tcp.c revision 98e09386c0ef4dfd48af7ba60ff908f0d525cdee
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#define pr_fmt(fmt) "TCP: " fmt
249
250#include <linux/kernel.h>
251#include <linux/module.h>
252#include <linux/types.h>
253#include <linux/fcntl.h>
254#include <linux/poll.h>
255#include <linux/init.h>
256#include <linux/fs.h>
257#include <linux/skbuff.h>
258#include <linux/scatterlist.h>
259#include <linux/splice.h>
260#include <linux/net.h>
261#include <linux/socket.h>
262#include <linux/random.h>
263#include <linux/bootmem.h>
264#include <linux/highmem.h>
265#include <linux/swap.h>
266#include <linux/cache.h>
267#include <linux/err.h>
268#include <linux/crypto.h>
269#include <linux/time.h>
270#include <linux/slab.h>
271
272#include <net/icmp.h>
273#include <net/inet_common.h>
274#include <net/tcp.h>
275#include <net/xfrm.h>
276#include <net/ip.h>
277#include <net/netdma.h>
278#include <net/sock.h>
279
280#include <asm/uaccess.h>
281#include <asm/ioctls.h>
282#include <net/busy_poll.h>
283
284int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285
286int sysctl_tcp_min_tso_segs __read_mostly = 2;
287
288struct percpu_counter tcp_orphan_count;
289EXPORT_SYMBOL_GPL(tcp_orphan_count);
290
291long sysctl_tcp_mem[3] __read_mostly;
292int sysctl_tcp_wmem[3] __read_mostly;
293int sysctl_tcp_rmem[3] __read_mostly;
294
295EXPORT_SYMBOL(sysctl_tcp_mem);
296EXPORT_SYMBOL(sysctl_tcp_rmem);
297EXPORT_SYMBOL(sysctl_tcp_wmem);
298
299atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
300EXPORT_SYMBOL(tcp_memory_allocated);
301
302/*
303 * Current number of TCP sockets.
304 */
305struct percpu_counter tcp_sockets_allocated;
306EXPORT_SYMBOL(tcp_sockets_allocated);
307
308/*
309 * TCP splice context
310 */
311struct tcp_splice_state {
312	struct pipe_inode_info *pipe;
313	size_t len;
314	unsigned int flags;
315};
316
317/*
318 * Pressure flag: try to collapse.
319 * Technical note: it is used by multiple contexts non atomically.
320 * All the __sk_mem_schedule() is of this nature: accounting
321 * is strict, actions are advisory and have some latency.
322 */
323int tcp_memory_pressure __read_mostly;
324EXPORT_SYMBOL(tcp_memory_pressure);
325
326void tcp_enter_memory_pressure(struct sock *sk)
327{
328	if (!tcp_memory_pressure) {
329		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
330		tcp_memory_pressure = 1;
331	}
332}
333EXPORT_SYMBOL(tcp_enter_memory_pressure);
334
335/* Convert seconds to retransmits based on initial and max timeout */
336static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
337{
338	u8 res = 0;
339
340	if (seconds > 0) {
341		int period = timeout;
342
343		res = 1;
344		while (seconds > period && res < 255) {
345			res++;
346			timeout <<= 1;
347			if (timeout > rto_max)
348				timeout = rto_max;
349			period += timeout;
350		}
351	}
352	return res;
353}
354
355/* Convert retransmits to seconds based on initial and max timeout */
356static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
357{
358	int period = 0;
359
360	if (retrans > 0) {
361		period = timeout;
362		while (--retrans) {
363			timeout <<= 1;
364			if (timeout > rto_max)
365				timeout = rto_max;
366			period += timeout;
367		}
368	}
369	return period;
370}
371
372/* Address-family independent initialization for a tcp_sock.
373 *
374 * NOTE: A lot of things set to zero explicitly by call to
375 *       sk_alloc() so need not be done here.
376 */
377void tcp_init_sock(struct sock *sk)
378{
379	struct inet_connection_sock *icsk = inet_csk(sk);
380	struct tcp_sock *tp = tcp_sk(sk);
381
382	skb_queue_head_init(&tp->out_of_order_queue);
383	tcp_init_xmit_timers(sk);
384	tcp_prequeue_init(tp);
385	INIT_LIST_HEAD(&tp->tsq_node);
386
387	icsk->icsk_rto = TCP_TIMEOUT_INIT;
388	tp->mdev = TCP_TIMEOUT_INIT;
389
390	/* So many TCP implementations out there (incorrectly) count the
391	 * initial SYN frame in their delayed-ACK and congestion control
392	 * algorithms that we must have the following bandaid to talk
393	 * efficiently to them.  -DaveM
394	 */
395	tp->snd_cwnd = TCP_INIT_CWND;
396
397	/* See draft-stevens-tcpca-spec-01 for discussion of the
398	 * initialization of these values.
399	 */
400	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
401	tp->snd_cwnd_clamp = ~0;
402	tp->mss_cache = TCP_MSS_DEFAULT;
403
404	tp->reordering = sysctl_tcp_reordering;
405	tcp_enable_early_retrans(tp);
406	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
407
408	tp->tsoffset = 0;
409
410	sk->sk_state = TCP_CLOSE;
411
412	sk->sk_write_space = sk_stream_write_space;
413	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
414
415	icsk->icsk_sync_mss = tcp_sync_mss;
416
417	sk->sk_sndbuf = sysctl_tcp_wmem[1];
418	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
419
420	local_bh_disable();
421	sock_update_memcg(sk);
422	sk_sockets_allocated_inc(sk);
423	local_bh_enable();
424}
425EXPORT_SYMBOL(tcp_init_sock);
426
427/*
428 *	Wait for a TCP event.
429 *
430 *	Note that we don't need to lock the socket, as the upper poll layers
431 *	take care of normal races (between the test and the event) and we don't
432 *	go look at any of the socket buffers directly.
433 */
434unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
435{
436	unsigned int mask;
437	struct sock *sk = sock->sk;
438	const struct tcp_sock *tp = tcp_sk(sk);
439
440	sock_rps_record_flow(sk);
441
442	sock_poll_wait(file, sk_sleep(sk), wait);
443	if (sk->sk_state == TCP_LISTEN)
444		return inet_csk_listen_poll(sk);
445
446	/* Socket is not locked. We are protected from async events
447	 * by poll logic and correct handling of state changes
448	 * made by other threads is impossible in any case.
449	 */
450
451	mask = 0;
452
453	/*
454	 * POLLHUP is certainly not done right. But poll() doesn't
455	 * have a notion of HUP in just one direction, and for a
456	 * socket the read side is more interesting.
457	 *
458	 * Some poll() documentation says that POLLHUP is incompatible
459	 * with the POLLOUT/POLLWR flags, so somebody should check this
460	 * all. But careful, it tends to be safer to return too many
461	 * bits than too few, and you can easily break real applications
462	 * if you don't tell them that something has hung up!
463	 *
464	 * Check-me.
465	 *
466	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
467	 * our fs/select.c). It means that after we received EOF,
468	 * poll always returns immediately, making impossible poll() on write()
469	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
470	 * if and only if shutdown has been made in both directions.
471	 * Actually, it is interesting to look how Solaris and DUX
472	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
473	 * then we could set it on SND_SHUTDOWN. BTW examples given
474	 * in Stevens' books assume exactly this behaviour, it explains
475	 * why POLLHUP is incompatible with POLLOUT.	--ANK
476	 *
477	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
478	 * blocking on fresh not-connected or disconnected socket. --ANK
479	 */
480	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
481		mask |= POLLHUP;
482	if (sk->sk_shutdown & RCV_SHUTDOWN)
483		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
484
485	/* Connected or passive Fast Open socket? */
486	if (sk->sk_state != TCP_SYN_SENT &&
487	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
488		int target = sock_rcvlowat(sk, 0, INT_MAX);
489
490		if (tp->urg_seq == tp->copied_seq &&
491		    !sock_flag(sk, SOCK_URGINLINE) &&
492		    tp->urg_data)
493			target++;
494
495		/* Potential race condition. If read of tp below will
496		 * escape above sk->sk_state, we can be illegally awaken
497		 * in SYN_* states. */
498		if (tp->rcv_nxt - tp->copied_seq >= target)
499			mask |= POLLIN | POLLRDNORM;
500
501		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
502			if (sk_stream_is_writeable(sk)) {
503				mask |= POLLOUT | POLLWRNORM;
504			} else {  /* send SIGIO later */
505				set_bit(SOCK_ASYNC_NOSPACE,
506					&sk->sk_socket->flags);
507				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
508
509				/* Race breaker. If space is freed after
510				 * wspace test but before the flags are set,
511				 * IO signal will be lost.
512				 */
513				if (sk_stream_is_writeable(sk))
514					mask |= POLLOUT | POLLWRNORM;
515			}
516		} else
517			mask |= POLLOUT | POLLWRNORM;
518
519		if (tp->urg_data & TCP_URG_VALID)
520			mask |= POLLPRI;
521	}
522	/* This barrier is coupled with smp_wmb() in tcp_reset() */
523	smp_rmb();
524	if (sk->sk_err)
525		mask |= POLLERR;
526
527	return mask;
528}
529EXPORT_SYMBOL(tcp_poll);
530
531int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
532{
533	struct tcp_sock *tp = tcp_sk(sk);
534	int answ;
535	bool slow;
536
537	switch (cmd) {
538	case SIOCINQ:
539		if (sk->sk_state == TCP_LISTEN)
540			return -EINVAL;
541
542		slow = lock_sock_fast(sk);
543		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
544			answ = 0;
545		else if (sock_flag(sk, SOCK_URGINLINE) ||
546			 !tp->urg_data ||
547			 before(tp->urg_seq, tp->copied_seq) ||
548			 !before(tp->urg_seq, tp->rcv_nxt)) {
549
550			answ = tp->rcv_nxt - tp->copied_seq;
551
552			/* Subtract 1, if FIN was received */
553			if (answ && sock_flag(sk, SOCK_DONE))
554				answ--;
555		} else
556			answ = tp->urg_seq - tp->copied_seq;
557		unlock_sock_fast(sk, slow);
558		break;
559	case SIOCATMARK:
560		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
561		break;
562	case SIOCOUTQ:
563		if (sk->sk_state == TCP_LISTEN)
564			return -EINVAL;
565
566		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
567			answ = 0;
568		else
569			answ = tp->write_seq - tp->snd_una;
570		break;
571	case SIOCOUTQNSD:
572		if (sk->sk_state == TCP_LISTEN)
573			return -EINVAL;
574
575		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
576			answ = 0;
577		else
578			answ = tp->write_seq - tp->snd_nxt;
579		break;
580	default:
581		return -ENOIOCTLCMD;
582	}
583
584	return put_user(answ, (int __user *)arg);
585}
586EXPORT_SYMBOL(tcp_ioctl);
587
588static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
589{
590	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
591	tp->pushed_seq = tp->write_seq;
592}
593
594static inline bool forced_push(const struct tcp_sock *tp)
595{
596	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
597}
598
599static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
600{
601	struct tcp_sock *tp = tcp_sk(sk);
602	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
603
604	skb->csum    = 0;
605	tcb->seq     = tcb->end_seq = tp->write_seq;
606	tcb->tcp_flags = TCPHDR_ACK;
607	tcb->sacked  = 0;
608	skb_header_release(skb);
609	tcp_add_write_queue_tail(sk, skb);
610	sk->sk_wmem_queued += skb->truesize;
611	sk_mem_charge(sk, skb->truesize);
612	if (tp->nonagle & TCP_NAGLE_PUSH)
613		tp->nonagle &= ~TCP_NAGLE_PUSH;
614}
615
616static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
617{
618	if (flags & MSG_OOB)
619		tp->snd_up = tp->write_seq;
620}
621
622static inline void tcp_push(struct sock *sk, int flags, int mss_now,
623			    int nonagle)
624{
625	if (tcp_send_head(sk)) {
626		struct tcp_sock *tp = tcp_sk(sk);
627
628		if (!(flags & MSG_MORE) || forced_push(tp))
629			tcp_mark_push(tp, tcp_write_queue_tail(sk));
630
631		tcp_mark_urg(tp, flags);
632		__tcp_push_pending_frames(sk, mss_now,
633					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
634	}
635}
636
637static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
638				unsigned int offset, size_t len)
639{
640	struct tcp_splice_state *tss = rd_desc->arg.data;
641	int ret;
642
643	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
644			      tss->flags);
645	if (ret > 0)
646		rd_desc->count -= ret;
647	return ret;
648}
649
650static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
651{
652	/* Store TCP splice context information in read_descriptor_t. */
653	read_descriptor_t rd_desc = {
654		.arg.data = tss,
655		.count	  = tss->len,
656	};
657
658	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
659}
660
661/**
662 *  tcp_splice_read - splice data from TCP socket to a pipe
663 * @sock:	socket to splice from
664 * @ppos:	position (not valid)
665 * @pipe:	pipe to splice to
666 * @len:	number of bytes to splice
667 * @flags:	splice modifier flags
668 *
669 * Description:
670 *    Will read pages from given socket and fill them into a pipe.
