tcp.c revision a181ceb501b31b4bf8812a5c84c716cc31d82c2d
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248#define pr_fmt(fmt) "TCP: " fmt 249 250#include <linux/kernel.h> 251#include <linux/module.h> 252#include <linux/types.h> 253#include <linux/fcntl.h> 254#include <linux/poll.h> 255#include <linux/init.h> 256#include <linux/fs.h> 257#include <linux/skbuff.h> 258#include <linux/scatterlist.h> 259#include <linux/splice.h> 260#include <linux/net.h> 261#include <linux/socket.h> 262#include <linux/random.h> 263#include <linux/bootmem.h> 264#include <linux/highmem.h> 265#include <linux/swap.h> 266#include <linux/cache.h> 267#include <linux/err.h> 268#include <linux/crypto.h> 269#include <linux/time.h> 270#include <linux/slab.h> 271 272#include <net/icmp.h> 273#include <net/inet_common.h> 274#include <net/tcp.h> 275#include <net/xfrm.h> 276#include <net/ip.h> 277#include <net/netdma.h> 278#include <net/sock.h> 279 280#include <asm/uaccess.h> 281#include <asm/ioctls.h> 282#include <net/busy_poll.h> 283 284int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 285 286int sysctl_tcp_min_tso_segs __read_mostly = 2; 287 288int sysctl_tcp_autocorking __read_mostly = 1; 289 290struct percpu_counter tcp_orphan_count; 291EXPORT_SYMBOL_GPL(tcp_orphan_count); 292 293long sysctl_tcp_mem[3] __read_mostly; 294int sysctl_tcp_wmem[3] __read_mostly; 295int sysctl_tcp_rmem[3] __read_mostly; 296 297EXPORT_SYMBOL(sysctl_tcp_mem); 298EXPORT_SYMBOL(sysctl_tcp_rmem); 299EXPORT_SYMBOL(sysctl_tcp_wmem); 300 301atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 302EXPORT_SYMBOL(tcp_memory_allocated); 303 304/* 305 * Current number of TCP sockets. 306 */ 307struct percpu_counter tcp_sockets_allocated; 308EXPORT_SYMBOL(tcp_sockets_allocated); 309 310/* 311 * TCP splice context 312 */ 313struct tcp_splice_state { 314 struct pipe_inode_info *pipe; 315 size_t len; 316 unsigned int flags; 317}; 318 319/* 320 * Pressure flag: try to collapse. 321 * Technical note: it is used by multiple contexts non atomically. 322 * All the __sk_mem_schedule() is of this nature: accounting 323 * is strict, actions are advisory and have some latency. 324 */ 325int tcp_memory_pressure __read_mostly; 326EXPORT_SYMBOL(tcp_memory_pressure); 327 328void tcp_enter_memory_pressure(struct sock *sk) 329{ 330 if (!tcp_memory_pressure) { 331 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 332 tcp_memory_pressure = 1; 333 } 334} 335EXPORT_SYMBOL(tcp_enter_memory_pressure); 336 337/* Convert seconds to retransmits based on initial and max timeout */ 338static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 339{ 340 u8 res = 0; 341 342 if (seconds > 0) { 343 int period = timeout; 344 345 res = 1; 346 while (seconds > period && res < 255) { 347 res++; 348 timeout <<= 1; 349 if (timeout > rto_max) 350 timeout = rto_max; 351 period += timeout; 352 } 353 } 354 return res; 355} 356 357/* Convert retransmits to seconds based on initial and max timeout */ 358static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 359{ 360 int period = 0; 361 362 if (retrans > 0) { 363 period = timeout; 364 while (--retrans) { 365 timeout <<= 1; 366 if (timeout > rto_max) 367 timeout = rto_max; 368 period += timeout; 369 } 370 } 371 return period; 372} 373 374/* Address-family independent initialization for a tcp_sock. 375 * 376 * NOTE: A lot of things set to zero explicitly by call to 377 * sk_alloc() so need not be done here. 378 */ 379void tcp_init_sock(struct sock *sk) 380{ 381 struct inet_connection_sock *icsk = inet_csk(sk); 382 struct tcp_sock *tp = tcp_sk(sk); 383 384 skb_queue_head_init(&tp->out_of_order_queue); 385 tcp_init_xmit_timers(sk); 386 tcp_prequeue_init(tp); 387 INIT_LIST_HEAD(&tp->tsq_node); 388 389 icsk->icsk_rto = TCP_TIMEOUT_INIT; 390 tp->mdev = TCP_TIMEOUT_INIT; 391 392 /* So many TCP implementations out there (incorrectly) count the 393 * initial SYN frame in their delayed-ACK and congestion control 394 * algorithms that we must have the following bandaid to talk 395 * efficiently to them. -DaveM 396 */ 397 tp->snd_cwnd = TCP_INIT_CWND; 398 399 /* See draft-stevens-tcpca-spec-01 for discussion of the 400 * initialization of these values. 401 */ 402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 403 tp->snd_cwnd_clamp = ~0; 404 tp->mss_cache = TCP_MSS_DEFAULT; 405 406 tp->reordering = sysctl_tcp_reordering; 407 tcp_enable_early_retrans(tp); 408 icsk->icsk_ca_ops = &tcp_init_congestion_ops; 409 410 tp->tsoffset = 0; 411 412 sk->sk_state = TCP_CLOSE; 413 414 sk->sk_write_space = sk_stream_write_space; 415 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 416 417 icsk->icsk_sync_mss = tcp_sync_mss; 418 419 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 420 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 421 422 local_bh_disable(); 423 sock_update_memcg(sk); 424 sk_sockets_allocated_inc(sk); 425 local_bh_enable(); 426} 427EXPORT_SYMBOL(tcp_init_sock); 428 429/* 430 * Wait for a TCP event. 431 * 432 * Note that we don't need to lock the socket, as the upper poll layers 433 * take care of normal races (between the test and the event) and we don't 434 * go look at any of the socket buffers directly. 435 */ 436unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 437{ 438 unsigned int mask; 439 struct sock *sk = sock->sk; 440 const struct tcp_sock *tp = tcp_sk(sk); 441 442 sock_rps_record_flow(sk); 443 444 sock_poll_wait(file, sk_sleep(sk), wait); 445 if (sk->sk_state == TCP_LISTEN) 446 return inet_csk_listen_poll(sk); 447 448 /* Socket is not locked. We are protected from async events 449 * by poll logic and correct handling of state changes 450 * made by other threads is impossible in any case. 451 */ 452 453 mask = 0; 454 455 /* 456 * POLLHUP is certainly not done right. But poll() doesn't 457 * have a notion of HUP in just one direction, and for a 458 * socket the read side is more interesting. 459 * 460 * Some poll() documentation says that POLLHUP is incompatible 461 * with the POLLOUT/POLLWR flags, so somebody should check this 462 * all. But careful, it tends to be safer to return too many 463 * bits than too few, and you can easily break real applications 464 * if you don't tell them that something has hung up! 465 * 466 * Check-me. 467 * 468 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 469 * our fs/select.c). It means that after we received EOF, 470 * poll always returns immediately, making impossible poll() on write() 471 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 472 * if and only if shutdown has been made in both directions. 473 * Actually, it is interesting to look how Solaris and DUX 474 * solve this dilemma. I would prefer, if POLLHUP were maskable, 475 * then we could set it on SND_SHUTDOWN. BTW examples given 476 * in Stevens' books assume exactly this behaviour, it explains 477 * why POLLHUP is incompatible with POLLOUT. --ANK 478 * 479 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 480 * blocking on fresh not-connected or disconnected socket. --ANK 481 */ 482 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 483 mask |= POLLHUP; 484 if (sk->sk_shutdown & RCV_SHUTDOWN) 485 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 486 487 /* Connected or passive Fast Open socket? */ 488 if (sk->sk_state != TCP_SYN_SENT && 489 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) { 490 int target = sock_rcvlowat(sk, 0, INT_MAX); 491 492 if (tp->urg_seq == tp->copied_seq && 493 !sock_flag(sk, SOCK_URGINLINE) && 494 tp->urg_data) 495 target++; 496 497 /* Potential race condition. If read of tp below will 498 * escape above sk->sk_state, we can be illegally awaken 499 * in SYN_* states. */ 500 if (tp->rcv_nxt - tp->copied_seq >= target) 501 mask |= POLLIN | POLLRDNORM; 502 503 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 504 if (sk_stream_is_writeable(sk)) { 505 mask |= POLLOUT | POLLWRNORM; 506 } else { /* send SIGIO later */ 507 set_bit(SOCK_ASYNC_NOSPACE, 508 &sk->sk_socket->flags); 509 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 510 511 /* Race breaker. If space is freed after 512 * wspace test but before the flags are set, 513 * IO signal will be lost. 514 */ 515 if (sk_stream_is_writeable(sk)) 516 mask |= POLLOUT | POLLWRNORM; 517 } 518 } else 519 mask |= POLLOUT | POLLWRNORM; 520 521 if (tp->urg_data & TCP_URG_VALID) 522 mask |= POLLPRI; 523 } 524 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 525 smp_rmb(); 526 if (sk->sk_err) 527 mask |= POLLERR; 528 529 return mask; 530} 531EXPORT_SYMBOL(tcp_poll); 532 533int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 534{ 535 struct tcp_sock *tp = tcp_sk(sk); 536 int answ; 537 bool slow; 538 539 switch (cmd) { 540 case SIOCINQ: 541 if (sk->sk_state == TCP_LISTEN) 542 return -EINVAL; 543 544 slow = lock_sock_fast(sk); 545 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 546 answ = 0; 547 else if (sock_flag(sk, SOCK_URGINLINE) || 548 !tp->urg_data || 549 before(tp->urg_seq, tp->copied_seq) || 550 !before(tp->urg_seq, tp->rcv_nxt)) { 551 552 answ = tp->rcv_nxt - tp->copied_seq; 553 554 /* Subtract 1, if FIN was received */ 555 if (answ && sock_flag(sk, SOCK_DONE)) 556 answ--; 557 } else 558 answ = tp->urg_seq - tp->copied_seq; 559 unlock_sock_fast(sk, slow); 560 break; 561 case SIOCATMARK: 562 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 563 break; 564 case SIOCOUTQ: 565 if (sk->sk_state == TCP_LISTEN) 566 return -EINVAL; 567 568 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 569 answ = 0; 570 else 571 answ = tp->write_seq - tp->snd_una; 572 break; 573 case SIOCOUTQNSD: 574 if (sk->sk_state == TCP_LISTEN) 575 return -EINVAL; 576 577 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 578 answ = 0; 579 else 580 answ = tp->write_seq - tp->snd_nxt; 581 break; 582 default: 583 return -ENOIOCTLCMD; 584 } 585 586 return put_user(answ, (int __user *)arg); 587} 588EXPORT_SYMBOL(tcp_ioctl); 589 590static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 591{ 592 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 593 tp->pushed_seq = tp->write_seq; 594} 595 596static inline bool forced_push(const struct tcp_sock *tp) 597{ 598 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 599} 600 601static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 602{ 603 struct tcp_sock *tp = tcp_sk(sk); 604 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 605 606 skb->csum = 0; 607 tcb->seq = tcb->end_seq = tp->write_seq; 608 tcb->tcp_flags = TCPHDR_ACK; 609 tcb->sacked = 0; 610 skb_header_release(skb); 611 tcp_add_write_queue_tail(sk, skb); 612 sk->sk_wmem_queued += skb->truesize; 613 sk_mem_charge(sk, skb->truesize); 614 if (tp->nonagle & TCP_NAGLE_PUSH) 615 tp->nonagle &= ~TCP_NAGLE_PUSH; 616} 617 618static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 619{ 620 if (flags & MSG_OOB) 621 tp->snd_up = tp->write_seq; 622} 623 624/* If a not yet filled skb is pushed, do not send it if 625 * we have data packets in Qdisc or NIC queues : 626 * Because TX completion will happen shortly, it gives a chance 627 * to coalesce future sendmsg() payload into this skb, without 628 * need for a timer, and with no latency trade off. 629 * As packets containing data payload have a bigger truesize 630 * than pure acks (dataless) packets, the last checks prevent 631 * autocorking if we only have an ACK in Qdisc/NIC queues, 632 * or if TX completion was delayed after we processed ACK packet. 