tcp.c revision 903ceff7ca7b4d80c083a80ee5163b74e9fa359f
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#define pr_fmt(fmt) "TCP: " fmt
249
250#include <linux/kernel.h>
251#include <linux/module.h>
252#include <linux/types.h>
253#include <linux/fcntl.h>
254#include <linux/poll.h>
255#include <linux/init.h>
256#include <linux/fs.h>
257#include <linux/skbuff.h>
258#include <linux/scatterlist.h>
259#include <linux/splice.h>
260#include <linux/net.h>
261#include <linux/socket.h>
262#include <linux/random.h>
263#include <linux/bootmem.h>
264#include <linux/highmem.h>
265#include <linux/swap.h>
266#include <linux/cache.h>
267#include <linux/err.h>
268#include <linux/crypto.h>
269#include <linux/time.h>
270#include <linux/slab.h>
271
272#include <net/icmp.h>
273#include <net/inet_common.h>
274#include <net/tcp.h>
275#include <net/xfrm.h>
276#include <net/ip.h>
277#include <net/netdma.h>
278#include <net/sock.h>
279
280#include <asm/uaccess.h>
281#include <asm/ioctls.h>
282#include <net/busy_poll.h>
283
284int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285
286int sysctl_tcp_min_tso_segs __read_mostly = 2;
287
288int sysctl_tcp_autocorking __read_mostly = 1;
289
290struct percpu_counter tcp_orphan_count;
291EXPORT_SYMBOL_GPL(tcp_orphan_count);
292
293long sysctl_tcp_mem[3] __read_mostly;
294int sysctl_tcp_wmem[3] __read_mostly;
295int sysctl_tcp_rmem[3] __read_mostly;
296
297EXPORT_SYMBOL(sysctl_tcp_mem);
298EXPORT_SYMBOL(sysctl_tcp_rmem);
299EXPORT_SYMBOL(sysctl_tcp_wmem);
300
301atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
302EXPORT_SYMBOL(tcp_memory_allocated);
303
304/*
305 * Current number of TCP sockets.
306 */
307struct percpu_counter tcp_sockets_allocated;
308EXPORT_SYMBOL(tcp_sockets_allocated);
309
310/*
311 * TCP splice context
312 */
313struct tcp_splice_state {
314	struct pipe_inode_info *pipe;
315	size_t len;
316	unsigned int flags;
317};
318
319/*
320 * Pressure flag: try to collapse.
321 * Technical note: it is used by multiple contexts non atomically.
322 * All the __sk_mem_schedule() is of this nature: accounting
323 * is strict, actions are advisory and have some latency.
324 */
325int tcp_memory_pressure __read_mostly;
326EXPORT_SYMBOL(tcp_memory_pressure);
327
328void tcp_enter_memory_pressure(struct sock *sk)
329{
330	if (!tcp_memory_pressure) {
331		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
332		tcp_memory_pressure = 1;
333	}
334}
335EXPORT_SYMBOL(tcp_enter_memory_pressure);
336
337/* Convert seconds to retransmits based on initial and max timeout */
338static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339{
340	u8 res = 0;
341
342	if (seconds > 0) {
343		int period = timeout;
344
345		res = 1;
346		while (seconds > period && res < 255) {
347			res++;
348			timeout <<= 1;
349			if (timeout > rto_max)
350				timeout = rto_max;
351			period += timeout;
352		}
353	}
354	return res;
355}
356
357/* Convert retransmits to seconds based on initial and max timeout */
358static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359{
360	int period = 0;
361
362	if (retrans > 0) {
363		period = timeout;
364		while (--retrans) {
365			timeout <<= 1;
366			if (timeout > rto_max)
367				timeout = rto_max;
368			period += timeout;
369		}
370	}
371	return period;
372}
373
374/* Address-family independent initialization for a tcp_sock.
375 *
376 * NOTE: A lot of things set to zero explicitly by call to
377 *       sk_alloc() so need not be done here.
378 */
379void tcp_init_sock(struct sock *sk)
380{
381	struct inet_connection_sock *icsk = inet_csk(sk);
382	struct tcp_sock *tp = tcp_sk(sk);
383
384	__skb_queue_head_init(&tp->out_of_order_queue);
385	tcp_init_xmit_timers(sk);
386	tcp_prequeue_init(tp);
387	INIT_LIST_HEAD(&tp->tsq_node);
388
389	icsk->icsk_rto = TCP_TIMEOUT_INIT;
390	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
391
392	/* So many TCP implementations out there (incorrectly) count the
393	 * initial SYN frame in their delayed-ACK and congestion control
394	 * algorithms that we must have the following bandaid to talk
395	 * efficiently to them.  -DaveM
396	 */
397	tp->snd_cwnd = TCP_INIT_CWND;
398
399	/* See draft-stevens-tcpca-spec-01 for discussion of the
400	 * initialization of these values.
401	 */
402	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403	tp->snd_cwnd_clamp = ~0;
404	tp->mss_cache = TCP_MSS_DEFAULT;
405
406	tp->reordering = sysctl_tcp_reordering;
407	tcp_enable_early_retrans(tp);
408	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
409
410	tp->tsoffset = 0;
411
412	sk->sk_state = TCP_CLOSE;
413
414	sk->sk_write_space = sk_stream_write_space;
415	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
416
417	icsk->icsk_sync_mss = tcp_sync_mss;
418
419	sk->sk_sndbuf = sysctl_tcp_wmem[1];
420	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
421
422	local_bh_disable();
423	sock_update_memcg(sk);
424	sk_sockets_allocated_inc(sk);
425	local_bh_enable();
426}
427EXPORT_SYMBOL(tcp_init_sock);
428
429static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
430{
431	if (sk->sk_tsflags) {
432		struct skb_shared_info *shinfo = skb_shinfo(skb);
433
434		sock_tx_timestamp(sk, &shinfo->tx_flags);
435		if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
436			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
437	}
438}
439
440/*
441 *	Wait for a TCP event.
442 *
443 *	Note that we don't need to lock the socket, as the upper poll layers
444 *	take care of normal races (between the test and the event) and we don't
445 *	go look at any of the socket buffers directly.
446 */
447unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
448{
449	unsigned int mask;
450	struct sock *sk = sock->sk;
451	const struct tcp_sock *tp = tcp_sk(sk);
452
453	sock_rps_record_flow(sk);
454
455	sock_poll_wait(file, sk_sleep(sk), wait);
456	if (sk->sk_state == TCP_LISTEN)
457		return inet_csk_listen_poll(sk);
458
459	/* Socket is not locked. We are protected from async events
460	 * by poll logic and correct handling of state changes
461	 * made by other threads is impossible in any case.
462	 */
463
464	mask = 0;
465
466	/*
467	 * POLLHUP is certainly not done right. But poll() doesn't
468	 * have a notion of HUP in just one direction, and for a
469	 * socket the read side is more interesting.
470	 *
471	 * Some poll() documentation says that POLLHUP is incompatible
472	 * with the POLLOUT/POLLWR flags, so somebody should check this
473	 * all. But careful, it tends to be safer to return too many
474	 * bits than too few, and you can easily break real applications
475	 * if you don't tell them that something has hung up!
476	 *
477	 * Check-me.
478	 *
479	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
480	 * our fs/select.c). It means that after we received EOF,
481	 * poll always returns immediately, making impossible poll() on write()
482	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
483	 * if and only if shutdown has been made in both directions.
484	 * Actually, it is interesting to look how Solaris and DUX
485	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
486	 * then we could set it on SND_SHUTDOWN. BTW examples given
487	 * in Stevens' books assume exactly this behaviour, it explains
488	 * why POLLHUP is incompatible with POLLOUT.	--ANK
489	 *
490	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
491	 * blocking on fresh not-connected or disconnected socket. --ANK
492	 */
493	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
494		mask |= POLLHUP;
495	if (sk->sk_shutdown & RCV_SHUTDOWN)
496		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
497
498	/* Connected or passive Fast Open socket? */
499	if (sk->sk_state != TCP_SYN_SENT &&
500	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
501		int target = sock_rcvlowat(sk, 0, INT_MAX);
502
503		if (tp->urg_seq == tp->copied_seq &&
504		    !sock_flag(sk, SOCK_URGINLINE) &&
505		    tp->urg_data)
506			target++;
507
508		/* Potential race condition. If read of tp below will
509		 * escape above sk->sk_state, we can be illegally awaken
510		 * in SYN_* states. */
511		if (tp->rcv_nxt - tp->copied_seq >= target)
512			mask |= POLLIN | POLLRDNORM;
513
514		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
515			if (sk_stream_is_writeable(sk)) {
516				mask |= POLLOUT | POLLWRNORM;
517			} else {  /* send SIGIO later */
518				set_bit(SOCK_ASYNC_NOSPACE,
519					&sk->sk_socket->flags);
520				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
521
522				/* Race breaker. If space is freed after
523				 * wspace test but before the flags are set,
524				 * IO signal will be lost.
525				 */
526				if (sk_stream_is_writeable(sk))
527					mask |= POLLOUT | POLLWRNORM;
528			}
529		} else
530			mask |= POLLOUT | POLLWRNORM;
531
532		if (tp->urg_data & TCP_URG_VALID)
533			mask |= POLLPRI;
534	}
535	/* This barrier is coupled with smp_wmb() in tcp_reset() */
536	smp_rmb();
537	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
538		mask |= POLLERR;
539
540	return mask;
541}
542EXPORT_SYMBOL(tcp_poll);
543
544int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
545{
546	struct tcp_sock *tp = tcp_sk(sk);
547	int answ;
548	bool slow;
549
550	switch (cmd) {
551	case SIOCINQ:
552		if (sk->sk_state == TCP_LISTEN)
553			return -EINVAL;
554
555		slow = lock_sock_fast(sk);
556		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
557			answ = 0;
558		else if (sock_flag(sk, SOCK_URGINLINE) ||
559			 !tp->urg_data ||
560			 before(tp->urg_seq, tp->copied_seq) ||
561			 !before(tp->urg_seq, tp->rcv_nxt)) {
562
563			answ = tp->rcv_nxt - tp->copied_seq;
564
565			/* Subtract 1, if FIN was received */
566			if (answ && sock_flag(sk, SOCK_DONE))
567				answ--;
568		} else
569			answ = tp->urg_seq - tp->copied_seq;
570		unlock_sock_fast(sk, slow);
571		break;
572	case SIOCATMARK:
573		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
574		break;
575	case SIOCOUTQ:
576		if (sk->sk_state == TCP_LISTEN)
577			return -EINVAL;
578
579		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
580			answ = 0;
581		else
582			answ = tp->write_seq - tp->snd_una;
583		break;
584	case SIOCOUTQNSD:
585		if (sk->sk_state == TCP_LISTEN)
586			return -EINVAL;
587
588		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
589			answ = 0;
590		else
591			answ = tp->write_seq - tp->snd_nxt;
592		break;
593	default:
594		return -ENOIOCTLCMD;
595	}
596
597	return put_user(answ, (int __user *)arg);
598}
599EXPORT_SYMBOL(tcp_ioctl);
600
601static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
602{
603	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
604	tp->pushed_seq = tp->write_seq;
605}
606
607static inline bool forced_push(const struct tcp_sock *tp)
608{
609	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
610}
611
612static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
613{
614	struct tcp_sock *tp = tcp_sk(sk);
615	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
616
617	skb->csum    = 0;
618	tcb->seq     = tcb->end_seq = tp->write_seq;
619	tcb->tcp_flags = TCPHDR_ACK;
620	tcb->sacked  = 0;
621	skb_header_release(skb);
622	tcp_add_write_queue_tail(sk, skb);
623	sk->sk_wmem_queued += skb->truesize;
624	sk_mem_charge(sk, skb->truesize);
625	if (tp->nonagle & TCP_NAGLE_PUSH)
626		tp->nonagle &= ~TCP_NAGLE_PUSH;
627}
628
629static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
630{
631	if (flags & MSG_OOB)
632		tp->snd_up = tp->write_seq;
633}
634
635/* If a not yet filled skb is pushed, do not send it if
636 * we have data packets in Qdisc or NIC queues :
637 * Because TX completion will happen shortly, it gives a chance
638 * to coalesce future sendmsg() payload into this skb, without
639 * need for a timer, and with no latency trade off.
