tcp.c revision 73852e8151b7d7a529fbe019ab6d2d0c02d8f3f2
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#include <linux/kernel.h>
249#include <linux/module.h>
250#include <linux/types.h>
251#include <linux/fcntl.h>
252#include <linux/poll.h>
253#include <linux/init.h>
254#include <linux/fs.h>
255#include <linux/skbuff.h>
256#include <linux/scatterlist.h>
257#include <linux/splice.h>
258#include <linux/net.h>
259#include <linux/socket.h>
260#include <linux/random.h>
261#include <linux/bootmem.h>
262#include <linux/highmem.h>
263#include <linux/swap.h>
264#include <linux/cache.h>
265#include <linux/err.h>
266#include <linux/crypto.h>
267#include <linux/time.h>
268
269#include <net/icmp.h>
270#include <net/tcp.h>
271#include <net/xfrm.h>
272#include <net/ip.h>
273#include <net/netdma.h>
274#include <net/sock.h>
275
276#include <asm/uaccess.h>
277#include <asm/ioctls.h>
278
279int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
280
281struct percpu_counter tcp_orphan_count;
282EXPORT_SYMBOL_GPL(tcp_orphan_count);
283
284int sysctl_tcp_mem[3] __read_mostly;
285int sysctl_tcp_wmem[3] __read_mostly;
286int sysctl_tcp_rmem[3] __read_mostly;
287
288EXPORT_SYMBOL(sysctl_tcp_mem);
289EXPORT_SYMBOL(sysctl_tcp_rmem);
290EXPORT_SYMBOL(sysctl_tcp_wmem);
291
292atomic_t tcp_memory_allocated;	/* Current allocated memory. */
293EXPORT_SYMBOL(tcp_memory_allocated);
294
295/*
296 * Current number of TCP sockets.
297 */
298struct percpu_counter tcp_sockets_allocated;
299EXPORT_SYMBOL(tcp_sockets_allocated);
300
301/*
302 * TCP splice context
303 */
304struct tcp_splice_state {
305	struct pipe_inode_info *pipe;
306	size_t len;
307	unsigned int flags;
308};
309
310/*
311 * Pressure flag: try to collapse.
312 * Technical note: it is used by multiple contexts non atomically.
313 * All the __sk_mem_schedule() is of this nature: accounting
314 * is strict, actions are advisory and have some latency.
315 */
316int tcp_memory_pressure __read_mostly;
317
318EXPORT_SYMBOL(tcp_memory_pressure);
319
320void tcp_enter_memory_pressure(struct sock *sk)
321{
322	if (!tcp_memory_pressure) {
323		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324		tcp_memory_pressure = 1;
325	}
326}
327
328EXPORT_SYMBOL(tcp_enter_memory_pressure);
329
330/* Convert seconds to retransmits based on initial and max timeout */
331static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
332{
333	u8 res = 0;
334
335	if (seconds > 0) {
336		int period = timeout;
337
338		res = 1;
339		while (seconds > period && res < 255) {
340			res++;
341			timeout <<= 1;
342			if (timeout > rto_max)
343				timeout = rto_max;
344			period += timeout;
345		}
346	}
347	return res;
348}
349
350/* Convert retransmits to seconds based on initial and max timeout */
351static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
352{
353	int period = 0;
354
355	if (retrans > 0) {
356		period = timeout;
357		while (--retrans) {
358			timeout <<= 1;
359			if (timeout > rto_max)
360				timeout = rto_max;
361			period += timeout;
362		}
363	}
364	return period;
365}
366
367/*
368 *	Wait for a TCP event.
369 *
370 *	Note that we don't need to lock the socket, as the upper poll layers
371 *	take care of normal races (between the test and the event) and we don't
372 *	go look at any of the socket buffers directly.
373 */
374unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
375{
376	unsigned int mask;
377	struct sock *sk = sock->sk;
378	struct tcp_sock *tp = tcp_sk(sk);
379
380	sock_poll_wait(file, sk->sk_sleep, wait);
381	if (sk->sk_state == TCP_LISTEN)
382		return inet_csk_listen_poll(sk);
383
384	/* Socket is not locked. We are protected from async events
385	 * by poll logic and correct handling of state changes
386	 * made by other threads is impossible in any case.
387	 */
388
389	mask = 0;
390	if (sk->sk_err)
391		mask = POLLERR;
392
393	/*
394	 * POLLHUP is certainly not done right. But poll() doesn't
395	 * have a notion of HUP in just one direction, and for a
396	 * socket the read side is more interesting.
397	 *
398	 * Some poll() documentation says that POLLHUP is incompatible
399	 * with the POLLOUT/POLLWR flags, so somebody should check this
400	 * all. But careful, it tends to be safer to return too many
401	 * bits than too few, and you can easily break real applications
402	 * if you don't tell them that something has hung up!
403	 *
404	 * Check-me.
405	 *
406	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
407	 * our fs/select.c). It means that after we received EOF,
408	 * poll always returns immediately, making impossible poll() on write()
409	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
410	 * if and only if shutdown has been made in both directions.
411	 * Actually, it is interesting to look how Solaris and DUX
412	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
413	 * then we could set it on SND_SHUTDOWN. BTW examples given
414	 * in Stevens' books assume exactly this behaviour, it explains
415	 * why POLLHUP is incompatible with POLLOUT.	--ANK
416	 *
417	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
418	 * blocking on fresh not-connected or disconnected socket. --ANK
419	 */
420	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
421		mask |= POLLHUP;
422	if (sk->sk_shutdown & RCV_SHUTDOWN)
423		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
424
425	/* Connected? */
426	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
427		int target = sock_rcvlowat(sk, 0, INT_MAX);
428
429		if (tp->urg_seq == tp->copied_seq &&
430		    !sock_flag(sk, SOCK_URGINLINE) &&
431		    tp->urg_data)
432			target++;
433
434		/* Potential race condition. If read of tp below will
435		 * escape above sk->sk_state, we can be illegally awaken
436		 * in SYN_* states. */
437		if (tp->rcv_nxt - tp->copied_seq >= target)
438			mask |= POLLIN | POLLRDNORM;
439
440		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
441			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
442				mask |= POLLOUT | POLLWRNORM;
443			} else {  /* send SIGIO later */
444				set_bit(SOCK_ASYNC_NOSPACE,
445					&sk->sk_socket->flags);
446				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
447
448				/* Race breaker. If space is freed after
449				 * wspace test but before the flags are set,
450				 * IO signal will be lost.
451				 */
452				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
453					mask |= POLLOUT | POLLWRNORM;
454			}
455		}
456
457		if (tp->urg_data & TCP_URG_VALID)
458			mask |= POLLPRI;
459	}
460	return mask;
461}
462
463int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
464{
465	struct tcp_sock *tp = tcp_sk(sk);
466	int answ;
467
468	switch (cmd) {
469	case SIOCINQ:
470		if (sk->sk_state == TCP_LISTEN)
471			return -EINVAL;
472
473		lock_sock(sk);
474		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
475			answ = 0;
476		else if (sock_flag(sk, SOCK_URGINLINE) ||
477			 !tp->urg_data ||
478			 before(tp->urg_seq, tp->copied_seq) ||
479			 !before(tp->urg_seq, tp->rcv_nxt)) {
480			struct sk_buff *skb;
481
482			answ = tp->rcv_nxt - tp->copied_seq;
483
484			/* Subtract 1, if FIN is in queue. */
485			skb = skb_peek_tail(&sk->sk_receive_queue);
486			if (answ && skb)
487				answ -= tcp_hdr(skb)->fin;
488		} else
489			answ = tp->urg_seq - tp->copied_seq;
490		release_sock(sk);
491		break;
492	case SIOCATMARK:
493		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
494		break;
495	case SIOCOUTQ:
496		if (sk->sk_state == TCP_LISTEN)
497			return -EINVAL;
498
499		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
500			answ = 0;
501		else
502			answ = tp->write_seq - tp->snd_una;
503		break;
504	default:
505		return -ENOIOCTLCMD;
506	}
507
508	return put_user(answ, (int __user *)arg);
509}
510
511static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
512{
513	TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
514	tp->pushed_seq = tp->write_seq;
515}
516
517static inline int forced_push(struct tcp_sock *tp)
518{
519	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
520}
521
522static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
523{
524	struct tcp_sock *tp = tcp_sk(sk);
525	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
526
527	skb->csum    = 0;
528	tcb->seq     = tcb->end_seq = tp->write_seq;
529	tcb->flags   = TCPCB_FLAG_ACK;
530	tcb->sacked  = 0;
531	skb_header_release(skb);
532	tcp_add_write_queue_tail(sk, skb);
533	sk->sk_wmem_queued += skb->truesize;
534	sk_mem_charge(sk, skb->truesize);
535	if (tp->nonagle & TCP_NAGLE_PUSH)
536		tp->nonagle &= ~TCP_NAGLE_PUSH;
537}
538
539static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
540{
541	if (flags & MSG_OOB)
542		tp->snd_up = tp->write_seq;
543}
544
545static inline void tcp_push(struct sock *sk, int flags, int mss_now,
546			    int nonagle)
547{
548	if (tcp_send_head(sk)) {
549		struct tcp_sock *tp = tcp_sk(sk);
550
551		if (!(flags & MSG_MORE) || forced_push(tp))
552			tcp_mark_push(tp, tcp_write_queue_tail(sk));
553
554		tcp_mark_urg(tp, flags);
555		__tcp_push_pending_frames(sk, mss_now,
556					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
557	}
558}
559
560static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
561				unsigned int offset, size_t len)
562{
563	struct tcp_splice_state *tss = rd_desc->arg.data;
564	int ret;
565
566	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
567			      tss->flags);
568	if (ret > 0)
569		rd_desc->count -= ret;
570	return ret;
571}
572
573static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
574{
575	/* Store TCP splice context information in read_descriptor_t. */
576	read_descriptor_t rd_desc = {
577		.arg.data = tss,
578		.count	  = tss->len,
579	};
580
581	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
582}
583
584/**
585 *  tcp_splice_read - splice data from TCP socket to a pipe
586 * @sock:	socket to splice from
587 * @ppos:	position (not valid)
588 * @pipe:	pipe to splice to
589 * @len:	number of bytes to splice
590 * @flags:	splice modifier flags
591 *
592 * Description:
593 *    Will read pages from given socket and fill them into a pipe.
594 *
595 **/
596ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
597			struct pipe_inode_info *pipe, size_t len,
598			unsigned int flags)
599{
600	struct sock *sk = sock->sk;
601	struct tcp_splice_state tss = {
602		.pipe = pipe,
603		.len = len,
604		.flags = flags,
605	};
606	long timeo;
607	ssize_t spliced;
608	int ret;
609
610	/*
611	 * We can't seek on a socket input
612	 */
613	if (unlikely(*ppos))
614		return -ESPIPE;
615
616	ret = spliced = 0;
617
618	lock_sock(sk);
619
620	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
621	while (tss.len) {
622		ret = __tcp_splice_read(sk, &tss);
623		if (ret < 0)
624			break;
625		else if (!ret) {
626			if (spliced)
627				break;
628			if (sock_flag(sk, SOCK_DONE))
629				break;
630			if (sk->sk_err) {
631				ret = sock_error(sk);
632				break;
633			}
634			if (sk->sk_shutdown & RCV_SHUTDOWN)
635				break;
636			if (sk->sk_state == TCP_CLOSE) {
637				/*
638				 * This occurs when user tries to read
639				 * from never connected socket.
