tcp.c revision 57ef42d59d1c1d79be59fc3c6380ae14234e38c3
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#include <linux/kernel.h>
249#include <linux/module.h>
250#include <linux/types.h>
251#include <linux/fcntl.h>
252#include <linux/poll.h>
253#include <linux/init.h>
254#include <linux/fs.h>
255#include <linux/skbuff.h>
256#include <linux/scatterlist.h>
257#include <linux/splice.h>
258#include <linux/net.h>
259#include <linux/socket.h>
260#include <linux/random.h>
261#include <linux/bootmem.h>
262#include <linux/highmem.h>
263#include <linux/swap.h>
264#include <linux/cache.h>
265#include <linux/err.h>
266#include <linux/crypto.h>
267
268#include <net/icmp.h>
269#include <net/tcp.h>
270#include <net/xfrm.h>
271#include <net/ip.h>
272#include <net/netdma.h>
273#include <net/sock.h>
274
275#include <asm/uaccess.h>
276#include <asm/ioctls.h>
277
278int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
279
280atomic_t tcp_orphan_count = ATOMIC_INIT(0);
281
282EXPORT_SYMBOL_GPL(tcp_orphan_count);
283
284int sysctl_tcp_mem[3] __read_mostly;
285int sysctl_tcp_wmem[3] __read_mostly;
286int sysctl_tcp_rmem[3] __read_mostly;
287
288EXPORT_SYMBOL(sysctl_tcp_mem);
289EXPORT_SYMBOL(sysctl_tcp_rmem);
290EXPORT_SYMBOL(sysctl_tcp_wmem);
291
292atomic_t tcp_memory_allocated;	/* Current allocated memory. */
293atomic_t tcp_sockets_allocated;	/* Current number of TCP sockets. */
294
295EXPORT_SYMBOL(tcp_memory_allocated);
296EXPORT_SYMBOL(tcp_sockets_allocated);
297
298/*
299 * TCP splice context
300 */
301struct tcp_splice_state {
302	struct pipe_inode_info *pipe;
303	size_t len;
304	unsigned int flags;
305};
306
307/*
308 * Pressure flag: try to collapse.
309 * Technical note: it is used by multiple contexts non atomically.
310 * All the __sk_mem_schedule() is of this nature: accounting
311 * is strict, actions are advisory and have some latency.
312 */
313int tcp_memory_pressure __read_mostly;
314
315EXPORT_SYMBOL(tcp_memory_pressure);
316
317void tcp_enter_memory_pressure(struct sock *sk)
318{
319	if (!tcp_memory_pressure) {
320		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
321		tcp_memory_pressure = 1;
322	}
323}
324
325EXPORT_SYMBOL(tcp_enter_memory_pressure);
326
327/*
328 *	Wait for a TCP event.
329 *
330 *	Note that we don't need to lock the socket, as the upper poll layers
331 *	take care of normal races (between the test and the event) and we don't
332 *	go look at any of the socket buffers directly.
333 */
334unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
335{
336	unsigned int mask;
337	struct sock *sk = sock->sk;
338	struct tcp_sock *tp = tcp_sk(sk);
339
340	poll_wait(file, sk->sk_sleep, wait);
341	if (sk->sk_state == TCP_LISTEN)
342		return inet_csk_listen_poll(sk);
343
344	/* Socket is not locked. We are protected from async events
345	 * by poll logic and correct handling of state changes
346	 * made by other threads is impossible in any case.
347	 */
348
349	mask = 0;
350	if (sk->sk_err)
351		mask = POLLERR;
352
353	/*
354	 * POLLHUP is certainly not done right. But poll() doesn't
355	 * have a notion of HUP in just one direction, and for a
356	 * socket the read side is more interesting.
357	 *
358	 * Some poll() documentation says that POLLHUP is incompatible
359	 * with the POLLOUT/POLLWR flags, so somebody should check this
360	 * all. But careful, it tends to be safer to return too many
361	 * bits than too few, and you can easily break real applications
362	 * if you don't tell them that something has hung up!
363	 *
364	 * Check-me.
365	 *
366	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
367	 * our fs/select.c). It means that after we received EOF,
368	 * poll always returns immediately, making impossible poll() on write()
369	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
370	 * if and only if shutdown has been made in both directions.
371	 * Actually, it is interesting to look how Solaris and DUX
372	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
373	 * then we could set it on SND_SHUTDOWN. BTW examples given
374	 * in Stevens' books assume exactly this behaviour, it explains
375	 * why POLLHUP is incompatible with POLLOUT.	--ANK
376	 *
377	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
378	 * blocking on fresh not-connected or disconnected socket. --ANK
379	 */
380	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
381		mask |= POLLHUP;
382	if (sk->sk_shutdown & RCV_SHUTDOWN)
383		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
384
385	/* Connected? */
386	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
387		/* Potential race condition. If read of tp below will
388		 * escape above sk->sk_state, we can be illegally awaken
389		 * in SYN_* states. */
390		if ((tp->rcv_nxt != tp->copied_seq) &&
391		    (tp->urg_seq != tp->copied_seq ||
392		     tp->rcv_nxt != tp->copied_seq + 1 ||
393		     sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data))
394			mask |= POLLIN | POLLRDNORM;
395
396		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
397			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
398				mask |= POLLOUT | POLLWRNORM;
399			} else {  /* send SIGIO later */
400				set_bit(SOCK_ASYNC_NOSPACE,
401					&sk->sk_socket->flags);
402				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
403
404				/* Race breaker. If space is freed after
405				 * wspace test but before the flags are set,
406				 * IO signal will be lost.
407				 */
408				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
409					mask |= POLLOUT | POLLWRNORM;
410			}
411		}
412
413		if (tp->urg_data & TCP_URG_VALID)
414			mask |= POLLPRI;
415	}
416	return mask;
417}
418
419int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
420{
421	struct tcp_sock *tp = tcp_sk(sk);
422	int answ;
423
424	switch (cmd) {
425	case SIOCINQ:
426		if (sk->sk_state == TCP_LISTEN)
427			return -EINVAL;
428
429		lock_sock(sk);
430		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
431			answ = 0;
432		else if (sock_flag(sk, SOCK_URGINLINE) ||
433			 !tp->urg_data ||
434			 before(tp->urg_seq, tp->copied_seq) ||
435			 !before(tp->urg_seq, tp->rcv_nxt)) {
436			answ = tp->rcv_nxt - tp->copied_seq;
437
438			/* Subtract 1, if FIN is in queue. */
439			if (answ && !skb_queue_empty(&sk->sk_receive_queue))
440				answ -=
441		       tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
442		} else
443			answ = tp->urg_seq - tp->copied_seq;
444		release_sock(sk);
445		break;
446	case SIOCATMARK:
447		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
448		break;
449	case SIOCOUTQ:
450		if (sk->sk_state == TCP_LISTEN)
451			return -EINVAL;
452
453		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
454			answ = 0;
455		else
456			answ = tp->write_seq - tp->snd_una;
457		break;
458	default:
459		return -ENOIOCTLCMD;
460	}
461
462	return put_user(answ, (int __user *)arg);
463}
464
465static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
466{
467	TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
468	tp->pushed_seq = tp->write_seq;
469}
470
471static inline int forced_push(struct tcp_sock *tp)
472{
473	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
474}
475
476static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
477{
478	struct tcp_sock *tp = tcp_sk(sk);
479	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
480
481	skb->csum    = 0;
482	tcb->seq     = tcb->end_seq = tp->write_seq;
483	tcb->flags   = TCPCB_FLAG_ACK;
484	tcb->sacked  = 0;
485	skb_header_release(skb);
486	tcp_add_write_queue_tail(sk, skb);
487	sk->sk_wmem_queued += skb->truesize;
488	sk_mem_charge(sk, skb->truesize);
489	if (tp->nonagle & TCP_NAGLE_PUSH)
490		tp->nonagle &= ~TCP_NAGLE_PUSH;
491}
492
493static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
494				struct sk_buff *skb)
495{
496	if (flags & MSG_OOB) {
497		tp->urg_mode = 1;
498		tp->snd_up = tp->write_seq;
499	}
500}
501
502static inline void tcp_push(struct sock *sk, int flags, int mss_now,
503			    int nonagle)
504{
505	struct tcp_sock *tp = tcp_sk(sk);
506
507	if (tcp_send_head(sk)) {
508		struct sk_buff *skb = tcp_write_queue_tail(sk);
509		if (!(flags & MSG_MORE) || forced_push(tp))
510			tcp_mark_push(tp, skb);
511		tcp_mark_urg(tp, flags, skb);
512		__tcp_push_pending_frames(sk, mss_now,
513					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
514	}
515}
516
517static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
518				unsigned int offset, size_t len)
519{
520	struct tcp_splice_state *tss = rd_desc->arg.data;
521
522	return skb_splice_bits(skb, offset, tss->pipe, tss->len, tss->flags);
523}
524
525static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
526{
527	/* Store TCP splice context information in read_descriptor_t. */
528	read_descriptor_t rd_desc = {
529		.arg.data = tss,
530	};
531
532	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
533}
534
535/**
536 *  tcp_splice_read - splice data from TCP socket to a pipe
537 * @sock:	socket to splice from
538 * @ppos:	position (not valid)
539 * @pipe:	pipe to splice to
540 * @len:	number of bytes to splice
541 * @flags:	splice modifier flags
542 *
543 * Description:
544 *    Will read pages from given socket and fill them into a pipe.