671 *
672 **/
673ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
674			struct pipe_inode_info *pipe, size_t len,
675			unsigned int flags)
676{
677	struct sock *sk = sock->sk;
678	struct tcp_splice_state tss = {
679		.pipe = pipe,
680		.len = len,
681		.flags = flags,
682	};
683	long timeo;
684	ssize_t spliced;
685	int ret;
686
687	sock_rps_record_flow(sk);
688	/*
689	 * We can't seek on a socket input
690	 */
691	if (unlikely(*ppos))
692		return -ESPIPE;
693
694	ret = spliced = 0;
695
696	lock_sock(sk);
697
698	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
699	while (tss.len) {
700		ret = __tcp_splice_read(sk, &tss);
701		if (ret < 0)
702			break;
703		else if (!ret) {
704			if (spliced)
705				break;
706			if (sock_flag(sk, SOCK_DONE))
707				break;
708			if (sk->sk_err) {
709				ret = sock_error(sk);
710				break;
711			}
712			if (sk->sk_shutdown & RCV_SHUTDOWN)
713				break;
714			if (sk->sk_state == TCP_CLOSE) {
715				/*
716				 * This occurs when user tries to read
717				 * from never connected socket.
718				 */
719				if (!sock_flag(sk, SOCK_DONE))
720					ret = -ENOTCONN;
721				break;
722			}
723			if (!timeo) {
724				ret = -EAGAIN;
725				break;
726			}
727			sk_wait_data(sk, &timeo);
728			if (signal_pending(current)) {
729				ret = sock_intr_errno(timeo);
730				break;
731			}
732			continue;
733		}
734		tss.len -= ret;
735		spliced += ret;
736
737		if (!timeo)
738			break;
739		release_sock(sk);
740		lock_sock(sk);
741
742		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
743		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
744		    signal_pending(current))
745			break;
746	}
747
748	release_sock(sk);
749
750	if (spliced)
751		return spliced;
752
753	return ret;
754}
755EXPORT_SYMBOL(tcp_splice_read);
756
757struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
758{
759	struct sk_buff *skb;
760
761	/* The TCP header must be at least 32-bit aligned.  */
762	size = ALIGN(size, 4);
763
764	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
765	if (skb) {
766		if (sk_wmem_schedule(sk, skb->truesize)) {
767			skb_reserve(skb, sk->sk_prot->max_header);
768			/*
769			 * Make sure that we have exactly size bytes
770			 * available to the caller, no more, no less.
771			 */
772			skb->reserved_tailroom = skb->end - skb->tail - size;
773			return skb;
774		}
775		__kfree_skb(skb);
776	} else {
777		sk->sk_prot->enter_memory_pressure(sk);
778		sk_stream_moderate_sndbuf(sk);
779	}
780	return NULL;
781}
782
783static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
784				       int large_allowed)
785{
786	struct tcp_sock *tp = tcp_sk(sk);
787	u32 xmit_size_goal, old_size_goal;
788
789	xmit_size_goal = mss_now;
790
791	if (large_allowed && sk_can_gso(sk)) {
792		u32 gso_size, hlen;
793
794		/* Maybe we should/could use sk->sk_prot->max_header here ? */
795		hlen = inet_csk(sk)->icsk_af_ops->net_header_len +
796		       inet_csk(sk)->icsk_ext_hdr_len +
797		       tp->tcp_header_len;
798
799		/* Goal is to send at least one packet per ms,
800		 * not one big TSO packet every 100 ms.
801		 * This preserves ACK clocking and is consistent
802		 * with tcp_tso_should_defer() heuristic.
803		 */
804		gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC);
805		gso_size = max_t(u32, gso_size,
806				 sysctl_tcp_min_tso_segs * mss_now);
807
808		xmit_size_goal = min_t(u32, gso_size,
809				       sk->sk_gso_max_size - 1 - hlen);
810
811		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
812
813		/* We try hard to avoid divides here */
814		old_size_goal = tp->xmit_size_goal_segs * mss_now;
815
816		if (likely(old_size_goal <= xmit_size_goal &&
817			   old_size_goal + mss_now > xmit_size_goal)) {
818			xmit_size_goal = old_size_goal;
819		} else {
820			tp->xmit_size_goal_segs =
821				min_t(u16, xmit_size_goal / mss_now,
822				      sk->sk_gso_max_segs);
823			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
824		}
825	}
826
827	return max(xmit_size_goal, mss_now);
828}
829
830static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
831{
832	int mss_now;
833
834	mss_now = tcp_current_mss(sk);
835	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
836
837	return mss_now;
838}
839
840static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
841				size_t size, int flags)
842{
843	struct tcp_sock *tp = tcp_sk(sk);
844	int mss_now, size_goal;
845	int err;
846	ssize_t copied;
847	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
848
849	/* Wait for a connection to finish. One exception is TCP Fast Open
850	 * (passive side) where data is allowed to be sent before a connection
851	 * is fully established.
852	 */
853	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
854	    !tcp_passive_fastopen(sk)) {
855		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
856			goto out_err;
857	}
858
859	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
860
861	mss_now = tcp_send_mss(sk, &size_goal, flags);
862	copied = 0;
863
864	err = -EPIPE;
865	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
866		goto out_err;
867
868	while (size > 0) {
869		struct sk_buff *skb = tcp_write_queue_tail(sk);
870		int copy, i;
871		bool can_coalesce;
872
873		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
874new_segment:
875			if (!sk_stream_memory_free(sk))
876				goto wait_for_sndbuf;
877
878			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
879			if (!skb)
880				goto wait_for_memory;
881
882			skb_entail(sk, skb);
883			copy = size_goal;
884		}
885
886		if (copy > size)
887			copy = size;
888
889		i = skb_shinfo(skb)->nr_frags;
890		can_coalesce = skb_can_coalesce(skb, i, page, offset);
891		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
892			tcp_mark_push(tp, skb);
893			goto new_segment;
894		}
895		if (!sk_wmem_schedule(sk, copy))
896			goto wait_for_memory;
897
898		if (can_coalesce) {
899			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
900		} else {
901			get_page(page);
902			skb_fill_page_desc(skb, i, page, offset, copy);
903		}
904		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
905
906		skb->len += copy;
907		skb->data_len += copy;
908		skb->truesize += copy;
909		sk->sk_wmem_queued += copy;
910		sk_mem_charge(sk, copy);
911		skb->ip_summed = CHECKSUM_PARTIAL;
912		tp->write_seq += copy;
913		TCP_SKB_CB(skb)->end_seq += copy;
914		skb_shinfo(skb)->gso_segs = 0;
915
916		if (!copied)
917			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
918
919		copied += copy;
920		offset += copy;
921		if (!(size -= copy))
922			goto out;
923
924		if (skb->len < size_goal || (flags & MSG_OOB))
925			continue;
926
927		if (forced_push(tp)) {
928			tcp_mark_push(tp, skb);
929			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
930		} else if (skb == tcp_send_head(sk))
931			tcp_push_one(sk, mss_now);
932		continue;
933
934wait_for_sndbuf:
935		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
936wait_for_memory:
937		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
938
939		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
940			goto do_error;
941
942		mss_now = tcp_send_mss(sk, &size_goal, flags);
943	}
944
945out:
946	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
947		tcp_push(sk, flags, mss_now, tp->nonagle);
948	return copied;
949
950do_error:
951	if (copied)
952		goto out;
953out_err:
954	return sk_stream_error(sk, flags, err);
955}
956
957int tcp_sendpage(struct sock *sk, struct page *page, int offset,
958		 size_t size, int flags)
959{
960	ssize_t res;
961
962	if (!(sk->sk_route_caps & NETIF_F_SG) ||
963	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
964		return sock_no_sendpage(sk->sk_socket, page, offset, size,
965					flags);
966
967	lock_sock(sk);
968	res = do_tcp_sendpages(sk, page, offset, size, flags);
969	release_sock(sk);
970	return res;
971}
972EXPORT_SYMBOL(tcp_sendpage);
973
974static inline int select_size(const struct sock *sk, bool sg)
975{
976	const struct tcp_sock *tp = tcp_sk(sk);
977	int tmp = tp->mss_cache;
978
979	if (sg) {
980		if (sk_can_gso(sk)) {
981			/* Small frames wont use a full page:
982			 * Payload will immediately follow tcp header.
983			 */
984			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
985		} else {
986			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
987
988			if (tmp >= pgbreak &&
989			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
990				tmp = pgbreak;
991		}
992	}
993
994	return tmp;
995}
996
997void tcp_free_fastopen_req(struct tcp_sock *tp)
998{
999	if (tp->fastopen_req != NULL) {
1000		kfree(tp->fastopen_req);
1001		tp->fastopen_req = NULL;
1002	}
1003}
1004
1005static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
1006{
1007	struct tcp_sock *tp = tcp_sk(sk);
1008	int err, flags;
1009
1010	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1011		return -EOPNOTSUPP;
1012	if (tp->fastopen_req != NULL)
1013		return -EALREADY; /* Another Fast Open is in progress */
1014
1015	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1016				   sk->sk_allocation);
1017	if (unlikely(tp->fastopen_req == NULL))
1018		return -ENOBUFS;
1019	tp->fastopen_req->data = msg;
1020
1021	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1022	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1023				    msg->msg_namelen, flags);
1024	*size = tp->fastopen_req->copied;
1025	tcp_free_fastopen_req(tp);
1026	return err;
1027}
1028
1029int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1030		size_t size)
1031{
1032	struct iovec *iov;
1033	struct tcp_sock *tp = tcp_sk(sk);
1034	struct sk_buff *skb;
1035	int iovlen, flags, err, copied = 0;
1036	int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1037	bool sg;
1038	long timeo;
1039
1040	lock_sock(sk);
1041
1042	flags = msg->msg_flags;
1043	if (flags & MSG_FASTOPEN) {
1044		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1045		if (err == -EINPROGRESS && copied_syn > 0)
1046			goto out;
1047		else if (err)
1048			goto out_err;
1049		offset = copied_syn;
1050	}
1051
1052	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1053
1054	/* Wait for a connection to finish. One exception is TCP Fast Open
1055	 * (passive side) where data is allowed to be sent before a connection
1056	 * is fully established.