640				 */
641				if (!sock_flag(sk, SOCK_DONE))
642					ret = -ENOTCONN;
643				break;
644			}
645			if (!timeo) {
646				ret = -EAGAIN;
647				break;
648			}
649			sk_wait_data(sk, &timeo);
650			if (signal_pending(current)) {
651				ret = sock_intr_errno(timeo);
652				break;
653			}
654			continue;
655		}
656		tss.len -= ret;
657		spliced += ret;
658
659		if (!timeo)
660			break;
661		release_sock(sk);
662		lock_sock(sk);
663
664		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
665		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
666		    signal_pending(current))
667			break;
668	}
669
670	release_sock(sk);
671
672	if (spliced)
673		return spliced;
674
675	return ret;
676}
677
678struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
679{
680	struct sk_buff *skb;
681
682	/* The TCP header must be at least 32-bit aligned.  */
683	size = ALIGN(size, 4);
684
685	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
686	if (skb) {
687		if (sk_wmem_schedule(sk, skb->truesize)) {
688			/*
689			 * Make sure that we have exactly size bytes
690			 * available to the caller, no more, no less.
691			 */
692			skb_reserve(skb, skb_tailroom(skb) - size);
693			return skb;
694		}
695		__kfree_skb(skb);
696	} else {
697		sk->sk_prot->enter_memory_pressure(sk);
698		sk_stream_moderate_sndbuf(sk);
699	}
700	return NULL;
701}
702
703static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
704				       int large_allowed)
705{
706	struct tcp_sock *tp = tcp_sk(sk);
707	u32 xmit_size_goal, old_size_goal;
708
709	xmit_size_goal = mss_now;
710
711	if (large_allowed && sk_can_gso(sk)) {
712		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
713				  inet_csk(sk)->icsk_af_ops->net_header_len -
714				  inet_csk(sk)->icsk_ext_hdr_len -
715				  tp->tcp_header_len);
716
717		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
718
719		/* We try hard to avoid divides here */
720		old_size_goal = tp->xmit_size_goal_segs * mss_now;
721
722		if (likely(old_size_goal <= xmit_size_goal &&
723			   old_size_goal + mss_now > xmit_size_goal)) {
724			xmit_size_goal = old_size_goal;
725		} else {
726			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
727			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
728		}
729	}
730
731	return max(xmit_size_goal, mss_now);
732}
733
734static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
735{
736	int mss_now;
737
738	mss_now = tcp_current_mss(sk);
739	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
740
741	return mss_now;
742}
743
744static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
745			 size_t psize, int flags)
746{
747	struct tcp_sock *tp = tcp_sk(sk);
748	int mss_now, size_goal;
749	int err;
750	ssize_t copied;
751	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
752
753	/* Wait for a connection to finish. */
754	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
755		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
756			goto out_err;
757
758	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
759
760	mss_now = tcp_send_mss(sk, &size_goal, flags);
761	copied = 0;
762
763	err = -EPIPE;
764	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
765		goto out_err;
766
767	while (psize > 0) {
768		struct sk_buff *skb = tcp_write_queue_tail(sk);
769		struct page *page = pages[poffset / PAGE_SIZE];
770		int copy, i, can_coalesce;
771		int offset = poffset % PAGE_SIZE;
772		int size = min_t(size_t, psize, PAGE_SIZE - offset);
773
774		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
775new_segment:
776			if (!sk_stream_memory_free(sk))
777				goto wait_for_sndbuf;
778
779			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
780			if (!skb)
781				goto wait_for_memory;
782
783			skb_entail(sk, skb);
784			copy = size_goal;
785		}
786
787		if (copy > size)
788			copy = size;
789
790		i = skb_shinfo(skb)->nr_frags;
791		can_coalesce = skb_can_coalesce(skb, i, page, offset);
792		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
793			tcp_mark_push(tp, skb);
794			goto new_segment;
795		}
796		if (!sk_wmem_schedule(sk, copy))
797			goto wait_for_memory;
798
799		if (can_coalesce) {
800			skb_shinfo(skb)->frags[i - 1].size += copy;
801		} else {
802			get_page(page);
803			skb_fill_page_desc(skb, i, page, offset, copy);
804		}
805
806		skb->len += copy;
807		skb->data_len += copy;
808		skb->truesize += copy;
809		sk->sk_wmem_queued += copy;
810		sk_mem_charge(sk, copy);
811		skb->ip_summed = CHECKSUM_PARTIAL;
812		tp->write_seq += copy;
813		TCP_SKB_CB(skb)->end_seq += copy;
814		skb_shinfo(skb)->gso_segs = 0;
815
816		if (!copied)
817			TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
818
819		copied += copy;
820		poffset += copy;
821		if (!(psize -= copy))
822			goto out;
823
824		if (skb->len < size_goal || (flags & MSG_OOB))
825			continue;
826
827		if (forced_push(tp)) {
828			tcp_mark_push(tp, skb);
829			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
830		} else if (skb == tcp_send_head(sk))
831			tcp_push_one(sk, mss_now);
832		continue;
833
834wait_for_sndbuf:
835		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
836wait_for_memory:
837		if (copied)
838			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
839
840		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
841			goto do_error;
842
843		mss_now = tcp_send_mss(sk, &size_goal, flags);
844	}
845
846out:
847	if (copied)
848		tcp_push(sk, flags, mss_now, tp->nonagle);
849	return copied;
850
851do_error:
852	if (copied)
853		goto out;
854out_err:
855	return sk_stream_error(sk, flags, err);
856}
857
858ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
859		     size_t size, int flags)
860{
861	ssize_t res;
862	struct sock *sk = sock->sk;
863
864	if (!(sk->sk_route_caps & NETIF_F_SG) ||
865	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
866		return sock_no_sendpage(sock, page, offset, size, flags);
867
868	lock_sock(sk);
869	TCP_CHECK_TIMER(sk);
870	res = do_tcp_sendpages(sk, &page, offset, size, flags);
871	TCP_CHECK_TIMER(sk);
872	release_sock(sk);
873	return res;
874}
875
876#define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
877#define TCP_OFF(sk)	(sk->sk_sndmsg_off)
878
879static inline int select_size(struct sock *sk, int sg)
880{
881	struct tcp_sock *tp = tcp_sk(sk);
882	int tmp = tp->mss_cache;
883
884	if (sg) {
885		if (sk_can_gso(sk))
886			tmp = 0;
887		else {
888			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
889
890			if (tmp >= pgbreak &&
891			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
892				tmp = pgbreak;
893		}
894	}
895
896	return tmp;
897}
898
899int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
900		size_t size)
901{
902	struct sock *sk = sock->sk;
903	struct iovec *iov;
904	struct tcp_sock *tp = tcp_sk(sk);
905	struct sk_buff *skb;
906	int iovlen, flags;
907	int mss_now, size_goal;
908	int sg, err, copied;
909	long timeo;
910
911	lock_sock(sk);
912	TCP_CHECK_TIMER(sk);
913
914	flags = msg->msg_flags;
915	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
916
917	/* Wait for a connection to finish. */
918	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
919		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
920			goto out_err;
921
922	/* This should be in poll */
923	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
924
925	mss_now = tcp_send_mss(sk, &size_goal, flags);
926
927	/* Ok commence sending. */
928	iovlen = msg->msg_iovlen;
929	iov = msg->msg_iov;
930	copied = 0;
931
932	err = -EPIPE;
933	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
934		goto out_err;
935
936	sg = sk->sk_route_caps & NETIF_F_SG;
937
938	while (--iovlen >= 0) {
939		int seglen = iov->iov_len;
940		unsigned char __user *from = iov->iov_base;
941
942		iov++;
943
944		while (seglen > 0) {
945			int copy = 0;
946			int max = size_goal;
947
948			skb = tcp_write_queue_tail(sk);
949			if (tcp_send_head(sk)) {
950				if (skb->ip_summed == CHECKSUM_NONE)
951					max = mss_now;
952				copy = max - skb->len;
953			}
954
955			if (copy <= 0) {
956new_segment:
957				/* Allocate new segment. If the interface is SG,
958				 * allocate skb fitting to single page.
959				 */
960				if (!sk_stream_memory_free(sk))
961					goto wait_for_sndbuf;
962
963				skb = sk_stream_alloc_skb(sk,
964							  select_size(sk, sg),
965							  sk->sk_allocation);
966				if (!skb)
967					goto wait_for_memory;
968
969				/*
970				 * Check whether we can use HW checksum.
971				 */
972				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
973					skb->ip_summed = CHECKSUM_PARTIAL;
974
975				skb_entail(sk, skb);
976				copy = size_goal;
977				max = size_goal;
978			}
979
980			/* Try to append data to the end of skb. */
981			if (copy > seglen)
982				copy = seglen;
983
984			/* Where to copy to? */
985			if (skb_tailroom(skb) > 0) {
986				/* We have some space in skb head. Superb! */
987				if (copy > skb_tailroom(skb))
988					copy = skb_tailroom(skb);
989				if ((err = skb_add_data(skb, from, copy)) != 0)
990					goto do_fault;
991			} else {
992				int merge = 0;
993				int i = skb_shinfo(skb)->nr_frags;
994				struct page *page = TCP_PAGE(sk);
995				int off = TCP_OFF(sk);
996
997				if (skb_can_coalesce(skb, i, page, off) &&
998				    off != PAGE_SIZE) {
999					/* We can extend the last page
1000					 * fragment. */
1001					merge = 1;
1002				} else if (i == MAX_SKB_FRAGS || !sg) {
1003					/* Need to add new fragment and cannot
1004					 * do this because interface is non-SG,
1005					 * or because all the page slots are
1006					 * busy. */
1007					tcp_mark_push(tp, skb);
1008					goto new_segment;
1009				} else if (page) {
1010					if (off == PAGE_SIZE) {
1011						put_page(page);
1012						TCP_PAGE(sk) = page = NULL;
1013						off = 0;
1014					}
1015				} else
1016					off = 0;
1017
1018				if (copy > PAGE_SIZE - off)
1019					copy = PAGE_SIZE - off;
1020
1021				if (!sk_wmem_schedule(sk, copy))
1022					goto wait_for_memory;
1023
1024				if (!page) {
1025					/* Allocate new cache page. */
1026					if (!(page = sk_stream_alloc_page(sk)))
1027						goto wait_for_memory;
1028				}
1029
1030				/* Time to copy data. We are close to
1031				 * the end! */
1032				err = skb_copy_to_page(sk, from, skb, page,
1033						       off, copy);
1034				if (err) {
1035					/* If this page was new, give it to the
1036					 * socket so it does not get leaked.
1037					 */
1038					if (!TCP_PAGE(sk)) {
1039						TCP_PAGE(sk) = page;
1040						TCP_OFF(sk) = 0;
1041					}
1042					goto do_error;
1043				}
1044
1045				/* Update the skb. */
1046				if (merge) {
1047					skb_shinfo(skb)->frags[i - 1].size +=
1048									copy;
1049				} else {
1050					skb_fill_page_desc(skb, i, page, off, copy);
1051					if (TCP_PAGE(sk)) {
1052						get_page(page);
1053					} else if (off + copy < PAGE_SIZE) {
1054						get_page(page);
1055						TCP_PAGE(sk) = page;
1056					}
1057				}
1058
1059				TCP_OFF(sk) = off + copy;
1060			}
1061
1062			if (!copied)
1063				TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
1064
1065			tp->write_seq += copy;
1066			TCP_SKB_CB(skb)->end_seq += copy;
1067			skb_shinfo(skb)->gso_segs = 0;
1068
1069			from += copy;
1070			copied += copy;
1071			if ((seglen -= copy) == 0 && iovlen == 0)
1072				goto out;
1073
1074			if (skb->len < max || (flags & MSG_OOB))
1075				continue;
1076
1077			if (forced_push(tp)) {
1078				tcp_mark_push(tp, skb);
1079				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1080			} else if (skb == tcp_send_head(sk))
1081				tcp_push_one(sk, mss_now);
1082			continue;
1083
1084wait_for_sndbuf:
1085			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1086wait_for_memory:
1087			if (copied)
1088				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1089
1090			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1091				goto do_error;
1092
1093			mss_now = tcp_send_mss(sk, &size_goal, flags);
1094		}
1095	}
1096
1097out:
1098	if (copied)
1099		tcp_push(sk, flags, mss_now, tp->nonagle);
1100	TCP_CHECK_TIMER(sk);
1101	release_sock(sk);
1102	return copied;
1103
1104do_fault:
1105	if (!skb->len) {
1106		tcp_unlink_write_queue(skb, sk);
1107		/* It is the one place in all of TCP, except connection
1108		 * reset, where we can be unlinking the send_head.