545 *
546 **/
547ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
548			struct pipe_inode_info *pipe, size_t len,
549			unsigned int flags)
550{
551	struct sock *sk = sock->sk;
552	struct tcp_splice_state tss = {
553		.pipe = pipe,
554		.len = len,
555		.flags = flags,
556	};
557	long timeo;
558	ssize_t spliced;
559	int ret;
560
561	/*
562	 * We can't seek on a socket input
563	 */
564	if (unlikely(*ppos))
565		return -ESPIPE;
566
567	ret = spliced = 0;
568
569	lock_sock(sk);
570
571	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
572	while (tss.len) {
573		ret = __tcp_splice_read(sk, &tss);
574		if (ret < 0)
575			break;
576		else if (!ret) {
577			if (spliced)
578				break;
579			if (flags & SPLICE_F_NONBLOCK) {
580				ret = -EAGAIN;
581				break;
582			}
583			if (sock_flag(sk, SOCK_DONE))
584				break;
585			if (sk->sk_err) {
586				ret = sock_error(sk);
587				break;
588			}
589			if (sk->sk_shutdown & RCV_SHUTDOWN)
590				break;
591			if (sk->sk_state == TCP_CLOSE) {
592				/*
593				 * This occurs when user tries to read
594				 * from never connected socket.
595				 */
596				if (!sock_flag(sk, SOCK_DONE))
597					ret = -ENOTCONN;
598				break;
599			}
600			if (!timeo) {
601				ret = -EAGAIN;
602				break;
603			}
604			sk_wait_data(sk, &timeo);
605			if (signal_pending(current)) {
606				ret = sock_intr_errno(timeo);
607				break;
608			}
609			continue;
610		}
611		tss.len -= ret;
612		spliced += ret;
613
614		release_sock(sk);
615		lock_sock(sk);
616
617		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
618		    (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo ||
619		    signal_pending(current))
620			break;
621	}
622
623	release_sock(sk);
624
625	if (spliced)
626		return spliced;
627
628	return ret;
629}
630
631struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
632{
633	struct sk_buff *skb;
634
635	/* The TCP header must be at least 32-bit aligned.  */
636	size = ALIGN(size, 4);
637
638	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
639	if (skb) {
640		if (sk_wmem_schedule(sk, skb->truesize)) {
641			/*
642			 * Make sure that we have exactly size bytes
643			 * available to the caller, no more, no less.
644			 */
645			skb_reserve(skb, skb_tailroom(skb) - size);
646			return skb;
647		}
648		__kfree_skb(skb);
649	} else {
650		sk->sk_prot->enter_memory_pressure(sk);
651		sk_stream_moderate_sndbuf(sk);
652	}
653	return NULL;
654}
655
656static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
657			 size_t psize, int flags)
658{
659	struct tcp_sock *tp = tcp_sk(sk);
660	int mss_now, size_goal;
661	int err;
662	ssize_t copied;
663	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
664
665	/* Wait for a connection to finish. */
666	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
667		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
668			goto out_err;
669
670	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
671
672	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
673	size_goal = tp->xmit_size_goal;
674	copied = 0;
675
676	err = -EPIPE;
677	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
678		goto do_error;
679
680	while (psize > 0) {
681		struct sk_buff *skb = tcp_write_queue_tail(sk);
682		struct page *page = pages[poffset / PAGE_SIZE];
683		int copy, i, can_coalesce;
684		int offset = poffset % PAGE_SIZE;
685		int size = min_t(size_t, psize, PAGE_SIZE - offset);
686
687		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
688new_segment:
689			if (!sk_stream_memory_free(sk))
690				goto wait_for_sndbuf;
691
692			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
693			if (!skb)
694				goto wait_for_memory;
695
696			skb_entail(sk, skb);
697			copy = size_goal;
698		}
699
700		if (copy > size)
701			copy = size;
702
703		i = skb_shinfo(skb)->nr_frags;
704		can_coalesce = skb_can_coalesce(skb, i, page, offset);
705		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
706			tcp_mark_push(tp, skb);
707			goto new_segment;
708		}
709		if (!sk_wmem_schedule(sk, copy))
710			goto wait_for_memory;
711
712		if (can_coalesce) {
713			skb_shinfo(skb)->frags[i - 1].size += copy;
714		} else {
715			get_page(page);
716			skb_fill_page_desc(skb, i, page, offset, copy);
717		}
718
719		skb->len += copy;
720		skb->data_len += copy;
721		skb->truesize += copy;
722		sk->sk_wmem_queued += copy;
723		sk_mem_charge(sk, copy);
724		skb->ip_summed = CHECKSUM_PARTIAL;
725		tp->write_seq += copy;
726		TCP_SKB_CB(skb)->end_seq += copy;
727		skb_shinfo(skb)->gso_segs = 0;
728
729		if (!copied)
730			TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
731
732		copied += copy;
733		poffset += copy;
734		if (!(psize -= copy))
735			goto out;
736
737		if (skb->len < size_goal || (flags & MSG_OOB))
738			continue;
739
740		if (forced_push(tp)) {
741			tcp_mark_push(tp, skb);
742			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
743		} else if (skb == tcp_send_head(sk))
744			tcp_push_one(sk, mss_now);
745		continue;
746
747wait_for_sndbuf:
748		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
749wait_for_memory:
750		if (copied)
751			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
752
753		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
754			goto do_error;
755
756		mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
757		size_goal = tp->xmit_size_goal;
758	}
759
760out:
761	if (copied)
762		tcp_push(sk, flags, mss_now, tp->nonagle);
763	return copied;
764
765do_error:
766	if (copied)
767		goto out;
768out_err:
769	return sk_stream_error(sk, flags, err);
770}
771
772ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
773		     size_t size, int flags)
774{
775	ssize_t res;
776	struct sock *sk = sock->sk;
777
778	if (!(sk->sk_route_caps & NETIF_F_SG) ||
779	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
780		return sock_no_sendpage(sock, page, offset, size, flags);
781
782	lock_sock(sk);
783	TCP_CHECK_TIMER(sk);
784	res = do_tcp_sendpages(sk, &page, offset, size, flags);
785	TCP_CHECK_TIMER(sk);
786	release_sock(sk);
787	return res;
788}
789
790#define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
791#define TCP_OFF(sk)	(sk->sk_sndmsg_off)
792
793static inline int select_size(struct sock *sk)
794{
795	struct tcp_sock *tp = tcp_sk(sk);
796	int tmp = tp->mss_cache;
797
798	if (sk->sk_route_caps & NETIF_F_SG) {
799		if (sk_can_gso(sk))
800			tmp = 0;
801		else {
802			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
803
804			if (tmp >= pgbreak &&
805			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
806				tmp = pgbreak;
807		}
808	}
809
810	return tmp;
811}
812
813int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
814		size_t size)
815{
816	struct sock *sk = sock->sk;
817	struct iovec *iov;
818	struct tcp_sock *tp = tcp_sk(sk);
819	struct sk_buff *skb;
820	int iovlen, flags;
821	int mss_now, size_goal;
822	int err, copied;
823	long timeo;
824
825	lock_sock(sk);
826	TCP_CHECK_TIMER(sk);
827
828	flags = msg->msg_flags;
829	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
830
831	/* Wait for a connection to finish. */
832	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
833		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
834			goto out_err;
835
836	/* This should be in poll */
837	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
838
839	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
840	size_goal = tp->xmit_size_goal;
841
842	/* Ok commence sending. */
843	iovlen = msg->msg_iovlen;
844	iov = msg->msg_iov;
845	copied = 0;
846
847	err = -EPIPE;
848	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
849		goto do_error;
850
851	while (--iovlen >= 0) {
852		int seglen = iov->iov_len;
853		unsigned char __user *from = iov->iov_base;
854
855		iov++;
856
857		while (seglen > 0) {
858			int copy;
859
860			skb = tcp_write_queue_tail(sk);
861
862			if (!tcp_send_head(sk) ||
863			    (copy = size_goal - skb->len) <= 0) {
864
865new_segment:
866				/* Allocate new segment. If the interface is SG,
867				 * allocate skb fitting to single page.
868				 */
869				if (!sk_stream_memory_free(sk))
870					goto wait_for_sndbuf;
871
872				skb = sk_stream_alloc_skb(sk, select_size(sk),
873						sk->sk_allocation);
874				if (!skb)
875					goto wait_for_memory;
876
877				/*
878				 * Check whether we can use HW checksum.
879				 */
880				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
881					skb->ip_summed = CHECKSUM_PARTIAL;
882
883				skb_entail(sk, skb);
884				copy = size_goal;
885			}
886
887			/* Try to append data to the end of skb. */
888			if (copy > seglen)
889				copy = seglen;
890
891			/* Where to copy to? */
892			if (skb_tailroom(skb) > 0) {
893				/* We have some space in skb head. Superb! */
894				if (copy > skb_tailroom(skb))
895					copy = skb_tailroom(skb);
896				if ((err = skb_add_data(skb, from, copy)) != 0)
897					goto do_fault;
898			} else {
899				int merge = 0;
900				int i = skb_shinfo(skb)->nr_frags;
901				struct page *page = TCP_PAGE(sk);
902				int off = TCP_OFF(sk);
903
904				if (skb_can_coalesce(skb, i, page, off) &&
905				    off != PAGE_SIZE) {
906					/* We can extend the last page
907					 * fragment. */
908					merge = 1;
909				} else if (i == MAX_SKB_FRAGS ||
910					   (!i &&
911					   !(sk->sk_route_caps & NETIF_F_SG))) {
912					/* Need to add new fragment and cannot
913					 * do this because interface is non-SG,
914					 * or because all the page slots are
915					 * busy. */
916					tcp_mark_push(tp, skb);
917					goto new_segment;
918				} else if (page) {
919					if (off == PAGE_SIZE) {
920						put_page(page);
921						TCP_PAGE(sk) = page = NULL;
922						off = 0;
923					}
924				} else
925					off = 0;
926
927				if (copy > PAGE_SIZE - off)
928					copy = PAGE_SIZE - off;
929
930				if (!sk_wmem_schedule(sk, copy))
931					goto wait_for_memory;
932
933				if (!page) {
934					/* Allocate new cache page. */
935					if (!(page = sk_stream_alloc_page(sk)))
936						goto wait_for_memory;
937				}
938
939				/* Time to copy data. We are close to
940				 * the end! */
941				err = skb_copy_to_page(sk, from, skb, page,
942						       off, copy);
943				if (err) {
944					/* If this page was new, give it to the
945					 * socket so it does not get leaked.