640 * As packets containing data payload have a bigger truesize
641 * than pure acks (dataless) packets, the last checks prevent
642 * autocorking if we only have an ACK in Qdisc/NIC queues,
643 * or if TX completion was delayed after we processed ACK packet.
644 */
645static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
646				int size_goal)
647{
648	return skb->len < size_goal &&
649	       sysctl_tcp_autocorking &&
650	       skb != tcp_write_queue_head(sk) &&
651	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
652}
653
654static void tcp_push(struct sock *sk, int flags, int mss_now,
655		     int nonagle, int size_goal)
656{
657	struct tcp_sock *tp = tcp_sk(sk);
658	struct sk_buff *skb;
659
660	if (!tcp_send_head(sk))
661		return;
662
663	skb = tcp_write_queue_tail(sk);
664	if (!(flags & MSG_MORE) || forced_push(tp))
665		tcp_mark_push(tp, skb);
666
667	tcp_mark_urg(tp, flags);
668
669	if (tcp_should_autocork(sk, skb, size_goal)) {
670
671		/* avoid atomic op if TSQ_THROTTLED bit is already set */
672		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
673			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
674			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
675		}
676		/* It is possible TX completion already happened
677		 * before we set TSQ_THROTTLED.
678		 */
679		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
680			return;
681	}
682
683	if (flags & MSG_MORE)
684		nonagle = TCP_NAGLE_CORK;
685
686	__tcp_push_pending_frames(sk, mss_now, nonagle);
687}
688
689static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
690				unsigned int offset, size_t len)
691{
692	struct tcp_splice_state *tss = rd_desc->arg.data;
693	int ret;
694
695	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
696			      tss->flags);
697	if (ret > 0)
698		rd_desc->count -= ret;
699	return ret;
700}
701
702static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
703{
704	/* Store TCP splice context information in read_descriptor_t. */
705	read_descriptor_t rd_desc = {
706		.arg.data = tss,
707		.count	  = tss->len,
708	};
709
710	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
711}
712
713/**
714 *  tcp_splice_read - splice data from TCP socket to a pipe
715 * @sock:	socket to splice from
716 * @ppos:	position (not valid)
717 * @pipe:	pipe to splice to
718 * @len:	number of bytes to splice
719 * @flags:	splice modifier flags
720 *
721 * Description:
722 *    Will read pages from given socket and fill them into a pipe.
723 *
724 **/
725ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
726			struct pipe_inode_info *pipe, size_t len,
727			unsigned int flags)
728{
729	struct sock *sk = sock->sk;
730	struct tcp_splice_state tss = {
731		.pipe = pipe,
732		.len = len,
733		.flags = flags,
734	};
735	long timeo;
736	ssize_t spliced;
737	int ret;
738
739	sock_rps_record_flow(sk);
740	/*
741	 * We can't seek on a socket input
742	 */
743	if (unlikely(*ppos))
744		return -ESPIPE;
745
746	ret = spliced = 0;
747
748	lock_sock(sk);
749
750	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
751	while (tss.len) {
752		ret = __tcp_splice_read(sk, &tss);
753		if (ret < 0)
754			break;
755		else if (!ret) {
756			if (spliced)
757				break;
758			if (sock_flag(sk, SOCK_DONE))
759				break;
760			if (sk->sk_err) {
761				ret = sock_error(sk);
762				break;
763			}
764			if (sk->sk_shutdown & RCV_SHUTDOWN)
765				break;
766			if (sk->sk_state == TCP_CLOSE) {
767				/*
768				 * This occurs when user tries to read
769				 * from never connected socket.
770				 */
771				if (!sock_flag(sk, SOCK_DONE))
772					ret = -ENOTCONN;
773				break;
774			}
775			if (!timeo) {
776				ret = -EAGAIN;
777				break;
778			}
779			sk_wait_data(sk, &timeo);
780			if (signal_pending(current)) {
781				ret = sock_intr_errno(timeo);
782				break;
783			}
784			continue;
785		}
786		tss.len -= ret;
787		spliced += ret;
788
789		if (!timeo)
790			break;
791		release_sock(sk);
792		lock_sock(sk);
793
794		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
795		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
796		    signal_pending(current))
797			break;
798	}
799
800	release_sock(sk);
801
802	if (spliced)
803		return spliced;
804
805	return ret;
806}
807EXPORT_SYMBOL(tcp_splice_read);
808
809struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
810{
811	struct sk_buff *skb;
812
813	/* The TCP header must be at least 32-bit aligned.  */
814	size = ALIGN(size, 4);
815
816	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
817	if (skb) {
818		if (sk_wmem_schedule(sk, skb->truesize)) {
819			skb_reserve(skb, sk->sk_prot->max_header);
820			/*
821			 * Make sure that we have exactly size bytes
822			 * available to the caller, no more, no less.
823			 */
824			skb->reserved_tailroom = skb->end - skb->tail - size;
825			return skb;
826		}
827		__kfree_skb(skb);
828	} else {
829		sk->sk_prot->enter_memory_pressure(sk);
830		sk_stream_moderate_sndbuf(sk);
831	}
832	return NULL;
833}
834
835static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
836				       int large_allowed)
837{
838	struct tcp_sock *tp = tcp_sk(sk);
839	u32 xmit_size_goal, old_size_goal;
840
841	xmit_size_goal = mss_now;
842
843	if (large_allowed && sk_can_gso(sk)) {
844		u32 gso_size, hlen;
845
846		/* Maybe we should/could use sk->sk_prot->max_header here ? */
847		hlen = inet_csk(sk)->icsk_af_ops->net_header_len +
848		       inet_csk(sk)->icsk_ext_hdr_len +
849		       tp->tcp_header_len;
850
851		/* Goal is to send at least one packet per ms,
852		 * not one big TSO packet every 100 ms.
853		 * This preserves ACK clocking and is consistent
854		 * with tcp_tso_should_defer() heuristic.
855		 */
856		gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC);
857		gso_size = max_t(u32, gso_size,
858				 sysctl_tcp_min_tso_segs * mss_now);
859
860		xmit_size_goal = min_t(u32, gso_size,
861				       sk->sk_gso_max_size - 1 - hlen);
862
863		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
864
865		/* We try hard to avoid divides here */
866		old_size_goal = tp->xmit_size_goal_segs * mss_now;
867
868		if (likely(old_size_goal <= xmit_size_goal &&
869			   old_size_goal + mss_now > xmit_size_goal)) {
870			xmit_size_goal = old_size_goal;
871		} else {
872			tp->xmit_size_goal_segs =
873				min_t(u16, xmit_size_goal / mss_now,
874				      sk->sk_gso_max_segs);
875			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
876		}
877	}
878
879	return max(xmit_size_goal, mss_now);
880}
881
882static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
883{
884	int mss_now;
885
886	mss_now = tcp_current_mss(sk);
887	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
888
889	return mss_now;
890}
891
892static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
893				size_t size, int flags)
894{
895	struct tcp_sock *tp = tcp_sk(sk);
896	int mss_now, size_goal;
897	int err;
898	ssize_t copied;
899	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
900
901	/* Wait for a connection to finish. One exception is TCP Fast Open
902	 * (passive side) where data is allowed to be sent before a connection
903	 * is fully established.
904	 */
905	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
906	    !tcp_passive_fastopen(sk)) {
907		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
908			goto out_err;
909	}
910
911	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
912
913	mss_now = tcp_send_mss(sk, &size_goal, flags);
914	copied = 0;
915
916	err = -EPIPE;
917	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
918		goto out_err;
919
920	while (size > 0) {
921		struct sk_buff *skb = tcp_write_queue_tail(sk);
922		int copy, i;
923		bool can_coalesce;
924
925		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
926new_segment:
927			if (!sk_stream_memory_free(sk))
928				goto wait_for_sndbuf;
929
930			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
931			if (!skb)
932				goto wait_for_memory;
933
934			skb_entail(sk, skb);
935			copy = size_goal;
936		}
937
938		if (copy > size)
939			copy = size;
940
941		i = skb_shinfo(skb)->nr_frags;
942		can_coalesce = skb_can_coalesce(skb, i, page, offset);
943		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
944			tcp_mark_push(tp, skb);
945			goto new_segment;
946		}
947		if (!sk_wmem_schedule(sk, copy))
948			goto wait_for_memory;
949
950		if (can_coalesce) {
951			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
952		} else {
953			get_page(page);
954			skb_fill_page_desc(skb, i, page, offset, copy);
955		}
956		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
957
958		skb->len += copy;
959		skb->data_len += copy;
960		skb->truesize += copy;
961		sk->sk_wmem_queued += copy;
962		sk_mem_charge(sk, copy);
963		skb->ip_summed = CHECKSUM_PARTIAL;
964		tp->write_seq += copy;
965		TCP_SKB_CB(skb)->end_seq += copy;
966		skb_shinfo(skb)->gso_segs = 0;
967
968		if (!copied)
969			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
970
971		copied += copy;
972		offset += copy;
973		if (!(size -= copy)) {
974			tcp_tx_timestamp(sk, skb);
975			goto out;
976		}
977
978		if (skb->len < size_goal || (flags & MSG_OOB))
979			continue;
980
981		if (forced_push(tp)) {
982			tcp_mark_push(tp, skb);
983			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
984		} else if (skb == tcp_send_head(sk))
985			tcp_push_one(sk, mss_now);
986		continue;
987
988wait_for_sndbuf:
989		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
990wait_for_memory:
991		tcp_push(sk, flags & ~MSG_MORE, mss_now,
992			 TCP_NAGLE_PUSH, size_goal);
993
994		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
995			goto do_error;
996
997		mss_now = tcp_send_mss(sk, &size_goal, flags);
998	}
999
1000out:
1001	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
1002		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1003	return copied;
1004
1005do_error:
1006	if (copied)
1007		goto out;
1008out_err:
1009	return sk_stream_error(sk, flags, err);
1010}
1011
1012int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1013		 size_t size, int flags)
1014{
1015	ssize_t res;
1016
1017	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1018	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1019		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1020					flags);
1021
1022	lock_sock(sk);
1023	res = do_tcp_sendpages(sk, page, offset, size, flags);
1024	release_sock(sk);
1025	return res;
1026}
1027EXPORT_SYMBOL(tcp_sendpage);
1028
1029static inline int select_size(const struct sock *sk, bool sg)
1030{
1031	const struct tcp_sock *tp = tcp_sk(sk);
1032	int tmp = tp->mss_cache;
1033
1034	if (sg) {
1035		if (sk_can_gso(sk)) {
1036			/* Small frames wont use a full page:
1037			 * Payload will immediately follow tcp header.
