tcp.c revision 4bc2f18ba4f22a90ab593c0a580fc9a19c4777b6
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#include <linux/kernel.h>
249#include <linux/module.h>
250#include <linux/types.h>
251#include <linux/fcntl.h>
252#include <linux/poll.h>
253#include <linux/init.h>
254#include <linux/fs.h>
255#include <linux/skbuff.h>
256#include <linux/scatterlist.h>
257#include <linux/splice.h>
258#include <linux/net.h>
259#include <linux/socket.h>
260#include <linux/random.h>
261#include <linux/bootmem.h>
262#include <linux/highmem.h>
263#include <linux/swap.h>
264#include <linux/cache.h>
265#include <linux/err.h>
266#include <linux/crypto.h>
267#include <linux/time.h>
268#include <linux/slab.h>
269
270#include <net/icmp.h>
271#include <net/tcp.h>
272#include <net/xfrm.h>
273#include <net/ip.h>
274#include <net/netdma.h>
275#include <net/sock.h>
276
277#include <asm/uaccess.h>
278#include <asm/ioctls.h>
279
280int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
281
282struct percpu_counter tcp_orphan_count;
283EXPORT_SYMBOL_GPL(tcp_orphan_count);
284
285int sysctl_tcp_mem[3] __read_mostly;
286int sysctl_tcp_wmem[3] __read_mostly;
287int sysctl_tcp_rmem[3] __read_mostly;
288
289EXPORT_SYMBOL(sysctl_tcp_mem);
290EXPORT_SYMBOL(sysctl_tcp_rmem);
291EXPORT_SYMBOL(sysctl_tcp_wmem);
292
293atomic_t tcp_memory_allocated;	/* Current allocated memory. */
294EXPORT_SYMBOL(tcp_memory_allocated);
295
296/*
297 * Current number of TCP sockets.
298 */
299struct percpu_counter tcp_sockets_allocated;
300EXPORT_SYMBOL(tcp_sockets_allocated);
301
302/*
303 * TCP splice context
304 */
305struct tcp_splice_state {
306	struct pipe_inode_info *pipe;
307	size_t len;
308	unsigned int flags;
309};
310
311/*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317int tcp_memory_pressure __read_mostly;
318EXPORT_SYMBOL(tcp_memory_pressure);
319
320void tcp_enter_memory_pressure(struct sock *sk)
321{
322	if (!tcp_memory_pressure) {
323		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324		tcp_memory_pressure = 1;
325	}
326}
327EXPORT_SYMBOL(tcp_enter_memory_pressure);
328
329/* Convert seconds to retransmits based on initial and max timeout */
330static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331{
332	u8 res = 0;
333
334	if (seconds > 0) {
335		int period = timeout;
336
337		res = 1;
338		while (seconds > period && res < 255) {
339			res++;
340			timeout <<= 1;
341			if (timeout > rto_max)
342				timeout = rto_max;
343			period += timeout;
344		}
345	}
346	return res;
347}
348
349/* Convert retransmits to seconds based on initial and max timeout */
350static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351{
352	int period = 0;
353
354	if (retrans > 0) {
355		period = timeout;
356		while (--retrans) {
357			timeout <<= 1;
358			if (timeout > rto_max)
359				timeout = rto_max;
360			period += timeout;
361		}
362	}
363	return period;
364}
365
366/*
367 *	Wait for a TCP event.
368 *
369 *	Note that we don't need to lock the socket, as the upper poll layers
370 *	take care of normal races (between the test and the event) and we don't
371 *	go look at any of the socket buffers directly.
372 */
373unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
374{
375	unsigned int mask;
376	struct sock *sk = sock->sk;
377	struct tcp_sock *tp = tcp_sk(sk);
378
379	sock_poll_wait(file, sk_sleep(sk), wait);
380	if (sk->sk_state == TCP_LISTEN)
381		return inet_csk_listen_poll(sk);
382
383	/* Socket is not locked. We are protected from async events
384	 * by poll logic and correct handling of state changes
385	 * made by other threads is impossible in any case.
386	 */
387
388	mask = 0;
389	if (sk->sk_err)
390		mask = POLLERR;
391
392	/*
393	 * POLLHUP is certainly not done right. But poll() doesn't
394	 * have a notion of HUP in just one direction, and for a
395	 * socket the read side is more interesting.
396	 *
397	 * Some poll() documentation says that POLLHUP is incompatible
398	 * with the POLLOUT/POLLWR flags, so somebody should check this
399	 * all. But careful, it tends to be safer to return too many
400	 * bits than too few, and you can easily break real applications
401	 * if you don't tell them that something has hung up!
402	 *
403	 * Check-me.
404	 *
405	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
406	 * our fs/select.c). It means that after we received EOF,
407	 * poll always returns immediately, making impossible poll() on write()
408	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
409	 * if and only if shutdown has been made in both directions.
410	 * Actually, it is interesting to look how Solaris and DUX
411	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
412	 * then we could set it on SND_SHUTDOWN. BTW examples given
413	 * in Stevens' books assume exactly this behaviour, it explains
414	 * why POLLHUP is incompatible with POLLOUT.	--ANK
415	 *
416	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
417	 * blocking on fresh not-connected or disconnected socket. --ANK
418	 */
419	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
420		mask |= POLLHUP;
421	if (sk->sk_shutdown & RCV_SHUTDOWN)
422		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
423
424	/* Connected? */
425	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
426		int target = sock_rcvlowat(sk, 0, INT_MAX);
427
428		if (tp->urg_seq == tp->copied_seq &&
429		    !sock_flag(sk, SOCK_URGINLINE) &&
430		    tp->urg_data)
431			target++;
432
433		/* Potential race condition. If read of tp below will
434		 * escape above sk->sk_state, we can be illegally awaken
435		 * in SYN_* states. */
436		if (tp->rcv_nxt - tp->copied_seq >= target)
437			mask |= POLLIN | POLLRDNORM;
438
439		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
440			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
441				mask |= POLLOUT | POLLWRNORM;
442			} else {  /* send SIGIO later */
443				set_bit(SOCK_ASYNC_NOSPACE,
444					&sk->sk_socket->flags);
445				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
446
447				/* Race breaker. If space is freed after
448				 * wspace test but before the flags are set,
449				 * IO signal will be lost.
450				 */
451				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
452					mask |= POLLOUT | POLLWRNORM;
453			}
454		}
455
456		if (tp->urg_data & TCP_URG_VALID)
457			mask |= POLLPRI;
458	}
459	return mask;
460}
461EXPORT_SYMBOL(tcp_poll);
462
463int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
464{
465	struct tcp_sock *tp = tcp_sk(sk);
466	int answ;
467
468	switch (cmd) {
469	case SIOCINQ:
470		if (sk->sk_state == TCP_LISTEN)
471			return -EINVAL;
472
473		lock_sock(sk);
474		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
475			answ = 0;
476		else if (sock_flag(sk, SOCK_URGINLINE) ||
477			 !tp->urg_data ||
478			 before(tp->urg_seq, tp->copied_seq) ||
479			 !before(tp->urg_seq, tp->rcv_nxt)) {
480			struct sk_buff *skb;
481
482			answ = tp->rcv_nxt - tp->copied_seq;
483
484			/* Subtract 1, if FIN is in queue. */
485			skb = skb_peek_tail(&sk->sk_receive_queue);
486			if (answ && skb)
487				answ -= tcp_hdr(skb)->fin;
488		} else
489			answ = tp->urg_seq - tp->copied_seq;
490		release_sock(sk);
491		break;
492	case SIOCATMARK:
493		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
494		break;
495	case SIOCOUTQ:
496		if (sk->sk_state == TCP_LISTEN)
497			return -EINVAL;
498
499		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
500			answ = 0;
501		else
502			answ = tp->write_seq - tp->snd_una;
503		break;
504	default:
505		return -ENOIOCTLCMD;
506	}
507
508	return put_user(answ, (int __user *)arg);
509}
510EXPORT_SYMBOL(tcp_ioctl);
511
512static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
513{
514	TCP_SKB_CB(skb)->flags |= TCPHDR_PSH;
515	tp->pushed_seq = tp->write_seq;
516}
517
518static inline int forced_push(struct tcp_sock *tp)
519{
520	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
521}
522
523static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
524{
525	struct tcp_sock *tp = tcp_sk(sk);
526	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
527
528	skb->csum    = 0;
529	tcb->seq     = tcb->end_seq = tp->write_seq;
530	tcb->flags   = TCPHDR_ACK;
531	tcb->sacked  = 0;
532	skb_header_release(skb);
533	tcp_add_write_queue_tail(sk, skb);
534	sk->sk_wmem_queued += skb->truesize;
535	sk_mem_charge(sk, skb->truesize);
536	if (tp->nonagle & TCP_NAGLE_PUSH)
537		tp->nonagle &= ~TCP_NAGLE_PUSH;
538}
539
540static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
541{
542	if (flags & MSG_OOB)
543		tp->snd_up = tp->write_seq;
544}
545
546static inline void tcp_push(struct sock *sk, int flags, int mss_now,
547			    int nonagle)
548{
549	if (tcp_send_head(sk)) {
550		struct tcp_sock *tp = tcp_sk(sk);
551
552		if (!(flags & MSG_MORE) || forced_push(tp))
553			tcp_mark_push(tp, tcp_write_queue_tail(sk));
554
555		tcp_mark_urg(tp, flags);
556		__tcp_push_pending_frames(sk, mss_now,
557					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
558	}
559}
560
561static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
562				unsigned int offset, size_t len)
563{
564	struct tcp_splice_state *tss = rd_desc->arg.data;
565	int ret;
566
567	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
568			      tss->flags);
569	if (ret > 0)
570		rd_desc->count -= ret;
571	return ret;
572}
573
574static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
575{
576	/* Store TCP splice context information in read_descriptor_t. */
577	read_descriptor_t rd_desc = {
578		.arg.data = tss,
579		.count	  = tss->len,
580	};
581
582	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
583}
584
585/**
586 *  tcp_splice_read - splice data from TCP socket to a pipe
587 * @sock:	socket to splice from
588 * @ppos:	position (not valid)
589 * @pipe:	pipe to splice to
590 * @len:	number of bytes to splice
591 * @flags:	splice modifier flags
592 *
593 * Description:
594 *    Will read pages from given socket and fill them into a pipe.
595 *
596 **/
597ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
598			struct pipe_inode_info *pipe, size_t len,
599			unsigned int flags)
600{
601	struct sock *sk = sock->sk;
602	struct tcp_splice_state tss = {
603		.pipe = pipe,
604		.len = len,
605		.flags = flags,
606	};
607	long timeo;
608	ssize_t spliced;
609	int ret;
610
611	/*
612	 * We can't seek on a socket input
613	 */
614	if (unlikely(*ppos))
615		return -ESPIPE;
616
617	ret = spliced = 0;
618
619	lock_sock(sk);
620
621	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
622	while (tss.len) {
623		ret = __tcp_splice_read(sk, &tss);
624		if (ret < 0)
625			break;
626		else if (!ret) {
627			if (spliced)
628				break;
629			if (sock_flag(sk, SOCK_DONE))
630				break;
631			if (sk->sk_err) {
632				ret = sock_error(sk);
633				break;
634			}
635			if (sk->sk_shutdown & RCV_SHUTDOWN)
636				break;
637			if (sk->sk_state == TCP_CLOSE) {
638				/*
639				 * This occurs when user tries to read
640				 * from never connected socket.