633 */ 634static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 635 int size_goal) 636{ 637 return skb->len < size_goal && 638 sysctl_tcp_autocorking && 639 skb != tcp_write_queue_head(sk) && 640 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 641} 642 643static void tcp_push(struct sock *sk, int flags, int mss_now, 644 int nonagle, int size_goal) 645{ 646 struct tcp_sock *tp = tcp_sk(sk); 647 struct sk_buff *skb; 648 649 if (!tcp_send_head(sk)) 650 return; 651 652 skb = tcp_write_queue_tail(sk); 653 if (!(flags & MSG_MORE) || forced_push(tp)) 654 tcp_mark_push(tp, skb); 655 656 tcp_mark_urg(tp, flags); 657 658 if (tcp_should_autocork(sk, skb, size_goal)) { 659 660 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 661 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) { 662 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 663 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 664 } 665 /* It is possible TX completion already happened 666 * before we set TSQ_THROTTLED. 667 */ 668 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 669 return; 670 } 671 672 if (flags & MSG_MORE) 673 nonagle = TCP_NAGLE_CORK; 674 675 __tcp_push_pending_frames(sk, mss_now, nonagle); 676} 677 678static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 679 unsigned int offset, size_t len) 680{ 681 struct tcp_splice_state *tss = rd_desc->arg.data; 682 int ret; 683 684 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 685 tss->flags); 686 if (ret > 0) 687 rd_desc->count -= ret; 688 return ret; 689} 690 691static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 692{ 693 /* Store TCP splice context information in read_descriptor_t. */ 694 read_descriptor_t rd_desc = { 695 .arg.data = tss, 696 .count = tss->len, 697 }; 698 699 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 700} 701 702/** 703 * tcp_splice_read - splice data from TCP socket to a pipe 704 * @sock: socket to splice from 705 * @ppos: position (not valid) 706 * @pipe: pipe to splice to 707 * @len: number of bytes to splice 708 * @flags: splice modifier flags 709 * 710 * Description: 711 * Will read pages from given socket and fill them into a pipe. 712 * 713 **/ 714ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 715 struct pipe_inode_info *pipe, size_t len, 716 unsigned int flags) 717{ 718 struct sock *sk = sock->sk; 719 struct tcp_splice_state tss = { 720 .pipe = pipe, 721 .len = len, 722 .flags = flags, 723 }; 724 long timeo; 725 ssize_t spliced; 726 int ret; 727 728 sock_rps_record_flow(sk); 729 /* 730 * We can't seek on a socket input 731 */ 732 if (unlikely(*ppos)) 733 return -ESPIPE; 734 735 ret = spliced = 0; 736 737 lock_sock(sk); 738 739 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 740 while (tss.len) { 741 ret = __tcp_splice_read(sk, &tss); 742 if (ret < 0) 743 break; 744 else if (!ret) { 745 if (spliced) 746 break; 747 if (sock_flag(sk, SOCK_DONE)) 748 break; 749 if (sk->sk_err) { 750 ret = sock_error(sk); 751 break; 752 } 753 if (sk->sk_shutdown & RCV_SHUTDOWN) 754 break; 755 if (sk->sk_state == TCP_CLOSE) { 756 /* 757 * This occurs when user tries to read 758 * from never connected socket. 759 */ 760 if (!sock_flag(sk, SOCK_DONE)) 761 ret = -ENOTCONN; 762 break; 763 } 764 if (!timeo) { 765 ret = -EAGAIN; 766 break; 767 } 768 sk_wait_data(sk, &timeo); 769 if (signal_pending(current)) { 770 ret = sock_intr_errno(timeo); 771 break; 772 } 773 continue; 774 } 775 tss.len -= ret; 776 spliced += ret; 777 778 if (!timeo) 779 break; 780 release_sock(sk); 781 lock_sock(sk); 782 783 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 784 (sk->sk_shutdown & RCV_SHUTDOWN) || 785 signal_pending(current)) 786 break; 787 } 788 789 release_sock(sk); 790 791 if (spliced) 792 return spliced; 793 794 return ret; 795} 796EXPORT_SYMBOL(tcp_splice_read); 797 798struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 799{ 800 struct sk_buff *skb; 801 802 /* The TCP header must be at least 32-bit aligned. */ 803 size = ALIGN(size, 4); 804 805 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 806 if (skb) { 807 if (sk_wmem_schedule(sk, skb->truesize)) { 808 skb_reserve(skb, sk->sk_prot->max_header); 809 /* 810 * Make sure that we have exactly size bytes 811 * available to the caller, no more, no less. 812 */ 813 skb->reserved_tailroom = skb->end - skb->tail - size; 814 return skb; 815 } 816 __kfree_skb(skb); 817 } else { 818 sk->sk_prot->enter_memory_pressure(sk); 819 sk_stream_moderate_sndbuf(sk); 820 } 821 return NULL; 822} 823 824static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 825 int large_allowed) 826{ 827 struct tcp_sock *tp = tcp_sk(sk); 828 u32 xmit_size_goal, old_size_goal; 829 830 xmit_size_goal = mss_now; 831 832 if (large_allowed && sk_can_gso(sk)) { 833 u32 gso_size, hlen; 834 835 /* Maybe we should/could use sk->sk_prot->max_header here ? */ 836 hlen = inet_csk(sk)->icsk_af_ops->net_header_len + 837 inet_csk(sk)->icsk_ext_hdr_len + 838 tp->tcp_header_len; 839 840 /* Goal is to send at least one packet per ms, 841 * not one big TSO packet every 100 ms. 842 * This preserves ACK clocking and is consistent 843 * with tcp_tso_should_defer() heuristic. 844 */ 845 gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC); 846 gso_size = max_t(u32, gso_size, 847 sysctl_tcp_min_tso_segs * mss_now); 848 849 xmit_size_goal = min_t(u32, gso_size, 850 sk->sk_gso_max_size - 1 - hlen); 851 852 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 853 854 /* We try hard to avoid divides here */ 855 old_size_goal = tp->xmit_size_goal_segs * mss_now; 856 857 if (likely(old_size_goal <= xmit_size_goal && 858 old_size_goal + mss_now > xmit_size_goal)) { 859 xmit_size_goal = old_size_goal; 860 } else { 861 tp->xmit_size_goal_segs = 862 min_t(u16, xmit_size_goal / mss_now, 863 sk->sk_gso_max_segs); 864 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 865 } 866 } 867 868 return max(xmit_size_goal, mss_now); 869} 870 871static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 872{ 873 int mss_now; 874 875 mss_now = tcp_current_mss(sk); 876 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 877 878 return mss_now; 879} 880 881static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 882 size_t size, int flags) 883{ 884 struct tcp_sock *tp = tcp_sk(sk); 885 int mss_now, size_goal; 886 int err; 887 ssize_t copied; 888 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 889 890 /* Wait for a connection to finish. One exception is TCP Fast Open 891 * (passive side) where data is allowed to be sent before a connection 892 * is fully established. 893 */ 894 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 895 !tcp_passive_fastopen(sk)) { 896 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 897 goto out_err; 898 } 899 900 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 901 902 mss_now = tcp_send_mss(sk, &size_goal, flags); 903 copied = 0; 904 905 err = -EPIPE; 906 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 907 goto out_err; 908 909 while (size > 0) { 910 struct sk_buff *skb = tcp_write_queue_tail(sk); 911 int copy, i; 912 bool can_coalesce; 913 914 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 915new_segment: 916 if (!sk_stream_memory_free(sk)) 917 goto wait_for_sndbuf; 918 919 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 920 if (!skb) 921 goto wait_for_memory; 922 923 skb_entail(sk, skb); 924 copy = size_goal; 925 } 926 927 if (copy > size) 928 copy = size; 929 930 i = skb_shinfo(skb)->nr_frags; 931 can_coalesce = skb_can_coalesce(skb, i, page, offset); 932 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 933 tcp_mark_push(tp, skb); 934 goto new_segment; 935 } 936 if (!sk_wmem_schedule(sk, copy)) 937 goto wait_for_memory; 938 939 if (can_coalesce) { 940 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 941 } else { 942 get_page(page); 943 skb_fill_page_desc(skb, i, page, offset, copy); 944 } 945 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 946 947 skb->len += copy; 948 skb->data_len += copy; 949 skb->truesize += copy; 950 sk->sk_wmem_queued += copy; 951 sk_mem_charge(sk, copy); 952 skb->ip_summed = CHECKSUM_PARTIAL; 953 tp->write_seq += copy; 954 TCP_SKB_CB(skb)->end_seq += copy; 955 skb_shinfo(skb)->gso_segs = 0; 956 957 if (!copied) 958 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 959 960 copied += copy; 961 offset += copy; 962 if (!