1038			 */
1039			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1040		} else {
1041			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1042
1043			if (tmp >= pgbreak &&
1044			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1045				tmp = pgbreak;
1046		}
1047	}
1048
1049	return tmp;
1050}
1051
1052void tcp_free_fastopen_req(struct tcp_sock *tp)
1053{
1054	if (tp->fastopen_req != NULL) {
1055		kfree(tp->fastopen_req);
1056		tp->fastopen_req = NULL;
1057	}
1058}
1059
1060static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1061				int *copied, size_t size)
1062{
1063	struct tcp_sock *tp = tcp_sk(sk);
1064	int err, flags;
1065
1066	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1067		return -EOPNOTSUPP;
1068	if (tp->fastopen_req != NULL)
1069		return -EALREADY; /* Another Fast Open is in progress */
1070
1071	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1072				   sk->sk_allocation);
1073	if (unlikely(tp->fastopen_req == NULL))
1074		return -ENOBUFS;
1075	tp->fastopen_req->data = msg;
1076	tp->fastopen_req->size = size;
1077
1078	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1079	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1080				    msg->msg_namelen, flags);
1081	*copied = tp->fastopen_req->copied;
1082	tcp_free_fastopen_req(tp);
1083	return err;
1084}
1085
1086int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1087		size_t size)
1088{
1089	struct iovec *iov;
1090	struct tcp_sock *tp = tcp_sk(sk);
1091	struct sk_buff *skb;
1092	int iovlen, flags, err, copied = 0;
1093	int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1094	bool sg;
1095	long timeo;
1096
1097	lock_sock(sk);
1098
1099	flags = msg->msg_flags;
1100	if (flags & MSG_FASTOPEN) {
1101		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1102		if (err == -EINPROGRESS && copied_syn > 0)
1103			goto out;
1104		else if (err)
1105			goto out_err;
1106		offset = copied_syn;
1107	}
1108
1109	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1110
1111	/* Wait for a connection to finish. One exception is TCP Fast Open
1112	 * (passive side) where data is allowed to be sent before a connection
1113	 * is fully established.
1114	 */
1115	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1116	    !tcp_passive_fastopen(sk)) {
1117		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1118			goto do_error;
1119	}
1120
1121	if (unlikely(tp->repair)) {
1122		if (tp->repair_queue == TCP_RECV_QUEUE) {
1123			copied = tcp_send_rcvq(sk, msg, size);
1124			goto out_nopush;
1125		}
1126
1127		err = -EINVAL;
1128		if (tp->repair_queue == TCP_NO_QUEUE)
1129			goto out_err;
1130
1131		/* 'common' sending to sendq */
1132	}
1133
1134	/* This should be in poll */
1135	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1136
1137	mss_now = tcp_send_mss(sk, &size_goal, flags);
1138
1139	/* Ok commence sending. */
1140	iovlen = msg->msg_iovlen;
1141	iov = msg->msg_iov;
1142	copied = 0;
1143
1144	err = -EPIPE;
1145	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1146		goto out_err;
1147
1148	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1149
1150	while (--iovlen >= 0) {
1151		size_t seglen = iov->iov_len;
1152		unsigned char __user *from = iov->iov_base;
1153
1154		iov++;
1155		if (unlikely(offset > 0)) {  /* Skip bytes copied in SYN */
1156			if (offset >= seglen) {
1157				offset -= seglen;
1158				continue;
1159			}
1160			seglen -= offset;
1161			from += offset;
1162			offset = 0;
1163		}
1164
1165		while (seglen > 0) {
1166			int copy = 0;
1167			int max = size_goal;
1168
1169			skb = tcp_write_queue_tail(sk);
1170			if (tcp_send_head(sk)) {
1171				if (skb->ip_summed == CHECKSUM_NONE)
1172					max = mss_now;
1173				copy = max - skb->len;
1174			}
1175
1176			if (copy <= 0) {
1177new_segment:
1178				/* Allocate new segment. If the interface is SG,
1179				 * allocate skb fitting to single page.
1180				 */
1181				if (!sk_stream_memory_free(sk))
1182					goto wait_for_sndbuf;
1183
1184				skb = sk_stream_alloc_skb(sk,
1185							  select_size(sk, sg),
1186							  sk->sk_allocation);
1187				if (!skb)
1188					goto wait_for_memory;
1189
1190				/*
1191				 * Check whether we can use HW checksum.
1192				 */
1193				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1194					skb->ip_summed = CHECKSUM_PARTIAL;
1195
1196				skb_entail(sk, skb);
1197				copy = size_goal;
1198				max = size_goal;
1199
1200				/* All packets are restored as if they have
1201				 * already been sent. skb_mstamp isn't set to
1202				 * avoid wrong rtt estimation.
1203				 */
1204				if (tp->repair)
1205					TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1206			}
1207
1208			/* Try to append data to the end of skb. */
1209			if (copy > seglen)
1210				copy = seglen;
1211
1212			/* Where to copy to? */
1213			if (skb_availroom(skb) > 0) {
1214				/* We have some space in skb head. Superb! */
1215				copy = min_t(int, copy, skb_availroom(skb));
1216				err = skb_add_data_nocache(sk, skb, from, copy);
1217				if (err)
1218					goto do_fault;
1219			} else {
1220				bool merge = true;
1221				int i = skb_shinfo(skb)->nr_frags;
1222				struct page_frag *pfrag = sk_page_frag(sk);
1223
1224				if (!sk_page_frag_refill(sk, pfrag))
1225					goto wait_for_memory;
1226
1227				if (!skb_can_coalesce(skb, i, pfrag->page,
1228						      pfrag->offset)) {
1229					if (i == MAX_SKB_FRAGS || !sg) {
1230						tcp_mark_push(tp, skb);
1231						goto new_segment;
1232					}
1233					merge = false;
1234				}
1235
1236				copy = min_t(int, copy, pfrag->size - pfrag->offset);
1237
1238				if (!sk_wmem_schedule(sk, copy))
1239					goto wait_for_memory;
1240
1241				err = skb_copy_to_page_nocache(sk, from, skb,
1242							       pfrag->page,
1243							       pfrag->offset,
1244							       copy);
1245				if (err)
1246					goto do_error;
1247
1248				/* Update the skb. */
1249				if (merge) {
1250					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1251				} else {
1252					skb_fill_page_desc(skb, i, pfrag->page,
1253							   pfrag->offset, copy);
1254					get_page(pfrag->page);
1255				}
1256				pfrag->offset += copy;
1257			}
1258
1259			if (!copied)
1260				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1261
1262			tp->write_seq += copy;
1263			TCP_SKB_CB(skb)->end_seq += copy;
1264			skb_shinfo(skb)->gso_segs = 0;
1265
1266			from += copy;
1267			copied += copy;
1268			if ((seglen -= copy) == 0 && iovlen == 0) {
1269				tcp_tx_timestamp(sk, skb);
1270				goto out;
1271			}
1272
1273			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1274				continue;
1275
1276			if (forced_push(tp)) {
1277				tcp_mark_push(tp, skb);
1278				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1279			} else if (skb == tcp_send_head(sk))
1280				tcp_push_one(sk, mss_now);
1281			continue;
1282
1283wait_for_sndbuf:
1284			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1285wait_for_memory:
1286			if (copied)
1287				tcp_push(sk, flags & ~MSG_MORE, mss_now,
1288					 TCP_NAGLE_PUSH, size_goal);
1289
1290			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1291				goto do_error;
1292
1293			mss_now = tcp_send_mss(sk, &size_goal, flags);
1294		}
1295	}
1296
1297out:
1298	if (copied)
1299		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1300out_nopush:
1301	release_sock(sk);
1302	return copied + copied_syn;
1303
1304do_fault:
1305	if (!skb->len) {
1306		tcp_unlink_write_queue(skb, sk);
1307		/* It is the one place in all of TCP, except connection
1308		 * reset, where we can be unlinking the send_head.
1309		 */
1310		tcp_check_send_head(sk, skb);
1311		sk_wmem_free_skb(sk, skb);
1312	}
1313
1314do_error:
1315	if (copied + copied_syn)
1316		goto out;
1317out_err:
1318	err = sk_stream_error(sk, flags, err);
1319	release_sock(sk);
1320	return err;
1321}
1322EXPORT_SYMBOL(tcp_sendmsg);
1323
1324/*
1325 *	Handle reading urgent data. BSD has very simple semantics for
1326 *	this, no blocking and very strange errors 8)
1327 */
1328
1329static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1330{
1331	struct tcp_sock *tp = tcp_sk(sk);
1332
1333	/* No URG data to read. */
1334	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1335	    tp->urg_data == TCP_URG_READ)
1336		return -EINVAL;	/* Yes this is right ! */
1337
1338	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1339		return -ENOTCONN;
1340
1341	if (tp->urg_data & TCP_URG_VALID) {
1342		int err = 0;
1343		char c = tp->urg_data;
1344
1345		if (!(flags & MSG_PEEK))
1346			tp->urg_data = TCP_URG_READ;
1347
1348		/* Read urgent data. */
1349		msg->msg_flags |= MSG_OOB;
1350
1351		if (len > 0) {
1352			if (!(flags & MSG_TRUNC))
1353				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1354			len = 1;
1355		} else
1356			msg->msg_flags |= MSG_TRUNC;
1357
1358		return err ? -EFAULT : len;
1359	}
1360
1361	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1362		return 0;
1363
1364	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1365	 * the available implementations agree in this case:
1366	 * this call should never block, independent of the
1367	 * blocking state of the socket.
1368	 * Mike <pall@rz.uni-karlsruhe.de>
1369	 */
1370	return -EAGAIN;
1371}
1372
1373static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1374{
1375	struct sk_buff *skb;
1376	int copied = 0, err = 0;
1377
1378	/* XXX -- need to support SO_PEEK_OFF */
1379
1380	skb_queue_walk(&sk->sk_write_queue, skb) {
1381		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1382		if (err)
1383			break;
1384
1385		copied += skb->len;
1386	}
1387
1388	return err ?: copied;
1389}
1390
1391/* Clean up the receive buffer for full frames taken by the user,
1392 * then send an ACK if necessary.  COPIED is the number of bytes
1393 * tcp_recvmsg has given to the user so far, it speeds up the
1394 * calculation of whether or not we must ACK for the sake of
1395 * a window update.
1396 */
1397void tcp_cleanup_rbuf(struct sock *sk, int copied)
1398{
1399	struct tcp_sock *tp = tcp_sk(sk);
1400	bool time_to_ack = false;
1401
1402	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1403
1404	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1405	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1406	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1407
1408	if (inet_csk_ack_scheduled(sk)) {
1409		const struct inet_connection_sock *icsk = inet_csk(sk);
1410		   /* Delayed ACKs frequently hit locked sockets during bulk
1411		    * receive. */
1412		if (icsk->icsk_ack.blocked ||
1413		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1414		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1415		    /*
1416		     * If this read emptied read buffer, we send ACK, if
1417		     * connection is not bidirectional, user drained
1418		     * receive buffer and there was a small segment
1419		     * in queue.
1420		     */
1421		    (copied > 0 &&
1422		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1423		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1424		       !icsk->icsk_ack.pingpong)) &&
1425		      !atomic_read(&sk->sk_rmem_alloc)))
1426			time_to_ack = true;
1427	}
1428
1429	/* We send an ACK if we can now advertise a non-zero window
1430	 * which has been raised "significantly".
1431	 *
1432	 * Even if window raised up to infinity, do not send window open ACK
1433	 * in states, where we will not receive more. It is useless.
1434	 */
1435	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1436		__u32 rcv_window_now = tcp_receive_window(tp);
1437
1438		/* Optimize, __tcp_select_window() is not cheap. */
1439		if (2*rcv_window_now <= tp->window_clamp) {
1440			__u32 new_window = __tcp_select_window(sk);
1441
1442			/* Send ACK now, if this read freed lots of space
1443			 * in our buffer. Certainly, new_window is new window.
