tcp.c revision 7945cc6464a4db0caf6dfacdfe05806051c4cb7b
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#include <linux/kernel.h>
249#include <linux/module.h>
250#include <linux/types.h>
251#include <linux/fcntl.h>
252#include <linux/poll.h>
253#include <linux/init.h>
254#include <linux/fs.h>
255#include <linux/skbuff.h>
256#include <linux/scatterlist.h>
257#include <linux/splice.h>
258#include <linux/net.h>
259#include <linux/socket.h>
260#include <linux/random.h>
261#include <linux/bootmem.h>
262#include <linux/highmem.h>
263#include <linux/swap.h>
264#include <linux/cache.h>
265#include <linux/err.h>
266#include <linux/crypto.h>
267
268#include <net/icmp.h>
269#include <net/tcp.h>
270#include <net/xfrm.h>
271#include <net/ip.h>
272#include <net/netdma.h>
273#include <net/sock.h>
274
275#include <asm/uaccess.h>
276#include <asm/ioctls.h>
277
278int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
279
280struct percpu_counter tcp_orphan_count;
281EXPORT_SYMBOL_GPL(tcp_orphan_count);
282
283int sysctl_tcp_mem[3] __read_mostly;
284int sysctl_tcp_wmem[3] __read_mostly;
285int sysctl_tcp_rmem[3] __read_mostly;
286
287EXPORT_SYMBOL(sysctl_tcp_mem);
288EXPORT_SYMBOL(sysctl_tcp_rmem);
289EXPORT_SYMBOL(sysctl_tcp_wmem);
290
291atomic_t tcp_memory_allocated;	/* Current allocated memory. */
292EXPORT_SYMBOL(tcp_memory_allocated);
293
294/*
295 * Current number of TCP sockets.
296 */
297struct percpu_counter tcp_sockets_allocated;
298EXPORT_SYMBOL(tcp_sockets_allocated);
299
300/*
301 * TCP splice context
302 */
303struct tcp_splice_state {
304	struct pipe_inode_info *pipe;
305	size_t len;
306	unsigned int flags;
307};
308
309/*
310 * Pressure flag: try to collapse.
311 * Technical note: it is used by multiple contexts non atomically.
312 * All the __sk_mem_schedule() is of this nature: accounting
313 * is strict, actions are advisory and have some latency.
314 */
315int tcp_memory_pressure __read_mostly;
316
317EXPORT_SYMBOL(tcp_memory_pressure);
318
319void tcp_enter_memory_pressure(struct sock *sk)
320{
321	if (!tcp_memory_pressure) {
322		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
323		tcp_memory_pressure = 1;
324	}
325}
326
327EXPORT_SYMBOL(tcp_enter_memory_pressure);
328
329/*
330 *	Wait for a TCP event.
331 *
332 *	Note that we don't need to lock the socket, as the upper poll layers
333 *	take care of normal races (between the test and the event) and we don't
334 *	go look at any of the socket buffers directly.
335 */
336unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
337{
338	unsigned int mask;
339	struct sock *sk = sock->sk;
340	struct tcp_sock *tp = tcp_sk(sk);
341
342	poll_wait(file, sk->sk_sleep, wait);
343	if (sk->sk_state == TCP_LISTEN)
344		return inet_csk_listen_poll(sk);
345
346	/* Socket is not locked. We are protected from async events
347	 * by poll logic and correct handling of state changes
348	 * made by other threads is impossible in any case.
349	 */
350
351	mask = 0;
352	if (sk->sk_err)
353		mask = POLLERR;
354
355	/*
356	 * POLLHUP is certainly not done right. But poll() doesn't
357	 * have a notion of HUP in just one direction, and for a
358	 * socket the read side is more interesting.
359	 *
360	 * Some poll() documentation says that POLLHUP is incompatible
361	 * with the POLLOUT/POLLWR flags, so somebody should check this
362	 * all. But careful, it tends to be safer to return too many
363	 * bits than too few, and you can easily break real applications
364	 * if you don't tell them that something has hung up!
365	 *
366	 * Check-me.
367	 *
368	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
369	 * our fs/select.c). It means that after we received EOF,
370	 * poll always returns immediately, making impossible poll() on write()
371	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
372	 * if and only if shutdown has been made in both directions.
373	 * Actually, it is interesting to look how Solaris and DUX
374	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
375	 * then we could set it on SND_SHUTDOWN. BTW examples given
376	 * in Stevens' books assume exactly this behaviour, it explains
377	 * why POLLHUP is incompatible with POLLOUT.	--ANK
378	 *
379	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
380	 * blocking on fresh not-connected or disconnected socket. --ANK
381	 */
382	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
383		mask |= POLLHUP;
384	if (sk->sk_shutdown & RCV_SHUTDOWN)
385		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
386
387	/* Connected? */
388	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
389		int target = sock_rcvlowat(sk, 0, INT_MAX);
390
391		if (tp->urg_seq == tp->copied_seq &&
392		    !sock_flag(sk, SOCK_URGINLINE) &&
393		    tp->urg_data)
394			target--;
395
396		/* Potential race condition. If read of tp below will
397		 * escape above sk->sk_state, we can be illegally awaken
398		 * in SYN_* states. */
399		if (tp->rcv_nxt - tp->copied_seq >= target)
400			mask |= POLLIN | POLLRDNORM;
401
402		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
403			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
404				mask |= POLLOUT | POLLWRNORM;
405			} else {  /* send SIGIO later */
406				set_bit(SOCK_ASYNC_NOSPACE,
407					&sk->sk_socket->flags);
408				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
409
410				/* Race breaker. If space is freed after
411				 * wspace test but before the flags are set,
412				 * IO signal will be lost.
413				 */
414				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
415					mask |= POLLOUT | POLLWRNORM;
416			}
417		}
418
419		if (tp->urg_data & TCP_URG_VALID)
420			mask |= POLLPRI;
421	}
422	return mask;
423}
424
425int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
426{
427	struct tcp_sock *tp = tcp_sk(sk);
428	int answ;
429
430	switch (cmd) {
431	case SIOCINQ:
432		if (sk->sk_state == TCP_LISTEN)
433			return -EINVAL;
434
435		lock_sock(sk);
436		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
437			answ = 0;
438		else if (sock_flag(sk, SOCK_URGINLINE) ||
439			 !tp->urg_data ||
440			 before(tp->urg_seq, tp->copied_seq) ||
441			 !before(tp->urg_seq, tp->rcv_nxt)) {
442			answ = tp->rcv_nxt - tp->copied_seq;
443
444			/* Subtract 1, if FIN is in queue. */
445			if (answ && !skb_queue_empty(&sk->sk_receive_queue))
446				answ -=
447		       tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
448		} else
449			answ = tp->urg_seq - tp->copied_seq;
450		release_sock(sk);
451		break;
452	case SIOCATMARK:
453		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
454		break;
455	case SIOCOUTQ:
456		if (sk->sk_state == TCP_LISTEN)
457			return -EINVAL;
458
459		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
460			answ = 0;
461		else
462			answ = tp->write_seq - tp->snd_una;
463		break;
464	default:
465		return -ENOIOCTLCMD;
466	}
467
468	return put_user(answ, (int __user *)arg);
469}
470
471static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
472{
473	TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
474	tp->pushed_seq = tp->write_seq;
475}
476
477static inline int forced_push(struct tcp_sock *tp)
478{
479	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
480}
481
482static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
483{
484	struct tcp_sock *tp = tcp_sk(sk);
485	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
486
487	skb->csum    = 0;
488	tcb->seq     = tcb->end_seq = tp->write_seq;
489	tcb->flags   = TCPCB_FLAG_ACK;
490	tcb->sacked  = 0;
491	skb_header_release(skb);
492	tcp_add_write_queue_tail(sk, skb);
493	sk->sk_wmem_queued += skb->truesize;
494	sk_mem_charge(sk, skb->truesize);
495	if (tp->nonagle & TCP_NAGLE_PUSH)
496		tp->nonagle &= ~TCP_NAGLE_PUSH;
497}
498
499static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
500				struct sk_buff *skb)
501{
502	if (flags & MSG_OOB)
503		tp->snd_up = tp->write_seq;
504}
505
506static inline void tcp_push(struct sock *sk, int flags, int mss_now,
507			    int nonagle)
508{
509	struct tcp_sock *tp = tcp_sk(sk);
510
511	if (tcp_send_head(sk)) {
512		struct sk_buff *skb = tcp_write_queue_tail(sk);
513		if (!(flags & MSG_MORE) || forced_push(tp))
514			tcp_mark_push(tp, skb);
515		tcp_mark_urg(tp, flags, skb);
516		__tcp_push_pending_frames(sk, mss_now,
517					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
518	}
519}
520
521static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
522				unsigned int offset, size_t len)
523{
524	struct tcp_splice_state *tss = rd_desc->arg.data;
525
526	return skb_splice_bits(skb, offset, tss->pipe, tss->len, tss->flags);
527}
528
529static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
530{
531	/* Store TCP splice context information in read_descriptor_t. */
532	read_descriptor_t rd_desc = {
533		.arg.data = tss,
534	};
535
536	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
537}
538
539/**
540 *  tcp_splice_read - splice data from TCP socket to a pipe
541 * @sock:	socket to splice from
542 * @ppos:	position (not valid)
543 * @pipe:	pipe to splice to
544 * @len:	number of bytes to splice
545 * @flags:	splice modifier flags
546 *
547 * Description:
548 *    Will read pages from given socket and fill them into a pipe.
549 *
550 **/
551ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
552			struct pipe_inode_info *pipe, size_t len,
553			unsigned int flags)
554{
555	struct sock *sk = sock->sk;
556	struct tcp_splice_state tss = {
557		.pipe = pipe,
558		.len = len,
559		.flags = flags,
560	};
561	long timeo;
562	ssize_t spliced;
563	int ret;
564
565	/*
566	 * We can't seek on a socket input
567	 */
568	if (unlikely(*ppos))
569		return -ESPIPE;
570
571	ret = spliced = 0;
572
573	lock_sock(sk);
574
575	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
576	while (tss.len) {
577		ret = __tcp_splice_read(sk, &tss);
578		if (ret < 0)
579			break;
580		else if (!ret) {
581			if (spliced)
582				break;
583			if (sock_flag(sk, SOCK_DONE))
584				break;
585			if (sk->sk_err) {
586				ret = sock_error(sk);
587				break;
588			}
589			if (sk->sk_shutdown & RCV_SHUTDOWN)
590				break;
591			if (sk->sk_state == TCP_CLOSE) {
592				/*
593				 * This occurs when user tries to read
594				 * from never connected socket.