641				 */
642				if (!sock_flag(sk, SOCK_DONE))
643					ret = -ENOTCONN;
644				break;
645			}
646			if (!timeo) {
647				ret = -EAGAIN;
648				break;
649			}
650			sk_wait_data(sk, &timeo);
651			if (signal_pending(current)) {
652				ret = sock_intr_errno(timeo);
653				break;
654			}
655			continue;
656		}
657		tss.len -= ret;
658		spliced += ret;
659
660		if (!timeo)
661			break;
662		release_sock(sk);
663		lock_sock(sk);
664
665		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
666		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
667		    signal_pending(current))
668			break;
669	}
670
671	release_sock(sk);
672
673	if (spliced)
674		return spliced;
675
676	return ret;
677}
678EXPORT_SYMBOL(tcp_splice_read);
679
680struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
681{
682	struct sk_buff *skb;
683
684	/* The TCP header must be at least 32-bit aligned.  */
685	size = ALIGN(size, 4);
686
687	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
688	if (skb) {
689		if (sk_wmem_schedule(sk, skb->truesize)) {
690			/*
691			 * Make sure that we have exactly size bytes
692			 * available to the caller, no more, no less.
693			 */
694			skb_reserve(skb, skb_tailroom(skb) - size);
695			return skb;
696		}
697		__kfree_skb(skb);
698	} else {
699		sk->sk_prot->enter_memory_pressure(sk);
700		sk_stream_moderate_sndbuf(sk);
701	}
702	return NULL;
703}
704
705static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
706				       int large_allowed)
707{
708	struct tcp_sock *tp = tcp_sk(sk);
709	u32 xmit_size_goal, old_size_goal;
710
711	xmit_size_goal = mss_now;
712
713	if (large_allowed && sk_can_gso(sk)) {
714		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
715				  inet_csk(sk)->icsk_af_ops->net_header_len -
716				  inet_csk(sk)->icsk_ext_hdr_len -
717				  tp->tcp_header_len);
718
719		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
720
721		/* We try hard to avoid divides here */
722		old_size_goal = tp->xmit_size_goal_segs * mss_now;
723
724		if (likely(old_size_goal <= xmit_size_goal &&
725			   old_size_goal + mss_now > xmit_size_goal)) {
726			xmit_size_goal = old_size_goal;
727		} else {
728			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
729			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
730		}
731	}
732
733	return max(xmit_size_goal, mss_now);
734}
735
736static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
737{
738	int mss_now;
739
740	mss_now = tcp_current_mss(sk);
741	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
742
743	return mss_now;
744}
745
746static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
747			 size_t psize, int flags)
748{
749	struct tcp_sock *tp = tcp_sk(sk);
750	int mss_now, size_goal;
751	int err;
752	ssize_t copied;
753	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
754
755	/* Wait for a connection to finish. */
756	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
757		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
758			goto out_err;
759
760	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
761
762	mss_now = tcp_send_mss(sk, &size_goal, flags);
763	copied = 0;
764
765	err = -EPIPE;
766	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
767		goto out_err;
768
769	while (psize > 0) {
770		struct sk_buff *skb = tcp_write_queue_tail(sk);
771		struct page *page = pages[poffset / PAGE_SIZE];
772		int copy, i, can_coalesce;
773		int offset = poffset % PAGE_SIZE;
774		int size = min_t(size_t, psize, PAGE_SIZE - offset);
775
776		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
777new_segment:
778			if (!sk_stream_memory_free(sk))
779				goto wait_for_sndbuf;
780
781			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
782			if (!skb)
783				goto wait_for_memory;
784
785			skb_entail(sk, skb);
786			copy = size_goal;
787		}
788
789		if (copy > size)
790			copy = size;
791
792		i = skb_shinfo(skb)->nr_frags;
793		can_coalesce = skb_can_coalesce(skb, i, page, offset);
794		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
795			tcp_mark_push(tp, skb);
796			goto new_segment;
797		}
798		if (!sk_wmem_schedule(sk, copy))
799			goto wait_for_memory;
800
801		if (can_coalesce) {
802			skb_shinfo(skb)->frags[i - 1].size += copy;
803		} else {
804			get_page(page);
805			skb_fill_page_desc(skb, i, page, offset, copy);
806		}
807
808		skb->len += copy;
809		skb->data_len += copy;
810		skb->truesize += copy;
811		sk->sk_wmem_queued += copy;
812		sk_mem_charge(sk, copy);
813		skb->ip_summed = CHECKSUM_PARTIAL;
814		tp->write_seq += copy;
815		TCP_SKB_CB(skb)->end_seq += copy;
816		skb_shinfo(skb)->gso_segs = 0;
817
818		if (!copied)
819			TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
820
821		copied += copy;
822		poffset += copy;
823		if (!(psize -= copy))
824			goto out;
825
826		if (skb->len < size_goal || (flags & MSG_OOB))
827			continue;
828
829		if (forced_push(tp)) {
830			tcp_mark_push(tp, skb);
831			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
832		} else if (skb == tcp_send_head(sk))
833			tcp_push_one(sk, mss_now);
834		continue;
835
836wait_for_sndbuf:
837		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
838wait_for_memory:
839		if (copied)
840			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
841
842		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
843			goto do_error;
844
845		mss_now = tcp_send_mss(sk, &size_goal, flags);
846	}
847
848out:
849	if (copied)
850		tcp_push(sk, flags, mss_now, tp->nonagle);
851	return copied;
852
853do_error:
854	if (copied)
855		goto out;
856out_err:
857	return sk_stream_error(sk, flags, err);
858}
859
860ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
861		     size_t size, int flags)
862{
863	ssize_t res;
864	struct sock *sk = sock->sk;
865
866	if (!(sk->sk_route_caps & NETIF_F_SG) ||
867	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
868		return sock_no_sendpage(sock, page, offset, size, flags);
869
870	lock_sock(sk);
871	TCP_CHECK_TIMER(sk);
872	res = do_tcp_sendpages(sk, &page, offset, size, flags);
873	TCP_CHECK_TIMER(sk);
874	release_sock(sk);
875	return res;
876}
877EXPORT_SYMBOL(tcp_sendpage);
878
879#define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
880#define TCP_OFF(sk)	(sk->sk_sndmsg_off)
881
882static inline int select_size(struct sock *sk, int sg)
883{
884	struct tcp_sock *tp = tcp_sk(sk);
885	int tmp = tp->mss_cache;
886
887	if (sg) {
888		if (sk_can_gso(sk))
889			tmp = 0;
890		else {
891			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
892
893			if (tmp >= pgbreak &&
894			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
895				tmp = pgbreak;
896		}
897	}
898
899	return tmp;
900}
901
902int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
903		size_t size)
904{
905	struct sock *sk = sock->sk;
906	struct iovec *iov;
907	struct tcp_sock *tp = tcp_sk(sk);
908	struct sk_buff *skb;
909	int iovlen, flags;
910	int mss_now, size_goal;
911	int sg, err, copied;
912	long timeo;
913
914	lock_sock(sk);
915	TCP_CHECK_TIMER(sk);
916
917	flags = msg->msg_flags;
918	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
919
920	/* Wait for a connection to finish. */
921	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
922		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
923			goto out_err;
924
925	/* This should be in poll */
926	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
927
928	mss_now = tcp_send_mss(sk, &size_goal, flags);
929
930	/* Ok commence sending. */
931	iovlen = msg->msg_iovlen;
932	iov = msg->msg_iov;
933	copied = 0;
934
935	err = -EPIPE;
936	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
937		goto out_err;
938
939	sg = sk->sk_route_caps & NETIF_F_SG;
940
941	while (--iovlen >= 0) {
942		int seglen = iov->iov_len;
943		unsigned char __user *from = iov->iov_base;
944
945		iov++;
946
947		while (seglen > 0) {
948			int copy = 0;
949			int max = size_goal;
950
951			skb = tcp_write_queue_tail(sk);
952			if (tcp_send_head(sk)) {
953				if (skb->ip_summed == CHECKSUM_NONE)
954					max = mss_now;
955				copy = max - skb->len;
956			}
957
958			if (copy <= 0) {
959new_segment:
960				/* Allocate new segment. If the interface is SG,
961				 * allocate skb fitting to single page.
962				 */
963				if (!sk_stream_memory_free(sk))
964					goto wait_for_sndbuf;
965
966				skb = sk_stream_alloc_skb(sk,
967							  select_size(sk, sg),
968							  sk->sk_allocation);
969				if (!skb)
970					goto wait_for_memory;
971
972				/*
973				 * Check whether we can use HW checksum.
974				 */
975				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
976					skb->ip_summed = CHECKSUM_PARTIAL;
977
978				skb_entail(sk, skb);
979				copy = size_goal;
980				max = size_goal;
981			}
982
983			/* Try to append data to the end of skb. */
984			if (copy > seglen)
985				copy = seglen;
986
987			/* Where to copy to? */
988			if (skb_tailroom(skb) > 0) {
989				/* We have some space in skb head. Superb! */
990				if (copy > skb_tailroom(skb))
991					copy = skb_tailroom(skb);
992				if ((err = skb_add_data(skb, from, copy)) != 0)
993					goto do_fault;
994			} else {
995				int merge = 0;
996				int i = skb_shinfo(skb)->nr_frags;
997				struct page *page = TCP_PAGE(sk);
998				int off = TCP_OFF(sk);
999
1000				if (skb_can_coalesce(skb, i, page, off) &&
1001				    off != PAGE_SIZE) {
1002					/* We can extend the last page
1003					 * fragment. */
1004					merge = 1;
1005				} else if (i == MAX_SKB_FRAGS || !sg) {
1006					/* Need to add new fragment and cannot
1007					 * do this because interface is non-SG,
1008					 * or because all the page slots are
1009					 * busy. */
1010					tcp_mark_push(tp, skb);
1011					goto new_segment;
1012				} else if (page) {
1013					if (off == PAGE_SIZE) {
1014						put_page(page);
1015						TCP_PAGE(sk) = page = NULL;
1016						off = 0;
1017					}
1018				} else
1019					off = 0;
1020
1021				if (copy > PAGE_SIZE - off)
1022					copy = PAGE_SIZE - off;
1023
1024				if (!sk_wmem_schedule(sk, copy))
1025					goto wait_for_memory;
1026
1027				if (!page) {
1028					/* Allocate new cache page. */
1029					if (!(page = sk_stream_alloc_page(sk)))
1030						goto wait_for_memory;
1031				}
1032
1033				/* Time to copy data. We are close to
1034				 * the end! */
1035				err = skb_copy_to_page(sk, from, skb, page,
1036						       off, copy);
1037				if (err) {
1038					/* If this page was new, give it to the
1039					 * socket so it does not get leaked.
1040					 */
1041					if (!TCP_PAGE(sk)) {
1042						TCP_PAGE(sk) = page;
1043						TCP_OFF(sk) = 0;
1044					}
1045					goto do_error;
1046				}
1047
1048				/* Update the skb. */
1049				if (merge) {
1050					skb_shinfo(skb)->frags[i - 1].size +=
1051									copy;
1052				} else {
1053					skb_fill_page_desc(skb, i, page, off, copy);
1054					if (TCP_PAGE(sk)) {
1055						get_page(page);
1056					} else if (off + copy < PAGE_SIZE) {
1057						get_page(page);
1058						TCP_PAGE(sk) = page;
1059					}
1060				}
1061
1062				TCP_OFF(sk) = off + copy;
1063			}
1064
1065			if (!copied)
1066				TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
1067
1068			tp->write_seq += copy;
1069			TCP_SKB_CB(skb)->end_seq += copy;
1070			skb_shinfo(skb)->gso_segs = 0;
1071
1072			from += copy;
1073			copied += copy;
1074			if ((seglen -= copy) == 0 && iovlen == 0)
1075				goto out;
1076
1077			if (skb->len < max || (flags & MSG_OOB))
1078				continue;
1079
1080			if (forced_push(tp)) {
1081				tcp_mark_push(tp, skb);
1082				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1083			} else if (skb == tcp_send_head(sk))
1084				tcp_push_one(sk, mss_now);
1085			continue;
1086
1087wait_for_sndbuf:
1088			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1089wait_for_memory:
1090			if (copied)
1091				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1092
1093			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1094				goto do_error;
1095
1096			mss_now = tcp_send_mss(sk, &size_goal, flags);
1097		}
1098	}
1099
1100out:
1101	if (copied)
1102		tcp_push(sk, flags, mss_now, tp->nonagle);
1103	TCP_CHECK_TIMER(sk);
1104	release_sock(sk);
1105	return copied;
1106
1107do_fault:
1108	if (!skb->len) {
1109		tcp_unlink_write_queue(skb, sk);
1110		/* It is the one place in all of TCP, except connection
1111		 * reset, where we can be unlinking the send_head.