1057	 */
1058	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1059	    !tcp_passive_fastopen(sk)) {
1060		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1061			goto do_error;
1062	}
1063
1064	if (unlikely(tp->repair)) {
1065		if (tp->repair_queue == TCP_RECV_QUEUE) {
1066			copied = tcp_send_rcvq(sk, msg, size);
1067			goto out;
1068		}
1069
1070		err = -EINVAL;
1071		if (tp->repair_queue == TCP_NO_QUEUE)
1072			goto out_err;
1073
1074		/* 'common' sending to sendq */
1075	}
1076
1077	/* This should be in poll */
1078	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1079
1080	mss_now = tcp_send_mss(sk, &size_goal, flags);
1081
1082	/* Ok commence sending. */
1083	iovlen = msg->msg_iovlen;
1084	iov = msg->msg_iov;
1085	copied = 0;
1086
1087	err = -EPIPE;
1088	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1089		goto out_err;
1090
1091	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1092
1093	while (--iovlen >= 0) {
1094		size_t seglen = iov->iov_len;
1095		unsigned char __user *from = iov->iov_base;
1096
1097		iov++;
1098		if (unlikely(offset > 0)) {  /* Skip bytes copied in SYN */
1099			if (offset >= seglen) {
1100				offset -= seglen;
1101				continue;
1102			}
1103			seglen -= offset;
1104			from += offset;
1105			offset = 0;
1106		}
1107
1108		while (seglen > 0) {
1109			int copy = 0;
1110			int max = size_goal;
1111
1112			skb = tcp_write_queue_tail(sk);
1113			if (tcp_send_head(sk)) {
1114				if (skb->ip_summed == CHECKSUM_NONE)
1115					max = mss_now;
1116				copy = max - skb->len;
1117			}
1118
1119			if (copy <= 0) {
1120new_segment:
1121				/* Allocate new segment. If the interface is SG,
1122				 * allocate skb fitting to single page.
1123				 */
1124				if (!sk_stream_memory_free(sk))
1125					goto wait_for_sndbuf;
1126
1127				skb = sk_stream_alloc_skb(sk,
1128							  select_size(sk, sg),
1129							  sk->sk_allocation);
1130				if (!skb)
1131					goto wait_for_memory;
1132
1133				/*
1134				 * All packets are restored as if they have
1135				 * already been sent.
1136				 */
1137				if (tp->repair)
1138					TCP_SKB_CB(skb)->when = tcp_time_stamp;
1139
1140				/*
1141				 * Check whether we can use HW checksum.
1142				 */
1143				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1144					skb->ip_summed = CHECKSUM_PARTIAL;
1145
1146				skb_entail(sk, skb);
1147				copy = size_goal;
1148				max = size_goal;
1149			}
1150
1151			/* Try to append data to the end of skb. */
1152			if (copy > seglen)
1153				copy = seglen;
1154
1155			/* Where to copy to? */
1156			if (skb_availroom(skb) > 0) {
1157				/* We have some space in skb head. Superb! */
1158				copy = min_t(int, copy, skb_availroom(skb));
1159				err = skb_add_data_nocache(sk, skb, from, copy);
1160				if (err)
1161					goto do_fault;
1162			} else {
1163				bool merge = true;
1164				int i = skb_shinfo(skb)->nr_frags;
1165				struct page_frag *pfrag = sk_page_frag(sk);
1166
1167				if (!sk_page_frag_refill(sk, pfrag))
1168					goto wait_for_memory;
1169
1170				if (!skb_can_coalesce(skb, i, pfrag->page,
1171						      pfrag->offset)) {
1172					if (i == MAX_SKB_FRAGS || !sg) {
1173						tcp_mark_push(tp, skb);
1174						goto new_segment;
1175					}
1176					merge = false;
1177				}
1178
1179				copy = min_t(int, copy, pfrag->size - pfrag->offset);
1180
1181				if (!sk_wmem_schedule(sk, copy))
1182					goto wait_for_memory;
1183
1184				err = skb_copy_to_page_nocache(sk, from, skb,
1185							       pfrag->page,
1186							       pfrag->offset,
1187							       copy);
1188				if (err)
1189					goto do_error;
1190
1191				/* Update the skb. */
1192				if (merge) {
1193					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1194				} else {
1195					skb_fill_page_desc(skb, i, pfrag->page,
1196							   pfrag->offset, copy);
1197					get_page(pfrag->page);
1198				}
1199				pfrag->offset += copy;
1200			}
1201
1202			if (!copied)
1203				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1204
1205			tp->write_seq += copy;
1206			TCP_SKB_CB(skb)->end_seq += copy;
1207			skb_shinfo(skb)->gso_segs = 0;
1208
1209			from += copy;
1210			copied += copy;
1211			if ((seglen -= copy) == 0 && iovlen == 0)
1212				goto out;
1213
1214			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1215				continue;
1216
1217			if (forced_push(tp)) {
1218				tcp_mark_push(tp, skb);
1219				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1220			} else if (skb == tcp_send_head(sk))
1221				tcp_push_one(sk, mss_now);
1222			continue;
1223
1224wait_for_sndbuf:
1225			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1226wait_for_memory:
1227			if (copied)
1228				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1229
1230			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1231				goto do_error;
1232
1233			mss_now = tcp_send_mss(sk, &size_goal, flags);
1234		}
1235	}
1236
1237out:
1238	if (copied)
1239		tcp_push(sk, flags, mss_now, tp->nonagle);
1240	release_sock(sk);
1241	return copied + copied_syn;
1242
1243do_fault:
1244	if (!skb->len) {
1245		tcp_unlink_write_queue(skb, sk);
1246		/* It is the one place in all of TCP, except connection
1247		 * reset, where we can be unlinking the send_head.
1248		 */
1249		tcp_check_send_head(sk, skb);
1250		sk_wmem_free_skb(sk, skb);
1251	}
1252
1253do_error:
1254	if (copied + copied_syn)
1255		goto out;
1256out_err:
1257	err = sk_stream_error(sk, flags, err);
1258	release_sock(sk);
1259	return err;
1260}
1261EXPORT_SYMBOL(tcp_sendmsg);
1262
1263/*
1264 *	Handle reading urgent data. BSD has very simple semantics for
1265 *	this, no blocking and very strange errors 8)
1266 */
1267
1268static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1269{
1270	struct tcp_sock *tp = tcp_sk(sk);
1271
1272	/* No URG data to read. */
1273	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1274	    tp->urg_data == TCP_URG_READ)
1275		return -EINVAL;	/* Yes this is right ! */
1276
1277	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1278		return -ENOTCONN;
1279
1280	if (tp->urg_data & TCP_URG_VALID) {
1281		int err = 0;
1282		char c = tp->urg_data;
1283
1284		if (!(flags & MSG_PEEK))
1285			tp->urg_data = TCP_URG_READ;
1286
1287		/* Read urgent data. */
1288		msg->msg_flags |= MSG_OOB;
1289
1290		if (len > 0) {
1291			if (!(flags & MSG_TRUNC))
1292				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1293			len = 1;
1294		} else
1295			msg->msg_flags |= MSG_TRUNC;
1296
1297		return err ? -EFAULT : len;
1298	}
1299
1300	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1301		return 0;
1302
1303	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1304	 * the available implementations agree in this case:
1305	 * this call should never block, independent of the
1306	 * blocking state of the socket.
1307	 * Mike <pall@rz.uni-karlsruhe.de>
1308	 */
1309	return -EAGAIN;
1310}
1311
1312static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1313{
1314	struct sk_buff *skb;
1315	int copied = 0, err = 0;
1316
1317	/* XXX -- need to support SO_PEEK_OFF */
1318
1319	skb_queue_walk(&sk->sk_write_queue, skb) {
1320		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1321		if (err)
1322			break;
1323
1324		copied += skb->len;
1325	}
1326
1327	return err ?: copied;
1328}
1329
1330/* Clean up the receive buffer for full frames taken by the user,
1331 * then send an ACK if necessary.  COPIED is the number of bytes
1332 * tcp_recvmsg has given to the user so far, it speeds up the
1333 * calculation of whether or not we must ACK for the sake of
1334 * a window update.
1335 */
1336void tcp_cleanup_rbuf(struct sock *sk, int copied)
1337{
1338	struct tcp_sock *tp = tcp_sk(sk);
1339	bool time_to_ack = false;
1340
1341	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1342
1343	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1344	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1345	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1346
1347	if (inet_csk_ack_scheduled(sk)) {
1348		const struct inet_connection_sock *icsk = inet_csk(sk);
1349		   /* Delayed ACKs frequently hit locked sockets during bulk
1350		    * receive. */
1351		if (icsk->icsk_ack.blocked ||
1352		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1353		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1354		    /*
1355		     * If this read emptied read buffer, we send ACK, if
1356		     * connection is not bidirectional, user drained
1357		     * receive buffer and there was a small segment
1358		     * in queue.
1359		     */
1360		    (copied > 0 &&
1361		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1362		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1363		       !icsk->icsk_ack.pingpong)) &&
1364		      !atomic_read(&sk->sk_rmem_alloc)))
1365			time_to_ack = true;
1366	}
1367
1368	/* We send an ACK if we can now advertise a non-zero window
1369	 * which has been raised "significantly".
1370	 *
1371	 * Even if window raised up to infinity, do not send window open ACK
1372	 * in states, where we will not receive more. It is useless.
1373	 */
1374	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1375		__u32 rcv_window_now = tcp_receive_window(tp);
1376
1377		/* Optimize, __tcp_select_window() is not cheap. */
1378		if (2*rcv_window_now <= tp->window_clamp) {
1379			__u32 new_window = __tcp_select_window(sk);
1380
1381			/* Send ACK now, if this read freed lots of space
1382			 * in our buffer. Certainly, new_window is new window.
1383			 * We can advertise it now, if it is not less than current one.
1384			 * "Lots" means "at least twice" here.