595				 */
596				if (!sock_flag(sk, SOCK_DONE))
597					ret = -ENOTCONN;
598				break;
599			}
600			if (!timeo) {
601				ret = -EAGAIN;
602				break;
603			}
604			sk_wait_data(sk, &timeo);
605			if (signal_pending(current)) {
606				ret = sock_intr_errno(timeo);
607				break;
608			}
609			continue;
610		}
611		tss.len -= ret;
612		spliced += ret;
613
614		release_sock(sk);
615		lock_sock(sk);
616
617		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
618		    (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo ||
619		    signal_pending(current))
620			break;
621	}
622
623	release_sock(sk);
624
625	if (spliced)
626		return spliced;
627
628	return ret;
629}
630
631struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
632{
633	struct sk_buff *skb;
634
635	/* The TCP header must be at least 32-bit aligned.  */
636	size = ALIGN(size, 4);
637
638	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
639	if (skb) {
640		if (sk_wmem_schedule(sk, skb->truesize)) {
641			/*
642			 * Make sure that we have exactly size bytes
643			 * available to the caller, no more, no less.
644			 */
645			skb_reserve(skb, skb_tailroom(skb) - size);
646			return skb;
647		}
648		__kfree_skb(skb);
649	} else {
650		sk->sk_prot->enter_memory_pressure(sk);
651		sk_stream_moderate_sndbuf(sk);
652	}
653	return NULL;
654}
655
656static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
657			 size_t psize, int flags)
658{
659	struct tcp_sock *tp = tcp_sk(sk);
660	int mss_now, size_goal;
661	int err;
662	ssize_t copied;
663	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
664
665	/* Wait for a connection to finish. */
666	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
667		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
668			goto out_err;
669
670	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
671
672	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
673	size_goal = tp->xmit_size_goal;
674	copied = 0;
675
676	err = -EPIPE;
677	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
678		goto do_error;
679
680	while (psize > 0) {
681		struct sk_buff *skb = tcp_write_queue_tail(sk);
682		struct page *page = pages[poffset / PAGE_SIZE];
683		int copy, i, can_coalesce;
684		int offset = poffset % PAGE_SIZE;
685		int size = min_t(size_t, psize, PAGE_SIZE - offset);
686
687		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
688new_segment:
689			if (!sk_stream_memory_free(sk))
690				goto wait_for_sndbuf;
691
692			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
693			if (!skb)
694				goto wait_for_memory;
695
696			skb_entail(sk, skb);
697			copy = size_goal;
698		}
699
700		if (copy > size)
701			copy = size;
702
703		i = skb_shinfo(skb)->nr_frags;
704		can_coalesce = skb_can_coalesce(skb, i, page, offset);
705		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
706			tcp_mark_push(tp, skb);
707			goto new_segment;
708		}
709		if (!sk_wmem_schedule(sk, copy))
710			goto wait_for_memory;
711
712		if (can_coalesce) {
713			skb_shinfo(skb)->frags[i - 1].size += copy;
714		} else {
715			get_page(page);
716			skb_fill_page_desc(skb, i, page, offset, copy);
717		}
718
719		skb->len += copy;
720		skb->data_len += copy;
721		skb->truesize += copy;
722		sk->sk_wmem_queued += copy;
723		sk_mem_charge(sk, copy);
724		skb->ip_summed = CHECKSUM_PARTIAL;
725		tp->write_seq += copy;
726		TCP_SKB_CB(skb)->end_seq += copy;
727		skb_shinfo(skb)->gso_segs = 0;
728
729		if (!copied)
730			TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
731
732		copied += copy;
733		poffset += copy;
734		if (!(psize -= copy))
735			goto out;
736
737		if (skb->len < size_goal || (flags & MSG_OOB))
738			continue;
739
740		if (forced_push(tp)) {
741			tcp_mark_push(tp, skb);
742			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
743		} else if (skb == tcp_send_head(sk))
744			tcp_push_one(sk, mss_now);
745		continue;
746
747wait_for_sndbuf:
748		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
749wait_for_memory:
750		if (copied)
751			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
752
753		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
754			goto do_error;
755
756		mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
757		size_goal = tp->xmit_size_goal;
758	}
759
760out:
761	if (copied)
762		tcp_push(sk, flags, mss_now, tp->nonagle);
763	return copied;
764
765do_error:
766	if (copied)
767		goto out;
768out_err:
769	return sk_stream_error(sk, flags, err);
770}
771
772ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
773		     size_t size, int flags)
774{
775	ssize_t res;
776	struct sock *sk = sock->sk;
777
778	if (!(sk->sk_route_caps & NETIF_F_SG) ||
779	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
780		return sock_no_sendpage(sock, page, offset, size, flags);
781
782	lock_sock(sk);
783	TCP_CHECK_TIMER(sk);
784	res = do_tcp_sendpages(sk, &page, offset, size, flags);
785	TCP_CHECK_TIMER(sk);
786	release_sock(sk);
787	return res;
788}
789
790#define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
791#define TCP_OFF(sk)	(sk->sk_sndmsg_off)
792
793static inline int select_size(struct sock *sk)
794{
795	struct tcp_sock *tp = tcp_sk(sk);
796	int tmp = tp->mss_cache;
797
798	if (sk->sk_route_caps & NETIF_F_SG) {
799		if (sk_can_gso(sk))
800			tmp = 0;
801		else {
802			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
803
804			if (tmp >= pgbreak &&
805			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
806				tmp = pgbreak;
807		}
808	}
809
810	return tmp;
811}
812
813int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
814		size_t size)
815{
816	struct sock *sk = sock->sk;
817	struct iovec *iov;
818	struct tcp_sock *tp = tcp_sk(sk);
819	struct sk_buff *skb;
820	int iovlen, flags;
821	int mss_now, size_goal;
822	int err, copied;
823	long timeo;
824
825	lock_sock(sk);
826	TCP_CHECK_TIMER(sk);
827
828	flags = msg->msg_flags;
829	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
830
831	/* Wait for a connection to finish. */
832	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
833		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
834			goto out_err;
835
836	/* This should be in poll */
837	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
838
839	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
840	size_goal = tp->xmit_size_goal;
841
842	/* Ok commence sending. */
843	iovlen = msg->msg_iovlen;
844	iov = msg->msg_iov;
845	copied = 0;
846
847	err = -EPIPE;
848	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
849		goto do_error;
850
851	while (--iovlen >= 0) {
852		int seglen = iov->iov_len;
853		unsigned char __user *from = iov->iov_base;
854
855		iov++;
856
857		while (seglen > 0) {
858			int copy;
859
860			skb = tcp_write_queue_tail(sk);
861
862			if (!tcp_send_head(sk) ||
863			    (copy = size_goal - skb->len) <= 0) {
864
865new_segment:
866				/* Allocate new segment. If the interface is SG,
867				 * allocate skb fitting to single page.
868				 */
869				if (!sk_stream_memory_free(sk))
870					goto wait_for_sndbuf;
871
872				skb = sk_stream_alloc_skb(sk, select_size(sk),
873						sk->sk_allocation);
874				if (!skb)
875					goto wait_for_memory;
876
877				/*
878				 * Check whether we can use HW checksum.
879				 */
880				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
881					skb->ip_summed = CHECKSUM_PARTIAL;
882
883				skb_entail(sk, skb);
884				copy = size_goal;
885			}
886
887			/* Try to append data to the end of skb. */
888			if (copy > seglen)
889				copy = seglen;
890
891			/* Where to copy to? */
892			if (skb_tailroom(skb) > 0) {
893				/* We have some space in skb head. Superb! */
894				if (copy > skb_tailroom(skb))
895					copy = skb_tailroom(skb);
896				if ((err = skb_add_data(skb, from, copy)) != 0)
897					goto do_fault;
898			} else {
899				int merge = 0;
900				int i = skb_shinfo(skb)->nr_frags;
901				struct page *page = TCP_PAGE(sk);
902				int off = TCP_OFF(sk);
903
904				if (skb_can_coalesce(skb, i, page, off) &&
905				    off != PAGE_SIZE) {
906					/* We can extend the last page
907					 * fragment. */
908					merge = 1;
909				} else if (i == MAX_SKB_FRAGS ||
910					   (!i &&
911					   !(sk->sk_route_caps & NETIF_F_SG))) {
912					/* Need to add new fragment and cannot
913					 * do this because interface is non-SG,
914					 * or because all the page slots are
915					 * busy. */
916					tcp_mark_push(tp, skb);
917					goto new_segment;
918				} else if (page) {
919					if (off == PAGE_SIZE) {
920						put_page(page);
921						TCP_PAGE(sk) = page = NULL;
922						off = 0;
923					}
924				} else
925					off = 0;
926
927				if (copy > PAGE_SIZE - off)
928					copy = PAGE_SIZE - off;
929
930				if (!sk_wmem_schedule(sk, copy))
931					goto wait_for_memory;
932
933				if (!page) {
934					/* Allocate new cache page. */
935					if (!(page = sk_stream_alloc_page(sk)))
936						goto wait_for_memory;
937				}
938
939				/* Time to copy data. We are close to
940				 * the end! */
941				err = skb_copy_to_page(sk, from, skb, page,
942						       off, copy);
943				if (err) {
944					/* If this page was new, give it to the
945					 * socket so it does not get leaked.