1112		 */
1113		tcp_check_send_head(sk, skb);
1114		sk_wmem_free_skb(sk, skb);
1115	}
1116
1117do_error:
1118	if (copied)
1119		goto out;
1120out_err:
1121	err = sk_stream_error(sk, flags, err);
1122	TCP_CHECK_TIMER(sk);
1123	release_sock(sk);
1124	return err;
1125}
1126EXPORT_SYMBOL(tcp_sendmsg);
1127
1128/*
1129 *	Handle reading urgent data. BSD has very simple semantics for
1130 *	this, no blocking and very strange errors 8)
1131 */
1132
1133static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1134{
1135	struct tcp_sock *tp = tcp_sk(sk);
1136
1137	/* No URG data to read. */
1138	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1139	    tp->urg_data == TCP_URG_READ)
1140		return -EINVAL;	/* Yes this is right ! */
1141
1142	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1143		return -ENOTCONN;
1144
1145	if (tp->urg_data & TCP_URG_VALID) {
1146		int err = 0;
1147		char c = tp->urg_data;
1148
1149		if (!(flags & MSG_PEEK))
1150			tp->urg_data = TCP_URG_READ;
1151
1152		/* Read urgent data. */
1153		msg->msg_flags |= MSG_OOB;
1154
1155		if (len > 0) {
1156			if (!(flags & MSG_TRUNC))
1157				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1158			len = 1;
1159		} else
1160			msg->msg_flags |= MSG_TRUNC;
1161
1162		return err ? -EFAULT : len;
1163	}
1164
1165	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1166		return 0;
1167
1168	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1169	 * the available implementations agree in this case:
1170	 * this call should never block, independent of the
1171	 * blocking state of the socket.
1172	 * Mike <pall@rz.uni-karlsruhe.de>
1173	 */
1174	return -EAGAIN;
1175}
1176
1177/* Clean up the receive buffer for full frames taken by the user,
1178 * then send an ACK if necessary.  COPIED is the number of bytes
1179 * tcp_recvmsg has given to the user so far, it speeds up the
1180 * calculation of whether or not we must ACK for the sake of
1181 * a window update.
1182 */
1183void tcp_cleanup_rbuf(struct sock *sk, int copied)
1184{
1185	struct tcp_sock *tp = tcp_sk(sk);
1186	int time_to_ack = 0;
1187
1188#if TCP_DEBUG
1189	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1190
1191	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1192	     KERN_INFO "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1193	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1194#endif
1195
1196	if (inet_csk_ack_scheduled(sk)) {
1197		const struct inet_connection_sock *icsk = inet_csk(sk);
1198		   /* Delayed ACKs frequently hit locked sockets during bulk
1199		    * receive. */
1200		if (icsk->icsk_ack.blocked ||
1201		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1202		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1203		    /*
1204		     * If this read emptied read buffer, we send ACK, if
1205		     * connection is not bidirectional, user drained
1206		     * receive buffer and there was a small segment
1207		     * in queue.
1208		     */
1209		    (copied > 0 &&
1210		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1211		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1212		       !icsk->icsk_ack.pingpong)) &&
1213		      !atomic_read(&sk->sk_rmem_alloc)))
1214			time_to_ack = 1;
1215	}
1216
1217	/* We send an ACK if we can now advertise a non-zero window
1218	 * which has been raised "significantly".
1219	 *
1220	 * Even if window raised up to infinity, do not send window open ACK
1221	 * in states, where we will not receive more. It is useless.
1222	 */
1223	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1224		__u32 rcv_window_now = tcp_receive_window(tp);
1225
1226		/* Optimize, __tcp_select_window() is not cheap. */
1227		if (2*rcv_window_now <= tp->window_clamp) {
1228			__u32 new_window = __tcp_select_window(sk);
1229
1230			/* Send ACK now, if this read freed lots of space
1231			 * in our buffer. Certainly, new_window is new window.
1232			 * We can advertise it now, if it is not less than current one.
1233			 * "Lots" means "at least twice" here.
1234			 */
1235			if (new_window && new_window >= 2 * rcv_window_now)
1236				time_to_ack = 1;
1237		}
1238	}
1239	if (time_to_ack)
1240		tcp_send_ack(sk);
1241}
1242
1243static void tcp_prequeue_process(struct sock *sk)
1244{
1245	struct sk_buff *skb;
1246	struct tcp_sock *tp = tcp_sk(sk);
1247
1248	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1249
1250	/* RX process wants to run with disabled BHs, though it is not
1251	 * necessary */
1252	local_bh_disable();
1253	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1254		sk_backlog_rcv(sk, skb);
1255	local_bh_enable();
1256
1257	/* Clear memory counter. */
1258	tp->ucopy.memory = 0;
1259}
1260
1261#ifdef CONFIG_NET_DMA
1262static void tcp_service_net_dma(struct sock *sk, bool wait)
1263{
1264	dma_cookie_t done, used;
1265	dma_cookie_t last_issued;
1266	struct tcp_sock *tp = tcp_sk(sk);
1267
1268	if (!tp->ucopy.dma_chan)
1269		return;
1270
1271	last_issued = tp->ucopy.dma_cookie;
1272	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1273
1274	do {
1275		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1276					      last_issued, &done,
1277					      &used) == DMA_SUCCESS) {
1278			/* Safe to free early-copied skbs now */
1279			__skb_queue_purge(&sk->sk_async_wait_queue);
1280			break;
1281		} else {
1282			struct sk_buff *skb;
1283			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1284			       (dma_async_is_complete(skb->dma_cookie, done,
1285						      used) == DMA_SUCCESS)) {
1286				__skb_dequeue(&sk->sk_async_wait_queue);
1287				kfree_skb(skb);
1288			}
1289		}
1290	} while (wait);
1291}
1292#endif
1293
1294static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1295{
1296	struct sk_buff *skb;
1297	u32 offset;
1298
1299	skb_queue_walk(&sk->sk_receive_queue, skb) {
1300		offset = seq - TCP_SKB_CB(skb)->seq;
1301		if (tcp_hdr(skb)->syn)
1302			offset--;
1303		if (offset < skb->len || tcp_hdr(skb)->fin) {
1304			*off = offset;
1305			return skb;
1306		}
1307	}
1308	return NULL;
1309}
1310
1311/*
1312 * This routine provides an alternative to tcp_recvmsg() for routines
1313 * that would like to handle copying from skbuffs directly in 'sendfile'
1314 * fashion.
1315 * Note:
1316 *	- It is assumed that the socket was locked by the caller.
1317 *	- The routine does not block.
1318 *	- At present, there is no support for reading OOB data
1319 *	  or for 'peeking' the socket using this routine
1320 *	  (although both would be easy to implement).
1321 */
1322int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1323		  sk_read_actor_t recv_actor)
1324{
1325	struct sk_buff *skb;
1326	struct tcp_sock *tp = tcp_sk(sk);
1327	u32 seq = tp->copied_seq;
1328	u32 offset;
1329	int copied = 0;
1330
1331	if (sk->sk_state == TCP_LISTEN)
1332		return -ENOTCONN;
1333	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1334		if (offset < skb->len) {
1335			int used;
1336			size_t len;
1337
1338			len = skb->len - offset;
1339			/* Stop reading if we hit a patch of urgent data */
1340			if (tp->urg_data) {
1341				u32 urg_offset = tp->urg_seq - seq;
1342				if (urg_offset < len)
1343					len = urg_offset;
1344				if (!len)
1345					break;
1346			}
1347			used = recv_actor(desc, skb, offset, len);
1348			if (used < 0) {
1349				if (!copied)
1350					copied = used;
1351				break;
1352			} else if (used <= len) {
1353				seq += used;
1354				copied += used;
1355				offset += used;
1356			}
1357			/*
1358			 * If recv_actor drops the lock (e.g. TCP splice
1359			 * receive) the skb pointer might be invalid when
1360			 * getting here: tcp_collapse might have deleted it
1361			 * while aggregating skbs from the socket queue.
1362			 */
1363			skb = tcp_recv_skb(sk, seq-1, &offset);
1364			if (!skb || (offset+1 != skb->len))
1365				break;
1366		}
1367		if (tcp_hdr(skb)->fin) {
1368			sk_eat_skb(sk, skb, 0);
1369			++seq;
1370			break;
1371		}
1372		sk_eat_skb(sk, skb, 0);
1373		if (!desc->count)
1374			break;
1375		tp->copied_seq = seq;
1376	}
1377	tp->copied_seq = seq;
1378
1379	tcp_rcv_space_adjust(sk);
1380
1381	/* Clean up data we have read: This will do ACK frames. */
1382	if (copied > 0)
1383		tcp_cleanup_rbuf(sk, copied);
1384	return copied;
1385}
1386EXPORT_SYMBOL(tcp_read_sock);
1387
1388/*
1389 *	This routine copies from a sock struct into the user buffer.
1390 *
1391 *	Technical note: in 2.3 we work on _locked_ socket, so that
1392 *	tricks with *seq access order and skb->users are not required.
1393 *	Probably, code can be easily improved even more.
1394 */
1395
1396int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1397		size_t len, int nonblock, int flags, int *addr_len)
1398{
1399	struct tcp_sock *tp = tcp_sk(sk);
1400	int copied = 0;
1401	u32 peek_seq;
1402	u32 *seq;
1403	unsigned long used;
1404	int err;
1405	int target;		/* Read at least this many bytes */
1406	long timeo;
1407	struct task_struct *user_recv = NULL;
1408	int copied_early = 0;
1409	struct sk_buff *skb;
1410	u32 urg_hole = 0;
1411
1412	lock_sock(sk);
1413
1414	TCP_CHECK_TIMER(sk);
1415
1416	err = -ENOTCONN;
1417	if (sk->sk_state == TCP_LISTEN)
1418		goto out;
1419
1420	timeo = sock_rcvtimeo(sk, nonblock);
1421
1422	/* Urgent data needs to be handled specially. */
1423	if (flags & MSG_OOB)
1424		goto recv_urg;
1425
1426	seq = &tp->copied_seq;
1427	if (flags & MSG_PEEK) {
1428		peek_seq = tp->copied_seq;
1429		seq = &peek_seq;
1430	}
1431
1432	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1433
1434#ifdef CONFIG_NET_DMA
1435	tp->ucopy.dma_chan = NULL;
1436	preempt_disable();
1437	skb = skb_peek_tail(&sk->sk_receive_queue);
1438	{
1439		int available = 0;
1440
1441		if (skb)
1442			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1443		if ((available < target) &&
1444		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1445		    !sysctl_tcp_low_latency &&
1446		    dma_find_channel(DMA_MEMCPY)) {
1447			preempt_enable_no_resched();
1448			tp->ucopy.pinned_list =
1449					dma_pin_iovec_pages(msg->msg_iov, len);
1450		} else {
1451			preempt_enable_no_resched();
1452		}
1453	}
1454#endif
1455
1456	do {
1457		u32 offset;
1458
1459		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1460		if (tp->urg_data && tp->urg_seq == *seq) {
1461			if (copied)
1462				break;
1463			if (signal_pending(current)) {
1464				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1465				break;
1466			}
1467		}
1468
1469		/* Next get a buffer. */
1470
1471		skb_queue_walk(&sk->sk_receive_queue, skb) {
1472			/* Now that we have two receive queues this
1473			 * shouldn't happen.