1385			 */
1386			if (new_window && new_window >= 2 * rcv_window_now)
1387				time_to_ack = true;
1388		}
1389	}
1390	if (time_to_ack)
1391		tcp_send_ack(sk);
1392}
1393
1394static void tcp_prequeue_process(struct sock *sk)
1395{
1396	struct sk_buff *skb;
1397	struct tcp_sock *tp = tcp_sk(sk);
1398
1399	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1400
1401	/* RX process wants to run with disabled BHs, though it is not
1402	 * necessary */
1403	local_bh_disable();
1404	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1405		sk_backlog_rcv(sk, skb);
1406	local_bh_enable();
1407
1408	/* Clear memory counter. */
1409	tp->ucopy.memory = 0;
1410}
1411
1412#ifdef CONFIG_NET_DMA
1413static void tcp_service_net_dma(struct sock *sk, bool wait)
1414{
1415	dma_cookie_t done, used;
1416	dma_cookie_t last_issued;
1417	struct tcp_sock *tp = tcp_sk(sk);
1418
1419	if (!tp->ucopy.dma_chan)
1420		return;
1421
1422	last_issued = tp->ucopy.dma_cookie;
1423	dma_async_issue_pending(tp->ucopy.dma_chan);
1424
1425	do {
1426		if (dma_async_is_tx_complete(tp->ucopy.dma_chan,
1427					      last_issued, &done,
1428					      &used) == DMA_SUCCESS) {
1429			/* Safe to free early-copied skbs now */
1430			__skb_queue_purge(&sk->sk_async_wait_queue);
1431			break;
1432		} else {
1433			struct sk_buff *skb;
1434			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1435			       (dma_async_is_complete(skb->dma_cookie, done,
1436						      used) == DMA_SUCCESS)) {
1437				__skb_dequeue(&sk->sk_async_wait_queue);
1438				kfree_skb(skb);
1439			}
1440		}
1441	} while (wait);
1442}
1443#endif
1444
1445static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1446{
1447	struct sk_buff *skb;
1448	u32 offset;
1449
1450	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1451		offset = seq - TCP_SKB_CB(skb)->seq;
1452		if (tcp_hdr(skb)->syn)
1453			offset--;
1454		if (offset < skb->len || tcp_hdr(skb)->fin) {
1455			*off = offset;
1456			return skb;
1457		}
1458		/* This looks weird, but this can happen if TCP collapsing
1459		 * splitted a fat GRO packet, while we released socket lock
1460		 * in skb_splice_bits()
1461		 */
1462		sk_eat_skb(sk, skb, false);
1463	}
1464	return NULL;
1465}
1466
1467/*
1468 * This routine provides an alternative to tcp_recvmsg() for routines
1469 * that would like to handle copying from skbuffs directly in 'sendfile'
1470 * fashion.
1471 * Note:
1472 *	- It is assumed that the socket was locked by the caller.
1473 *	- The routine does not block.
1474 *	- At present, there is no support for reading OOB data
1475 *	  or for 'peeking' the socket using this routine
1476 *	  (although both would be easy to implement).
1477 */
1478int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1479		  sk_read_actor_t recv_actor)
1480{
1481	struct sk_buff *skb;
1482	struct tcp_sock *tp = tcp_sk(sk);
1483	u32 seq = tp->copied_seq;
1484	u32 offset;
1485	int copied = 0;
1486
1487	if (sk->sk_state == TCP_LISTEN)
1488		return -ENOTCONN;
1489	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1490		if (offset < skb->len) {
1491			int used;
1492			size_t len;
1493
1494			len = skb->len - offset;
1495			/* Stop reading if we hit a patch of urgent data */
1496			if (tp->urg_data) {
1497				u32 urg_offset = tp->urg_seq - seq;
1498				if (urg_offset < len)
1499					len = urg_offset;
1500				if (!len)
1501					break;
1502			}
1503			used = recv_actor(desc, skb, offset, len);
1504			if (used <= 0) {
1505				if (!copied)
1506					copied = used;
1507				break;
1508			} else if (used <= len) {
1509				seq += used;
1510				copied += used;
1511				offset += used;
1512			}
1513			/* If recv_actor drops the lock (e.g. TCP splice
1514			 * receive) the skb pointer might be invalid when
1515			 * getting here: tcp_collapse might have deleted it
1516			 * while aggregating skbs from the socket queue.
1517			 */
1518			skb = tcp_recv_skb(sk, seq - 1, &offset);
1519			if (!skb)
1520				break;
1521			/* TCP coalescing might have appended data to the skb.
1522			 * Try to splice more frags
1523			 */
1524			if (offset + 1 != skb->len)
1525				continue;
1526		}
1527		if (tcp_hdr(skb)->fin) {
1528			sk_eat_skb(sk, skb, false);
1529			++seq;
1530			break;
1531		}
1532		sk_eat_skb(sk, skb, false);
1533		if (!desc->count)
1534			break;
1535		tp->copied_seq = seq;
1536	}
1537	tp->copied_seq = seq;
1538
1539	tcp_rcv_space_adjust(sk);
1540
1541	/* Clean up data we have read: This will do ACK frames. */
1542	if (copied > 0) {
1543		tcp_recv_skb(sk, seq, &offset);
1544		tcp_cleanup_rbuf(sk, copied);
1545	}
1546	return copied;
1547}
1548EXPORT_SYMBOL(tcp_read_sock);
1549
1550/*
1551 *	This routine copies from a sock struct into the user buffer.
1552 *
1553 *	Technical note: in 2.3 we work on _locked_ socket, so that
1554 *	tricks with *seq access order and skb->users are not required.
1555 *	Probably, code can be easily improved even more.
1556 */
1557
1558int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1559		size_t len, int nonblock, int flags, int *addr_len)
1560{
1561	struct tcp_sock *tp = tcp_sk(sk);
1562	int copied = 0;
1563	u32 peek_seq;
1564	u32 *seq;
1565	unsigned long used;
1566	int err;
1567	int target;		/* Read at least this many bytes */
1568	long timeo;
1569	struct task_struct *user_recv = NULL;
1570	bool copied_early = false;
1571	struct sk_buff *skb;
1572	u32 urg_hole = 0;
1573
1574	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1575	    (sk->sk_state == TCP_ESTABLISHED))
1576		sk_busy_loop(sk, nonblock);
1577
1578	lock_sock(sk);
1579
1580	err = -ENOTCONN;
1581	if (sk->sk_state == TCP_LISTEN)
1582		goto out;
1583
1584	timeo = sock_rcvtimeo(sk, nonblock);
1585
1586	/* Urgent data needs to be handled specially. */
1587	if (flags & MSG_OOB)
1588		goto recv_urg;
1589
1590	if (unlikely(tp->repair)) {
1591		err = -EPERM;
1592		if (!(flags & MSG_PEEK))
1593			goto out;
1594
1595		if (tp->repair_queue == TCP_SEND_QUEUE)
1596			goto recv_sndq;
1597
1598		err = -EINVAL;
1599		if (tp->repair_queue == TCP_NO_QUEUE)
1600			goto out;
1601
1602		/* 'common' recv queue MSG_PEEK-ing */
1603	}
1604
1605	seq = &tp->copied_seq;
1606	if (flags & MSG_PEEK) {
1607		peek_seq = tp->copied_seq;
1608		seq = &peek_seq;
1609	}
1610
1611	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1612
1613#ifdef CONFIG_NET_DMA
1614	tp->ucopy.dma_chan = NULL;
1615	preempt_disable();
1616	skb = skb_peek_tail(&sk->sk_receive_queue);
1617	{
1618		int available = 0;
1619
1620		if (skb)
1621			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1622		if ((available < target) &&
1623		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1624		    !sysctl_tcp_low_latency &&
1625		    net_dma_find_channel()) {
1626			preempt_enable_no_resched();
1627			tp->ucopy.pinned_list =
1628					dma_pin_iovec_pages(msg->msg_iov, len);
1629		} else {
1630			preempt_enable_no_resched();
1631		}
1632	}
1633#endif
1634
1635	do {
1636		u32 offset;
1637
1638		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1639		if (tp->urg_data && tp->urg_seq == *seq) {
1640			if (copied)
1641				break;
1642			if (signal_pending(current)) {
1643				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1644				break;
1645			}
1646		}
1647
1648		/* Next get a buffer. */
1649
1650		skb_queue_walk(&sk->sk_receive_queue, skb) {
1651			/* Now that we have two receive queues this
1652			 * shouldn't happen.
1653			 */
1654			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1655				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1656				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1657				 flags))
1658				break;
1659
1660			offset = *seq - TCP_SKB_CB(skb)->seq;
1661			if (tcp_hdr(skb)->syn)
1662				offset--;
1663			if (offset < skb->len)
1664				goto found_ok_skb;
1665			if (tcp_hdr(skb)->fin)
1666				goto found_fin_ok;
1667			WARN(!(flags & MSG_PEEK),
1668			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1669			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1670		}
1671
1672		/* Well, if we have backlog, try to process it now yet. */
1673
1674		if (copied >= target && !sk->sk_backlog.tail)
1675			break;
1676
1677		if (copied) {
1678			if (sk->sk_err ||
1679			    sk->sk_state == TCP_CLOSE ||
1680			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1681			    !timeo ||
1682			    signal_pending(current))
1683				break;
1684		} else {
1685			if (sock_flag(sk, SOCK_DONE))
1686				break;
1687
1688			if (sk->sk_err) {
1689				copied = sock_error(sk);
1690				break;
1691			}
1692
1693			if (sk->sk_shutdown & RCV_SHUTDOWN)
1694				break;
1695
1696			if (sk->sk_state == TCP_CLOSE) {
1697				if (!sock_flag(sk, SOCK_DONE)) {
1698					/* This occurs when user tries to read
1699					 * from never connected socket.
1700					 */
1701					copied = -ENOTCONN;
1702					break;
1703				}
1704				break;
1705			}
1706
1707			if (!timeo) {
1708				copied = -EAGAIN;
1709				break;
1710			}
1711
1712			if (signal_pending(current)) {
1713				copied = sock_intr_errno(timeo);
1714				break;
1715			}
1716		}
1717
1718		tcp_cleanup_rbuf(sk, copied);
1719
1720		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1721			/* Install new reader */
1722			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1723				user_recv = current;
1724				tp->ucopy.task = user_recv;
1725				tp->ucopy.iov = msg->msg_iov;
1726			}
1727
1728			tp->ucopy.len = len;
1729
1730			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1731				!(flags & (MSG_PEEK | MSG_TRUNC)));
1732
1733			/* Ugly... If prequeue is not empty, we have to
1734			 * process it before releasing socket, otherwise
1735			 * order will be broken at second iteration.
1736			 * More elegant solution is required!!!
1737			 *
1738			 * Look: we have the following (pseudo)queues:
1739			 *
1740			 * 1. packets in flight
1741			 * 2. backlog
1742			 * 3. prequeue
1743			 * 4. receive_queue
1744			 *
1745			 * Each queue can be processed only if the next ones
1746			 * are empty. At this point we have empty receive_queue.
1747			 * But prequeue _can_ be not empty after 2nd iteration,
1748			 * when we jumped to start of loop because backlog
1749			 * processing added something to receive_queue.
1750			 * We cannot release_sock(), because backlog contains
1751			 * packets arrived _after_ prequeued ones.
1752			 *
1753			 * Shortly, algorithm is clear --- to process all
1754			 * the queues in order. We could make it more directly,
1755			 * requeueing packets from backlog to prequeue, if
1756			 * is not empty. It is more elegant, but eats cycles,
1757			 * unfortunately.