946					 */
947					if (!TCP_PAGE(sk)) {
948						TCP_PAGE(sk) = page;
949						TCP_OFF(sk) = 0;
950					}
951					goto do_error;
952				}
953
954				/* Update the skb. */
955				if (merge) {
956					skb_shinfo(skb)->frags[i - 1].size +=
957									copy;
958				} else {
959					skb_fill_page_desc(skb, i, page, off, copy);
960					if (TCP_PAGE(sk)) {
961						get_page(page);
962					} else if (off + copy < PAGE_SIZE) {
963						get_page(page);
964						TCP_PAGE(sk) = page;
965					}
966				}
967
968				TCP_OFF(sk) = off + copy;
969			}
970
971			if (!copied)
972				TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
973
974			tp->write_seq += copy;
975			TCP_SKB_CB(skb)->end_seq += copy;
976			skb_shinfo(skb)->gso_segs = 0;
977
978			from += copy;
979			copied += copy;
980			if ((seglen -= copy) == 0 && iovlen == 0)
981				goto out;
982
983			if (skb->len < size_goal || (flags & MSG_OOB))
984				continue;
985
986			if (forced_push(tp)) {
987				tcp_mark_push(tp, skb);
988				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
989			} else if (skb == tcp_send_head(sk))
990				tcp_push_one(sk, mss_now);
991			continue;
992
993wait_for_sndbuf:
994			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
995wait_for_memory:
996			if (copied)
997				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
998
999			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1000				goto do_error;
1001
1002			mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
1003			size_goal = tp->xmit_size_goal;
1004		}
1005	}
1006
1007out:
1008	if (copied)
1009		tcp_push(sk, flags, mss_now, tp->nonagle);
1010	TCP_CHECK_TIMER(sk);
1011	release_sock(sk);
1012	return copied;
1013
1014do_fault:
1015	if (!skb->len) {
1016		tcp_unlink_write_queue(skb, sk);
1017		/* It is the one place in all of TCP, except connection
1018		 * reset, where we can be unlinking the send_head.
1019		 */
1020		tcp_check_send_head(sk, skb);
1021		sk_wmem_free_skb(sk, skb);
1022	}
1023
1024do_error:
1025	if (copied)
1026		goto out;
1027out_err:
1028	err = sk_stream_error(sk, flags, err);
1029	TCP_CHECK_TIMER(sk);
1030	release_sock(sk);
1031	return err;
1032}
1033
1034/*
1035 *	Handle reading urgent data. BSD has very simple semantics for
1036 *	this, no blocking and very strange errors 8)
1037 */
1038
1039static int tcp_recv_urg(struct sock *sk, long timeo,
1040			struct msghdr *msg, int len, int flags,
1041			int *addr_len)
1042{
1043	struct tcp_sock *tp = tcp_sk(sk);
1044
1045	/* No URG data to read. */
1046	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1047	    tp->urg_data == TCP_URG_READ)
1048		return -EINVAL;	/* Yes this is right ! */
1049
1050	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1051		return -ENOTCONN;
1052
1053	if (tp->urg_data & TCP_URG_VALID) {
1054		int err = 0;
1055		char c = tp->urg_data;
1056
1057		if (!(flags & MSG_PEEK))
1058			tp->urg_data = TCP_URG_READ;
1059
1060		/* Read urgent data. */
1061		msg->msg_flags |= MSG_OOB;
1062
1063		if (len > 0) {
1064			if (!(flags & MSG_TRUNC))
1065				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1066			len = 1;
1067		} else
1068			msg->msg_flags |= MSG_TRUNC;
1069
1070		return err ? -EFAULT : len;
1071	}
1072
1073	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1074		return 0;
1075
1076	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1077	 * the available implementations agree in this case:
1078	 * this call should never block, independent of the
1079	 * blocking state of the socket.
1080	 * Mike <pall@rz.uni-karlsruhe.de>
1081	 */
1082	return -EAGAIN;
1083}
1084
1085/* Clean up the receive buffer for full frames taken by the user,
1086 * then send an ACK if necessary.  COPIED is the number of bytes
1087 * tcp_recvmsg has given to the user so far, it speeds up the
1088 * calculation of whether or not we must ACK for the sake of
1089 * a window update.
1090 */
1091void tcp_cleanup_rbuf(struct sock *sk, int copied)
1092{
1093	struct tcp_sock *tp = tcp_sk(sk);
1094	int time_to_ack = 0;
1095
1096#if TCP_DEBUG
1097	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1098
1099	WARN_ON(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1100#endif
1101
1102	if (inet_csk_ack_scheduled(sk)) {
1103		const struct inet_connection_sock *icsk = inet_csk(sk);
1104		   /* Delayed ACKs frequently hit locked sockets during bulk
1105		    * receive. */
1106		if (icsk->icsk_ack.blocked ||
1107		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1108		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1109		    /*
1110		     * If this read emptied read buffer, we send ACK, if
1111		     * connection is not bidirectional, user drained
1112		     * receive buffer and there was a small segment
1113		     * in queue.
1114		     */
1115		    (copied > 0 &&
1116		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1117		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1118		       !icsk->icsk_ack.pingpong)) &&
1119		      !atomic_read(&sk->sk_rmem_alloc)))
1120			time_to_ack = 1;
1121	}
1122
1123	/* We send an ACK if we can now advertise a non-zero window
1124	 * which has been raised "significantly".
1125	 *
1126	 * Even if window raised up to infinity, do not send window open ACK
1127	 * in states, where we will not receive more. It is useless.
1128	 */
1129	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1130		__u32 rcv_window_now = tcp_receive_window(tp);
1131
1132		/* Optimize, __tcp_select_window() is not cheap. */
1133		if (2*rcv_window_now <= tp->window_clamp) {
1134			__u32 new_window = __tcp_select_window(sk);
1135
1136			/* Send ACK now, if this read freed lots of space
1137			 * in our buffer. Certainly, new_window is new window.
1138			 * We can advertise it now, if it is not less than current one.
1139			 * "Lots" means "at least twice" here.
1140			 */
1141			if (new_window && new_window >= 2 * rcv_window_now)
1142				time_to_ack = 1;
1143		}
1144	}
1145	if (time_to_ack)
1146		tcp_send_ack(sk);
1147}
1148
1149static void tcp_prequeue_process(struct sock *sk)
1150{
1151	struct sk_buff *skb;
1152	struct tcp_sock *tp = tcp_sk(sk);
1153
1154	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1155
1156	/* RX process wants to run with disabled BHs, though it is not
1157	 * necessary */
1158	local_bh_disable();
1159	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1160		sk_backlog_rcv(sk, skb);
1161	local_bh_enable();
1162
1163	/* Clear memory counter. */
1164	tp->ucopy.memory = 0;
1165}
1166
1167static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1168{
1169	struct sk_buff *skb;
1170	u32 offset;
1171
1172	skb_queue_walk(&sk->sk_receive_queue, skb) {
1173		offset = seq - TCP_SKB_CB(skb)->seq;
1174		if (tcp_hdr(skb)->syn)
1175			offset--;
1176		if (offset < skb->len || tcp_hdr(skb)->fin) {
1177			*off = offset;
1178			return skb;
1179		}
1180	}
1181	return NULL;
1182}
1183
1184/*
1185 * This routine provides an alternative to tcp_recvmsg() for routines
1186 * that would like to handle copying from skbuffs directly in 'sendfile'
1187 * fashion.
1188 * Note:
1189 *	- It is assumed that the socket was locked by the caller.
1190 *	- The routine does not block.
1191 *	- At present, there is no support for reading OOB data
1192 *	  or for 'peeking' the socket using this routine
1193 *	  (although both would be easy to implement).
1194 */
1195int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1196		  sk_read_actor_t recv_actor)
1197{
1198	struct sk_buff *skb;
1199	struct tcp_sock *tp = tcp_sk(sk);
1200	u32 seq = tp->copied_seq;
1201	u32 offset;
1202	int copied = 0;
1203
1204	if (sk->sk_state == TCP_LISTEN)
1205		return -ENOTCONN;
1206	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1207		if (offset < skb->len) {
1208			int used;
1209			size_t len;
1210
1211			len = skb->len - offset;
1212			/* Stop reading if we hit a patch of urgent data */
1213			if (tp->urg_data) {
1214				u32 urg_offset = tp->urg_seq - seq;
1215				if (urg_offset < len)
1216					len = urg_offset;
1217				if (!len)
1218					break;
1219			}
1220			used = recv_actor(desc, skb, offset, len);
1221			if (used < 0) {
1222				if (!copied)
1223					copied = used;
1224				break;
1225			} else if (used <= len) {
1226				seq += used;
1227				copied += used;
1228				offset += used;
1229			}
1230			/*
1231			 * If recv_actor drops the lock (e.g. TCP splice
1232			 * receive) the skb pointer might be invalid when
1233			 * getting here: tcp_collapse might have deleted it
1234			 * while aggregating skbs from the socket queue.
1235			 */
1236			skb = tcp_recv_skb(sk, seq-1, &offset);
1237			if (!skb || (offset+1 != skb->len))
1238				break;
1239		}
1240		if (tcp_hdr(skb)->fin) {
1241			sk_eat_skb(sk, skb, 0);
1242			++seq;
1243			break;
1244		}
1245		sk_eat_skb(sk, skb, 0);
1246		if (!desc->count)
1247			break;
1248	}
1249	tp->copied_seq = seq;
1250
1251	tcp_rcv_space_adjust(sk);
1252
1253	/* Clean up data we have read: This will do ACK frames. */
1254	if (copied > 0)
1255		tcp_cleanup_rbuf(sk, copied);
1256	return copied;
1257}
1258
1259/*
1260 *	This routine copies from a sock struct into the user buffer.
1261 *
1262 *	Technical note: in 2.3 we work on _locked_ socket, so that
1263 *	tricks with *seq access order and skb->users are not required.
1264 *	Probably, code can be easily improved even more.
