tcp.c revision 5924f17a8a30c2ae18d034a86ee7581b34accef6
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#define pr_fmt(fmt) "TCP: " fmt
249
250#include <linux/kernel.h>
251#include <linux/module.h>
252#include <linux/types.h>
253#include <linux/fcntl.h>
254#include <linux/poll.h>
255#include <linux/init.h>
256#include <linux/fs.h>
257#include <linux/skbuff.h>
258#include <linux/scatterlist.h>
259#include <linux/splice.h>
260#include <linux/net.h>
261#include <linux/socket.h>
262#include <linux/random.h>
263#include <linux/bootmem.h>
264#include <linux/highmem.h>
265#include <linux/swap.h>
266#include <linux/cache.h>
267#include <linux/err.h>
268#include <linux/crypto.h>
269#include <linux/time.h>
270#include <linux/slab.h>
271
272#include <net/icmp.h>
273#include <net/inet_common.h>
274#include <net/tcp.h>
275#include <net/xfrm.h>
276#include <net/ip.h>
277#include <net/netdma.h>
278#include <net/sock.h>
279
280#include <asm/uaccess.h>
281#include <asm/ioctls.h>
282#include <net/busy_poll.h>
283
284int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285
286int sysctl_tcp_min_tso_segs __read_mostly = 2;
287
288int sysctl_tcp_autocorking __read_mostly = 1;
289
290struct percpu_counter tcp_orphan_count;
291EXPORT_SYMBOL_GPL(tcp_orphan_count);
292
293long sysctl_tcp_mem[3] __read_mostly;
294int sysctl_tcp_wmem[3] __read_mostly;
295int sysctl_tcp_rmem[3] __read_mostly;
296
297EXPORT_SYMBOL(sysctl_tcp_mem);
298EXPORT_SYMBOL(sysctl_tcp_rmem);
299EXPORT_SYMBOL(sysctl_tcp_wmem);
300
301atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
302EXPORT_SYMBOL(tcp_memory_allocated);
303
304/*
305 * Current number of TCP sockets.
306 */
307struct percpu_counter tcp_sockets_allocated;
308EXPORT_SYMBOL(tcp_sockets_allocated);
309
310/*
311 * TCP splice context
312 */
313struct tcp_splice_state {
314	struct pipe_inode_info *pipe;
315	size_t len;
316	unsigned int flags;
317};
318
319/*
320 * Pressure flag: try to collapse.
321 * Technical note: it is used by multiple contexts non atomically.
322 * All the __sk_mem_schedule() is of this nature: accounting
323 * is strict, actions are advisory and have some latency.
324 */
325int tcp_memory_pressure __read_mostly;
326EXPORT_SYMBOL(tcp_memory_pressure);
327
328void tcp_enter_memory_pressure(struct sock *sk)
329{
330	if (!tcp_memory_pressure) {
331		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
332		tcp_memory_pressure = 1;
333	}
334}
335EXPORT_SYMBOL(tcp_enter_memory_pressure);
336
337/* Convert seconds to retransmits based on initial and max timeout */
338static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339{
340	u8 res = 0;
341
342	if (seconds > 0) {
343		int period = timeout;
344
345		res = 1;
346		while (seconds > period && res < 255) {
347			res++;
348			timeout <<= 1;
349			if (timeout > rto_max)
350				timeout = rto_max;
351			period += timeout;
352		}
353	}
354	return res;
355}
356
357/* Convert retransmits to seconds based on initial and max timeout */
358static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359{
360	int period = 0;
361
362	if (retrans > 0) {
363		period = timeout;
364		while (--retrans) {
365			timeout <<= 1;
366			if (timeout > rto_max)
367				timeout = rto_max;
368			period += timeout;
369		}
370	}
371	return period;
372}
373
374/* Address-family independent initialization for a tcp_sock.
375 *
376 * NOTE: A lot of things set to zero explicitly by call to
377 *       sk_alloc() so need not be done here.
378 */
379void tcp_init_sock(struct sock *sk)
380{
381	struct inet_connection_sock *icsk = inet_csk(sk);
382	struct tcp_sock *tp = tcp_sk(sk);
383
384	__skb_queue_head_init(&tp->out_of_order_queue);
385	tcp_init_xmit_timers(sk);
386	tcp_prequeue_init(tp);
387	INIT_LIST_HEAD(&tp->tsq_node);
388
389	icsk->icsk_rto = TCP_TIMEOUT_INIT;
390	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
391
392	/* So many TCP implementations out there (incorrectly) count the
393	 * initial SYN frame in their delayed-ACK and congestion control
394	 * algorithms that we must have the following bandaid to talk
395	 * efficiently to them.  -DaveM
396	 */
397	tp->snd_cwnd = TCP_INIT_CWND;
398
399	/* See draft-stevens-tcpca-spec-01 for discussion of the
400	 * initialization of these values.
401	 */
402	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403	tp->snd_cwnd_clamp = ~0;
404	tp->mss_cache = TCP_MSS_DEFAULT;
405
406	tp->reordering = sysctl_tcp_reordering;
407	tcp_enable_early_retrans(tp);
408	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
409
410	tp->tsoffset = 0;
411
412	sk->sk_state = TCP_CLOSE;
413
414	sk->sk_write_space = sk_stream_write_space;
415	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
416
417	icsk->icsk_sync_mss = tcp_sync_mss;
418
419	sk->sk_sndbuf = sysctl_tcp_wmem[1];
420	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
421
422	local_bh_disable();
423	sock_update_memcg(sk);
424	sk_sockets_allocated_inc(sk);
425	local_bh_enable();
426}
427EXPORT_SYMBOL(tcp_init_sock);
428
429/*
430 *	Wait for a TCP event.
431 *
432 *	Note that we don't need to lock the socket, as the upper poll layers
433 *	take care of normal races (between the test and the event) and we don't
434 *	go look at any of the socket buffers directly.
435 */
436unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
437{
438	unsigned int mask;
439	struct sock *sk = sock->sk;
440	const struct tcp_sock *tp = tcp_sk(sk);
441
442	sock_rps_record_flow(sk);
443
444	sock_poll_wait(file, sk_sleep(sk), wait);
445	if (sk->sk_state == TCP_LISTEN)
446		return inet_csk_listen_poll(sk);
447
448	/* Socket is not locked. We are protected from async events
449	 * by poll logic and correct handling of state changes
450	 * made by other threads is impossible in any case.
451	 */
452
453	mask = 0;
454
455	/*
456	 * POLLHUP is certainly not done right. But poll() doesn't
457	 * have a notion of HUP in just one direction, and for a
458	 * socket the read side is more interesting.
459	 *
460	 * Some poll() documentation says that POLLHUP is incompatible
461	 * with the POLLOUT/POLLWR flags, so somebody should check this
462	 * all. But careful, it tends to be safer to return too many
463	 * bits than too few, and you can easily break real applications
464	 * if you don't tell them that something has hung up!
465	 *
466	 * Check-me.
467	 *
468	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
469	 * our fs/select.c). It means that after we received EOF,
470	 * poll always returns immediately, making impossible poll() on write()
471	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
472	 * if and only if shutdown has been made in both directions.
473	 * Actually, it is interesting to look how Solaris and DUX
474	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
475	 * then we could set it on SND_SHUTDOWN. BTW examples given
476	 * in Stevens' books assume exactly this behaviour, it explains
477	 * why POLLHUP is incompatible with POLLOUT.	--ANK
478	 *
479	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
480	 * blocking on fresh not-connected or disconnected socket. --ANK
481	 */
482	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
483		mask |= POLLHUP;
484	if (sk->sk_shutdown & RCV_SHUTDOWN)
485		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
486
487	/* Connected or passive Fast Open socket? */
488	if (sk->sk_state != TCP_SYN_SENT &&
489	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
490		int target = sock_rcvlowat(sk, 0, INT_MAX);
491
492		if (tp->urg_seq == tp->copied_seq &&
493		    !sock_flag(sk, SOCK_URGINLINE) &&
494		    tp->urg_data)
495			target++;
496
497		/* Potential race condition. If read of tp below will
498		 * escape above sk->sk_state, we can be illegally awaken
499		 * in SYN_* states. */
500		if (tp->rcv_nxt - tp->copied_seq >= target)
501			mask |= POLLIN | POLLRDNORM;
502
503		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
504			if (sk_stream_is_writeable(sk)) {
505				mask |= POLLOUT | POLLWRNORM;
506			} else {  /* send SIGIO later */
507				set_bit(SOCK_ASYNC_NOSPACE,
508					&sk->sk_socket->flags);
509				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
510
511				/* Race breaker. If space is freed after
512				 * wspace test but before the flags are set,
513				 * IO signal will be lost.
514				 */
515				if (sk_stream_is_writeable(sk))
516					mask |= POLLOUT | POLLWRNORM;
517			}
518		} else
519			mask |= POLLOUT | POLLWRNORM;
520
521		if (tp->urg_data & TCP_URG_VALID)
522			mask |= POLLPRI;
523	}
524	/* This barrier is coupled with smp_wmb() in tcp_reset() */
525	smp_rmb();
526	if (sk->sk_err)
527		mask |= POLLERR;
528
529	return mask;
530}
531EXPORT_SYMBOL(tcp_poll);
532
533int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
534{
535	struct tcp_sock *tp = tcp_sk(sk);
536	int answ;
537	bool slow;
538
539	switch (cmd) {
540	case SIOCINQ:
541		if (sk->sk_state == TCP_LISTEN)
542			return -EINVAL;
543
544		slow = lock_sock_fast(sk);
545		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
546			answ = 0;
547		else if (sock_flag(sk, SOCK_URGINLINE) ||
548			 !tp->urg_data ||
549			 before(tp->urg_seq, tp->copied_seq) ||
550			 !before(tp->urg_seq, tp->rcv_nxt)) {
551
552			answ = tp->rcv_nxt - tp->copied_seq;
553
554			/* Subtract 1, if FIN was received */
555			if (answ && sock_flag(sk, SOCK_DONE))
556				answ--;
557		} else
558			answ = tp->urg_seq - tp->copied_seq;
559		unlock_sock_fast(sk, slow);
560		break;
561	case SIOCATMARK:
562		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
563		break;
564	case SIOCOUTQ:
565		if (sk->sk_state == TCP_LISTEN)
566			return -EINVAL;
567
568		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
569			answ = 0;
570		else
571			answ = tp->write_seq - tp->snd_una;
572		break;
573	case SIOCOUTQNSD:
574		if (sk->sk_state == TCP_LISTEN)
575			return -EINVAL;
576
577		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
578			answ = 0;
579		else
580			answ = tp->write_seq - tp->snd_nxt;
581		break;
582	default:
583		return -ENOIOCTLCMD;
584	}
585
586	return put_user(answ, (int __user *)arg);
587}
588EXPORT_SYMBOL(tcp_ioctl);
589
590static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
591{
592	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
593	tp->pushed_seq = tp->write_seq;
594}
595
596static inline bool forced_push(const struct tcp_sock *tp)
597{
598	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
599}
600
601static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
602{
603	struct tcp_sock *tp = tcp_sk(sk);
604	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
605
606	skb->csum    = 0;
607	tcb->seq     = tcb->end_seq = tp->write_seq;
608	tcb->tcp_flags = TCPHDR_ACK;
609	tcb->sacked  = 0;
610	skb_header_release(skb);
611	tcp_add_write_queue_tail(sk, skb);
612	sk->sk_wmem_queued += skb->truesize;
613	sk_mem_charge(sk, skb->truesize);
614	if (tp->nonagle & TCP_NAGLE_PUSH)
615		tp->nonagle &= ~TCP_NAGLE_PUSH;
616}
617
618static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
619{
620	if (flags & MSG_OOB)
621		tp->snd_up = tp->write_seq;
622}
623
624/* If a not yet filled skb is pushed, do not send it if
625 * we have data packets in Qdisc or NIC queues :
626 * Because TX completion will happen shortly, it gives a chance
627 * to coalesce future sendmsg() payload into this skb, without
628 * need for a timer, and with no latency trade off.