1758			 */
1759			if (!skb_queue_empty(&tp->ucopy.prequeue))
1760				goto do_prequeue;
1761
1762			/* __ Set realtime policy in scheduler __ */
1763		}
1764
1765#ifdef CONFIG_NET_DMA
1766		if (tp->ucopy.dma_chan) {
1767			if (tp->rcv_wnd == 0 &&
1768			    !skb_queue_empty(&sk->sk_async_wait_queue)) {
1769				tcp_service_net_dma(sk, true);
1770				tcp_cleanup_rbuf(sk, copied);
1771			} else
1772				dma_async_issue_pending(tp->ucopy.dma_chan);
1773		}
1774#endif
1775		if (copied >= target) {
1776			/* Do not sleep, just process backlog. */
1777			release_sock(sk);
1778			lock_sock(sk);
1779		} else
1780			sk_wait_data(sk, &timeo);
1781
1782#ifdef CONFIG_NET_DMA
1783		tcp_service_net_dma(sk, false);  /* Don't block */
1784		tp->ucopy.wakeup = 0;
1785#endif
1786
1787		if (user_recv) {
1788			int chunk;
1789
1790			/* __ Restore normal policy in scheduler __ */
1791
1792			if ((chunk = len - tp->ucopy.len) != 0) {
1793				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1794				len -= chunk;
1795				copied += chunk;
1796			}
1797
1798			if (tp->rcv_nxt == tp->copied_seq &&
1799			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1800do_prequeue:
1801				tcp_prequeue_process(sk);
1802
1803				if ((chunk = len - tp->ucopy.len) != 0) {
1804					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1805					len -= chunk;
1806					copied += chunk;
1807				}
1808			}
1809		}
1810		if ((flags & MSG_PEEK) &&
1811		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1812			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1813					    current->comm,
1814					    task_pid_nr(current));
1815			peek_seq = tp->copied_seq;
1816		}
1817		continue;
1818
1819	found_ok_skb:
1820		/* Ok so how much can we use? */
1821		used = skb->len - offset;
1822		if (len < used)
1823			used = len;
1824
1825		/* Do we have urgent data here? */
1826		if (tp->urg_data) {
1827			u32 urg_offset = tp->urg_seq - *seq;
1828			if (urg_offset < used) {
1829				if (!urg_offset) {
1830					if (!sock_flag(sk, SOCK_URGINLINE)) {
1831						++*seq;
1832						urg_hole++;
1833						offset++;
1834						used--;
1835						if (!used)
1836							goto skip_copy;
1837					}
1838				} else
1839					used = urg_offset;
1840			}
1841		}
1842
1843		if (!(flags & MSG_TRUNC)) {
1844#ifdef CONFIG_NET_DMA
1845			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1846				tp->ucopy.dma_chan = net_dma_find_channel();
1847
1848			if (tp->ucopy.dma_chan) {
1849				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1850					tp->ucopy.dma_chan, skb, offset,
1851					msg->msg_iov, used,
1852					tp->ucopy.pinned_list);
1853
1854				if (tp->ucopy.dma_cookie < 0) {
1855
1856					pr_alert("%s: dma_cookie < 0\n",
1857						 __func__);
1858
1859					/* Exception. Bailout! */
1860					if (!copied)
1861						copied = -EFAULT;
1862					break;
1863				}
1864
1865				dma_async_issue_pending(tp->ucopy.dma_chan);
1866
1867				if ((offset + used) == skb->len)
1868					copied_early = true;
1869
1870			} else
1871#endif
1872			{
1873				err = skb_copy_datagram_iovec(skb, offset,
1874						msg->msg_iov, used);
1875				if (err) {
1876					/* Exception. Bailout! */
1877					if (!copied)
1878						copied = -EFAULT;
1879					break;
1880				}
1881			}
1882		}
1883
1884		*seq += used;
1885		copied += used;
1886		len -= used;
1887
1888		tcp_rcv_space_adjust(sk);
1889
1890skip_copy:
1891		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1892			tp->urg_data = 0;
1893			tcp_fast_path_check(sk);
1894		}
1895		if (used + offset < skb->len)
1896			continue;
1897
1898		if (tcp_hdr(skb)->fin)
1899			goto found_fin_ok;
1900		if (!(flags & MSG_PEEK)) {
1901			sk_eat_skb(sk, skb, copied_early);
1902			copied_early = false;
1903		}
1904		continue;
1905
1906	found_fin_ok:
1907		/* Process the FIN. */
1908		++*seq;
1909		if (!(flags & MSG_PEEK)) {
1910			sk_eat_skb(sk, skb, copied_early);
1911			copied_early = false;
1912		}
1913		break;
1914	} while (len > 0);
1915
1916	if (user_recv) {
1917		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1918			int chunk;
1919
1920			tp->ucopy.len = copied > 0 ? len : 0;
1921
1922			tcp_prequeue_process(sk);
1923
1924			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1925				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1926				len -= chunk;
1927				copied += chunk;
1928			}
1929		}
1930
1931		tp->ucopy.task = NULL;
1932		tp->ucopy.len = 0;
1933	}
1934
1935#ifdef CONFIG_NET_DMA
1936	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1937	tp->ucopy.dma_chan = NULL;
1938
1939	if (tp->ucopy.pinned_list) {
1940		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1941		tp->ucopy.pinned_list = NULL;
1942	}
1943#endif
1944
1945	/* According to UNIX98, msg_name/msg_namelen are ignored
1946	 * on connected socket. I was just happy when found this 8) --ANK
1947	 */
1948
1949	/* Clean up data we have read: This will do ACK frames. */
1950	tcp_cleanup_rbuf(sk, copied);
1951
1952	release_sock(sk);
1953	return copied;
1954
1955out:
1956	release_sock(sk);
1957	return err;
1958
1959recv_urg:
1960	err = tcp_recv_urg(sk, msg, len, flags);
1961	goto out;
1962
1963recv_sndq:
1964	err = tcp_peek_sndq(sk, msg, len);
1965	goto out;
1966}
1967EXPORT_SYMBOL(tcp_recvmsg);
1968
1969void tcp_set_state(struct sock *sk, int state)
1970{
1971	int oldstate = sk->sk_state;
1972
1973	switch (state) {
1974	case TCP_ESTABLISHED:
1975		if (oldstate != TCP_ESTABLISHED)
1976			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1977		break;
1978
1979	case TCP_CLOSE:
1980		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1981			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1982
1983		sk->sk_prot->unhash(sk);
1984		if (inet_csk(sk)->icsk_bind_hash &&
1985		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1986			inet_put_port(sk);
1987		/* fall through */
1988	default:
1989		if (oldstate == TCP_ESTABLISHED)
1990			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1991	}
1992
1993	/* Change state AFTER socket is unhashed to avoid closed
1994	 * socket sitting in hash tables.
1995	 */
1996	sk->sk_state = state;
1997
1998#ifdef STATE_TRACE
1999	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2000#endif
2001}
2002EXPORT_SYMBOL_GPL(tcp_set_state);
2003
2004/*
2005 *	State processing on a close. This implements the state shift for
2006 *	sending our FIN frame. Note that we only send a FIN for some
2007 *	states. A shutdown() may have already sent the FIN, or we may be
2008 *	closed.
2009 */
2010
2011static const unsigned char new_state[16] = {
2012  /* current state:        new state:      action:	*/
2013  /* (Invalid)		*/ TCP_CLOSE,
2014  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2015  /* TCP_SYN_SENT	*/ TCP_CLOSE,
2016  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2017  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
2018  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
2019  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
2020  /* TCP_CLOSE		*/ TCP_CLOSE,
2021  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
2022  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
2023  /* TCP_LISTEN		*/ TCP_CLOSE,
2024  /* TCP_CLOSING	*/ TCP_CLOSING,
2025};
2026
2027static int tcp_close_state(struct sock *sk)
2028{
2029	int next = (int)new_state[sk->sk_state];
2030	int ns = next & TCP_STATE_MASK;
2031
2032	tcp_set_state(sk, ns);
2033
2034	return next & TCP_ACTION_FIN;
2035}
2036
2037/*
2038 *	Shutdown the sending side of a connection. Much like close except
2039 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2040 */
2041
2042void tcp_shutdown(struct sock *sk, int how)
2043{
2044	/*	We need to grab some memory, and put together a FIN,
2045	 *	and then put it into the queue to be sent.
2046	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2047	 */
2048	if (!(how & SEND_SHUTDOWN))
2049		return;
2050
2051	/* If we've already sent a FIN, or it's a closed state, skip this. */
2052	if ((1 << sk->sk_state) &
2053	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2054	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2055		/* Clear out any half completed packets.  FIN if needed. */
2056		if (tcp_close_state(sk))
2057			tcp_send_fin(sk);
2058	}
2059}
2060EXPORT_SYMBOL(tcp_shutdown);
2061
2062bool tcp_check_oom(struct sock *sk, int shift)
2063{
2064	bool too_many_orphans, out_of_socket_memory;
2065
2066	too_many_orphans = tcp_too_many_orphans(sk, shift);
2067	out_of_socket_memory = tcp_out_of_memory(sk);
2068
2069	if (too_many_orphans)
2070		net_info_ratelimited("too many orphaned sockets\n");
2071	if (out_of_socket_memory)
2072		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2073	return too_many_orphans || out_of_socket_memory;
2074}
2075
2076void tcp_close(struct sock *sk, long timeout)
2077{
2078	struct sk_buff *skb;
2079	int data_was_unread = 0;
2080	int state;
2081
2082	lock_sock(sk);
2083	sk->sk_shutdown = SHUTDOWN_MASK;
2084
2085	if (sk->sk_state == TCP_LISTEN) {
2086		tcp_set_state(sk, TCP_CLOSE);
2087
2088		/* Special case. */
2089		inet_csk_listen_stop(sk);
2090
2091		goto adjudge_to_death;
2092	}
2093
2094	/*  We need to flush the recv. buffs.  We do this only on the
2095	 *  descriptor close, not protocol-sourced closes, because the
2096	 *  reader process may not have drained the data yet!
2097	 */
2098	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2099		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2100			  tcp_hdr(skb)->fin;
2101		data_was_unread += len;
2102		__kfree_skb(skb);
2103	}
2104
2105	sk_mem_reclaim(sk);
2106
2107	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2108	if (sk->sk_state == TCP_CLOSE)
2109		goto adjudge_to_death;
2110
2111	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2112	 * data was lost. To witness the awful effects of the old behavior of
2113	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2114	 * GET in an FTP client, suspend the process, wait for the client to
2115	 * advertise a zero window, then kill -9 the FTP client, wheee...
2116	 * Note: timeout is always zero in such a case.
2117	 */
2118	if (unlikely(tcp_sk(sk)->repair)) {
2119		sk->sk_prot->disconnect(sk, 0);
2120	} else if (data_was_unread) {
2121		/* Unread data was tossed, zap the connection. */
2122		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2123		tcp_set_state(sk, TCP_CLOSE);
2124		tcp_send_active_reset(sk, sk->sk_allocation);
2125	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2126		/* Check zero linger _after_ checking for unread data. */
2127		sk->sk_prot->disconnect(sk, 0);
2128		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2129	} else if (tcp_close_state(sk)) {
2130		/* We FIN if the application ate all the data before
2131		 * zapping the connection.
2132		 */
2133
2134		/* RED-PEN. Formally speaking, we have broken TCP state
2135		 * machine. State transitions:
2136		 *
2137		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2138		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2139		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2140		 *
2141		 * are legal only when FIN has been sent (i.e. in window),
2142		 * rather than queued out of window. Purists blame.