1474			 */
1475			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1476			     KERN_INFO "recvmsg bug: copied %X "
1477				       "seq %X rcvnxt %X fl %X\n", *seq,
1478				       TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1479				       flags))
1480				break;
1481
1482			offset = *seq - TCP_SKB_CB(skb)->seq;
1483			if (tcp_hdr(skb)->syn)
1484				offset--;
1485			if (offset < skb->len)
1486				goto found_ok_skb;
1487			if (tcp_hdr(skb)->fin)
1488				goto found_fin_ok;
1489			WARN(!(flags & MSG_PEEK), KERN_INFO "recvmsg bug 2: "
1490					"copied %X seq %X rcvnxt %X fl %X\n",
1491					*seq, TCP_SKB_CB(skb)->seq,
1492					tp->rcv_nxt, flags);
1493		}
1494
1495		/* Well, if we have backlog, try to process it now yet. */
1496
1497		if (copied >= target && !sk->sk_backlog.tail)
1498			break;
1499
1500		if (copied) {
1501			if (sk->sk_err ||
1502			    sk->sk_state == TCP_CLOSE ||
1503			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1504			    !timeo ||
1505			    signal_pending(current))
1506				break;
1507		} else {
1508			if (sock_flag(sk, SOCK_DONE))
1509				break;
1510
1511			if (sk->sk_err) {
1512				copied = sock_error(sk);
1513				break;
1514			}
1515
1516			if (sk->sk_shutdown & RCV_SHUTDOWN)
1517				break;
1518
1519			if (sk->sk_state == TCP_CLOSE) {
1520				if (!sock_flag(sk, SOCK_DONE)) {
1521					/* This occurs when user tries to read
1522					 * from never connected socket.
1523					 */
1524					copied = -ENOTCONN;
1525					break;
1526				}
1527				break;
1528			}
1529
1530			if (!timeo) {
1531				copied = -EAGAIN;
1532				break;
1533			}
1534
1535			if (signal_pending(current)) {
1536				copied = sock_intr_errno(timeo);
1537				break;
1538			}
1539		}
1540
1541		tcp_cleanup_rbuf(sk, copied);
1542
1543		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1544			/* Install new reader */
1545			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1546				user_recv = current;
1547				tp->ucopy.task = user_recv;
1548				tp->ucopy.iov = msg->msg_iov;
1549			}
1550
1551			tp->ucopy.len = len;
1552
1553			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1554				!(flags & (MSG_PEEK | MSG_TRUNC)));
1555
1556			/* Ugly... If prequeue is not empty, we have to
1557			 * process it before releasing socket, otherwise
1558			 * order will be broken at second iteration.
1559			 * More elegant solution is required!!!
1560			 *
1561			 * Look: we have the following (pseudo)queues:
1562			 *
1563			 * 1. packets in flight
1564			 * 2. backlog
1565			 * 3. prequeue
1566			 * 4. receive_queue
1567			 *
1568			 * Each queue can be processed only if the next ones
1569			 * are empty. At this point we have empty receive_queue.
1570			 * But prequeue _can_ be not empty after 2nd iteration,
1571			 * when we jumped to start of loop because backlog
1572			 * processing added something to receive_queue.
1573			 * We cannot release_sock(), because backlog contains
1574			 * packets arrived _after_ prequeued ones.
1575			 *
1576			 * Shortly, algorithm is clear --- to process all
1577			 * the queues in order. We could make it more directly,
1578			 * requeueing packets from backlog to prequeue, if
1579			 * is not empty. It is more elegant, but eats cycles,
1580			 * unfortunately.
1581			 */
1582			if (!skb_queue_empty(&tp->ucopy.prequeue))
1583				goto do_prequeue;
1584
1585			/* __ Set realtime policy in scheduler __ */
1586		}
1587
1588#ifdef CONFIG_NET_DMA
1589		if (tp->ucopy.dma_chan)
1590			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1591#endif
1592		if (copied >= target) {
1593			/* Do not sleep, just process backlog. */
1594			release_sock(sk);
1595			lock_sock(sk);
1596		} else
1597			sk_wait_data(sk, &timeo);
1598
1599#ifdef CONFIG_NET_DMA
1600		tcp_service_net_dma(sk, false);  /* Don't block */
1601		tp->ucopy.wakeup = 0;
1602#endif
1603
1604		if (user_recv) {
1605			int chunk;
1606
1607			/* __ Restore normal policy in scheduler __ */
1608
1609			if ((chunk = len - tp->ucopy.len) != 0) {
1610				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1611				len -= chunk;
1612				copied += chunk;
1613			}
1614
1615			if (tp->rcv_nxt == tp->copied_seq &&
1616			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1617do_prequeue:
1618				tcp_prequeue_process(sk);
1619
1620				if ((chunk = len - tp->ucopy.len) != 0) {
1621					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1622					len -= chunk;
1623					copied += chunk;
1624				}
1625			}
1626		}
1627		if ((flags & MSG_PEEK) &&
1628		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1629			if (net_ratelimit())
1630				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1631				       current->comm, task_pid_nr(current));
1632			peek_seq = tp->copied_seq;
1633		}
1634		continue;
1635
1636	found_ok_skb:
1637		/* Ok so how much can we use? */
1638		used = skb->len - offset;
1639		if (len < used)
1640			used = len;
1641
1642		/* Do we have urgent data here? */
1643		if (tp->urg_data) {
1644			u32 urg_offset = tp->urg_seq - *seq;
1645			if (urg_offset < used) {
1646				if (!urg_offset) {
1647					if (!sock_flag(sk, SOCK_URGINLINE)) {
1648						++*seq;
1649						urg_hole++;
1650						offset++;
1651						used--;
1652						if (!used)
1653							goto skip_copy;
1654					}
1655				} else
1656					used = urg_offset;
1657			}
1658		}
1659
1660		if (!(flags & MSG_TRUNC)) {
1661#ifdef CONFIG_NET_DMA
1662			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1663				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1664
1665			if (tp->ucopy.dma_chan) {
1666				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1667					tp->ucopy.dma_chan, skb, offset,
1668					msg->msg_iov, used,
1669					tp->ucopy.pinned_list);
1670
1671				if (tp->ucopy.dma_cookie < 0) {
1672
1673					printk(KERN_ALERT "dma_cookie < 0\n");
1674
1675					/* Exception. Bailout! */
1676					if (!copied)
1677						copied = -EFAULT;
1678					break;
1679				}
1680
1681				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1682
1683				if ((offset + used) == skb->len)
1684					copied_early = 1;
1685
1686			} else
1687#endif
1688			{
1689				err = skb_copy_datagram_iovec(skb, offset,
1690						msg->msg_iov, used);
1691				if (err) {
1692					/* Exception. Bailout! */
1693					if (!copied)
1694						copied = -EFAULT;
1695					break;
1696				}
1697			}
1698		}
1699
1700		*seq += used;
1701		copied += used;
1702		len -= used;
1703
1704		tcp_rcv_space_adjust(sk);
1705
1706skip_copy:
1707		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1708			tp->urg_data = 0;
1709			tcp_fast_path_check(sk);
1710		}
1711		if (used + offset < skb->len)
1712			continue;
1713
1714		if (tcp_hdr(skb)->fin)
1715			goto found_fin_ok;
1716		if (!(flags & MSG_PEEK)) {
1717			sk_eat_skb(sk, skb, copied_early);
1718			copied_early = 0;
1719		}
1720		continue;
1721
1722	found_fin_ok:
1723		/* Process the FIN. */
1724		++*seq;
1725		if (!(flags & MSG_PEEK)) {
1726			sk_eat_skb(sk, skb, copied_early);
1727			copied_early = 0;
1728		}
1729		break;
1730	} while (len > 0);
1731
1732	if (user_recv) {
1733		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1734			int chunk;
1735
1736			tp->ucopy.len = copied > 0 ? len : 0;
1737
1738			tcp_prequeue_process(sk);
1739
1740			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1741				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1742				len -= chunk;
1743				copied += chunk;
1744			}
1745		}
1746
1747		tp->ucopy.task = NULL;
1748		tp->ucopy.len = 0;
1749	}
1750
1751#ifdef CONFIG_NET_DMA
1752	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1753	tp->ucopy.dma_chan = NULL;
1754
1755	if (tp->ucopy.pinned_list) {
1756		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1757		tp->ucopy.pinned_list = NULL;
1758	}
1759#endif
1760
1761	/* According to UNIX98, msg_name/msg_namelen are ignored
1762	 * on connected socket. I was just happy when found this 8) --ANK
1763	 */
1764
1765	/* Clean up data we have read: This will do ACK frames. */
1766	tcp_cleanup_rbuf(sk, copied);
1767
1768	TCP_CHECK_TIMER(sk);
1769	release_sock(sk);
1770	return copied;
1771
1772out:
1773	TCP_CHECK_TIMER(sk);
1774	release_sock(sk);
1775	return err;
1776
1777recv_urg:
1778	err = tcp_recv_urg(sk, msg, len, flags);
1779	goto out;
1780}
1781EXPORT_SYMBOL(tcp_recvmsg);
1782
1783void tcp_set_state(struct sock *sk, int state)
1784{
1785	int oldstate = sk->sk_state;
1786
1787	switch (state) {
1788	case TCP_ESTABLISHED:
1789		if (oldstate != TCP_ESTABLISHED)
1790			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1791		break;
1792
1793	case TCP_CLOSE:
1794		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1795			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1796
1797		sk->sk_prot->unhash(sk);
1798		if (inet_csk(sk)->icsk_bind_hash &&
1799		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1800			inet_put_port(sk);
1801		/* fall through */
1802	default:
1803		if (oldstate == TCP_ESTABLISHED)
1804			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1805	}
1806
1807	/* Change state AFTER socket is unhashed to avoid closed
1808	 * socket sitting in hash tables.
1809	 */
1810	sk->sk_state = state;
1811
1812#ifdef STATE_TRACE
1813	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1814#endif
1815}
1816EXPORT_SYMBOL_GPL(tcp_set_state);
1817
1818/*
1819 *	State processing on a close. This implements the state shift for
1820 *	sending our FIN frame. Note that we only send a FIN for some
1821 *	states. A shutdown() may have already sent the FIN, or we may be
1822 *	closed.
1823 */
1824
1825static const unsigned char new_state[16] = {
1826  /* current state:        new state:      action:	*/
1827  /* (Invalid)		*/ TCP_CLOSE,
1828  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1829  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1830  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1831  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1832  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1833  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1834  /* TCP_CLOSE		*/ TCP_CLOSE,
1835  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1836  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1837  /* TCP_LISTEN		*/ TCP_CLOSE,
1838  /* TCP_CLOSING	*/ TCP_CLOSING,
1839};
1840
1841static int tcp_close_state(struct sock *sk)
1842{
1843	int next = (int)new_state[sk->sk_state];
1844	int ns = next & TCP_STATE_MASK;
1845
1846	tcp_set_state(sk, ns);
1847
1848	return next & TCP_ACTION_FIN;
1849}
1850
1851/*
1852 *	Shutdown the sending side of a connection. Much like close except
1853 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1854 */
1855
1856void tcp_shutdown(struct sock *sk, int how)
1857{
1858	/*	We need to grab some memory, and put together a FIN,
1859	 *	and then put it into the queue to be sent.