1109		 */
1110		tcp_check_send_head(sk, skb);
1111		sk_wmem_free_skb(sk, skb);
1112	}
1113
1114do_error:
1115	if (copied)
1116		goto out;
1117out_err:
1118	err = sk_stream_error(sk, flags, err);
1119	TCP_CHECK_TIMER(sk);
1120	release_sock(sk);
1121	return err;
1122}
1123
1124/*
1125 *	Handle reading urgent data. BSD has very simple semantics for
1126 *	this, no blocking and very strange errors 8)
1127 */
1128
1129static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1130{
1131	struct tcp_sock *tp = tcp_sk(sk);
1132
1133	/* No URG data to read. */
1134	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1135	    tp->urg_data == TCP_URG_READ)
1136		return -EINVAL;	/* Yes this is right ! */
1137
1138	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1139		return -ENOTCONN;
1140
1141	if (tp->urg_data & TCP_URG_VALID) {
1142		int err = 0;
1143		char c = tp->urg_data;
1144
1145		if (!(flags & MSG_PEEK))
1146			tp->urg_data = TCP_URG_READ;
1147
1148		/* Read urgent data. */
1149		msg->msg_flags |= MSG_OOB;
1150
1151		if (len > 0) {
1152			if (!(flags & MSG_TRUNC))
1153				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1154			len = 1;
1155		} else
1156			msg->msg_flags |= MSG_TRUNC;
1157
1158		return err ? -EFAULT : len;
1159	}
1160
1161	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1162		return 0;
1163
1164	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1165	 * the available implementations agree in this case:
1166	 * this call should never block, independent of the
1167	 * blocking state of the socket.
1168	 * Mike <pall@rz.uni-karlsruhe.de>
1169	 */
1170	return -EAGAIN;
1171}
1172
1173/* Clean up the receive buffer for full frames taken by the user,
1174 * then send an ACK if necessary.  COPIED is the number of bytes
1175 * tcp_recvmsg has given to the user so far, it speeds up the
1176 * calculation of whether or not we must ACK for the sake of
1177 * a window update.
1178 */
1179void tcp_cleanup_rbuf(struct sock *sk, int copied)
1180{
1181	struct tcp_sock *tp = tcp_sk(sk);
1182	int time_to_ack = 0;
1183
1184#if TCP_DEBUG
1185	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1186
1187	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1188	     KERN_INFO "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1189	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1190#endif
1191
1192	if (inet_csk_ack_scheduled(sk)) {
1193		const struct inet_connection_sock *icsk = inet_csk(sk);
1194		   /* Delayed ACKs frequently hit locked sockets during bulk
1195		    * receive. */
1196		if (icsk->icsk_ack.blocked ||
1197		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1198		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1199		    /*
1200		     * If this read emptied read buffer, we send ACK, if
1201		     * connection is not bidirectional, user drained
1202		     * receive buffer and there was a small segment
1203		     * in queue.
1204		     */
1205		    (copied > 0 &&
1206		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1207		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1208		       !icsk->icsk_ack.pingpong)) &&
1209		      !atomic_read(&sk->sk_rmem_alloc)))
1210			time_to_ack = 1;
1211	}
1212
1213	/* We send an ACK if we can now advertise a non-zero window
1214	 * which has been raised "significantly".
1215	 *
1216	 * Even if window raised up to infinity, do not send window open ACK
1217	 * in states, where we will not receive more. It is useless.
1218	 */
1219	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1220		__u32 rcv_window_now = tcp_receive_window(tp);
1221
1222		/* Optimize, __tcp_select_window() is not cheap. */
1223		if (2*rcv_window_now <= tp->window_clamp) {
1224			__u32 new_window = __tcp_select_window(sk);
1225
1226			/* Send ACK now, if this read freed lots of space
1227			 * in our buffer. Certainly, new_window is new window.
1228			 * We can advertise it now, if it is not less than current one.
1229			 * "Lots" means "at least twice" here.
1230			 */
1231			if (new_window && new_window >= 2 * rcv_window_now)
1232				time_to_ack = 1;
1233		}
1234	}
1235	if (time_to_ack)
1236		tcp_send_ack(sk);
1237}
1238
1239static void tcp_prequeue_process(struct sock *sk)
1240{
1241	struct sk_buff *skb;
1242	struct tcp_sock *tp = tcp_sk(sk);
1243
1244	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1245
1246	/* RX process wants to run with disabled BHs, though it is not
1247	 * necessary */
1248	local_bh_disable();
1249	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1250		sk_backlog_rcv(sk, skb);
1251	local_bh_enable();
1252
1253	/* Clear memory counter. */
1254	tp->ucopy.memory = 0;
1255}
1256
1257#ifdef CONFIG_NET_DMA
1258static void tcp_service_net_dma(struct sock *sk, bool wait)
1259{
1260	dma_cookie_t done, used;
1261	dma_cookie_t last_issued;
1262	struct tcp_sock *tp = tcp_sk(sk);
1263
1264	if (!tp->ucopy.dma_chan)
1265		return;
1266
1267	last_issued = tp->ucopy.dma_cookie;
1268	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1269
1270	do {
1271		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1272					      last_issued, &done,
1273					      &used) == DMA_SUCCESS) {
1274			/* Safe to free early-copied skbs now */
1275			__skb_queue_purge(&sk->sk_async_wait_queue);
1276			break;
1277		} else {
1278			struct sk_buff *skb;
1279			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1280			       (dma_async_is_complete(skb->dma_cookie, done,
1281						      used) == DMA_SUCCESS)) {
1282				__skb_dequeue(&sk->sk_async_wait_queue);
1283				kfree_skb(skb);
1284			}
1285		}
1286	} while (wait);
1287}
1288#endif
1289
1290static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1291{
1292	struct sk_buff *skb;
1293	u32 offset;
1294
1295	skb_queue_walk(&sk->sk_receive_queue, skb) {
1296		offset = seq - TCP_SKB_CB(skb)->seq;
1297		if (tcp_hdr(skb)->syn)
1298			offset--;
1299		if (offset < skb->len || tcp_hdr(skb)->fin) {
1300			*off = offset;
1301			return skb;
1302		}
1303	}
1304	return NULL;
1305}
1306
1307/*
1308 * This routine provides an alternative to tcp_recvmsg() for routines
1309 * that would like to handle copying from skbuffs directly in 'sendfile'
1310 * fashion.
1311 * Note:
1312 *	- It is assumed that the socket was locked by the caller.
1313 *	- The routine does not block.
1314 *	- At present, there is no support for reading OOB data
1315 *	  or for 'peeking' the socket using this routine
1316 *	  (although both would be easy to implement).
1317 */
1318int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1319		  sk_read_actor_t recv_actor)
1320{
1321	struct sk_buff *skb;
1322	struct tcp_sock *tp = tcp_sk(sk);
1323	u32 seq = tp->copied_seq;
1324	u32 offset;
1325	int copied = 0;
1326
1327	if (sk->sk_state == TCP_LISTEN)
1328		return -ENOTCONN;
1329	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1330		if (offset < skb->len) {
1331			int used;
1332			size_t len;
1333
1334			len = skb->len - offset;
1335			/* Stop reading if we hit a patch of urgent data */
1336			if (tp->urg_data) {
1337				u32 urg_offset = tp->urg_seq - seq;
1338				if (urg_offset < len)
1339					len = urg_offset;
1340				if (!len)
1341					break;
1342			}
1343			used = recv_actor(desc, skb, offset, len);
1344			if (used < 0) {
1345				if (!copied)
1346					copied = used;
1347				break;
1348			} else if (used <= len) {
1349				seq += used;
1350				copied += used;
1351				offset += used;
1352			}
1353			/*
1354			 * If recv_actor drops the lock (e.g. TCP splice
1355			 * receive) the skb pointer might be invalid when
1356			 * getting here: tcp_collapse might have deleted it
1357			 * while aggregating skbs from the socket queue.
1358			 */
1359			skb = tcp_recv_skb(sk, seq-1, &offset);
1360			if (!skb || (offset+1 != skb->len))
1361				break;
1362		}
1363		if (tcp_hdr(skb)->fin) {
1364			sk_eat_skb(sk, skb, 0);
1365			++seq;
1366			break;
1367		}
1368		sk_eat_skb(sk, skb, 0);
1369		if (!desc->count)
1370			break;
1371	}
1372	tp->copied_seq = seq;
1373
1374	tcp_rcv_space_adjust(sk);
1375
1376	/* Clean up data we have read: This will do ACK frames. */
1377	if (copied > 0)
1378		tcp_cleanup_rbuf(sk, copied);
1379	return copied;
1380}
1381
1382/*
1383 *	This routine copies from a sock struct into the user buffer.
1384 *
1385 *	Technical note: in 2.3 we work on _locked_ socket, so that
1386 *	tricks with *seq access order and skb->users are not required.
1387 *	Probably, code can be easily improved even more.
1388 */
1389
1390int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1391		size_t len, int nonblock, int flags, int *addr_len)
1392{
1393	struct tcp_sock *tp = tcp_sk(sk);
1394	int copied = 0;
1395	u32 peek_seq;
1396	u32 *seq;
1397	unsigned long used;
1398	int err;
1399	int target;		/* Read at least this many bytes */
1400	long timeo;
1401	struct task_struct *user_recv = NULL;
1402	int copied_early = 0;
1403	struct sk_buff *skb;
1404	u32 urg_hole = 0;
1405
1406	lock_sock(sk);
1407
1408	TCP_CHECK_TIMER(sk);
1409
1410	err = -ENOTCONN;
1411	if (sk->sk_state == TCP_LISTEN)
1412		goto out;
1413
1414	timeo = sock_rcvtimeo(sk, nonblock);
1415
1416	/* Urgent data needs to be handled specially. */
1417	if (flags & MSG_OOB)
1418		goto recv_urg;
1419
1420	seq = &tp->copied_seq;
1421	if (flags & MSG_PEEK) {
1422		peek_seq = tp->copied_seq;
1423		seq = &peek_seq;
1424	}
1425
1426	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1427
1428#ifdef CONFIG_NET_DMA
1429	tp->ucopy.dma_chan = NULL;
1430	preempt_disable();
1431	skb = skb_peek_tail(&sk->sk_receive_queue);
1432	{
1433		int available = 0;
1434
1435		if (skb)
1436			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1437		if ((available < target) &&
1438		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1439		    !sysctl_tcp_low_latency &&
1440		    dma_find_channel(DMA_MEMCPY)) {
1441			preempt_enable_no_resched();
1442			tp->ucopy.pinned_list =
1443					dma_pin_iovec_pages(msg->msg_iov, len);
1444		} else {
1445			preempt_enable_no_resched();
1446		}
1447	}
1448#endif
1449
1450	do {
1451		u32 offset;
1452
1453		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1454		if (tp->urg_data && tp->urg_seq == *seq) {
1455			if (copied)
1456				break;
1457			if (signal_pending(current)) {
1458				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1459				break;
1460			}
1461		}
1462
1463		/* Next get a buffer. */
1464
1465		skb_queue_walk(&sk->sk_receive_queue, skb) {
1466			/* Now that we have two receive queues this
1467			 * shouldn't happen.