1444			 * We can advertise it now, if it is not less than current one.
1445			 * "Lots" means "at least twice" here.
1446			 */
1447			if (new_window && new_window >= 2 * rcv_window_now)
1448				time_to_ack = true;
1449		}
1450	}
1451	if (time_to_ack)
1452		tcp_send_ack(sk);
1453}
1454
1455static void tcp_prequeue_process(struct sock *sk)
1456{
1457	struct sk_buff *skb;
1458	struct tcp_sock *tp = tcp_sk(sk);
1459
1460	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1461
1462	/* RX process wants to run with disabled BHs, though it is not
1463	 * necessary */
1464	local_bh_disable();
1465	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1466		sk_backlog_rcv(sk, skb);
1467	local_bh_enable();
1468
1469	/* Clear memory counter. */
1470	tp->ucopy.memory = 0;
1471}
1472
1473#ifdef CONFIG_NET_DMA
1474static void tcp_service_net_dma(struct sock *sk, bool wait)
1475{
1476	dma_cookie_t done, used;
1477	dma_cookie_t last_issued;
1478	struct tcp_sock *tp = tcp_sk(sk);
1479
1480	if (!tp->ucopy.dma_chan)
1481		return;
1482
1483	last_issued = tp->ucopy.dma_cookie;
1484	dma_async_issue_pending(tp->ucopy.dma_chan);
1485
1486	do {
1487		if (dma_async_is_tx_complete(tp->ucopy.dma_chan,
1488					      last_issued, &done,
1489					      &used) == DMA_COMPLETE) {
1490			/* Safe to free early-copied skbs now */
1491			__skb_queue_purge(&sk->sk_async_wait_queue);
1492			break;
1493		} else {
1494			struct sk_buff *skb;
1495			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1496			       (dma_async_is_complete(skb->dma_cookie, done,
1497						      used) == DMA_COMPLETE)) {
1498				__skb_dequeue(&sk->sk_async_wait_queue);
1499				kfree_skb(skb);
1500			}
1501		}
1502	} while (wait);
1503}
1504#endif
1505
1506static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1507{
1508	struct sk_buff *skb;
1509	u32 offset;
1510
1511	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1512		offset = seq - TCP_SKB_CB(skb)->seq;
1513		if (tcp_hdr(skb)->syn)
1514			offset--;
1515		if (offset < skb->len || tcp_hdr(skb)->fin) {
1516			*off = offset;
1517			return skb;
1518		}
1519		/* This looks weird, but this can happen if TCP collapsing
1520		 * splitted a fat GRO packet, while we released socket lock
1521		 * in skb_splice_bits()
1522		 */
1523		sk_eat_skb(sk, skb, false);
1524	}
1525	return NULL;
1526}
1527
1528/*
1529 * This routine provides an alternative to tcp_recvmsg() for routines
1530 * that would like to handle copying from skbuffs directly in 'sendfile'
1531 * fashion.
1532 * Note:
1533 *	- It is assumed that the socket was locked by the caller.
1534 *	- The routine does not block.
1535 *	- At present, there is no support for reading OOB data
1536 *	  or for 'peeking' the socket using this routine
1537 *	  (although both would be easy to implement).
1538 */
1539int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1540		  sk_read_actor_t recv_actor)
1541{
1542	struct sk_buff *skb;
1543	struct tcp_sock *tp = tcp_sk(sk);
1544	u32 seq = tp->copied_seq;
1545	u32 offset;
1546	int copied = 0;
1547
1548	if (sk->sk_state == TCP_LISTEN)
1549		return -ENOTCONN;
1550	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1551		if (offset < skb->len) {
1552			int used;
1553			size_t len;
1554
1555			len = skb->len - offset;
1556			/* Stop reading if we hit a patch of urgent data */
1557			if (tp->urg_data) {
1558				u32 urg_offset = tp->urg_seq - seq;
1559				if (urg_offset < len)
1560					len = urg_offset;
1561				if (!len)
1562					break;
1563			}
1564			used = recv_actor(desc, skb, offset, len);
1565			if (used <= 0) {
1566				if (!copied)
1567					copied = used;
1568				break;
1569			} else if (used <= len) {
1570				seq += used;
1571				copied += used;
1572				offset += used;
1573			}
1574			/* If recv_actor drops the lock (e.g. TCP splice
1575			 * receive) the skb pointer might be invalid when
1576			 * getting here: tcp_collapse might have deleted it
1577			 * while aggregating skbs from the socket queue.
1578			 */
1579			skb = tcp_recv_skb(sk, seq - 1, &offset);
1580			if (!skb)
1581				break;
1582			/* TCP coalescing might have appended data to the skb.
1583			 * Try to splice more frags
1584			 */
1585			if (offset + 1 != skb->len)
1586				continue;
1587		}
1588		if (tcp_hdr(skb)->fin) {
1589			sk_eat_skb(sk, skb, false);
1590			++seq;
1591			break;
1592		}
1593		sk_eat_skb(sk, skb, false);
1594		if (!desc->count)
1595			break;
1596		tp->copied_seq = seq;
1597	}
1598	tp->copied_seq = seq;
1599
1600	tcp_rcv_space_adjust(sk);
1601
1602	/* Clean up data we have read: This will do ACK frames. */
1603	if (copied > 0) {
1604		tcp_recv_skb(sk, seq, &offset);
1605		tcp_cleanup_rbuf(sk, copied);
1606	}
1607	return copied;
1608}
1609EXPORT_SYMBOL(tcp_read_sock);
1610
1611/*
1612 *	This routine copies from a sock struct into the user buffer.
1613 *
1614 *	Technical note: in 2.3 we work on _locked_ socket, so that
1615 *	tricks with *seq access order and skb->users are not required.
1616 *	Probably, code can be easily improved even more.
1617 */
1618
1619int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1620		size_t len, int nonblock, int flags, int *addr_len)
1621{
1622	struct tcp_sock *tp = tcp_sk(sk);
1623	int copied = 0;
1624	u32 peek_seq;
1625	u32 *seq;
1626	unsigned long used;
1627	int err;
1628	int target;		/* Read at least this many bytes */
1629	long timeo;
1630	struct task_struct *user_recv = NULL;
1631	bool copied_early = false;
1632	struct sk_buff *skb;
1633	u32 urg_hole = 0;
1634
1635	if (unlikely(flags & MSG_ERRQUEUE))
1636		return ip_recv_error(sk, msg, len, addr_len);
1637
1638	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1639	    (sk->sk_state == TCP_ESTABLISHED))
1640		sk_busy_loop(sk, nonblock);
1641
1642	lock_sock(sk);
1643
1644	err = -ENOTCONN;
1645	if (sk->sk_state == TCP_LISTEN)
1646		goto out;
1647
1648	timeo = sock_rcvtimeo(sk, nonblock);
1649
1650	/* Urgent data needs to be handled specially. */
1651	if (flags & MSG_OOB)
1652		goto recv_urg;
1653
1654	if (unlikely(tp->repair)) {
1655		err = -EPERM;
1656		if (!(flags & MSG_PEEK))
1657			goto out;
1658
1659		if (tp->repair_queue == TCP_SEND_QUEUE)
1660			goto recv_sndq;
1661
1662		err = -EINVAL;
1663		if (tp->repair_queue == TCP_NO_QUEUE)
1664			goto out;
1665
1666		/* 'common' recv queue MSG_PEEK-ing */
1667	}
1668
1669	seq = &tp->copied_seq;
1670	if (flags & MSG_PEEK) {
1671		peek_seq = tp->copied_seq;
1672		seq = &peek_seq;
1673	}
1674
1675	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1676
1677#ifdef CONFIG_NET_DMA
1678	tp->ucopy.dma_chan = NULL;
1679	preempt_disable();
1680	skb = skb_peek_tail(&sk->sk_receive_queue);
1681	{
1682		int available = 0;
1683
1684		if (skb)
1685			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1686		if ((available < target) &&
1687		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1688		    !sysctl_tcp_low_latency &&
1689		    net_dma_find_channel()) {
1690			preempt_enable();
1691			tp->ucopy.pinned_list =
1692					dma_pin_iovec_pages(msg->msg_iov, len);
1693		} else {
1694			preempt_enable();
1695		}
1696	}
1697#endif
1698
1699	do {
1700		u32 offset;
1701
1702		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1703		if (tp->urg_data && tp->urg_seq == *seq) {
1704			if (copied)
1705				break;
1706			if (signal_pending(current)) {
1707				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1708				break;
1709			}
1710		}
1711
1712		/* Next get a buffer. */
1713
1714		skb_queue_walk(&sk->sk_receive_queue, skb) {
1715			/* Now that we have two receive queues this
1716			 * shouldn't happen.
1717			 */
1718			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1719				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1720				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1721				 flags))
1722				break;
1723
1724			offset = *seq - TCP_SKB_CB(skb)->seq;
1725			if (tcp_hdr(skb)->syn)
1726				offset--;
1727			if (offset < skb->len)
1728				goto found_ok_skb;
1729			if (tcp_hdr(skb)->fin)
1730				goto found_fin_ok;
1731			WARN(!(flags & MSG_PEEK),
1732			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1733			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1734		}
1735
1736		/* Well, if we have backlog, try to process it now yet. */
1737
1738		if (copied >= target && !sk->sk_backlog.tail)
1739			break;
1740
1741		if (copied) {
1742			if (sk->sk_err ||
1743			    sk->sk_state == TCP_CLOSE ||
1744			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1745			    !timeo ||
1746			    signal_pending(current))
1747				break;
1748		} else {
1749			if (sock_flag(sk, SOCK_DONE))
1750				break;
1751
1752			if (sk->sk_err) {
1753				copied = sock_error(sk);
1754				break;
1755			}
1756
1757			if (sk->sk_shutdown & RCV_SHUTDOWN)
1758				break;
1759
1760			if (sk->sk_state == TCP_CLOSE) {
1761				if (!sock_flag(sk, SOCK_DONE)) {
1762					/* This occurs when user tries to read
1763					 * from never connected socket.
1764					 */
1765					copied = -ENOTCONN;
1766					break;
1767				}
1768				break;
1769			}
1770
1771			if (!timeo) {
1772				copied = -EAGAIN;
1773				break;
1774			}
1775
1776			if (signal_pending(current)) {
1777				copied = sock_intr_errno(timeo);
1778				break;
1779			}
1780		}
1781
1782		tcp_cleanup_rbuf(sk, copied);
1783
1784		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1785			/* Install new reader */
1786			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1787				user_recv = current;
1788				tp->ucopy.task = user_recv;
1789				tp->ucopy.iov = msg->msg_iov;
1790			}
1791
1792			tp->ucopy.len = len;
1793
1794			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1795				!(flags & (MSG_PEEK | MSG_TRUNC)));
1796
1797			/* Ugly... If prequeue is not empty, we have to
1798			 * process it before releasing socket, otherwise
1799			 * order will be broken at second iteration.
1800			 * More elegant solution is required!!!
1801			 *
1802			 * Look: we have the following (pseudo)queues:
1803			 *
1804			 * 1. packets in flight
1805			 * 2. backlog
1806			 * 3. prequeue
1807			 * 4. receive_queue
1808			 *
1809			 * Each queue can be processed only if the next ones
1810			 * are empty. At this point we have empty receive_queue.
1811			 * But prequeue _can_ be not empty after 2nd iteration,
1812			 * when we jumped to start of loop because backlog
1813			 * processing added something to receive_queue.