1860	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1861	 */
1862	if (!(how & SEND_SHUTDOWN))
1863		return;
1864
1865	/* If we've already sent a FIN, or it's a closed state, skip this. */
1866	if ((1 << sk->sk_state) &
1867	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1868	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1869		/* Clear out any half completed packets.  FIN if needed. */
1870		if (tcp_close_state(sk))
1871			tcp_send_fin(sk);
1872	}
1873}
1874EXPORT_SYMBOL(tcp_shutdown);
1875
1876void tcp_close(struct sock *sk, long timeout)
1877{
1878	struct sk_buff *skb;
1879	int data_was_unread = 0;
1880	int state;
1881
1882	lock_sock(sk);
1883	sk->sk_shutdown = SHUTDOWN_MASK;
1884
1885	if (sk->sk_state == TCP_LISTEN) {
1886		tcp_set_state(sk, TCP_CLOSE);
1887
1888		/* Special case. */
1889		inet_csk_listen_stop(sk);
1890
1891		goto adjudge_to_death;
1892	}
1893
1894	/*  We need to flush the recv. buffs.  We do this only on the
1895	 *  descriptor close, not protocol-sourced closes, because the
1896	 *  reader process may not have drained the data yet!
1897	 */
1898	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1899		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1900			  tcp_hdr(skb)->fin;
1901		data_was_unread += len;
1902		__kfree_skb(skb);
1903	}
1904
1905	sk_mem_reclaim(sk);
1906
1907	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1908	if (sk->sk_state == TCP_CLOSE)
1909		goto adjudge_to_death;
1910
1911	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1912	 * data was lost. To witness the awful effects of the old behavior of
1913	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1914	 * GET in an FTP client, suspend the process, wait for the client to
1915	 * advertise a zero window, then kill -9 the FTP client, wheee...
1916	 * Note: timeout is always zero in such a case.
1917	 */
1918	if (data_was_unread) {
1919		/* Unread data was tossed, zap the connection. */
1920		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1921		tcp_set_state(sk, TCP_CLOSE);
1922		tcp_send_active_reset(sk, sk->sk_allocation);
1923	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1924		/* Check zero linger _after_ checking for unread data. */
1925		sk->sk_prot->disconnect(sk, 0);
1926		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1927	} else if (tcp_close_state(sk)) {
1928		/* We FIN if the application ate all the data before
1929		 * zapping the connection.
1930		 */
1931
1932		/* RED-PEN. Formally speaking, we have broken TCP state
1933		 * machine. State transitions:
1934		 *
1935		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1936		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1937		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1938		 *
1939		 * are legal only when FIN has been sent (i.e. in window),
1940		 * rather than queued out of window. Purists blame.
1941		 *
1942		 * F.e. "RFC state" is ESTABLISHED,
1943		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1944		 *
1945		 * The visible declinations are that sometimes
1946		 * we enter time-wait state, when it is not required really
1947		 * (harmless), do not send active resets, when they are
1948		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1949		 * they look as CLOSING or LAST_ACK for Linux)
1950		 * Probably, I missed some more holelets.
1951		 * 						--ANK
1952		 */
1953		tcp_send_fin(sk);
1954	}
1955
1956	sk_stream_wait_close(sk, timeout);
1957
1958adjudge_to_death:
1959	state = sk->sk_state;
1960	sock_hold(sk);
1961	sock_orphan(sk);
1962
1963	/* It is the last release_sock in its life. It will remove backlog. */
1964	release_sock(sk);
1965
1966
1967	/* Now socket is owned by kernel and we acquire BH lock
1968	   to finish close. No need to check for user refs.
1969	 */
1970	local_bh_disable();
1971	bh_lock_sock(sk);
1972	WARN_ON(sock_owned_by_user(sk));
1973
1974	percpu_counter_inc(sk->sk_prot->orphan_count);
1975
1976	/* Have we already been destroyed by a softirq or backlog? */
1977	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1978		goto out;
1979
1980	/*	This is a (useful) BSD violating of the RFC. There is a
1981	 *	problem with TCP as specified in that the other end could
1982	 *	keep a socket open forever with no application left this end.
1983	 *	We use a 3 minute timeout (about the same as BSD) then kill
1984	 *	our end. If they send after that then tough - BUT: long enough
1985	 *	that we won't make the old 4*rto = almost no time - whoops
1986	 *	reset mistake.
1987	 *
1988	 *	Nope, it was not mistake. It is really desired behaviour
1989	 *	f.e. on http servers, when such sockets are useless, but
1990	 *	consume significant resources. Let's do it with special
1991	 *	linger2	option.					--ANK
1992	 */
1993
1994	if (sk->sk_state == TCP_FIN_WAIT2) {
1995		struct tcp_sock *tp = tcp_sk(sk);
1996		if (tp->linger2 < 0) {
1997			tcp_set_state(sk, TCP_CLOSE);
1998			tcp_send_active_reset(sk, GFP_ATOMIC);
1999			NET_INC_STATS_BH(sock_net(sk),
2000					LINUX_MIB_TCPABORTONLINGER);
2001		} else {
2002			const int tmo = tcp_fin_time(sk);
2003
2004			if (tmo > TCP_TIMEWAIT_LEN) {
2005				inet_csk_reset_keepalive_timer(sk,
2006						tmo - TCP_TIMEWAIT_LEN);
2007			} else {
2008				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2009				goto out;
2010			}
2011		}
2012	}
2013	if (sk->sk_state != TCP_CLOSE) {
2014		int orphan_count = percpu_counter_read_positive(
2015						sk->sk_prot->orphan_count);
2016
2017		sk_mem_reclaim(sk);
2018		if (tcp_too_many_orphans(sk, orphan_count)) {
2019			if (net_ratelimit())
2020				printk(KERN_INFO "TCP: too many of orphaned "
2021				       "sockets\n");
2022			tcp_set_state(sk, TCP_CLOSE);
2023			tcp_send_active_reset(sk, GFP_ATOMIC);
2024			NET_INC_STATS_BH(sock_net(sk),
2025					LINUX_MIB_TCPABORTONMEMORY);
2026		}
2027	}
2028
2029	if (sk->sk_state == TCP_CLOSE)
2030		inet_csk_destroy_sock(sk);
2031	/* Otherwise, socket is reprieved until protocol close. */
2032
2033out:
2034	bh_unlock_sock(sk);
2035	local_bh_enable();
2036	sock_put(sk);
2037}
2038EXPORT_SYMBOL(tcp_close);
2039
2040/* These states need RST on ABORT according to RFC793 */
2041
2042static inline int tcp_need_reset(int state)
2043{
2044	return (1 << state) &
2045	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2046		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2047}
2048
2049int tcp_disconnect(struct sock *sk, int flags)
2050{
2051	struct inet_sock *inet = inet_sk(sk);
2052	struct inet_connection_sock *icsk = inet_csk(sk);
2053	struct tcp_sock *tp = tcp_sk(sk);
2054	int err = 0;
2055	int old_state = sk->sk_state;
2056
2057	if (old_state != TCP_CLOSE)
2058		tcp_set_state(sk, TCP_CLOSE);
2059
2060	/* ABORT function of RFC793 */
2061	if (old_state == TCP_LISTEN) {
2062		inet_csk_listen_stop(sk);
2063	} else if (tcp_need_reset(old_state) ||
2064		   (tp->snd_nxt != tp->write_seq &&
2065		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2066		/* The last check adjusts for discrepancy of Linux wrt. RFC
2067		 * states
2068		 */
2069		tcp_send_active_reset(sk, gfp_any());
2070		sk->sk_err = ECONNRESET;
2071	} else if (old_state == TCP_SYN_SENT)
2072		sk->sk_err = ECONNRESET;
2073
2074	tcp_clear_xmit_timers(sk);
2075	__skb_queue_purge(&sk->sk_receive_queue);
2076	tcp_write_queue_purge(sk);
2077	__skb_queue_purge(&tp->out_of_order_queue);
2078#ifdef CONFIG_NET_DMA
2079	__skb_queue_purge(&sk->sk_async_wait_queue);
2080#endif
2081
2082	inet->inet_dport = 0;
2083
2084	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2085		inet_reset_saddr(sk);
2086
2087	sk->sk_shutdown = 0;
2088	sock_reset_flag(sk, SOCK_DONE);
2089	tp->srtt = 0;
2090	if ((tp->write_seq += tp->max_window + 2) == 0)
2091		tp->write_seq = 1;
2092	icsk->icsk_backoff = 0;
2093	tp->snd_cwnd = 2;
2094	icsk->icsk_probes_out = 0;
2095	tp->packets_out = 0;
2096	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2097	tp->snd_cwnd_cnt = 0;
2098	tp->bytes_acked = 0;
2099	tp->window_clamp = 0;
2100	tcp_set_ca_state(sk, TCP_CA_Open);
2101	tcp_clear_retrans(tp);
2102	inet_csk_delack_init(sk);
2103	tcp_init_send_head(sk);
2104	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2105	__sk_dst_reset(sk);
2106
2107	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2108
2109	sk->sk_error_report(sk);
2110	return err;
2111}
2112EXPORT_SYMBOL(tcp_disconnect);
2113
2114/*
2115 *	Socket option code for TCP.
2116 */
2117static int do_tcp_setsockopt(struct sock *sk, int level,
2118		int optname, char __user *optval, unsigned int optlen)
2119{
2120	struct tcp_sock *tp = tcp_sk(sk);
2121	struct inet_connection_sock *icsk = inet_csk(sk);
2122	int val;
2123	int err = 0;
2124
2125	/* These are data/string values, all the others are ints */
2126	switch (optname) {
2127	case TCP_CONGESTION: {
2128		char name[TCP_CA_NAME_MAX];
2129
2130		if (optlen < 1)
2131			return -EINVAL;
2132
2133		val = strncpy_from_user(name, optval,
2134					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2135		if (val < 0)
2136			return -EFAULT;
2137		name[val] = 0;
2138
2139		lock_sock(sk);
2140		err = tcp_set_congestion_control(sk, name);
2141		release_sock(sk);
2142		return err;
2143	}
2144	case TCP_COOKIE_TRANSACTIONS: {
2145		struct tcp_cookie_transactions ctd;
2146		struct tcp_cookie_values *cvp = NULL;
2147
2148		if (sizeof(ctd) > optlen)
2149			return -EINVAL;
2150		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2151			return -EFAULT;
2152
2153		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2154		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2155			return -EINVAL;
2156
2157		if (ctd.tcpct_cookie_desired == 0) {
2158			/* default to global value */
2159		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2160			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2161			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2162			return -EINVAL;
2163		}
2164
2165		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2166			/* Supercedes all other values */
2167			lock_sock(sk);
2168			if (tp->cookie_values != NULL) {
2169				kref_put(&tp->cookie_values->kref,
2170					 tcp_cookie_values_release);
2171				tp->cookie_values = NULL;
2172			}
2173			tp->rx_opt.cookie_in_always = 0; /* false */
2174			tp->rx_opt.cookie_out_never = 1; /* true */
2175			release_sock(sk);
2176			return err;
2177		}
2178
2179		/* Allocate ancillary memory before locking.
2180		 */
2181		if (ctd.tcpct_used > 0 ||
2182		    (tp->cookie_values == NULL &&
2183		     (sysctl_tcp_cookie_size > 0 ||
2184		      ctd.tcpct_cookie_desired > 0 ||
2185		      ctd.tcpct_s_data_desired > 0))) {
2186			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2187				      GFP_KERNEL);
2188			if (cvp == NULL)
2189				return -ENOMEM;
2190		}
2191		lock_sock(sk);
2192		tp->rx_opt.cookie_in_always =
2193			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2194		tp->rx_opt.cookie_out_never = 0; /* false */
2195
2196		if (tp->cookie_values != NULL) {
2197			if (cvp != NULL) {
2198				/* Changed values are recorded by a changed
2199				 * pointer, ensuring the cookie will differ,
2200				 * without separately hashing each value later.