1468			 */
1469			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1470			     KERN_INFO "recvmsg bug: copied %X "
1471				       "seq %X rcvnxt %X fl %X\n", *seq,
1472				       TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1473				       flags))
1474				break;
1475
1476			offset = *seq - TCP_SKB_CB(skb)->seq;
1477			if (tcp_hdr(skb)->syn)
1478				offset--;
1479			if (offset < skb->len)
1480				goto found_ok_skb;
1481			if (tcp_hdr(skb)->fin)
1482				goto found_fin_ok;
1483			WARN(!(flags & MSG_PEEK), KERN_INFO "recvmsg bug 2: "
1484					"copied %X seq %X rcvnxt %X fl %X\n",
1485					*seq, TCP_SKB_CB(skb)->seq,
1486					tp->rcv_nxt, flags);
1487		}
1488
1489		/* Well, if we have backlog, try to process it now yet. */
1490
1491		if (copied >= target && !sk->sk_backlog.tail)
1492			break;
1493
1494		if (copied) {
1495			if (sk->sk_err ||
1496			    sk->sk_state == TCP_CLOSE ||
1497			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1498			    !timeo ||
1499			    signal_pending(current))
1500				break;
1501		} else {
1502			if (sock_flag(sk, SOCK_DONE))
1503				break;
1504
1505			if (sk->sk_err) {
1506				copied = sock_error(sk);
1507				break;
1508			}
1509
1510			if (sk->sk_shutdown & RCV_SHUTDOWN)
1511				break;
1512
1513			if (sk->sk_state == TCP_CLOSE) {
1514				if (!sock_flag(sk, SOCK_DONE)) {
1515					/* This occurs when user tries to read
1516					 * from never connected socket.
1517					 */
1518					copied = -ENOTCONN;
1519					break;
1520				}
1521				break;
1522			}
1523
1524			if (!timeo) {
1525				copied = -EAGAIN;
1526				break;
1527			}
1528
1529			if (signal_pending(current)) {
1530				copied = sock_intr_errno(timeo);
1531				break;
1532			}
1533		}
1534
1535		tcp_cleanup_rbuf(sk, copied);
1536
1537		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1538			/* Install new reader */
1539			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1540				user_recv = current;
1541				tp->ucopy.task = user_recv;
1542				tp->ucopy.iov = msg->msg_iov;
1543			}
1544
1545			tp->ucopy.len = len;
1546
1547			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1548				!(flags & (MSG_PEEK | MSG_TRUNC)));
1549
1550			/* Ugly... If prequeue is not empty, we have to
1551			 * process it before releasing socket, otherwise
1552			 * order will be broken at second iteration.
1553			 * More elegant solution is required!!!
1554			 *
1555			 * Look: we have the following (pseudo)queues:
1556			 *
1557			 * 1. packets in flight
1558			 * 2. backlog
1559			 * 3. prequeue
1560			 * 4. receive_queue
1561			 *
1562			 * Each queue can be processed only if the next ones
1563			 * are empty. At this point we have empty receive_queue.
1564			 * But prequeue _can_ be not empty after 2nd iteration,
1565			 * when we jumped to start of loop because backlog
1566			 * processing added something to receive_queue.
1567			 * We cannot release_sock(), because backlog contains
1568			 * packets arrived _after_ prequeued ones.
1569			 *
1570			 * Shortly, algorithm is clear --- to process all
1571			 * the queues in order. We could make it more directly,
1572			 * requeueing packets from backlog to prequeue, if
1573			 * is not empty. It is more elegant, but eats cycles,
1574			 * unfortunately.
1575			 */
1576			if (!skb_queue_empty(&tp->ucopy.prequeue))
1577				goto do_prequeue;
1578
1579			/* __ Set realtime policy in scheduler __ */
1580		}
1581
1582#ifdef CONFIG_NET_DMA
1583		if (tp->ucopy.dma_chan)
1584			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1585#endif
1586		if (copied >= target) {
1587			/* Do not sleep, just process backlog. */
1588			release_sock(sk);
1589			lock_sock(sk);
1590		} else
1591			sk_wait_data(sk, &timeo);
1592
1593#ifdef CONFIG_NET_DMA
1594		tcp_service_net_dma(sk, false);  /* Don't block */
1595		tp->ucopy.wakeup = 0;
1596#endif
1597
1598		if (user_recv) {
1599			int chunk;
1600
1601			/* __ Restore normal policy in scheduler __ */
1602
1603			if ((chunk = len - tp->ucopy.len) != 0) {
1604				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1605				len -= chunk;
1606				copied += chunk;
1607			}
1608
1609			if (tp->rcv_nxt == tp->copied_seq &&
1610			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1611do_prequeue:
1612				tcp_prequeue_process(sk);
1613
1614				if ((chunk = len - tp->ucopy.len) != 0) {
1615					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1616					len -= chunk;
1617					copied += chunk;
1618				}
1619			}
1620		}
1621		if ((flags & MSG_PEEK) &&
1622		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1623			if (net_ratelimit())
1624				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1625				       current->comm, task_pid_nr(current));
1626			peek_seq = tp->copied_seq;
1627		}
1628		continue;
1629
1630	found_ok_skb:
1631		/* Ok so how much can we use? */
1632		used = skb->len - offset;
1633		if (len < used)
1634			used = len;
1635
1636		/* Do we have urgent data here? */
1637		if (tp->urg_data) {
1638			u32 urg_offset = tp->urg_seq - *seq;
1639			if (urg_offset < used) {
1640				if (!urg_offset) {
1641					if (!sock_flag(sk, SOCK_URGINLINE)) {
1642						++*seq;
1643						urg_hole++;
1644						offset++;
1645						used--;
1646						if (!used)
1647							goto skip_copy;
1648					}
1649				} else
1650					used = urg_offset;
1651			}
1652		}
1653
1654		if (!(flags & MSG_TRUNC)) {
1655#ifdef CONFIG_NET_DMA
1656			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1657				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1658
1659			if (tp->ucopy.dma_chan) {
1660				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1661					tp->ucopy.dma_chan, skb, offset,
1662					msg->msg_iov, used,
1663					tp->ucopy.pinned_list);
1664
1665				if (tp->ucopy.dma_cookie < 0) {
1666
1667					printk(KERN_ALERT "dma_cookie < 0\n");
1668
1669					/* Exception. Bailout! */
1670					if (!copied)
1671						copied = -EFAULT;
1672					break;
1673				}
1674
1675				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1676
1677				if ((offset + used) == skb->len)
1678					copied_early = 1;
1679
1680			} else
1681#endif
1682			{
1683				err = skb_copy_datagram_iovec(skb, offset,
1684						msg->msg_iov, used);
1685				if (err) {
1686					/* Exception. Bailout! */
1687					if (!copied)
1688						copied = -EFAULT;
1689					break;
1690				}
1691			}
1692		}
1693
1694		*seq += used;
1695		copied += used;
1696		len -= used;
1697
1698		tcp_rcv_space_adjust(sk);
1699
1700skip_copy:
1701		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1702			tp->urg_data = 0;
1703			tcp_fast_path_check(sk);
1704		}
1705		if (used + offset < skb->len)
1706			continue;
1707
1708		if (tcp_hdr(skb)->fin)
1709			goto found_fin_ok;
1710		if (!(flags & MSG_PEEK)) {
1711			sk_eat_skb(sk, skb, copied_early);
1712			copied_early = 0;
1713		}
1714		continue;
1715
1716	found_fin_ok:
1717		/* Process the FIN. */
1718		++*seq;
1719		if (!(flags & MSG_PEEK)) {
1720			sk_eat_skb(sk, skb, copied_early);
1721			copied_early = 0;
1722		}
1723		break;
1724	} while (len > 0);
1725
1726	if (user_recv) {
1727		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1728			int chunk;
1729
1730			tp->ucopy.len = copied > 0 ? len : 0;
1731
1732			tcp_prequeue_process(sk);
1733
1734			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1735				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1736				len -= chunk;
1737				copied += chunk;
1738			}
1739		}
1740
1741		tp->ucopy.task = NULL;
1742		tp->ucopy.len = 0;
1743	}
1744
1745#ifdef CONFIG_NET_DMA
1746	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1747	tp->ucopy.dma_chan = NULL;
1748
1749	if (tp->ucopy.pinned_list) {
1750		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1751		tp->ucopy.pinned_list = NULL;
1752	}
1753#endif
1754
1755	/* According to UNIX98, msg_name/msg_namelen are ignored
1756	 * on connected socket. I was just happy when found this 8) --ANK
1757	 */
1758
1759	/* Clean up data we have read: This will do ACK frames. */
1760	tcp_cleanup_rbuf(sk, copied);
1761
1762	TCP_CHECK_TIMER(sk);
1763	release_sock(sk);
1764	return copied;
1765
1766out:
1767	TCP_CHECK_TIMER(sk);
1768	release_sock(sk);
1769	return err;
1770
1771recv_urg:
1772	err = tcp_recv_urg(sk, msg, len, flags);
1773	goto out;
1774}
1775
1776void tcp_set_state(struct sock *sk, int state)
1777{
1778	int oldstate = sk->sk_state;
1779
1780	switch (state) {
1781	case TCP_ESTABLISHED:
1782		if (oldstate != TCP_ESTABLISHED)
1783			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1784		break;
1785
1786	case TCP_CLOSE:
1787		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1788			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1789
1790		sk->sk_prot->unhash(sk);
1791		if (inet_csk(sk)->icsk_bind_hash &&
1792		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1793			inet_put_port(sk);
1794		/* fall through */
1795	default:
1796		if (oldstate == TCP_ESTABLISHED)
1797			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1798	}
1799
1800	/* Change state AFTER socket is unhashed to avoid closed
1801	 * socket sitting in hash tables.
1802	 */
1803	sk->sk_state = state;
1804
1805#ifdef STATE_TRACE
1806	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1807#endif
1808}
1809EXPORT_SYMBOL_GPL(tcp_set_state);
1810
1811/*
1812 *	State processing on a close. This implements the state shift for
1813 *	sending our FIN frame. Note that we only send a FIN for some
1814 *	states. A shutdown() may have already sent the FIN, or we may be
1815 *	closed.
1816 */
1817
1818static const unsigned char new_state[16] = {
1819  /* current state:        new state:      action:	*/
1820  /* (Invalid)		*/ TCP_CLOSE,
1821  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1822  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1823  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1824  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1825  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1826  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1827  /* TCP_CLOSE		*/ TCP_CLOSE,
1828  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1829  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1830  /* TCP_LISTEN		*/ TCP_CLOSE,
1831  /* TCP_CLOSING	*/ TCP_CLOSING,
1832};
1833
1834static int tcp_close_state(struct sock *sk)
1835{
1836	int next = (int)new_state[sk->sk_state];
1837	int ns = next & TCP_STATE_MASK;
1838
1839	tcp_set_state(sk, ns);
1840
1841	return next & TCP_ACTION_FIN;
1842}
1843
1844/*
1845 *	Shutdown the sending side of a connection. Much like close except
1846 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1847 */
1848
1849void tcp_shutdown(struct sock *sk, int how)
1850{
1851	/*	We need to grab some memory, and put together a FIN,
1852	 *	and then put it into the queue to be sent.
