string value all the others are int's */ 2043 if (optname == TCP_CONGESTION) { 2044 char name[TCP_CA_NAME_MAX]; 2045 2046 if (optlen < 1) 2047 return -EINVAL; 2048 2049 val = strncpy_from_user(name, optval, 2050 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2051 if (val < 0) 2052 return -EFAULT; 2053 name[val] = 0; 2054 2055 lock_sock(sk); 2056 err = tcp_set_congestion_control(sk, name); 2057 release_sock(sk); 2058 return err; 2059 } 2060 2061 if (optlen < sizeof(int)) 2062 return -EINVAL; 2063 2064 if (get_user(val, (int __user *)optval)) 2065 return -EFAULT; 2066 2067 lock_sock(sk); 2068 2069 switch (optname) { 2070 case TCP_MAXSEG: 2071 /* Values greater than interface MTU won't take effect. However 2072 * at the point when this call is done we typically don't yet 2073 * know which interface is going to be used */ 2074 if (val < 8 || val > MAX_TCP_WINDOW) { 2075 err = -EINVAL; 2076 break; 2077 } 2078 tp->rx_opt.user_mss = val; 2079 break; 2080 2081 case TCP_NODELAY: 2082 if (val) { 2083 /* TCP_NODELAY is weaker than TCP_CORK, so that 2084 * this option on corked socket is remembered, but 2085 * it is not activated until cork is cleared. 2086 * 2087 * However, when TCP_NODELAY is set we make 2088 * an explicit push, which overrides even TCP_CORK 2089 * for currently queued segments. 2090 */ 2091 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2092 tcp_push_pending_frames(sk); 2093 } else { 2094 tp->nonagle &= ~TCP_NAGLE_OFF; 2095 } 2096 break; 2097 2098 case TCP_CORK: 2099 /* When set indicates to always queue non-full frames. 2100 * Later the user clears this option and we transmit 2101 * any pending partial frames in the queue. This is 2102 * meant to be used alongside sendfile() to get properly 2103 * filled frames when the user (for example) must write 2104 * out headers with a write() call first and then use 2105 * sendfile to send out the data parts. 2106 * 2107 * TCP_CORK can be set together with TCP_NODELAY and it is 2108 * stronger than TCP_NODELAY. 2109 */ 2110 if (val) { 2111 tp->nonagle |= TCP_NAGLE_CORK; 2112 } else { 2113 tp->nonagle &= ~TCP_NAGLE_CORK; 2114 if (tp->nonagle&TCP_NAGLE_OFF) 2115 tp->nonagle |= TCP_NAGLE_PUSH; 2116 tcp_push_pending_frames(sk); 2117 } 2118 break; 2119 2120 case TCP_KEEPIDLE: 2121 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2122 err = -EINVAL; 2123 else { 2124 tp->keepalive_time = val * HZ; 2125 if (sock_flag(sk, SOCK_KEEPOPEN) && 2126 !((1 << sk->sk_state) & 2127 (TCPF_CLOSE | TCPF_LISTEN))) { 2128 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp; 2129 if (tp->keepalive_time > elapsed) 2130 elapsed = tp->keepalive_time - elapsed; 2131 else 2132 elapsed = 0; 2133 inet_csk_reset_keepalive_timer(sk, elapsed); 2134 } 2135 } 2136 break; 2137 case TCP_KEEPINTVL: 2138 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2139 err = -EINVAL; 2140 else 2141 tp->keepalive_intvl = val * HZ; 2142 break; 2143 case TCP_KEEPCNT: 2144 if (val < 1 || val > MAX_TCP_KEEPCNT) 2145 err = -EINVAL; 2146 else 2147 tp->keepalive_probes = val; 2148 break; 2149 case TCP_SYNCNT: 2150 if (val < 1 || val > MAX_TCP_SYNCNT) 2151 err = -EINVAL; 2152 else 2153 icsk->icsk_syn_retries = val; 2154 break; 2155 2156 case TCP_LINGER2: 2157 if (val < 0) 2158 tp->linger2 = -1; 2159 else if (val > sysctl_tcp_fin_timeout / HZ) 2160 tp->linger2 = 0; 2161 else 2162 tp->linger2 = val * HZ; 2163 break; 2164 2165 case TCP_DEFER_ACCEPT: 2166 icsk->icsk_accept_queue.rskq_defer_accept = 0; 2167 if (val > 0) { 2168 /* Translate value in seconds to number of 2169 * retransmits */ 2170 while (icsk->icsk_accept_queue.rskq_defer_accept < 32 && 2171 val > ((TCP_TIMEOUT_INIT / HZ) << 2172 icsk->icsk_accept_queue.rskq_defer_accept)) 2173 icsk->icsk_accept_queue.rskq_defer_accept++; 2174 icsk->icsk_accept_queue.rskq_defer_accept++; 2175 } 2176 break; 2177 2178 case TCP_WINDOW_CLAMP: 2179 if (!val) { 2180 if (sk->sk_state != TCP_CLOSE) { 2181 err = -EINVAL; 2182 break; 2183 } 2184 tp->window_clamp = 0; 2185 } else 2186 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2187 SOCK_MIN_RCVBUF / 2 : val; 2188 break; 2189 2190 case TCP_QUICKACK: 2191 if (!val) { 2192 icsk->icsk_ack.pingpong = 1; 2193 } else { 2194 icsk->icsk_ack.pingpong = 0; 2195 if ((1 << sk->sk_state) & 2196 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2197 inet_csk_ack_scheduled(sk)) { 2198 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2199 tcp_cleanup_rbuf(sk, 1); 2200 if (!(val & 1)) 2201 icsk->icsk_ack.pingpong = 1; 2202 } 2203 } 2204 break; 2205 2206#ifdef CONFIG_TCP_MD5SIG 2207 case TCP_MD5SIG: 2208 /* Read the IP->Key mappings from userspace */ 2209 err = tp->af_specific->md5_parse(sk, optval, optlen); 2210 break; 2211#endif 2212 2213 default: 2214 err = -ENOPROTOOPT; 2215 break; 2216 } 2217 2218 release_sock(sk); 2219 return err; 2220} 2221 2222int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2223 unsigned int optlen) 2224{ 2225 struct inet_connection_sock *icsk = inet_csk(sk); 2226 2227 if (level != SOL_TCP) 2228 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2229 optval, optlen); 2230 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2231} 2232 2233#ifdef CONFIG_COMPAT 2234int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2235 char __user *optval, unsigned int optlen) 2236{ 2237 if (level != SOL_TCP) 2238 return inet_csk_compat_setsockopt(sk, level, optname, 2239 optval, optlen); 2240 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2241} 2242 2243EXPORT_SYMBOL(compat_tcp_setsockopt); 2244#endif 2245 2246/* Return information about state of tcp endpoint in API format. */ 2247void tcp_get_info(struct sock *sk, struct tcp_info *info) 2248{ 2249 struct tcp_sock *tp = tcp_sk(sk); 2250 const struct inet_connection_sock *icsk = inet_csk(sk); 2251 u32 now = tcp_time_stamp; 2252 2253 memset(info, 0, sizeof(*info)); 2254 2255 info->tcpi_state = sk->sk_state; 2256 info->tcpi_ca_state = icsk->icsk_ca_state; 2257 info->tcpi_retransmits = icsk->icsk_retransmits; 2258 info->tcpi_probes = icsk->icsk_probes_out; 2259 info->tcpi_backoff = icsk->icsk_backoff; 2260 2261 if (tp->rx_opt.tstamp_ok) 2262 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2263 if (tcp_is_sack(tp)) 2264 info->tcpi_options |= TCPI_OPT_SACK; 2265 if (tp->rx_opt.wscale_ok) { 2266 info->tcpi_options |= TCPI_OPT_WSCALE; 2267 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2268 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2269 } 2270 2271 if (tp->ecn_flags&TCP_ECN_OK) 2272 info->tcpi_options |= TCPI_OPT_ECN; 2273 2274 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2275 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2276 info->tcpi_snd_mss = tp->mss_cache; 2277 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2278 2279 if (sk->sk_state == TCP_LISTEN) { 2280 info->tcpi_unacked = sk->sk_ack_backlog; 2281 info->tcpi_sacked = sk->sk_max_ack_backlog; 2282 } else { 2283 info->tcpi_unacked = tp->packets_out; 2284 info->tcpi_sacked = tp->sacked_out; 2285 } 2286 info->tcpi_lost = tp->lost_out; 2287 info->tcpi_retrans = tp->retrans_out; 2288 info->tcpi_fackets = tp->fackets_out; 2289 2290 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2291 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2292 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2293 