1265 */
1266
1267int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1268		size_t len, int nonblock, int flags, int *addr_len)
1269{
1270	struct tcp_sock *tp = tcp_sk(sk);
1271	int copied = 0;
1272	u32 peek_seq;
1273	u32 *seq;
1274	unsigned long used;
1275	int err;
1276	int target;		/* Read at least this many bytes */
1277	long timeo;
1278	struct task_struct *user_recv = NULL;
1279	int copied_early = 0;
1280	struct sk_buff *skb;
1281
1282	lock_sock(sk);
1283
1284	TCP_CHECK_TIMER(sk);
1285
1286	err = -ENOTCONN;
1287	if (sk->sk_state == TCP_LISTEN)
1288		goto out;
1289
1290	timeo = sock_rcvtimeo(sk, nonblock);
1291
1292	/* Urgent data needs to be handled specially. */
1293	if (flags & MSG_OOB)
1294		goto recv_urg;
1295
1296	seq = &tp->copied_seq;
1297	if (flags & MSG_PEEK) {
1298		peek_seq = tp->copied_seq;
1299		seq = &peek_seq;
1300	}
1301
1302	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1303
1304#ifdef CONFIG_NET_DMA
1305	tp->ucopy.dma_chan = NULL;
1306	preempt_disable();
1307	skb = skb_peek_tail(&sk->sk_receive_queue);
1308	{
1309		int available = 0;
1310
1311		if (skb)
1312			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1313		if ((available < target) &&
1314		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1315		    !sysctl_tcp_low_latency &&
1316		    __get_cpu_var(softnet_data).net_dma) {
1317			preempt_enable_no_resched();
1318			tp->ucopy.pinned_list =
1319					dma_pin_iovec_pages(msg->msg_iov, len);
1320		} else {
1321			preempt_enable_no_resched();
1322		}
1323	}
1324#endif
1325
1326	do {
1327		u32 offset;
1328
1329		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1330		if (tp->urg_data && tp->urg_seq == *seq) {
1331			if (copied)
1332				break;
1333			if (signal_pending(current)) {
1334				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1335				break;
1336			}
1337		}
1338
1339		/* Next get a buffer. */
1340
1341		skb = skb_peek(&sk->sk_receive_queue);
1342		do {
1343			if (!skb)
1344				break;
1345
1346			/* Now that we have two receive queues this
1347			 * shouldn't happen.
1348			 */
1349			if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1350				printk(KERN_INFO "recvmsg bug: copied %X "
1351				       "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1352				break;
1353			}
1354			offset = *seq - TCP_SKB_CB(skb)->seq;
1355			if (tcp_hdr(skb)->syn)
1356				offset--;
1357			if (offset < skb->len)
1358				goto found_ok_skb;
1359			if (tcp_hdr(skb)->fin)
1360				goto found_fin_ok;
1361			WARN_ON(!(flags & MSG_PEEK));
1362			skb = skb->next;
1363		} while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1364
1365		/* Well, if we have backlog, try to process it now yet. */
1366
1367		if (copied >= target && !sk->sk_backlog.tail)
1368			break;
1369
1370		if (copied) {
1371			if (sk->sk_err ||
1372			    sk->sk_state == TCP_CLOSE ||
1373			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1374			    !timeo ||
1375			    signal_pending(current))
1376				break;
1377		} else {
1378			if (sock_flag(sk, SOCK_DONE))
1379				break;
1380
1381			if (sk->sk_err) {
1382				copied = sock_error(sk);
1383				break;
1384			}
1385
1386			if (sk->sk_shutdown & RCV_SHUTDOWN)
1387				break;
1388
1389			if (sk->sk_state == TCP_CLOSE) {
1390				if (!sock_flag(sk, SOCK_DONE)) {
1391					/* This occurs when user tries to read
1392					 * from never connected socket.
1393					 */
1394					copied = -ENOTCONN;
1395					break;
1396				}
1397				break;
1398			}
1399
1400			if (!timeo) {
1401				copied = -EAGAIN;
1402				break;
1403			}
1404
1405			if (signal_pending(current)) {
1406				copied = sock_intr_errno(timeo);
1407				break;
1408			}
1409		}
1410
1411		tcp_cleanup_rbuf(sk, copied);
1412
1413		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1414			/* Install new reader */
1415			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1416				user_recv = current;
1417				tp->ucopy.task = user_recv;
1418				tp->ucopy.iov = msg->msg_iov;
1419			}
1420
1421			tp->ucopy.len = len;
1422
1423			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1424				!(flags & (MSG_PEEK | MSG_TRUNC)));
1425
1426			/* Ugly... If prequeue is not empty, we have to
1427			 * process it before releasing socket, otherwise
1428			 * order will be broken at second iteration.
1429			 * More elegant solution is required!!!
1430			 *
1431			 * Look: we have the following (pseudo)queues:
1432			 *
1433			 * 1. packets in flight
1434			 * 2. backlog
1435			 * 3. prequeue
1436			 * 4. receive_queue
1437			 *
1438			 * Each queue can be processed only if the next ones
1439			 * are empty. At this point we have empty receive_queue.
1440			 * But prequeue _can_ be not empty after 2nd iteration,
1441			 * when we jumped to start of loop because backlog
1442			 * processing added something to receive_queue.
1443			 * We cannot release_sock(), because backlog contains
1444			 * packets arrived _after_ prequeued ones.
1445			 *
1446			 * Shortly, algorithm is clear --- to process all
1447			 * the queues in order. We could make it more directly,
1448			 * requeueing packets from backlog to prequeue, if
1449			 * is not empty. It is more elegant, but eats cycles,
1450			 * unfortunately.
1451			 */
1452			if (!skb_queue_empty(&tp->ucopy.prequeue))
1453				goto do_prequeue;
1454
1455			/* __ Set realtime policy in scheduler __ */
1456		}
1457
1458		if (copied >= target) {
1459			/* Do not sleep, just process backlog. */
1460			release_sock(sk);
1461			lock_sock(sk);
1462		} else
1463			sk_wait_data(sk, &timeo);
1464
1465#ifdef CONFIG_NET_DMA
1466		tp->ucopy.wakeup = 0;
1467#endif
1468
1469		if (user_recv) {
1470			int chunk;
1471
1472			/* __ Restore normal policy in scheduler __ */
1473
1474			if ((chunk = len - tp->ucopy.len) != 0) {
1475				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1476				len -= chunk;
1477				copied += chunk;
1478			}
1479
1480			if (tp->rcv_nxt == tp->copied_seq &&
1481			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1482do_prequeue:
1483				tcp_prequeue_process(sk);
1484
1485				if ((chunk = len - tp->ucopy.len) != 0) {
1486					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1487					len -= chunk;
1488					copied += chunk;
1489				}
1490			}
1491		}
1492		if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1493			if (net_ratelimit())
1494				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1495				       current->comm, task_pid_nr(current));
1496			peek_seq = tp->copied_seq;
1497		}
1498		continue;
1499
1500	found_ok_skb:
1501		/* Ok so how much can we use? */
1502		used = skb->len - offset;
1503		if (len < used)
1504			used = len;
1505
1506		/* Do we have urgent data here? */
1507		if (tp->urg_data) {
1508			u32 urg_offset = tp->urg_seq - *seq;
1509			if (urg_offset < used) {
1510				if (!urg_offset) {
1511					if (!sock_flag(sk, SOCK_URGINLINE)) {
1512						++*seq;
1513						offset++;
1514						used--;
1515						if (!used)
1516							goto skip_copy;
1517					}
1518				} else
1519					used = urg_offset;
1520			}
1521		}
1522
1523		if (!(flags & MSG_TRUNC)) {
1524#ifdef CONFIG_NET_DMA
1525			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1526				tp->ucopy.dma_chan = get_softnet_dma();
1527
1528			if (tp->ucopy.dma_chan) {
1529				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1530					tp->ucopy.dma_chan, skb, offset,
1531					msg->msg_iov, used,
1532					tp->ucopy.pinned_list);
1533
1534				if (tp->ucopy.dma_cookie < 0) {
1535
1536					printk(KERN_ALERT "dma_cookie < 0\n");
1537
1538					/* Exception. Bailout! */
1539					if (!copied)
1540						copied = -EFAULT;
1541					break;
1542				}
1543				if ((offset + used) == skb->len)
1544					copied_early = 1;
1545
1546			} else
1547#endif
1548			{
1549				err = skb_copy_datagram_iovec(skb, offset,
1550						msg->msg_iov, used);
1551				if (err) {
1552					/* Exception. Bailout! */
1553					if (!copied)
1554						copied = -EFAULT;
1555					break;
1556				}
1557			}
1558		}
1559
1560		*seq += used;
1561		copied += used;
1562		len -= used;
1563
1564		tcp_rcv_space_adjust(sk);
1565
1566skip_copy:
1567		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1568			tp->urg_data = 0;
1569			tcp_fast_path_check(sk);
1570		}
1571		if (used + offset < skb->len)
1572			continue;
1573
1574		if (tcp_hdr(skb)->fin)
1575			goto found_fin_ok;
1576		if (!(flags & MSG_PEEK)) {
1577			sk_eat_skb(sk, skb, copied_early);
1578			copied_early = 0;
1579		}
1580		continue;
1581
1582	found_fin_ok:
1583		/* Process the FIN. */
1584		++*seq;
1585		if (!(flags & MSG_PEEK)) {
1586			sk_eat_skb(sk, skb, copied_early);
1587			copied_early = 0;
1588		}
1589		break;
1590	} while (len > 0);
1591
1592	if (user_recv) {
1593		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1594			int chunk;
1595
1596			tp->ucopy.len = copied > 0 ? len : 0;
1597
1598			tcp_prequeue_process(sk);
1599
1600			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1601				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1602				len -= chunk;
1603				copied += chunk;
1604			}
1605		}
1606
1607		tp->ucopy.task = NULL;
1608		tp->ucopy.len = 0;
1609	}
1610
1611#ifdef CONFIG_NET_DMA
1612	if (tp->ucopy.dma_chan) {
1613		dma_cookie_t done, used;
1614
1615		dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1616
1617		while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1618						 tp->ucopy.dma_cookie, &done,
1619						 &used) == DMA_IN_PROGRESS) {
1620			/* do partial cleanup of sk_async_wait_queue */
1621			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1622			       (dma_async_is_complete(skb->dma_cookie, done,
1623						      used) == DMA_SUCCESS)) {
1624				__skb_dequeue(&sk->sk_async_wait_queue);
1625				kfree_skb(skb);
1626			}
1627		}
1628
1629		/* Safe to free early-copied skbs now */
1630		__skb_queue_purge(&sk->sk_async_wait_queue);
1631		dma_chan_put(tp->ucopy.dma_chan);
1632		tp->ucopy.dma_chan = NULL;
1633	}
1634	if (tp->ucopy.pinned_list) {
1635		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1636		tp->ucopy.pinned_list = NULL;
1637	}
1638#endif
1639
1640	/* According to UNIX98, msg_name/msg_namelen are ignored
1641	 * on connected socket. I was just happy when found this 8) --ANK
1642	 */
1643
1644	/* Clean up data we have read: This will do ACK frames. */
1645	tcp_cleanup_rbuf(sk, copied);
1646
1647	TCP_CHECK_TIMER(sk);
1648	release_sock(sk);
1649	return copied;
1650
1651out:
1652	TCP_CHECK_TIMER(sk);
1653	release_sock(sk);
1654	return err;
1655
1656recv_urg:
1657	err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1658	goto out;
1659}
1660
1661void tcp_set_state(struct sock *sk, int state)
1662{
1663	int oldstate = sk->sk_state;
1664
1665	switch (state) {
1666	case TCP_ESTABLISHED:
1667		if (oldstate != TCP_ESTABLISHED)
1668			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1669		break;
1670
1671	case TCP_CLOSE:
1672		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1673			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1674
1675		sk->sk_prot->unhash(sk);
1676		if (inet_csk(sk)->icsk_bind_hash &&
1677		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1678			inet_put_port(sk);
1679		/* fall through */
1680	default:
1681		if (oldstate == TCP_ESTABLISHED)
1682			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1683	}
1684
1685	/* Change state AFTER socket is unhashed to avoid closed
1686	 * socket sitting in hash tables.