1853	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1854	 */
1855	if (!(how & SEND_SHUTDOWN))
1856		return;
1857
1858	/* If we've already sent a FIN, or it's a closed state, skip this. */
1859	if ((1 << sk->sk_state) &
1860	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1861	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1862		/* Clear out any half completed packets.  FIN if needed. */
1863		if (tcp_close_state(sk))
1864			tcp_send_fin(sk);
1865	}
1866}
1867
1868void tcp_close(struct sock *sk, long timeout)
1869{
1870	struct sk_buff *skb;
1871	int data_was_unread = 0;
1872	int state;
1873
1874	lock_sock(sk);
1875	sk->sk_shutdown = SHUTDOWN_MASK;
1876
1877	if (sk->sk_state == TCP_LISTEN) {
1878		tcp_set_state(sk, TCP_CLOSE);
1879
1880		/* Special case. */
1881		inet_csk_listen_stop(sk);
1882
1883		goto adjudge_to_death;
1884	}
1885
1886	/*  We need to flush the recv. buffs.  We do this only on the
1887	 *  descriptor close, not protocol-sourced closes, because the
1888	 *  reader process may not have drained the data yet!
1889	 */
1890	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1891		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1892			  tcp_hdr(skb)->fin;
1893		data_was_unread += len;
1894		__kfree_skb(skb);
1895	}
1896
1897	sk_mem_reclaim(sk);
1898
1899	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1900	 * data was lost. To witness the awful effects of the old behavior of
1901	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1902	 * GET in an FTP client, suspend the process, wait for the client to
1903	 * advertise a zero window, then kill -9 the FTP client, wheee...
1904	 * Note: timeout is always zero in such a case.
1905	 */
1906	if (data_was_unread) {
1907		/* Unread data was tossed, zap the connection. */
1908		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1909		tcp_set_state(sk, TCP_CLOSE);
1910		tcp_send_active_reset(sk, sk->sk_allocation);
1911	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1912		/* Check zero linger _after_ checking for unread data. */
1913		sk->sk_prot->disconnect(sk, 0);
1914		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1915	} else if (tcp_close_state(sk)) {
1916		/* We FIN if the application ate all the data before
1917		 * zapping the connection.
1918		 */
1919
1920		/* RED-PEN. Formally speaking, we have broken TCP state
1921		 * machine. State transitions:
1922		 *
1923		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1924		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1925		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1926		 *
1927		 * are legal only when FIN has been sent (i.e. in window),
1928		 * rather than queued out of window. Purists blame.
1929		 *
1930		 * F.e. "RFC state" is ESTABLISHED,
1931		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1932		 *
1933		 * The visible declinations are that sometimes
1934		 * we enter time-wait state, when it is not required really
1935		 * (harmless), do not send active resets, when they are
1936		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1937		 * they look as CLOSING or LAST_ACK for Linux)
1938		 * Probably, I missed some more holelets.
1939		 * 						--ANK
1940		 */
1941		tcp_send_fin(sk);
1942	}
1943
1944	sk_stream_wait_close(sk, timeout);
1945
1946adjudge_to_death:
1947	state = sk->sk_state;
1948	sock_hold(sk);
1949	sock_orphan(sk);
1950
1951	/* It is the last release_sock in its life. It will remove backlog. */
1952	release_sock(sk);
1953
1954
1955	/* Now socket is owned by kernel and we acquire BH lock
1956	   to finish close. No need to check for user refs.
1957	 */
1958	local_bh_disable();
1959	bh_lock_sock(sk);
1960	WARN_ON(sock_owned_by_user(sk));
1961
1962	percpu_counter_inc(sk->sk_prot->orphan_count);
1963
1964	/* Have we already been destroyed by a softirq or backlog? */
1965	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1966		goto out;
1967
1968	/*	This is a (useful) BSD violating of the RFC. There is a
1969	 *	problem with TCP as specified in that the other end could
1970	 *	keep a socket open forever with no application left this end.
1971	 *	We use a 3 minute timeout (about the same as BSD) then kill
1972	 *	our end. If they send after that then tough - BUT: long enough
1973	 *	that we won't make the old 4*rto = almost no time - whoops
1974	 *	reset mistake.
1975	 *
1976	 *	Nope, it was not mistake. It is really desired behaviour
1977	 *	f.e. on http servers, when such sockets are useless, but
1978	 *	consume significant resources. Let's do it with special
1979	 *	linger2	option.					--ANK
1980	 */
1981
1982	if (sk->sk_state == TCP_FIN_WAIT2) {
1983		struct tcp_sock *tp = tcp_sk(sk);
1984		if (tp->linger2 < 0) {
1985			tcp_set_state(sk, TCP_CLOSE);
1986			tcp_send_active_reset(sk, GFP_ATOMIC);
1987			NET_INC_STATS_BH(sock_net(sk),
1988					LINUX_MIB_TCPABORTONLINGER);
1989		} else {
1990			const int tmo = tcp_fin_time(sk);
1991
1992			if (tmo > TCP_TIMEWAIT_LEN) {
1993				inet_csk_reset_keepalive_timer(sk,
1994						tmo - TCP_TIMEWAIT_LEN);
1995			} else {
1996				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1997				goto out;
1998			}
1999		}
2000	}
2001	if (sk->sk_state != TCP_CLOSE) {
2002		int orphan_count = percpu_counter_read_positive(
2003						sk->sk_prot->orphan_count);
2004
2005		sk_mem_reclaim(sk);
2006		if (tcp_too_many_orphans(sk, orphan_count)) {
2007			if (net_ratelimit())
2008				printk(KERN_INFO "TCP: too many of orphaned "
2009				       "sockets\n");
2010			tcp_set_state(sk, TCP_CLOSE);
2011			tcp_send_active_reset(sk, GFP_ATOMIC);
2012			NET_INC_STATS_BH(sock_net(sk),
2013					LINUX_MIB_TCPABORTONMEMORY);
2014		}
2015	}
2016
2017	if (sk->sk_state == TCP_CLOSE)
2018		inet_csk_destroy_sock(sk);
2019	/* Otherwise, socket is reprieved until protocol close. */
2020
2021out:
2022	bh_unlock_sock(sk);
2023	local_bh_enable();
2024	sock_put(sk);
2025}
2026
2027/* These states need RST on ABORT according to RFC793 */
2028
2029static inline int tcp_need_reset(int state)
2030{
2031	return (1 << state) &
2032	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2033		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2034}
2035
2036int tcp_disconnect(struct sock *sk, int flags)
2037{
2038	struct inet_sock *inet = inet_sk(sk);
2039	struct inet_connection_sock *icsk = inet_csk(sk);
2040	struct tcp_sock *tp = tcp_sk(sk);
2041	int err = 0;
2042	int old_state = sk->sk_state;
2043
2044	if (old_state != TCP_CLOSE)
2045		tcp_set_state(sk, TCP_CLOSE);
2046
2047	/* ABORT function of RFC793 */
2048	if (old_state == TCP_LISTEN) {
2049		inet_csk_listen_stop(sk);
2050	} else if (tcp_need_reset(old_state) ||
2051		   (tp->snd_nxt != tp->write_seq &&
2052		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2053		/* The last check adjusts for discrepancy of Linux wrt. RFC
2054		 * states
2055		 */
2056		tcp_send_active_reset(sk, gfp_any());
2057		sk->sk_err = ECONNRESET;
2058	} else if (old_state == TCP_SYN_SENT)
2059		sk->sk_err = ECONNRESET;
2060
2061	tcp_clear_xmit_timers(sk);
2062	__skb_queue_purge(&sk->sk_receive_queue);
2063	tcp_write_queue_purge(sk);
2064	__skb_queue_purge(&tp->out_of_order_queue);
2065#ifdef CONFIG_NET_DMA
2066	__skb_queue_purge(&sk->sk_async_wait_queue);
2067#endif
2068
2069	inet->inet_dport = 0;
2070
2071	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2072		inet_reset_saddr(sk);
2073
2074	sk->sk_shutdown = 0;
2075	sock_reset_flag(sk, SOCK_DONE);
2076	tp->srtt = 0;
2077	if ((tp->write_seq += tp->max_window + 2) == 0)
2078		tp->write_seq = 1;
2079	icsk->icsk_backoff = 0;
2080	tp->snd_cwnd = 2;
2081	icsk->icsk_probes_out = 0;
2082	tp->packets_out = 0;
2083	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2084	tp->snd_cwnd_cnt = 0;
2085	tp->bytes_acked = 0;
2086	tp->window_clamp = 0;
2087	tcp_set_ca_state(sk, TCP_CA_Open);
2088	tcp_clear_retrans(tp);
2089	inet_csk_delack_init(sk);
2090	tcp_init_send_head(sk);
2091	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2092	__sk_dst_reset(sk);
2093
2094	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2095
2096	sk->sk_error_report(sk);
2097	return err;
2098}
2099
2100/*
2101 *	Socket option code for TCP.
2102 */
2103static int do_tcp_setsockopt(struct sock *sk, int level,
2104		int optname, char __user *optval, unsigned int optlen)
2105{
2106	struct tcp_sock *tp = tcp_sk(sk);
2107	struct inet_connection_sock *icsk = inet_csk(sk);
2108	int val;
2109	int err = 0;
2110
2111	/* These are data/string values, all the others are ints */
2112	switch (optname) {
2113	case TCP_CONGESTION: {
2114		char name[TCP_CA_NAME_MAX];
2115
2116		if (optlen < 1)
2117			return -EINVAL;
2118
2119		val = strncpy_from_user(name, optval,
2120					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2121		if (val < 0)
2122			return -EFAULT;
2123		name[val] = 0;
2124
2125		lock_sock(sk);
2126		err = tcp_set_congestion_control(sk, name);
2127		release_sock(sk);
2128		return err;
2129	}
2130	case TCP_COOKIE_TRANSACTIONS: {
2131		struct tcp_cookie_transactions ctd;
2132		struct tcp_cookie_values *cvp = NULL;
2133
2134		if (sizeof(ctd) > optlen)
2135			return -EINVAL;
2136		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2137			return -EFAULT;
2138
2139		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2140		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2141			return -EINVAL;
2142
2143		if (ctd.tcpct_cookie_desired == 0) {
2144			/* default to global value */
2145		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2146			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2147			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2148			return -EINVAL;
2149		}
2150
2151		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2152			/* Supercedes all other values */
2153			lock_sock(sk);
2154			if (tp->cookie_values != NULL) {
2155				kref_put(&tp->cookie_values->kref,
2156					 tcp_cookie_values_release);
2157				tp->cookie_values = NULL;
2158			}
2159			tp->rx_opt.cookie_in_always = 0; /* false */
2160			tp->rx_opt.cookie_out_never = 1; /* true */
2161			release_sock(sk);
2162			return err;
2163		}
2164
2165		/* Allocate ancillary memory before locking.
2166		 */
2167		if (ctd.tcpct_used > 0 ||
2168		    (tp->cookie_values == NULL &&
2169		     (sysctl_tcp_cookie_size > 0 ||
2170		      ctd.tcpct_cookie_desired > 0 ||
2171		      ctd.tcpct_s_data_desired > 0))) {
2172			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2173				      GFP_KERNEL);
2174			if (cvp == NULL)
2175				return -ENOMEM;
2176		}
2177		lock_sock(sk);
2178		tp->rx_opt.cookie_in_always =
2179			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2180		tp->rx_opt.cookie_out_never = 0; /* false */
2181
2182		if (tp->cookie_values != NULL) {
2183			if (cvp != NULL) {
2184				/* Changed values are recorded by a changed
2185				 * pointer, ensuring the cookie will differ,
2186				 * without separately hashing each value later.