(size -= copy)) 963 goto out; 964 965 if (skb->len < size_goal || (flags & MSG_OOB)) 966 continue; 967 968 if (forced_push(tp)) { 969 tcp_mark_push(tp, skb); 970 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 971 } else if (skb == tcp_send_head(sk)) 972 tcp_push_one(sk, mss_now); 973 continue; 974 975wait_for_sndbuf: 976 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 977wait_for_memory: 978 tcp_push(sk, flags & ~MSG_MORE, mss_now, 979 TCP_NAGLE_PUSH, size_goal); 980 981 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 982 goto do_error; 983 984 mss_now = tcp_send_mss(sk, &size_goal, flags); 985 } 986 987out: 988 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 989 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 990 return copied; 991 992do_error: 993 if (copied) 994 goto out; 995out_err: 996 return sk_stream_error(sk, flags, err); 997} 998 999int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1000 size_t size, int flags) 1001{ 1002 ssize_t res; 1003 1004 if (!(sk->sk_route_caps & NETIF_F_SG) || 1005 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 1006 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1007 flags); 1008 1009 lock_sock(sk); 1010 res = do_tcp_sendpages(sk, page, offset, size, flags); 1011 release_sock(sk); 1012 return res; 1013} 1014EXPORT_SYMBOL(tcp_sendpage); 1015 1016static inline int select_size(const struct sock *sk, bool sg) 1017{ 1018 const struct tcp_sock *tp = tcp_sk(sk); 1019 int tmp = tp->mss_cache; 1020 1021 if (sg) { 1022 if (sk_can_gso(sk)) { 1023 /* Small frames wont use a full page: 1024 * Payload will immediately follow tcp header. 1025 */ 1026 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1027 } else { 1028 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1029 1030 if (tmp >= pgbreak && 1031 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1032 tmp = pgbreak; 1033 } 1034 } 1035 1036 return tmp; 1037} 1038 1039void tcp_free_fastopen_req(struct tcp_sock *tp) 1040{ 1041 if (tp->fastopen_req != NULL) { 1042 kfree(tp->fastopen_req); 1043 tp->fastopen_req = NULL; 1044 } 1045} 1046 1047static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size) 1048{ 1049 struct tcp_sock *tp = tcp_sk(sk); 1050 int err, flags; 1051 1052 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1053 return -EOPNOTSUPP; 1054 if (tp->fastopen_req != NULL) 1055 return -EALREADY; /* Another Fast Open is in progress */ 1056 1057 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1058 sk->sk_allocation); 1059 if (unlikely(tp->fastopen_req == NULL)) 1060 return -ENOBUFS; 1061 tp->fastopen_req->data = msg; 1062 1063 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1064 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1065 msg->msg_namelen, flags); 1066 *size = tp->fastopen_req->copied; 1067 tcp_free_fastopen_req(tp); 1068 return err; 1069} 1070 1071int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1072 size_t size) 1073{ 1074 struct iovec *iov; 1075 struct tcp_sock *tp = tcp_sk(sk); 1076 struct sk_buff *skb; 1077 int iovlen, flags, err, copied = 0; 1078 int mss_now = 0, size_goal, copied_syn = 0, offset = 0; 1079 bool sg; 1080 long timeo; 1081 1082 lock_sock(sk); 1083 1084 flags = msg->msg_flags; 1085 if (flags & MSG_FASTOPEN) { 1086 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn); 1087 if (err == -EINPROGRESS && copied_syn > 0) 1088 goto out; 1089 else if (err) 1090 goto out_err; 1091 offset = copied_syn; 1092 } 1093 1094 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1095 1096 /* Wait for a connection to finish. One exception is TCP Fast Open 1097 * (passive side) where data is allowed to be sent before a connection 1098 * is fully established. 1099 */ 1100 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1101 !tcp_passive_fastopen(sk)) { 1102 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 1103 goto do_error; 1104 } 1105 1106 if (unlikely(tp->repair)) { 1107 if (tp->repair_queue == TCP_RECV_QUEUE) { 1108 copied = tcp_send_rcvq(sk, msg, size); 1109 goto out; 1110 } 1111 1112 err = -EINVAL; 1113 if (tp->repair_queue == TCP_NO_QUEUE) 1114 goto out_err; 1115 1116 /* 'common' sending to sendq */ 1117 } 1118 1119 /* This should be in poll */ 1120 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1121 1122 mss_now = tcp_send_mss(sk, &size_goal, flags); 1123 1124 /* Ok commence sending. */ 1125 iovlen = msg->msg_iovlen; 1126 iov = msg->msg_iov; 1127 copied = 0; 1128 1129 err = -EPIPE; 1130 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1131 goto out_err; 1132 1133 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1134 1135 while (--iovlen >= 0) { 1136 size_t seglen = iov->iov_len; 1137 unsigned char __user *from = iov->iov_base; 1138 1139 iov++; 1140 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */ 1141 if (offset >= seglen) { 1142 offset -= seglen; 1143 continue; 1144 } 1145 seglen -= offset; 1146 from += offset; 1147 offset = 0; 1148 } 1149 1150 while (seglen > 0) { 1151 int copy = 0; 1152 int max = size_goal; 1153 1154 skb = tcp_write_queue_tail(sk); 1155 if (tcp_send_head(sk)) { 1156 if (skb->ip_summed == CHECKSUM_NONE) 1157 max = mss_now; 1158 copy = max - skb->len; 1159 } 1160 1161 if (copy <= 0) { 1162new_segment: 1163 /* Allocate new segment. If the interface is SG, 1164 * allocate skb fitting to single page. 1165 */ 1166 if (!sk_stream_memory_free(sk)) 1167 goto wait_for_sndbuf; 1168 1169 skb = sk_stream_alloc_skb(sk, 1170 select_size(sk, sg), 1171 sk->sk_allocation); 1172 if (!skb) 1173 goto wait_for_memory; 1174 1175 /* 1176 * All packets are restored as if they have 1177 * already been sent. 1178 */ 1179 if (tp->repair) 1180 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1181 1182 /* 1183 * Check whether we can use HW checksum. 1184 */ 1185 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 1186 skb->ip_summed = CHECKSUM_PARTIAL; 1187 1188 skb_entail(sk, skb); 1189 copy = size_goal; 1190 max = size_goal; 1191 } 1192 1193 /* Try to append data to the end of skb. */ 1194 if (copy > seglen) 1195 copy = seglen; 1196 1197 /* Where to copy to? */ 1198 if (skb_availroom(skb) > 0) { 1199 /* We have some space in skb head. Superb! */ 1200 copy = min_t(int, copy, skb_availroom(skb)); 1201 err = skb_add_data_nocache(sk, skb, from, copy); 1202 if (err) 1203 goto do_fault; 1204 } else { 1205 bool merge = true; 1206 int i = skb_shinfo(skb)->nr_frags; 1207 struct page_frag *pfrag = sk_page_frag(sk); 1208 1209 if (!sk_page_frag_refill(sk, pfrag)) 1210 goto wait_for_memory; 1211 1212 if (!skb_can_coalesce(skb, i, pfrag->page, 1213 pfrag->offset)) { 1214 if (i == MAX_SKB_FRAGS || !sg) { 1215 tcp_mark_push(tp, skb); 1216 goto new_segment; 1217 } 1218 merge = false; 1219 } 1220 1221 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1222 1223 if (!sk_wmem_schedule(sk, copy)) 1224 goto wait_for_memory; 1225 1226 err = skb_copy_to_page_nocache(sk, from, skb, 1227 pfrag->page, 1228 pfrag->offset, 1229 copy); 1230 if (err) 1231 goto do_error; 1232 1233 /* Update the skb. */ 1234 if (merge) { 1235 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1236 } else { 1237 skb_fill_page_desc(skb, i, pfrag->page, 1238 pfrag->offset, copy); 1239 get_page(pfrag->page); 1240 } 1241 pfrag->offset += copy; 1242 } 1243 1244 if (!copied) 1245 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1246 1247 tp->write_seq += copy; 1248 TCP_SKB_CB(skb)->end_seq += copy; 1249 skb_shinfo(skb)->gso_segs = 0; 1250 1251 from += copy; 1252 copied += copy; 1253 if ((seglen -= copy) == 0 && iovlen == 0) 1254 goto out; 1255 1256 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1257 continue; 1258 1259 if (forced_push(tp)) { 1260 tcp_mark_push(tp, skb); 1261 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1262 } else if (skb == tcp_send_head(sk)) 1263 tcp_push_one(sk, mss_now); 1264 continue; 1265 1266wait_for_sndbuf: 1267 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1268wait_for_memory: 1269 if (copied) 1270 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1271 TCP_NAGLE_PUSH, size_goal); 1272 1273 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1274 goto do_error; 1275 1276 mss_now = tcp_send_mss(sk, &size_goal, flags); 1277 } 1278 } 1279 1280out: 1281 if (copied) 1282 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1283 release_sock(sk); 1284 return copied + copied_syn; 1285 1286do_fault: 1287 if (!skb->len) { 1288 tcp_unlink_write_queue(skb, sk); 1289 /* It is the one place in all of TCP, except connection 1290 * reset, where we can be unlinking the send_head. 1291 */ 1292 tcp_check_send_head(sk, skb); 1293 sk_wmem_free_skb(sk, skb); 1294 } 1295 1296do_error: 1297 if (copied + copied_syn) 1298 goto out; 1299out_err: 1300 err = sk_stream_error(sk, flags, err); 1301 release_sock(sk); 1302 return err; 1303} 1304EXPORT_SYMBOL(tcp_sendmsg); 1305 1306/* 1307 * Handle reading urgent data. BSD has very simple semantics for 1308 * this, no blocking and very strange errors 8) 1309 */ 1310 1311static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1312{ 1313 struct tcp_sock *tp = tcp_sk(sk); 1314 1315 /* No URG data to read. */ 1316 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1317 tp->urg_data == TCP_URG_READ) 1318 return -EINVAL; /* Yes this is right ! */ 1319 1320 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1321 return -ENOTCONN; 1322 1323 if (tp->urg_data & TCP_URG_VALID) { 1324 int err = 0; 1325 char c = tp->urg_data; 1326 1327 if (!(flags & MSG_PEEK)) 1328 tp->urg_data = TCP_URG_READ; 1329 1330 /* Read urgent data. */ 1331 msg->msg_flags |= MSG_OOB; 1332 1333 if (len > 0) { 1334 if (!(flags & MSG_TRUNC)) 1335 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1336 len = 1; 1337 } else 1338 msg->msg_flags |= MSG_TRUNC; 1339 1340 return err ? -EFAULT : len; 1341 } 1342 1343 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1344 return 0; 1345 1346 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1347 * the available implementations agree in this case: 1348 * this call should never block, independent of the 1349 * blocking state of the socket. 