1814			 * We cannot release_sock(), because backlog contains
1815			 * packets arrived _after_ prequeued ones.
1816			 *
1817			 * Shortly, algorithm is clear --- to process all
1818			 * the queues in order. We could make it more directly,
1819			 * requeueing packets from backlog to prequeue, if
1820			 * is not empty. It is more elegant, but eats cycles,
1821			 * unfortunately.
1822			 */
1823			if (!skb_queue_empty(&tp->ucopy.prequeue))
1824				goto do_prequeue;
1825
1826			/* __ Set realtime policy in scheduler __ */
1827		}
1828
1829#ifdef CONFIG_NET_DMA
1830		if (tp->ucopy.dma_chan) {
1831			if (tp->rcv_wnd == 0 &&
1832			    !skb_queue_empty(&sk->sk_async_wait_queue)) {
1833				tcp_service_net_dma(sk, true);
1834				tcp_cleanup_rbuf(sk, copied);
1835			} else
1836				dma_async_issue_pending(tp->ucopy.dma_chan);
1837		}
1838#endif
1839		if (copied >= target) {
1840			/* Do not sleep, just process backlog. */
1841			release_sock(sk);
1842			lock_sock(sk);
1843		} else
1844			sk_wait_data(sk, &timeo);
1845
1846#ifdef CONFIG_NET_DMA
1847		tcp_service_net_dma(sk, false);  /* Don't block */
1848		tp->ucopy.wakeup = 0;
1849#endif
1850
1851		if (user_recv) {
1852			int chunk;
1853
1854			/* __ Restore normal policy in scheduler __ */
1855
1856			if ((chunk = len - tp->ucopy.len) != 0) {
1857				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1858				len -= chunk;
1859				copied += chunk;
1860			}
1861
1862			if (tp->rcv_nxt == tp->copied_seq &&
1863			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1864do_prequeue:
1865				tcp_prequeue_process(sk);
1866
1867				if ((chunk = len - tp->ucopy.len) != 0) {
1868					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1869					len -= chunk;
1870					copied += chunk;
1871				}
1872			}
1873		}
1874		if ((flags & MSG_PEEK) &&
1875		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1876			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1877					    current->comm,
1878					    task_pid_nr(current));
1879			peek_seq = tp->copied_seq;
1880		}
1881		continue;
1882
1883	found_ok_skb:
1884		/* Ok so how much can we use? */
1885		used = skb->len - offset;
1886		if (len < used)
1887			used = len;
1888
1889		/* Do we have urgent data here? */
1890		if (tp->urg_data) {
1891			u32 urg_offset = tp->urg_seq - *seq;
1892			if (urg_offset < used) {
1893				if (!urg_offset) {
1894					if (!sock_flag(sk, SOCK_URGINLINE)) {
1895						++*seq;
1896						urg_hole++;
1897						offset++;
1898						used--;
1899						if (!used)
1900							goto skip_copy;
1901					}
1902				} else
1903					used = urg_offset;
1904			}
1905		}
1906
1907		if (!(flags & MSG_TRUNC)) {
1908#ifdef CONFIG_NET_DMA
1909			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1910				tp->ucopy.dma_chan = net_dma_find_channel();
1911
1912			if (tp->ucopy.dma_chan) {
1913				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1914					tp->ucopy.dma_chan, skb, offset,
1915					msg->msg_iov, used,
1916					tp->ucopy.pinned_list);
1917
1918				if (tp->ucopy.dma_cookie < 0) {
1919
1920					pr_alert("%s: dma_cookie < 0\n",
1921						 __func__);
1922
1923					/* Exception. Bailout! */
1924					if (!copied)
1925						copied = -EFAULT;
1926					break;
1927				}
1928
1929				dma_async_issue_pending(tp->ucopy.dma_chan);
1930
1931				if ((offset + used) == skb->len)
1932					copied_early = true;
1933
1934			} else
1935#endif
1936			{
1937				err = skb_copy_datagram_iovec(skb, offset,
1938						msg->msg_iov, used);
1939				if (err) {
1940					/* Exception. Bailout! */
1941					if (!copied)
1942						copied = -EFAULT;
1943					break;
1944				}
1945			}
1946		}
1947
1948		*seq += used;
1949		copied += used;
1950		len -= used;
1951
1952		tcp_rcv_space_adjust(sk);
1953
1954skip_copy:
1955		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1956			tp->urg_data = 0;
1957			tcp_fast_path_check(sk);
1958		}
1959		if (used + offset < skb->len)
1960			continue;
1961
1962		if (tcp_hdr(skb)->fin)
1963			goto found_fin_ok;
1964		if (!(flags & MSG_PEEK)) {
1965			sk_eat_skb(sk, skb, copied_early);
1966			copied_early = false;
1967		}
1968		continue;
1969
1970	found_fin_ok:
1971		/* Process the FIN. */
1972		++*seq;
1973		if (!(flags & MSG_PEEK)) {
1974			sk_eat_skb(sk, skb, copied_early);
1975			copied_early = false;
1976		}
1977		break;
1978	} while (len > 0);
1979
1980	if (user_recv) {
1981		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1982			int chunk;
1983
1984			tp->ucopy.len = copied > 0 ? len : 0;
1985
1986			tcp_prequeue_process(sk);
1987
1988			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1989				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1990				len -= chunk;
1991				copied += chunk;
1992			}
1993		}
1994
1995		tp->ucopy.task = NULL;
1996		tp->ucopy.len = 0;
1997	}
1998
1999#ifdef CONFIG_NET_DMA
2000	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
2001	tp->ucopy.dma_chan = NULL;
2002
2003	if (tp->ucopy.pinned_list) {
2004		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
2005		tp->ucopy.pinned_list = NULL;
2006	}
2007#endif
2008
2009	/* According to UNIX98, msg_name/msg_namelen are ignored
2010	 * on connected socket. I was just happy when found this 8) --ANK
2011	 */
2012
2013	/* Clean up data we have read: This will do ACK frames. */
2014	tcp_cleanup_rbuf(sk, copied);
2015
2016	release_sock(sk);
2017	return copied;
2018
2019out:
2020	release_sock(sk);
2021	return err;
2022
2023recv_urg:
2024	err = tcp_recv_urg(sk, msg, len, flags);
2025	goto out;
2026
2027recv_sndq:
2028	err = tcp_peek_sndq(sk, msg, len);
2029	goto out;
2030}
2031EXPORT_SYMBOL(tcp_recvmsg);
2032
2033void tcp_set_state(struct sock *sk, int state)
2034{
2035	int oldstate = sk->sk_state;
2036
2037	switch (state) {
2038	case TCP_ESTABLISHED:
2039		if (oldstate != TCP_ESTABLISHED)
2040			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2041		break;
2042
2043	case TCP_CLOSE:
2044		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2045			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2046
2047		sk->sk_prot->unhash(sk);
2048		if (inet_csk(sk)->icsk_bind_hash &&
2049		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2050			inet_put_port(sk);
2051		/* fall through */
2052	default:
2053		if (oldstate == TCP_ESTABLISHED)
2054			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2055	}
2056
2057	/* Change state AFTER socket is unhashed to avoid closed
2058	 * socket sitting in hash tables.
2059	 */
2060	sk->sk_state = state;
2061
2062#ifdef STATE_TRACE
2063	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2064#endif
2065}
2066EXPORT_SYMBOL_GPL(tcp_set_state);
2067
2068/*
2069 *	State processing on a close. This implements the state shift for
2070 *	sending our FIN frame. Note that we only send a FIN for some
2071 *	states. A shutdown() may have already sent the FIN, or we may be
2072 *	closed.
2073 */
2074
2075static const unsigned char new_state[16] = {
2076  /* current state:        new state:      action:	*/
2077  /* (Invalid)		*/ TCP_CLOSE,
2078  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2079  /* TCP_SYN_SENT	*/ TCP_CLOSE,
2080  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2081  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
2082  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
2083  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
2084  /* TCP_CLOSE		*/ TCP_CLOSE,
2085  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
2086  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
2087  /* TCP_LISTEN		*/ TCP_CLOSE,
2088  /* TCP_CLOSING	*/ TCP_CLOSING,
2089};
2090
2091static int tcp_close_state(struct sock *sk)
2092{
2093	int next = (int)new_state[sk->sk_state];
2094	int ns = next & TCP_STATE_MASK;
2095
2096	tcp_set_state(sk, ns);
2097
2098	return next & TCP_ACTION_FIN;
2099}
2100
2101/*
2102 *	Shutdown the sending side of a connection. Much like close except
2103 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2104 */
2105
2106void tcp_shutdown(struct sock *sk, int how)
2107{
2108	/*	We need to grab some memory, and put together a FIN,
2109	 *	and then put it into the queue to be sent.
2110	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2111	 */
2112	if (!(how & SEND_SHUTDOWN))
2113		return;
2114
2115	/* If we've already sent a FIN, or it's a closed state, skip this. */
2116	if ((1 << sk->sk_state) &
2117	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2118	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2119		/* Clear out any half completed packets.  FIN if needed. */
2120		if (tcp_close_state(sk))
2121			tcp_send_fin(sk);
2122	}
2123}
2124EXPORT_SYMBOL(tcp_shutdown);
2125
2126bool tcp_check_oom(struct sock *sk, int shift)
2127{
2128	bool too_many_orphans, out_of_socket_memory;
2129
2130	too_many_orphans = tcp_too_many_orphans(sk, shift);
2131	out_of_socket_memory = tcp_out_of_memory(sk);
2132
2133	if (too_many_orphans)
2134		net_info_ratelimited("too many orphaned sockets\n");
2135	if (out_of_socket_memory)
2136		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2137	return too_many_orphans || out_of_socket_memory;
2138}
2139
2140void tcp_close(struct sock *sk, long timeout)
2141{
2142	struct sk_buff *skb;
2143	int data_was_unread = 0;
2144	int state;
2145
2146	lock_sock(sk);
2147	sk->sk_shutdown = SHUTDOWN_MASK;
2148
2149	if (sk->sk_state == TCP_LISTEN) {
2150		tcp_set_state(sk, TCP_CLOSE);
2151
2152		/* Special case. */
2153		inet_csk_listen_stop(sk);
2154
2155		goto adjudge_to_death;
2156	}
2157
2158	/*  We need to flush the recv. buffs.  We do this only on the
2159	 *  descriptor close, not protocol-sourced closes, because the
2160	 *  reader process may not have drained the data yet!
2161	 */
2162	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2163		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2164			  tcp_hdr(skb)->fin;
2165		data_was_unread += len;
2166		__kfree_skb(skb);
2167	}
2168
2169	sk_mem_reclaim(sk);
2170
2171	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2172	if (sk->sk_state == TCP_CLOSE)
2173		goto adjudge_to_death;
2174
2175	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2176	 * data was lost. To witness the awful effects of the old behavior of
2177	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2178	 * GET in an FTP client, suspend the process, wait for the client to
2179	 * advertise a zero window, then kill -9 the FTP client, wheee...
2180	 * Note: timeout is always zero in such a case.
2181	 */
2182	if (unlikely(tcp_sk(sk)->repair)) {
2183		sk->sk_prot->disconnect(sk, 0);
2184	} else if (data_was_unread) {
2185		/* Unread data was tossed, zap the connection. */
2186		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2187		tcp_set_state(sk, TCP_CLOSE);
2188		tcp_send_active_reset(sk, sk->sk_allocation);
2189	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2190		/* Check zero linger _after_ checking for unread data. */
2191		sk->sk_prot->disconnect(sk, 0);
2192		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2193	} else if (tcp_close_state(sk)) {
2194		/* We FIN if the application ate all the data before
2195		 * zapping the connection.