946					 */
947					if (!TCP_PAGE(sk)) {
948						TCP_PAGE(sk) = page;
949						TCP_OFF(sk) = 0;
950					}
951					goto do_error;
952				}
953
954				/* Update the skb. */
955				if (merge) {
956					skb_shinfo(skb)->frags[i - 1].size +=
957									copy;
958				} else {
959					skb_fill_page_desc(skb, i, page, off, copy);
960					if (TCP_PAGE(sk)) {
961						get_page(page);
962					} else if (off + copy < PAGE_SIZE) {
963						get_page(page);
964						TCP_PAGE(sk) = page;
965					}
966				}
967
968				TCP_OFF(sk) = off + copy;
969			}
970
971			if (!copied)
972				TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
973
974			tp->write_seq += copy;
975			TCP_SKB_CB(skb)->end_seq += copy;
976			skb_shinfo(skb)->gso_segs = 0;
977
978			from += copy;
979			copied += copy;
980			if ((seglen -= copy) == 0 && iovlen == 0)
981				goto out;
982
983			if (skb->len < size_goal || (flags & MSG_OOB))
984				continue;
985
986			if (forced_push(tp)) {
987				tcp_mark_push(tp, skb);
988				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
989			} else if (skb == tcp_send_head(sk))
990				tcp_push_one(sk, mss_now);
991			continue;
992
993wait_for_sndbuf:
994			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
995wait_for_memory:
996			if (copied)
997				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
998
999			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1000				goto do_error;
1001
1002			mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
1003			size_goal = tp->xmit_size_goal;
1004		}
1005	}
1006
1007out:
1008	if (copied)
1009		tcp_push(sk, flags, mss_now, tp->nonagle);
1010	TCP_CHECK_TIMER(sk);
1011	release_sock(sk);
1012	return copied;
1013
1014do_fault:
1015	if (!skb->len) {
1016		tcp_unlink_write_queue(skb, sk);
1017		/* It is the one place in all of TCP, except connection
1018		 * reset, where we can be unlinking the send_head.
1019		 */
1020		tcp_check_send_head(sk, skb);
1021		sk_wmem_free_skb(sk, skb);
1022	}
1023
1024do_error:
1025	if (copied)
1026		goto out;
1027out_err:
1028	err = sk_stream_error(sk, flags, err);
1029	TCP_CHECK_TIMER(sk);
1030	release_sock(sk);
1031	return err;
1032}
1033
1034/*
1035 *	Handle reading urgent data. BSD has very simple semantics for
1036 *	this, no blocking and very strange errors 8)
1037 */
1038
1039static int tcp_recv_urg(struct sock *sk, long timeo,
1040			struct msghdr *msg, int len, int flags,
1041			int *addr_len)
1042{
1043	struct tcp_sock *tp = tcp_sk(sk);
1044
1045	/* No URG data to read. */
1046	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1047	    tp->urg_data == TCP_URG_READ)
1048		return -EINVAL;	/* Yes this is right ! */
1049
1050	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1051		return -ENOTCONN;
1052
1053	if (tp->urg_data & TCP_URG_VALID) {
1054		int err = 0;
1055		char c = tp->urg_data;
1056
1057		if (!(flags & MSG_PEEK))
1058			tp->urg_data = TCP_URG_READ;
1059
1060		/* Read urgent data. */
1061		msg->msg_flags |= MSG_OOB;
1062
1063		if (len > 0) {
1064			if (!(flags & MSG_TRUNC))
1065				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1066			len = 1;
1067		} else
1068			msg->msg_flags |= MSG_TRUNC;
1069
1070		return err ? -EFAULT : len;
1071	}
1072
1073	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1074		return 0;
1075
1076	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1077	 * the available implementations agree in this case:
1078	 * this call should never block, independent of the
1079	 * blocking state of the socket.
1080	 * Mike <pall@rz.uni-karlsruhe.de>
1081	 */
1082	return -EAGAIN;
1083}
1084
1085/* Clean up the receive buffer for full frames taken by the user,
1086 * then send an ACK if necessary.  COPIED is the number of bytes
1087 * tcp_recvmsg has given to the user so far, it speeds up the
1088 * calculation of whether or not we must ACK for the sake of
1089 * a window update.
1090 */
1091void tcp_cleanup_rbuf(struct sock *sk, int copied)
1092{
1093	struct tcp_sock *tp = tcp_sk(sk);
1094	int time_to_ack = 0;
1095
1096#if TCP_DEBUG
1097	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1098
1099	BUG_TRAP(!skb || before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1100#endif
1101
1102	if (inet_csk_ack_scheduled(sk)) {
1103		const struct inet_connection_sock *icsk = inet_csk(sk);
1104		   /* Delayed ACKs frequently hit locked sockets during bulk
1105		    * receive. */
1106		if (icsk->icsk_ack.blocked ||
1107		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1108		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1109		    /*
1110		     * If this read emptied read buffer, we send ACK, if
1111		     * connection is not bidirectional, user drained
1112		     * receive buffer and there was a small segment
1113		     * in queue.
1114		     */
1115		    (copied > 0 &&
1116		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1117		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1118		       !icsk->icsk_ack.pingpong)) &&
1119		      !atomic_read(&sk->sk_rmem_alloc)))
1120			time_to_ack = 1;
1121	}
1122
1123	/* We send an ACK if we can now advertise a non-zero window
1124	 * which has been raised "significantly".
1125	 *
1126	 * Even if window raised up to infinity, do not send window open ACK
1127	 * in states, where we will not receive more. It is useless.
1128	 */
1129	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1130		__u32 rcv_window_now = tcp_receive_window(tp);
1131
1132		/* Optimize, __tcp_select_window() is not cheap. */
1133		if (2*rcv_window_now <= tp->window_clamp) {
1134			__u32 new_window = __tcp_select_window(sk);
1135
1136			/* Send ACK now, if this read freed lots of space
1137			 * in our buffer. Certainly, new_window is new window.
1138			 * We can advertise it now, if it is not less than current one.
1139			 * "Lots" means "at least twice" here.
1140			 */
1141			if (new_window && new_window >= 2 * rcv_window_now)
1142				time_to_ack = 1;
1143		}
1144	}
1145	if (time_to_ack)
1146		tcp_send_ack(sk);
1147}
1148
1149static void tcp_prequeue_process(struct sock *sk)
1150{
1151	struct sk_buff *skb;
1152	struct tcp_sock *tp = tcp_sk(sk);
1153
1154	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1155
1156	/* RX process wants to run with disabled BHs, though it is not
1157	 * necessary */
1158	local_bh_disable();
1159	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1160		sk->sk_backlog_rcv(sk, skb);
1161	local_bh_enable();
1162
1163	/* Clear memory counter. */
1164	tp->ucopy.memory = 0;
1165}
1166
1167static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1168{
1169	struct sk_buff *skb;
1170	u32 offset;
1171
1172	skb_queue_walk(&sk->sk_receive_queue, skb) {
1173		offset = seq - TCP_SKB_CB(skb)->seq;
1174		if (tcp_hdr(skb)->syn)
1175			offset--;
1176		if (offset < skb->len || tcp_hdr(skb)->fin) {
1177			*off = offset;
1178			return skb;
1179		}
1180	}
1181	return NULL;
1182}
1183
1184/*
1185 * This routine provides an alternative to tcp_recvmsg() for routines
1186 * that would like to handle copying from skbuffs directly in 'sendfile'
1187 * fashion.
1188 * Note:
1189 *	- It is assumed that the socket was locked by the caller.
1190 *	- The routine does not block.
1191 *	- At present, there is no support for reading OOB data
1192 *	  or for 'peeking' the socket using this routine
1193 *	  (although both would be easy to implement).
1194 */
1195int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1196		  sk_read_actor_t recv_actor)
1197{
1198	struct sk_buff *skb;
1199	struct tcp_sock *tp = tcp_sk(sk);
1200	u32 seq = tp->copied_seq;
1201	u32 offset;
1202	int copied = 0;
1203
1204	if (sk->sk_state == TCP_LISTEN)
1205		return -ENOTCONN;
1206	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1207		if (offset < skb->len) {
1208			int used;
1209			size_t len;
1210
1211			len = skb->len - offset;
1212			/* Stop reading if we hit a patch of urgent data */
1213			if (tp->urg_data) {
1214				u32 urg_offset = tp->urg_seq - seq;
1215				if (urg_offset < len)
1216					len = urg_offset;
1217				if (!len)
1218					break;
1219			}
1220			used = recv_actor(desc, skb, offset, len);
1221			if (used < 0) {
1222				if (!copied)
1223					copied = used;
1224				break;
1225			} else if (used <= len) {
1226				seq += used;
1227				copied += used;
1228				offset += used;
1229			}
1230			/*
1231			 * If recv_actor drops the lock (e.g. TCP splice
1232			 * receive) the skb pointer might be invalid when
1233			 * getting here: tcp_collapse might have deleted it
1234			 * while aggregating skbs from the socket queue.
1235			 */
1236			skb = tcp_recv_skb(sk, seq-1, &offset);
1237			if (!skb || (offset+1 != skb->len))
1238				break;
1239		}
1240		if (tcp_hdr(skb)->fin) {
1241			sk_eat_skb(sk, skb, 0);
1242			++seq;
1243			break;
1244		}
1245		sk_eat_skb(sk, skb, 0);
1246		if (!desc->count)
1247			break;
1248	}
1249	tp->copied_seq = seq;
1250
1251	tcp_rcv_space_adjust(sk);
1252
1253	/* Clean up data we have read: This will do ACK frames. */
1254	if (copied > 0)
1255		tcp_cleanup_rbuf(sk, copied);
1256	return copied;
1257}
1258
1259/*
1260 *	This routine copies from a sock struct into the user buffer.