1350 * Mike <pall@rz.uni-karlsruhe.de> 1351 */ 1352 return -EAGAIN; 1353} 1354 1355static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1356{ 1357 struct sk_buff *skb; 1358 int copied = 0, err = 0; 1359 1360 /* XXX -- need to support SO_PEEK_OFF */ 1361 1362 skb_queue_walk(&sk->sk_write_queue, skb) { 1363 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len); 1364 if (err) 1365 break; 1366 1367 copied += skb->len; 1368 } 1369 1370 return err ?: copied; 1371} 1372 1373/* Clean up the receive buffer for full frames taken by the user, 1374 * then send an ACK if necessary. COPIED is the number of bytes 1375 * tcp_recvmsg has given to the user so far, it speeds up the 1376 * calculation of whether or not we must ACK for the sake of 1377 * a window update. 1378 */ 1379void tcp_cleanup_rbuf(struct sock *sk, int copied) 1380{ 1381 struct tcp_sock *tp = tcp_sk(sk); 1382 bool time_to_ack = false; 1383 1384 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1385 1386 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1387 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1388 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1389 1390 if (inet_csk_ack_scheduled(sk)) { 1391 const struct inet_connection_sock *icsk = inet_csk(sk); 1392 /* Delayed ACKs frequently hit locked sockets during bulk 1393 * receive. */ 1394 if (icsk->icsk_ack.blocked || 1395 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1396 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1397 /* 1398 * If this read emptied read buffer, we send ACK, if 1399 * connection is not bidirectional, user drained 1400 * receive buffer and there was a small segment 1401 * in queue. 1402 */ 1403 (copied > 0 && 1404 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1405 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1406 !icsk->icsk_ack.pingpong)) && 1407 !atomic_read(&sk->sk_rmem_alloc))) 1408 time_to_ack = true; 1409 } 1410 1411 /* We send an ACK if we can now advertise a non-zero window 1412 * which has been raised "significantly". 1413 * 1414 * Even if window raised up to infinity, do not send window open ACK 1415 * in states, where we will not receive more. It is useless. 1416 */ 1417 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1418 __u32 rcv_window_now = tcp_receive_window(tp); 1419 1420 /* Optimize, __tcp_select_window() is not cheap. */ 1421 if (2*rcv_window_now <= tp->window_clamp) { 1422 __u32 new_window = __tcp_select_window(sk); 1423 1424 /* Send ACK now, if this read freed lots of space 1425 * in our buffer. Certainly, new_window is new window. 1426 * We can advertise it now, if it is not less than current one. 1427 * "Lots" means "at least twice" here. 1428 */ 1429 if (new_window && new_window >= 2 * rcv_window_now) 1430 time_to_ack = true; 1431 } 1432 } 1433 if (time_to_ack) 1434 tcp_send_ack(sk); 1435} 1436 1437static void tcp_prequeue_process(struct sock *sk) 1438{ 1439 struct sk_buff *skb; 1440 struct tcp_sock *tp = tcp_sk(sk); 1441 1442 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1443 1444 /* RX process wants to run with disabled BHs, though it is not 1445 * necessary */ 1446 local_bh_disable(); 1447 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1448 sk_backlog_rcv(sk, skb); 1449 local_bh_enable(); 1450 1451 /* Clear memory counter. */ 1452 tp->ucopy.memory = 0; 1453} 1454 1455#ifdef CONFIG_NET_DMA 1456static void tcp_service_net_dma(struct sock *sk, bool wait) 1457{ 1458 dma_cookie_t done, used; 1459 dma_cookie_t last_issued; 1460 struct tcp_sock *tp = tcp_sk(sk); 1461 1462 if (!tp->ucopy.dma_chan) 1463 return; 1464 1465 last_issued = tp->ucopy.dma_cookie; 1466 dma_async_issue_pending(tp->ucopy.dma_chan); 1467 1468 do { 1469 if (dma_async_is_tx_complete(tp->ucopy.dma_chan, 1470 last_issued, &done, 1471 &used) == DMA_COMPLETE) { 1472 /* Safe to free early-copied skbs now */ 1473 __skb_queue_purge(&sk->sk_async_wait_queue); 1474 break; 1475 } else { 1476 struct sk_buff *skb; 1477 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1478 (dma_async_is_complete(skb->dma_cookie, done, 1479 used) == DMA_COMPLETE)) { 1480 __skb_dequeue(&sk->sk_async_wait_queue); 1481 kfree_skb(skb); 1482 } 1483 } 1484 } while (wait); 1485} 1486#endif 1487 1488static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1489{ 1490 struct sk_buff *skb; 1491 u32 offset; 1492 1493 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1494 offset = seq - TCP_SKB_CB(skb)->seq; 1495 if (tcp_hdr(skb)->syn) 1496 offset--; 1497 if (offset < skb->len || tcp_hdr(skb)->fin) { 1498 *off = offset; 1499 return skb; 1500 } 1501 /* This looks weird, but this can happen if TCP collapsing 1502 * splitted a fat GRO packet, while we released socket lock 1503 * in skb_splice_bits() 1504 */ 1505 sk_eat_skb(sk, skb, false); 1506 } 1507 return NULL; 1508} 1509 1510/* 1511 * This routine provides an alternative to tcp_recvmsg() for routines 1512 * that would like to handle copying from skbuffs directly in 'sendfile' 1513 * fashion. 1514 * Note: 1515 * - It is assumed that the socket was locked by the caller. 1516 * - The routine does not block. 1517 * - At present, there is no support for reading OOB data 1518 * or for 'peeking' the socket using this routine 1519 * (although both would be easy to implement). 1520 */ 1521int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1522 sk_read_actor_t recv_actor) 1523{ 1524 struct sk_buff *skb; 1525 struct tcp_sock *tp = tcp_sk(sk); 1526 u32 seq = tp->copied_seq; 1527 u32 offset; 1528 int copied = 0; 1529 1530 if (sk->sk_state == TCP_LISTEN) 1531 return -ENOTCONN; 1532 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1533 if (offset < skb->len) { 1534 int used; 1535 size_t len; 1536 1537 len = skb->len - offset; 1538 /* Stop reading if we hit a patch of urgent data */ 1539 if (tp->urg_data) { 1540 u32 urg_offset = tp->urg_seq - seq; 1541 if (urg_offset < len) 1542 len = urg_offset; 1543 if (!len) 1544 break; 1545 } 1546 used = recv_actor(desc, skb, offset, len); 1547 if (used <= 0) { 1548 if (!copied) 1549 copied = used; 1550 break; 1551 } else if (used <= len) { 1552 seq += used; 1553 copied += used; 1554 offset += used; 1555 } 1556 /* If recv_actor drops the lock (e.g. TCP splice 1557 * receive) the skb pointer might be invalid when 1558 * getting here: tcp_collapse might have deleted it 1559 * while aggregating skbs from the socket queue. 1560 */ 1561 skb = tcp_recv_skb(sk, seq - 1, &offset); 1562 if (!skb) 1563 break; 1564 /* TCP coalescing might have appended data to the skb. 1565 * Try to splice more frags 1566 */ 1567 if (offset + 1 != skb->len) 1568 continue; 1569 } 1570 if (tcp_hdr(skb)->fin) { 1571 sk_eat_skb(sk, skb, false); 1572 ++seq; 1573 break; 1574 } 1575 sk_eat_skb(sk, skb, false); 1576 if (!desc->count) 1577 break; 1578 tp->copied_seq = seq; 1579 } 1580 tp->copied_seq = seq; 1581 1582 tcp_rcv_space_adjust(sk); 1583 1584 /* Clean up data we have read: This will do ACK frames. */ 1585 if (copied > 0) { 1586 tcp_recv_skb(sk, seq, &offset); 1587 tcp_cleanup_rbuf(sk, copied); 1588 } 1589 return copied; 1590} 1591EXPORT_SYMBOL(tcp_read_sock); 1592 1593/* 1594 * This routine copies from a sock struct into the user buffer. 1595 * 1596 * Technical note: in 2.3 we work on _locked_ socket, so that 1597 * tricks with *seq access order and skb->users are not required. 1598 * Probably, code can be easily improved even more. 1599 */ 1600 1601int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1602 size_t len, int nonblock, int flags, int *addr_len) 1603{ 1604 struct tcp_sock *tp = tcp_sk(sk); 1605 int copied = 0; 1606 u32 peek_seq; 1607 u32 *seq; 1608 unsigned long used; 1609 int err; 1610 int target; /* Read at least this many bytes */ 1611 long timeo; 1612 struct task_struct *user_recv = NULL; 1613 bool copied_early = false; 1614 struct sk_buff *skb; 1615 u32 urg_hole = 0; 1616 1617 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1618 (sk->sk_state == TCP_ESTABLISHED)) 1619 sk_busy_loop(sk, nonblock); 1620 1621 lock_sock(sk); 1622 1623 err = -ENOTCONN; 1624 if (sk->sk_state == TCP_LISTEN) 1625 goto out; 1626 1627 timeo = sock_rcvtimeo(sk, nonblock); 1628 1629 /* Urgent data needs to be handled specially. */ 1630 if (flags & MSG_OOB) 1631 goto recv_urg; 1632 1633 if (unlikely(tp->repair)) { 1634 err = -EPERM; 1635 if (!(flags & MSG_PEEK)) 1636 goto out; 1637 1638 if (tp->repair_queue == TCP_SEND_QUEUE) 1639 goto recv_sndq; 1640 1641 err = -EINVAL; 1642 if (tp->repair_queue == TCP_NO_QUEUE) 1643 goto out; 1644 1645 /* 'common' recv queue MSG_PEEK-ing */ 1646 } 1647 1648 seq = &tp->copied_seq; 1649 if (flags & MSG_PEEK) { 1650 peek_seq = tp->copied_seq; 1651 seq = &peek_seq; 1652 } 1653 1654 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1655 1656#ifdef CONFIG_NET_DMA 1657 tp->ucopy.dma_chan = NULL; 1658 preempt_disable(); 1659 skb = skb_peek_tail(&sk->sk_receive_queue); 1660 { 1661 int available = 0; 1662 1663 if (skb) 1664 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1665 if ((available < target) && 1666 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1667 !sysctl_tcp_low_latency && 1668 net_dma_find_channel()) { 1669 preempt_enable_no_resched(); 1670 tp->ucopy.pinned_list = 1671 dma_pin_iovec_pages(msg->msg_iov, len); 1672 } else { 1673 preempt_enable_no_resched(); 1674 } 1675 } 1676#endif 1677 1678 do { 1679 u32 offset; 1680 1681 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1682 if (tp->urg_data && tp->urg_seq == *seq) { 1683 if (copied) 1684 break; 1685 if (signal_pending(current)) { 1686 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1687 break; 1688 } 1689 } 1690 1691 /* Next get a buffer. */ 1692 1693 skb_queue_walk(&sk->sk_receive_queue, skb) { 1694 /* Now that we have two receive queues this 1695 * shouldn't happen. 1696 */ 1697 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1698 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1699 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1700 flags)) 1701 break; 1702 1703 offset = *seq - TCP_SKB_CB(skb)->seq; 1704 if (tcp_hdr(skb)->syn) 1705 offset--; 1706 if (offset < skb->len) 1707 goto found_ok_skb; 1708 if (tcp_hdr(skb)->fin) 1709 goto found_fin_ok; 1710 WARN(!