629 * As packets containing data payload have a bigger truesize
630 * than pure acks (dataless) packets, the last checks prevent
631 * autocorking if we only have an ACK in Qdisc/NIC queues,
632 * or if TX completion was delayed after we processed ACK packet.
633 */
634static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
635				int size_goal)
636{
637	return skb->len < size_goal &&
638	       sysctl_tcp_autocorking &&
639	       skb != tcp_write_queue_head(sk) &&
640	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
641}
642
643static void tcp_push(struct sock *sk, int flags, int mss_now,
644		     int nonagle, int size_goal)
645{
646	struct tcp_sock *tp = tcp_sk(sk);
647	struct sk_buff *skb;
648
649	if (!tcp_send_head(sk))
650		return;
651
652	skb = tcp_write_queue_tail(sk);
653	if (!(flags & MSG_MORE) || forced_push(tp))
654		tcp_mark_push(tp, skb);
655
656	tcp_mark_urg(tp, flags);
657
658	if (tcp_should_autocork(sk, skb, size_goal)) {
659
660		/* avoid atomic op if TSQ_THROTTLED bit is already set */
661		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
662			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
663			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
664		}
665		/* It is possible TX completion already happened
666		 * before we set TSQ_THROTTLED.
667		 */
668		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
669			return;
670	}
671
672	if (flags & MSG_MORE)
673		nonagle = TCP_NAGLE_CORK;
674
675	__tcp_push_pending_frames(sk, mss_now, nonagle);
676}
677
678static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
679				unsigned int offset, size_t len)
680{
681	struct tcp_splice_state *tss = rd_desc->arg.data;
682	int ret;
683
684	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
685			      tss->flags);
686	if (ret > 0)
687		rd_desc->count -= ret;
688	return ret;
689}
690
691static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
692{
693	/* Store TCP splice context information in read_descriptor_t. */
694	read_descriptor_t rd_desc = {
695		.arg.data = tss,
696		.count	  = tss->len,
697	};
698
699	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
700}
701
702/**
703 *  tcp_splice_read - splice data from TCP socket to a pipe
704 * @sock:	socket to splice from
705 * @ppos:	position (not valid)
706 * @pipe:	pipe to splice to
707 * @len:	number of bytes to splice
708 * @flags:	splice modifier flags
709 *
710 * Description:
711 *    Will read pages from given socket and fill them into a pipe.
712 *
713 **/
714ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
715			struct pipe_inode_info *pipe, size_t len,
716			unsigned int flags)
717{
718	struct sock *sk = sock->sk;
719	struct tcp_splice_state tss = {
720		.pipe = pipe,
721		.len = len,
722		.flags = flags,
723	};
724	long timeo;
725	ssize_t spliced;
726	int ret;
727
728	sock_rps_record_flow(sk);
729	/*
730	 * We can't seek on a socket input
731	 */
732	if (unlikely(*ppos))
733		return -ESPIPE;
734
735	ret = spliced = 0;
736
737	lock_sock(sk);
738
739	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
740	while (tss.len) {
741		ret = __tcp_splice_read(sk, &tss);
742		if (ret < 0)
743			break;
744		else if (!ret) {
745			if (spliced)
746				break;
747			if (sock_flag(sk, SOCK_DONE))
748				break;
749			if (sk->sk_err) {
750				ret = sock_error(sk);
751				break;
752			}
753			if (sk->sk_shutdown & RCV_SHUTDOWN)
754				break;
755			if (sk->sk_state == TCP_CLOSE) {
756				/*
757				 * This occurs when user tries to read
758				 * from never connected socket.
759				 */
760				if (!sock_flag(sk, SOCK_DONE))
761					ret = -ENOTCONN;
762				break;
763			}
764			if (!timeo) {
765				ret = -EAGAIN;
766				break;
767			}
768			sk_wait_data(sk, &timeo);
769			if (signal_pending(current)) {
770				ret = sock_intr_errno(timeo);
771				break;
772			}
773			continue;
774		}
775		tss.len -= ret;
776		spliced += ret;
777
778		if (!timeo)
779			break;
780		release_sock(sk);
781		lock_sock(sk);
782
783		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
784		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
785		    signal_pending(current))
786			break;
787	}
788
789	release_sock(sk);
790
791	if (spliced)
792		return spliced;
793
794	return ret;
795}
796EXPORT_SYMBOL(tcp_splice_read);
797
798struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
799{
800	struct sk_buff *skb;
801
802	/* The TCP header must be at least 32-bit aligned.  */
803	size = ALIGN(size, 4);
804
805	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
806	if (skb) {
807		if (sk_wmem_schedule(sk, skb->truesize)) {
808			skb_reserve(skb, sk->sk_prot->max_header);
809			/*
810			 * Make sure that we have exactly size bytes
811			 * available to the caller, no more, no less.
812			 */
813			skb->reserved_tailroom = skb->end - skb->tail - size;
814			return skb;
815		}
816		__kfree_skb(skb);
817	} else {
818		sk->sk_prot->enter_memory_pressure(sk);
819		sk_stream_moderate_sndbuf(sk);
820	}
821	return NULL;
822}
823
824static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
825				       int large_allowed)
826{
827	struct tcp_sock *tp = tcp_sk(sk);
828	u32 xmit_size_goal, old_size_goal;
829
830	xmit_size_goal = mss_now;
831
832	if (large_allowed && sk_can_gso(sk)) {
833		u32 gso_size, hlen;
834
835		/* Maybe we should/could use sk->sk_prot->max_header here ? */
836		hlen = inet_csk(sk)->icsk_af_ops->net_header_len +
837		       inet_csk(sk)->icsk_ext_hdr_len +
838		       tp->tcp_header_len;
839
840		/* Goal is to send at least one packet per ms,
841		 * not one big TSO packet every 100 ms.
842		 * This preserves ACK clocking and is consistent
843		 * with tcp_tso_should_defer() heuristic.
844		 */
845		gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC);
846		gso_size = max_t(u32, gso_size,
847				 sysctl_tcp_min_tso_segs * mss_now);
848
849		xmit_size_goal = min_t(u32, gso_size,
850				       sk->sk_gso_max_size - 1 - hlen);
851
852		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
853
854		/* We try hard to avoid divides here */
855		old_size_goal = tp->xmit_size_goal_segs * mss_now;
856
857		if (likely(old_size_goal <= xmit_size_goal &&
858			   old_size_goal + mss_now > xmit_size_goal)) {
859			xmit_size_goal = old_size_goal;
860		} else {
861			tp->xmit_size_goal_segs =
862				min_t(u16, xmit_size_goal / mss_now,
863				      sk->sk_gso_max_segs);
864			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
865		}
866	}
867
868	return max(xmit_size_goal, mss_now);
869}
870
871static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
872{
873	int mss_now;
874
875	mss_now = tcp_current_mss(sk);
876	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
877
878	return mss_now;
879}
880
881static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
882				size_t size, int flags)
883{
884	struct tcp_sock *tp = tcp_sk(sk);
885	int mss_now, size_goal;
886	int err;
887	ssize_t copied;
888	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
889
890	/* Wait for a connection to finish. One exception is TCP Fast Open
891	 * (passive side) where data is allowed to be sent before a connection
892	 * is fully established.
893	 */
894	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
895	    !tcp_passive_fastopen(sk)) {
896		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
897			goto out_err;
898	}
899
900	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
901
902	mss_now = tcp_send_mss(sk, &size_goal, flags);
903	copied = 0;
904
905	err = -EPIPE;
906	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
907		goto out_err;
908
909	while (size > 0) {
910		struct sk_buff *skb = tcp_write_queue_tail(sk);
911		int copy, i;
912		bool can_coalesce;
913
914		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
915new_segment:
916			if (!sk_stream_memory_free(sk))
917				goto wait_for_sndbuf;
918
919			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
920			if (!skb)
921				goto wait_for_memory;
922
923			skb_entail(sk, skb);
924			copy = size_goal;
925		}
926
927		if (copy > size)
928			copy = size;
929
930		i = skb_shinfo(skb)->nr_frags;
931		can_coalesce = skb_can_coalesce(skb, i, page, offset);
932		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
933			tcp_mark_push(tp, skb);
934			goto new_segment;
935		}
936		if (!sk_wmem_schedule(sk, copy))
937			goto wait_for_memory;
938
939		if (can_coalesce) {
940			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
941		} else {
942			get_page(page);
943			skb_fill_page_desc(skb, i, page, offset, copy);
944		}
945		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
946
947		skb->len += copy;
948		skb->data_len += copy;
949		skb->truesize += copy;
950		sk->sk_wmem_queued += copy;
951		sk_mem_charge(sk, copy);
952		skb->ip_summed = CHECKSUM_PARTIAL;
953		tp->write_seq += copy;
954		TCP_SKB_CB(skb)->end_seq += copy;
955		skb_shinfo(skb)->gso_segs = 0;
956
957		if (!copied)
958			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
959
960		copied += copy;
961		offset += copy;
962		if (!(size -= copy))
963			goto out;
964
965		if (skb->len < size_goal || (flags & MSG_OOB))
966			continue;
967
968		if (forced_push(tp)) {
969			tcp_mark_push(tp, skb);
970			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
971		} else if (skb == tcp_send_head(sk))
972			tcp_push_one(sk, mss_now);
973		continue;
974
975wait_for_sndbuf:
976		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
977wait_for_memory:
978		tcp_push(sk, flags & ~MSG_MORE, mss_now,
979			 TCP_NAGLE_PUSH, size_goal);
980
981		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
982			goto do_error;
983
984		mss_now = tcp_send_mss(sk, &size_goal, flags);
985	}
986
987out:
988	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
989		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
990	return copied;
991
992do_error:
993	if (copied)
994		goto out;
995out_err:
996	return sk_stream_error(sk, flags, err);
997}
998
999int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1000		 size_t size, int flags)
1001{
1002	ssize_t res;
1003
1004	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1005	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1006		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1007					flags);
1008
1009	lock_sock(sk);
1010	res = do_tcp_sendpages(sk, page, offset, size, flags);
1011	release_sock(sk);
1012	return res;
1013}
1014EXPORT_SYMBOL(tcp_sendpage);
1015
1016static inline int select_size(const struct sock *sk, bool sg)
1017{
1018	const struct tcp_sock *tp = tcp_sk(sk);
1019	int tmp = tp->mss_cache;
1020
1021	if (sg) {
1022		if (sk_can_gso(sk)) {
1023			/* Small frames wont use a full page:
1024			 * Payload will immediately follow tcp header.