1261 *
1262 *	Technical note: in 2.3 we work on _locked_ socket, so that
1263 *	tricks with *seq access order and skb->users are not required.
1264 *	Probably, code can be easily improved even more.
1265 */
1266
1267int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1268		size_t len, int nonblock, int flags, int *addr_len)
1269{
1270	struct tcp_sock *tp = tcp_sk(sk);
1271	int copied = 0;
1272	u32 peek_seq;
1273	u32 *seq;
1274	unsigned long used;
1275	int err;
1276	int target;		/* Read at least this many bytes */
1277	long timeo;
1278	struct task_struct *user_recv = NULL;
1279	int copied_early = 0;
1280	struct sk_buff *skb;
1281
1282	lock_sock(sk);
1283
1284	TCP_CHECK_TIMER(sk);
1285
1286	err = -ENOTCONN;
1287	if (sk->sk_state == TCP_LISTEN)
1288		goto out;
1289
1290	timeo = sock_rcvtimeo(sk, nonblock);
1291
1292	/* Urgent data needs to be handled specially. */
1293	if (flags & MSG_OOB)
1294		goto recv_urg;
1295
1296	seq = &tp->copied_seq;
1297	if (flags & MSG_PEEK) {
1298		peek_seq = tp->copied_seq;
1299		seq = &peek_seq;
1300	}
1301
1302	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1303
1304#ifdef CONFIG_NET_DMA
1305	tp->ucopy.dma_chan = NULL;
1306	preempt_disable();
1307	skb = skb_peek_tail(&sk->sk_receive_queue);
1308	{
1309		int available = 0;
1310
1311		if (skb)
1312			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1313		if ((available < target) &&
1314		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1315		    !sysctl_tcp_low_latency &&
1316		    __get_cpu_var(softnet_data).net_dma) {
1317			preempt_enable_no_resched();
1318			tp->ucopy.pinned_list =
1319					dma_pin_iovec_pages(msg->msg_iov, len);
1320		} else {
1321			preempt_enable_no_resched();
1322		}
1323	}
1324#endif
1325
1326	do {
1327		u32 offset;
1328
1329		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1330		if (tp->urg_data && tp->urg_seq == *seq) {
1331			if (copied)
1332				break;
1333			if (signal_pending(current)) {
1334				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1335				break;
1336			}
1337		}
1338
1339		/* Next get a buffer. */
1340
1341		skb = skb_peek(&sk->sk_receive_queue);
1342		do {
1343			if (!skb)
1344				break;
1345
1346			/* Now that we have two receive queues this
1347			 * shouldn't happen.
1348			 */
1349			if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1350				printk(KERN_INFO "recvmsg bug: copied %X "
1351				       "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1352				break;
1353			}
1354			offset = *seq - TCP_SKB_CB(skb)->seq;
1355			if (tcp_hdr(skb)->syn)
1356				offset--;
1357			if (offset < skb->len)
1358				goto found_ok_skb;
1359			if (tcp_hdr(skb)->fin)
1360				goto found_fin_ok;
1361			BUG_TRAP(flags & MSG_PEEK);
1362			skb = skb->next;
1363		} while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1364
1365		/* Well, if we have backlog, try to process it now yet. */
1366
1367		if (copied >= target && !sk->sk_backlog.tail)
1368			break;
1369
1370		if (copied) {
1371			if (sk->sk_err ||
1372			    sk->sk_state == TCP_CLOSE ||
1373			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1374			    !timeo ||
1375			    signal_pending(current) ||
1376			    (flags & MSG_PEEK))
1377				break;
1378		} else {
1379			if (sock_flag(sk, SOCK_DONE))
1380				break;
1381
1382			if (sk->sk_err) {
1383				copied = sock_error(sk);
1384				break;
1385			}
1386
1387			if (sk->sk_shutdown & RCV_SHUTDOWN)
1388				break;
1389
1390			if (sk->sk_state == TCP_CLOSE) {
1391				if (!sock_flag(sk, SOCK_DONE)) {
1392					/* This occurs when user tries to read
1393					 * from never connected socket.
1394					 */
1395					copied = -ENOTCONN;
1396					break;
1397				}
1398				break;
1399			}
1400
1401			if (!timeo) {
1402				copied = -EAGAIN;
1403				break;
1404			}
1405
1406			if (signal_pending(current)) {
1407				copied = sock_intr_errno(timeo);
1408				break;
1409			}
1410		}
1411
1412		tcp_cleanup_rbuf(sk, copied);
1413
1414		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1415			/* Install new reader */
1416			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1417				user_recv = current;
1418				tp->ucopy.task = user_recv;
1419				tp->ucopy.iov = msg->msg_iov;
1420			}
1421
1422			tp->ucopy.len = len;
1423
1424			BUG_TRAP(tp->copied_seq == tp->rcv_nxt ||
1425				 (flags & (MSG_PEEK | MSG_TRUNC)));
1426
1427			/* Ugly... If prequeue is not empty, we have to
1428			 * process it before releasing socket, otherwise
1429			 * order will be broken at second iteration.
1430			 * More elegant solution is required!!!
1431			 *
1432			 * Look: we have the following (pseudo)queues:
1433			 *
1434			 * 1. packets in flight
1435			 * 2. backlog
1436			 * 3. prequeue
1437			 * 4. receive_queue
1438			 *
1439			 * Each queue can be processed only if the next ones
1440			 * are empty. At this point we have empty receive_queue.
1441			 * But prequeue _can_ be not empty after 2nd iteration,
1442			 * when we jumped to start of loop because backlog
1443			 * processing added something to receive_queue.
1444			 * We cannot release_sock(), because backlog contains
1445			 * packets arrived _after_ prequeued ones.
1446			 *
1447			 * Shortly, algorithm is clear --- to process all
1448			 * the queues in order. We could make it more directly,
1449			 * requeueing packets from backlog to prequeue, if
1450			 * is not empty. It is more elegant, but eats cycles,
1451			 * unfortunately.
1452			 */
1453			if (!skb_queue_empty(&tp->ucopy.prequeue))
1454				goto do_prequeue;
1455
1456			/* __ Set realtime policy in scheduler __ */
1457		}
1458
1459		if (copied >= target) {
1460			/* Do not sleep, just process backlog. */
1461			release_sock(sk);
1462			lock_sock(sk);
1463		} else
1464			sk_wait_data(sk, &timeo);
1465
1466#ifdef CONFIG_NET_DMA
1467		tp->ucopy.wakeup = 0;
1468#endif
1469
1470		if (user_recv) {
1471			int chunk;
1472
1473			/* __ Restore normal policy in scheduler __ */
1474
1475			if ((chunk = len - tp->ucopy.len) != 0) {
1476				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1477				len -= chunk;
1478				copied += chunk;
1479			}
1480
1481			if (tp->rcv_nxt == tp->copied_seq &&
1482			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1483do_prequeue:
1484				tcp_prequeue_process(sk);
1485
1486				if ((chunk = len - tp->ucopy.len) != 0) {
1487					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1488					len -= chunk;
1489					copied += chunk;
1490				}
1491			}
1492		}
1493		if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1494			if (net_ratelimit())
1495				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1496				       current->comm, task_pid_nr(current));
1497			peek_seq = tp->copied_seq;
1498		}
1499		continue;
1500
1501	found_ok_skb:
1502		/* Ok so how much can we use? */
1503		used = skb->len - offset;
1504		if (len < used)
1505			used = len;
1506
1507		/* Do we have urgent data here? */
1508		if (tp->urg_data) {
1509			u32 urg_offset = tp->urg_seq - *seq;
1510			if (urg_offset < used) {
1511				if (!urg_offset) {
1512					if (!sock_flag(sk, SOCK_URGINLINE)) {
1513						++*seq;
1514						offset++;
1515						used--;
1516						if (!used)
1517							goto skip_copy;
1518					}
1519				} else
1520					used = urg_offset;
1521			}
1522		}
1523
1524		if (!(flags & MSG_TRUNC)) {
1525#ifdef CONFIG_NET_DMA
1526			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1527				tp->ucopy.dma_chan = get_softnet_dma();
1528
1529			if (tp->ucopy.dma_chan) {
1530				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1531					tp->ucopy.dma_chan, skb, offset,
1532					msg->msg_iov, used,
1533					tp->ucopy.pinned_list);
1534
1535				if (tp->ucopy.dma_cookie < 0) {
1536
1537					printk(KERN_ALERT "dma_cookie < 0\n");
1538
1539					/* Exception. Bailout! */
1540					if (!copied)
1541						copied = -EFAULT;
1542					break;
1543				}
1544				if ((offset + used) == skb->len)
1545					copied_early = 1;
1546
1547			} else
1548#endif
1549			{
1550				err = skb_copy_datagram_iovec(skb, offset,
1551						msg->msg_iov, used);
1552				if (err) {
1553					/* Exception. Bailout! */
1554					if (!copied)
1555						copied = -EFAULT;
1556					break;
1557				}
1558			}
1559		}
1560
1561		*seq += used;
1562		copied += used;
1563		len -= used;
1564
1565		tcp_rcv_space_adjust(sk);
1566
1567skip_copy:
1568		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1569			tp->urg_data = 0;
1570			tcp_fast_path_check(sk);
1571		}
1572		if (used + offset < skb->len)
1573			continue;
1574
1575		if (tcp_hdr(skb)->fin)
1576			goto found_fin_ok;
1577		if (!(flags & MSG_PEEK)) {
1578			sk_eat_skb(sk, skb, copied_early);
1579			copied_early = 0;
1580		}
1581		continue;
1582
1583	found_fin_ok:
1584		/* Process the FIN. */
1585		++*seq;
1586		if (!(flags & MSG_PEEK)) {
1587			sk_eat_skb(sk, skb, copied_early);
1588			copied_early = 0;
1589		}
1590		break;
1591	} while (len > 0);
1592
1593	if (user_recv) {
1594		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1595			int chunk;
1596
1597			tp->ucopy.len = copied > 0 ? len : 0;
1598
1599			tcp_prequeue_process(sk);
1600
1601			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1602				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1603				len -= chunk;
1604				copied += chunk;
1605			}
1606		}
1607
1608		tp->ucopy.task = NULL;
1609		tp->ucopy.len = 0;
1610	}
1611
1612#ifdef CONFIG_NET_DMA
1613	if (tp->ucopy.dma_chan) {
1614		dma_cookie_t done, used;
1615
1616		dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1617
1618		while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1619						 tp->ucopy.dma_cookie, &done,
1620						 &used) == DMA_IN_PROGRESS) {
1621			/* do partial cleanup of sk_async_wait_queue */
1622			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1623			       (dma_async_is_complete(skb->dma_cookie, done,
1624						      used) == DMA_SUCCESS)) {
1625				__skb_dequeue(&sk->sk_async_wait_queue);
1626				kfree_skb(skb);
1627			}
1628		}
1629
1630		/* Safe to free early-copied skbs now */
1631		__skb_queue_purge(&sk->sk_async_wait_queue);
1632		dma_chan_put(tp->ucopy.dma_chan);
1633		tp->ucopy.dma_chan = NULL;
1634	}
1635	if (tp->ucopy.pinned_list) {
1636		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1637		tp->ucopy.pinned_list = NULL;
1638	}
1639#endif
1640
1641	/* According to UNIX98, msg_name/msg_namelen are ignored
1642	 * on connected socket. I was just happy when found this 8) --ANK
1643	 */
1644
1645	/* Clean up data we have read: This will do ACK frames. */
1646	tcp_cleanup_rbuf(sk, copied);
1647
1648	TCP_CHECK_TIMER(sk);
1649	release_sock(sk);
1650	return copied;
1651
1652out:
1653	TCP_CHECK_TIMER(sk);
1654	release_sock(sk);
1655	return err;
1656
1657recv_urg:
1658	err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1659	goto out;
1660}
1661
1662void tcp_set_state(struct sock *sk, int state)
1663{
1664	int oldstate = sk->sk_state;
1665
1666	switch (state) {
1667	case TCP_ESTABLISHED:
1668		if (oldstate != TCP_ESTABLISHED)
1669			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1670		break;
1671
1672	case TCP_CLOSE:
1673		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1674			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1675
1676		sk->sk_prot->unhash(sk);
1677		if (inet_csk(sk)->icsk_bind_hash &&
1678		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1679			inet_put_port(sk);
1680		/* fall through */
1681	default:
1682		if (oldstate==TCP_ESTABLISHED)
1683			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1684	}
1685
1686	/* Change state AFTER socket is unhashed to avoid closed
1687	 * socket sitting in hash tables.