2143		 *
2144		 * F.e. "RFC state" is ESTABLISHED,
2145		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2146		 *
2147		 * The visible declinations are that sometimes
2148		 * we enter time-wait state, when it is not required really
2149		 * (harmless), do not send active resets, when they are
2150		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2151		 * they look as CLOSING or LAST_ACK for Linux)
2152		 * Probably, I missed some more holelets.
2153		 * 						--ANK
2154		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2155		 * in a single packet! (May consider it later but will
2156		 * probably need API support or TCP_CORK SYN-ACK until
2157		 * data is written and socket is closed.)
2158		 */
2159		tcp_send_fin(sk);
2160	}
2161
2162	sk_stream_wait_close(sk, timeout);
2163
2164adjudge_to_death:
2165	state = sk->sk_state;
2166	sock_hold(sk);
2167	sock_orphan(sk);
2168
2169	/* It is the last release_sock in its life. It will remove backlog. */
2170	release_sock(sk);
2171
2172
2173	/* Now socket is owned by kernel and we acquire BH lock
2174	   to finish close. No need to check for user refs.
2175	 */
2176	local_bh_disable();
2177	bh_lock_sock(sk);
2178	WARN_ON(sock_owned_by_user(sk));
2179
2180	percpu_counter_inc(sk->sk_prot->orphan_count);
2181
2182	/* Have we already been destroyed by a softirq or backlog? */
2183	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2184		goto out;
2185
2186	/*	This is a (useful) BSD violating of the RFC. There is a
2187	 *	problem with TCP as specified in that the other end could
2188	 *	keep a socket open forever with no application left this end.
2189	 *	We use a 3 minute timeout (about the same as BSD) then kill
2190	 *	our end. If they send after that then tough - BUT: long enough
2191	 *	that we won't make the old 4*rto = almost no time - whoops
2192	 *	reset mistake.
2193	 *
2194	 *	Nope, it was not mistake. It is really desired behaviour
2195	 *	f.e. on http servers, when such sockets are useless, but
2196	 *	consume significant resources. Let's do it with special
2197	 *	linger2	option.					--ANK
2198	 */
2199
2200	if (sk->sk_state == TCP_FIN_WAIT2) {
2201		struct tcp_sock *tp = tcp_sk(sk);
2202		if (tp->linger2 < 0) {
2203			tcp_set_state(sk, TCP_CLOSE);
2204			tcp_send_active_reset(sk, GFP_ATOMIC);
2205			NET_INC_STATS_BH(sock_net(sk),
2206					LINUX_MIB_TCPABORTONLINGER);
2207		} else {
2208			const int tmo = tcp_fin_time(sk);
2209
2210			if (tmo > TCP_TIMEWAIT_LEN) {
2211				inet_csk_reset_keepalive_timer(sk,
2212						tmo - TCP_TIMEWAIT_LEN);
2213			} else {
2214				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2215				goto out;
2216			}
2217		}
2218	}
2219	if (sk->sk_state != TCP_CLOSE) {
2220		sk_mem_reclaim(sk);
2221		if (tcp_check_oom(sk, 0)) {
2222			tcp_set_state(sk, TCP_CLOSE);
2223			tcp_send_active_reset(sk, GFP_ATOMIC);
2224			NET_INC_STATS_BH(sock_net(sk),
2225					LINUX_MIB_TCPABORTONMEMORY);
2226		}
2227	}
2228
2229	if (sk->sk_state == TCP_CLOSE) {
2230		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2231		/* We could get here with a non-NULL req if the socket is
2232		 * aborted (e.g., closed with unread data) before 3WHS
2233		 * finishes.
2234		 */
2235		if (req != NULL)
2236			reqsk_fastopen_remove(sk, req, false);
2237		inet_csk_destroy_sock(sk);
2238	}
2239	/* Otherwise, socket is reprieved until protocol close. */
2240
2241out:
2242	bh_unlock_sock(sk);
2243	local_bh_enable();
2244	sock_put(sk);
2245}
2246EXPORT_SYMBOL(tcp_close);
2247
2248/* These states need RST on ABORT according to RFC793 */
2249
2250static inline bool tcp_need_reset(int state)
2251{
2252	return (1 << state) &
2253	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2254		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2255}
2256
2257int tcp_disconnect(struct sock *sk, int flags)
2258{
2259	struct inet_sock *inet = inet_sk(sk);
2260	struct inet_connection_sock *icsk = inet_csk(sk);
2261	struct tcp_sock *tp = tcp_sk(sk);
2262	int err = 0;
2263	int old_state = sk->sk_state;
2264
2265	if (old_state != TCP_CLOSE)
2266		tcp_set_state(sk, TCP_CLOSE);
2267
2268	/* ABORT function of RFC793 */
2269	if (old_state == TCP_LISTEN) {
2270		inet_csk_listen_stop(sk);
2271	} else if (unlikely(tp->repair)) {
2272		sk->sk_err = ECONNABORTED;
2273	} else if (tcp_need_reset(old_state) ||
2274		   (tp->snd_nxt != tp->write_seq &&
2275		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2276		/* The last check adjusts for discrepancy of Linux wrt. RFC
2277		 * states
2278		 */
2279		tcp_send_active_reset(sk, gfp_any());
2280		sk->sk_err = ECONNRESET;
2281	} else if (old_state == TCP_SYN_SENT)
2282		sk->sk_err = ECONNRESET;
2283
2284	tcp_clear_xmit_timers(sk);
2285	__skb_queue_purge(&sk->sk_receive_queue);
2286	tcp_write_queue_purge(sk);
2287	__skb_queue_purge(&tp->out_of_order_queue);
2288#ifdef CONFIG_NET_DMA
2289	__skb_queue_purge(&sk->sk_async_wait_queue);
2290#endif
2291
2292	inet->inet_dport = 0;
2293
2294	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2295		inet_reset_saddr(sk);
2296
2297	sk->sk_shutdown = 0;
2298	sock_reset_flag(sk, SOCK_DONE);
2299	tp->srtt = 0;
2300	if ((tp->write_seq += tp->max_window + 2) == 0)
2301		tp->write_seq = 1;
2302	icsk->icsk_backoff = 0;
2303	tp->snd_cwnd = 2;
2304	icsk->icsk_probes_out = 0;
2305	tp->packets_out = 0;
2306	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2307	tp->snd_cwnd_cnt = 0;
2308	tp->window_clamp = 0;
2309	tcp_set_ca_state(sk, TCP_CA_Open);
2310	tcp_clear_retrans(tp);
2311	inet_csk_delack_init(sk);
2312	tcp_init_send_head(sk);
2313	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2314	__sk_dst_reset(sk);
2315
2316	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2317
2318	sk->sk_error_report(sk);
2319	return err;
2320}
2321EXPORT_SYMBOL(tcp_disconnect);
2322
2323void tcp_sock_destruct(struct sock *sk)
2324{
2325	inet_sock_destruct(sk);
2326
2327	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2328}
2329
2330static inline bool tcp_can_repair_sock(const struct sock *sk)
2331{
2332	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2333		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2334}
2335
2336static int tcp_repair_options_est(struct tcp_sock *tp,
2337		struct tcp_repair_opt __user *optbuf, unsigned int len)
2338{
2339	struct tcp_repair_opt opt;
2340
2341	while (len >= sizeof(opt)) {
2342		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2343			return -EFAULT;
2344
2345		optbuf++;
2346		len -= sizeof(opt);
2347
2348		switch (opt.opt_code) {
2349		case TCPOPT_MSS:
2350			tp->rx_opt.mss_clamp = opt.opt_val;
2351			break;
2352		case TCPOPT_WINDOW:
2353			{
2354				u16 snd_wscale = opt.opt_val & 0xFFFF;
2355				u16 rcv_wscale = opt.opt_val >> 16;
2356
2357				if (snd_wscale > 14 || rcv_wscale > 14)
2358					return -EFBIG;
2359
2360				tp->rx_opt.snd_wscale = snd_wscale;
2361				tp->rx_opt.rcv_wscale = rcv_wscale;
2362				tp->rx_opt.wscale_ok = 1;
2363			}
2364			break;
2365		case TCPOPT_SACK_PERM:
2366			if (opt.opt_val != 0)
2367				return -EINVAL;
2368
2369			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2370			if (sysctl_tcp_fack)
2371				tcp_enable_fack(tp);
2372			break;
2373		case TCPOPT_TIMESTAMP:
2374			if (opt.opt_val != 0)
2375				return -EINVAL;
2376
2377			tp->rx_opt.tstamp_ok = 1;
2378			break;
2379		}
2380	}
2381
2382	return 0;
2383}
2384
2385/*
2386 *	Socket option code for TCP.
2387 */
2388static int do_tcp_setsockopt(struct sock *sk, int level,
2389		int optname, char __user *optval, unsigned int optlen)
2390{
2391	struct tcp_sock *tp = tcp_sk(sk);
2392	struct inet_connection_sock *icsk = inet_csk(sk);
2393	int val;
2394	int err = 0;
2395
2396	/* These are data/string values, all the others are ints */
2397	switch (optname) {
2398	case TCP_CONGESTION: {
2399		char name[TCP_CA_NAME_MAX];
2400
2401		if (optlen < 1)
2402			return -EINVAL;
2403
2404		val = strncpy_from_user(name, optval,
2405					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2406		if (val < 0)
2407			return -EFAULT;
2408		name[val] = 0;
2409
2410		lock_sock(sk);
2411		err = tcp_set_congestion_control(sk, name);
2412		release_sock(sk);
2413		return err;
2414	}
2415	default:
2416		/* fallthru */
2417		break;
2418	}
2419
2420	if (optlen < sizeof(int))
2421		return -EINVAL;
2422
2423	if (get_user(val, (int __user *)optval))
2424		return -EFAULT;
2425
2426	lock_sock(sk);
2427
2428	switch (optname) {
2429	case TCP_MAXSEG:
2430		/* Values greater than interface MTU won't take effect. However
2431		 * at the point when this call is done we typically don't yet
2432		 * know which interface is going to be used */
2433		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2434			err = -EINVAL;
2435			break;
2436		}
2437		tp->rx_opt.user_mss = val;
2438		break;
2439
2440	case TCP_NODELAY:
2441		if (val) {
2442			/* TCP_NODELAY is weaker than TCP_CORK, so that
2443			 * this option on corked socket is remembered, but
2444			 * it is not activated until cork is cleared.
2445			 *
2446			 * However, when TCP_NODELAY is set we make
2447			 * an explicit push, which overrides even TCP_CORK
2448			 * for currently queued segments.