1687	 */
1688	sk->sk_state = state;
1689
1690#ifdef STATE_TRACE
1691	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1692#endif
1693}
1694EXPORT_SYMBOL_GPL(tcp_set_state);
1695
1696/*
1697 *	State processing on a close. This implements the state shift for
1698 *	sending our FIN frame. Note that we only send a FIN for some
1699 *	states. A shutdown() may have already sent the FIN, or we may be
1700 *	closed.
1701 */
1702
1703static const unsigned char new_state[16] = {
1704  /* current state:        new state:      action:	*/
1705  /* (Invalid)		*/ TCP_CLOSE,
1706  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1707  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1708  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1709  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1710  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1711  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1712  /* TCP_CLOSE		*/ TCP_CLOSE,
1713  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1714  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1715  /* TCP_LISTEN		*/ TCP_CLOSE,
1716  /* TCP_CLOSING	*/ TCP_CLOSING,
1717};
1718
1719static int tcp_close_state(struct sock *sk)
1720{
1721	int next = (int)new_state[sk->sk_state];
1722	int ns = next & TCP_STATE_MASK;
1723
1724	tcp_set_state(sk, ns);
1725
1726	return next & TCP_ACTION_FIN;
1727}
1728
1729/*
1730 *	Shutdown the sending side of a connection. Much like close except
1731 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1732 */
1733
1734void tcp_shutdown(struct sock *sk, int how)
1735{
1736	/*	We need to grab some memory, and put together a FIN,
1737	 *	and then put it into the queue to be sent.
1738	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1739	 */
1740	if (!(how & SEND_SHUTDOWN))
1741		return;
1742
1743	/* If we've already sent a FIN, or it's a closed state, skip this. */
1744	if ((1 << sk->sk_state) &
1745	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1746	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1747		/* Clear out any half completed packets.  FIN if needed. */
1748		if (tcp_close_state(sk))
1749			tcp_send_fin(sk);
1750	}
1751}
1752
1753void tcp_close(struct sock *sk, long timeout)
1754{
1755	struct sk_buff *skb;
1756	int data_was_unread = 0;
1757	int state;
1758
1759	lock_sock(sk);
1760	sk->sk_shutdown = SHUTDOWN_MASK;
1761
1762	if (sk->sk_state == TCP_LISTEN) {
1763		tcp_set_state(sk, TCP_CLOSE);
1764
1765		/* Special case. */
1766		inet_csk_listen_stop(sk);
1767
1768		goto adjudge_to_death;
1769	}
1770
1771	/*  We need to flush the recv. buffs.  We do this only on the
1772	 *  descriptor close, not protocol-sourced closes, because the
1773	 *  reader process may not have drained the data yet!
1774	 */
1775	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1776		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1777			  tcp_hdr(skb)->fin;
1778		data_was_unread += len;
1779		__kfree_skb(skb);
1780	}
1781
1782	sk_mem_reclaim(sk);
1783
1784	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1785	 * data was lost. To witness the awful effects of the old behavior of
1786	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1787	 * GET in an FTP client, suspend the process, wait for the client to
1788	 * advertise a zero window, then kill -9 the FTP client, wheee...
1789	 * Note: timeout is always zero in such a case.
1790	 */
1791	if (data_was_unread) {
1792		/* Unread data was tossed, zap the connection. */
1793		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1794		tcp_set_state(sk, TCP_CLOSE);
1795		tcp_send_active_reset(sk, GFP_KERNEL);
1796	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1797		/* Check zero linger _after_ checking for unread data. */
1798		sk->sk_prot->disconnect(sk, 0);
1799		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1800	} else if (tcp_close_state(sk)) {
1801		/* We FIN if the application ate all the data before
1802		 * zapping the connection.
1803		 */
1804
1805		/* RED-PEN. Formally speaking, we have broken TCP state
1806		 * machine. State transitions:
1807		 *
1808		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1809		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1810		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1811		 *
1812		 * are legal only when FIN has been sent (i.e. in window),
1813		 * rather than queued out of window. Purists blame.
1814		 *
1815		 * F.e. "RFC state" is ESTABLISHED,
1816		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1817		 *
1818		 * The visible declinations are that sometimes
1819		 * we enter time-wait state, when it is not required really
1820		 * (harmless), do not send active resets, when they are
1821		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1822		 * they look as CLOSING or LAST_ACK for Linux)
1823		 * Probably, I missed some more holelets.
1824		 * 						--ANK
1825		 */
1826		tcp_send_fin(sk);
1827	}
1828
1829	sk_stream_wait_close(sk, timeout);
1830
1831adjudge_to_death:
1832	state = sk->sk_state;
1833	sock_hold(sk);
1834	sock_orphan(sk);
1835
1836	/* It is the last release_sock in its life. It will remove backlog. */
1837	release_sock(sk);
1838
1839
1840	/* Now socket is owned by kernel and we acquire BH lock
1841	   to finish close. No need to check for user refs.
1842	 */
1843	local_bh_disable();
1844	bh_lock_sock(sk);
1845	WARN_ON(sock_owned_by_user(sk));
1846
1847	percpu_counter_inc(sk->sk_prot->orphan_count);
1848
1849	/* Have we already been destroyed by a softirq or backlog? */
1850	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1851		goto out;
1852
1853	/*	This is a (useful) BSD violating of the RFC. There is a
1854	 *	problem with TCP as specified in that the other end could
1855	 *	keep a socket open forever with no application left this end.
1856	 *	We use a 3 minute timeout (about the same as BSD) then kill
1857	 *	our end. If they send after that then tough - BUT: long enough
1858	 *	that we won't make the old 4*rto = almost no time - whoops
1859	 *	reset mistake.
1860	 *
1861	 *	Nope, it was not mistake. It is really desired behaviour
1862	 *	f.e. on http servers, when such sockets are useless, but
1863	 *	consume significant resources. Let's do it with special
1864	 *	linger2	option.					--ANK
1865	 */
1866
1867	if (sk->sk_state == TCP_FIN_WAIT2) {
1868		struct tcp_sock *tp = tcp_sk(sk);
1869		if (tp->linger2 < 0) {
1870			tcp_set_state(sk, TCP_CLOSE);
1871			tcp_send_active_reset(sk, GFP_ATOMIC);
1872			NET_INC_STATS_BH(sock_net(sk),
1873					LINUX_MIB_TCPABORTONLINGER);
1874		} else {
1875			const int tmo = tcp_fin_time(sk);
1876
1877			if (tmo > TCP_TIMEWAIT_LEN) {
1878				inet_csk_reset_keepalive_timer(sk,
1879						tmo - TCP_TIMEWAIT_LEN);
1880			} else {
1881				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1882				goto out;
1883			}
1884		}
1885	}
1886	if (sk->sk_state != TCP_CLOSE) {
1887		int orphan_count = percpu_counter_read_positive(
1888						sk->sk_prot->orphan_count);
1889
1890		sk_mem_reclaim(sk);
1891		if (tcp_too_many_orphans(sk, orphan_count)) {
1892			if (net_ratelimit())
1893				printk(KERN_INFO "TCP: too many of orphaned "
1894				       "sockets\n");
1895			tcp_set_state(sk, TCP_CLOSE);
1896			tcp_send_active_reset(sk, GFP_ATOMIC);
1897			NET_INC_STATS_BH(sock_net(sk),
1898					LINUX_MIB_TCPABORTONMEMORY);
1899		}
1900	}
1901
1902	if (sk->sk_state == TCP_CLOSE)
1903		inet_csk_destroy_sock(sk);
1904	/* Otherwise, socket is reprieved until protocol close. */
1905
1906out:
1907	bh_unlock_sock(sk);
1908	local_bh_enable();
1909	sock_put(sk);
1910}
1911
1912/* These states need RST on ABORT according to RFC793 */
1913
1914static inline int tcp_need_reset(int state)
1915{
1916	return (1 << state) &
1917	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1918		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1919}
1920
1921int tcp_disconnect(struct sock *sk, int flags)
1922{
1923	struct inet_sock *inet = inet_sk(sk);
1924	struct inet_connection_sock *icsk = inet_csk(sk);
1925	struct tcp_sock *tp = tcp_sk(sk);
1926	int err = 0;
1927	int old_state = sk->sk_state;
1928
1929	if (old_state != TCP_CLOSE)
1930		tcp_set_state(sk, TCP_CLOSE);
1931
1932	/* ABORT function of RFC793 */
1933	if (old_state == TCP_LISTEN) {
1934		inet_csk_listen_stop(sk);
1935	} else if (tcp_need_reset(old_state) ||
1936		   (tp->snd_nxt != tp->write_seq &&
1937		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1938		/* The last check adjusts for discrepancy of Linux wrt. RFC
1939		 * states
1940		 */
1941		tcp_send_active_reset(sk, gfp_any());
1942		sk->sk_err = ECONNRESET;
1943	} else if (old_state == TCP_SYN_SENT)
1944		sk->sk_err = ECONNRESET;
1945
1946	tcp_clear_xmit_timers(sk);
1947	__skb_queue_purge(&sk->sk_receive_queue);
1948	tcp_write_queue_purge(sk);
1949	__skb_queue_purge(&tp->out_of_order_queue);
1950#ifdef CONFIG_NET_DMA
1951	__skb_queue_purge(&sk->sk_async_wait_queue);
1952#endif
1953
1954	inet->dport = 0;
1955
1956	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1957		inet_reset_saddr(sk);
1958
1959	sk->sk_shutdown = 0;
1960	sock_reset_flag(sk, SOCK_DONE);
1961	tp->srtt = 0;
1962	if ((tp->write_seq += tp->max_window + 2) == 0)
1963		tp->write_seq = 1;
1964	icsk->icsk_backoff = 0;
1965	tp->snd_cwnd = 2;
1966	icsk->icsk_probes_out = 0;
1967	tp->packets_out = 0;
1968	tp->snd_ssthresh = 0x7fffffff;
1969	tp->snd_cwnd_cnt = 0;
1970	tp->bytes_acked = 0;
1971	tcp_set_ca_state(sk, TCP_CA_Open);
1972	tcp_clear_retrans(tp);
1973	inet_csk_delack_init(sk);
1974	tcp_init_send_head(sk);
1975	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
1976	__sk_dst_reset(sk);
1977
1978	WARN_ON(inet->num && !icsk->icsk_bind_hash);
1979
1980	sk->sk_error_report(sk);
1981	return err;
1982}
1983
1984/*
1985 *	Socket option code for TCP.