1688	 */
1689	sk->sk_state = state;
1690
1691#ifdef STATE_TRACE
1692	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n",sk, statename[oldstate],statename[state]);
1693#endif
1694}
1695EXPORT_SYMBOL_GPL(tcp_set_state);
1696
1697/*
1698 *	State processing on a close. This implements the state shift for
1699 *	sending our FIN frame. Note that we only send a FIN for some
1700 *	states. A shutdown() may have already sent the FIN, or we may be
1701 *	closed.
1702 */
1703
1704static const unsigned char new_state[16] = {
1705  /* current state:        new state:      action:	*/
1706  /* (Invalid)		*/ TCP_CLOSE,
1707  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1708  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1709  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1710  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1711  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1712  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1713  /* TCP_CLOSE		*/ TCP_CLOSE,
1714  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1715  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1716  /* TCP_LISTEN		*/ TCP_CLOSE,
1717  /* TCP_CLOSING	*/ TCP_CLOSING,
1718};
1719
1720static int tcp_close_state(struct sock *sk)
1721{
1722	int next = (int)new_state[sk->sk_state];
1723	int ns = next & TCP_STATE_MASK;
1724
1725	tcp_set_state(sk, ns);
1726
1727	return next & TCP_ACTION_FIN;
1728}
1729
1730/*
1731 *	Shutdown the sending side of a connection. Much like close except
1732 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1733 */
1734
1735void tcp_shutdown(struct sock *sk, int how)
1736{
1737	/*	We need to grab some memory, and put together a FIN,
1738	 *	and then put it into the queue to be sent.
1739	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1740	 */
1741	if (!(how & SEND_SHUTDOWN))
1742		return;
1743
1744	/* If we've already sent a FIN, or it's a closed state, skip this. */
1745	if ((1 << sk->sk_state) &
1746	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1747	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1748		/* Clear out any half completed packets.  FIN if needed. */
1749		if (tcp_close_state(sk))
1750			tcp_send_fin(sk);
1751	}
1752}
1753
1754void tcp_close(struct sock *sk, long timeout)
1755{
1756	struct sk_buff *skb;
1757	int data_was_unread = 0;
1758	int state;
1759
1760	lock_sock(sk);
1761	sk->sk_shutdown = SHUTDOWN_MASK;
1762
1763	if (sk->sk_state == TCP_LISTEN) {
1764		tcp_set_state(sk, TCP_CLOSE);
1765
1766		/* Special case. */
1767		inet_csk_listen_stop(sk);
1768
1769		goto adjudge_to_death;
1770	}
1771
1772	/*  We need to flush the recv. buffs.  We do this only on the
1773	 *  descriptor close, not protocol-sourced closes, because the
1774	 *  reader process may not have drained the data yet!
1775	 */
1776	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1777		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1778			  tcp_hdr(skb)->fin;
1779		data_was_unread += len;
1780		__kfree_skb(skb);
1781	}
1782
1783	sk_mem_reclaim(sk);
1784
1785	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1786	 * data was lost. To witness the awful effects of the old behavior of
1787	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1788	 * GET in an FTP client, suspend the process, wait for the client to
1789	 * advertise a zero window, then kill -9 the FTP client, wheee...
1790	 * Note: timeout is always zero in such a case.
1791	 */
1792	if (data_was_unread) {
1793		/* Unread data was tossed, zap the connection. */
1794		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1795		tcp_set_state(sk, TCP_CLOSE);
1796		tcp_send_active_reset(sk, GFP_KERNEL);
1797	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1798		/* Check zero linger _after_ checking for unread data. */
1799		sk->sk_prot->disconnect(sk, 0);
1800		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1801	} else if (tcp_close_state(sk)) {
1802		/* We FIN if the application ate all the data before
1803		 * zapping the connection.
1804		 */
1805
1806		/* RED-PEN. Formally speaking, we have broken TCP state
1807		 * machine. State transitions:
1808		 *
1809		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1810		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1811		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1812		 *
1813		 * are legal only when FIN has been sent (i.e. in window),
1814		 * rather than queued out of window. Purists blame.
1815		 *
1816		 * F.e. "RFC state" is ESTABLISHED,
1817		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1818		 *
1819		 * The visible declinations are that sometimes
1820		 * we enter time-wait state, when it is not required really
1821		 * (harmless), do not send active resets, when they are
1822		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1823		 * they look as CLOSING or LAST_ACK for Linux)
1824		 * Probably, I missed some more holelets.
1825		 * 						--ANK
1826		 */
1827		tcp_send_fin(sk);
1828	}
1829
1830	sk_stream_wait_close(sk, timeout);
1831
1832adjudge_to_death:
1833	state = sk->sk_state;
1834	sock_hold(sk);
1835	sock_orphan(sk);
1836	atomic_inc(sk->sk_prot->orphan_count);
1837
1838	/* It is the last release_sock in its life. It will remove backlog. */
1839	release_sock(sk);
1840
1841
1842	/* Now socket is owned by kernel and we acquire BH lock
1843	   to finish close. No need to check for user refs.
1844	 */
1845	local_bh_disable();
1846	bh_lock_sock(sk);
1847	BUG_TRAP(!sock_owned_by_user(sk));
1848
1849	/* Have we already been destroyed by a softirq or backlog? */
1850	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1851		goto out;
1852
1853	/*	This is a (useful) BSD violating of the RFC. There is a
1854	 *	problem with TCP as specified in that the other end could
1855	 *	keep a socket open forever with no application left this end.
1856	 *	We use a 3 minute timeout (about the same as BSD) then kill
1857	 *	our end. If they send after that then tough - BUT: long enough
1858	 *	that we won't make the old 4*rto = almost no time - whoops
1859	 *	reset mistake.