(flags & MSG_PEEK), 1711 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1712 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1713 } 1714 1715 /* Well, if we have backlog, try to process it now yet. */ 1716 1717 if (copied >= target && !sk->sk_backlog.tail) 1718 break; 1719 1720 if (copied) { 1721 if (sk->sk_err || 1722 sk->sk_state == TCP_CLOSE || 1723 (sk->sk_shutdown & RCV_SHUTDOWN) || 1724 !timeo || 1725 signal_pending(current)) 1726 break; 1727 } else { 1728 if (sock_flag(sk, SOCK_DONE)) 1729 break; 1730 1731 if (sk->sk_err) { 1732 copied = sock_error(sk); 1733 break; 1734 } 1735 1736 if (sk->sk_shutdown & RCV_SHUTDOWN) 1737 break; 1738 1739 if (sk->sk_state == TCP_CLOSE) { 1740 if (!sock_flag(sk, SOCK_DONE)) { 1741 /* This occurs when user tries to read 1742 * from never connected socket. 1743 */ 1744 copied = -ENOTCONN; 1745 break; 1746 } 1747 break; 1748 } 1749 1750 if (!timeo) { 1751 copied = -EAGAIN; 1752 break; 1753 } 1754 1755 if (signal_pending(current)) { 1756 copied = sock_intr_errno(timeo); 1757 break; 1758 } 1759 } 1760 1761 tcp_cleanup_rbuf(sk, copied); 1762 1763 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1764 /* Install new reader */ 1765 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1766 user_recv = current; 1767 tp->ucopy.task = user_recv; 1768 tp->ucopy.iov = msg->msg_iov; 1769 } 1770 1771 tp->ucopy.len = len; 1772 1773 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1774 !(flags & (MSG_PEEK | MSG_TRUNC))); 1775 1776 /* Ugly... If prequeue is not empty, we have to 1777 * process it before releasing socket, otherwise 1778 * order will be broken at second iteration. 1779 * More elegant solution is required!!! 1780 * 1781 * Look: we have the following (pseudo)queues: 1782 * 1783 * 1. packets in flight 1784 * 2. backlog 1785 * 3. prequeue 1786 * 4. receive_queue 1787 * 1788 * Each queue can be processed only if the next ones 1789 * are empty. At this point we have empty receive_queue. 1790 * But prequeue _can_ be not empty after 2nd iteration, 1791 * when we jumped to start of loop because backlog 1792 * processing added something to receive_queue. 1793 * We cannot release_sock(), because backlog contains 1794 * packets arrived _after_ prequeued ones. 1795 * 1796 * Shortly, algorithm is clear --- to process all 1797 * the queues in order. We could make it more directly, 1798 * requeueing packets from backlog to prequeue, if 1799 * is not empty. It is more elegant, but eats cycles, 1800 * unfortunately. 1801 */ 1802 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1803 goto do_prequeue; 1804 1805 /* __ Set realtime policy in scheduler __ */ 1806 } 1807 1808#ifdef CONFIG_NET_DMA 1809 if (tp->ucopy.dma_chan) { 1810 if (tp->rcv_wnd == 0 && 1811 !skb_queue_empty(&sk->sk_async_wait_queue)) { 1812 tcp_service_net_dma(sk, true); 1813 tcp_cleanup_rbuf(sk, copied); 1814 } else 1815 dma_async_issue_pending(tp->ucopy.dma_chan); 1816 } 1817#endif 1818 if (copied >= target) { 1819 /* Do not sleep, just process backlog. */ 1820 release_sock(sk); 1821 lock_sock(sk); 1822 } else 1823 sk_wait_data(sk, &timeo); 1824 1825#ifdef CONFIG_NET_DMA 1826 tcp_service_net_dma(sk, false); /* Don't block */ 1827 tp->ucopy.wakeup = 0; 1828#endif 1829 1830 if (user_recv) { 1831 int chunk; 1832 1833 /* __ Restore normal policy in scheduler __ */ 1834 1835 if ((chunk = len - tp->ucopy.len) != 0) { 1836 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1837 len -= chunk; 1838 copied += chunk; 1839 } 1840 1841 if (tp->rcv_nxt == tp->copied_seq && 1842 !skb_queue_empty(&tp->ucopy.prequeue)) { 1843do_prequeue: 1844 tcp_prequeue_process(sk); 1845 1846 if ((chunk = len - tp->ucopy.len) != 0) { 1847 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1848 len -= chunk; 1849 copied += chunk; 1850 } 1851 } 1852 } 1853 if ((flags & MSG_PEEK) && 1854 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1855 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1856 current->comm, 1857 task_pid_nr(current)); 1858 peek_seq = tp->copied_seq; 1859 } 1860 continue; 1861 1862 found_ok_skb: 1863 /* Ok so how much can we use? */ 1864 used = skb->len - offset; 1865 if (len < used) 1866 used = len; 1867 1868 /* Do we have urgent data here? */ 1869 if (tp->urg_data) { 1870 u32 urg_offset = tp->urg_seq - *seq; 1871 if (urg_offset < used) { 1872 if (!urg_offset) { 1873 if (!sock_flag(sk, SOCK_URGINLINE)) { 1874 ++*seq; 1875 urg_hole++; 1876 offset++; 1877 used--; 1878 if (!used) 1879 goto skip_copy; 1880 } 1881 } else 1882 used = urg_offset; 1883 } 1884 } 1885 1886 if (!(flags & MSG_TRUNC)) { 1887#ifdef CONFIG_NET_DMA 1888 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1889 tp->ucopy.dma_chan = net_dma_find_channel(); 1890 1891 if (tp->ucopy.dma_chan) { 1892 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1893 tp->ucopy.dma_chan, skb, offset, 1894 msg->msg_iov, used, 1895 tp->ucopy.pinned_list); 1896 1897 if (tp->ucopy.dma_cookie < 0) { 1898 1899 pr_alert("%s: dma_cookie < 0\n", 1900 __func__); 1901 1902 /* Exception. Bailout! */ 1903 if (!copied) 1904 copied = -EFAULT; 1905 break; 1906 } 1907 1908 dma_async_issue_pending(tp->ucopy.dma_chan); 1909 1910 if ((offset + used) == skb->len) 1911 copied_early = true; 1912 1913 } else 1914#endif 1915 { 1916 err = skb_copy_datagram_iovec(skb, offset, 1917 msg->msg_iov, used); 1918 if (err) { 1919 /* Exception. Bailout! */ 1920 if (!copied) 1921 copied = -EFAULT; 1922 break; 1923 } 1924 } 1925 } 1926 1927 *seq += used; 1928 copied += used; 1929 len -= used; 1930 1931 tcp_rcv_space_adjust(sk); 1932 1933skip_copy: 1934 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1935 tp->urg_data = 0; 1936 tcp_fast_path_check(sk); 1937 } 1938 if (used + offset < skb->len) 1939 continue; 1940 1941 if (tcp_hdr(skb)->fin) 1942 goto found_fin_ok; 1943 if (!(flags & MSG_PEEK)) { 1944 sk_eat_skb(sk, skb, copied_early); 1945 copied_early = false; 1946 } 1947 continue; 1948 1949 found_fin_ok: 1950 /* Process the FIN. */ 1951 ++*seq; 1952 if (!(flags & MSG_PEEK)) { 1953 sk_eat_skb(sk, skb, copied_early); 1954 copied_early = false; 1955 } 1956 break; 1957 } while (len > 0); 1958 1959 if (user_recv) { 1960 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1961 int chunk; 1962 1963 tp->ucopy.len = copied > 0 ? len : 0; 1964 1965 tcp_prequeue_process(sk); 1966 1967 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1968 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1969 len -= chunk; 1970 copied += chunk; 1971 } 1972 } 1973 1974 tp->ucopy.task = NULL; 1975 tp->ucopy.len = 0; 1976 } 1977 1978#ifdef CONFIG_NET_DMA 1979 tcp_service_net_dma(sk, true); /* Wait for queue to drain */ 1980 tp->ucopy.dma_chan = NULL; 1981 1982 if (tp->ucopy.pinned_list) { 1983 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1984 tp->ucopy.pinned_list = NULL; 1985 } 1986#endif 1987 1988 /* According to UNIX98, msg_name/msg_namelen are ignored 1989 * on connected socket. I was just happy when found this 8) --ANK 1990 */ 1991 1992 /* Clean up data we have read: This will do ACK frames. */ 1993 tcp_cleanup_rbuf(sk, copied); 1994 1995 release_sock(sk); 1996 return copied; 1997 1998out: 1999 release_sock(sk); 2000 return err; 2001 2002recv_urg: 2003 err = tcp_recv_urg(sk, msg, len, flags); 2004 goto out; 2005 2006recv_sndq: 2007 err = tcp_peek_sndq(sk, msg, len); 2008 goto out; 2009} 2010EXPORT_SYMBOL(tcp_recvmsg); 2011 2012void tcp_set_state(struct sock *sk, int state) 2013{ 2014 int oldstate = sk->sk_state; 2015 2016 switch (state) { 2017 case TCP_ESTABLISHED: 2018 if (oldstate != TCP_ESTABLISHED) 2019 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2020 break; 2021 2022 case TCP_CLOSE: 2023 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2024 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2025 2026 sk->sk_prot->unhash(sk); 2027 if (inet_csk(sk)->icsk_bind_hash && 2028 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2029 inet_put_port(sk); 2030 /* fall through */ 2031 default: 2032 if (oldstate == TCP_ESTABLISHED) 2033 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2034 } 2035 2036 /* Change state AFTER socket is unhashed to avoid closed 2037 * socket sitting in hash tables. 2038 */ 2039 sk->sk_state = state; 2040 2041#ifdef STATE_TRACE 2042 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2043#endif 2044} 2045EXPORT_SYMBOL_GPL(tcp_set_state); 2046 2047/* 2048 * State processing on a close. This implements the state shift for 2049 * sending our FIN frame. Note that we only send a FIN for some 2050 * states. A shutdown() may have already sent the FIN, or we may be 2051 * closed. 2052 */ 2053 2054static const unsigned char new_state[16] = { 2055 /* current state: new state: action: */ 2056 /* (Invalid) */ TCP_CLOSE, 2057 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2058 /* TCP_SYN_SENT */ TCP_CLOSE, 2059 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2060 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 2061 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 2062 /* TCP_TIME_WAIT */ TCP_CLOSE, 2063 /* TCP_CLOSE */ TCP_CLOSE, 2064 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 2065 /* TCP_LAST_ACK */ TCP_LAST_ACK, 2066 /* TCP_LISTEN */ TCP_CLOSE, 2067 /* TCP_CLOSING */ TCP_CLOSING, 2068}; 2069 2070static int tcp_close_state(struct sock *sk) 2071{ 2072 int next = (int)new_state[sk->sk_state]; 2073 int ns = next & TCP_STATE_MASK; 2074 2075 tcp_set_state(sk, ns); 2076 2077 return next & TCP_ACTION_FIN; 2078} 2079 2080/* 2081 * Shutdown the sending side of a connection. Much like close except 2082 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2083 */ 2084 2085void tcp_shutdown(struct sock *sk, int how) 2086{ 2087 /* We need to grab some memory, and put together a FIN, 2088 * and then put it into the queue to be sent. 2089 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2090 */ 2091 if (!