2294 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2295 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2296 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2297 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2298 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2299 info->tcpi_snd_cwnd = tp->snd_cwnd; 2300 info->tcpi_advmss = tp->advmss; 2301 info->tcpi_reordering = tp->reordering; 2302 2303 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2304 info->tcpi_rcv_space = tp->rcvq_space.space; 2305 2306 info->tcpi_total_retrans = tp->total_retrans; 2307} 2308 2309EXPORT_SYMBOL_GPL(tcp_get_info); 2310 2311static int do_tcp_getsockopt(struct sock *sk, int level, 2312 int optname, char __user *optval, int __user *optlen) 2313{ 2314 struct inet_connection_sock *icsk = inet_csk(sk); 2315 struct tcp_sock *tp = tcp_sk(sk); 2316 int val, len; 2317 2318 if (get_user(len, optlen)) 2319 return -EFAULT; 2320 2321 len = min_t(unsigned int, len, sizeof(int)); 2322 2323 if (len < 0) 2324 return -EINVAL; 2325 2326 switch (optname) { 2327 case TCP_MAXSEG: 2328 val = tp->mss_cache; 2329 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2330 val = tp->rx_opt.user_mss; 2331 break; 2332 case TCP_NODELAY: 2333 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2334 break; 2335 case TCP_CORK: 2336 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2337 break; 2338 case TCP_KEEPIDLE: 2339 val = keepalive_time_when(tp) / HZ; 2340 break; 2341 case TCP_KEEPINTVL: 2342 val = keepalive_intvl_when(tp) / HZ; 2343 break; 2344 case TCP_KEEPCNT: 2345 val = keepalive_probes(tp); 2346 break; 2347 case TCP_SYNCNT: 2348 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2349 break; 2350 case TCP_LINGER2: 2351 val = tp->linger2; 2352 if (val >= 0) 2353 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2354 break; 2355 case TCP_DEFER_ACCEPT: 2356 val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 : 2357 ((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1)); 2358 break; 2359 case TCP_WINDOW_CLAMP: 2360 val = tp->window_clamp; 2361 break; 2362 case TCP_INFO: { 2363 struct tcp_info info; 2364 2365 if (get_user(len, optlen)) 2366 return -EFAULT; 2367 2368 tcp_get_info(sk, &info); 2369 2370 len = min_t(unsigned int, len, sizeof(info)); 2371 if (put_user(len, optlen)) 2372 return -EFAULT; 2373 if (copy_to_user(optval, &info, len)) 2374 return -EFAULT; 2375 return 0; 2376 } 2377 case TCP_QUICKACK: 2378 val = !icsk->icsk_ack.pingpong; 2379 break; 2380 2381 case TCP_CONGESTION: 2382 if (get_user(len, optlen)) 2383 return -EFAULT; 2384 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2385 if (put_user(len, optlen)) 2386 return -EFAULT; 2387 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2388 return -EFAULT; 2389 return 0; 2390 default: 2391 return -ENOPROTOOPT; 2392 } 2393 2394 if (put_user(len, optlen)) 2395 return -EFAULT; 2396 if (copy_to_user(optval, &val, len)) 2397 return -EFAULT; 2398 return 0; 2399} 2400 2401int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2402 int __user *optlen) 2403{ 2404 struct inet_connection_sock *icsk = inet_csk(sk); 2405 2406 if (level != SOL_TCP) 2407 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2408 optval, optlen); 2409 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2410} 2411 2412#ifdef CONFIG_COMPAT 2413int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2414 char __user *optval, int __user *optlen) 2415{ 2416 if (level != SOL_TCP) 2417 return inet_csk_compat_getsockopt(sk, level, optname, 2418 optval, optlen); 2419 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2420} 2421 2422EXPORT_SYMBOL(compat_tcp_getsockopt); 