1860	 *
1861	 *	Nope, it was not mistake. It is really desired behaviour
1862	 *	f.e. on http servers, when such sockets are useless, but
1863	 *	consume significant resources. Let's do it with special
1864	 *	linger2	option.					--ANK
1865	 */
1866
1867	if (sk->sk_state == TCP_FIN_WAIT2) {
1868		struct tcp_sock *tp = tcp_sk(sk);
1869		if (tp->linger2 < 0) {
1870			tcp_set_state(sk, TCP_CLOSE);
1871			tcp_send_active_reset(sk, GFP_ATOMIC);
1872			NET_INC_STATS_BH(sock_net(sk),
1873					LINUX_MIB_TCPABORTONLINGER);
1874		} else {
1875			const int tmo = tcp_fin_time(sk);
1876
1877			if (tmo > TCP_TIMEWAIT_LEN) {
1878				inet_csk_reset_keepalive_timer(sk,
1879						tmo - TCP_TIMEWAIT_LEN);
1880			} else {
1881				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1882				goto out;
1883			}
1884		}
1885	}
1886	if (sk->sk_state != TCP_CLOSE) {
1887		sk_mem_reclaim(sk);
1888		if (tcp_too_many_orphans(sk,
1889				atomic_read(sk->sk_prot->orphan_count))) {
1890			if (net_ratelimit())
1891				printk(KERN_INFO "TCP: too many of orphaned "
1892				       "sockets\n");
1893			tcp_set_state(sk, TCP_CLOSE);
1894			tcp_send_active_reset(sk, GFP_ATOMIC);
1895			NET_INC_STATS_BH(sock_net(sk),
1896					LINUX_MIB_TCPABORTONMEMORY);
1897		}
1898	}
1899
1900	if (sk->sk_state == TCP_CLOSE)
1901		inet_csk_destroy_sock(sk);
1902	/* Otherwise, socket is reprieved until protocol close. */
1903
1904out:
1905	bh_unlock_sock(sk);
1906	local_bh_enable();
1907	sock_put(sk);
1908}
1909
1910/* These states need RST on ABORT according to RFC793 */
1911
1912static inline int tcp_need_reset(int state)
1913{
1914	return (1 << state) &
1915	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1916		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1917}
1918
1919int tcp_disconnect(struct sock *sk, int flags)
1920{
1921	struct inet_sock *inet = inet_sk(sk);
1922	struct inet_connection_sock *icsk = inet_csk(sk);
1923	struct tcp_sock *tp = tcp_sk(sk);
1924	int err = 0;
1925	int old_state = sk->sk_state;
1926
1927	if (old_state != TCP_CLOSE)
1928		tcp_set_state(sk, TCP_CLOSE);
1929
1930	/* ABORT function of RFC793 */
1931	if (old_state == TCP_LISTEN) {
1932		inet_csk_listen_stop(sk);
1933	} else if (tcp_need_reset(old_state) ||
1934		   (tp->snd_nxt != tp->write_seq &&
1935		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1936		/* The last check adjusts for discrepancy of Linux wrt. RFC
1937		 * states
1938		 */
1939		tcp_send_active_reset(sk, gfp_any());
1940		sk->sk_err = ECONNRESET;
1941	} else if (old_state == TCP_SYN_SENT)
1942		sk->sk_err = ECONNRESET;
1943
1944	tcp_clear_xmit_timers(sk);
1945	__skb_queue_purge(&sk->sk_receive_queue);
1946	tcp_write_queue_purge(sk);
1947	__skb_queue_purge(&tp->out_of_order_queue);
1948#ifdef CONFIG_NET_DMA
1949	__skb_queue_purge(&sk->sk_async_wait_queue);
1950#endif
1951
1952	inet->dport = 0;
1953
1954	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1955		inet_reset_saddr(sk);
1956
1957	sk->sk_shutdown = 0;
1958	sock_reset_flag(sk, SOCK_DONE);
1959	tp->srtt = 0;
1960	if ((tp->write_seq += tp->max_window + 2) == 0)
1961		tp->write_seq = 1;
1962	icsk->icsk_backoff = 0;
1963	tp->snd_cwnd = 2;
1964	icsk->icsk_probes_out = 0;
1965	tp->packets_out = 0;
1966	tp->snd_ssthresh = 0x7fffffff;
1967	tp->snd_cwnd_cnt = 0;
1968	tp->bytes_acked = 0;
1969	tcp_set_ca_state(sk, TCP_CA_Open);
1970	tcp_clear_retrans(tp);
1971	inet_csk_delack_init(sk);
1972	tcp_init_send_head(sk);
1973	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
1974	__sk_dst_reset(sk);
1975
1976	BUG_TRAP(!inet->num || icsk->icsk_bind_hash);
1977
1978	sk->sk_error_report(sk);
1979	return err;
1980}
1981
1982/*
1983 *	Socket option code for TCP.
1984 */
1985static int do_tcp_setsockopt(struct sock *sk, int level,
1986		int optname, char __user *optval, int optlen)
1987{
1988	struct tcp_sock *tp = tcp_sk(sk);
1989	struct inet_connection_sock *icsk = inet_csk(sk);
1990	int val;
1991	int err = 0;
1992
1993	/* This is a string value all the others are int's */
1994	if (optname == TCP_CONGESTION) {
1995		char name[TCP_CA_NAME_MAX];
1996
1997		if (optlen < 1)
1998			return -EINVAL;
1999
2000		val = strncpy_from_user(name, optval,
2001					min(TCP_CA_NAME_MAX-1, optlen));
2002		if (val < 0)
2003			return -EFAULT;
2004		name[val] = 0;
2005
2006		lock_sock(sk);
2007		err = tcp_set_congestion_control(sk, name);
2008		release_sock(sk);
2009		return err;
2010	}
2011
2012	if (optlen < sizeof(int))
2013		return -EINVAL;
2014
2015	if (get_user(val, (int __user *)optval))
2016		return -EFAULT;
2017
2018	lock_sock(sk);
2019
2020	switch (optname) {
2021	case TCP_MAXSEG:
2022		/* Values greater than interface MTU won't take effect. However
2023		 * at the point when this call is done we typically don't yet
2024		 * know which interface is going to be used */
2025		if (val < 8 || val > MAX_TCP_WINDOW) {
2026			err = -EINVAL;
2027			break;
2028		}
2029		tp->rx_opt.user_mss = val;
2030		break;
2031
2032	case TCP_NODELAY:
2033		if (val) {
2034			/* TCP_NODELAY is weaker than TCP_CORK, so that
2035			 * this option on corked socket is remembered, but
2036			 * it is not activated until cork is cleared.
2037			 *
2038			 * However, when TCP_NODELAY is set we make
2039			 * an explicit push, which overrides even TCP_CORK
2040			 * for currently queued segments.
2041			 */
2042			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2043			tcp_push_pending_frames(sk);
2044		} else {
2045			tp->nonagle &= ~TCP_NAGLE_OFF;
2046		}
2047		break;
2048
2049	case TCP_CORK:
2050		/* When set indicates to always queue non-full frames.
2051		 * Later the user clears this option and we transmit
2052		 * any pending partial frames in the queue.  This is
2053		 * meant to be used alongside sendfile() to get properly
2054		 * filled frames when the user (for example) must write
2055		 * out headers with a write() call first and then use
2056		 * sendfile to send out the data parts.
2057		 *
2058		 * TCP_CORK can be set together with TCP_NODELAY and it is
2059		 * stronger than TCP_NODELAY.
2060		 */
2061		if (val) {
2062			tp->nonagle |= TCP_NAGLE_CORK;
2063		} else {
2064			tp->nonagle &= ~TCP_NAGLE_CORK;
2065			if (tp->nonagle&TCP_NAGLE_OFF)
2066				tp->nonagle |= TCP_NAGLE_PUSH;
2067			tcp_push_pending_frames(sk);
2068		}
2069		break;
2070
2071	case TCP_KEEPIDLE:
2072		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2073			err = -EINVAL;
2074		else {
2075			tp->keepalive_time = val * HZ;
2076			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2077			    !((1 << sk->sk_state) &
2078			      (TCPF_CLOSE | TCPF_LISTEN))) {
2079				__u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2080				if (tp->keepalive_time > elapsed)
2081					elapsed = tp->keepalive_time - elapsed;
2082				else
2083					elapsed = 0;
2084				inet_csk_reset_keepalive_timer(sk, elapsed);
2085			}
2086		}
2087		break;
2088	case TCP_KEEPINTVL:
2089		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2090			err = -EINVAL;
2091		else
2092			tp->keepalive_intvl = val * HZ;
2093		break;
2094	case TCP_KEEPCNT:
2095		if (val < 1 || val > MAX_TCP_KEEPCNT)
2096			err = -EINVAL;
2097		else
2098			tp->keepalive_probes = val;
2099		break;
2100	case TCP_SYNCNT:
2101		if (val < 1 || val > MAX_TCP_SYNCNT)
2102			err = -EINVAL;
2103		else
2104			icsk->icsk_syn_retries = val;
2105		break;
2106
2107	case TCP_LINGER2:
2108		if (val < 0)
2109			tp->linger2 = -1;
2110		else if (val > sysctl_tcp_fin_timeout / HZ)
2111			tp->linger2 = 0;
2112		else
2113			tp->linger2 = val * HZ;
2114		break;
2115
2116	case TCP_DEFER_ACCEPT:
2117		icsk->icsk_accept_queue.rskq_defer_accept = 0;
2118		if (val > 0) {
2119			/* Translate value in seconds to number of
2120			 * retransmits */
2121			while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
2122			       val > ((TCP_TIMEOUT_INIT / HZ) <<
2123				       icsk->icsk_accept_queue.rskq_defer_accept))
2124				icsk->icsk_accept_queue.rskq_defer_accept++;
2125			icsk->icsk_accept_queue.rskq_defer_accept++;
2126		}
2127		break;
2128
2129	case TCP_WINDOW_CLAMP:
2130		if (!val) {
2131			if (sk->sk_state != TCP_CLOSE) {
2132				err = -EINVAL;
2133				break;
2134			}
2135			tp->window_clamp = 0;
2136		} else
2137			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2138						SOCK_MIN_RCVBUF / 2 : val;
2139		break;
2140
2141	case TCP_QUICKACK:
2142		if (!val) {
2143			icsk->icsk_ack.pingpong = 1;
2144		} else {
2145			icsk->icsk_ack.pingpong = 0;
2146			if ((1 << sk->sk_state) &
2147			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2148			    inet_csk_ack_scheduled(sk)) {
2149				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2150				tcp_cleanup_rbuf(sk, 1);
2151				if (!(val & 1))
2152					icsk->icsk_ack.pingpong = 1;
2153			}
2154		}
2155		break;
2156
2157#ifdef CONFIG_TCP_MD5SIG
2158	case TCP_MD5SIG:
2159		/* Read the IP->Key mappings from userspace */
2160		err = tp->af_specific->md5_parse(sk, optval, optlen);
2161		break;
2162#endif
2163
2164	default:
2165		err = -ENOPROTOOPT;
2166		break;
2167	}
2168
2169	release_sock(sk);
2170	return err;
2171}
2172
2173int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2174		   int optlen)
2175{
2176	struct inet_connection_sock *icsk = inet_csk(sk);