1025			 */
1026			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1027		} else {
1028			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1029
1030			if (tmp >= pgbreak &&
1031			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1032				tmp = pgbreak;
1033		}
1034	}
1035
1036	return tmp;
1037}
1038
1039void tcp_free_fastopen_req(struct tcp_sock *tp)
1040{
1041	if (tp->fastopen_req != NULL) {
1042		kfree(tp->fastopen_req);
1043		tp->fastopen_req = NULL;
1044	}
1045}
1046
1047static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1048				int *copied, size_t size)
1049{
1050	struct tcp_sock *tp = tcp_sk(sk);
1051	int err, flags;
1052
1053	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1054		return -EOPNOTSUPP;
1055	if (tp->fastopen_req != NULL)
1056		return -EALREADY; /* Another Fast Open is in progress */
1057
1058	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1059				   sk->sk_allocation);
1060	if (unlikely(tp->fastopen_req == NULL))
1061		return -ENOBUFS;
1062	tp->fastopen_req->data = msg;
1063	tp->fastopen_req->size = size;
1064
1065	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1066	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1067				    msg->msg_namelen, flags);
1068	*copied = tp->fastopen_req->copied;
1069	tcp_free_fastopen_req(tp);
1070	return err;
1071}
1072
1073int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1074		size_t size)
1075{
1076	struct iovec *iov;
1077	struct tcp_sock *tp = tcp_sk(sk);
1078	struct sk_buff *skb;
1079	int iovlen, flags, err, copied = 0;
1080	int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1081	bool sg;
1082	long timeo;
1083
1084	lock_sock(sk);
1085
1086	flags = msg->msg_flags;
1087	if (flags & MSG_FASTOPEN) {
1088		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1089		if (err == -EINPROGRESS && copied_syn > 0)
1090			goto out;
1091		else if (err)
1092			goto out_err;
1093		offset = copied_syn;
1094	}
1095
1096	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1097
1098	/* Wait for a connection to finish. One exception is TCP Fast Open
1099	 * (passive side) where data is allowed to be sent before a connection
1100	 * is fully established.
1101	 */
1102	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1103	    !tcp_passive_fastopen(sk)) {
1104		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1105			goto do_error;
1106	}
1107
1108	if (unlikely(tp->repair)) {
1109		if (tp->repair_queue == TCP_RECV_QUEUE) {
1110			copied = tcp_send_rcvq(sk, msg, size);
1111			goto out_nopush;
1112		}
1113
1114		err = -EINVAL;
1115		if (tp->repair_queue == TCP_NO_QUEUE)
1116			goto out_err;
1117
1118		/* 'common' sending to sendq */
1119	}
1120
1121	/* This should be in poll */
1122	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1123
1124	mss_now = tcp_send_mss(sk, &size_goal, flags);
1125
1126	/* Ok commence sending. */
1127	iovlen = msg->msg_iovlen;
1128	iov = msg->msg_iov;
1129	copied = 0;
1130
1131	err = -EPIPE;
1132	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1133		goto out_err;
1134
1135	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1136
1137	while (--iovlen >= 0) {
1138		size_t seglen = iov->iov_len;
1139		unsigned char __user *from = iov->iov_base;
1140
1141		iov++;
1142		if (unlikely(offset > 0)) {  /* Skip bytes copied in SYN */
1143			if (offset >= seglen) {
1144				offset -= seglen;
1145				continue;
1146			}
1147			seglen -= offset;
1148			from += offset;
1149			offset = 0;
1150		}
1151
1152		while (seglen > 0) {
1153			int copy = 0;
1154			int max = size_goal;
1155
1156			skb = tcp_write_queue_tail(sk);
1157			if (tcp_send_head(sk)) {
1158				if (skb->ip_summed == CHECKSUM_NONE)
1159					max = mss_now;
1160				copy = max - skb->len;
1161			}
1162
1163			if (copy <= 0) {
1164new_segment:
1165				/* Allocate new segment. If the interface is SG,
1166				 * allocate skb fitting to single page.
1167				 */
1168				if (!sk_stream_memory_free(sk))
1169					goto wait_for_sndbuf;
1170
1171				skb = sk_stream_alloc_skb(sk,
1172							  select_size(sk, sg),
1173							  sk->sk_allocation);
1174				if (!skb)
1175					goto wait_for_memory;
1176
1177				/*
1178				 * All packets are restored as if they have
1179				 * already been sent.
1180				 */
1181				if (tp->repair)
1182					TCP_SKB_CB(skb)->when = tcp_time_stamp;
1183
1184				/*
1185				 * Check whether we can use HW checksum.
1186				 */
1187				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1188					skb->ip_summed = CHECKSUM_PARTIAL;
1189
1190				skb_entail(sk, skb);
1191				copy = size_goal;
1192				max = size_goal;
1193			}
1194
1195			/* Try to append data to the end of skb. */
1196			if (copy > seglen)
1197				copy = seglen;
1198
1199			/* Where to copy to? */
1200			if (skb_availroom(skb) > 0) {
1201				/* We have some space in skb head. Superb! */
1202				copy = min_t(int, copy, skb_availroom(skb));
1203				err = skb_add_data_nocache(sk, skb, from, copy);
1204				if (err)
1205					goto do_fault;
1206			} else {
1207				bool merge = true;
1208				int i = skb_shinfo(skb)->nr_frags;
1209				struct page_frag *pfrag = sk_page_frag(sk);
1210
1211				if (!sk_page_frag_refill(sk, pfrag))
1212					goto wait_for_memory;
1213
1214				if (!skb_can_coalesce(skb, i, pfrag->page,
1215						      pfrag->offset)) {
1216					if (i == MAX_SKB_FRAGS || !sg) {
1217						tcp_mark_push(tp, skb);
1218						goto new_segment;
1219					}
1220					merge = false;
1221				}
1222
1223				copy = min_t(int, copy, pfrag->size - pfrag->offset);
1224
1225				if (!sk_wmem_schedule(sk, copy))
1226					goto wait_for_memory;
1227
1228				err = skb_copy_to_page_nocache(sk, from, skb,
1229							       pfrag->page,
1230							       pfrag->offset,
1231							       copy);
1232				if (err)
1233					goto do_error;
1234
1235				/* Update the skb. */
1236				if (merge) {
1237					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1238				} else {
1239					skb_fill_page_desc(skb, i, pfrag->page,
1240							   pfrag->offset, copy);
1241					get_page(pfrag->page);
1242				}
1243				pfrag->offset += copy;
1244			}
1245
1246			if (!copied)
1247				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1248
1249			tp->write_seq += copy;
1250			TCP_SKB_CB(skb)->end_seq += copy;
1251			skb_shinfo(skb)->gso_segs = 0;
1252
1253			from += copy;
1254			copied += copy;
1255			if ((seglen -= copy) == 0 && iovlen == 0)
1256				goto out;
1257
1258			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1259				continue;
1260
1261			if (forced_push(tp)) {
1262				tcp_mark_push(tp, skb);
1263				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1264			} else if (skb == tcp_send_head(sk))
1265				tcp_push_one(sk, mss_now);
1266			continue;
1267
1268wait_for_sndbuf:
1269			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1270wait_for_memory:
1271			if (copied)
1272				tcp_push(sk, flags & ~MSG_MORE, mss_now,
1273					 TCP_NAGLE_PUSH, size_goal);
1274
1275			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1276				goto do_error;
1277
1278			mss_now = tcp_send_mss(sk, &size_goal, flags);
1279		}
1280	}
1281
1282out:
1283	if (copied)
1284		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1285out_nopush:
1286	release_sock(sk);
1287	return copied + copied_syn;
1288
1289do_fault:
1290	if (!skb->len) {
1291		tcp_unlink_write_queue(skb, sk);
1292		/* It is the one place in all of TCP, except connection
1293		 * reset, where we can be unlinking the send_head.
1294		 */
1295		tcp_check_send_head(sk, skb);
1296		sk_wmem_free_skb(sk, skb);
1297	}
1298
1299do_error:
1300	if (copied + copied_syn)
1301		goto out;
1302out_err:
1303	err = sk_stream_error(sk, flags, err);
1304	release_sock(sk);
1305	return err;
1306}
1307EXPORT_SYMBOL(tcp_sendmsg);
1308
1309/*
1310 *	Handle reading urgent data. BSD has very simple semantics for
1311 *	this, no blocking and very strange errors 8)
1312 */
1313
1314static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1315{
1316	struct tcp_sock *tp = tcp_sk(sk);
1317
1318	/* No URG data to read. */
1319	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1320	    tp->urg_data == TCP_URG_READ)
1321		return -EINVAL;	/* Yes this is right ! */
1322
1323	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1324		return -ENOTCONN;
1325
1326	if (tp->urg_data & TCP_URG_VALID) {
1327		int err = 0;
1328		char c = tp->urg_data;
1329
1330		if (!(flags & MSG_PEEK))
1331			tp->urg_data = TCP_URG_READ;
1332
1333		/* Read urgent data. */
1334		msg->msg_flags |= MSG_OOB;
1335
1336		if (len > 0) {
1337			if (!(flags & MSG_TRUNC))
1338				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1339			len = 1;
1340		} else
1341			msg->msg_flags |= MSG_TRUNC;
1342
1343		return err ? -EFAULT : len;
1344	}
1345
1346	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1347		return 0;
1348
1349	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1350	 * the available implementations agree in this case:
1351	 * this call should never block, independent of the
1352	 * blocking state of the socket.
1353	 * Mike <pall@rz.uni-karlsruhe.de>
1354	 */
1355	return -EAGAIN;
1356}
1357
1358static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1359{
1360	struct sk_buff *skb;
1361	int copied = 0, err = 0;
1362
1363	/* XXX -- need to support SO_PEEK_OFF */
1364
1365	skb_queue_walk(&sk->sk_write_queue, skb) {
1366		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1367		if (err)
1368			break;
1369
1370		copied += skb->len;
1371	}
1372
1373	return err ?: copied;
1374}
1375
1376/* Clean up the receive buffer for full frames taken by the user,
1377 * then send an ACK if necessary.  COPIED is the number of bytes
1378 * tcp_recvmsg has given to the user so far, it speeds up the
1379 * calculation of whether or not we must ACK for the sake of
1380 * a window update.
1381 */
1382void tcp_cleanup_rbuf(struct sock *sk, int copied)
1383{
1384	struct tcp_sock *tp = tcp_sk(sk);
1385	bool time_to_ack = false;
1386
1387	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1388
1389	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1390	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1391	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1392
1393	if (inet_csk_ack_scheduled(sk)) {
1394		const struct inet_connection_sock *icsk = inet_csk(sk);
1395		   /* Delayed ACKs frequently hit locked sockets during bulk
1396		    * receive. */
1397		if (icsk->icsk_ack.blocked ||
1398		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1399		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1400		    /*
1401		     * If this read emptied read buffer, we send ACK, if
1402		     * connection is not bidirectional, user drained
1403		     * receive buffer and there was a small segment
1404		     * in queue.
1405		     */
1406		    (copied > 0 &&
1407		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1408		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1409		       !icsk->icsk_ack.pingpong)) &&
1410		      !atomic_read(&sk->sk_rmem_alloc)))
1411			time_to_ack = true;
1412	}
1413
1414	/* We send an ACK if we can now advertise a non-zero window
1415	 * which has been raised "significantly".
1416	 *
1417	 * Even if window raised up to infinity, do not send window open ACK
1418	 * in states, where we will not receive more. It is useless.
1419	 */
1420	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1421		__u32 rcv_window_now = tcp_receive_window(tp);
1422
1423		/* Optimize, __tcp_select_window() is not cheap. */
1424		if (2*rcv_window_now <= tp->window_clamp) {
1425			__u32 new_window = __tcp_select_window(sk);
1426
1427			/* Send ACK now, if this read freed lots of space
1428			 * in our buffer. Certainly, new_window is new window.
1429			 * We can advertise it now, if it is not less than current one.