2187				 */
2188				kref_put(&tp->cookie_values->kref,
2189					 tcp_cookie_values_release);
2190				kref_init(&cvp->kref);
2191				tp->cookie_values = cvp;
2192			} else {
2193				cvp = tp->cookie_values;
2194			}
2195		}
2196		if (cvp != NULL) {
2197			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2198
2199			if (ctd.tcpct_used > 0) {
2200				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2201				       ctd.tcpct_used);
2202				cvp->s_data_desired = ctd.tcpct_used;
2203				cvp->s_data_constant = 1; /* true */
2204			} else {
2205				/* No constant payload data. */
2206				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2207				cvp->s_data_constant = 0; /* false */
2208			}
2209		}
2210		release_sock(sk);
2211		return err;
2212	}
2213	default:
2214		/* fallthru */
2215		break;
2216	};
2217
2218	if (optlen < sizeof(int))
2219		return -EINVAL;
2220
2221	if (get_user(val, (int __user *)optval))
2222		return -EFAULT;
2223
2224	lock_sock(sk);
2225
2226	switch (optname) {
2227	case TCP_MAXSEG:
2228		/* Values greater than interface MTU won't take effect. However
2229		 * at the point when this call is done we typically don't yet
2230		 * know which interface is going to be used */
2231		if (val < 8 || val > MAX_TCP_WINDOW) {
2232			err = -EINVAL;
2233			break;
2234		}
2235		tp->rx_opt.user_mss = val;
2236		break;
2237
2238	case TCP_NODELAY:
2239		if (val) {
2240			/* TCP_NODELAY is weaker than TCP_CORK, so that
2241			 * this option on corked socket is remembered, but
2242			 * it is not activated until cork is cleared.
2243			 *
2244			 * However, when TCP_NODELAY is set we make
2245			 * an explicit push, which overrides even TCP_CORK
2246			 * for currently queued segments.
2247			 */
2248			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2249			tcp_push_pending_frames(sk);
2250		} else {
2251			tp->nonagle &= ~TCP_NAGLE_OFF;
2252		}
2253		break;
2254
2255	case TCP_THIN_LINEAR_TIMEOUTS:
2256		if (val < 0 || val > 1)
2257			err = -EINVAL;
2258		else
2259			tp->thin_lto = val;
2260		break;
2261
2262	case TCP_THIN_DUPACK:
2263		if (val < 0 || val > 1)
2264			err = -EINVAL;
2265		else
2266			tp->thin_dupack = val;
2267		break;
2268
2269	case TCP_CORK:
2270		/* When set indicates to always queue non-full frames.
2271		 * Later the user clears this option and we transmit
2272		 * any pending partial frames in the queue.  This is
2273		 * meant to be used alongside sendfile() to get properly
2274		 * filled frames when the user (for example) must write
2275		 * out headers with a write() call first and then use
2276		 * sendfile to send out the data parts.
2277		 *
2278		 * TCP_CORK can be set together with TCP_NODELAY and it is
2279		 * stronger than TCP_NODELAY.
2280		 */
2281		if (val) {
2282			tp->nonagle |= TCP_NAGLE_CORK;
2283		} else {
2284			tp->nonagle &= ~TCP_NAGLE_CORK;
2285			if (tp->nonagle&TCP_NAGLE_OFF)
2286				tp->nonagle |= TCP_NAGLE_PUSH;
2287			tcp_push_pending_frames(sk);
2288		}
2289		break;
2290
2291	case TCP_KEEPIDLE:
2292		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2293			err = -EINVAL;
2294		else {
2295			tp->keepalive_time = val * HZ;
2296			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2297			    !((1 << sk->sk_state) &
2298			      (TCPF_CLOSE | TCPF_LISTEN))) {
2299				__u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2300				if (tp->keepalive_time > elapsed)
2301					elapsed = tp->keepalive_time - elapsed;
2302				else
2303					elapsed = 0;
2304				inet_csk_reset_keepalive_timer(sk, elapsed);
2305			}
2306		}
2307		break;
2308	case TCP_KEEPINTVL:
2309		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2310			err = -EINVAL;
2311		else
2312			tp->keepalive_intvl = val * HZ;
2313		break;
2314	case TCP_KEEPCNT:
2315		if (val < 1 || val > MAX_TCP_KEEPCNT)
2316			err = -EINVAL;
2317		else
2318			tp->keepalive_probes = val;
2319		break;
2320	case TCP_SYNCNT:
2321		if (val < 1 || val > MAX_TCP_SYNCNT)
2322			err = -EINVAL;
2323		else
2324			icsk->icsk_syn_retries = val;
2325		break;
2326
2327	case TCP_LINGER2:
2328		if (val < 0)
2329			tp->linger2 = -1;
2330		else if (val > sysctl_tcp_fin_timeout / HZ)
2331			tp->linger2 = 0;
2332		else
2333			tp->linger2 = val * HZ;
2334		break;
2335
2336	case TCP_DEFER_ACCEPT:
2337		/* Translate value in seconds to number of retransmits */
2338		icsk->icsk_accept_queue.rskq_defer_accept =
2339			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2340					TCP_RTO_MAX / HZ);
2341		break;
2342
2343	case TCP_WINDOW_CLAMP:
2344		if (!val) {
2345			if (sk->sk_state != TCP_CLOSE) {
2346				err = -EINVAL;
2347				break;
2348			}
2349			tp->window_clamp = 0;
2350		} else
2351			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2352						SOCK_MIN_RCVBUF / 2 : val;
2353		break;
2354
2355	case TCP_QUICKACK:
2356		if (!val) {
2357			icsk->icsk_ack.pingpong = 1;
2358		} else {
2359			icsk->icsk_ack.pingpong = 0;
2360			if ((1 << sk->sk_state) &
2361			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2362			    inet_csk_ack_scheduled(sk)) {
2363				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2364				tcp_cleanup_rbuf(sk, 1);
2365				if (!(val & 1))
2366					icsk->icsk_ack.pingpong = 1;
2367			}
2368		}
2369		break;
2370
2371#ifdef CONFIG_TCP_MD5SIG
2372	case TCP_MD5SIG:
2373		/* Read the IP->Key mappings from userspace */
2374		err = tp->af_specific->md5_parse(sk, optval, optlen);
2375		break;
2376#endif
2377
2378	default:
2379		err = -ENOPROTOOPT;
2380		break;
2381	}
2382
2383	release_sock(sk);
2384	return err;
2385}
2386
2387int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2388		   unsigned int optlen)
2389{
2390	struct inet_connection_sock *icsk = inet_csk(sk);
2391
2392	if (level != SOL_TCP)
2393		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2394						     optval, optlen);
2395	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2396}
2397
2398#ifdef CONFIG_COMPAT
2399int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2400			  char __user *optval, unsigned int optlen)
2401{
2402	if (level != SOL_TCP)
2403		return inet_csk_compat_setsockopt(sk, level, optname,
2404						  optval, optlen);
2405	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2406}
2407
2408EXPORT_SYMBOL(compat_tcp_setsockopt);
2409#endif
2410
2411/* Return information about state of tcp endpoint in API format. */
2412void tcp_get_info(struct sock *sk, struct tcp_info *info)
2413{
2414	struct tcp_sock *tp = tcp_sk(sk);
2415	const struct inet_connection_sock *icsk = inet_csk(sk);
2416	u32 now = tcp_time_stamp;
2417
2418	memset(info, 0, sizeof(*info));
2419
2420	info->tcpi_state = sk->sk_state;
2421	info->tcpi_ca_state = icsk->icsk_ca_state;
2422	info->tcpi_retransmits = icsk->icsk_retransmits;
2423	info->tcpi_probes = icsk->icsk_probes_out;
2424	info->tcpi_backoff = icsk->icsk_backoff;
2425
2426	if (tp->rx_opt.tstamp_ok)
2427		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2428	if (tcp_is_sack(tp))
2429		info->tcpi_options |= TCPI_OPT_SACK;
2430	if (tp->rx_opt.wscale_ok) {
2431		info->tcpi_options |= TCPI_OPT_WSCALE;
2432		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2433		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2434	}
2435
2436	if (tp->ecn_flags&TCP_ECN_OK)
2437		info->tcpi_options |= TCPI_OPT_ECN;
2438
2439	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2440	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2441	info->tcpi_snd_mss = tp->mss_cache;
2442	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2443
2444	if (sk->sk_state == TCP_LISTEN) {
2445		info->tcpi_unacked = sk->sk_ack_backlog;
2446		info->tcpi_sacked = sk->sk_max_ack_backlog;
2447	} else {
2448		info->tcpi_unacked = tp->packets_out;
2449		info->tcpi_sacked = tp->sacked_out;
2450	}
2451	info->tcpi_lost = tp->lost_out;
2452	info->tcpi_retrans = tp->retrans_out;
2453	info->tcpi_fackets = tp->fackets_out;
2454
2455	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2456	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2457	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2458
2459	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2460	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2461	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2462	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2463	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2464	info->tcpi_snd_cwnd = tp->snd_cwnd;
2465	info->tcpi_advmss = tp->advmss;
2466	info->tcpi_reordering = tp->reordering;
2467
2468	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2469	info->tcpi_rcv_space = tp->rcvq_space.space;
2470
2471	info->tcpi_total_retrans = tp->total_retrans;
2472}
2473
2474EXPORT_SYMBOL_GPL(tcp_get_info);
2475
2476static int do_tcp_getsockopt(struct sock *sk, int level,
2477		int optname, char __user *optval, int __user *optlen)
2478{
2479	struct inet_connection_sock *icsk = inet_csk(sk);
2480	struct tcp_sock *tp = tcp_sk(sk);
2481	int val, len;
2482
2483	if (get_user(len, optlen))
2484		return -EFAULT;
2485
2486	len = min_t(unsigned int, len, sizeof(int));
2487
2488	if (len < 0)
2489		return -EINVAL;
2490
2491	switch (optname) {
2492	case TCP_MAXSEG:
2493		val = tp->mss_cache;
2494		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2495			val = tp->rx_opt.user_mss;
2496		break;
2497	case TCP_NODELAY:
2498		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2499		break;
2500	case TCP_CORK:
2501		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2502		break;
2503	case TCP_KEEPIDLE:
2504		val = keepalive_time_when(tp) / HZ;
2505		break;
2506	case TCP_KEEPINTVL:
2507		val = keepalive_intvl_when(tp) / HZ;
2508		break;
2509	case TCP_KEEPCNT:
2510		val = keepalive_probes(tp);
2511		break;
2512	case TCP_SYNCNT:
2513		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2514		break;
2515	case TCP_LINGER2:
2516		val = tp->linger2;
2517		if (val >= 0)
2518			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2519		break;
2520	case TCP_DEFER_ACCEPT:
2521		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2522				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2523		break;
2524	case TCP_WINDOW_CLAMP:
2525		val = tp->window_clamp;
2526		break;
2527	case TCP_INFO: {
2528		struct tcp_info info;
2529
2530		if (get_user(len, optlen))
2531			return -EFAULT;
2532
2533		tcp_get_info(sk, &info);
2534
2535		len = min_t(unsigned int, len, sizeof(info));
2536		if (put_user(len, optlen))
2537			return -EFAULT;
2538		if (copy_to_user(optval, &info, len))
2539			return -EFAULT;
2540		return 0;
2541	}
2542	case TCP_QUICKACK:
2543		val = !icsk->icsk_ack.pingpong;
2544		break;
2545
2546	case TCP_CONGESTION:
2547		if (get_user(len, optlen))
2548			return -EFAULT;
2549		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2550		if (put_user(len, optlen))
2551			return -EFAULT;
2552		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2553			return -EFAULT;
2554		return 0;
2555
2556	case TCP_COOKIE_TRANSACTIONS: {
2557		struct tcp_cookie_transactions ctd;
2558		struct tcp_cookie_values *cvp = tp->cookie_values;
2559
2560		if (get_user(len, optlen))
2561			return -EFAULT;
2562		if (len < sizeof(ctd))
2563			return -EINVAL;
2564
2565		memset(&ctd, 0, sizeof(ctd));
2566		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2567				   TCP_COOKIE_IN_ALWAYS : 0)
2568				| (tp->rx_opt.cookie_out_never ?
2569				   TCP_COOKIE_OUT_NEVER : 0);
2570
2571		if (cvp != NULL) {
2572			ctd.tcpct_flags |= (cvp->s_data_in ?