(how & SEND_SHUTDOWN)) 2092 return; 2093 2094 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2095 if ((1 << sk->sk_state) & 2096 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2097 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2098 /* Clear out any half completed packets. FIN if needed. */ 2099 if (tcp_close_state(sk)) 2100 tcp_send_fin(sk); 2101 } 2102} 2103EXPORT_SYMBOL(tcp_shutdown); 2104 2105bool tcp_check_oom(struct sock *sk, int shift) 2106{ 2107 bool too_many_orphans, out_of_socket_memory; 2108 2109 too_many_orphans = tcp_too_many_orphans(sk, shift); 2110 out_of_socket_memory = tcp_out_of_memory(sk); 2111 2112 if (too_many_orphans) 2113 net_info_ratelimited("too many orphaned sockets\n"); 2114 if (out_of_socket_memory) 2115 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2116 return too_many_orphans || out_of_socket_memory; 2117} 2118 2119void tcp_close(struct sock *sk, long timeout) 2120{ 2121 struct sk_buff *skb; 2122 int data_was_unread = 0; 2123 int state; 2124 2125 lock_sock(sk); 2126 sk->sk_shutdown = SHUTDOWN_MASK; 2127 2128 if (sk->sk_state == TCP_LISTEN) { 2129 tcp_set_state(sk, TCP_CLOSE); 2130 2131 /* Special case. */ 2132 inet_csk_listen_stop(sk); 2133 2134 goto adjudge_to_death; 2135 } 2136 2137 /* We need to flush the recv. buffs. We do this only on the 2138 * descriptor close, not protocol-sourced closes, because the 2139 * reader process may not have drained the data yet! 2140 */ 2141 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2142 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 2143 tcp_hdr(skb)->fin; 2144 data_was_unread += len; 2145 __kfree_skb(skb); 2146 } 2147 2148 sk_mem_reclaim(sk); 2149 2150 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2151 if (sk->sk_state == TCP_CLOSE) 2152 goto adjudge_to_death; 2153 2154 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2155 * data was lost. To witness the awful effects of the old behavior of 2156 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2157 * GET in an FTP client, suspend the process, wait for the client to 2158 * advertise a zero window, then kill -9 the FTP client, wheee... 2159 * Note: timeout is always zero in such a case. 2160 */ 2161 if (unlikely(tcp_sk(sk)->repair)) { 2162 sk->sk_prot->disconnect(sk, 0); 2163 } else if (data_was_unread) { 2164 /* Unread data was tossed, zap the connection. */ 2165 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2166 tcp_set_state(sk, TCP_CLOSE); 2167 tcp_send_active_reset(sk, sk->sk_allocation); 2168 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2169 /* Check zero linger _after_ checking for unread data. */ 2170 sk->sk_prot->disconnect(sk, 0); 2171 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2172 } else if (tcp_close_state(sk)) { 2173 /* We FIN if the application ate all the data before 2174 * zapping the connection. 2175 */ 2176 2177 /* RED-PEN. Formally speaking, we have broken TCP state 2178 * machine. State transitions: 2179 * 2180 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2181 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2182 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2183 * 2184 * are legal only when FIN has been sent (i.e. in window), 2185 * rather than queued out of window. Purists blame. 2186 * 2187 * F.e. "RFC state" is ESTABLISHED, 2188 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2189 * 2190 * The visible declinations are that sometimes 2191 * we enter time-wait state, when it is not required really 2192 * (harmless), do not send active resets, when they are 2193 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2194 * they look as CLOSING or LAST_ACK for Linux) 2195 * Probably, I missed some more holelets. 2196 * --ANK 2197 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2198 * in a single packet! (May consider it later but will 2199 * probably need API support or TCP_CORK SYN-ACK until 2200 * data is written and socket is closed.) 2201 */ 2202 tcp_send_fin(sk); 2203 } 2204 2205 sk_stream_wait_close(sk, timeout); 2206 2207adjudge_to_death: 2208 state = sk->sk_state; 2209 sock_hold(sk); 2210 sock_orphan(sk); 2211 2212 /* It is the last release_sock in its life. It will remove backlog. */ 2213 release_sock(sk); 2214 2215 2216 /* Now socket is owned by kernel and we acquire BH lock 2217 to finish close. No need to check for user refs. 2218 */ 2219 local_bh_disable(); 2220 bh_lock_sock(sk); 2221 WARN_ON(sock_owned_by_user(sk)); 2222 2223 percpu_counter_inc(sk->sk_prot->orphan_count); 2224 2225 /* Have we already been destroyed by a softirq or backlog? */ 2226 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2227 goto out; 2228 2229 /* This is a (useful) BSD violating of the RFC. There is a 2230 * problem with TCP as specified in that the other end could 2231 * keep a socket open forever with no application left this end. 2232 * We use a 3 minute timeout (about the same as BSD) then kill 2233 * our end. If they send after that then tough - BUT: long enough 2234 * that we won't make the old 4*rto = almost no time - whoops 2235 * reset mistake. 2236 * 2237 * Nope, it was not mistake. It is really desired behaviour 2238 * f.e. on http servers, when such sockets are useless, but 2239 * consume significant resources. Let's do it with special 2240 * linger2 option. --ANK 2241 */ 2242 2243 if (sk->sk_state == TCP_FIN_WAIT2) { 2244 struct tcp_sock *tp = tcp_sk(sk); 2245 if (tp->linger2 < 0) { 2246 tcp_set_state(sk, TCP_CLOSE); 2247 tcp_send_active_reset(sk, GFP_ATOMIC); 2248 NET_INC_STATS_BH(sock_net(sk), 2249 LINUX_MIB_TCPABORTONLINGER); 2250 } else { 2251 const int tmo = tcp_fin_time(sk); 2252 2253 if (tmo > TCP_TIMEWAIT_LEN) { 2254 inet_csk_reset_keepalive_timer(sk, 2255 tmo - TCP_TIMEWAIT_LEN); 2256 } else { 2257 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2258 goto out; 2259 } 2260 } 2261 } 2262 if (sk->sk_state != TCP_CLOSE) { 2263 sk_mem_reclaim(sk); 2264 if (tcp_check_oom(sk, 0)) { 2265 tcp_set_state(sk, TCP_CLOSE); 2266 tcp_send_active_reset(sk, GFP_ATOMIC); 2267 NET_INC_STATS_BH(sock_net(sk), 2268 LINUX_MIB_TCPABORTONMEMORY); 2269 } 2270 } 2271 2272 if (sk->sk_state == TCP_CLOSE) { 2273 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2274 /* We could get here with a non-NULL req if the socket is 2275 * aborted (e.g., closed with unread data) before 3WHS 2276 * finishes. 2277 */ 2278 if (req != NULL) 2279 reqsk_fastopen_remove(sk, req, false); 2280 inet_csk_destroy_sock(sk); 2281 } 2282 /* Otherwise, socket is reprieved until protocol close. */ 2283 2284out: 2285 bh_unlock_sock(sk); 2286 local_bh_enable(); 2287 sock_put(sk); 2288} 2289EXPORT_SYMBOL(tcp_close); 2290 2291/* These states need RST on ABORT according to RFC793 */ 2292 2293static inline bool tcp_need_reset(int state) 2294{ 2295 return (1 << state) & 2296 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2297 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2298} 2299 2300int tcp_disconnect(struct sock *sk, int flags) 2301{ 2302 struct inet_sock *inet = inet_sk(sk); 2303 struct inet_connection_sock *icsk = inet_csk(sk); 2304 struct tcp_sock *tp = tcp_sk(sk); 2305 int err = 0; 2306 int old_state = sk->sk_state; 2307 2308 if (old_state != TCP_CLOSE) 2309 tcp_set_state(sk, TCP_CLOSE); 2310 2311 /* ABORT function of RFC793 */ 2312 if (old_state == TCP_LISTEN) { 2313 inet_csk_listen_stop(sk); 2314 } else if (unlikely(tp->repair)) { 2315 sk->sk_err = ECONNABORTED; 2316 } else if (tcp_need_reset(old_state) || 2317 (tp->snd_nxt != tp->write_seq && 2318 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2319 /* The last check adjusts for discrepancy of Linux wrt. RFC 2320 * states 2321 */ 2322 tcp_send_active_reset(sk, gfp_any()); 2323 sk->sk_err = ECONNRESET; 2324 } else if (old_state == TCP_SYN_SENT) 2325 sk->sk_err = ECONNRESET; 2326 2327 tcp_clear_xmit_timers(sk); 2328 __skb_queue_purge(&sk->sk_receive_queue); 2329 tcp_write_queue_purge(sk); 2330 __skb_queue_purge(&tp->out_of_order_queue); 2331#ifdef CONFIG_NET_DMA 2332 __skb_queue_purge(&sk->sk_async_wait_queue); 2333#endif 2334 2335 inet->inet_dport = 0; 2336 2337 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2338 inet_reset_saddr(sk); 2339 2340 sk->sk_shutdown = 0; 2341 sock_reset_flag(sk, SOCK_DONE); 2342 tp->srtt = 0; 2343 if ((tp->write_seq += tp->max_window + 2) == 0) 2344 tp->write_seq = 1; 2345 icsk->icsk_backoff = 0; 2346 tp->snd_cwnd = 2; 2347 icsk->icsk_probes_out = 0; 2348 tp->packets_out = 0; 2349 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2350 tp->snd_cwnd_cnt = 0; 2351 tp->window_clamp = 0; 2352 tcp_set_ca_state(sk, TCP_CA_Open); 2353 tcp_clear_retrans(tp); 2354 inet_csk_delack_init(sk); 2355 tcp_init_send_head(sk); 2356 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2357 __sk_dst_reset(sk); 2358 2359 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2360 2361 sk->sk_error_report(sk); 2362 return err; 2363} 2364EXPORT_SYMBOL(tcp_disconnect); 2365 2366void tcp_sock_destruct(struct sock *sk) 2367{ 2368 inet_sock_destruct(sk); 2369 2370 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq); 2371} 2372 2373static inline bool tcp_can_repair_sock(const struct sock *sk) 2374{ 2375 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2376 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2377} 2378 2379static int tcp_repair_options_est(struct tcp_sock *tp, 2380 struct tcp_repair_opt __user *optbuf, unsigned int len) 2381{ 2382 struct tcp_repair_opt opt; 2383 2384 while (len >= sizeof(opt)) { 2385 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2386 return -EFAULT; 2387 2388 optbuf++; 2389 len -= sizeof(opt); 2390 2391 switch (opt.opt_code) { 2392 case TCPOPT_MSS: 2393 tp->rx_opt.mss_clamp = opt.opt_val; 2394 break; 2395 case TCPOPT_WINDOW: 2396 { 2397 u16 snd_wscale = opt.opt_val & 0xFFFF; 2398 u16 rcv_wscale = opt.opt_val >> 16; 2399 2400 if (snd_wscale > 14 || rcv_wscale > 14) 2401 return -EFBIG; 2402 2403 tp->rx_opt.snd_wscale = snd_wscale; 2404 tp->rx_opt.rcv_wscale = rcv_wscale; 2405 tp->rx_opt.wscale_ok = 1; 2406 } 2407 break; 2408 case TCPOPT_SACK_PERM: 2409 if (opt.opt_val != 0) 2410 return -EINVAL; 2411 2412 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2413 if (sysctl_tcp_fack) 2414 tcp_enable_fack(tp); 2415 break; 2416 case TCPOPT_TIMESTAMP: 2417 if (opt.opt_val != 0) 2418 return -EINVAL; 2419 2420 