2423#endif 2424 2425struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features) 2426{ 2427 struct sk_buff *segs = ERR_PTR(-EINVAL); 2428 struct tcphdr *th; 2429 unsigned thlen; 2430 unsigned int seq; 2431 __be32 delta; 2432 unsigned int oldlen; 2433 unsigned int mss; 2434 2435 if (!pskb_may_pull(skb, sizeof(*th))) 2436 goto out; 2437 2438 th = tcp_hdr(skb); 2439 thlen = th->doff * 4; 2440 if (thlen < sizeof(*th)) 2441 goto out; 2442 2443 if (!pskb_may_pull(skb, thlen)) 2444 goto out; 2445 2446 oldlen = (u16)~skb->len; 2447 __skb_pull(skb, thlen); 2448 2449 mss = skb_shinfo(skb)->gso_size; 2450 if (unlikely(skb->len <= mss)) 2451 goto out; 2452 2453 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 2454 /* Packet is from an untrusted source, reset gso_segs. */ 2455 int type = skb_shinfo(skb)->gso_type; 2456 2457 if (unlikely(type & 2458 ~(SKB_GSO_TCPV4 | 2459 SKB_GSO_DODGY | 2460 SKB_GSO_TCP_ECN | 2461 SKB_GSO_TCPV6 | 2462 0) || 2463 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) 2464 goto out; 2465 2466 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 2467 2468 segs = NULL; 2469 goto out; 2470 } 2471 2472 segs = skb_segment(skb, features); 2473 if (IS_ERR(segs)) 2474 goto out; 2475 2476 delta = htonl(oldlen + (thlen + mss)); 2477 2478 skb = segs; 2479 th = tcp_hdr(skb); 2480 seq = ntohl(th->seq); 2481 2482 do { 2483 th->fin = th->psh = 0; 2484 2485 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2486 (__force u32)delta)); 2487 if (skb->ip_summed != CHECKSUM_PARTIAL) 2488 th->check = 2489 csum_fold(csum_partial(skb_transport_header(skb), 2490 thlen, skb->csum)); 2491 2492 seq += mss; 2493 skb = skb->next; 2494 th = tcp_hdr(skb); 2495 2496 th->seq = htonl(seq); 2497 th->cwr = 0; 2498 } while (skb->next); 2499 2500 delta = htonl(oldlen + (skb->tail - skb->transport_header) + 2501 skb->data_len); 2502 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2503 (__force u32)delta)); 2504 if (skb->ip_summed != CHECKSUM_PARTIAL) 2505 th->check = csum_fold(csum_partial(skb_transport_header(skb), 2506 thlen, skb->csum)); 2507 2508out: 2509 return segs; 2510} 2511EXPORT_SYMBOL(tcp_tso_segment); 2512 2513struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2514{ 2515 struct sk_buff **pp = NULL; 2516 struct sk_buff *p; 2517 struct tcphdr *th; 2518 struct tcphdr *th2; 2519 unsigned int len; 2520 unsigned int thlen; 2521 unsigned int flags; 2522 unsigned int mss = 1; 2523 unsigned int hlen; 2524 unsigned int off; 2525 int flush = 1; 2526 int i; 2527 2528 off = skb_gro_offset(skb); 2529 hlen = off + sizeof(*th); 2530 th = skb_gro_header_fast(skb, off); 2531 if (skb_gro_header_hard(skb, hlen)) { 2532 th = skb_gro_header_slow(skb, hlen, off); 2533 if (unlikely(!th)) 2534 goto out; 2535 } 2536 2537 thlen = th->doff * 4; 2538 if (thlen < sizeof(*th)) 2539 goto out; 2540 2541 hlen = off + thlen; 2542 if (skb_gro_header_hard(skb, hlen)) { 2543 th = skb_gro_header_slow(skb, hlen, off); 2544 if (unlikely(!th)) 2545 goto out; 2546 } 2547 2548 skb_gro_pull(skb, thlen); 2549 2550 len = skb_gro_len(skb); 2551 flags = tcp_flag_word(th); 2552 2553 for (; (p = *head); head = &p->next) { 2554 if (!NAPI_GRO_CB(p)->same_flow) 2555 continue; 2556 2557 th2 = tcp_hdr(p); 2558 2559 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) { 2560 NAPI_GRO_CB(p)->same_flow = 0; 2561 continue; 2562 } 2563 2564 goto found; 2565 } 2566 2567 goto out_check_final; 2568 2569found: 2570 flush = NAPI_GRO_CB(p)->flush; 2571 flush |= flags & TCP_FLAG_CWR; 2572 flush |= (flags ^ tcp_flag_word(th2)) & 2573 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH); 2574 flush |= th->ack_seq ^ th2->ack_seq; 