2573					    TCP_S_DATA_IN : 0)
2574					 | (cvp->s_data_out ?
2575					    TCP_S_DATA_OUT : 0);
2576
2577			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2578			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2579
2580			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2581			       cvp->cookie_pair_size);
2582			ctd.tcpct_used = cvp->cookie_pair_size;
2583		}
2584
2585		if (put_user(sizeof(ctd), optlen))
2586			return -EFAULT;
2587		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2588			return -EFAULT;
2589		return 0;
2590	}
2591	default:
2592		return -ENOPROTOOPT;
2593	}
2594
2595	if (put_user(len, optlen))
2596		return -EFAULT;
2597	if (copy_to_user(optval, &val, len))
2598		return -EFAULT;
2599	return 0;
2600}
2601
2602int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2603		   int __user *optlen)
2604{
2605	struct inet_connection_sock *icsk = inet_csk(sk);
2606
2607	if (level != SOL_TCP)
2608		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2609						     optval, optlen);
2610	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2611}
2612
2613#ifdef CONFIG_COMPAT
2614int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2615			  char __user *optval, int __user *optlen)
2616{
2617	if (level != SOL_TCP)
2618		return inet_csk_compat_getsockopt(sk, level, optname,
2619						  optval, optlen);
2620	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2621}
2622
2623EXPORT_SYMBOL(compat_tcp_getsockopt);
2624#endif
2625
2626struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2627{
2628	struct sk_buff *segs = ERR_PTR(-EINVAL);
2629	struct tcphdr *th;
2630	unsigned thlen;
2631	unsigned int seq;
2632	__be32 delta;
2633	unsigned int oldlen;
2634	unsigned int mss;
2635
2636	if (!pskb_may_pull(skb, sizeof(*th)))
2637		goto out;
2638
2639	th = tcp_hdr(skb);
2640	thlen = th->doff * 4;
2641	if (thlen < sizeof(*th))
2642		goto out;
2643
2644	if (!pskb_may_pull(skb, thlen))
2645		goto out;
2646
2647	oldlen = (u16)~skb->len;
2648	__skb_pull(skb, thlen);
2649
2650	mss = skb_shinfo(skb)->gso_size;
2651	if (unlikely(skb->len <= mss))
2652		goto out;
2653
2654	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2655		/* Packet is from an untrusted source, reset gso_segs. */
2656		int type = skb_shinfo(skb)->gso_type;
2657
2658		if (unlikely(type &
2659			     ~(SKB_GSO_TCPV4 |
2660			       SKB_GSO_DODGY |
2661			       SKB_GSO_TCP_ECN |
2662			       SKB_GSO_TCPV6 |
2663			       0) ||
2664			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2665			goto out;
2666
2667		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2668
2669		segs = NULL;
2670		goto out;
2671	}
2672
2673	segs = skb_segment(skb, features);
2674	if (IS_ERR(segs))
2675		goto out;
2676
2677	delta = htonl(oldlen + (thlen + mss));
2678
2679	skb = segs;
2680	th = tcp_hdr(skb);
2681	seq = ntohl(th->seq);
2682
2683	do {
2684		th->fin = th->psh = 0;
2685
2686		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2687				       (__force u32)delta));
2688		if (skb->ip_summed != CHECKSUM_PARTIAL)
2689			th->check =
2690			     csum_fold(csum_partial(skb_transport_header(skb),
2691						    thlen, skb->csum));
2692
2693		seq += mss;
2694		skb = skb->next;
2695		th = tcp_hdr(skb);
2696
2697		th->seq = htonl(seq);
2698		th->cwr = 0;
2699	} while (skb->next);
2700
2701	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2702		      skb->data_len);
2703	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2704				(__force u32)delta));
2705	if (skb->ip_summed != CHECKSUM_PARTIAL)
2706		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2707						   thlen, skb->csum));
2708
2709out:
2710	return segs;
2711}
2712EXPORT_SYMBOL(tcp_tso_segment);
2713
2714struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2715{
2716	struct sk_buff **pp = NULL;
2717	struct sk_buff *p;
2718	struct tcphdr *th;
2719	struct tcphdr *th2;
2720	unsigned int len;
2721	unsigned int thlen;
2722	unsigned int flags;
2723	unsigned int mss = 1;
2724	unsigned int hlen;
2725	unsigned int off;
2726	int flush = 1;
2727	int i;
2728
2729	off = skb_gro_offset(skb);
2730	hlen = off + sizeof(*th);
2731	th = skb_gro_header_fast(skb, off);
2732	if (skb_gro_header_hard(skb, hlen)) {
2733		th = skb_gro_header_slow(skb, hlen, off);
2734		if (unlikely(!th))
2735			goto out;
2736	}
2737
2738	thlen = th->doff * 4;
2739	if (thlen < sizeof(*th))
2740		goto out;
2741
2742	hlen = off + thlen;
2743	if (skb_gro_header_hard(skb, hlen)) {
2744		th = skb_gro_header_slow(skb, hlen, off);
2745		if (unlikely(!th))
2746			goto out;
2747	}
2748
2749	skb_gro_pull(skb, thlen);
2750
2751	len = skb_gro_len(skb);
2752	flags = tcp_flag_word(th);
2753
2754	for (; (p = *head); head = &p->next) {
2755		if (!NAPI_GRO_CB(p)->same_flow)
2756			continue;
2757
2758		th2 = tcp_hdr(p);
2759
2760		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2761			NAPI_GRO_CB(p)->same_flow = 0;
2762			continue;
2763		}
2764
2765		goto found;
2766	}
2767
2768	goto out_check_final;
2769
2770found:
2771	flush = NAPI_GRO_CB(p)->flush;
2772	flush |= flags & TCP_FLAG_CWR;
2773	flush |= (flags ^ tcp_flag_word(th2)) &
2774		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH);
2775	flush |= th->ack_seq ^ th2->ack_seq;
2776	for (i = sizeof(*th); i < thlen; i += 4)
2777		flush |= *(u32 *)((u8 *)th + i) ^
2778			 *(u32 *)((u8 *)th2 + i);
2779
2780	mss = skb_shinfo(p)->gso_size;
2781
2782	flush |= (len - 1) >= mss;
2783	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2784
2785	if (flush || skb_gro_receive(head, skb)) {
2786		mss = 1;
2787		goto out_check_final;
2788	}
2789
2790	p = *head;
2791	th2 = tcp_hdr(p);
2792	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2793
2794out_check_final:
2795	flush = len < mss;
2796	flush |= flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST |
2797			  TCP_FLAG_SYN | TCP_FLAG_FIN);
2798
2799	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2800		pp = head;
2801
2802out:
2803	NAPI_GRO_CB(skb)->flush |= flush;
2804
2805	return pp;
2806}
2807EXPORT_SYMBOL(tcp_gro_receive);
2808
2809int tcp_gro_complete(struct sk_buff *skb)
2810{
2811	struct tcphdr *th = tcp_hdr(skb);
2812
2813	skb->csum_start = skb_transport_header(skb) - skb->head;
2814	skb->csum_offset = offsetof(struct tcphdr, check);
2815	skb->ip_summed = CHECKSUM_PARTIAL;
2816
2817	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2818
2819	if (th->cwr)
2820		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2821
2822	return 0;
2823}
2824EXPORT_SYMBOL(tcp_gro_complete);
2825
2826#ifdef CONFIG_TCP_MD5SIG
2827static unsigned long tcp_md5sig_users;
2828static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool;
2829static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2830
2831static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool)
2832{
2833	int cpu;
2834	for_each_possible_cpu(cpu) {
2835		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2836		if (p) {
2837			if (p->md5_desc.tfm)
2838				crypto_free_hash(p->md5_desc.tfm);
2839			kfree(p);
2840			p = NULL;
2841		}
2842	}
2843	free_percpu(pool);
2844}
2845
2846void tcp_free_md5sig_pool(void)
2847{
2848	struct tcp_md5sig_pool * __percpu *pool = NULL;
2849
2850	spin_lock_bh(&tcp_md5sig_pool_lock);
2851	if (--tcp_md5sig_users == 0) {
2852		pool = tcp_md5sig_pool;
2853		tcp_md5sig_pool = NULL;
2854	}
2855	spin_unlock_bh(&tcp_md5sig_pool_lock);
2856	if (pool)
2857		__tcp_free_md5sig_pool(pool);
2858}
2859
2860EXPORT_SYMBOL(tcp_free_md5sig_pool);
2861
2862static struct tcp_md5sig_pool * __percpu *
2863__tcp_alloc_md5sig_pool(struct sock *sk)
2864{
2865	int cpu;
2866	struct tcp_md5sig_pool * __percpu *pool;
2867
2868	pool = alloc_percpu(struct tcp_md5sig_pool *);
2869	if (!pool)
2870		return NULL;
2871
2872	for_each_possible_cpu(cpu) {
2873		struct tcp_md5sig_pool *p;
2874		struct crypto_hash *hash;
2875
2876		p = kzalloc(sizeof(*p), sk->sk_allocation);
2877		if (!p)
2878			goto out_free;
2879		*per_cpu_ptr(pool, cpu) = p;
2880
2881		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2882		if (!hash || IS_ERR(hash))
2883			goto out_free;
2884
2885		p->md5_desc.tfm = hash;
2886	}
2887	return pool;
2888out_free:
2889	__tcp_free_md5sig_pool(pool);
2890	return NULL;
2891}
2892
2893struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2894{
2895	struct tcp_md5sig_pool * __percpu *pool;
2896	int alloc = 0;
2897
2898retry:
2899	spin_lock_bh(&tcp_md5sig_pool_lock);
2900	pool = tcp_md5sig_pool;
2901	if (tcp_md5sig_users++ == 0) {
2902		alloc = 1;
2903		spin_unlock_bh(&tcp_md5sig_pool_lock);
2904	} else if (!pool) {
2905		tcp_md5sig_users--;
2906		spin_unlock_bh(&tcp_md5sig_pool_lock);
2907		cpu_relax();
2908		goto retry;
2909	} else
2910		spin_unlock_bh(&tcp_md5sig_pool_lock);
2911
2912	if (alloc) {
2913		/* we cannot hold spinlock here because this may sleep. */
2914		struct tcp_md5sig_pool * __percpu *p;
2915
2916		p = __tcp_alloc_md5sig_pool(sk);
2917		spin_lock_bh(&tcp_md5sig_pool_lock);
2918		if (!p) {
2919			tcp_md5sig_users--;
2920			spin_unlock_bh(&tcp_md5sig_pool_lock);
2921			return NULL;
2922		}
2923		pool = tcp_md5sig_pool;
2924		if (pool) {
2925			/* oops, it has already been assigned. */
2926			spin_unlock_bh(&tcp_md5sig_pool_lock);
2927			__tcp_free_md5sig_pool(p);
2928		} else {
2929			tcp_md5sig_pool = pool = p;
2930			spin_unlock_bh(&tcp_md5sig_pool_lock);
2931		}
2932	}
2933	return pool;
2934}
2935
2936EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2937
2938struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2939{
2940	struct tcp_md5sig_pool * __percpu *p;
2941	spin_lock_bh(&tcp_md5sig_pool_lock);
2942	p = tcp_md5sig_pool;
2943	if (p)
2944		tcp_md5sig_users++;
2945	spin_unlock_bh(&tcp_md5sig_pool_lock);
2946	return (p ? *per_cpu_ptr(p, cpu) : NULL);
2947}
2948
2949EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2950
2951void __tcp_put_md5sig_pool(void)
2952{
2953	tcp_free_md5sig_pool();
2954}
2955
2956EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2957
2958int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2959			struct tcphdr *th)
2960{
2961	struct scatterlist sg;
2962	int err;
2963
2964	__sum16 old_checksum = th->check;
2965	th->check = 0;
2966	/* options aren't included in the hash */
2967	sg_init_one(&sg, th, sizeof(struct tcphdr));
2968	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
2969	th->check = old_checksum;
2970	return err;
2971}
2972
2973EXPORT_SYMBOL(tcp_md5_hash_header);
2974
2975int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2976			  struct sk_buff *skb, unsigned header_len)
2977{
2978	struct scatterlist sg;
2979	const struct tcphdr *tp = tcp_hdr(skb);
2980	struct hash_desc *desc = &hp->md5_desc;
2981	unsigned i;
2982	const unsigned head_data_len = skb_headlen(skb) > header_len ?