1986 */
1987static int do_tcp_setsockopt(struct sock *sk, int level,
1988		int optname, char __user *optval, int optlen)
1989{
1990	struct tcp_sock *tp = tcp_sk(sk);
1991	struct inet_connection_sock *icsk = inet_csk(sk);
1992	int val;
1993	int err = 0;
1994
1995	/* This is a string value all the others are int's */
1996	if (optname == TCP_CONGESTION) {
1997		char name[TCP_CA_NAME_MAX];
1998
1999		if (optlen < 1)
2000			return -EINVAL;
2001
2002		val = strncpy_from_user(name, optval,
2003					min(TCP_CA_NAME_MAX-1, optlen));
2004		if (val < 0)
2005			return -EFAULT;
2006		name[val] = 0;
2007
2008		lock_sock(sk);
2009		err = tcp_set_congestion_control(sk, name);
2010		release_sock(sk);
2011		return err;
2012	}
2013
2014	if (optlen < sizeof(int))
2015		return -EINVAL;
2016
2017	if (get_user(val, (int __user *)optval))
2018		return -EFAULT;
2019
2020	lock_sock(sk);
2021
2022	switch (optname) {
2023	case TCP_MAXSEG:
2024		/* Values greater than interface MTU won't take effect. However
2025		 * at the point when this call is done we typically don't yet
2026		 * know which interface is going to be used */
2027		if (val < 8 || val > MAX_TCP_WINDOW) {
2028			err = -EINVAL;
2029			break;
2030		}
2031		tp->rx_opt.user_mss = val;
2032		break;
2033
2034	case TCP_NODELAY:
2035		if (val) {
2036			/* TCP_NODELAY is weaker than TCP_CORK, so that
2037			 * this option on corked socket is remembered, but
2038			 * it is not activated until cork is cleared.
2039			 *
2040			 * However, when TCP_NODELAY is set we make
2041			 * an explicit push, which overrides even TCP_CORK
2042			 * for currently queued segments.
2043			 */
2044			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2045			tcp_push_pending_frames(sk);
2046		} else {
2047			tp->nonagle &= ~TCP_NAGLE_OFF;
2048		}
2049		break;
2050
2051	case TCP_CORK:
2052		/* When set indicates to always queue non-full frames.
2053		 * Later the user clears this option and we transmit
2054		 * any pending partial frames in the queue.  This is
2055		 * meant to be used alongside sendfile() to get properly
2056		 * filled frames when the user (for example) must write
2057		 * out headers with a write() call first and then use
2058		 * sendfile to send out the data parts.
2059		 *
2060		 * TCP_CORK can be set together with TCP_NODELAY and it is
2061		 * stronger than TCP_NODELAY.
2062		 */
2063		if (val) {
2064			tp->nonagle |= TCP_NAGLE_CORK;
2065		} else {
2066			tp->nonagle &= ~TCP_NAGLE_CORK;
2067			if (tp->nonagle&TCP_NAGLE_OFF)
2068				tp->nonagle |= TCP_NAGLE_PUSH;
2069			tcp_push_pending_frames(sk);
2070		}
2071		break;
2072
2073	case TCP_KEEPIDLE:
2074		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2075			err = -EINVAL;
2076		else {
2077			tp->keepalive_time = val * HZ;
2078			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2079			    !((1 << sk->sk_state) &
2080			      (TCPF_CLOSE | TCPF_LISTEN))) {
2081				__u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2082				if (tp->keepalive_time > elapsed)
2083					elapsed = tp->keepalive_time - elapsed;
2084				else
2085					elapsed = 0;
2086				inet_csk_reset_keepalive_timer(sk, elapsed);
2087			}
2088		}
2089		break;
2090	case TCP_KEEPINTVL:
2091		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2092			err = -EINVAL;
2093		else
2094			tp->keepalive_intvl = val * HZ;
2095		break;
2096	case TCP_KEEPCNT:
2097		if (val < 1 || val > MAX_TCP_KEEPCNT)
2098			err = -EINVAL;
2099		else
2100			tp->keepalive_probes = val;
2101		break;
2102	case TCP_SYNCNT:
2103		if (val < 1 || val > MAX_TCP_SYNCNT)
2104			err = -EINVAL;
2105		else
2106			icsk->icsk_syn_retries = val;
2107		break;
2108
2109	case TCP_LINGER2:
2110		if (val < 0)
2111			tp->linger2 = -1;
2112		else if (val > sysctl_tcp_fin_timeout / HZ)
2113			tp->linger2 = 0;
2114		else
2115			tp->linger2 = val * HZ;
2116		break;
2117
2118	case TCP_DEFER_ACCEPT:
2119		icsk->icsk_accept_queue.rskq_defer_accept = 0;
2120		if (val > 0) {
2121			/* Translate value in seconds to number of
2122			 * retransmits */
2123			while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
2124			       val > ((TCP_TIMEOUT_INIT / HZ) <<
2125				       icsk->icsk_accept_queue.rskq_defer_accept))
2126				icsk->icsk_accept_queue.rskq_defer_accept++;
2127			icsk->icsk_accept_queue.rskq_defer_accept++;
2128		}
2129		break;
2130
2131	case TCP_WINDOW_CLAMP:
2132		if (!val) {
2133			if (sk->sk_state != TCP_CLOSE) {
2134				err = -EINVAL;
2135				break;
2136			}
2137			tp->window_clamp = 0;
2138		} else
2139			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2140						SOCK_MIN_RCVBUF / 2 : val;
2141		break;
2142
2143	case TCP_QUICKACK:
2144		if (!val) {
2145			icsk->icsk_ack.pingpong = 1;
2146		} else {
2147			icsk->icsk_ack.pingpong = 0;
2148			if ((1 << sk->sk_state) &
2149			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2150			    inet_csk_ack_scheduled(sk)) {
2151				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2152				tcp_cleanup_rbuf(sk, 1);
2153				if (!(val & 1))
2154					icsk->icsk_ack.pingpong = 1;
2155			}
2156		}
2157		break;
2158
2159#ifdef CONFIG_TCP_MD5SIG
2160	case TCP_MD5SIG:
2161		/* Read the IP->Key mappings from userspace */
2162		err = tp->af_specific->md5_parse(sk, optval, optlen);
2163		break;
2164#endif
2165
2166	default:
2167		err = -ENOPROTOOPT;
2168		break;
2169	}
2170
2171	release_sock(sk);
2172	return err;
2173}
2174
2175int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2176		   int optlen)
2177{
2178	struct inet_connection_sock *icsk = inet_csk(sk);
2179
2180	if (level != SOL_TCP)
2181		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2182						     optval, optlen);
2183	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2184}
2185
2186#ifdef CONFIG_COMPAT
2187int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2188			  char __user *optval, int optlen)
2189{
2190	if (level != SOL_TCP)
2191		return inet_csk_compat_setsockopt(sk, level, optname,
2192						  optval, optlen);
2193	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2194}
2195
2196EXPORT_SYMBOL(compat_tcp_setsockopt);
2197#endif
2198
2199/* Return information about state of tcp endpoint in API format. */
2200void tcp_get_info(struct sock *sk, struct tcp_info *info)
2201{
2202	struct tcp_sock *tp = tcp_sk(sk);
2203	const struct inet_connection_sock *icsk = inet_csk(sk);
2204	u32 now = tcp_time_stamp;
2205
2206	memset(info, 0, sizeof(*info));
2207
2208	info->tcpi_state = sk->sk_state;
2209	info->tcpi_ca_state = icsk->icsk_ca_state;
2210	info->tcpi_retransmits = icsk->icsk_retransmits;
2211	info->tcpi_probes = icsk->icsk_probes_out;
2212	info->tcpi_backoff = icsk->icsk_backoff;
2213
2214	if (tp->rx_opt.tstamp_ok)
2215		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2216	if (tcp_is_sack(tp))
2217		info->tcpi_options |= TCPI_OPT_SACK;
2218	if (tp->rx_opt.wscale_ok) {
2219		info->tcpi_options |= TCPI_OPT_WSCALE;
2220		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2221		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2222	}
2223
2224	if (tp->ecn_flags&TCP_ECN_OK)
2225		info->tcpi_options |= TCPI_OPT_ECN;
2226
2227	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2228	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2229	info->tcpi_snd_mss = tp->mss_cache;
2230	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2231
2232	if (sk->sk_state == TCP_LISTEN) {
2233		info->tcpi_unacked = sk->sk_ack_backlog;
2234		info->tcpi_sacked = sk->sk_max_ack_backlog;
2235	} else {
2236		info->tcpi_unacked = tp->packets_out;
2237		info->tcpi_sacked = tp->sacked_out;
2238	}
2239	info->tcpi_lost = tp->lost_out;
2240	info->tcpi_retrans = tp->retrans_out;
2241	info->tcpi_fackets = tp->fackets_out;
2242
2243	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2244	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2245	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2246
2247	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2248	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2249	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2250	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2251	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2252	info->tcpi_snd_cwnd = tp->snd_cwnd;
2253	info->tcpi_advmss = tp->advmss;
2254	info->tcpi_reordering = tp->reordering;
2255
2256	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2257	info->tcpi_rcv_space = tp->rcvq_space.space;
2258
2259	info->tcpi_total_retrans = tp->total_retrans;
2260}
2261
2262EXPORT_SYMBOL_GPL(tcp_get_info);
2263
2264static int do_tcp_getsockopt(struct sock *sk, int level,
2265		int optname, char __user *optval, int __user *optlen)
2266{
2267	struct inet_connection_sock *icsk = inet_csk(sk);