2575 for (i = sizeof(*th); i < thlen; i += 4) 2576 flush |= *(u32 *)((u8 *)th + i) ^ 2577 *(u32 *)((u8 *)th2 + i); 2578 2579 mss = skb_shinfo(p)->gso_size; 2580 2581 flush |= (len - 1) >= mss; 2582 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); 2583 2584 if (flush || skb_gro_receive(head, skb)) { 2585 mss = 1; 2586 goto out_check_final; 2587 } 2588 2589 p = *head; 2590 th2 = tcp_hdr(p); 2591 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); 2592 2593out_check_final: 2594 flush = len < mss; 2595 flush |= flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST | 2596 TCP_FLAG_SYN | TCP_FLAG_FIN); 2597 2598 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) 2599 pp = head; 2600 2601out: 2602 NAPI_GRO_CB(skb)->flush |= flush; 2603 2604 return pp; 2605} 2606EXPORT_SYMBOL(tcp_gro_receive); 2607 2608int tcp_gro_complete(struct sk_buff *skb) 2609{ 2610 struct tcphdr *th = tcp_hdr(skb); 2611 2612 skb->csum_start = skb_transport_header(skb) - skb->head; 2613 skb->csum_offset = offsetof(struct tcphdr, check); 2614 skb->ip_summed = CHECKSUM_PARTIAL; 2615 2616 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 2617 2618 if (th->cwr) 2619 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 2620 2621 return 0; 2622} 2623EXPORT_SYMBOL(tcp_gro_complete); 2624 2625#ifdef CONFIG_TCP_MD5SIG 2626static unsigned long tcp_md5sig_users; 2627static struct tcp_md5sig_pool **tcp_md5sig_pool; 2628static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); 2629 2630static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool) 2631{ 2632 int cpu; 2633 for_each_possible_cpu(cpu) { 2634 struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu); 2635 if (p) { 2636 if (p->md5_desc.tfm) 2637 crypto_free_hash(p->md5_desc.tfm); 2638 kfree(p); 2639 p = NULL; 2640 } 2641 } 2642 free_percpu(pool); 2643} 2644 2645void tcp_free_md5sig_pool(void) 2646{ 2647 struct tcp_md5sig_pool **pool = NULL; 2648 2649 spin_lock_bh(&tcp_md5sig_pool_lock); 2650 if (--tcp_md5sig_users == 0) { 2651 pool = tcp_md5sig_pool; 2652 tcp_md5sig_pool = NULL; 2653 } 2654 spin_unlock_bh(&tcp_md5sig_pool_lock); 2655 if (pool) 2656 __tcp_free_md5sig_pool(pool); 2657} 2658 2659EXPORT_SYMBOL(tcp_free_md5sig_pool); 2660 2661static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(struct sock *sk) 2662{ 2663 int cpu; 2664 struct tcp_md5sig_pool **pool; 2665 2666 pool = alloc_percpu(struct tcp_md5sig_pool *); 2667 if (!pool) 2668 return NULL; 2669 2670 for_each_possible_cpu(cpu) { 2671 struct tcp_md5sig_pool *p; 2672 struct crypto_hash *hash; 2673 2674 p = kzalloc(sizeof(*p), sk->sk_allocation); 2675 if (!p) 2676 goto out_free; 2677 *per_cpu_ptr(pool, cpu) = p; 2678 2679 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2680 if (!hash || IS_ERR(hash)) 2681 goto out_free; 2682 2683 p->md5_desc.tfm = hash; 2684 } 2685 return pool; 2686out_free: 2687 __tcp_free_md5sig_pool(pool); 2688 return NULL; 2689} 2690 2691struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(struct sock *sk) 2692{ 2693 struct tcp_md5sig_pool **pool; 2694 int alloc = 0; 2695 2696retry: 2697 spin_lock_bh(&tcp_md5sig_pool_lock); 2698 pool = tcp_md5sig_pool; 2699 if (tcp_md5sig_users++ == 0) { 2700 alloc = 1; 2701 spin_unlock_bh(&tcp_md5sig_pool_lock); 2702 } else if (!pool) { 2703 tcp_md5sig_users--; 2704 spin_unlock_bh(&tcp_md5sig_pool_lock); 2705 cpu_relax(); 2706 goto retry; 2707 } else 2708 spin_unlock_bh(&tcp_md5sig_pool_lock); 2709 2710 if (alloc) { 2711 /* we cannot hold spinlock here because this may sleep. */ 2712 struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool(sk); 2713 spin_lock_bh(&tcp_md5sig_pool_lock); 2714 if (!p) { 