2201				 */
2202				kref_put(&tp->cookie_values->kref,
2203					 tcp_cookie_values_release);
2204				kref_init(&cvp->kref);
2205				tp->cookie_values = cvp;
2206			} else {
2207				cvp = tp->cookie_values;
2208			}
2209		}
2210		if (cvp != NULL) {
2211			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2212
2213			if (ctd.tcpct_used > 0) {
2214				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2215				       ctd.tcpct_used);
2216				cvp->s_data_desired = ctd.tcpct_used;
2217				cvp->s_data_constant = 1; /* true */
2218			} else {
2219				/* No constant payload data. */
2220				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2221				cvp->s_data_constant = 0; /* false */
2222			}
2223		}
2224		release_sock(sk);
2225		return err;
2226	}
2227	default:
2228		/* fallthru */
2229		break;
2230	}
2231
2232	if (optlen < sizeof(int))
2233		return -EINVAL;
2234
2235	if (get_user(val, (int __user *)optval))
2236		return -EFAULT;
2237
2238	lock_sock(sk);
2239
2240	switch (optname) {
2241	case TCP_MAXSEG:
2242		/* Values greater than interface MTU won't take effect. However
2243		 * at the point when this call is done we typically don't yet
2244		 * know which interface is going to be used */
2245		if (val < 8 || val > MAX_TCP_WINDOW) {
2246			err = -EINVAL;
2247			break;
2248		}
2249		tp->rx_opt.user_mss = val;
2250		break;
2251
2252	case TCP_NODELAY:
2253		if (val) {
2254			/* TCP_NODELAY is weaker than TCP_CORK, so that
2255			 * this option on corked socket is remembered, but
2256			 * it is not activated until cork is cleared.
2257			 *
2258			 * However, when TCP_NODELAY is set we make
2259			 * an explicit push, which overrides even TCP_CORK
2260			 * for currently queued segments.
2261			 */
2262			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2263			tcp_push_pending_frames(sk);
2264		} else {
2265			tp->nonagle &= ~TCP_NAGLE_OFF;
2266		}
2267		break;
2268
2269	case TCP_THIN_LINEAR_TIMEOUTS:
2270		if (val < 0 || val > 1)
2271			err = -EINVAL;
2272		else
2273			tp->thin_lto = val;
2274		break;
2275
2276	case TCP_THIN_DUPACK:
2277		if (val < 0 || val > 1)
2278			err = -EINVAL;
2279		else
2280			tp->thin_dupack = val;
2281		break;
2282
2283	case TCP_CORK:
2284		/* When set indicates to always queue non-full frames.
2285		 * Later the user clears this option and we transmit
2286		 * any pending partial frames in the queue.  This is
2287		 * meant to be used alongside sendfile() to get properly
2288		 * filled frames when the user (for example) must write
2289		 * out headers with a write() call first and then use
2290		 * sendfile to send out the data parts.
2291		 *
2292		 * TCP_CORK can be set together with TCP_NODELAY and it is
2293		 * stronger than TCP_NODELAY.
2294		 */
2295		if (val) {
2296			tp->nonagle |= TCP_NAGLE_CORK;
2297		} else {
2298			tp->nonagle &= ~TCP_NAGLE_CORK;
2299			if (tp->nonagle&TCP_NAGLE_OFF)
2300				tp->nonagle |= TCP_NAGLE_PUSH;
2301			tcp_push_pending_frames(sk);
2302		}
2303		break;
2304
2305	case TCP_KEEPIDLE:
2306		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2307			err = -EINVAL;
2308		else {
2309			tp->keepalive_time = val * HZ;
2310			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2311			    !((1 << sk->sk_state) &
2312			      (TCPF_CLOSE | TCPF_LISTEN))) {
2313				u32 elapsed = keepalive_time_elapsed(tp);
2314				if (tp->keepalive_time > elapsed)
2315					elapsed = tp->keepalive_time - elapsed;
2316				else
2317					elapsed = 0;
2318				inet_csk_reset_keepalive_timer(sk, elapsed);
2319			}
2320		}
2321		break;
2322	case TCP_KEEPINTVL:
2323		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2324			err = -EINVAL;
2325		else
2326			tp->keepalive_intvl = val * HZ;
2327		break;
2328	case TCP_KEEPCNT:
2329		if (val < 1 || val > MAX_TCP_KEEPCNT)
2330			err = -EINVAL;
2331		else
2332			tp->keepalive_probes = val;
2333		break;
2334	case TCP_SYNCNT:
2335		if (val < 1 || val > MAX_TCP_SYNCNT)
2336			err = -EINVAL;
2337		else
2338			icsk->icsk_syn_retries = val;
2339		break;
2340
2341	case TCP_LINGER2:
2342		if (val < 0)
2343			tp->linger2 = -1;
2344		else if (val > sysctl_tcp_fin_timeout / HZ)
2345			tp->linger2 = 0;
2346		else
2347			tp->linger2 = val * HZ;
2348		break;
2349
2350	case TCP_DEFER_ACCEPT:
2351		/* Translate value in seconds to number of retransmits */
2352		icsk->icsk_accept_queue.rskq_defer_accept =
2353			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2354					TCP_RTO_MAX / HZ);
2355		break;
2356
2357	case TCP_WINDOW_CLAMP:
2358		if (!val) {
2359			if (sk->sk_state != TCP_CLOSE) {
2360				err = -EINVAL;
2361				break;
2362			}
2363			tp->window_clamp = 0;
2364		} else
2365			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2366						SOCK_MIN_RCVBUF / 2 : val;
2367		break;
2368
2369	case TCP_QUICKACK:
2370		if (!val) {
2371			icsk->icsk_ack.pingpong = 1;
2372		} else {
2373			icsk->icsk_ack.pingpong = 0;
2374			if ((1 << sk->sk_state) &
2375			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2376			    inet_csk_ack_scheduled(sk)) {
2377				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2378				tcp_cleanup_rbuf(sk, 1);
2379				if (!(val & 1))
2380					icsk->icsk_ack.pingpong = 1;
2381			}
2382		}
2383		break;
2384
2385#ifdef CONFIG_TCP_MD5SIG
2386	case TCP_MD5SIG:
2387		/* Read the IP->Key mappings from userspace */
2388		err = tp->af_specific->md5_parse(sk, optval, optlen);
2389		break;
2390#endif
2391
2392	default:
2393		err = -ENOPROTOOPT;
2394		break;
2395	}
2396
2397	release_sock(sk);
2398	return err;
2399}
2400
2401int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2402		   unsigned int optlen)
2403{
2404	struct inet_connection_sock *icsk = inet_csk(sk);
2405
2406	if (level != SOL_TCP)
2407		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2408						     optval, optlen);
2409	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2410}
2411EXPORT_SYMBOL(tcp_setsockopt);
2412
2413#ifdef CONFIG_COMPAT
2414int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2415			  char __user *optval, unsigned int optlen)
2416{
2417	if (level != SOL_TCP)
2418		return inet_csk_compat_setsockopt(sk, level, optname,
2419						  optval, optlen);
2420	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2421}
2422EXPORT_SYMBOL(compat_tcp_setsockopt);
2423#endif
2424
2425/* Return information about state of tcp endpoint in API format. */
2426void tcp_get_info(struct sock *sk, struct tcp_info *info)
2427{
2428	struct tcp_sock *tp = tcp_sk(sk);
2429	const struct inet_connection_sock *icsk = inet_csk(sk);
2430	u32 now = tcp_time_stamp;
2431
2432	memset(info, 0, sizeof(*info));
2433
2434	info->tcpi_state = sk->sk_state;
2435	info->tcpi_ca_state = icsk->icsk_ca_state;
2436	info->tcpi_retransmits = icsk->icsk_retransmits;
2437	info->tcpi_probes = icsk->icsk_probes_out;
2438	info->tcpi_backoff = icsk->icsk_backoff;
2439
2440	if (tp->rx_opt.tstamp_ok)
2441		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2442	if (tcp_is_sack(tp))
2443		info->tcpi_options |= TCPI_OPT_SACK;
2444	if (tp->rx_opt.wscale_ok) {
2445		info->tcpi_options |= TCPI_OPT_WSCALE;
2446		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2447		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2448	}
2449
2450	if (tp->ecn_flags&TCP_ECN_OK)
2451		info->tcpi_options |= TCPI_OPT_ECN;
2452
2453	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2454	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2455	info->tcpi_snd_mss = tp->mss_cache;
2456	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2457
2458	if (sk->sk_state == TCP_LISTEN) {
2459		info->tcpi_unacked = sk->sk_ack_backlog;
2460		info->tcpi_sacked = sk->sk_max_ack_backlog;
2461	} else {
2462		info->tcpi_unacked = tp->packets_out;
2463		info->tcpi_sacked = tp->sacked_out;
2464	}
2465	info->tcpi_lost = tp->lost_out;
2466	info->tcpi_retrans = tp->retrans_out;
2467	info->tcpi_fackets = tp->fackets_out;
2468
2469	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2470	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2471	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2472
2473	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2474	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2475	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2476	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2477	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2478	info->tcpi_snd_cwnd = tp->snd_cwnd;
2479	info->tcpi_advmss = tp->advmss;
2480	info->tcpi_reordering = tp->reordering;
2481
2482	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2483	info->tcpi_rcv_space = tp->rcvq_space.space;
2484
2485	info->tcpi_total_retrans = tp->total_retrans;
2486}
2487EXPORT_SYMBOL_GPL(tcp_get_info);
2488
2489static int do_tcp_getsockopt(struct sock *sk, int level,
2490		int optname, char __user *optval, int __user *optlen)
2491{
2492	struct inet_connection_sock *icsk = inet_csk(sk);
2493	struct tcp_sock *tp = tcp_sk(sk);
2494	int val, len;
2495
2496	if (get_user(len, optlen))
2497		return -EFAULT;
2498
2499	len = min_t(unsigned int, len, sizeof(int));
2500
2501	if (len < 0)
2502		return -EINVAL;
2503
2504	switch (optname) {
2505	case TCP_MAXSEG:
2506		val = tp->mss_cache;
2507		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2508			val = tp->rx_opt.user_mss;
2509		break;
2510	case TCP_NODELAY:
2511		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2512		break;
2513	case TCP_CORK:
2514		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2515		break;
2516	case TCP_KEEPIDLE:
2517		val = keepalive_time_when(tp) / HZ;
2518		break;
2519	case TCP_KEEPINTVL:
2520		val = keepalive_intvl_when(tp) / HZ;
2521		break;
2522	case TCP_KEEPCNT:
2523		val = keepalive_probes(tp);
2524		break;
2525	case TCP_SYNCNT:
2526		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2527		break;
2528	case TCP_LINGER2:
2529		val = tp->linger2;
2530		if (val >= 0)
2531			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2532		break;
2533	case TCP_DEFER_ACCEPT:
2534		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2535				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2536		break;
2537	case TCP_WINDOW_CLAMP:
2538		val = tp->window_clamp;
2539		break;
2540	case TCP_INFO: {
2541		struct tcp_info info;
2542
2543		if (get_user(len, optlen))
2544			return -EFAULT;
2545
2546		tcp_get_info(sk, &info);
2547
2548		len = min_t(unsigned int, len, sizeof(info));
2549		if (put_user(len, optlen))
2550			return -EFAULT;
2551		if (copy_to_user(optval, &info, len))
2552			return -EFAULT;
2553		return 0;
2554	}
2555	case TCP_QUICKACK:
2556		val = !icsk->icsk_ack.pingpong;
2557		break;
2558
2559	case TCP_CONGESTION:
2560		if (get_user(len, optlen))
2561			return -EFAULT;
2562		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2563		if (put_user(len, optlen))
2564			return -EFAULT;
2565		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2566			return -EFAULT;
2567		return 0;
2568
2569	case TCP_COOKIE_TRANSACTIONS: {
2570		struct tcp_cookie_transactions ctd;
2571		struct tcp_cookie_values *cvp = tp->cookie_values;
2572
2573		if (get_user(len, optlen))
2574			return -EFAULT;
2575		if (len < sizeof(ctd))
2576			return -EINVAL;
2577
2578		memset(&ctd, 0, sizeof(ctd));
2579		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2580				   TCP_COOKIE_IN_ALWAYS : 0)
2581				| (tp->rx_opt.cookie_out_never ?