2196		 */
2197
2198		/* RED-PEN. Formally speaking, we have broken TCP state
2199		 * machine. State transitions:
2200		 *
2201		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2202		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2203		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2204		 *
2205		 * are legal only when FIN has been sent (i.e. in window),
2206		 * rather than queued out of window. Purists blame.
2207		 *
2208		 * F.e. "RFC state" is ESTABLISHED,
2209		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2210		 *
2211		 * The visible declinations are that sometimes
2212		 * we enter time-wait state, when it is not required really
2213		 * (harmless), do not send active resets, when they are
2214		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2215		 * they look as CLOSING or LAST_ACK for Linux)
2216		 * Probably, I missed some more holelets.
2217		 * 						--ANK
2218		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2219		 * in a single packet! (May consider it later but will
2220		 * probably need API support or TCP_CORK SYN-ACK until
2221		 * data is written and socket is closed.)
2222		 */
2223		tcp_send_fin(sk);
2224	}
2225
2226	sk_stream_wait_close(sk, timeout);
2227
2228adjudge_to_death:
2229	state = sk->sk_state;
2230	sock_hold(sk);
2231	sock_orphan(sk);
2232
2233	/* It is the last release_sock in its life. It will remove backlog. */
2234	release_sock(sk);
2235
2236
2237	/* Now socket is owned by kernel and we acquire BH lock
2238	   to finish close. No need to check for user refs.
2239	 */
2240	local_bh_disable();
2241	bh_lock_sock(sk);
2242	WARN_ON(sock_owned_by_user(sk));
2243
2244	percpu_counter_inc(sk->sk_prot->orphan_count);
2245
2246	/* Have we already been destroyed by a softirq or backlog? */
2247	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2248		goto out;
2249
2250	/*	This is a (useful) BSD violating of the RFC. There is a
2251	 *	problem with TCP as specified in that the other end could
2252	 *	keep a socket open forever with no application left this end.
2253	 *	We use a 1 minute timeout (about the same as BSD) then kill
2254	 *	our end. If they send after that then tough - BUT: long enough
2255	 *	that we won't make the old 4*rto = almost no time - whoops
2256	 *	reset mistake.
2257	 *
2258	 *	Nope, it was not mistake. It is really desired behaviour
2259	 *	f.e. on http servers, when such sockets are useless, but
2260	 *	consume significant resources. Let's do it with special
2261	 *	linger2	option.					--ANK
2262	 */
2263
2264	if (sk->sk_state == TCP_FIN_WAIT2) {
2265		struct tcp_sock *tp = tcp_sk(sk);
2266		if (tp->linger2 < 0) {
2267			tcp_set_state(sk, TCP_CLOSE);
2268			tcp_send_active_reset(sk, GFP_ATOMIC);
2269			NET_INC_STATS_BH(sock_net(sk),
2270					LINUX_MIB_TCPABORTONLINGER);
2271		} else {
2272			const int tmo = tcp_fin_time(sk);
2273
2274			if (tmo > TCP_TIMEWAIT_LEN) {
2275				inet_csk_reset_keepalive_timer(sk,
2276						tmo - TCP_TIMEWAIT_LEN);
2277			} else {
2278				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2279				goto out;
2280			}
2281		}
2282	}
2283	if (sk->sk_state != TCP_CLOSE) {
2284		sk_mem_reclaim(sk);
2285		if (tcp_check_oom(sk, 0)) {
2286			tcp_set_state(sk, TCP_CLOSE);
2287			tcp_send_active_reset(sk, GFP_ATOMIC);
2288			NET_INC_STATS_BH(sock_net(sk),
2289					LINUX_MIB_TCPABORTONMEMORY);
2290		}
2291	}
2292
2293	if (sk->sk_state == TCP_CLOSE) {
2294		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2295		/* We could get here with a non-NULL req if the socket is
2296		 * aborted (e.g., closed with unread data) before 3WHS
2297		 * finishes.
2298		 */
2299		if (req != NULL)
2300			reqsk_fastopen_remove(sk, req, false);
2301		inet_csk_destroy_sock(sk);
2302	}
2303	/* Otherwise, socket is reprieved until protocol close. */
2304
2305out:
2306	bh_unlock_sock(sk);
2307	local_bh_enable();
2308	sock_put(sk);
2309}
2310EXPORT_SYMBOL(tcp_close);
2311
2312/* These states need RST on ABORT according to RFC793 */
2313
2314static inline bool tcp_need_reset(int state)
2315{
2316	return (1 << state) &
2317	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2318		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2319}
2320
2321int tcp_disconnect(struct sock *sk, int flags)
2322{
2323	struct inet_sock *inet = inet_sk(sk);
2324	struct inet_connection_sock *icsk = inet_csk(sk);
2325	struct tcp_sock *tp = tcp_sk(sk);
2326	int err = 0;
2327	int old_state = sk->sk_state;
2328
2329	if (old_state != TCP_CLOSE)
2330		tcp_set_state(sk, TCP_CLOSE);
2331
2332	/* ABORT function of RFC793 */
2333	if (old_state == TCP_LISTEN) {
2334		inet_csk_listen_stop(sk);
2335	} else if (unlikely(tp->repair)) {
2336		sk->sk_err = ECONNABORTED;
2337	} else if (tcp_need_reset(old_state) ||
2338		   (tp->snd_nxt != tp->write_seq &&
2339		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2340		/* The last check adjusts for discrepancy of Linux wrt. RFC
2341		 * states
2342		 */
2343		tcp_send_active_reset(sk, gfp_any());
2344		sk->sk_err = ECONNRESET;
2345	} else if (old_state == TCP_SYN_SENT)
2346		sk->sk_err = ECONNRESET;
2347
2348	tcp_clear_xmit_timers(sk);
2349	__skb_queue_purge(&sk->sk_receive_queue);
2350	tcp_write_queue_purge(sk);
2351	__skb_queue_purge(&tp->out_of_order_queue);
2352#ifdef CONFIG_NET_DMA
2353	__skb_queue_purge(&sk->sk_async_wait_queue);
2354#endif
2355
2356	inet->inet_dport = 0;
2357
2358	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2359		inet_reset_saddr(sk);
2360
2361	sk->sk_shutdown = 0;
2362	sock_reset_flag(sk, SOCK_DONE);
2363	tp->srtt_us = 0;
2364	if ((tp->write_seq += tp->max_window + 2) == 0)
2365		tp->write_seq = 1;
2366	icsk->icsk_backoff = 0;
2367	tp->snd_cwnd = 2;
2368	icsk->icsk_probes_out = 0;
2369	tp->packets_out = 0;
2370	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2371	tp->snd_cwnd_cnt = 0;
2372	tp->window_clamp = 0;
2373	tcp_set_ca_state(sk, TCP_CA_Open);
2374	tcp_clear_retrans(tp);
2375	inet_csk_delack_init(sk);
2376	tcp_init_send_head(sk);
2377	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2378	__sk_dst_reset(sk);
2379
2380	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2381
2382	sk->sk_error_report(sk);
2383	return err;
2384}
2385EXPORT_SYMBOL(tcp_disconnect);
2386
2387void tcp_sock_destruct(struct sock *sk)
2388{
2389	inet_sock_destruct(sk);
2390
2391	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2392}
2393
2394static inline bool tcp_can_repair_sock(const struct sock *sk)
2395{
2396	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2397		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2398}
2399
2400static int tcp_repair_options_est(struct tcp_sock *tp,
2401		struct tcp_repair_opt __user *optbuf, unsigned int len)
2402{
2403	struct tcp_repair_opt opt;
2404
2405	while (len >= sizeof(opt)) {
2406		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2407			return -EFAULT;
2408
2409		optbuf++;
2410		len -= sizeof(opt);
2411
2412		switch (opt.opt_code) {
2413		case TCPOPT_MSS:
2414			tp->rx_opt.mss_clamp = opt.opt_val;
2415			break;
2416		case TCPOPT_WINDOW:
2417			{
2418				u16 snd_wscale = opt.opt_val & 0xFFFF;
2419				u16 rcv_wscale = opt.opt_val >> 16;
2420
2421				if (snd_wscale > 14 || rcv_wscale > 14)
2422					return -EFBIG;
2423
2424				tp->rx_opt.snd_wscale = snd_wscale;
2425				tp->rx_opt.rcv_wscale = rcv_wscale;
2426				tp->rx_opt.wscale_ok = 1;
2427			}
2428			break;
2429		case TCPOPT_SACK_PERM:
2430			if (opt.opt_val != 0)
2431				return -EINVAL;
2432
2433			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2434			if (sysctl_tcp_fack)
2435				tcp_enable_fack(tp);
2436			break;
2437		case TCPOPT_TIMESTAMP:
2438			if (opt.opt_val != 0)
2439				return -EINVAL;
2440
2441			tp->rx_opt.tstamp_ok = 1;
2442			break;
2443		}
2444	}
2445
2446	return 0;
2447}
2448
2449/*
2450 *	Socket option code for TCP.
2451 */
2452static int do_tcp_setsockopt(struct sock *sk, int level,
2453		int optname, char __user *optval, unsigned int optlen)
2454{
2455	struct tcp_sock *tp = tcp_sk(sk);
2456	struct inet_connection_sock *icsk = inet_csk(sk);
2457	int val;
2458	int err = 0;
2459
2460	/* These are data/string values, all the others are ints */
2461	switch (optname) {
2462	case TCP_CONGESTION: {
2463		char name[TCP_CA_NAME_MAX];
2464
2465		if (optlen < 1)
2466			return -EINVAL;
2467
2468		val = strncpy_from_user(name, optval,
2469					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2470		if (val < 0)
2471			return -EFAULT;
2472		name[val] = 0;
2473
2474		lock_sock(sk);
2475		err = tcp_set_congestion_control(sk, name);
2476		release_sock(sk);
2477		return err;
2478	}
2479	default:
2480		/* fallthru */
2481		break;
2482	}
2483
2484	if (optlen < sizeof(int))
2485		return -EINVAL;
2486
2487	if (get_user(val, (int __user *)optval))
2488		return -EFAULT;
2489
2490	lock_sock(sk);
2491
2492	switch (optname) {
2493	case TCP_MAXSEG:
2494		/* Values greater than interface MTU won't take effect. However
2495		 * at the point when this call is done we typically don't yet
2496		 * know which interface is going to be used */
2497		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2498			err = -EINVAL;
2499			break;
2500		}
2501		tp->rx_opt.user_mss = val;
2502		break;
2503
2504	case TCP_NODELAY:
2505		if (val) {
2506			/* TCP_NODELAY is weaker than TCP_CORK, so that
2507			 * this option on corked socket is remembered, but
2508			 * it is not activated until cork is cleared.
2509			 *
2510			 * However, when TCP_NODELAY is set we make
2511			 * an explicit push, which overrides even TCP_CORK
2512			 * for currently queued segments.