2449			 */
2450			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2451			tcp_push_pending_frames(sk);
2452		} else {
2453			tp->nonagle &= ~TCP_NAGLE_OFF;
2454		}
2455		break;
2456
2457	case TCP_THIN_LINEAR_TIMEOUTS:
2458		if (val < 0 || val > 1)
2459			err = -EINVAL;
2460		else
2461			tp->thin_lto = val;
2462		break;
2463
2464	case TCP_THIN_DUPACK:
2465		if (val < 0 || val > 1)
2466			err = -EINVAL;
2467		else {
2468			tp->thin_dupack = val;
2469			if (tp->thin_dupack)
2470				tcp_disable_early_retrans(tp);
2471		}
2472		break;
2473
2474	case TCP_REPAIR:
2475		if (!tcp_can_repair_sock(sk))
2476			err = -EPERM;
2477		else if (val == 1) {
2478			tp->repair = 1;
2479			sk->sk_reuse = SK_FORCE_REUSE;
2480			tp->repair_queue = TCP_NO_QUEUE;
2481		} else if (val == 0) {
2482			tp->repair = 0;
2483			sk->sk_reuse = SK_NO_REUSE;
2484			tcp_send_window_probe(sk);
2485		} else
2486			err = -EINVAL;
2487
2488		break;
2489
2490	case TCP_REPAIR_QUEUE:
2491		if (!tp->repair)
2492			err = -EPERM;
2493		else if (val < TCP_QUEUES_NR)
2494			tp->repair_queue = val;
2495		else
2496			err = -EINVAL;
2497		break;
2498
2499	case TCP_QUEUE_SEQ:
2500		if (sk->sk_state != TCP_CLOSE)
2501			err = -EPERM;
2502		else if (tp->repair_queue == TCP_SEND_QUEUE)
2503			tp->write_seq = val;
2504		else if (tp->repair_queue == TCP_RECV_QUEUE)
2505			tp->rcv_nxt = val;
2506		else
2507			err = -EINVAL;
2508		break;
2509
2510	case TCP_REPAIR_OPTIONS:
2511		if (!tp->repair)
2512			err = -EINVAL;
2513		else if (sk->sk_state == TCP_ESTABLISHED)
2514			err = tcp_repair_options_est(tp,
2515					(struct tcp_repair_opt __user *)optval,
2516					optlen);
2517		else
2518			err = -EPERM;
2519		break;
2520
2521	case TCP_CORK:
2522		/* When set indicates to always queue non-full frames.
2523		 * Later the user clears this option and we transmit
2524		 * any pending partial frames in the queue.  This is
2525		 * meant to be used alongside sendfile() to get properly
2526		 * filled frames when the user (for example) must write
2527		 * out headers with a write() call first and then use
2528		 * sendfile to send out the data parts.
2529		 *
2530		 * TCP_CORK can be set together with TCP_NODELAY and it is
2531		 * stronger than TCP_NODELAY.
2532		 */
2533		if (val) {
2534			tp->nonagle |= TCP_NAGLE_CORK;
2535		} else {
2536			tp->nonagle &= ~TCP_NAGLE_CORK;
2537			if (tp->nonagle&TCP_NAGLE_OFF)
2538				tp->nonagle |= TCP_NAGLE_PUSH;
2539			tcp_push_pending_frames(sk);
2540		}
2541		break;
2542
2543	case TCP_KEEPIDLE:
2544		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2545			err = -EINVAL;
2546		else {
2547			tp->keepalive_time = val * HZ;
2548			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2549			    !((1 << sk->sk_state) &
2550			      (TCPF_CLOSE | TCPF_LISTEN))) {
2551				u32 elapsed = keepalive_time_elapsed(tp);
2552				if (tp->keepalive_time > elapsed)
2553					elapsed = tp->keepalive_time - elapsed;
2554				else
2555					elapsed = 0;
2556				inet_csk_reset_keepalive_timer(sk, elapsed);
2557			}
2558		}
2559		break;
2560	case TCP_KEEPINTVL:
2561		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2562			err = -EINVAL;
2563		else
2564			tp->keepalive_intvl = val * HZ;
2565		break;
2566	case TCP_KEEPCNT:
2567		if (val < 1 || val > MAX_TCP_KEEPCNT)
2568			err = -EINVAL;
2569		else
2570			tp->keepalive_probes = val;
2571		break;
2572	case TCP_SYNCNT:
2573		if (val < 1 || val > MAX_TCP_SYNCNT)
2574			err = -EINVAL;
2575		else
2576			icsk->icsk_syn_retries = val;
2577		break;
2578
2579	case TCP_LINGER2:
2580		if (val < 0)
2581			tp->linger2 = -1;
2582		else if (val > sysctl_tcp_fin_timeout / HZ)
2583			tp->linger2 = 0;
2584		else
2585			tp->linger2 = val * HZ;
2586		break;
2587
2588	case TCP_DEFER_ACCEPT:
2589		/* Translate value in seconds to number of retransmits */
2590		icsk->icsk_accept_queue.rskq_defer_accept =
2591			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2592					TCP_RTO_MAX / HZ);
2593		break;
2594
2595	case TCP_WINDOW_CLAMP:
2596		if (!val) {
2597			if (sk->sk_state != TCP_CLOSE) {
2598				err = -EINVAL;
2599				break;
2600			}
2601			tp->window_clamp = 0;
2602		} else
2603			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2604						SOCK_MIN_RCVBUF / 2 : val;
2605		break;
2606
2607	case TCP_QUICKACK:
2608		if (!val) {
2609			icsk->icsk_ack.pingpong = 1;
2610		} else {
2611			icsk->icsk_ack.pingpong = 0;
2612			if ((1 << sk->sk_state) &
2613			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2614			    inet_csk_ack_scheduled(sk)) {
2615				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2616				tcp_cleanup_rbuf(sk, 1);
2617				if (!(val & 1))
2618					icsk->icsk_ack.pingpong = 1;
2619			}
2620		}
2621		break;
2622
2623#ifdef CONFIG_TCP_MD5SIG
2624	case TCP_MD5SIG:
2625		/* Read the IP->Key mappings from userspace */
2626		err = tp->af_specific->md5_parse(sk, optval, optlen);
2627		break;
2628#endif
2629	case TCP_USER_TIMEOUT:
2630		/* Cap the max timeout in ms TCP will retry/retrans
2631		 * before giving up and aborting (ETIMEDOUT) a connection.
2632		 */
2633		if (val < 0)
2634			err = -EINVAL;
2635		else
2636			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2637		break;
2638
2639	case TCP_FASTOPEN:
2640		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2641		    TCPF_LISTEN)))
2642			err = fastopen_init_queue(sk, val);
2643		else
2644			err = -EINVAL;
2645		break;
2646	case TCP_TIMESTAMP:
2647		if (!tp->repair)
2648			err = -EPERM;
2649		else
2650			tp->tsoffset = val - tcp_time_stamp;
2651		break;
2652	case TCP_NOTSENT_LOWAT:
2653		tp->notsent_lowat = val;
2654		sk->sk_write_space(sk);
2655		break;
2656	default:
2657		err = -ENOPROTOOPT;
2658		break;
2659	}
2660
2661	release_sock(sk);
2662	return err;
2663}
2664
2665int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2666		   unsigned int optlen)
2667{
2668	const struct inet_connection_sock *icsk = inet_csk(sk);
2669
2670	if (level != SOL_TCP)
2671		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2672						     optval, optlen);
2673	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2674}
2675EXPORT_SYMBOL(tcp_setsockopt);
2676
2677#ifdef CONFIG_COMPAT
2678int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2679			  char __user *optval, unsigned int optlen)
2680{
2681	if (level != SOL_TCP)
2682		return inet_csk_compat_setsockopt(sk, level, optname,
2683						  optval, optlen);
2684	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2685}
2686EXPORT_SYMBOL(compat_tcp_setsockopt);
2687#endif
2688
2689/* Return information about state of tcp endpoint in API format. */
2690void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2691{
2692	const struct tcp_sock *tp = tcp_sk(sk);
2693	const struct inet_connection_sock *icsk = inet_csk(sk);
2694	u32 now = tcp_time_stamp;
2695
2696	memset(info, 0, sizeof(*info));
2697
2698	info->tcpi_state = sk->sk_state;
2699	info->tcpi_ca_state = icsk->icsk_ca_state;
2700	info->tcpi_retransmits = icsk->icsk_retransmits;
2701	info->tcpi_probes = icsk->icsk_probes_out;
2702	info->tcpi_backoff = icsk->icsk_backoff;
2703
2704	if (tp->rx_opt.tstamp_ok)
2705		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2706	if (tcp_is_sack(tp))
2707		info->tcpi_options |= TCPI_OPT_SACK;
2708	if (tp->rx_opt.wscale_ok) {
2709		info->tcpi_options |= TCPI_OPT_WSCALE;
2710		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2711		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2712	}
2713
2714	if (tp->ecn_flags & TCP_ECN_OK)
2715		info->tcpi_options |= TCPI_OPT_ECN;
2716	if (tp->ecn_flags & TCP_ECN_SEEN)
2717		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2718	if (tp->syn_data_acked)
2719		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2720
2721	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2722	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2723	info->tcpi_snd_mss = tp->mss_cache;
2724	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2725
2726	if (sk->sk_state == TCP_LISTEN) {
2727		info->tcpi_unacked = sk->sk_ack_backlog;
2728		info->tcpi_sacked = sk->sk_max_ack_backlog;
2729	} else {
2730		info->tcpi_unacked = tp->packets_out;
2731		info->tcpi_sacked = tp->sacked_out;
2732	}
2733	info->tcpi_lost = tp->lost_out;
2734	info->tcpi_retrans = tp->retrans_out;
2735	info->tcpi_fackets = tp->fackets_out;
2736
2737	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2738	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2739	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2740
2741	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2742	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2743	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2744	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2745	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2746	info->tcpi_snd_cwnd = tp->snd_cwnd;
2747	info->tcpi_advmss = tp->advmss;
2748	info->tcpi_reordering = tp->reordering;
2749
2750	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2751	info->tcpi_rcv_space = tp->rcvq_space.space;
2752
2753	info->tcpi_total_retrans = tp->total_retrans;
2754}
2755EXPORT_SYMBOL_GPL(tcp_get_info);
2756
2757static int do_tcp_getsockopt(struct sock *sk, int level,
2758		int optname, char __user *optval, int __user *optlen)
2759{
2760	struct inet_connection_sock *icsk = inet_csk(sk);
2761	struct tcp_sock *tp = tcp_sk(sk);
2762	int val, len;
2763
2764	if (get_user(len, optlen))
2765		return -EFAULT;
2766
2767	len = min_t(unsigned int, len, sizeof(int));
2768
2769	if (len < 0)
2770		return -EINVAL;
2771
2772	switch (optname) {
2773	case TCP_MAXSEG:
2774		val = tp->mss_cache;
2775		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2776			val = tp->rx_opt.user_mss;
2777		if (tp->repair)
2778			val = tp->rx_opt.mss_clamp;
2779		break;
2780	case TCP_NODELAY:
2781		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2782		break;
2783	case TCP_CORK:
2784		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2785		break;
2786	case TCP_KEEPIDLE:
2787		val = keepalive_time_when(tp) / HZ;
2788		break;
2789	case TCP_KEEPINTVL:
2790		val = keepalive_intvl_when(tp) / HZ;
2791		break;
2792	case TCP_KEEPCNT:
2793		val = keepalive_probes(tp);
2794		break;
2795	case TCP_SYNCNT:
2796		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2797		break;
2798	case TCP_LINGER2:
2799		val = tp->linger2;
2800		if (val >= 0)
2801			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2802		break;
2803	case TCP_DEFER_ACCEPT:
2804		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2805				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2806		break;
2807	case TCP_WINDOW_CLAMP:
2808		val = tp->window_clamp;
2809		break;
2810	case TCP_INFO: {
2811		struct tcp_info info;
2812
2813		if (get_user(len, optlen))
2814			return -EFAULT;
2815
2816		tcp_get_info(sk, &info);
2817
2818		len = min_t(unsigned int, len, sizeof(info));
2819		if (put_user(len, optlen))
2820			return -EFAULT;
2821		if (copy_to_user(optval, &info, len))
2822			return -EFAULT;
2823		return 0;
2824	}
2825	case TCP_QUICKACK:
2826		val = !icsk->icsk_ack.pingpong;
2827		break;
2828
2829	case TCP_CONGESTION:
2830		if (get_user(len, optlen))
2831			return -EFAULT;
2832		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2833		if (put_user(len, optlen))
2834			return -EFAULT;
2835		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2836			return -EFAULT;
2837		return 0;
2838
2839	case TCP_THIN_LINEAR_TIMEOUTS:
2840		val = tp->thin_lto;
2841		break;
2842	case TCP_THIN_DUPACK:
2843		val = tp->thin_dupack;
2844		break;
2845
2846	case TCP_REPAIR:
2847		val = tp->repair;
2848		break;
2849
2850	case TCP_REPAIR_QUEUE:
2851		if (tp->repair)
2852			val = tp->repair_queue;
2853		else
2854			return -EINVAL;
2855		break;
2856
2857	case TCP_QUEUE_SEQ:
2858		if (tp->repair_queue == TCP_SEND_QUEUE)
2859			val = tp->write_seq;
2860		else if (tp->repair_queue == TCP_RECV_QUEUE)
2861			val = tp->rcv_nxt;
2862		else
2863			return -EINVAL;
2864		break;
2865
2866	case TCP_USER_TIMEOUT:
2867		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2868		break;
2869	case TCP_TIMESTAMP:
2870		val = tcp_time_stamp + tp->tsoffset;
2871		break;
2872	case TCP_NOTSENT_LOWAT:
2873		val = tp->notsent_lowat;
2874		break;
2875	default:
2876		return -ENOPROTOOPT;
2877	}
2878
2879	if (put_user(len, optlen))
2880		return -EFAULT;
2881	if (copy_to_user(optval, &val, len))
2882		return -EFAULT;
2883	return 0;
2884}
2885
2886int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2887		   int __user *optlen)
2888{
2889	struct inet_connection_sock *icsk = inet_csk(sk);
2890
2891	if (level != SOL_TCP)
2892		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2893						     optval, optlen);
2894	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2895}
2896EXPORT_SYMBOL(tcp_getsockopt);
2897
2898#ifdef CONFIG_COMPAT
2899int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2900			  char __user *optval, int __user *optlen)
2901{
2902	if (level != SOL_TCP)
2903		return inet_csk_compat_getsockopt(sk, level, optname,
2904						  optval, optlen);
2905	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2906}
2907EXPORT_SYMBOL(compat_tcp_getsockopt);
2908#endif
2909
2910#ifdef CONFIG_TCP_MD5SIG
2911static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool __read_mostly;
2912static DEFINE_MUTEX(tcp_md5sig_mutex);
2913
2914static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
2915{
2916	int cpu;
2917
2918	for_each_possible_cpu(cpu) {
2919		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
2920
2921		if (p->md5_desc.tfm)
2922			crypto_free_hash(p->md5_desc.tfm);
2923	}
2924	free_percpu(pool);
2925}
2926
2927static void __tcp_alloc_md5sig_pool(void)
2928{
2929	int cpu;
2930	struct tcp_md5sig_pool __percpu *pool;
2931
2932	pool = alloc_percpu(struct tcp_md5sig_pool);
2933	if (!pool)
2934		return;
2935
2936	for_each_possible_cpu(cpu) {
2937		struct crypto_hash *hash;
2938
2939		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2940		if (IS_ERR_OR_NULL(hash))
2941			goto out_free;
2942
2943		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
2944	}
2945	/* before setting tcp_md5sig_pool, we must commit all writes
2946	 * to memory. See ACCESS_ONCE() in tcp_get_md5sig_pool()
2947	 */
2948	smp_wmb();
2949	tcp_md5sig_pool = pool;
2950	return;
2951out_free:
2952	__tcp_free_md5sig_pool(pool);
2953}
2954
2955bool tcp_alloc_md5sig_pool(void)
2956{
2957	if (unlikely(!tcp_md5sig_pool)) {
2958		mutex_lock(&tcp_md5sig_mutex);
2959
2960		if (!tcp_md5sig_pool)
2961			__tcp_alloc_md5sig_pool();
2962
2963		mutex_unlock(&tcp_md5sig_mutex);
2964	}
2965	return tcp_md5sig_pool != NULL;
2966}
2967EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2968
2969
2970/**
2971 *	tcp_get_md5sig_pool - get md5sig_pool for this user
2972 *
2973 *	We use percpu structure, so if we succeed, we exit with preemption
2974 *	and BH disabled, to make sure another thread or softirq handling
2975 *	wont try to get same context.
2976 */
2977struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2978{
2979	struct tcp_md5sig_pool __percpu *p;
2980
2981	local_bh_disable();
2982	p = ACCESS_ONCE(tcp_md5sig_pool);
2983	if (p)
2984		return __this_cpu_ptr(p);
2985
2986	local_bh_enable();
2987	return NULL;
2988}
2989EXPORT_SYMBOL(tcp_get_md5sig_pool);
2990
2991int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2992			const struct tcphdr *th)
2993{
2994	struct scatterlist sg;
2995	struct tcphdr hdr;
2996	int err;
2997
2998	/* We are not allowed to change tcphdr, make a local copy */
2999	memcpy(&hdr, th, sizeof(hdr));
3000	hdr.check = 0;
3001
3002	/* options aren't included in the hash */
3003	sg_init_one(&sg, &hdr, sizeof(hdr));
3004	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3005	return err;
3006}
3007EXPORT_SYMBOL(tcp_md5_hash_header);
3008
3009int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3010			  const struct sk_buff *skb, unsigned int header_len)
3011{
3012	struct scatterlist sg;
3013	const struct tcphdr *tp = tcp_hdr(skb);
3014	struct hash_desc *desc = &hp->md5_desc;
3015	unsigned int i;
3016	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3017					   skb_headlen(skb) - header_len : 0;
3018	const struct skb_shared_info *shi = skb_shinfo(skb);
3019	struct sk_buff *frag_iter;
3020
3021	sg_init_table(&sg, 1);
3022
3023	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3024	if (crypto_hash_update(desc, &sg, head_data_len))
3025		return 1;
3026
3027	for (i = 0; i < shi->nr_frags; ++i) {
3028		const struct skb_frag_struct *f = &shi->frags[i];
3029		unsigned int offset = f->page_offset;
3030		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3031
3032		sg_set_page(&sg, page, skb_frag_size(f),
3033			    offset_in_page(offset));
3034		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3035			return 1;
3036	}
3037
3038	skb_walk_frags(skb, frag_iter)
3039		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3040			return 1;
3041
3042	return 0;
3043}
3044EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3045
3046int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3047{
3048	struct scatterlist sg;
3049
3050	sg_init_one(&sg, key->key, key->keylen);
3051	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3052}
3053EXPORT_SYMBOL(tcp_md5_hash_key);
3054
3055#endif
3056
3057void tcp_done(struct sock *sk)
3058{
3059	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3060
3061	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3062		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3063
3064	tcp_set_state(sk, TCP_CLOSE);
3065	tcp_clear_xmit_timers(sk);
3066	if (req != NULL)
3067		reqsk_fastopen_remove(sk, req, false);
3068
3069	sk->sk_shutdown = SHUTDOWN_MASK;
3070
3071	if (!sock_flag(sk, SOCK_DEAD))
3072		sk->sk_state_change(sk);
3073	else
3074		inet_csk_destroy_sock(sk);
3075}
3076EXPORT_SYMBOL_GPL(tcp_done);
3077
3078extern struct tcp_congestion_ops tcp_reno;
3079
3080static __initdata unsigned long thash_entries;
3081static int __init set_thash_entries(char *str)
3082{
3083	ssize_t ret;
3084
3085	if (!str)
3086		return 0;
3087
3088	ret = kstrtoul(str, 0, &thash_entries);
3089	if (ret)
3090		return 0;
3091
3092	return 1;
3093}
3094__setup("thash_entries=", set_thash_entries);
3095
3096static void tcp_init_mem(void)
3097{
3098	unsigned long limit = nr_free_buffer_pages() / 8;
3099	limit = max(limit, 128UL);
3100	sysctl_tcp_mem[0] = limit / 4 * 3;
3101	sysctl_tcp_mem[1] = limit;
3102	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3103}
3104
3105void __init tcp_init(void)
3106{
3107	struct sk_buff *skb = NULL;
3108	unsigned long limit;
3109	int max_rshare, max_wshare, cnt;
3110	unsigned int i;
3111
3112	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3113
3114	percpu_counter_init(&tcp_sockets_allocated, 0);
3115	percpu_counter_init(&tcp_orphan_count, 0);
3116	tcp_hashinfo.bind_bucket_cachep =
3117		kmem_cache_create("tcp_bind_bucket",
3118				  sizeof(struct inet_bind_bucket), 0,
3119				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3120
3121	/* Size and allocate the main established and bind bucket
3122	 * hash tables.
3123	 *
3124	 * The methodology is similar to that of the buffer cache.
3125	 */
3126	tcp_hashinfo.ehash =
3127		alloc_large_system_hash("TCP established",
3128					sizeof(struct inet_ehash_bucket),
3129					thash_entries,
3130					17, /* one slot per 128 KB of memory */
3131					0,
3132					NULL,
3133					&tcp_hashinfo.ehash_mask,
3134					0,
3135					thash_entries ? 0 : 512 * 1024);
3136	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3137		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3138
3139	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3140		panic("TCP: failed to alloc ehash_locks");
3141	tcp_hashinfo.bhash =
3142		alloc_large_system_hash("TCP bind",
3143					sizeof(struct inet_bind_hashbucket),
3144					tcp_hashinfo.ehash_mask + 1,
3145					17, /* one slot per 128 KB of memory */
3146					0,
3147					&tcp_hashinfo.bhash_size,
3148					NULL,
3149					0,
3150					64 * 1024);
3151	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3152	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3153		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3154		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3155	}
3156
3157
3158	cnt = tcp_hashinfo.ehash_mask + 1;
3159
3160	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3161	sysctl_tcp_max_orphans = cnt / 2;
3162	sysctl_max_syn_backlog = max(128, cnt / 256);
3163
3164	tcp_init_mem();
3165	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3166	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3167	max_wshare = min(4UL*1024*1024, limit);
3168	max_rshare = min(6UL*1024*1024, limit);
3169
3170	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3171	sysctl_tcp_wmem[1] = 16*1024;
3172	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3173
3174	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3175	sysctl_tcp_rmem[1] = 87380;
3176	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3177
3178	pr_info("Hash tables configured (established %u bind %u)\n",
3179		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3180
3181	tcp_metrics_init();
3182
3183	tcp_register_congestion_control(&tcp_reno);
3184
3185	tcp_tasklet_init();
3186}
3187