2715 tcp_md5sig_users--; 2716 spin_unlock_bh(&tcp_md5sig_pool_lock); 2717 return NULL; 2718 } 2719 pool = tcp_md5sig_pool; 2720 if (pool) { 2721 /* oops, it has already been assigned. */ 2722 spin_unlock_bh(&tcp_md5sig_pool_lock); 2723 __tcp_free_md5sig_pool(p); 2724 } else { 2725 tcp_md5sig_pool = pool = p; 2726 spin_unlock_bh(&tcp_md5sig_pool_lock); 2727 } 2728 } 2729 return pool; 2730} 2731 2732EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2733 2734struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu) 2735{ 2736 struct tcp_md5sig_pool **p; 2737 spin_lock_bh(&tcp_md5sig_pool_lock); 2738 p = tcp_md5sig_pool; 2739 if (p) 2740 tcp_md5sig_users++; 2741 spin_unlock_bh(&tcp_md5sig_pool_lock); 2742 return (p ? *per_cpu_ptr(p, cpu) : NULL); 2743} 2744 2745EXPORT_SYMBOL(__tcp_get_md5sig_pool); 2746 2747void __tcp_put_md5sig_pool(void) 2748{ 2749 tcp_free_md5sig_pool(); 2750} 2751 2752EXPORT_SYMBOL(__tcp_put_md5sig_pool); 2753 2754int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2755 struct tcphdr *th) 2756{ 2757 struct scatterlist sg; 2758 int err; 2759 2760 __sum16 old_checksum = th->check; 2761 th->check = 0; 2762 /* options aren't included in the hash */ 2763 sg_init_one(&sg, th, sizeof(struct tcphdr)); 2764 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr)); 2765 th->check = old_checksum; 2766 return err; 2767} 2768 2769EXPORT_SYMBOL(tcp_md5_hash_header); 2770 2771int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 2772 struct sk_buff *skb, unsigned header_len) 2773{ 2774 struct scatterlist sg; 2775 const struct tcphdr *tp = tcp_hdr(skb); 2776 struct hash_desc *desc = &hp->md5_desc; 2777 unsigned i; 2778 const unsigned head_data_len = skb_headlen(skb) > header_len ? 2779 skb_headlen(skb) - header_len : 0; 2780 const struct skb_shared_info *shi = skb_shinfo(skb); 2781 2782 sg_init_table(&sg, 1); 2783 2784 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 2785 if (crypto_hash_update(desc, &sg, head_data_len)) 2786 return 1; 2787 2788 for (i = 0; i < shi->nr_frags; ++i) { 2789 const struct skb_frag_struct *f = &shi->frags[i]; 2790 sg_set_page(&sg, f->page, f->size, f->page_offset); 2791 if (crypto_hash_update(desc, &sg, f->size)) 2792 return 1; 2793 } 2794 2795 return 0; 2796} 2797 2798EXPORT_SYMBOL(tcp_md5_hash_skb_data); 2799 2800int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key) 2801{ 2802 struct scatterlist sg; 2803 2804 sg_init_one(&sg, key->key, key->keylen); 2805 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 2806} 2807 2808EXPORT_SYMBOL(tcp_md5_hash_key); 2809 2810#endif 2811 2812void tcp_done(struct sock *sk) 2813{ 2814 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 2815 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 2816 2817 tcp_set_state(sk, TCP_CLOSE); 2818 tcp_clear_xmit_timers(sk); 2819 2820 sk->sk_shutdown = SHUTDOWN_MASK; 2821 2822 if (!sock_flag(sk, SOCK_DEAD)) 2823 sk->sk_state_change(sk); 2824 else 2825 inet_csk_destroy_sock(sk); 2826} 2827EXPORT_SYMBOL_GPL(tcp_done); 2828 2829extern struct tcp_congestion_ops tcp_reno; 2830 2831static __initdata unsigned long thash_entries; 2832static int __init set_thash_entries(char *str) 2833{ 2834 if (!str) 2835 return 0; 2836 thash_entries = simple_strtoul(str, &str, 0); 2837 return 1; 2838} 2839__setup("thash_entries=", set_thash_entries); 2840 2841void __init tcp_init(void) 2842{ 2843 struct sk_buff *skb = NULL; 2844 unsigned long nr_pages, limit; 2845 int order, i, max_share; 2846 2847 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 2848 2849 percpu_counter_init(&tcp_sockets_allocated, 0); 2850 percpu_counter_init(&tcp_orphan_count, 0); 2851 tcp_hashinfo.bind_bucket_cachep = 2852 kmem_cache_create("tcp_bind_bucket", 2853 sizeof(struct inet_bind_bucket), 0, 2854 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2855 2856 /* Size and allocate the main established and bind bucket 2857 * hash tables. 