2513			 */
2514			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2515			tcp_push_pending_frames(sk);
2516		} else {
2517			tp->nonagle &= ~TCP_NAGLE_OFF;
2518		}
2519		break;
2520
2521	case TCP_THIN_LINEAR_TIMEOUTS:
2522		if (val < 0 || val > 1)
2523			err = -EINVAL;
2524		else
2525			tp->thin_lto = val;
2526		break;
2527
2528	case TCP_THIN_DUPACK:
2529		if (val < 0 || val > 1)
2530			err = -EINVAL;
2531		else {
2532			tp->thin_dupack = val;
2533			if (tp->thin_dupack)
2534				tcp_disable_early_retrans(tp);
2535		}
2536		break;
2537
2538	case TCP_REPAIR:
2539		if (!tcp_can_repair_sock(sk))
2540			err = -EPERM;
2541		else if (val == 1) {
2542			tp->repair = 1;
2543			sk->sk_reuse = SK_FORCE_REUSE;
2544			tp->repair_queue = TCP_NO_QUEUE;
2545		} else if (val == 0) {
2546			tp->repair = 0;
2547			sk->sk_reuse = SK_NO_REUSE;
2548			tcp_send_window_probe(sk);
2549		} else
2550			err = -EINVAL;
2551
2552		break;
2553
2554	case TCP_REPAIR_QUEUE:
2555		if (!tp->repair)
2556			err = -EPERM;
2557		else if (val < TCP_QUEUES_NR)
2558			tp->repair_queue = val;
2559		else
2560			err = -EINVAL;
2561		break;
2562
2563	case TCP_QUEUE_SEQ:
2564		if (sk->sk_state != TCP_CLOSE)
2565			err = -EPERM;
2566		else if (tp->repair_queue == TCP_SEND_QUEUE)
2567			tp->write_seq = val;
2568		else if (tp->repair_queue == TCP_RECV_QUEUE)
2569			tp->rcv_nxt = val;
2570		else
2571			err = -EINVAL;
2572		break;
2573
2574	case TCP_REPAIR_OPTIONS:
2575		if (!tp->repair)
2576			err = -EINVAL;
2577		else if (sk->sk_state == TCP_ESTABLISHED)
2578			err = tcp_repair_options_est(tp,
2579					(struct tcp_repair_opt __user *)optval,
2580					optlen);
2581		else
2582			err = -EPERM;
2583		break;
2584
2585	case TCP_CORK:
2586		/* When set indicates to always queue non-full frames.
2587		 * Later the user clears this option and we transmit
2588		 * any pending partial frames in the queue.  This is
2589		 * meant to be used alongside sendfile() to get properly
2590		 * filled frames when the user (for example) must write
2591		 * out headers with a write() call first and then use
2592		 * sendfile to send out the data parts.
2593		 *
2594		 * TCP_CORK can be set together with TCP_NODELAY and it is
2595		 * stronger than TCP_NODELAY.
2596		 */
2597		if (val) {
2598			tp->nonagle |= TCP_NAGLE_CORK;
2599		} else {
2600			tp->nonagle &= ~TCP_NAGLE_CORK;
2601			if (tp->nonagle&TCP_NAGLE_OFF)
2602				tp->nonagle |= TCP_NAGLE_PUSH;
2603			tcp_push_pending_frames(sk);
2604		}
2605		break;
2606
2607	case TCP_KEEPIDLE:
2608		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2609			err = -EINVAL;
2610		else {
2611			tp->keepalive_time = val * HZ;
2612			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2613			    !((1 << sk->sk_state) &
2614			      (TCPF_CLOSE | TCPF_LISTEN))) {
2615				u32 elapsed = keepalive_time_elapsed(tp);
2616				if (tp->keepalive_time > elapsed)
2617					elapsed = tp->keepalive_time - elapsed;
2618				else
2619					elapsed = 0;
2620				inet_csk_reset_keepalive_timer(sk, elapsed);
2621			}
2622		}
2623		break;
2624	case TCP_KEEPINTVL:
2625		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2626			err = -EINVAL;
2627		else
2628			tp->keepalive_intvl = val * HZ;
2629		break;
2630	case TCP_KEEPCNT:
2631		if (val < 1 || val > MAX_TCP_KEEPCNT)
2632			err = -EINVAL;
2633		else
2634			tp->keepalive_probes = val;
2635		break;
2636	case TCP_SYNCNT:
2637		if (val < 1 || val > MAX_TCP_SYNCNT)
2638			err = -EINVAL;
2639		else
2640			icsk->icsk_syn_retries = val;
2641		break;
2642
2643	case TCP_LINGER2:
2644		if (val < 0)
2645			tp->linger2 = -1;
2646		else if (val > sysctl_tcp_fin_timeout / HZ)
2647			tp->linger2 = 0;
2648		else
2649			tp->linger2 = val * HZ;
2650		break;
2651
2652	case TCP_DEFER_ACCEPT:
2653		/* Translate value in seconds to number of retransmits */
2654		icsk->icsk_accept_queue.rskq_defer_accept =
2655			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2656					TCP_RTO_MAX / HZ);
2657		break;
2658
2659	case TCP_WINDOW_CLAMP:
2660		if (!val) {
2661			if (sk->sk_state != TCP_CLOSE) {
2662				err = -EINVAL;
2663				break;
2664			}
2665			tp->window_clamp = 0;
2666		} else
2667			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2668						SOCK_MIN_RCVBUF / 2 : val;
2669		break;
2670
2671	case TCP_QUICKACK:
2672		if (!val) {
2673			icsk->icsk_ack.pingpong = 1;
2674		} else {
2675			icsk->icsk_ack.pingpong = 0;
2676			if ((1 << sk->sk_state) &
2677			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2678			    inet_csk_ack_scheduled(sk)) {
2679				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2680				tcp_cleanup_rbuf(sk, 1);
2681				if (!(val & 1))
2682					icsk->icsk_ack.pingpong = 1;
2683			}
2684		}
2685		break;
2686
2687#ifdef CONFIG_TCP_MD5SIG
2688	case TCP_MD5SIG:
2689		/* Read the IP->Key mappings from userspace */
2690		err = tp->af_specific->md5_parse(sk, optval, optlen);
2691		break;
2692#endif
2693	case TCP_USER_TIMEOUT:
2694		/* Cap the max timeout in ms TCP will retry/retrans
2695		 * before giving up and aborting (ETIMEDOUT) a connection.
2696		 */
2697		if (val < 0)
2698			err = -EINVAL;
2699		else
2700			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2701		break;
2702
2703	case TCP_FASTOPEN:
2704		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2705		    TCPF_LISTEN)))
2706			err = fastopen_init_queue(sk, val);
2707		else
2708			err = -EINVAL;
2709		break;
2710	case TCP_TIMESTAMP:
2711		if (!tp->repair)
2712			err = -EPERM;
2713		else
2714			tp->tsoffset = val - tcp_time_stamp;
2715		break;
2716	case TCP_NOTSENT_LOWAT:
2717		tp->notsent_lowat = val;
2718		sk->sk_write_space(sk);
2719		break;
2720	default:
2721		err = -ENOPROTOOPT;
2722		break;
2723	}
2724
2725	release_sock(sk);
2726	return err;
2727}
2728
2729int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2730		   unsigned int optlen)
2731{
2732	const struct inet_connection_sock *icsk = inet_csk(sk);
2733
2734	if (level != SOL_TCP)
2735		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2736						     optval, optlen);
2737	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2738}
2739EXPORT_SYMBOL(tcp_setsockopt);
2740
2741#ifdef CONFIG_COMPAT
2742int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2743			  char __user *optval, unsigned int optlen)
2744{
2745	if (level != SOL_TCP)
2746		return inet_csk_compat_setsockopt(sk, level, optname,
2747						  optval, optlen);
2748	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2749}
2750EXPORT_SYMBOL(compat_tcp_setsockopt);
2751#endif
2752
2753/* Return information about state of tcp endpoint in API format. */
2754void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2755{
2756	const struct tcp_sock *tp = tcp_sk(sk);
2757	const struct inet_connection_sock *icsk = inet_csk(sk);
2758	u32 now = tcp_time_stamp;
2759
2760	memset(info, 0, sizeof(*info));
2761
2762	info->tcpi_state = sk->sk_state;
2763	info->tcpi_ca_state = icsk->icsk_ca_state;
2764	info->tcpi_retransmits = icsk->icsk_retransmits;
2765	info->tcpi_probes = icsk->icsk_probes_out;
2766	info->tcpi_backoff = icsk->icsk_backoff;
2767
2768	if (tp->rx_opt.tstamp_ok)
2769		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2770	if (tcp_is_sack(tp))
2771		info->tcpi_options |= TCPI_OPT_SACK;
2772	if (tp->rx_opt.wscale_ok) {
2773		info->tcpi_options |= TCPI_OPT_WSCALE;
2774		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2775		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2776	}
2777
2778	if (tp->ecn_flags & TCP_ECN_OK)
2779		info->tcpi_options |= TCPI_OPT_ECN;
2780	if (tp->ecn_flags & TCP_ECN_SEEN)
2781		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2782	if (tp->syn_data_acked)
2783		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2784
2785	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2786	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2787	info->tcpi_snd_mss = tp->mss_cache;
2788	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2789
2790	if (sk->sk_state == TCP_LISTEN) {
2791		info->tcpi_unacked = sk->sk_ack_backlog;
2792		info->tcpi_sacked = sk->sk_max_ack_backlog;
2793	} else {
2794		info->tcpi_unacked = tp->packets_out;
2795		info->tcpi_sacked = tp->sacked_out;
2796	}
2797	info->tcpi_lost = tp->lost_out;
2798	info->tcpi_retrans = tp->retrans_out;
2799	info->tcpi_fackets = tp->fackets_out;
2800
2801	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2802	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2803	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2804
2805	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2806	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2807	info->tcpi_rtt = tp->srtt_us >> 3;
2808	info->tcpi_rttvar = tp->mdev_us >> 2;
2809	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2810	info->tcpi_snd_cwnd = tp->snd_cwnd;
2811	info->tcpi_advmss = tp->advmss;
2812	info->tcpi_reordering = tp->reordering;
2813
2814	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2815	info->tcpi_rcv_space = tp->rcvq_space.space;
2816
2817	info->tcpi_total_retrans = tp->total_retrans;
2818
2819	info->tcpi_pacing_rate = sk->sk_pacing_rate != ~0U ?
2820					sk->sk_pacing_rate : ~0ULL;
2821	info->tcpi_max_pacing_rate = sk->sk_max_pacing_rate != ~0U ?