tp->rx_opt.tstamp_ok = 1; 2421 break; 2422 } 2423 } 2424 2425 return 0; 2426} 2427 2428/* 2429 * Socket option code for TCP. 2430 */ 2431static int do_tcp_setsockopt(struct sock *sk, int level, 2432 int optname, char __user *optval, unsigned int optlen) 2433{ 2434 struct tcp_sock *tp = tcp_sk(sk); 2435 struct inet_connection_sock *icsk = inet_csk(sk); 2436 int val; 2437 int err = 0; 2438 2439 /* These are data/string values, all the others are ints */ 2440 switch (optname) { 2441 case TCP_CONGESTION: { 2442 char name[TCP_CA_NAME_MAX]; 2443 2444 if (optlen < 1) 2445 return -EINVAL; 2446 2447 val = strncpy_from_user(name, optval, 2448 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2449 if (val < 0) 2450 return -EFAULT; 2451 name[val] = 0; 2452 2453 lock_sock(sk); 2454 err = tcp_set_congestion_control(sk, name); 2455 release_sock(sk); 2456 return err; 2457 } 2458 default: 2459 /* fallthru */ 2460 break; 2461 } 2462 2463 if (optlen < sizeof(int)) 2464 return -EINVAL; 2465 2466 if (get_user(val, (int __user *)optval)) 2467 return -EFAULT; 2468 2469 lock_sock(sk); 2470 2471 switch (optname) { 2472 case TCP_MAXSEG: 2473 /* Values greater than interface MTU won't take effect. However 2474 * at the point when this call is done we typically don't yet 2475 * know which interface is going to be used */ 2476 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2477 err = -EINVAL; 2478 break; 2479 } 2480 tp->rx_opt.user_mss = val; 2481 break; 2482 2483 case TCP_NODELAY: 2484 if (val) { 2485 /* TCP_NODELAY is weaker than TCP_CORK, so that 2486 * this option on corked socket is remembered, but 2487 * it is not activated until cork is cleared. 2488 * 2489 * However, when TCP_NODELAY is set we make 2490 * an explicit push, which overrides even TCP_CORK 2491 * for currently queued segments. 2492 */ 2493 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2494 tcp_push_pending_frames(sk); 2495 } else { 2496 tp->nonagle &= ~TCP_NAGLE_OFF; 2497 } 2498 break; 2499 2500 case TCP_THIN_LINEAR_TIMEOUTS: 2501 if (val < 0 || val > 1) 2502 err = -EINVAL; 2503 else 2504 tp->thin_lto = val; 2505 break; 2506 2507 case TCP_THIN_DUPACK: 2508 if (val < 0 || val > 1) 2509 err = -EINVAL; 2510 else { 2511 tp->thin_dupack = val; 2512 if (tp->thin_dupack) 2513 tcp_disable_early_retrans(tp); 2514 } 2515 break; 2516 2517 case TCP_REPAIR: 2518 if (!tcp_can_repair_sock(sk)) 2519 err = -EPERM; 2520 else if (val == 1) { 2521 tp->repair = 1; 2522 sk->sk_reuse = SK_FORCE_REUSE; 2523 tp->repair_queue = TCP_NO_QUEUE; 2524 } else if (val == 0) { 2525 tp->repair = 0; 2526 sk->sk_reuse = SK_NO_REUSE; 2527 tcp_send_window_probe(sk); 2528 } else 2529 err = -EINVAL; 2530 2531 break; 2532 2533 case TCP_REPAIR_QUEUE: 2534 if (!tp->repair) 2535 err = -EPERM; 2536 else if (val < TCP_QUEUES_NR) 2537 tp->repair_queue = val; 2538 else 2539 err = -EINVAL; 2540 break; 2541 2542 case TCP_QUEUE_SEQ: 2543 if (sk->sk_state != TCP_CLOSE) 2544 err = -EPERM; 2545 else if (tp->repair_queue == TCP_SEND_QUEUE) 2546 tp->write_seq = val; 2547 else if (tp->repair_queue == TCP_RECV_QUEUE) 2548 tp->rcv_nxt = val; 2549 else 2550 err = -EINVAL; 2551 break; 2552 2553 case TCP_REPAIR_OPTIONS: 2554 if (!tp->repair) 2555 err = -EINVAL; 2556 else if (sk->sk_state == TCP_ESTABLISHED) 2557 err = tcp_repair_options_est(tp, 2558 (struct tcp_repair_opt __user *)optval, 2559 optlen); 2560 else 2561 err = -EPERM; 2562 break; 2563 2564 case TCP_CORK: 2565 /* When set indicates to always queue non-full frames. 2566 * Later the user clears this option and we transmit 2567 * any pending partial frames in the queue. This is 2568 * meant to be used alongside sendfile() to get properly 2569 * filled frames when the user (for example) must write 2570 * out headers with a write() call first and then use 2571 * sendfile to send out the data parts. 2572 * 2573 * TCP_CORK can be set together with TCP_NODELAY and it is 2574 * stronger than TCP_NODELAY. 2575 */ 2576 if (val) { 2577 tp->nonagle |= TCP_NAGLE_CORK; 2578 } else { 2579 tp->nonagle &= ~TCP_NAGLE_CORK; 2580 if (tp->nonagle&TCP_NAGLE_OFF) 2581 tp->nonagle |= TCP_NAGLE_PUSH; 2582 tcp_push_pending_frames(sk); 2583 } 2584 break; 2585 2586 case TCP_KEEPIDLE: 2587 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2588 err = -EINVAL; 2589 else { 2590 tp->keepalive_time = val * HZ; 2591 if (sock_flag(sk, SOCK_KEEPOPEN) && 2592 !((1 << sk->sk_state) & 2593 (TCPF_CLOSE | TCPF_LISTEN))) { 2594 u32 elapsed = keepalive_time_elapsed(tp); 2595 if (tp->keepalive_time > elapsed) 2596 elapsed = tp->keepalive_time - elapsed; 2597 else 2598 elapsed = 0; 2599 inet_csk_reset_keepalive_timer(sk, elapsed); 2600 } 2601 } 2602 break; 2603 case TCP_KEEPINTVL: 2604 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2605 err = -EINVAL; 2606 else 2607 tp->keepalive_intvl = val * HZ; 2608 break; 2609 case TCP_KEEPCNT: 2610 if (val < 1 || val > MAX_TCP_KEEPCNT) 2611 err = -EINVAL; 2612 else 2613 tp->keepalive_probes = val; 2614 break; 2615 case TCP_SYNCNT: 2616 if (val < 1 || val > MAX_TCP_SYNCNT) 2617 err = -EINVAL; 2618 else 2619 icsk->icsk_syn_retries = val; 2620 break; 2621 2622 case TCP_LINGER2: 2623 if (val < 0) 2624 tp->linger2 = -1; 2625 else if (val > sysctl_tcp_fin_timeout / HZ) 2626 tp->linger2 = 0; 2627 else 2628 tp->linger2 = val * HZ; 2629 break; 2630 2631 case TCP_DEFER_ACCEPT: 2632 /* Translate value in seconds to number of retransmits */ 2633 icsk->icsk_accept_queue.rskq_defer_accept = 2634 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2635 TCP_RTO_MAX / HZ); 2636 break; 2637 2638 case TCP_WINDOW_CLAMP: 2639 if (!val) { 2640 if (sk->sk_state != TCP_CLOSE) { 2641 err = -EINVAL; 2642 break; 2643 } 2644 tp->window_clamp = 0; 2645 } else 2646 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2647 SOCK_MIN_RCVBUF / 2 : val; 2648 break; 2649 2650 case TCP_QUICKACK: 2651 if (!val) { 2652 icsk->icsk_ack.pingpong = 1; 2653 } else { 2654 icsk->icsk_ack.pingpong = 0; 2655 if ((1 << sk->sk_state) & 2656 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2657 inet_csk_ack_scheduled(sk)) { 2658 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2659 tcp_cleanup_rbuf(sk, 1); 2660 if (!(val & 1)) 2661 icsk->icsk_ack.pingpong = 1; 2662 } 2663 } 2664 break; 2665 2666#ifdef CONFIG_TCP_MD5SIG 2667 case TCP_MD5SIG: 2668 /* Read the IP->Key mappings from userspace */ 2669 err = tp->af_specific->md5_parse(sk, optval, optlen); 2670 break; 2671#endif 2672 case TCP_USER_TIMEOUT: 2673 /* Cap the max timeout in ms TCP will retry/retrans 2674 * before giving up and aborting (ETIMEDOUT) a connection. 2675 */ 2676 if (val < 0) 2677 err = -EINVAL; 2678 else 2679 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2680 break; 2681 2682 case TCP_FASTOPEN: 2683 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2684 TCPF_LISTEN))) 2685 err = fastopen_init_queue(sk, val); 2686 else 2687 err = -EINVAL; 2688 break; 2689 case TCP_TIMESTAMP: 2690 if (!tp->repair) 2691 err = -EPERM; 2692 else 2693 tp->tsoffset = val - tcp_time_stamp; 2694 break; 2695 case TCP_NOTSENT_LOWAT: 2696 tp->notsent_lowat = val; 2697 sk->sk_write_space(sk); 2698 break; 2699 default: 2700 err = -ENOPROTOOPT; 2701 break; 2702 } 2703 2704 release_sock(sk); 2705 return err; 2706} 2707 2708int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2709 unsigned int optlen) 2710{ 2711 const struct inet_connection_sock *icsk = inet_csk(sk); 2712 2713 if (level != SOL_TCP) 2714 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2715 optval, optlen); 2716 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2717} 2718EXPORT_SYMBOL(tcp_setsockopt); 2719 2720#ifdef CONFIG_COMPAT 2721int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2722 char __user *optval, unsigned int optlen) 2723{ 2724 if (level != SOL_TCP) 2725 return inet_csk_compat_setsockopt(sk, level, optname, 2726 optval, optlen); 2727 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2728} 2729EXPORT_SYMBOL(compat_tcp_setsockopt); 2730#endif 2731 2732/* Return information about state of tcp endpoint in API format. */ 2733void tcp_get_info(const struct sock *sk, struct tcp_info *info) 2734{ 2735 const struct tcp_sock *tp = tcp_sk(sk); 2736 const struct inet_connection_sock *icsk = inet_csk(sk); 2737 u32 now = tcp_time_stamp; 2738 2739 memset(info, 0, sizeof(*info)); 2740 2741 info->tcpi_state = sk->sk_state; 2742 info->tcpi_ca_state = icsk->icsk_ca_state; 2743 info->tcpi_retransmits = icsk->icsk_retransmits; 2744 info->tcpi_probes = icsk->icsk_probes_out; 2745 info->tcpi_backoff = icsk->icsk_backoff; 2746 2747 if (tp->rx_opt.tstamp_ok) 2748 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2749 if (tcp_is_sack(tp)) 2750 info->tcpi_options |= TCPI_OPT_SACK; 2751 if (tp->rx_opt.wscale_ok) { 2752 info->tcpi_options |= TCPI_OPT_WSCALE; 2753 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2754 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2755 } 2756 2757 if (tp->ecn_flags & TCP_ECN_OK) 2758 info->tcpi_options |= TCPI_OPT_ECN; 2759 if (tp->ecn_flags & TCP_ECN_SEEN) 2760 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2761 if (tp->syn_data_acked) 2762 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2763 2764 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2765 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2766 info->tcpi_snd_mss = tp->mss_cache; 2767 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2768 2769 if (sk->sk_state == TCP_LISTEN) { 2770 info->tcpi_unacked = sk->sk_ack_backlog; 2771 info->tcpi_sacked = sk->sk_max_ack_backlog; 2772 } else { 2773 info->tcpi_unacked = tp->packets_out; 2774 info->tcpi_sacked = tp->sacked_out; 2775 } 2776 info->tcpi_lost = tp->lost_out; 2777 info->tcpi_retrans = tp->retrans_out; 2778 info->tcpi_fackets = tp->fackets_out; 2779 2780 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2781 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2782 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2783 2784 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2785 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2786 