1430			 * "Lots" means "at least twice" here.
1431			 */
1432			if (new_window && new_window >= 2 * rcv_window_now)
1433				time_to_ack = true;
1434		}
1435	}
1436	if (time_to_ack)
1437		tcp_send_ack(sk);
1438}
1439
1440static void tcp_prequeue_process(struct sock *sk)
1441{
1442	struct sk_buff *skb;
1443	struct tcp_sock *tp = tcp_sk(sk);
1444
1445	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1446
1447	/* RX process wants to run with disabled BHs, though it is not
1448	 * necessary */
1449	local_bh_disable();
1450	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1451		sk_backlog_rcv(sk, skb);
1452	local_bh_enable();
1453
1454	/* Clear memory counter. */
1455	tp->ucopy.memory = 0;
1456}
1457
1458#ifdef CONFIG_NET_DMA
1459static void tcp_service_net_dma(struct sock *sk, bool wait)
1460{
1461	dma_cookie_t done, used;
1462	dma_cookie_t last_issued;
1463	struct tcp_sock *tp = tcp_sk(sk);
1464
1465	if (!tp->ucopy.dma_chan)
1466		return;
1467
1468	last_issued = tp->ucopy.dma_cookie;
1469	dma_async_issue_pending(tp->ucopy.dma_chan);
1470
1471	do {
1472		if (dma_async_is_tx_complete(tp->ucopy.dma_chan,
1473					      last_issued, &done,
1474					      &used) == DMA_COMPLETE) {
1475			/* Safe to free early-copied skbs now */
1476			__skb_queue_purge(&sk->sk_async_wait_queue);
1477			break;
1478		} else {
1479			struct sk_buff *skb;
1480			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1481			       (dma_async_is_complete(skb->dma_cookie, done,
1482						      used) == DMA_COMPLETE)) {
1483				__skb_dequeue(&sk->sk_async_wait_queue);
1484				kfree_skb(skb);
1485			}
1486		}
1487	} while (wait);
1488}
1489#endif
1490
1491static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1492{
1493	struct sk_buff *skb;
1494	u32 offset;
1495
1496	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1497		offset = seq - TCP_SKB_CB(skb)->seq;
1498		if (tcp_hdr(skb)->syn)
1499			offset--;
1500		if (offset < skb->len || tcp_hdr(skb)->fin) {
1501			*off = offset;
1502			return skb;
1503		}
1504		/* This looks weird, but this can happen if TCP collapsing
1505		 * splitted a fat GRO packet, while we released socket lock
1506		 * in skb_splice_bits()
1507		 */
1508		sk_eat_skb(sk, skb, false);
1509	}
1510	return NULL;
1511}
1512
1513/*
1514 * This routine provides an alternative to tcp_recvmsg() for routines
1515 * that would like to handle copying from skbuffs directly in 'sendfile'
1516 * fashion.
1517 * Note:
1518 *	- It is assumed that the socket was locked by the caller.
1519 *	- The routine does not block.
1520 *	- At present, there is no support for reading OOB data
1521 *	  or for 'peeking' the socket using this routine
1522 *	  (although both would be easy to implement).
1523 */
1524int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1525		  sk_read_actor_t recv_actor)
1526{
1527	struct sk_buff *skb;
1528	struct tcp_sock *tp = tcp_sk(sk);
1529	u32 seq = tp->copied_seq;
1530	u32 offset;
1531	int copied = 0;
1532
1533	if (sk->sk_state == TCP_LISTEN)
1534		return -ENOTCONN;
1535	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1536		if (offset < skb->len) {
1537			int used;
1538			size_t len;
1539
1540			len = skb->len - offset;
1541			/* Stop reading if we hit a patch of urgent data */
1542			if (tp->urg_data) {
1543				u32 urg_offset = tp->urg_seq - seq;
1544				if (urg_offset < len)
1545					len = urg_offset;
1546				if (!len)
1547					break;
1548			}
1549			used = recv_actor(desc, skb, offset, len);
1550			if (used <= 0) {
1551				if (!copied)
1552					copied = used;
1553				break;
1554			} else if (used <= len) {
1555				seq += used;
1556				copied += used;
1557				offset += used;
1558			}
1559			/* If recv_actor drops the lock (e.g. TCP splice
1560			 * receive) the skb pointer might be invalid when
1561			 * getting here: tcp_collapse might have deleted it
1562			 * while aggregating skbs from the socket queue.
1563			 */
1564			skb = tcp_recv_skb(sk, seq - 1, &offset);
1565			if (!skb)
1566				break;
1567			/* TCP coalescing might have appended data to the skb.
1568			 * Try to splice more frags
1569			 */
1570			if (offset + 1 != skb->len)
1571				continue;
1572		}
1573		if (tcp_hdr(skb)->fin) {
1574			sk_eat_skb(sk, skb, false);
1575			++seq;
1576			break;
1577		}
1578		sk_eat_skb(sk, skb, false);
1579		if (!desc->count)
1580			break;
1581		tp->copied_seq = seq;
1582	}
1583	tp->copied_seq = seq;
1584
1585	tcp_rcv_space_adjust(sk);
1586
1587	/* Clean up data we have read: This will do ACK frames. */
1588	if (copied > 0) {
1589		tcp_recv_skb(sk, seq, &offset);
1590		tcp_cleanup_rbuf(sk, copied);
1591	}
1592	return copied;
1593}
1594EXPORT_SYMBOL(tcp_read_sock);
1595
1596/*
1597 *	This routine copies from a sock struct into the user buffer.
1598 *
1599 *	Technical note: in 2.3 we work on _locked_ socket, so that
1600 *	tricks with *seq access order and skb->users are not required.
1601 *	Probably, code can be easily improved even more.
1602 */
1603
1604int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1605		size_t len, int nonblock, int flags, int *addr_len)
1606{
1607	struct tcp_sock *tp = tcp_sk(sk);
1608	int copied = 0;
1609	u32 peek_seq;
1610	u32 *seq;
1611	unsigned long used;
1612	int err;
1613	int target;		/* Read at least this many bytes */
1614	long timeo;
1615	struct task_struct *user_recv = NULL;
1616	bool copied_early = false;
1617	struct sk_buff *skb;
1618	u32 urg_hole = 0;
1619
1620	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1621	    (sk->sk_state == TCP_ESTABLISHED))
1622		sk_busy_loop(sk, nonblock);
1623
1624	lock_sock(sk);
1625
1626	err = -ENOTCONN;
1627	if (sk->sk_state == TCP_LISTEN)
1628		goto out;
1629
1630	timeo = sock_rcvtimeo(sk, nonblock);
1631
1632	/* Urgent data needs to be handled specially. */
1633	if (flags & MSG_OOB)
1634		goto recv_urg;
1635
1636	if (unlikely(tp->repair)) {
1637		err = -EPERM;
1638		if (!(flags & MSG_PEEK))
1639			goto out;
1640
1641		if (tp->repair_queue == TCP_SEND_QUEUE)
1642			goto recv_sndq;
1643
1644		err = -EINVAL;
1645		if (tp->repair_queue == TCP_NO_QUEUE)
1646			goto out;
1647
1648		/* 'common' recv queue MSG_PEEK-ing */
1649	}
1650
1651	seq = &tp->copied_seq;
1652	if (flags & MSG_PEEK) {
1653		peek_seq = tp->copied_seq;
1654		seq = &peek_seq;
1655	}
1656
1657	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1658
1659#ifdef CONFIG_NET_DMA
1660	tp->ucopy.dma_chan = NULL;
1661	preempt_disable();
1662	skb = skb_peek_tail(&sk->sk_receive_queue);
1663	{
1664		int available = 0;
1665
1666		if (skb)
1667			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1668		if ((available < target) &&
1669		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1670		    !sysctl_tcp_low_latency &&
1671		    net_dma_find_channel()) {
1672			preempt_enable();
1673			tp->ucopy.pinned_list =
1674					dma_pin_iovec_pages(msg->msg_iov, len);
1675		} else {
1676			preempt_enable();
1677		}
1678	}
1679#endif
1680
1681	do {
1682		u32 offset;
1683
1684		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1685		if (tp->urg_data && tp->urg_seq == *seq) {
1686			if (copied)
1687				break;
1688			if (signal_pending(current)) {
1689				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1690				break;
1691			}
1692		}
1693
1694		/* Next get a buffer. */
1695
1696		skb_queue_walk(&sk->sk_receive_queue, skb) {
1697			/* Now that we have two receive queues this
1698			 * shouldn't happen.
1699			 */
1700			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1701				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1702				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1703				 flags))
1704				break;
1705
1706			offset = *seq - TCP_SKB_CB(skb)->seq;
1707			if (tcp_hdr(skb)->syn)
1708				offset--;
1709			if (offset < skb->len)
1710				goto found_ok_skb;
1711			if (tcp_hdr(skb)->fin)
1712				goto found_fin_ok;
1713			WARN(!(flags & MSG_PEEK),
1714			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1715			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1716		}
1717
1718		/* Well, if we have backlog, try to process it now yet. */
1719
1720		if (copied >= target && !sk->sk_backlog.tail)
1721			break;
1722
1723		if (copied) {
1724			if (sk->sk_err ||
1725			    sk->sk_state == TCP_CLOSE ||
1726			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1727			    !timeo ||
1728			    signal_pending(current))
1729				break;
1730		} else {
1731			if (sock_flag(sk, SOCK_DONE))
1732				break;
1733
1734			if (sk->sk_err) {
1735				copied = sock_error(sk);
1736				break;
1737			}
1738
1739			if (sk->sk_shutdown & RCV_SHUTDOWN)
1740				break;
1741
1742			if (sk->sk_state == TCP_CLOSE) {
1743				if (!sock_flag(sk, SOCK_DONE)) {
1744					/* This occurs when user tries to read
1745					 * from never connected socket.
1746					 */
1747					copied = -ENOTCONN;
1748					break;
1749				}
1750				break;
1751			}
1752
1753			if (!timeo) {
1754				copied = -EAGAIN;
1755				break;
1756			}
1757
1758			if (signal_pending(current)) {
1759				copied = sock_intr_errno(timeo);
1760				break;
1761			}
1762		}
1763
1764		tcp_cleanup_rbuf(sk, copied);
1765
1766		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1767			/* Install new reader */
1768			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1769				user_recv = current;
1770				tp->ucopy.task = user_recv;
1771				tp->ucopy.iov = msg->msg_iov;
1772			}
1773
1774			tp->ucopy.len = len;
1775
1776			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1777				!(flags & (MSG_PEEK | MSG_TRUNC)));
1778
1779			/* Ugly... If prequeue is not empty, we have to
1780			 * process it before releasing socket, otherwise
1781			 * order will be broken at second iteration.
1782			 * More elegant solution is required!!!
1783			 *
1784			 * Look: we have the following (pseudo)queues:
1785			 *
1786			 * 1. packets in flight
1787			 * 2. backlog
1788			 * 3. prequeue
1789			 * 4. receive_queue
1790			 *
1791			 * Each queue can be processed only if the next ones
1792			 * are empty. At this point we have empty receive_queue.
1793			 * But prequeue _can_ be not empty after 2nd iteration,
1794			 * when we jumped to start of loop because backlog
1795			 * processing added something to receive_queue.
1796			 * We cannot release_sock(), because backlog contains
1797			 * packets arrived _after_ prequeued ones.