2582				   TCP_COOKIE_OUT_NEVER : 0);
2583
2584		if (cvp != NULL) {
2585			ctd.tcpct_flags |= (cvp->s_data_in ?
2586					    TCP_S_DATA_IN : 0)
2587					 | (cvp->s_data_out ?
2588					    TCP_S_DATA_OUT : 0);
2589
2590			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2591			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2592
2593			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2594			       cvp->cookie_pair_size);
2595			ctd.tcpct_used = cvp->cookie_pair_size;
2596		}
2597
2598		if (put_user(sizeof(ctd), optlen))
2599			return -EFAULT;
2600		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2601			return -EFAULT;
2602		return 0;
2603	}
2604	default:
2605		return -ENOPROTOOPT;
2606	}
2607
2608	if (put_user(len, optlen))
2609		return -EFAULT;
2610	if (copy_to_user(optval, &val, len))
2611		return -EFAULT;
2612	return 0;
2613}
2614
2615int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2616		   int __user *optlen)
2617{
2618	struct inet_connection_sock *icsk = inet_csk(sk);
2619
2620	if (level != SOL_TCP)
2621		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2622						     optval, optlen);
2623	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2624}
2625EXPORT_SYMBOL(tcp_getsockopt);
2626
2627#ifdef CONFIG_COMPAT
2628int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2629			  char __user *optval, int __user *optlen)
2630{
2631	if (level != SOL_TCP)
2632		return inet_csk_compat_getsockopt(sk, level, optname,
2633						  optval, optlen);
2634	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2635}
2636EXPORT_SYMBOL(compat_tcp_getsockopt);
2637#endif
2638
2639struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2640{
2641	struct sk_buff *segs = ERR_PTR(-EINVAL);
2642	struct tcphdr *th;
2643	unsigned thlen;
2644	unsigned int seq;
2645	__be32 delta;
2646	unsigned int oldlen;
2647	unsigned int mss;
2648
2649	if (!pskb_may_pull(skb, sizeof(*th)))
2650		goto out;
2651
2652	th = tcp_hdr(skb);
2653	thlen = th->doff * 4;
2654	if (thlen < sizeof(*th))
2655		goto out;
2656
2657	if (!pskb_may_pull(skb, thlen))
2658		goto out;
2659
2660	oldlen = (u16)~skb->len;
2661	__skb_pull(skb, thlen);
2662
2663	mss = skb_shinfo(skb)->gso_size;
2664	if (unlikely(skb->len <= mss))
2665		goto out;
2666
2667	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2668		/* Packet is from an untrusted source, reset gso_segs. */
2669		int type = skb_shinfo(skb)->gso_type;
2670
2671		if (unlikely(type &
2672			     ~(SKB_GSO_TCPV4 |
2673			       SKB_GSO_DODGY |
2674			       SKB_GSO_TCP_ECN |
2675			       SKB_GSO_TCPV6 |
2676			       0) ||
2677			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2678			goto out;
2679
2680		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2681
2682		segs = NULL;
2683		goto out;
2684	}
2685
2686	segs = skb_segment(skb, features);
2687	if (IS_ERR(segs))
2688		goto out;
2689
2690	delta = htonl(oldlen + (thlen + mss));
2691
2692	skb = segs;
2693	th = tcp_hdr(skb);
2694	seq = ntohl(th->seq);
2695
2696	do {
2697		th->fin = th->psh = 0;
2698
2699		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2700				       (__force u32)delta));
2701		if (skb->ip_summed != CHECKSUM_PARTIAL)
2702			th->check =
2703			     csum_fold(csum_partial(skb_transport_header(skb),
2704						    thlen, skb->csum));
2705
2706		seq += mss;
2707		skb = skb->next;
2708		th = tcp_hdr(skb);
2709
2710		th->seq = htonl(seq);
2711		th->cwr = 0;
2712	} while (skb->next);
2713
2714	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2715		      skb->data_len);
2716	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2717				(__force u32)delta));
2718	if (skb->ip_summed != CHECKSUM_PARTIAL)
2719		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2720						   thlen, skb->csum));
2721
2722out:
2723	return segs;
2724}
2725EXPORT_SYMBOL(tcp_tso_segment);
2726
2727struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2728{
2729	struct sk_buff **pp = NULL;
2730	struct sk_buff *p;
2731	struct tcphdr *th;
2732	struct tcphdr *th2;
2733	unsigned int len;
2734	unsigned int thlen;
2735	__be32 flags;
2736	unsigned int mss = 1;
2737	unsigned int hlen;
2738	unsigned int off;
2739	int flush = 1;
2740	int i;
2741
2742	off = skb_gro_offset(skb);
2743	hlen = off + sizeof(*th);
2744	th = skb_gro_header_fast(skb, off);
2745	if (skb_gro_header_hard(skb, hlen)) {
2746		th = skb_gro_header_slow(skb, hlen, off);
2747		if (unlikely(!th))
2748			goto out;
2749	}
2750
2751	thlen = th->doff * 4;
2752	if (thlen < sizeof(*th))
2753		goto out;
2754
2755	hlen = off + thlen;
2756	if (skb_gro_header_hard(skb, hlen)) {
2757		th = skb_gro_header_slow(skb, hlen, off);
2758		if (unlikely(!th))
2759			goto out;
2760	}
2761
2762	skb_gro_pull(skb, thlen);
2763
2764	len = skb_gro_len(skb);
2765	flags = tcp_flag_word(th);
2766
2767	for (; (p = *head); head = &p->next) {
2768		if (!NAPI_GRO_CB(p)->same_flow)
2769			continue;
2770
2771		th2 = tcp_hdr(p);
2772
2773		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2774			NAPI_GRO_CB(p)->same_flow = 0;
2775			continue;
2776		}
2777
2778		goto found;
2779	}
2780
2781	goto out_check_final;
2782
2783found:
2784	flush = NAPI_GRO_CB(p)->flush;
2785	flush |= (__force int)(flags & TCP_FLAG_CWR);
2786	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2787		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2788	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2789	for (i = sizeof(*th); i < thlen; i += 4)
2790		flush |= *(u32 *)((u8 *)th + i) ^
2791			 *(u32 *)((u8 *)th2 + i);
2792
2793	mss = skb_shinfo(p)->gso_size;
2794
2795	flush |= (len - 1) >= mss;
2796	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2797
2798	if (flush || skb_gro_receive(head, skb)) {
2799		mss = 1;
2800		goto out_check_final;
2801	}
2802
2803	p = *head;
2804	th2 = tcp_hdr(p);
2805	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2806
2807out_check_final:
2808	flush = len < mss;
2809	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2810					TCP_FLAG_RST | TCP_FLAG_SYN |
2811					TCP_FLAG_FIN));
2812
2813	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2814		pp = head;
2815
2816out:
2817	NAPI_GRO_CB(skb)->flush |= flush;
2818
2819	return pp;
2820}
2821EXPORT_SYMBOL(tcp_gro_receive);
2822
2823int tcp_gro_complete(struct sk_buff *skb)
2824{
2825	struct tcphdr *th = tcp_hdr(skb);
2826
2827	skb->csum_start = skb_transport_header(skb) - skb->head;
2828	skb->csum_offset = offsetof(struct tcphdr, check);
2829	skb->ip_summed = CHECKSUM_PARTIAL;
2830
2831	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2832
2833	if (th->cwr)
2834		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2835
2836	return 0;
2837}
2838EXPORT_SYMBOL(tcp_gro_complete);
2839
2840#ifdef CONFIG_TCP_MD5SIG
2841static unsigned long tcp_md5sig_users;
2842static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool;
2843static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2844
2845static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool)
2846{
2847	int cpu;
2848	for_each_possible_cpu(cpu) {
2849		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2850		if (p) {
2851			if (p->md5_desc.tfm)
2852				crypto_free_hash(p->md5_desc.tfm);
2853			kfree(p);
2854		}
2855	}
2856	free_percpu(pool);
2857}
2858
2859void tcp_free_md5sig_pool(void)
2860{
2861	struct tcp_md5sig_pool * __percpu *pool = NULL;
2862
2863	spin_lock_bh(&tcp_md5sig_pool_lock);
2864	if (--tcp_md5sig_users == 0) {
2865		pool = tcp_md5sig_pool;
2866		tcp_md5sig_pool = NULL;
2867	}
2868	spin_unlock_bh(&tcp_md5sig_pool_lock);
2869	if (pool)
2870		__tcp_free_md5sig_pool(pool);
2871}
2872EXPORT_SYMBOL(tcp_free_md5sig_pool);
2873
2874static struct tcp_md5sig_pool * __percpu *
2875__tcp_alloc_md5sig_pool(struct sock *sk)
2876{
2877	int cpu;
2878	struct tcp_md5sig_pool * __percpu *pool;
2879
2880	pool = alloc_percpu(struct tcp_md5sig_pool *);
2881	if (!pool)
2882		return NULL;
2883
2884	for_each_possible_cpu(cpu) {
2885		struct tcp_md5sig_pool *p;
2886		struct crypto_hash *hash;
2887
2888		p = kzalloc(sizeof(*p), sk->sk_allocation);
2889		if (!p)
2890			goto out_free;
2891		*per_cpu_ptr(pool, cpu) = p;
2892
2893		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2894		if (!hash || IS_ERR(hash))
2895			goto out_free;
2896
2897		p->md5_desc.tfm = hash;
2898	}
2899	return pool;
2900out_free:
2901	__tcp_free_md5sig_pool(pool);
2902	return NULL;
2903}
2904
2905struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2906{
2907	struct tcp_md5sig_pool * __percpu *pool;
2908	int alloc = 0;
2909
2910retry:
2911	spin_lock_bh(&tcp_md5sig_pool_lock);
2912	pool = tcp_md5sig_pool;
2913	if (tcp_md5sig_users++ == 0) {
2914		alloc = 1;
2915		spin_unlock_bh(&tcp_md5sig_pool_lock);
2916	} else if (!pool) {
2917		tcp_md5sig_users--;
2918		spin_unlock_bh(&tcp_md5sig_pool_lock);
2919		cpu_relax();
2920		goto retry;
2921	} else
2922		spin_unlock_bh(&tcp_md5sig_pool_lock);
2923
2924	if (alloc) {
2925		/* we cannot hold spinlock here because this may sleep. */
2926		struct tcp_md5sig_pool * __percpu *p;
2927
2928		p = __tcp_alloc_md5sig_pool(sk);
2929		spin_lock_bh(&tcp_md5sig_pool_lock);
2930		if (!p) {
2931			tcp_md5sig_users--;
2932			spin_unlock_bh(&tcp_md5sig_pool_lock);
2933			return NULL;
2934		}
2935		pool = tcp_md5sig_pool;
2936		if (pool) {
2937			/* oops, it has already been assigned. */
2938			spin_unlock_bh(&tcp_md5sig_pool_lock);
2939			__tcp_free_md5sig_pool(p);
2940		} else {
2941			tcp_md5sig_pool = pool = p;
2942			spin_unlock_bh(&tcp_md5sig_pool_lock);
2943		}
2944	}
2945	return pool;
2946}
2947EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2948
2949
2950/**
2951 *	tcp_get_md5sig_pool - get md5sig_pool for this user
2952 *
2953 *	We use percpu structure, so if we succeed, we exit with preemption
2954 *	and BH disabled, to make sure another thread or softirq handling
2955 *	wont try to get same context.