2177
2178	if (level != SOL_TCP)
2179		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2180						     optval, optlen);
2181	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2182}
2183
2184#ifdef CONFIG_COMPAT
2185int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2186			  char __user *optval, int optlen)
2187{
2188	if (level != SOL_TCP)
2189		return inet_csk_compat_setsockopt(sk, level, optname,
2190						  optval, optlen);
2191	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2192}
2193
2194EXPORT_SYMBOL(compat_tcp_setsockopt);
2195#endif
2196
2197/* Return information about state of tcp endpoint in API format. */
2198void tcp_get_info(struct sock *sk, struct tcp_info *info)
2199{
2200	struct tcp_sock *tp = tcp_sk(sk);
2201	const struct inet_connection_sock *icsk = inet_csk(sk);
2202	u32 now = tcp_time_stamp;
2203
2204	memset(info, 0, sizeof(*info));
2205
2206	info->tcpi_state = sk->sk_state;
2207	info->tcpi_ca_state = icsk->icsk_ca_state;
2208	info->tcpi_retransmits = icsk->icsk_retransmits;
2209	info->tcpi_probes = icsk->icsk_probes_out;
2210	info->tcpi_backoff = icsk->icsk_backoff;
2211
2212	if (tp->rx_opt.tstamp_ok)
2213		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2214	if (tcp_is_sack(tp))
2215		info->tcpi_options |= TCPI_OPT_SACK;
2216	if (tp->rx_opt.wscale_ok) {
2217		info->tcpi_options |= TCPI_OPT_WSCALE;
2218		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2219		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2220	}
2221
2222	if (tp->ecn_flags&TCP_ECN_OK)
2223		info->tcpi_options |= TCPI_OPT_ECN;
2224
2225	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2226	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2227	info->tcpi_snd_mss = tp->mss_cache;
2228	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2229
2230	if (sk->sk_state == TCP_LISTEN) {
2231		info->tcpi_unacked = sk->sk_ack_backlog;
2232		info->tcpi_sacked = sk->sk_max_ack_backlog;
2233	} else {
2234		info->tcpi_unacked = tp->packets_out;
2235		info->tcpi_sacked = tp->sacked_out;
2236	}
2237	info->tcpi_lost = tp->lost_out;
2238	info->tcpi_retrans = tp->retrans_out;
2239	info->tcpi_fackets = tp->fackets_out;
2240
2241	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2242	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2243	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2244
2245	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2246	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2247	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2248	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2249	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2250	info->tcpi_snd_cwnd = tp->snd_cwnd;
2251	info->tcpi_advmss = tp->advmss;
2252	info->tcpi_reordering = tp->reordering;
2253
2254	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2255	info->tcpi_rcv_space = tp->rcvq_space.space;
2256
2257	info->tcpi_total_retrans = tp->total_retrans;
2258}
2259
2260EXPORT_SYMBOL_GPL(tcp_get_info);
2261
2262static int do_tcp_getsockopt(struct sock *sk, int level,
2263		int optname, char __user *optval, int __user *optlen)
2264{
2265	struct inet_connection_sock *icsk = inet_csk(sk);
2266	struct tcp_sock *tp = tcp_sk(sk);
2267	int val, len;
2268
2269	if (get_user(len, optlen))
2270		return -EFAULT;
2271
2272	len = min_t(unsigned int, len, sizeof(int));
2273
2274	if (len < 0)
2275		return -EINVAL;
2276
2277	switch (optname) {
2278	case TCP_MAXSEG:
2279		val = tp->mss_cache;
2280		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2281			val = tp->rx_opt.user_mss;
2282		break;
2283	case TCP_NODELAY:
2284		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2285		break;
2286	case TCP_CORK:
2287		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2288		break;
2289	case TCP_KEEPIDLE:
2290		val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2291		break;
2292	case TCP_KEEPINTVL:
2293		val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2294		break;
2295	case TCP_KEEPCNT:
2296		val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2297		break;
2298	case TCP_SYNCNT:
2299		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2300		break;
2301	case TCP_LINGER2:
2302		val = tp->linger2;
2303		if (val >= 0)
2304			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2305		break;
2306	case TCP_DEFER_ACCEPT:
2307		val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2308			((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2309		break;
2310	case TCP_WINDOW_CLAMP:
2311		val = tp->window_clamp;
2312		break;
2313	case TCP_INFO: {
2314		struct tcp_info info;
2315
2316		if (get_user(len, optlen))
2317			return -EFAULT;
2318
2319		tcp_get_info(sk, &info);
2320
2321		len = min_t(unsigned int, len, sizeof(info));
2322		if (put_user(len, optlen))
2323			return -EFAULT;
2324		if (copy_to_user(optval, &info, len))
2325			return -EFAULT;
2326		return 0;
2327	}
2328	case TCP_QUICKACK:
2329		val = !icsk->icsk_ack.pingpong;
2330		break;
2331
2332	case TCP_CONGESTION:
2333		if (get_user(len, optlen))
2334			return -EFAULT;
2335		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2336		if (put_user(len, optlen))
2337			return -EFAULT;
2338		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2339			return -EFAULT;
2340		return 0;
2341	default:
2342		return -ENOPROTOOPT;
2343	}
2344
2345	if (put_user(len, optlen))
2346		return -EFAULT;
2347	if (copy_to_user(optval, &val, len))
2348		return -EFAULT;
2349	return 0;
2350}
2351
2352int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2353		   int __user *optlen)
2354{
2355	struct inet_connection_sock *icsk = inet_csk(sk);
2356
2357	if (level != SOL_TCP)
2358		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2359						     optval, optlen);
2360	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2361}
2362
2363#ifdef CONFIG_COMPAT
2364int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2365			  char __user *optval, int __user *optlen)
2366{
2367	if (level != SOL_TCP)
2368		return inet_csk_compat_getsockopt(sk, level, optname,
2369						  optval, optlen);
2370	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2371}
2372
2373EXPORT_SYMBOL(compat_tcp_getsockopt);
2374#endif
2375
2376struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2377{
2378	struct sk_buff *segs = ERR_PTR(-EINVAL);
2379	struct tcphdr *th;
2380	unsigned thlen;
2381	unsigned int seq;
2382	__be32 delta;
2383	unsigned int oldlen;
2384	unsigned int len;
2385
2386	if (!pskb_may_pull(skb, sizeof(*th)))
2387		goto out;
2388
2389	th = tcp_hdr(skb);
2390	thlen = th->doff * 4;
2391	if (thlen < sizeof(*th))
2392		goto out;
2393
2394	if (!pskb_may_pull(skb, thlen))
2395		goto out;
2396
2397	oldlen = (u16)~skb->len;
2398	__skb_pull(skb, thlen);
2399
2400	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2401		/* Packet is from an untrusted source, reset gso_segs. */
2402		int type = skb_shinfo(skb)->gso_type;
2403		int mss;
2404
2405		if (unlikely(type &
2406			     ~(SKB_GSO_TCPV4 |
2407			       SKB_GSO_DODGY |
2408			       SKB_GSO_TCP_ECN |
2409			       SKB_GSO_TCPV6 |
2410			       0) ||
2411			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2412			goto out;
2413
2414		mss = skb_shinfo(skb)->gso_size;
2415		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2416
2417		segs = NULL;
2418		goto out;
2419	}
2420
2421	segs = skb_segment(skb, features);
2422	if (IS_ERR(segs))
2423		goto out;
2424
2425	len = skb_shinfo(skb)->gso_size;
2426	delta = htonl(oldlen + (thlen + len));
2427
2428	skb = segs;
2429	th = tcp_hdr(skb);
2430	seq = ntohl(th->seq);
2431
2432	do {
2433		th->fin = th->psh = 0;
2434
2435		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2436				       (__force u32)delta));
2437		if (skb->ip_summed != CHECKSUM_PARTIAL)
2438			th->check =
2439			     csum_fold(csum_partial(skb_transport_header(skb),
2440						    thlen, skb->csum));
2441
2442		seq += len;
2443		skb = skb->next;
2444		th = tcp_hdr(skb);
2445
2446		th->seq = htonl(seq);
2447		th->cwr = 0;
2448	} while (skb->next);
2449
2450	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2451		      skb->data_len);
2452	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2453				(__force u32)delta));
2454	if (skb->ip_summed != CHECKSUM_PARTIAL)
2455		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2456						   thlen, skb->csum));
2457
2458out:
2459	return segs;
2460}
2461EXPORT_SYMBOL(tcp_tso_segment);
2462
2463#ifdef CONFIG_TCP_MD5SIG
2464static unsigned long tcp_md5sig_users;
2465static struct tcp_md5sig_pool **tcp_md5sig_pool;
2466static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2467
2468int tcp_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
2469		      int bplen,
2470		      struct tcphdr *th, unsigned int tcplen,
2471		      struct tcp_md5sig_pool *hp)
2472{
2473	struct scatterlist sg[4];
2474	__u16 data_len;
2475	int block = 0;
2476	__sum16 cksum;
2477	struct hash_desc *desc = &hp->md5_desc;
2478	int err;
2479	unsigned int nbytes = 0;
2480
2481	sg_init_table(sg, 4);
2482
2483	/* 1. The TCP pseudo-header */
2484	sg_set_buf(&sg[block++], &hp->md5_blk, bplen);
2485	nbytes += bplen;
2486
2487	/* 2. The TCP header, excluding options, and assuming a
2488	 * checksum of zero
2489	 */