1798			 *
1799			 * Shortly, algorithm is clear --- to process all
1800			 * the queues in order. We could make it more directly,
1801			 * requeueing packets from backlog to prequeue, if
1802			 * is not empty. It is more elegant, but eats cycles,
1803			 * unfortunately.
1804			 */
1805			if (!skb_queue_empty(&tp->ucopy.prequeue))
1806				goto do_prequeue;
1807
1808			/* __ Set realtime policy in scheduler __ */
1809		}
1810
1811#ifdef CONFIG_NET_DMA
1812		if (tp->ucopy.dma_chan) {
1813			if (tp->rcv_wnd == 0 &&
1814			    !skb_queue_empty(&sk->sk_async_wait_queue)) {
1815				tcp_service_net_dma(sk, true);
1816				tcp_cleanup_rbuf(sk, copied);
1817			} else
1818				dma_async_issue_pending(tp->ucopy.dma_chan);
1819		}
1820#endif
1821		if (copied >= target) {
1822			/* Do not sleep, just process backlog. */
1823			release_sock(sk);
1824			lock_sock(sk);
1825		} else
1826			sk_wait_data(sk, &timeo);
1827
1828#ifdef CONFIG_NET_DMA
1829		tcp_service_net_dma(sk, false);  /* Don't block */
1830		tp->ucopy.wakeup = 0;
1831#endif
1832
1833		if (user_recv) {
1834			int chunk;
1835
1836			/* __ Restore normal policy in scheduler __ */
1837
1838			if ((chunk = len - tp->ucopy.len) != 0) {
1839				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1840				len -= chunk;
1841				copied += chunk;
1842			}
1843
1844			if (tp->rcv_nxt == tp->copied_seq &&
1845			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1846do_prequeue:
1847				tcp_prequeue_process(sk);
1848
1849				if ((chunk = len - tp->ucopy.len) != 0) {
1850					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1851					len -= chunk;
1852					copied += chunk;
1853				}
1854			}
1855		}
1856		if ((flags & MSG_PEEK) &&
1857		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1858			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1859					    current->comm,
1860					    task_pid_nr(current));
1861			peek_seq = tp->copied_seq;
1862		}
1863		continue;
1864
1865	found_ok_skb:
1866		/* Ok so how much can we use? */
1867		used = skb->len - offset;
1868		if (len < used)
1869			used = len;
1870
1871		/* Do we have urgent data here? */
1872		if (tp->urg_data) {
1873			u32 urg_offset = tp->urg_seq - *seq;
1874			if (urg_offset < used) {
1875				if (!urg_offset) {
1876					if (!sock_flag(sk, SOCK_URGINLINE)) {
1877						++*seq;
1878						urg_hole++;
1879						offset++;
1880						used--;
1881						if (!used)
1882							goto skip_copy;
1883					}
1884				} else
1885					used = urg_offset;
1886			}
1887		}
1888
1889		if (!(flags & MSG_TRUNC)) {
1890#ifdef CONFIG_NET_DMA
1891			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1892				tp->ucopy.dma_chan = net_dma_find_channel();
1893
1894			if (tp->ucopy.dma_chan) {
1895				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1896					tp->ucopy.dma_chan, skb, offset,
1897					msg->msg_iov, used,
1898					tp->ucopy.pinned_list);
1899
1900				if (tp->ucopy.dma_cookie < 0) {
1901
1902					pr_alert("%s: dma_cookie < 0\n",
1903						 __func__);
1904
1905					/* Exception. Bailout! */
1906					if (!copied)
1907						copied = -EFAULT;
1908					break;
1909				}
1910
1911				dma_async_issue_pending(tp->ucopy.dma_chan);
1912
1913				if ((offset + used) == skb->len)
1914					copied_early = true;
1915
1916			} else
1917#endif
1918			{
1919				err = skb_copy_datagram_iovec(skb, offset,
1920						msg->msg_iov, used);
1921				if (err) {
1922					/* Exception. Bailout! */
1923					if (!copied)
1924						copied = -EFAULT;
1925					break;
1926				}
1927			}
1928		}
1929
1930		*seq += used;
1931		copied += used;
1932		len -= used;
1933
1934		tcp_rcv_space_adjust(sk);
1935
1936skip_copy:
1937		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1938			tp->urg_data = 0;
1939			tcp_fast_path_check(sk);
1940		}
1941		if (used + offset < skb->len)
1942			continue;
1943
1944		if (tcp_hdr(skb)->fin)
1945			goto found_fin_ok;
1946		if (!(flags & MSG_PEEK)) {
1947			sk_eat_skb(sk, skb, copied_early);
1948			copied_early = false;
1949		}
1950		continue;
1951
1952	found_fin_ok:
1953		/* Process the FIN. */
1954		++*seq;
1955		if (!(flags & MSG_PEEK)) {
1956			sk_eat_skb(sk, skb, copied_early);
1957			copied_early = false;
1958		}
1959		break;
1960	} while (len > 0);
1961
1962	if (user_recv) {
1963		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1964			int chunk;
1965
1966			tp->ucopy.len = copied > 0 ? len : 0;
1967
1968			tcp_prequeue_process(sk);
1969
1970			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1971				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1972				len -= chunk;
1973				copied += chunk;
1974			}
1975		}
1976
1977		tp->ucopy.task = NULL;
1978		tp->ucopy.len = 0;
1979	}
1980
1981#ifdef CONFIG_NET_DMA
1982	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1983	tp->ucopy.dma_chan = NULL;
1984
1985	if (tp->ucopy.pinned_list) {
1986		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1987		tp->ucopy.pinned_list = NULL;
1988	}
1989#endif
1990
1991	/* According to UNIX98, msg_name/msg_namelen are ignored
1992	 * on connected socket. I was just happy when found this 8) --ANK
1993	 */
1994
1995	/* Clean up data we have read: This will do ACK frames. */
1996	tcp_cleanup_rbuf(sk, copied);
1997
1998	release_sock(sk);
1999	return copied;
2000
2001out:
2002	release_sock(sk);
2003	return err;
2004
2005recv_urg:
2006	err = tcp_recv_urg(sk, msg, len, flags);
2007	goto out;
2008
2009recv_sndq:
2010	err = tcp_peek_sndq(sk, msg, len);
2011	goto out;
2012}
2013EXPORT_SYMBOL(tcp_recvmsg);
2014
2015void tcp_set_state(struct sock *sk, int state)
2016{
2017	int oldstate = sk->sk_state;
2018
2019	switch (state) {
2020	case TCP_ESTABLISHED:
2021		if (oldstate != TCP_ESTABLISHED)
2022			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2023		break;
2024
2025	case TCP_CLOSE:
2026		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2027			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2028
2029		sk->sk_prot->unhash(sk);
2030		if (inet_csk(sk)->icsk_bind_hash &&
2031		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2032			inet_put_port(sk);
2033		/* fall through */
2034	default:
2035		if (oldstate == TCP_ESTABLISHED)
2036			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2037	}
2038
2039	/* Change state AFTER socket is unhashed to avoid closed
2040	 * socket sitting in hash tables.
2041	 */
2042	sk->sk_state = state;
2043
2044#ifdef STATE_TRACE
2045	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2046#endif
2047}
2048EXPORT_SYMBOL_GPL(tcp_set_state);
2049
2050/*
2051 *	State processing on a close. This implements the state shift for
2052 *	sending our FIN frame. Note that we only send a FIN for some
2053 *	states. A shutdown() may have already sent the FIN, or we may be
2054 *	closed.
2055 */
2056
2057static const unsigned char new_state[16] = {
2058  /* current state:        new state:      action:	*/
2059  /* (Invalid)		*/ TCP_CLOSE,
2060  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2061  /* TCP_SYN_SENT	*/ TCP_CLOSE,
2062  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2063  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
2064  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
2065  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
2066  /* TCP_CLOSE		*/ TCP_CLOSE,
2067  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
2068  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
2069  /* TCP_LISTEN		*/ TCP_CLOSE,
2070  /* TCP_CLOSING	*/ TCP_CLOSING,
2071};
2072
2073static int tcp_close_state(struct sock *sk)
2074{
2075	int next = (int)new_state[sk->sk_state];
2076	int ns = next & TCP_STATE_MASK;
2077
2078	tcp_set_state(sk, ns);
2079
2080	return next & TCP_ACTION_FIN;
2081}
2082
2083/*
2084 *	Shutdown the sending side of a connection. Much like close except
2085 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2086 */
2087
2088void tcp_shutdown(struct sock *sk, int how)
2089{
2090	/*	We need to grab some memory, and put together a FIN,
2091	 *	and then put it into the queue to be sent.
2092	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2093	 */
2094	if (!(how & SEND_SHUTDOWN))
2095		return;
2096
2097	/* If we've already sent a FIN, or it's a closed state, skip this. */
2098	if ((1 << sk->sk_state) &
2099	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2100	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2101		/* Clear out any half completed packets.  FIN if needed. */
2102		if (tcp_close_state(sk))
2103			tcp_send_fin(sk);
2104	}
2105}
2106EXPORT_SYMBOL(tcp_shutdown);
2107
2108bool tcp_check_oom(struct sock *sk, int shift)
2109{
2110	bool too_many_orphans, out_of_socket_memory;
2111
2112	too_many_orphans = tcp_too_many_orphans(sk, shift);
2113	out_of_socket_memory = tcp_out_of_memory(sk);
2114
2115	if (too_many_orphans)
2116		net_info_ratelimited("too many orphaned sockets\n");
2117	if (out_of_socket_memory)
2118		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2119	return too_many_orphans || out_of_socket_memory;
2120}
2121
2122void tcp_close(struct sock *sk, long timeout)
2123{
2124	struct sk_buff *skb;
2125	int data_was_unread = 0;
2126	int state;
2127
2128	lock_sock(sk);
2129	sk->sk_shutdown = SHUTDOWN_MASK;
2130
2131	if (sk->sk_state == TCP_LISTEN) {
2132		tcp_set_state(sk, TCP_CLOSE);
2133
2134		/* Special case. */
2135		inet_csk_listen_stop(sk);
2136
2137		goto adjudge_to_death;
2138	}
2139
2140	/*  We need to flush the recv. buffs.  We do this only on the
2141	 *  descriptor close, not protocol-sourced closes, because the
2142	 *  reader process may not have drained the data yet!
2143	 */
2144	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2145		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2146			  tcp_hdr(skb)->fin;
2147		data_was_unread += len;
2148		__kfree_skb(skb);
2149	}
2150
2151	sk_mem_reclaim(sk);
2152
2153	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2154	if (sk->sk_state == TCP_CLOSE)
2155		goto adjudge_to_death;
2156
2157	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2158	 * data was lost. To witness the awful effects of the old behavior of
2159	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2160	 * GET in an FTP client, suspend the process, wait for the client to
2161	 * advertise a zero window, then kill -9 the FTP client, wheee...
2162	 * Note: timeout is always zero in such a case.
2163	 */
2164	if (unlikely(tcp_sk(sk)->repair)) {
2165		sk->sk_prot->disconnect(sk, 0);
2166	} else if (data_was_unread) {
2167		/* Unread data was tossed, zap the connection. */
2168		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2169		tcp_set_state(sk, TCP_CLOSE);
2170		tcp_send_active_reset(sk, sk->sk_allocation);
2171	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2172		/* Check zero linger _after_ checking for unread data. */
2173		sk->sk_prot->disconnect(sk, 0);
2174		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2175	} else if (tcp_close_state(sk)) {
2176		/* We FIN if the application ate all the data before
2177		 * zapping the connection.