2956 */
2957struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2958{
2959	struct tcp_md5sig_pool * __percpu *p;
2960
2961	local_bh_disable();
2962
2963	spin_lock(&tcp_md5sig_pool_lock);
2964	p = tcp_md5sig_pool;
2965	if (p)
2966		tcp_md5sig_users++;
2967	spin_unlock(&tcp_md5sig_pool_lock);
2968
2969	if (p)
2970		return *this_cpu_ptr(p);
2971
2972	local_bh_enable();
2973	return NULL;
2974}
2975EXPORT_SYMBOL(tcp_get_md5sig_pool);
2976
2977void tcp_put_md5sig_pool(void)
2978{
2979	local_bh_enable();
2980	tcp_free_md5sig_pool();
2981}
2982EXPORT_SYMBOL(tcp_put_md5sig_pool);
2983
2984int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2985			struct tcphdr *th)
2986{
2987	struct scatterlist sg;
2988	int err;
2989
2990	__sum16 old_checksum = th->check;
2991	th->check = 0;
2992	/* options aren't included in the hash */
2993	sg_init_one(&sg, th, sizeof(struct tcphdr));
2994	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
2995	th->check = old_checksum;
2996	return err;
2997}
2998EXPORT_SYMBOL(tcp_md5_hash_header);
2999
3000int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3001			  struct sk_buff *skb, unsigned header_len)
3002{
3003	struct scatterlist sg;
3004	const struct tcphdr *tp = tcp_hdr(skb);
3005	struct hash_desc *desc = &hp->md5_desc;
3006	unsigned i;
3007	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3008				       skb_headlen(skb) - header_len : 0;
3009	const struct skb_shared_info *shi = skb_shinfo(skb);
3010	struct sk_buff *frag_iter;
3011
3012	sg_init_table(&sg, 1);
3013
3014	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3015	if (crypto_hash_update(desc, &sg, head_data_len))
3016		return 1;
3017
3018	for (i = 0; i < shi->nr_frags; ++i) {
3019		const struct skb_frag_struct *f = &shi->frags[i];
3020		sg_set_page(&sg, f->page, f->size, f->page_offset);
3021		if (crypto_hash_update(desc, &sg, f->size))
3022			return 1;
3023	}
3024
3025	skb_walk_frags(skb, frag_iter)
3026		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3027			return 1;
3028
3029	return 0;
3030}
3031EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3032
3033int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
3034{
3035	struct scatterlist sg;
3036
3037	sg_init_one(&sg, key->key, key->keylen);
3038	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3039}
3040EXPORT_SYMBOL(tcp_md5_hash_key);
3041
3042#endif
3043
3044/**
3045 * Each Responder maintains up to two secret values concurrently for
3046 * efficient secret rollover.  Each secret value has 4 states:
3047 *
3048 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3049 *    Generates new Responder-Cookies, but not yet used for primary
3050 *    verification.  This is a short-term state, typically lasting only
3051 *    one round trip time (RTT).
3052 *
3053 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3054 *    Used both for generation and primary verification.
3055 *
3056 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3057 *    Used for verification, until the first failure that can be
3058 *    verified by the newer Generating secret.  At that time, this
3059 *    cookie's state is changed to Secondary, and the Generating
3060 *    cookie's state is changed to Primary.  This is a short-term state,
3061 *    typically lasting only one round trip time (RTT).
3062 *
3063 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3064 *    Used for secondary verification, after primary verification
3065 *    failures.  This state lasts no more than twice the Maximum Segment
3066 *    Lifetime (2MSL).  Then, the secret is discarded.
3067 */
3068struct tcp_cookie_secret {
3069	/* The secret is divided into two parts.  The digest part is the
3070	 * equivalent of previously hashing a secret and saving the state,
3071	 * and serves as an initialization vector (IV).  The message part
3072	 * serves as the trailing secret.
3073	 */
3074	u32				secrets[COOKIE_WORKSPACE_WORDS];
3075	unsigned long			expires;
3076};
3077
3078#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3079#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3080#define TCP_SECRET_LIFE (HZ * 600)
3081
3082static struct tcp_cookie_secret tcp_secret_one;
3083static struct tcp_cookie_secret tcp_secret_two;
3084
3085/* Essentially a circular list, without dynamic allocation. */
3086static struct tcp_cookie_secret *tcp_secret_generating;
3087static struct tcp_cookie_secret *tcp_secret_primary;
3088static struct tcp_cookie_secret *tcp_secret_retiring;
3089static struct tcp_cookie_secret *tcp_secret_secondary;
3090
3091static DEFINE_SPINLOCK(tcp_secret_locker);
3092
3093/* Select a pseudo-random word in the cookie workspace.
3094 */
3095static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3096{
3097	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3098}
3099
3100/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3101 * Called in softirq context.
3102 * Returns: 0 for success.
3103 */
3104int tcp_cookie_generator(u32 *bakery)
3105{
3106	unsigned long jiffy = jiffies;
3107
3108	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3109		spin_lock_bh(&tcp_secret_locker);
3110		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3111			/* refreshed by another */
3112			memcpy(bakery,
3113			       &tcp_secret_generating->secrets[0],
3114			       COOKIE_WORKSPACE_WORDS);
3115		} else {
3116			/* still needs refreshing */
3117			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3118
3119			/* The first time, paranoia assumes that the
3120			 * randomization function isn't as strong.  But,
3121			 * this secret initialization is delayed until
3122			 * the last possible moment (packet arrival).
3123			 * Although that time is observable, it is
3124			 * unpredictably variable.  Mash in the most
3125			 * volatile clock bits available, and expire the
3126			 * secret extra quickly.
3127			 */
3128			if (unlikely(tcp_secret_primary->expires ==
3129				     tcp_secret_secondary->expires)) {
3130				struct timespec tv;
3131
3132				getnstimeofday(&tv);
3133				bakery[COOKIE_DIGEST_WORDS+0] ^=
3134					(u32)tv.tv_nsec;
3135
3136				tcp_secret_secondary->expires = jiffy
3137					+ TCP_SECRET_1MSL
3138					+ (0x0f & tcp_cookie_work(bakery, 0));
3139			} else {
3140				tcp_secret_secondary->expires = jiffy
3141					+ TCP_SECRET_LIFE
3142					+ (0xff & tcp_cookie_work(bakery, 1));
3143				tcp_secret_primary->expires = jiffy
3144					+ TCP_SECRET_2MSL
3145					+ (0x1f & tcp_cookie_work(bakery, 2));
3146			}
3147			memcpy(&tcp_secret_secondary->secrets[0],
3148			       bakery, COOKIE_WORKSPACE_WORDS);
3149
3150			rcu_assign_pointer(tcp_secret_generating,
3151					   tcp_secret_secondary);
3152			rcu_assign_pointer(tcp_secret_retiring,
3153					   tcp_secret_primary);
3154			/*
3155			 * Neither call_rcu() nor synchronize_rcu() needed.
3156			 * Retiring data is not freed.  It is replaced after
3157			 * further (locked) pointer updates, and a quiet time
3158			 * (minimum 1MSL, maximum LIFE - 2MSL).
3159			 */
3160		}
3161		spin_unlock_bh(&tcp_secret_locker);
3162	} else {
3163		rcu_read_lock_bh();
3164		memcpy(bakery,
3165		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3166		       COOKIE_WORKSPACE_WORDS);
3167		rcu_read_unlock_bh();
3168	}
3169	return 0;
3170}
3171EXPORT_SYMBOL(tcp_cookie_generator);
3172
3173void tcp_done(struct sock *sk)
3174{
3175	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3176		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3177
3178	tcp_set_state(sk, TCP_CLOSE);
3179	tcp_clear_xmit_timers(sk);
3180
3181	sk->sk_shutdown = SHUTDOWN_MASK;
3182
3183	if (!sock_flag(sk, SOCK_DEAD))
3184		sk->sk_state_change(sk);
3185	else
3186		inet_csk_destroy_sock(sk);
3187}
3188EXPORT_SYMBOL_GPL(tcp_done);
3189
3190extern struct tcp_congestion_ops tcp_reno;
3191
3192static __initdata unsigned long thash_entries;
3193static int __init set_thash_entries(char *str)
3194{
3195	if (!str)
3196		return 0;
3197	thash_entries = simple_strtoul(str, &str, 0);
3198	return 1;
3199}
3200__setup("thash_entries=", set_thash_entries);
3201
3202void __init tcp_init(void)
3203{
3204	struct sk_buff *skb = NULL;
3205	unsigned long nr_pages, limit;
3206	int order, i, max_share;
3207	unsigned long jiffy = jiffies;
3208
3209	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3210
3211	percpu_counter_init(&tcp_sockets_allocated, 0);
3212	percpu_counter_init(&tcp_orphan_count, 0);
3213	tcp_hashinfo.bind_bucket_cachep =
3214		kmem_cache_create("tcp_bind_bucket",
3215				  sizeof(struct inet_bind_bucket), 0,
3216				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3217
3218	/* Size and allocate the main established and bind bucket
3219	 * hash tables.
3220	 *
3221	 * The methodology is similar to that of the buffer cache.
3222	 */
3223	tcp_hashinfo.ehash =
3224		alloc_large_system_hash("TCP established",
3225					sizeof(struct inet_ehash_bucket),
3226					thash_entries,
3227					(totalram_pages >= 128 * 1024) ?
3228					13 : 15,
3229					0,
3230					NULL,
3231					&tcp_hashinfo.ehash_mask,
3232					thash_entries ? 0 : 512 * 1024);
3233	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3234		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3235		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3236	}
3237	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3238		panic("TCP: failed to alloc ehash_locks");
3239	tcp_hashinfo.bhash =
3240		alloc_large_system_hash("TCP bind",
3241					sizeof(struct inet_bind_hashbucket),
3242					tcp_hashinfo.ehash_mask + 1,
3243					(totalram_pages >= 128 * 1024) ?
3244					13 : 15,
3245					0,
3246					&tcp_hashinfo.bhash_size,
3247					NULL,
3248					64 * 1024);
3249	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
3250	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3251		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3252		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3253	}
3254
3255	/* Try to be a bit smarter and adjust defaults depending
3256	 * on available memory.
3257	 */
3258	for (order = 0; ((1 << order) << PAGE_SHIFT) <
3259			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
3260			order++)
3261		;
3262	if (order >= 4) {
3263		tcp_death_row.sysctl_max_tw_buckets = 180000;
3264		sysctl_tcp_max_orphans = 4096 << (order - 4);
3265		sysctl_max_syn_backlog = 1024;
3266	} else if (order < 3) {
3267		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
3268		sysctl_tcp_max_orphans >>= (3 - order);
3269		sysctl_max_syn_backlog = 128;
3270	}
3271
3272	/* Set the pressure threshold to be a fraction of global memory that
3273	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
3274	 * memory, with a floor of 128 pages.
3275	 */
3276	nr_pages = totalram_pages - totalhigh_pages;
3277	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
3278	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
3279	limit = max(limit, 128UL);
3280	sysctl_tcp_mem[0] = limit / 4 * 3;
3281	sysctl_tcp_mem[1] = limit;
3282	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3283
3284	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3285	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
3286	max_share = min(4UL*1024*1024, limit);
3287
3288	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3289	sysctl_tcp_wmem[1] = 16*1024;
3290	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3291
3292	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3293	sysctl_tcp_rmem[1] = 87380;
3294	sysctl_tcp_rmem[2] = max(87380, max_share);
3295
3296	printk(KERN_INFO "TCP: Hash tables configured "
3297	       "(established %u bind %u)\n",
3298	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3299
3300	tcp_register_congestion_control(&tcp_reno);
3301
3302	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3303	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3304	tcp_secret_one.expires = jiffy; /* past due */
3305	tcp_secret_two.expires = jiffy; /* past due */
3306	tcp_secret_generating = &tcp_secret_one;
3307	tcp_secret_primary = &tcp_secret_one;
3308	tcp_secret_retiring = &tcp_secret_two;
3309	tcp_secret_secondary = &tcp_secret_two;
3310}
3311