2983				       skb_headlen(skb) - header_len : 0;
2984	const struct skb_shared_info *shi = skb_shinfo(skb);
2985
2986	sg_init_table(&sg, 1);
2987
2988	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2989	if (crypto_hash_update(desc, &sg, head_data_len))
2990		return 1;
2991
2992	for (i = 0; i < shi->nr_frags; ++i) {
2993		const struct skb_frag_struct *f = &shi->frags[i];
2994		sg_set_page(&sg, f->page, f->size, f->page_offset);
2995		if (crypto_hash_update(desc, &sg, f->size))
2996			return 1;
2997	}
2998
2999	return 0;
3000}
3001
3002EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3003
3004int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
3005{
3006	struct scatterlist sg;
3007
3008	sg_init_one(&sg, key->key, key->keylen);
3009	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3010}
3011
3012EXPORT_SYMBOL(tcp_md5_hash_key);
3013
3014#endif
3015
3016/**
3017 * Each Responder maintains up to two secret values concurrently for
3018 * efficient secret rollover.  Each secret value has 4 states:
3019 *
3020 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3021 *    Generates new Responder-Cookies, but not yet used for primary
3022 *    verification.  This is a short-term state, typically lasting only
3023 *    one round trip time (RTT).
3024 *
3025 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3026 *    Used both for generation and primary verification.
3027 *
3028 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3029 *    Used for verification, until the first failure that can be
3030 *    verified by the newer Generating secret.  At that time, this
3031 *    cookie's state is changed to Secondary, and the Generating
3032 *    cookie's state is changed to Primary.  This is a short-term state,
3033 *    typically lasting only one round trip time (RTT).
3034 *
3035 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3036 *    Used for secondary verification, after primary verification
3037 *    failures.  This state lasts no more than twice the Maximum Segment
3038 *    Lifetime (2MSL).  Then, the secret is discarded.
3039 */
3040struct tcp_cookie_secret {
3041	/* The secret is divided into two parts.  The digest part is the
3042	 * equivalent of previously hashing a secret and saving the state,
3043	 * and serves as an initialization vector (IV).  The message part
3044	 * serves as the trailing secret.
3045	 */
3046	u32				secrets[COOKIE_WORKSPACE_WORDS];
3047	unsigned long			expires;
3048};
3049
3050#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3051#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3052#define TCP_SECRET_LIFE (HZ * 600)
3053
3054static struct tcp_cookie_secret tcp_secret_one;
3055static struct tcp_cookie_secret tcp_secret_two;
3056
3057/* Essentially a circular list, without dynamic allocation. */
3058static struct tcp_cookie_secret *tcp_secret_generating;
3059static struct tcp_cookie_secret *tcp_secret_primary;
3060static struct tcp_cookie_secret *tcp_secret_retiring;
3061static struct tcp_cookie_secret *tcp_secret_secondary;
3062
3063static DEFINE_SPINLOCK(tcp_secret_locker);
3064
3065/* Select a pseudo-random word in the cookie workspace.
3066 */
3067static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3068{
3069	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3070}
3071
3072/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3073 * Called in softirq context.
3074 * Returns: 0 for success.
3075 */
3076int tcp_cookie_generator(u32 *bakery)
3077{
3078	unsigned long jiffy = jiffies;
3079
3080	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3081		spin_lock_bh(&tcp_secret_locker);
3082		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3083			/* refreshed by another */
3084			memcpy(bakery,
3085			       &tcp_secret_generating->secrets[0],
3086			       COOKIE_WORKSPACE_WORDS);
3087		} else {
3088			/* still needs refreshing */
3089			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3090
3091			/* The first time, paranoia assumes that the
3092			 * randomization function isn't as strong.  But,
3093			 * this secret initialization is delayed until
3094			 * the last possible moment (packet arrival).
3095			 * Although that time is observable, it is
3096			 * unpredictably variable.  Mash in the most
3097			 * volatile clock bits available, and expire the
3098			 * secret extra quickly.
3099			 */
3100			if (unlikely(tcp_secret_primary->expires ==
3101				     tcp_secret_secondary->expires)) {
3102				struct timespec tv;
3103
3104				getnstimeofday(&tv);
3105				bakery[COOKIE_DIGEST_WORDS+0] ^=
3106					(u32)tv.tv_nsec;
3107
3108				tcp_secret_secondary->expires = jiffy
3109					+ TCP_SECRET_1MSL
3110					+ (0x0f & tcp_cookie_work(bakery, 0));
3111			} else {
3112				tcp_secret_secondary->expires = jiffy
3113					+ TCP_SECRET_LIFE
3114					+ (0xff & tcp_cookie_work(bakery, 1));
3115				tcp_secret_primary->expires = jiffy
3116					+ TCP_SECRET_2MSL
3117					+ (0x1f & tcp_cookie_work(bakery, 2));
3118			}
3119			memcpy(&tcp_secret_secondary->secrets[0],
3120			       bakery, COOKIE_WORKSPACE_WORDS);
3121
3122			rcu_assign_pointer(tcp_secret_generating,
3123					   tcp_secret_secondary);
3124			rcu_assign_pointer(tcp_secret_retiring,
3125					   tcp_secret_primary);
3126			/*
3127			 * Neither call_rcu() nor synchronize_rcu() needed.
3128			 * Retiring data is not freed.  It is replaced after
3129			 * further (locked) pointer updates, and a quiet time
3130			 * (minimum 1MSL, maximum LIFE - 2MSL).
3131			 */
3132		}
3133		spin_unlock_bh(&tcp_secret_locker);
3134	} else {
3135		rcu_read_lock_bh();
3136		memcpy(bakery,
3137		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3138		       COOKIE_WORKSPACE_WORDS);
3139		rcu_read_unlock_bh();
3140	}
3141	return 0;
3142}
3143EXPORT_SYMBOL(tcp_cookie_generator);
3144
3145void tcp_done(struct sock *sk)
3146{
3147	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3148		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3149
3150	tcp_set_state(sk, TCP_CLOSE);
3151	tcp_clear_xmit_timers(sk);
3152
3153	sk->sk_shutdown = SHUTDOWN_MASK;
3154
3155	if (!sock_flag(sk, SOCK_DEAD))
3156		sk->sk_state_change(sk);
3157	else
3158		inet_csk_destroy_sock(sk);
3159}
3160EXPORT_SYMBOL_GPL(tcp_done);
3161
3162extern struct tcp_congestion_ops tcp_reno;
3163
3164static __initdata unsigned long thash_entries;
3165static int __init set_thash_entries(char *str)
3166{
3167	if (!str)
3168		return 0;
3169	thash_entries = simple_strtoul(str, &str, 0);
3170	return 1;
3171}
3172__setup("thash_entries=", set_thash_entries);
3173
3174void __init tcp_init(void)
3175{
3176	struct sk_buff *skb = NULL;
3177	unsigned long nr_pages, limit;
3178	int order, i, max_share;
3179	unsigned long jiffy = jiffies;
3180
3181	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3182
3183	percpu_counter_init(&tcp_sockets_allocated, 0);
3184	percpu_counter_init(&tcp_orphan_count, 0);
3185	tcp_hashinfo.bind_bucket_cachep =
3186		kmem_cache_create("tcp_bind_bucket",
3187				  sizeof(struct inet_bind_bucket), 0,
3188				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3189
3190	/* Size and allocate the main established and bind bucket
3191	 * hash tables.
3192	 *
3193	 * The methodology is similar to that of the buffer cache.
3194	 */
3195	tcp_hashinfo.ehash =
3196		alloc_large_system_hash("TCP established",
3197					sizeof(struct inet_ehash_bucket),
3198					thash_entries,
3199					(totalram_pages >= 128 * 1024) ?
3200					13 : 15,
3201					0,
3202					NULL,
3203					&tcp_hashinfo.ehash_mask,
3204					thash_entries ? 0 : 512 * 1024);
3205	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3206		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3207		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3208	}
3209	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3210		panic("TCP: failed to alloc ehash_locks");
3211	tcp_hashinfo.bhash =
3212		alloc_large_system_hash("TCP bind",
3213					sizeof(struct inet_bind_hashbucket),
3214					tcp_hashinfo.ehash_mask + 1,
3215					(totalram_pages >= 128 * 1024) ?
3216					13 : 15,
3217					0,
3218					&tcp_hashinfo.bhash_size,
3219					NULL,
3220					64 * 1024);
3221	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
3222	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3223		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3224		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3225	}
3226
3227	/* Try to be a bit smarter and adjust defaults depending
3228	 * on available memory.
3229	 */
3230	for (order = 0; ((1 << order) << PAGE_SHIFT) <
3231			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
3232			order++)
3233		;
3234	if (order >= 4) {
3235		tcp_death_row.sysctl_max_tw_buckets = 180000;
3236		sysctl_tcp_max_orphans = 4096 << (order - 4);
3237		sysctl_max_syn_backlog = 1024;
3238	} else if (order < 3) {
3239		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
3240		sysctl_tcp_max_orphans >>= (3 - order);
3241		sysctl_max_syn_backlog = 128;
3242	}
3243
3244	/* Set the pressure threshold to be a fraction of global memory that
3245	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
3246	 * memory, with a floor of 128 pages.
3247	 */
3248	nr_pages = totalram_pages - totalhigh_pages;
3249	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
3250	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
3251	limit = max(limit, 128UL);
3252	sysctl_tcp_mem[0] = limit / 4 * 3;
3253	sysctl_tcp_mem[1] = limit;
3254	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3255
3256	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3257	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
3258	max_share = min(4UL*1024*1024, limit);
3259
3260	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3261	sysctl_tcp_wmem[1] = 16*1024;
3262	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3263
3264	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3265	sysctl_tcp_rmem[1] = 87380;
3266	sysctl_tcp_rmem[2] = max(87380, max_share);
3267
3268	printk(KERN_INFO "TCP: Hash tables configured "
3269	       "(established %u bind %u)\n",
3270	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3271
3272	tcp_register_congestion_control(&tcp_reno);
3273
3274	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3275	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3276	tcp_secret_one.expires = jiffy; /* past due */
3277	tcp_secret_two.expires = jiffy; /* past due */
3278	tcp_secret_generating = &tcp_secret_one;
3279	tcp_secret_primary = &tcp_secret_one;
3280	tcp_secret_retiring = &tcp_secret_two;
3281	tcp_secret_secondary = &tcp_secret_two;
3282}
3283
3284EXPORT_SYMBOL(tcp_close);
3285EXPORT_SYMBOL(tcp_disconnect);
3286EXPORT_SYMBOL(tcp_getsockopt);
3287EXPORT_SYMBOL(tcp_ioctl);
3288EXPORT_SYMBOL(tcp_poll);
3289EXPORT_SYMBOL(tcp_read_sock);
3290EXPORT_SYMBOL(tcp_recvmsg);
3291EXPORT_SYMBOL(tcp_sendmsg);
3292EXPORT_SYMBOL(tcp_splice_read);
3293EXPORT_SYMBOL(tcp_sendpage);
3294EXPORT_SYMBOL(tcp_setsockopt);
3295EXPORT_SYMBOL(tcp_shutdown);
3296