2178		 */
2179
2180		/* RED-PEN. Formally speaking, we have broken TCP state
2181		 * machine. State transitions:
2182		 *
2183		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2184		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2185		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2186		 *
2187		 * are legal only when FIN has been sent (i.e. in window),
2188		 * rather than queued out of window. Purists blame.
2189		 *
2190		 * F.e. "RFC state" is ESTABLISHED,
2191		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2192		 *
2193		 * The visible declinations are that sometimes
2194		 * we enter time-wait state, when it is not required really
2195		 * (harmless), do not send active resets, when they are
2196		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2197		 * they look as CLOSING or LAST_ACK for Linux)
2198		 * Probably, I missed some more holelets.
2199		 * 						--ANK
2200		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2201		 * in a single packet! (May consider it later but will
2202		 * probably need API support or TCP_CORK SYN-ACK until
2203		 * data is written and socket is closed.)
2204		 */
2205		tcp_send_fin(sk);
2206	}
2207
2208	sk_stream_wait_close(sk, timeout);
2209
2210adjudge_to_death:
2211	state = sk->sk_state;
2212	sock_hold(sk);
2213	sock_orphan(sk);
2214
2215	/* It is the last release_sock in its life. It will remove backlog. */
2216	release_sock(sk);
2217
2218
2219	/* Now socket is owned by kernel and we acquire BH lock
2220	   to finish close. No need to check for user refs.
2221	 */
2222	local_bh_disable();
2223	bh_lock_sock(sk);
2224	WARN_ON(sock_owned_by_user(sk));
2225
2226	percpu_counter_inc(sk->sk_prot->orphan_count);
2227
2228	/* Have we already been destroyed by a softirq or backlog? */
2229	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2230		goto out;
2231
2232	/*	This is a (useful) BSD violating of the RFC. There is a
2233	 *	problem with TCP as specified in that the other end could
2234	 *	keep a socket open forever with no application left this end.
2235	 *	We use a 1 minute timeout (about the same as BSD) then kill
2236	 *	our end. If they send after that then tough - BUT: long enough
2237	 *	that we won't make the old 4*rto = almost no time - whoops
2238	 *	reset mistake.
2239	 *
2240	 *	Nope, it was not mistake. It is really desired behaviour
2241	 *	f.e. on http servers, when such sockets are useless, but
2242	 *	consume significant resources. Let's do it with special
2243	 *	linger2	option.					--ANK
2244	 */
2245
2246	if (sk->sk_state == TCP_FIN_WAIT2) {
2247		struct tcp_sock *tp = tcp_sk(sk);
2248		if (tp->linger2 < 0) {
2249			tcp_set_state(sk, TCP_CLOSE);
2250			tcp_send_active_reset(sk, GFP_ATOMIC);
2251			NET_INC_STATS_BH(sock_net(sk),
2252					LINUX_MIB_TCPABORTONLINGER);
2253		} else {
2254			const int tmo = tcp_fin_time(sk);
2255
2256			if (tmo > TCP_TIMEWAIT_LEN) {
2257				inet_csk_reset_keepalive_timer(sk,
2258						tmo - TCP_TIMEWAIT_LEN);
2259			} else {
2260				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2261				goto out;
2262			}
2263		}
2264	}
2265	if (sk->sk_state != TCP_CLOSE) {
2266		sk_mem_reclaim(sk);
2267		if (tcp_check_oom(sk, 0)) {
2268			tcp_set_state(sk, TCP_CLOSE);
2269			tcp_send_active_reset(sk, GFP_ATOMIC);
2270			NET_INC_STATS_BH(sock_net(sk),
2271					LINUX_MIB_TCPABORTONMEMORY);
2272		}
2273	}
2274
2275	if (sk->sk_state == TCP_CLOSE) {
2276		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2277		/* We could get here with a non-NULL req if the socket is
2278		 * aborted (e.g., closed with unread data) before 3WHS
2279		 * finishes.
2280		 */
2281		if (req != NULL)
2282			reqsk_fastopen_remove(sk, req, false);
2283		inet_csk_destroy_sock(sk);
2284	}
2285	/* Otherwise, socket is reprieved until protocol close. */
2286
2287out:
2288	bh_unlock_sock(sk);
2289	local_bh_enable();
2290	sock_put(sk);
2291}
2292EXPORT_SYMBOL(tcp_close);
2293
2294/* These states need RST on ABORT according to RFC793 */
2295
2296static inline bool tcp_need_reset(int state)
2297{
2298	return (1 << state) &
2299	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2300		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2301}
2302
2303int tcp_disconnect(struct sock *sk, int flags)
2304{
2305	struct inet_sock *inet = inet_sk(sk);
2306	struct inet_connection_sock *icsk = inet_csk(sk);
2307	struct tcp_sock *tp = tcp_sk(sk);
2308	int err = 0;
2309	int old_state = sk->sk_state;
2310
2311	if (old_state != TCP_CLOSE)
2312		tcp_set_state(sk, TCP_CLOSE);
2313
2314	/* ABORT function of RFC793 */
2315	if (old_state == TCP_LISTEN) {
2316		inet_csk_listen_stop(sk);
2317	} else if (unlikely(tp->repair)) {
2318		sk->sk_err = ECONNABORTED;
2319	} else if (tcp_need_reset(old_state) ||
2320		   (tp->snd_nxt != tp->write_seq &&
2321		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2322		/* The last check adjusts for discrepancy of Linux wrt. RFC
2323		 * states
2324		 */
2325		tcp_send_active_reset(sk, gfp_any());
2326		sk->sk_err = ECONNRESET;
2327	} else if (old_state == TCP_SYN_SENT)
2328		sk->sk_err = ECONNRESET;
2329
2330	tcp_clear_xmit_timers(sk);
2331	__skb_queue_purge(&sk->sk_receive_queue);
2332	tcp_write_queue_purge(sk);
2333	__skb_queue_purge(&tp->out_of_order_queue);
2334#ifdef CONFIG_NET_DMA
2335	__skb_queue_purge(&sk->sk_async_wait_queue);
2336#endif
2337
2338	inet->inet_dport = 0;
2339
2340	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2341		inet_reset_saddr(sk);
2342
2343	sk->sk_shutdown = 0;
2344	sock_reset_flag(sk, SOCK_DONE);
2345	tp->srtt_us = 0;
2346	if ((tp->write_seq += tp->max_window + 2) == 0)
2347		tp->write_seq = 1;
2348	icsk->icsk_backoff = 0;
2349	tp->snd_cwnd = 2;
2350	icsk->icsk_probes_out = 0;
2351	tp->packets_out = 0;
2352	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2353	tp->snd_cwnd_cnt = 0;
2354	tp->window_clamp = 0;
2355	tcp_set_ca_state(sk, TCP_CA_Open);
2356	tcp_clear_retrans(tp);
2357	inet_csk_delack_init(sk);
2358	tcp_init_send_head(sk);
2359	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2360	__sk_dst_reset(sk);
2361
2362	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2363
2364	sk->sk_error_report(sk);
2365	return err;
2366}
2367EXPORT_SYMBOL(tcp_disconnect);
2368
2369void tcp_sock_destruct(struct sock *sk)
2370{
2371	inet_sock_destruct(sk);
2372
2373	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2374}
2375
2376static inline bool tcp_can_repair_sock(const struct sock *sk)
2377{
2378	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2379		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2380}
2381
2382static int tcp_repair_options_est(struct tcp_sock *tp,
2383		struct tcp_repair_opt __user *optbuf, unsigned int len)
2384{
2385	struct tcp_repair_opt opt;
2386
2387	while (len >= sizeof(opt)) {
2388		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2389			return -EFAULT;
2390
2391		optbuf++;
2392		len -= sizeof(opt);
2393
2394		switch (opt.opt_code) {
2395		case TCPOPT_MSS:
2396			tp->rx_opt.mss_clamp = opt.opt_val;
2397			break;
2398		case TCPOPT_WINDOW:
2399			{
2400				u16 snd_wscale = opt.opt_val & 0xFFFF;
2401				u16 rcv_wscale = opt.opt_val >> 16;
2402
2403				if (snd_wscale > 14 || rcv_wscale > 14)
2404					return -EFBIG;
2405
2406				tp->rx_opt.snd_wscale = snd_wscale;
2407				tp->rx_opt.rcv_wscale = rcv_wscale;
2408				tp->rx_opt.wscale_ok = 1;
2409			}
2410			break;
2411		case TCPOPT_SACK_PERM:
2412			if (opt.opt_val != 0)
2413				return -EINVAL;
2414
2415			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2416			if (sysctl_tcp_fack)
2417				tcp_enable_fack(tp);
2418			break;
2419		case TCPOPT_TIMESTAMP:
2420			if (opt.opt_val != 0)
2421				return -EINVAL;
2422
2423			tp->rx_opt.tstamp_ok = 1;
2424			break;
2425		}
2426	}
2427
2428	return 0;
2429}
2430
2431/*
2432 *	Socket option code for TCP.
2433 */
2434static int do_tcp_setsockopt(struct sock *sk, int level,
2435		int optname, char __user *optval, unsigned int optlen)
2436{
2437	struct tcp_sock *tp = tcp_sk(sk);
2438	struct inet_connection_sock *icsk = inet_csk(sk);
2439	int val;
2440	int err = 0;
2441
2442	/* These are data/string values, all the others are ints */
2443	switch (optname) {
2444	case TCP_CONGESTION: {
2445		char name[TCP_CA_NAME_MAX];
2446
2447		if (optlen < 1)
2448			return -EINVAL;
2449
2450		val = strncpy_from_user(name, optval,
2451					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2452		if (val < 0)
2453			return -EFAULT;
2454		name[val] = 0;
2455
2456		lock_sock(sk);
2457		err = tcp_set_congestion_control(sk, name);
2458		release_sock(sk);
2459		return err;
2460	}
2461	default:
2462		/* fallthru */
2463		break;
2464	}
2465
2466	if (optlen < sizeof(int))
2467		return -EINVAL;
2468
2469	if (get_user(val, (int __user *)optval))
2470		return -EFAULT;
2471
2472	lock_sock(sk);
2473
2474	switch (optname) {
2475	case TCP_MAXSEG:
2476		/* Values greater than interface MTU won't take effect. However
2477		 * at the point when this call is done we typically don't yet
2478		 * know which interface is going to be used */
2479		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2480			err = -EINVAL;
2481			break;
2482		}
2483		tp->rx_opt.user_mss = val;
2484		break;
2485
2486	case TCP_NODELAY:
2487		if (val) {
2488			/* TCP_NODELAY is weaker than TCP_CORK, so that
2489			 * this option on corked socket is remembered, but
2490			 * it is not activated until cork is cleared.
2491			 *
2492			 * However, when TCP_NODELAY is set we make
2493			 * an explicit push, which overrides even TCP_CORK
2494			 * for currently queued segments.