2268	struct tcp_sock *tp = tcp_sk(sk);
2269	int val, len;
2270
2271	if (get_user(len, optlen))
2272		return -EFAULT;
2273
2274	len = min_t(unsigned int, len, sizeof(int));
2275
2276	if (len < 0)
2277		return -EINVAL;
2278
2279	switch (optname) {
2280	case TCP_MAXSEG:
2281		val = tp->mss_cache;
2282		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2283			val = tp->rx_opt.user_mss;
2284		break;
2285	case TCP_NODELAY:
2286		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2287		break;
2288	case TCP_CORK:
2289		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2290		break;
2291	case TCP_KEEPIDLE:
2292		val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2293		break;
2294	case TCP_KEEPINTVL:
2295		val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2296		break;
2297	case TCP_KEEPCNT:
2298		val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2299		break;
2300	case TCP_SYNCNT:
2301		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2302		break;
2303	case TCP_LINGER2:
2304		val = tp->linger2;
2305		if (val >= 0)
2306			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2307		break;
2308	case TCP_DEFER_ACCEPT:
2309		val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2310			((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2311		break;
2312	case TCP_WINDOW_CLAMP:
2313		val = tp->window_clamp;
2314		break;
2315	case TCP_INFO: {
2316		struct tcp_info info;
2317
2318		if (get_user(len, optlen))
2319			return -EFAULT;
2320
2321		tcp_get_info(sk, &info);
2322
2323		len = min_t(unsigned int, len, sizeof(info));
2324		if (put_user(len, optlen))
2325			return -EFAULT;
2326		if (copy_to_user(optval, &info, len))
2327			return -EFAULT;
2328		return 0;
2329	}
2330	case TCP_QUICKACK:
2331		val = !icsk->icsk_ack.pingpong;
2332		break;
2333
2334	case TCP_CONGESTION:
2335		if (get_user(len, optlen))
2336			return -EFAULT;
2337		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2338		if (put_user(len, optlen))
2339			return -EFAULT;
2340		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2341			return -EFAULT;
2342		return 0;
2343	default:
2344		return -ENOPROTOOPT;
2345	}
2346
2347	if (put_user(len, optlen))
2348		return -EFAULT;
2349	if (copy_to_user(optval, &val, len))
2350		return -EFAULT;
2351	return 0;
2352}
2353
2354int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2355		   int __user *optlen)
2356{
2357	struct inet_connection_sock *icsk = inet_csk(sk);
2358
2359	if (level != SOL_TCP)
2360		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2361						     optval, optlen);
2362	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2363}
2364
2365#ifdef CONFIG_COMPAT
2366int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2367			  char __user *optval, int __user *optlen)
2368{
2369	if (level != SOL_TCP)
2370		return inet_csk_compat_getsockopt(sk, level, optname,
2371						  optval, optlen);
2372	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2373}
2374
2375EXPORT_SYMBOL(compat_tcp_getsockopt);
2376#endif
2377
2378struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2379{
2380	struct sk_buff *segs = ERR_PTR(-EINVAL);
2381	struct tcphdr *th;
2382	unsigned thlen;
2383	unsigned int seq;
2384	__be32 delta;
2385	unsigned int oldlen;
2386	unsigned int len;
2387
2388	if (!pskb_may_pull(skb, sizeof(*th)))
2389		goto out;
2390
2391	th = tcp_hdr(skb);
2392	thlen = th->doff * 4;
2393	if (thlen < sizeof(*th))
2394		goto out;
2395
2396	if (!pskb_may_pull(skb, thlen))
2397		goto out;
2398
2399	oldlen = (u16)~skb->len;
2400	__skb_pull(skb, thlen);
2401
2402	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2403		/* Packet is from an untrusted source, reset gso_segs. */
2404		int type = skb_shinfo(skb)->gso_type;
2405		int mss;
2406
2407		if (unlikely(type &
2408			     ~(SKB_GSO_TCPV4 |
2409			       SKB_GSO_DODGY |
2410			       SKB_GSO_TCP_ECN |
2411			       SKB_GSO_TCPV6 |
2412			       0) ||
2413			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2414			goto out;
2415
2416		mss = skb_shinfo(skb)->gso_size;
2417		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2418
2419		segs = NULL;
2420		goto out;
2421	}
2422
2423	segs = skb_segment(skb, features);
2424	if (IS_ERR(segs))
2425		goto out;
2426
2427	len = skb_shinfo(skb)->gso_size;
2428	delta = htonl(oldlen + (thlen + len));
2429
2430	skb = segs;
2431	th = tcp_hdr(skb);
2432	seq = ntohl(th->seq);
2433
2434	do {
2435		th->fin = th->psh = 0;
2436
2437		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2438				       (__force u32)delta));
2439		if (skb->ip_summed != CHECKSUM_PARTIAL)
2440			th->check =
2441			     csum_fold(csum_partial(skb_transport_header(skb),
2442						    thlen, skb->csum));
2443
2444		seq += len;
2445		skb = skb->next;
2446		th = tcp_hdr(skb);
2447
2448		th->seq = htonl(seq);
2449		th->cwr = 0;
2450	} while (skb->next);
2451
2452	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2453		      skb->data_len);
2454	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2455				(__force u32)delta));
2456	if (skb->ip_summed != CHECKSUM_PARTIAL)
2457		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2458						   thlen, skb->csum));
2459
2460out:
2461	return segs;
2462}
2463EXPORT_SYMBOL(tcp_tso_segment);
2464
2465struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2466{
2467	struct sk_buff **pp = NULL;
2468	struct sk_buff *p;
2469	struct tcphdr *th;
2470	struct tcphdr *th2;
2471	unsigned int thlen;
2472	unsigned int flags;
2473	unsigned int total;
2474	unsigned int mss = 1;
2475	int flush = 1;
2476
2477	if (!pskb_may_pull(skb, sizeof(*th)))
2478		goto out;
2479
2480	th = tcp_hdr(skb);
2481	thlen = th->doff * 4;
2482	if (thlen < sizeof(*th))
2483		goto out;
2484
2485	if (!pskb_may_pull(skb, thlen))
2486		goto out;
2487
2488	th = tcp_hdr(skb);
2489	__skb_pull(skb, thlen);
2490
2491	flags = tcp_flag_word(th);
2492
2493	for (; (p = *head); head = &p->next) {
2494		if (!NAPI_GRO_CB(p)->same_flow)
2495			continue;
2496
2497		th2 = tcp_hdr(p);
2498
2499		if (th->source != th2->source || th->dest != th2->dest) {
2500			NAPI_GRO_CB(p)->same_flow = 0;
2501			continue;
2502		}
2503
2504		goto found;
2505	}
2506
2507	goto out_check_final;
2508
2509found:
2510	flush = NAPI_GRO_CB(p)->flush;
2511	flush |= flags & TCP_FLAG_CWR;
2512	flush |= (flags ^ tcp_flag_word(th2)) &
2513		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH);
2514	flush |= th->ack_seq != th2->ack_seq || th->window != th2->window;
2515	flush |= memcmp(th + 1, th2 + 1, thlen - sizeof(*th));
2516
2517	total = p->len;
2518	mss = skb_shinfo(p)->gso_size;
2519
2520	flush |= skb->len > mss || skb->len <= 0;
2521	flush |= ntohl(th2->seq) + total != ntohl(th->seq);
2522
2523	if (flush || skb_gro_receive(head, skb)) {
2524		mss = 1;
2525		goto out_check_final;
2526	}
2527
2528	p = *head;
2529	th2 = tcp_hdr(p);
2530	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2531
2532out_check_final:
2533	flush = skb->len < mss;
2534	flush |= flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST |
2535			  TCP_FLAG_SYN | TCP_FLAG_FIN);
2536
2537	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2538		pp = head;
2539
2540out:
2541	NAPI_GRO_CB(skb)->flush |= flush;
2542
2543	return pp;
2544}
2545
2546int tcp_gro_complete(struct sk_buff *skb)
2547{
2548	struct tcphdr *th = tcp_hdr(skb);
2549
2550	skb->csum_start = skb_transport_header(skb) - skb->head;
2551	skb->csum_offset = offsetof(struct tcphdr, check);
2552	skb->ip_summed = CHECKSUM_PARTIAL;
2553
2554	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2555
2556	if (th->cwr)
2557		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2558
2559	return 0;
2560}
2561
2562#ifdef CONFIG_TCP_MD5SIG
2563static unsigned long tcp_md5sig_users;
2564static struct tcp_md5sig_pool **tcp_md5sig_pool;
2565static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2566
2567static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2568{
2569	int cpu;
2570	for_each_possible_cpu(cpu) {
2571		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2572		if (p) {
2573			if (p->md5_desc.tfm)
2574				crypto_free_hash(p->md5_desc.tfm);
2575			kfree(p);
2576			p = NULL;
2577		}
2578	}
2579	free_percpu(pool);
2580}
2581
2582void tcp_free_md5sig_pool(void)
2583{
2584	struct tcp_md5sig_pool **pool = NULL;
2585
2586	spin_lock_bh(&tcp_md5sig_pool_lock);
2587	if (--tcp_md5sig_users == 0) {
2588		pool = tcp_md5sig_pool;
2589		tcp_md5sig_pool = NULL;
2590	}
2591	spin_unlock_bh(&tcp_md5sig_pool_lock);
2592	if (pool)
2593		__tcp_free_md5sig_pool(pool);
2594}
2595
2596EXPORT_SYMBOL(tcp_free_md5sig_pool);
2597
2598static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2599{
2600	int cpu;
2601	struct tcp_md5sig_pool **pool;
2602
2603	pool = alloc_percpu(struct tcp_md5sig_pool *);