2822					sk->sk_max_pacing_rate : ~0ULL;
2823}
2824EXPORT_SYMBOL_GPL(tcp_get_info);
2825
2826static int do_tcp_getsockopt(struct sock *sk, int level,
2827		int optname, char __user *optval, int __user *optlen)
2828{
2829	struct inet_connection_sock *icsk = inet_csk(sk);
2830	struct tcp_sock *tp = tcp_sk(sk);
2831	int val, len;
2832
2833	if (get_user(len, optlen))
2834		return -EFAULT;
2835
2836	len = min_t(unsigned int, len, sizeof(int));
2837
2838	if (len < 0)
2839		return -EINVAL;
2840
2841	switch (optname) {
2842	case TCP_MAXSEG:
2843		val = tp->mss_cache;
2844		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2845			val = tp->rx_opt.user_mss;
2846		if (tp->repair)
2847			val = tp->rx_opt.mss_clamp;
2848		break;
2849	case TCP_NODELAY:
2850		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2851		break;
2852	case TCP_CORK:
2853		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2854		break;
2855	case TCP_KEEPIDLE:
2856		val = keepalive_time_when(tp) / HZ;
2857		break;
2858	case TCP_KEEPINTVL:
2859		val = keepalive_intvl_when(tp) / HZ;
2860		break;
2861	case TCP_KEEPCNT:
2862		val = keepalive_probes(tp);
2863		break;
2864	case TCP_SYNCNT:
2865		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2866		break;
2867	case TCP_LINGER2:
2868		val = tp->linger2;
2869		if (val >= 0)
2870			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2871		break;
2872	case TCP_DEFER_ACCEPT:
2873		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2874				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2875		break;
2876	case TCP_WINDOW_CLAMP:
2877		val = tp->window_clamp;
2878		break;
2879	case TCP_INFO: {
2880		struct tcp_info info;
2881
2882		if (get_user(len, optlen))
2883			return -EFAULT;
2884
2885		tcp_get_info(sk, &info);
2886
2887		len = min_t(unsigned int, len, sizeof(info));
2888		if (put_user(len, optlen))
2889			return -EFAULT;
2890		if (copy_to_user(optval, &info, len))
2891			return -EFAULT;
2892		return 0;
2893	}
2894	case TCP_QUICKACK:
2895		val = !icsk->icsk_ack.pingpong;
2896		break;
2897
2898	case TCP_CONGESTION:
2899		if (get_user(len, optlen))
2900			return -EFAULT;
2901		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2902		if (put_user(len, optlen))
2903			return -EFAULT;
2904		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2905			return -EFAULT;
2906		return 0;
2907
2908	case TCP_THIN_LINEAR_TIMEOUTS:
2909		val = tp->thin_lto;
2910		break;
2911	case TCP_THIN_DUPACK:
2912		val = tp->thin_dupack;
2913		break;
2914
2915	case TCP_REPAIR:
2916		val = tp->repair;
2917		break;
2918
2919	case TCP_REPAIR_QUEUE:
2920		if (tp->repair)
2921			val = tp->repair_queue;
2922		else
2923			return -EINVAL;
2924		break;
2925
2926	case TCP_QUEUE_SEQ:
2927		if (tp->repair_queue == TCP_SEND_QUEUE)
2928			val = tp->write_seq;
2929		else if (tp->repair_queue == TCP_RECV_QUEUE)
2930			val = tp->rcv_nxt;
2931		else
2932			return -EINVAL;
2933		break;
2934
2935	case TCP_USER_TIMEOUT:
2936		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2937		break;
2938
2939	case TCP_FASTOPEN:
2940		if (icsk->icsk_accept_queue.fastopenq != NULL)
2941			val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2942		else
2943			val = 0;
2944		break;
2945
2946	case TCP_TIMESTAMP:
2947		val = tcp_time_stamp + tp->tsoffset;
2948		break;
2949	case TCP_NOTSENT_LOWAT:
2950		val = tp->notsent_lowat;
2951		break;
2952	default:
2953		return -ENOPROTOOPT;
2954	}
2955
2956	if (put_user(len, optlen))
2957		return -EFAULT;
2958	if (copy_to_user(optval, &val, len))
2959		return -EFAULT;
2960	return 0;
2961}
2962
2963int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2964		   int __user *optlen)
2965{
2966	struct inet_connection_sock *icsk = inet_csk(sk);
2967
2968	if (level != SOL_TCP)
2969		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2970						     optval, optlen);
2971	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2972}
2973EXPORT_SYMBOL(tcp_getsockopt);
2974
2975#ifdef CONFIG_COMPAT
2976int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2977			  char __user *optval, int __user *optlen)
2978{
2979	if (level != SOL_TCP)
2980		return inet_csk_compat_getsockopt(sk, level, optname,
2981						  optval, optlen);
2982	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2983}
2984EXPORT_SYMBOL(compat_tcp_getsockopt);
2985#endif
2986
2987#ifdef CONFIG_TCP_MD5SIG
2988static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool __read_mostly;
2989static DEFINE_MUTEX(tcp_md5sig_mutex);
2990
2991static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
2992{
2993	int cpu;
2994
2995	for_each_possible_cpu(cpu) {
2996		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
2997
2998		if (p->md5_desc.tfm)
2999			crypto_free_hash(p->md5_desc.tfm);
3000	}
3001	free_percpu(pool);
3002}
3003
3004static void __tcp_alloc_md5sig_pool(void)
3005{
3006	int cpu;
3007	struct tcp_md5sig_pool __percpu *pool;
3008
3009	pool = alloc_percpu(struct tcp_md5sig_pool);
3010	if (!pool)
3011		return;
3012
3013	for_each_possible_cpu(cpu) {
3014		struct crypto_hash *hash;
3015
3016		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3017		if (IS_ERR_OR_NULL(hash))
3018			goto out_free;
3019
3020		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3021	}
3022	/* before setting tcp_md5sig_pool, we must commit all writes
3023	 * to memory. See ACCESS_ONCE() in tcp_get_md5sig_pool()
3024	 */
3025	smp_wmb();
3026	tcp_md5sig_pool = pool;
3027	return;
3028out_free:
3029	__tcp_free_md5sig_pool(pool);
3030}
3031
3032bool tcp_alloc_md5sig_pool(void)
3033{
3034	if (unlikely(!tcp_md5sig_pool)) {
3035		mutex_lock(&tcp_md5sig_mutex);
3036
3037		if (!tcp_md5sig_pool)
3038			__tcp_alloc_md5sig_pool();
3039
3040		mutex_unlock(&tcp_md5sig_mutex);
3041	}
3042	return tcp_md5sig_pool != NULL;
3043}
3044EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3045
3046
3047/**
3048 *	tcp_get_md5sig_pool - get md5sig_pool for this user
3049 *
3050 *	We use percpu structure, so if we succeed, we exit with preemption
3051 *	and BH disabled, to make sure another thread or softirq handling
3052 *	wont try to get same context.
3053 */
3054struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3055{
3056	struct tcp_md5sig_pool __percpu *p;
3057
3058	local_bh_disable();
3059	p = ACCESS_ONCE(tcp_md5sig_pool);
3060	if (p)
3061		return raw_cpu_ptr(p);
3062
3063	local_bh_enable();
3064	return NULL;
3065}
3066EXPORT_SYMBOL(tcp_get_md5sig_pool);
3067
3068int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3069			const struct tcphdr *th)
3070{
3071	struct scatterlist sg;
3072	struct tcphdr hdr;
3073	int err;
3074
3075	/* We are not allowed to change tcphdr, make a local copy */
3076	memcpy(&hdr, th, sizeof(hdr));
3077	hdr.check = 0;
3078
3079	/* options aren't included in the hash */
3080	sg_init_one(&sg, &hdr, sizeof(hdr));
3081	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3082	return err;
3083}
3084EXPORT_SYMBOL(tcp_md5_hash_header);
3085
3086int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3087			  const struct sk_buff *skb, unsigned int header_len)
3088{
3089	struct scatterlist sg;
3090	const struct tcphdr *tp = tcp_hdr(skb);
3091	struct hash_desc *desc = &hp->md5_desc;
3092	unsigned int i;
3093	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3094					   skb_headlen(skb) - header_len : 0;
3095	const struct skb_shared_info *shi = skb_shinfo(skb);
3096	struct sk_buff *frag_iter;
3097
3098	sg_init_table(&sg, 1);
3099
3100	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3101	if (crypto_hash_update(desc, &sg, head_data_len))
3102		return 1;
3103
3104	for (i = 0; i < shi->nr_frags; ++i) {
3105		const struct skb_frag_struct *f = &shi->frags[i];
3106		unsigned int offset = f->page_offset;
3107		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3108
3109		sg_set_page(&sg, page, skb_frag_size(f),
3110			    offset_in_page(offset));
3111		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3112			return 1;
3113	}
3114
3115	skb_walk_frags(skb, frag_iter)
3116		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3117			return 1;
3118
3119	return 0;
3120}
3121EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3122
3123int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3124{
3125	struct scatterlist sg;
3126
3127	sg_init_one(&sg, key->key, key->keylen);
3128	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3129}
3130EXPORT_SYMBOL(tcp_md5_hash_key);
3131
3132#endif
3133
3134void tcp_done(struct sock *sk)
3135{
3136	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3137
3138	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3139		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3140
3141	tcp_set_state(sk, TCP_CLOSE);
3142	tcp_clear_xmit_timers(sk);
3143	if (req != NULL)
3144		reqsk_fastopen_remove(sk, req, false);
3145
3146	sk->sk_shutdown = SHUTDOWN_MASK;
3147
3148	if (!sock_flag(sk, SOCK_DEAD))
3149		sk->sk_state_change(sk);
3150	else
3151		inet_csk_destroy_sock(sk);
3152}
3153EXPORT_SYMBOL_GPL(tcp_done);
3154
3155extern struct tcp_congestion_ops tcp_reno;
3156
3157static __initdata unsigned long thash_entries;
3158static int __init set_thash_entries(char *str)
3159{
3160	ssize_t ret;
3161
3162	if (!str)
3163		return 0;
3164
3165	ret = kstrtoul(str, 0, &thash_entries);
3166	if (ret)
3167		return 0;
3168
3169	return 1;
3170}
3171__setup("thash_entries=", set_thash_entries);
3172
3173static void tcp_init_mem(void)
3174{
3175	unsigned long limit = nr_free_buffer_pages() / 8;
3176	limit = max(limit, 128UL);
3177	sysctl_tcp_mem[0] = limit / 4 * 3;
3178	sysctl_tcp_mem[1] = limit;
3179	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3180}
3181
3182void __init tcp_init(void)
3183{
3184	struct sk_buff *skb = NULL;
3185	unsigned long limit;
3186	int max_rshare, max_wshare, cnt;
3187	unsigned int i;
3188
3189	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3190
3191	percpu_counter_init(&tcp_sockets_allocated, 0);
3192	percpu_counter_init(&tcp_orphan_count, 0);
3193	tcp_hashinfo.bind_bucket_cachep =
3194		kmem_cache_create("tcp_bind_bucket",
3195				  sizeof(struct inet_bind_bucket), 0,
3196				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3197
3198	/* Size and allocate the main established and bind bucket
3199	 * hash tables.
3200	 *
3201	 * The methodology is similar to that of the buffer cache.
3202	 */
3203	tcp_hashinfo.ehash =
3204		alloc_large_system_hash("TCP established",
3205					sizeof(struct inet_ehash_bucket),
3206					thash_entries,
3207					17, /* one slot per 128 KB of memory */
3208					0,
3209					NULL,
3210					&tcp_hashinfo.ehash_mask,
3211					0,
3212					thash_entries ? 0 : 512 * 1024);
3213	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3214		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3215
3216	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3217		panic("TCP: failed to alloc ehash_locks");
3218	tcp_hashinfo.bhash =
3219		alloc_large_system_hash("TCP bind",
3220					sizeof(struct inet_bind_hashbucket),
3221					tcp_hashinfo.ehash_mask + 1,
3222					17, /* one slot per 128 KB of memory */
3223					0,
3224					&tcp_hashinfo.bhash_size,
3225					NULL,
3226					0,
3227					64 * 1024);
3228	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3229	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3230		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3231		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3232	}
3233
3234
3235	cnt = tcp_hashinfo.ehash_mask + 1;
3236
3237	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3238	sysctl_tcp_max_orphans = cnt / 2;
3239	sysctl_max_syn_backlog = max(128, cnt / 256);
3240
3241	tcp_init_mem();
3242	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3243	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3244	max_wshare = min(4UL*1024*1024, limit);
3245	max_rshare = min(6UL*1024*1024, limit);
3246
3247	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3248	sysctl_tcp_wmem[1] = 16*1024;
3249	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3250
3251	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3252	sysctl_tcp_rmem[1] = 87380;
3253	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3254
3255	pr_info("Hash tables configured (established %u bind %u)\n",
3256		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3257
3258	tcp_metrics_init();
3259
3260	tcp_register_congestion_control(&tcp_reno);
3261
3262	tcp_tasklet_init();
3263}
3264