2495			 */
2496			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2497			tcp_push_pending_frames(sk);
2498		} else {
2499			tp->nonagle &= ~TCP_NAGLE_OFF;
2500		}
2501		break;
2502
2503	case TCP_THIN_LINEAR_TIMEOUTS:
2504		if (val < 0 || val > 1)
2505			err = -EINVAL;
2506		else
2507			tp->thin_lto = val;
2508		break;
2509
2510	case TCP_THIN_DUPACK:
2511		if (val < 0 || val > 1)
2512			err = -EINVAL;
2513		else {
2514			tp->thin_dupack = val;
2515			if (tp->thin_dupack)
2516				tcp_disable_early_retrans(tp);
2517		}
2518		break;
2519
2520	case TCP_REPAIR:
2521		if (!tcp_can_repair_sock(sk))
2522			err = -EPERM;
2523		else if (val == 1) {
2524			tp->repair = 1;
2525			sk->sk_reuse = SK_FORCE_REUSE;
2526			tp->repair_queue = TCP_NO_QUEUE;
2527		} else if (val == 0) {
2528			tp->repair = 0;
2529			sk->sk_reuse = SK_NO_REUSE;
2530			tcp_send_window_probe(sk);
2531		} else
2532			err = -EINVAL;
2533
2534		break;
2535
2536	case TCP_REPAIR_QUEUE:
2537		if (!tp->repair)
2538			err = -EPERM;
2539		else if (val < TCP_QUEUES_NR)
2540			tp->repair_queue = val;
2541		else
2542			err = -EINVAL;
2543		break;
2544
2545	case TCP_QUEUE_SEQ:
2546		if (sk->sk_state != TCP_CLOSE)
2547			err = -EPERM;
2548		else if (tp->repair_queue == TCP_SEND_QUEUE)
2549			tp->write_seq = val;
2550		else if (tp->repair_queue == TCP_RECV_QUEUE)
2551			tp->rcv_nxt = val;
2552		else
2553			err = -EINVAL;
2554		break;
2555
2556	case TCP_REPAIR_OPTIONS:
2557		if (!tp->repair)
2558			err = -EINVAL;
2559		else if (sk->sk_state == TCP_ESTABLISHED)
2560			err = tcp_repair_options_est(tp,
2561					(struct tcp_repair_opt __user *)optval,
2562					optlen);
2563		else
2564			err = -EPERM;
2565		break;
2566
2567	case TCP_CORK:
2568		/* When set indicates to always queue non-full frames.
2569		 * Later the user clears this option and we transmit
2570		 * any pending partial frames in the queue.  This is
2571		 * meant to be used alongside sendfile() to get properly
2572		 * filled frames when the user (for example) must write
2573		 * out headers with a write() call first and then use
2574		 * sendfile to send out the data parts.
2575		 *
2576		 * TCP_CORK can be set together with TCP_NODELAY and it is
2577		 * stronger than TCP_NODELAY.
2578		 */
2579		if (val) {
2580			tp->nonagle |= TCP_NAGLE_CORK;
2581		} else {
2582			tp->nonagle &= ~TCP_NAGLE_CORK;
2583			if (tp->nonagle&TCP_NAGLE_OFF)
2584				tp->nonagle |= TCP_NAGLE_PUSH;
2585			tcp_push_pending_frames(sk);
2586		}
2587		break;
2588
2589	case TCP_KEEPIDLE:
2590		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2591			err = -EINVAL;
2592		else {
2593			tp->keepalive_time = val * HZ;
2594			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2595			    !((1 << sk->sk_state) &
2596			      (TCPF_CLOSE | TCPF_LISTEN))) {
2597				u32 elapsed = keepalive_time_elapsed(tp);
2598				if (tp->keepalive_time > elapsed)
2599					elapsed = tp->keepalive_time - elapsed;
2600				else
2601					elapsed = 0;
2602				inet_csk_reset_keepalive_timer(sk, elapsed);
2603			}
2604		}
2605		break;
2606	case TCP_KEEPINTVL:
2607		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2608			err = -EINVAL;
2609		else
2610			tp->keepalive_intvl = val * HZ;
2611		break;
2612	case TCP_KEEPCNT:
2613		if (val < 1 || val > MAX_TCP_KEEPCNT)
2614			err = -EINVAL;
2615		else
2616			tp->keepalive_probes = val;
2617		break;
2618	case TCP_SYNCNT:
2619		if (val < 1 || val > MAX_TCP_SYNCNT)
2620			err = -EINVAL;
2621		else
2622			icsk->icsk_syn_retries = val;
2623		break;
2624
2625	case TCP_LINGER2:
2626		if (val < 0)
2627			tp->linger2 = -1;
2628		else if (val > sysctl_tcp_fin_timeout / HZ)
2629			tp->linger2 = 0;
2630		else
2631			tp->linger2 = val * HZ;
2632		break;
2633
2634	case TCP_DEFER_ACCEPT:
2635		/* Translate value in seconds to number of retransmits */
2636		icsk->icsk_accept_queue.rskq_defer_accept =
2637			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2638					TCP_RTO_MAX / HZ);
2639		break;
2640
2641	case TCP_WINDOW_CLAMP:
2642		if (!val) {
2643			if (sk->sk_state != TCP_CLOSE) {
2644				err = -EINVAL;
2645				break;
2646			}
2647			tp->window_clamp = 0;
2648		} else
2649			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2650						SOCK_MIN_RCVBUF / 2 : val;
2651		break;
2652
2653	case TCP_QUICKACK:
2654		if (!val) {
2655			icsk->icsk_ack.pingpong = 1;
2656		} else {
2657			icsk->icsk_ack.pingpong = 0;
2658			if ((1 << sk->sk_state) &
2659			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2660			    inet_csk_ack_scheduled(sk)) {
2661				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2662				tcp_cleanup_rbuf(sk, 1);
2663				if (!(val & 1))
2664					icsk->icsk_ack.pingpong = 1;
2665			}
2666		}
2667		break;
2668
2669#ifdef CONFIG_TCP_MD5SIG
2670	case TCP_MD5SIG:
2671		/* Read the IP->Key mappings from userspace */
2672		err = tp->af_specific->md5_parse(sk, optval, optlen);
2673		break;
2674#endif
2675	case TCP_USER_TIMEOUT:
2676		/* Cap the max timeout in ms TCP will retry/retrans
2677		 * before giving up and aborting (ETIMEDOUT) a connection.
2678		 */
2679		if (val < 0)
2680			err = -EINVAL;
2681		else
2682			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2683		break;
2684
2685	case TCP_FASTOPEN:
2686		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2687		    TCPF_LISTEN)))
2688			err = fastopen_init_queue(sk, val);
2689		else
2690			err = -EINVAL;
2691		break;
2692	case TCP_TIMESTAMP:
2693		if (!tp->repair)
2694			err = -EPERM;
2695		else
2696			tp->tsoffset = val - tcp_time_stamp;
2697		break;
2698	case TCP_NOTSENT_LOWAT:
2699		tp->notsent_lowat = val;
2700		sk->sk_write_space(sk);
2701		break;
2702	default:
2703		err = -ENOPROTOOPT;
2704		break;
2705	}
2706
2707	release_sock(sk);
2708	return err;
2709}
2710
2711int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2712		   unsigned int optlen)
2713{
2714	const struct inet_connection_sock *icsk = inet_csk(sk);
2715
2716	if (level != SOL_TCP)
2717		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2718						     optval, optlen);
2719	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2720}
2721EXPORT_SYMBOL(tcp_setsockopt);
2722
2723#ifdef CONFIG_COMPAT
2724int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2725			  char __user *optval, unsigned int optlen)
2726{
2727	if (level != SOL_TCP)
2728		return inet_csk_compat_setsockopt(sk, level, optname,
2729						  optval, optlen);
2730	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2731}
2732EXPORT_SYMBOL(compat_tcp_setsockopt);
2733#endif
2734
2735/* Return information about state of tcp endpoint in API format. */
2736void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2737{
2738	const struct tcp_sock *tp = tcp_sk(sk);
2739	const struct inet_connection_sock *icsk = inet_csk(sk);
2740	u32 now = tcp_time_stamp;
2741
2742	memset(info, 0, sizeof(*info));
2743
2744	info->tcpi_state = sk->sk_state;
2745	info->tcpi_ca_state = icsk->icsk_ca_state;
2746	info->tcpi_retransmits = icsk->icsk_retransmits;
2747	info->tcpi_probes = icsk->icsk_probes_out;
2748	info->tcpi_backoff = icsk->icsk_backoff;
2749
2750	if (tp->rx_opt.tstamp_ok)
2751		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2752	if (tcp_is_sack(tp))
2753		info->tcpi_options |= TCPI_OPT_SACK;
2754	if (tp->rx_opt.wscale_ok) {
2755		info->tcpi_options |= TCPI_OPT_WSCALE;
2756		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2757		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2758	}
2759
2760	if (tp->ecn_flags & TCP_ECN_OK)
2761		info->tcpi_options |= TCPI_OPT_ECN;
2762	if (tp->ecn_flags & TCP_ECN_SEEN)
2763		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2764	if (tp->syn_data_acked)
2765		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2766
2767	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2768	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2769	info->tcpi_snd_mss = tp->mss_cache;
2770	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2771
2772	if (sk->sk_state == TCP_LISTEN) {
2773		info->tcpi_unacked = sk->sk_ack_backlog;
2774		info->tcpi_sacked = sk->sk_max_ack_backlog;
2775	} else {
2776		info->tcpi_unacked = tp->packets_out;
2777		info->tcpi_sacked = tp->sacked_out;
2778	}
2779	info->tcpi_lost = tp->lost_out;
2780	info->tcpi_retrans = tp->retrans_out;
2781	info->tcpi_fackets = tp->fackets_out;
2782
2783	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2784	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2785	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2786
2787	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2788	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2789	info->tcpi_rtt = tp->srtt_us >> 3;
2790	info->tcpi_rttvar = tp->mdev_us >> 2;
2791	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2792	info->tcpi_snd_cwnd = tp->snd_cwnd;
2793	info->tcpi_advmss = tp->advmss;
2794	info->tcpi_reordering = tp->reordering;
2795
2796	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2797	info->tcpi_rcv_space = tp->rcvq_space.space;
2798
2799	info->tcpi_total_retrans = tp->total_retrans;
2800
2801	info->tcpi_pacing_rate = sk->sk_pacing_rate != ~0U ?
2802					sk->sk_pacing_rate : ~0ULL;
2803	info->tcpi_max_pacing_rate = sk->sk_max_pacing_rate != ~0U ?