2604	if (!pool)
2605		return NULL;
2606
2607	for_each_possible_cpu(cpu) {
2608		struct tcp_md5sig_pool *p;
2609		struct crypto_hash *hash;
2610
2611		p = kzalloc(sizeof(*p), GFP_KERNEL);
2612		if (!p)
2613			goto out_free;
2614		*per_cpu_ptr(pool, cpu) = p;
2615
2616		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2617		if (!hash || IS_ERR(hash))
2618			goto out_free;
2619
2620		p->md5_desc.tfm = hash;
2621	}
2622	return pool;
2623out_free:
2624	__tcp_free_md5sig_pool(pool);
2625	return NULL;
2626}
2627
2628struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2629{
2630	struct tcp_md5sig_pool **pool;
2631	int alloc = 0;
2632
2633retry:
2634	spin_lock_bh(&tcp_md5sig_pool_lock);
2635	pool = tcp_md5sig_pool;
2636	if (tcp_md5sig_users++ == 0) {
2637		alloc = 1;
2638		spin_unlock_bh(&tcp_md5sig_pool_lock);
2639	} else if (!pool) {
2640		tcp_md5sig_users--;
2641		spin_unlock_bh(&tcp_md5sig_pool_lock);
2642		cpu_relax();
2643		goto retry;
2644	} else
2645		spin_unlock_bh(&tcp_md5sig_pool_lock);
2646
2647	if (alloc) {
2648		/* we cannot hold spinlock here because this may sleep. */
2649		struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2650		spin_lock_bh(&tcp_md5sig_pool_lock);
2651		if (!p) {
2652			tcp_md5sig_users--;
2653			spin_unlock_bh(&tcp_md5sig_pool_lock);
2654			return NULL;
2655		}
2656		pool = tcp_md5sig_pool;
2657		if (pool) {
2658			/* oops, it has already been assigned. */
2659			spin_unlock_bh(&tcp_md5sig_pool_lock);
2660			__tcp_free_md5sig_pool(p);
2661		} else {
2662			tcp_md5sig_pool = pool = p;
2663			spin_unlock_bh(&tcp_md5sig_pool_lock);
2664		}
2665	}
2666	return pool;
2667}
2668
2669EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2670
2671struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2672{
2673	struct tcp_md5sig_pool **p;
2674	spin_lock_bh(&tcp_md5sig_pool_lock);
2675	p = tcp_md5sig_pool;
2676	if (p)
2677		tcp_md5sig_users++;
2678	spin_unlock_bh(&tcp_md5sig_pool_lock);
2679	return (p ? *per_cpu_ptr(p, cpu) : NULL);
2680}
2681
2682EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2683
2684void __tcp_put_md5sig_pool(void)
2685{
2686	tcp_free_md5sig_pool();
2687}
2688
2689EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2690
2691int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2692			struct tcphdr *th)
2693{
2694	struct scatterlist sg;
2695	int err;
2696
2697	__sum16 old_checksum = th->check;
2698	th->check = 0;
2699	/* options aren't included in the hash */
2700	sg_init_one(&sg, th, sizeof(struct tcphdr));
2701	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
2702	th->check = old_checksum;
2703	return err;
2704}
2705
2706EXPORT_SYMBOL(tcp_md5_hash_header);
2707
2708int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2709			  struct sk_buff *skb, unsigned header_len)
2710{
2711	struct scatterlist sg;
2712	const struct tcphdr *tp = tcp_hdr(skb);
2713	struct hash_desc *desc = &hp->md5_desc;
2714	unsigned i;
2715	const unsigned head_data_len = skb_headlen(skb) > header_len ?
2716				       skb_headlen(skb) - header_len : 0;
2717	const struct skb_shared_info *shi = skb_shinfo(skb);
2718
2719	sg_init_table(&sg, 1);
2720
2721	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2722	if (crypto_hash_update(desc, &sg, head_data_len))
2723		return 1;
2724
2725	for (i = 0; i < shi->nr_frags; ++i) {
2726		const struct skb_frag_struct *f = &shi->frags[i];
2727		sg_set_page(&sg, f->page, f->size, f->page_offset);
2728		if (crypto_hash_update(desc, &sg, f->size))
2729			return 1;
2730	}
2731
2732	return 0;
2733}
2734
2735EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2736
2737int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
2738{
2739	struct scatterlist sg;
2740
2741	sg_init_one(&sg, key->key, key->keylen);
2742	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2743}
2744
2745EXPORT_SYMBOL(tcp_md5_hash_key);
2746
2747#endif
2748
2749void tcp_done(struct sock *sk)
2750{
2751	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2752		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
2753
2754	tcp_set_state(sk, TCP_CLOSE);
2755	tcp_clear_xmit_timers(sk);
2756
2757	sk->sk_shutdown = SHUTDOWN_MASK;
2758
2759	if (!sock_flag(sk, SOCK_DEAD))
2760		sk->sk_state_change(sk);
2761	else
2762		inet_csk_destroy_sock(sk);
2763}
2764EXPORT_SYMBOL_GPL(tcp_done);
2765
2766extern struct tcp_congestion_ops tcp_reno;
2767
2768static __initdata unsigned long thash_entries;
2769static int __init set_thash_entries(char *str)
2770{
2771	if (!str)
2772		return 0;
2773	thash_entries = simple_strtoul(str, &str, 0);
2774	return 1;
2775}
2776__setup("thash_entries=", set_thash_entries);
2777
2778void __init tcp_init(void)
2779{
2780	struct sk_buff *skb = NULL;
2781	unsigned long nr_pages, limit;
2782	int order, i, max_share;
2783
2784	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
2785
2786	percpu_counter_init(&tcp_sockets_allocated, 0);
2787	percpu_counter_init(&tcp_orphan_count, 0);
2788	tcp_hashinfo.bind_bucket_cachep =
2789		kmem_cache_create("tcp_bind_bucket",
2790				  sizeof(struct inet_bind_bucket), 0,
2791				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2792
2793	/* Size and allocate the main established and bind bucket
2794	 * hash tables.
2795	 *
2796	 * The methodology is similar to that of the buffer cache.
2797	 */
2798	tcp_hashinfo.ehash =
2799		alloc_large_system_hash("TCP established",
2800					sizeof(struct inet_ehash_bucket),
2801					thash_entries,
2802					(num_physpages >= 128 * 1024) ?
2803					13 : 15,
2804					0,
2805					&tcp_hashinfo.ehash_size,
2806					NULL,
2807					thash_entries ? 0 : 512 * 1024);
2808	tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2809	for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2810		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
2811		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
2812	}
2813	if (inet_ehash_locks_alloc(&tcp_hashinfo))
2814		panic("TCP: failed to alloc ehash_locks");
2815	tcp_hashinfo.bhash =
2816		alloc_large_system_hash("TCP bind",
2817					sizeof(struct inet_bind_hashbucket),
2818					tcp_hashinfo.ehash_size,
2819					(num_physpages >= 128 * 1024) ?
2820					13 : 15,
2821					0,
2822					&tcp_hashinfo.bhash_size,
2823					NULL,
2824					64 * 1024);
2825	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2826	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2827		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2828		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2829	}
2830
2831	/* Try to be a bit smarter and adjust defaults depending
2832	 * on available memory.
2833	 */
2834	for (order = 0; ((1 << order) << PAGE_SHIFT) <
2835			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2836			order++)
2837		;
2838	if (order >= 4) {
2839		tcp_death_row.sysctl_max_tw_buckets = 180000;
2840		sysctl_tcp_max_orphans = 4096 << (order - 4);
2841		sysctl_max_syn_backlog = 1024;
2842	} else if (order < 3) {
2843		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2844		sysctl_tcp_max_orphans >>= (3 - order);
2845		sysctl_max_syn_backlog = 128;
2846	}
2847
2848	/* Set the pressure threshold to be a fraction of global memory that
2849	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2850	 * memory, with a floor of 128 pages.
2851	 */
2852	nr_pages = totalram_pages - totalhigh_pages;
2853	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2854	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2855	limit = max(limit, 128UL);
2856	sysctl_tcp_mem[0] = limit / 4 * 3;
2857	sysctl_tcp_mem[1] = limit;
2858	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2859
2860	/* Set per-socket limits to no more than 1/128 the pressure threshold */
2861	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2862	max_share = min(4UL*1024*1024, limit);
2863
2864	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
2865	sysctl_tcp_wmem[1] = 16*1024;
2866	sysctl_tcp_wmem[2] = max(64*1024, max_share);
2867
2868	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
2869	sysctl_tcp_rmem[1] = 87380;
2870	sysctl_tcp_rmem[2] = max(87380, max_share);
2871
2872	printk(KERN_INFO "TCP: Hash tables configured "
2873	       "(established %d bind %d)\n",
2874	       tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2875
2876	tcp_register_congestion_control(&tcp_reno);
2877}
2878
2879EXPORT_SYMBOL(tcp_close);
2880EXPORT_SYMBOL(tcp_disconnect);
2881EXPORT_SYMBOL(tcp_getsockopt);
2882EXPORT_SYMBOL(tcp_ioctl);
2883EXPORT_SYMBOL(tcp_poll);
2884EXPORT_SYMBOL(tcp_read_sock);
2885EXPORT_SYMBOL(tcp_recvmsg);
2886EXPORT_SYMBOL(tcp_sendmsg);
2887EXPORT_SYMBOL(tcp_splice_read);
2888EXPORT_SYMBOL(tcp_sendpage);
2889EXPORT_SYMBOL(tcp_setsockopt);
2890EXPORT_SYMBOL(tcp_shutdown);
2891