2858 * 2859 * The methodology is similar to that of the buffer cache. 2860 */ 2861 tcp_hashinfo.ehash = 2862 alloc_large_system_hash("TCP established", 2863 sizeof(struct inet_ehash_bucket), 2864 thash_entries, 2865 (totalram_pages >= 128 * 1024) ? 2866 13 : 15, 2867 0, 2868 &tcp_hashinfo.ehash_size, 2869 NULL, 2870 thash_entries ? 0 : 512 * 1024); 2871 tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size; 2872 for (i = 0; i < tcp_hashinfo.ehash_size; i++) { 2873 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 2874 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 2875 } 2876 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 2877 panic("TCP: failed to alloc ehash_locks"); 2878 tcp_hashinfo.bhash = 2879 alloc_large_system_hash("TCP bind", 2880 sizeof(struct inet_bind_hashbucket), 2881 tcp_hashinfo.ehash_size, 2882 (totalram_pages >= 128 * 1024) ? 2883 13 : 15, 2884 0, 2885 &tcp_hashinfo.bhash_size, 2886 NULL, 2887 64 * 1024); 2888 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size; 2889 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 2890 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 2891 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 2892 } 2893 2894 /* Try to be a bit smarter and adjust defaults depending 2895 * on available memory. 2896 */ 2897 for (order = 0; ((1 << order) << PAGE_SHIFT) < 2898 (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket)); 2899 order++) 2900 ; 2901 if (order >= 4) { 2902 tcp_death_row.sysctl_max_tw_buckets = 180000; 2903 sysctl_tcp_max_orphans = 4096 << (order - 4); 2904 sysctl_max_syn_backlog = 1024; 2905 } else if (order < 3) { 2906 tcp_death_row.sysctl_max_tw_buckets >>= (3 - order); 2907 sysctl_tcp_max_orphans >>= (3 - order); 2908 sysctl_max_syn_backlog = 128; 2909 } 2910 2911 /* Set the pressure threshold to be a fraction of global memory that 2912 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of 2913 * memory, with a floor of 128 pages. 2914 */ 2915 nr_pages = totalram_pages - totalhigh_pages; 2916 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT); 2917 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11); 2918 limit = max(limit, 128UL); 2919 sysctl_tcp_mem[0] = limit / 4 * 3; 2920 sysctl_tcp_mem[1] = limit; 2921 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; 2922 2923 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 2924 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7); 2925 max_share = min(4UL*1024*1024, limit); 2926 2927 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 2928 sysctl_tcp_wmem[1] = 16*1024; 2929 sysctl_tcp_wmem[2] = max(64*1024, max_share); 2930 2931 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 2932 sysctl_tcp_rmem[1] = 87380; 2933 sysctl_tcp_rmem[2] = max(87380, max_share); 2934 2935 printk(KERN_INFO "TCP: Hash tables configured " 2936 "(established %d bind %d)\n", 2937 tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size); 2938 2939 tcp_register_congestion_control(&tcp_reno); 2940} 2941 2942EXPORT_SYMBOL(tcp_close); 2943EXPORT_SYMBOL(tcp_disconnect); 2944EXPORT_SYMBOL(tcp_getsockopt); 2945EXPORT_SYMBOL(tcp_ioctl); 2946EXPORT_SYMBOL(tcp_poll); 2947EXPORT_SYMBOL(tcp_read_sock); 2948EXPORT_SYMBOL(tcp_recvmsg); 2949EXPORT_SYMBOL(tcp_sendmsg); 2950EXPORT_SYMBOL(tcp_splice_read); 2951EXPORT_SYMBOL(tcp_sendpage); 2952EXPORT_SYMBOL(tcp_setsockopt); 2953EXPORT_SYMBOL(tcp_shutdown); 2954