2804					sk->sk_max_pacing_rate : ~0ULL;
2805}
2806EXPORT_SYMBOL_GPL(tcp_get_info);
2807
2808static int do_tcp_getsockopt(struct sock *sk, int level,
2809		int optname, char __user *optval, int __user *optlen)
2810{
2811	struct inet_connection_sock *icsk = inet_csk(sk);
2812	struct tcp_sock *tp = tcp_sk(sk);
2813	int val, len;
2814
2815	if (get_user(len, optlen))
2816		return -EFAULT;
2817
2818	len = min_t(unsigned int, len, sizeof(int));
2819
2820	if (len < 0)
2821		return -EINVAL;
2822
2823	switch (optname) {
2824	case TCP_MAXSEG:
2825		val = tp->mss_cache;
2826		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2827			val = tp->rx_opt.user_mss;
2828		if (tp->repair)
2829			val = tp->rx_opt.mss_clamp;
2830		break;
2831	case TCP_NODELAY:
2832		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2833		break;
2834	case TCP_CORK:
2835		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2836		break;
2837	case TCP_KEEPIDLE:
2838		val = keepalive_time_when(tp) / HZ;
2839		break;
2840	case TCP_KEEPINTVL:
2841		val = keepalive_intvl_when(tp) / HZ;
2842		break;
2843	case TCP_KEEPCNT:
2844		val = keepalive_probes(tp);
2845		break;
2846	case TCP_SYNCNT:
2847		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2848		break;
2849	case TCP_LINGER2:
2850		val = tp->linger2;
2851		if (val >= 0)
2852			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2853		break;
2854	case TCP_DEFER_ACCEPT:
2855		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2856				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2857		break;
2858	case TCP_WINDOW_CLAMP:
2859		val = tp->window_clamp;
2860		break;
2861	case TCP_INFO: {
2862		struct tcp_info info;
2863
2864		if (get_user(len, optlen))
2865			return -EFAULT;
2866
2867		tcp_get_info(sk, &info);
2868
2869		len = min_t(unsigned int, len, sizeof(info));
2870		if (put_user(len, optlen))
2871			return -EFAULT;
2872		if (copy_to_user(optval, &info, len))
2873			return -EFAULT;
2874		return 0;
2875	}
2876	case TCP_QUICKACK:
2877		val = !icsk->icsk_ack.pingpong;
2878		break;
2879
2880	case TCP_CONGESTION:
2881		if (get_user(len, optlen))
2882			return -EFAULT;
2883		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2884		if (put_user(len, optlen))
2885			return -EFAULT;
2886		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2887			return -EFAULT;
2888		return 0;
2889
2890	case TCP_THIN_LINEAR_TIMEOUTS:
2891		val = tp->thin_lto;
2892		break;
2893	case TCP_THIN_DUPACK:
2894		val = tp->thin_dupack;
2895		break;
2896
2897	case TCP_REPAIR:
2898		val = tp->repair;
2899		break;
2900
2901	case TCP_REPAIR_QUEUE:
2902		if (tp->repair)
2903			val = tp->repair_queue;
2904		else
2905			return -EINVAL;
2906		break;
2907
2908	case TCP_QUEUE_SEQ:
2909		if (tp->repair_queue == TCP_SEND_QUEUE)
2910			val = tp->write_seq;
2911		else if (tp->repair_queue == TCP_RECV_QUEUE)
2912			val = tp->rcv_nxt;
2913		else
2914			return -EINVAL;
2915		break;
2916
2917	case TCP_USER_TIMEOUT:
2918		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2919		break;
2920
2921	case TCP_FASTOPEN:
2922		if (icsk->icsk_accept_queue.fastopenq != NULL)
2923			val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2924		else
2925			val = 0;
2926		break;
2927
2928	case TCP_TIMESTAMP:
2929		val = tcp_time_stamp + tp->tsoffset;
2930		break;
2931	case TCP_NOTSENT_LOWAT:
2932		val = tp->notsent_lowat;
2933		break;
2934	default:
2935		return -ENOPROTOOPT;
2936	}
2937
2938	if (put_user(len, optlen))
2939		return -EFAULT;
2940	if (copy_to_user(optval, &val, len))
2941		return -EFAULT;
2942	return 0;
2943}
2944
2945int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2946		   int __user *optlen)
2947{
2948	struct inet_connection_sock *icsk = inet_csk(sk);
2949
2950	if (level != SOL_TCP)
2951		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2952						     optval, optlen);
2953	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2954}
2955EXPORT_SYMBOL(tcp_getsockopt);
2956
2957#ifdef CONFIG_COMPAT
2958int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2959			  char __user *optval, int __user *optlen)
2960{
2961	if (level != SOL_TCP)
2962		return inet_csk_compat_getsockopt(sk, level, optname,
2963						  optval, optlen);
2964	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2965}
2966EXPORT_SYMBOL(compat_tcp_getsockopt);
2967#endif
2968
2969#ifdef CONFIG_TCP_MD5SIG
2970static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool __read_mostly;
2971static DEFINE_MUTEX(tcp_md5sig_mutex);
2972
2973static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
2974{
2975	int cpu;
2976
2977	for_each_possible_cpu(cpu) {
2978		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
2979
2980		if (p->md5_desc.tfm)
2981			crypto_free_hash(p->md5_desc.tfm);
2982	}
2983	free_percpu(pool);
2984}
2985
2986static void __tcp_alloc_md5sig_pool(void)
2987{
2988	int cpu;
2989	struct tcp_md5sig_pool __percpu *pool;
2990
2991	pool = alloc_percpu(struct tcp_md5sig_pool);
2992	if (!pool)
2993		return;
2994
2995	for_each_possible_cpu(cpu) {
2996		struct crypto_hash *hash;
2997
2998		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2999		if (IS_ERR_OR_NULL(hash))
3000			goto out_free;
3001
3002		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3003	}
3004	/* before setting tcp_md5sig_pool, we must commit all writes
3005	 * to memory. See ACCESS_ONCE() in tcp_get_md5sig_pool()
3006	 */
3007	smp_wmb();
3008	tcp_md5sig_pool = pool;
3009	return;
3010out_free:
3011	__tcp_free_md5sig_pool(pool);
3012}
3013
3014bool tcp_alloc_md5sig_pool(void)
3015{
3016	if (unlikely(!tcp_md5sig_pool)) {
3017		mutex_lock(&tcp_md5sig_mutex);
3018
3019		if (!tcp_md5sig_pool)
3020			__tcp_alloc_md5sig_pool();
3021
3022		mutex_unlock(&tcp_md5sig_mutex);
3023	}
3024	return tcp_md5sig_pool != NULL;
3025}
3026EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3027
3028
3029/**
3030 *	tcp_get_md5sig_pool - get md5sig_pool for this user
3031 *
3032 *	We use percpu structure, so if we succeed, we exit with preemption
3033 *	and BH disabled, to make sure another thread or softirq handling
3034 *	wont try to get same context.
3035 */
3036struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3037{
3038	struct tcp_md5sig_pool __percpu *p;
3039
3040	local_bh_disable();
3041	p = ACCESS_ONCE(tcp_md5sig_pool);
3042	if (p)
3043		return __this_cpu_ptr(p);
3044
3045	local_bh_enable();
3046	return NULL;
3047}
3048EXPORT_SYMBOL(tcp_get_md5sig_pool);
3049
3050int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3051			const struct tcphdr *th)
3052{
3053	struct scatterlist sg;
3054	struct tcphdr hdr;
3055	int err;
3056
3057	/* We are not allowed to change tcphdr, make a local copy */
3058	memcpy(&hdr, th, sizeof(hdr));
3059	hdr.check = 0;
3060
3061	/* options aren't included in the hash */
3062	sg_init_one(&sg, &hdr, sizeof(hdr));
3063	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3064	return err;
3065}
3066EXPORT_SYMBOL(tcp_md5_hash_header);
3067
3068int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3069			  const struct sk_buff *skb, unsigned int header_len)
3070{
3071	struct scatterlist sg;
3072	const struct tcphdr *tp = tcp_hdr(skb);
3073	struct hash_desc *desc = &hp->md5_desc;
3074	unsigned int i;
3075	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3076					   skb_headlen(skb) - header_len : 0;
3077	const struct skb_shared_info *shi = skb_shinfo(skb);
3078	struct sk_buff *frag_iter;
3079
3080	sg_init_table(&sg, 1);
3081
3082	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3083	if (crypto_hash_update(desc, &sg, head_data_len))
3084		return 1;
3085
3086	for (i = 0; i < shi->nr_frags; ++i) {
3087		const struct skb_frag_struct *f = &shi->frags[i];
3088		unsigned int offset = f->page_offset;
3089		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3090
3091		sg_set_page(&sg, page, skb_frag_size(f),
3092			    offset_in_page(offset));
3093		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3094			return 1;
3095	}
3096
3097	skb_walk_frags(skb, frag_iter)
3098		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3099			return 1;
3100
3101	return 0;
3102}
3103EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3104
3105int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3106{
3107	struct scatterlist sg;
3108
3109	sg_init_one(&sg, key->key, key->keylen);
3110	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3111}
3112EXPORT_SYMBOL(tcp_md5_hash_key);
3113
3114#endif
3115
3116void tcp_done(struct sock *sk)
3117{
3118	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3119
3120	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3121		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3122
3123	tcp_set_state(sk, TCP_CLOSE);
3124	tcp_clear_xmit_timers(sk);
3125	if (req != NULL)
3126		reqsk_fastopen_remove(sk, req, false);
3127
3128	sk->sk_shutdown = SHUTDOWN_MASK;
3129
3130	if (!sock_flag(sk, SOCK_DEAD))
3131		sk->sk_state_change(sk);
3132	else
3133		inet_csk_destroy_sock(sk);
3134}
3135EXPORT_SYMBOL_GPL(tcp_done);
3136
3137extern struct tcp_congestion_ops tcp_reno;
3138
3139static __initdata unsigned long thash_entries;
3140static int __init set_thash_entries(char *str)
3141{
3142	ssize_t ret;
3143
3144	if (!str)
3145		return 0;
3146
3147	ret = kstrtoul(str, 0, &thash_entries);
3148	if (ret)
3149		return 0;
3150
3151	return 1;
3152}
3153__setup("thash_entries=", set_thash_entries);
3154
3155static void tcp_init_mem(void)
3156{
3157	unsigned long limit = nr_free_buffer_pages() / 8;
3158	limit = max(limit, 128UL);
3159	sysctl_tcp_mem[0] = limit / 4 * 3;
3160	sysctl_tcp_mem[1] = limit;
3161	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3162}
3163
3164void __init tcp_init(void)
3165{
3166	struct sk_buff *skb = NULL;
3167	unsigned long limit;
3168	int max_rshare, max_wshare, cnt;
3169	unsigned int i;
3170
3171	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3172
3173	percpu_counter_init(&tcp_sockets_allocated, 0);
3174	percpu_counter_init(&tcp_orphan_count, 0);
3175	tcp_hashinfo.bind_bucket_cachep =
3176		kmem_cache_create("tcp_bind_bucket",
3177				  sizeof(struct inet_bind_bucket), 0,
3178				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3179
3180	/* Size and allocate the main established and bind bucket
3181	 * hash tables.
3182	 *
3183	 * The methodology is similar to that of the buffer cache.
3184	 */
3185	tcp_hashinfo.ehash =
3186		alloc_large_system_hash("TCP established",
3187					sizeof(struct inet_ehash_bucket),
3188					thash_entries,
3189					17, /* one slot per 128 KB of memory */
3190					0,
3191					NULL,
3192					&tcp_hashinfo.ehash_mask,
3193					0,
3194					thash_entries ? 0 : 512 * 1024);
3195	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3196		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3197
3198	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3199		panic("TCP: failed to alloc ehash_locks");
3200	tcp_hashinfo.bhash =
3201		alloc_large_system_hash("TCP bind",
3202					sizeof(struct inet_bind_hashbucket),
3203					tcp_hashinfo.ehash_mask + 1,
3204					17, /* one slot per 128 KB of memory */
3205					0,
3206					&tcp_hashinfo.bhash_size,
3207					NULL,
3208					0,
3209					64 * 1024);
3210	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3211	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3212		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3213		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3214	}
3215
3216
3217	cnt = tcp_hashinfo.ehash_mask + 1;
3218
3219	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3220	sysctl_tcp_max_orphans = cnt / 2;
3221	sysctl_max_syn_backlog = max(128, cnt / 256);
3222
3223	tcp_init_mem();
3224	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3225	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3226	max_wshare = min(4UL*1024*1024, limit);
3227	max_rshare = min(6UL*1024*1024, limit);
3228
3229	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3230	sysctl_tcp_wmem[1] = 16*1024;
3231	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3232
3233	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3234	sysctl_tcp_rmem[1] = 87380;
3235	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3236
3237	pr_info("Hash tables configured (established %u bind %u)\n",
3238		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3239
3240	tcp_metrics_init();
3241
3242	tcp_register_congestion_control(&tcp_reno);
3243
3244	tcp_tasklet_init();
3245}
3246