2490	cksum = th->check;
2491	th->check = 0;
2492	sg_set_buf(&sg[block++], th, sizeof(*th));
2493	nbytes += sizeof(*th);
2494
2495	/* 3. The TCP segment data (if any) */
2496	data_len = tcplen - (th->doff << 2);
2497	if (data_len > 0) {
2498		u8 *data = (u8 *)th + (th->doff << 2);
2499		sg_set_buf(&sg[block++], data, data_len);
2500		nbytes += data_len;
2501	}
2502
2503	/* 4. an independently-specified key or password, known to both
2504	 * TCPs and presumably connection-specific
2505	 */
2506	sg_set_buf(&sg[block++], key->key, key->keylen);
2507	nbytes += key->keylen;
2508
2509	sg_mark_end(&sg[block - 1]);
2510
2511	/* Now store the hash into the packet */
2512	err = crypto_hash_init(desc);
2513	if (err) {
2514		if (net_ratelimit())
2515			printk(KERN_WARNING "%s(): hash_init failed\n", __func__);
2516		return -1;
2517	}
2518	err = crypto_hash_update(desc, sg, nbytes);
2519	if (err) {
2520		if (net_ratelimit())
2521			printk(KERN_WARNING "%s(): hash_update failed\n", __func__);
2522		return -1;
2523	}
2524	err = crypto_hash_final(desc, md5_hash);
2525	if (err) {
2526		if (net_ratelimit())
2527			printk(KERN_WARNING "%s(): hash_final failed\n", __func__);
2528		return -1;
2529	}
2530
2531	/* Reset header */
2532	th->check = cksum;
2533
2534	return 0;
2535}
2536EXPORT_SYMBOL(tcp_calc_md5_hash);
2537
2538static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2539{
2540	int cpu;
2541	for_each_possible_cpu(cpu) {
2542		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2543		if (p) {
2544			if (p->md5_desc.tfm)
2545				crypto_free_hash(p->md5_desc.tfm);
2546			kfree(p);
2547			p = NULL;
2548		}
2549	}
2550	free_percpu(pool);
2551}
2552
2553void tcp_free_md5sig_pool(void)
2554{
2555	struct tcp_md5sig_pool **pool = NULL;
2556
2557	spin_lock_bh(&tcp_md5sig_pool_lock);
2558	if (--tcp_md5sig_users == 0) {
2559		pool = tcp_md5sig_pool;
2560		tcp_md5sig_pool = NULL;
2561	}
2562	spin_unlock_bh(&tcp_md5sig_pool_lock);
2563	if (pool)
2564		__tcp_free_md5sig_pool(pool);
2565}
2566
2567EXPORT_SYMBOL(tcp_free_md5sig_pool);
2568
2569static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2570{
2571	int cpu;
2572	struct tcp_md5sig_pool **pool;
2573
2574	pool = alloc_percpu(struct tcp_md5sig_pool *);
2575	if (!pool)
2576		return NULL;
2577
2578	for_each_possible_cpu(cpu) {
2579		struct tcp_md5sig_pool *p;
2580		struct crypto_hash *hash;
2581
2582		p = kzalloc(sizeof(*p), GFP_KERNEL);
2583		if (!p)
2584			goto out_free;
2585		*per_cpu_ptr(pool, cpu) = p;
2586
2587		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2588		if (!hash || IS_ERR(hash))
2589			goto out_free;
2590
2591		p->md5_desc.tfm = hash;
2592	}
2593	return pool;
2594out_free:
2595	__tcp_free_md5sig_pool(pool);
2596	return NULL;
2597}
2598
2599struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2600{
2601	struct tcp_md5sig_pool **pool;
2602	int alloc = 0;
2603
2604retry:
2605	spin_lock_bh(&tcp_md5sig_pool_lock);
2606	pool = tcp_md5sig_pool;
2607	if (tcp_md5sig_users++ == 0) {
2608		alloc = 1;
2609		spin_unlock_bh(&tcp_md5sig_pool_lock);
2610	} else if (!pool) {
2611		tcp_md5sig_users--;
2612		spin_unlock_bh(&tcp_md5sig_pool_lock);
2613		cpu_relax();
2614		goto retry;
2615	} else
2616		spin_unlock_bh(&tcp_md5sig_pool_lock);
2617
2618	if (alloc) {
2619		/* we cannot hold spinlock here because this may sleep. */
2620		struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2621		spin_lock_bh(&tcp_md5sig_pool_lock);
2622		if (!p) {
2623			tcp_md5sig_users--;
2624			spin_unlock_bh(&tcp_md5sig_pool_lock);
2625			return NULL;
2626		}
2627		pool = tcp_md5sig_pool;
2628		if (pool) {
2629			/* oops, it has already been assigned. */
2630			spin_unlock_bh(&tcp_md5sig_pool_lock);
2631			__tcp_free_md5sig_pool(p);
2632		} else {
2633			tcp_md5sig_pool = pool = p;
2634			spin_unlock_bh(&tcp_md5sig_pool_lock);
2635		}
2636	}
2637	return pool;
2638}
2639
2640EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2641
2642struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2643{
2644	struct tcp_md5sig_pool **p;
2645	spin_lock_bh(&tcp_md5sig_pool_lock);
2646	p = tcp_md5sig_pool;
2647	if (p)
2648		tcp_md5sig_users++;
2649	spin_unlock_bh(&tcp_md5sig_pool_lock);
2650	return (p ? *per_cpu_ptr(p, cpu) : NULL);
2651}
2652
2653EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2654
2655void __tcp_put_md5sig_pool(void)
2656{
2657	tcp_free_md5sig_pool();
2658}
2659
2660EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2661#endif
2662
2663void tcp_done(struct sock *sk)
2664{
2665	if(sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2666		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
2667
2668	tcp_set_state(sk, TCP_CLOSE);
2669	tcp_clear_xmit_timers(sk);
2670
2671	sk->sk_shutdown = SHUTDOWN_MASK;
2672
2673	if (!sock_flag(sk, SOCK_DEAD))
2674		sk->sk_state_change(sk);
2675	else
2676		inet_csk_destroy_sock(sk);
2677}
2678EXPORT_SYMBOL_GPL(tcp_done);
2679
2680extern struct tcp_congestion_ops tcp_reno;
2681
2682static __initdata unsigned long thash_entries;
2683static int __init set_thash_entries(char *str)
2684{
2685	if (!str)
2686		return 0;
2687	thash_entries = simple_strtoul(str, &str, 0);
2688	return 1;
2689}
2690__setup("thash_entries=", set_thash_entries);
2691
2692void __init tcp_init(void)
2693{
2694	struct sk_buff *skb = NULL;
2695	unsigned long nr_pages, limit;
2696	int order, i, max_share;
2697
2698	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
2699
2700	tcp_hashinfo.bind_bucket_cachep =
2701		kmem_cache_create("tcp_bind_bucket",
2702				  sizeof(struct inet_bind_bucket), 0,
2703				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2704
2705	/* Size and allocate the main established and bind bucket
2706	 * hash tables.
2707	 *
2708	 * The methodology is similar to that of the buffer cache.
2709	 */
2710	tcp_hashinfo.ehash =
2711		alloc_large_system_hash("TCP established",
2712					sizeof(struct inet_ehash_bucket),
2713					thash_entries,
2714					(num_physpages >= 128 * 1024) ?
2715					13 : 15,
2716					0,
2717					&tcp_hashinfo.ehash_size,
2718					NULL,
2719					thash_entries ? 0 : 512 * 1024);
2720	tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2721	for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2722		INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].chain);
2723		INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].twchain);
2724	}
2725	if (inet_ehash_locks_alloc(&tcp_hashinfo))
2726		panic("TCP: failed to alloc ehash_locks");
2727	tcp_hashinfo.bhash =
2728		alloc_large_system_hash("TCP bind",
2729					sizeof(struct inet_bind_hashbucket),
2730					tcp_hashinfo.ehash_size,
2731					(num_physpages >= 128 * 1024) ?
2732					13 : 15,
2733					0,
2734					&tcp_hashinfo.bhash_size,
2735					NULL,
2736					64 * 1024);
2737	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2738	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2739		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2740		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2741	}
2742
2743	/* Try to be a bit smarter and adjust defaults depending
2744	 * on available memory.
2745	 */
2746	for (order = 0; ((1 << order) << PAGE_SHIFT) <
2747			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2748			order++)
2749		;
2750	if (order >= 4) {
2751		tcp_death_row.sysctl_max_tw_buckets = 180000;
2752		sysctl_tcp_max_orphans = 4096 << (order - 4);
2753		sysctl_max_syn_backlog = 1024;
2754	} else if (order < 3) {
2755		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2756		sysctl_tcp_max_orphans >>= (3 - order);
2757		sysctl_max_syn_backlog = 128;
2758	}
2759
2760	/* Set the pressure threshold to be a fraction of global memory that
2761	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2762	 * memory, with a floor of 128 pages.
2763	 */
2764	nr_pages = totalram_pages - totalhigh_pages;
2765	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2766	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2767	limit = max(limit, 128UL);
2768	sysctl_tcp_mem[0] = limit / 4 * 3;
2769	sysctl_tcp_mem[1] = limit;
2770	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2771
2772	/* Set per-socket limits to no more than 1/128 the pressure threshold */
2773	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2774	max_share = min(4UL*1024*1024, limit);
2775
2776	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
2777	sysctl_tcp_wmem[1] = 16*1024;
2778	sysctl_tcp_wmem[2] = max(64*1024, max_share);
2779
2780	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
2781	sysctl_tcp_rmem[1] = 87380;
2782	sysctl_tcp_rmem[2] = max(87380, max_share);
2783
2784	printk(KERN_INFO "TCP: Hash tables configured "
2785	       "(established %d bind %d)\n",
2786	       tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2787
2788	tcp_register_congestion_control(&tcp_reno);
2789}
2790
2791EXPORT_SYMBOL(tcp_close);
2792EXPORT_SYMBOL(tcp_disconnect);
2793EXPORT_SYMBOL(tcp_getsockopt);
2794EXPORT_SYMBOL(tcp_ioctl);
2795EXPORT_SYMBOL(tcp_poll);
2796EXPORT_SYMBOL(tcp_read_sock);
2797EXPORT_SYMBOL(tcp_recvmsg);
2798EXPORT_SYMBOL(tcp_sendmsg);
2799EXPORT_SYMBOL(tcp_splice_read);
2800EXPORT_SYMBOL(tcp_sendpage);
2801EXPORT_SYMBOL(tcp_setsockopt);
2802EXPORT_SYMBOL(tcp_shutdown);
2803