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2787 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2788 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2789 info->tcpi_snd_cwnd = tp->snd_cwnd; 2790 info->tcpi_advmss = tp->advmss; 2791 info->tcpi_reordering = tp->reordering; 2792 2793 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2794 info->tcpi_rcv_space = tp->rcvq_space.space; 2795 2796 info->tcpi_total_retrans = tp->total_retrans; 2797} 2798EXPORT_SYMBOL_GPL(tcp_get_info); 2799 2800static int do_tcp_getsockopt(struct sock *sk, int level, 2801 int optname, char __user *optval, int __user *optlen) 2802{ 2803 struct inet_connection_sock *icsk = inet_csk(sk); 2804 struct tcp_sock *tp = tcp_sk(sk); 2805 int val, len; 2806 2807 if (get_user(len, optlen)) 2808 return -EFAULT; 2809 2810 len = min_t(unsigned int, len, sizeof(int)); 2811 2812 if (len < 0) 2813 return -EINVAL; 2814 2815 switch (optname) { 2816 case TCP_MAXSEG: 2817 val = tp->mss_cache; 2818 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2819 val = tp->rx_opt.user_mss; 2820 if (tp->repair) 2821 val = tp->rx_opt.mss_clamp; 2822 break; 2823 case TCP_NODELAY: 2824 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2825 break; 2826 case TCP_CORK: 2827 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2828 break; 2829 case TCP_KEEPIDLE: 2830 val = keepalive_time_when(tp) / HZ; 2831 break; 2832 case TCP_KEEPINTVL: 2833 val = keepalive_intvl_when(tp) / HZ; 2834 break; 2835 case TCP_KEEPCNT: 2836 val = keepalive_probes(tp); 2837 break; 2838 case TCP_SYNCNT: 2839 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2840 break; 2841 case TCP_LINGER2: 2842 val = tp->linger2; 2843 if (val >= 0) 2844 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2845 break; 2846 case TCP_DEFER_ACCEPT: 2847 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2848 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2849 break; 2850 case TCP_WINDOW_CLAMP: 2851 val = tp->window_clamp; 2852 break; 2853 case TCP_INFO: { 2854 struct tcp_info info; 2855 2856 if (get_user(len, optlen)) 2857 return -EFAULT; 2858 2859 tcp_get_info(sk, &info); 2860 2861 len = min_t(unsigned int, len, sizeof(info)); 2862 if (put_user(len, optlen)) 2863 return -EFAULT; 2864 if (copy_to_user(optval, &info, len)) 2865 return -EFAULT; 2866 return 0; 2867 } 2868 case TCP_QUICKACK: 2869 val = !icsk->icsk_ack.pingpong; 2870 break; 2871 2872 case TCP_CONGESTION: 2873 if (get_user(len, optlen)) 2874 return -EFAULT; 2875 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2876 if (put_user(len, optlen)) 2877 return -EFAULT; 2878 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2879 return -EFAULT; 2880 return 0; 2881 2882 case TCP_THIN_LINEAR_TIMEOUTS: 2883 val = tp->thin_lto; 2884 break; 2885 case TCP_THIN_DUPACK: 2886 val = tp->thin_dupack; 2887 break; 2888 2889 case TCP_REPAIR: 2890 val = tp->repair; 2891 break; 2892 2893 case TCP_REPAIR_QUEUE: 2894 if (tp->repair) 2895 val = tp->repair_queue; 2896 else 2897 return -EINVAL; 2898 break; 2899 2900 case TCP_QUEUE_SEQ: 2901 if (tp->repair_queue == TCP_SEND_QUEUE) 2902 val = tp->write_seq; 2903 else if (tp->repair_queue == TCP_RECV_QUEUE) 2904 val = tp->rcv_nxt; 2905 else 2906 return -EINVAL; 2907 break; 2908 2909 case TCP_USER_TIMEOUT: 2910 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2911 break; 2912 case TCP_TIMESTAMP: 2913 val = tcp_time_stamp + tp->tsoffset; 2914 break; 2915 case TCP_NOTSENT_LOWAT: 2916 val = tp->notsent_lowat; 2917 break; 2918 default: 2919 return -ENOPROTOOPT; 2920 } 2921 2922 if (put_user(len, optlen)) 2923 return -EFAULT; 2924 if (copy_to_user(optval, &val, len)) 2925 return -EFAULT; 2926 return 0; 2927} 2928 2929int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2930 int __user *optlen) 2931{ 2932 struct inet_connection_sock *icsk = inet_csk(sk); 2933 2934 if (level != SOL_TCP) 2935 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2936 optval, optlen); 2937 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2938} 2939EXPORT_SYMBOL(tcp_getsockopt); 2940 2941#ifdef CONFIG_COMPAT 2942int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2943 char __user *optval, int __user *optlen) 2944{ 2945 if (level != SOL_TCP) 2946 return inet_csk_compat_getsockopt(sk, level, optname, 2947 optval, optlen); 2948 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2949} 2950EXPORT_SYMBOL(compat_tcp_getsockopt); 2951#endif 2952 2953#ifdef CONFIG_TCP_MD5SIG 2954static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool __read_mostly; 2955static DEFINE_MUTEX(tcp_md5sig_mutex); 2956 2957static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool) 2958{ 2959 int cpu; 2960 2961 for_each_possible_cpu(cpu) { 2962 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu); 2963 2964 if (p->md5_desc.tfm) 2965 crypto_free_hash(p->md5_desc.tfm); 2966 } 2967 free_percpu(pool); 2968} 2969 2970static void __tcp_alloc_md5sig_pool(void) 2971{ 2972 int cpu; 2973 struct tcp_md5sig_pool __percpu *pool; 2974 2975 pool = alloc_percpu(struct tcp_md5sig_pool); 2976 if (!pool) 2977 return; 2978 2979 for_each_possible_cpu(cpu) { 2980 struct crypto_hash *hash; 2981 2982 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2983 if (IS_ERR_OR_NULL(hash)) 2984 goto out_free; 2985 2986 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash; 2987 } 2988 /* before setting tcp_md5sig_pool, we must commit all writes 2989 * to memory. See ACCESS_ONCE() in tcp_get_md5sig_pool() 2990 */ 2991 smp_wmb(); 2992 tcp_md5sig_pool = pool; 2993 return; 2994out_free: 2995 __tcp_free_md5sig_pool(pool); 2996} 2997 2998bool tcp_alloc_md5sig_pool(void) 2999{ 3000 if (unlikely(!tcp_md5sig_pool)) { 3001 mutex_lock(&tcp_md5sig_mutex); 3002 3003 if (!tcp_md5sig_pool) 3004 __tcp_alloc_md5sig_pool(); 3005 3006 mutex_unlock(&tcp_md5sig_mutex); 3007 } 3008 return tcp_md5sig_pool != NULL; 3009} 3010EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3011 3012 3013/** 3014 * tcp_get_md5sig_pool - get md5sig_pool for this user 3015 * 3016 * We use percpu structure, so if we succeed, we exit with preemption 3017 * and BH disabled, to make sure another thread or softirq handling 3018 * wont try to get same context. 3019 */ 3020struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3021{ 3022 struct tcp_md5sig_pool __percpu *p; 3023 3024 local_bh_disable(); 3025 p = ACCESS_ONCE(tcp_md5sig_pool); 3026 if (p) 3027 return __this_cpu_ptr(p); 3028 3029 local_bh_enable(); 3030 return NULL; 3031} 3032EXPORT_SYMBOL(tcp_get_md5sig_pool); 3033 3034int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 3035 const struct tcphdr *th) 3036{ 3037 struct scatterlist sg; 3038 struct tcphdr hdr; 3039 int err; 3040 3041 /* We are not allowed to change tcphdr, make a local copy */ 3042 memcpy(&hdr, th, sizeof(hdr)); 3043 hdr.check = 0; 3044 3045 /* options aren't included in the hash */ 3046 sg_init_one(&sg, &hdr, sizeof(hdr)); 3047 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3048 return err; 3049} 3050EXPORT_SYMBOL(tcp_md5_hash_header); 3051 3052int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3053 const struct sk_buff *skb, unsigned int header_len) 3054{ 3055 struct scatterlist sg; 3056 const struct tcphdr *tp = tcp_hdr(skb); 3057 struct hash_desc *desc = &hp->md5_desc; 3058 unsigned int i; 3059 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3060 skb_headlen(skb) - header_len : 0; 3061 const struct skb_shared_info *shi = skb_shinfo(skb); 3062 struct sk_buff *frag_iter; 3063 3064 sg_init_table(&sg, 1); 3065 3066 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3067 if (crypto_hash_update(desc, &sg, head_data_len)) 3068 return 1; 3069 3070 for (i = 0; i < shi->nr_frags; ++i) { 3071 const struct skb_frag_struct *f = &shi->frags[i]; 3072 unsigned int offset = f->page_offset; 3073 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3074 3075 sg_set_page(&sg, page, skb_frag_size(f), 3076 offset_in_page(offset)); 3077 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3078 return 1; 3079 } 3080 3081 skb_walk_frags(skb, frag_iter) 3082 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3083 return 1; 3084 3085 return 0; 3086} 3087EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3088 3089int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3090{ 3091 struct scatterlist sg; 3092 3093 sg_init_one(&sg, key->key, key->keylen); 3094 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3095} 3096EXPORT_SYMBOL(tcp_md5_hash_key); 3097 3098#endif 3099 3100void tcp_done(struct sock *sk) 3101{ 3102 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3103 3104 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3105 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3106 3107 tcp_set_state(sk, TCP_CLOSE); 3108 tcp_clear_xmit_timers(sk); 3109 if (req != NULL) 3110 reqsk_fastopen_remove(sk, req, false); 3111 3112 sk->sk_shutdown = SHUTDOWN_MASK; 3113 3114 if (!sock_flag(sk, SOCK_DEAD)) 3115 sk->sk_state_change(sk); 3116 else 3117 inet_csk_destroy_sock(sk); 3118} 3119EXPORT_SYMBOL_GPL(tcp_done); 3120 3121extern struct tcp_congestion_ops tcp_reno; 3122 3123static __initdata unsigned long thash_entries; 3124static int __init set_thash_entries(char *str) 3125{ 3126 ssize_t ret; 3127 3128 if (!str) 3129 return 0; 3130 3131 ret = kstrtoul(str, 0, &thash_entries); 3132 if (ret) 3133 return 0; 3134 3135 return 1; 3136} 3137__setup("thash_entries=", set_thash_entries); 3138 3139static void tcp_init_mem(void) 3140{ 3141 unsigned long limit = nr_free_buffer_pages() / 8; 3142 limit = max(limit, 128UL); 3143 sysctl_tcp_mem[0] = limit / 4 * 3; 3144 sysctl_tcp_mem[1] = limit; 3145 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; 3146} 3147 3148void __init tcp_init(void) 3149{ 3150 struct sk_buff *skb = NULL; 3151 unsigned long limit; 3152 int max_rshare, max_wshare, cnt; 3153 unsigned int i; 3154 3155 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3156 3157 percpu_counter_init(&tcp_sockets_allocated, 0); 3158 percpu_counter_init(&tcp_orphan_count, 0); 3159 tcp_hashinfo.bind_bucket_cachep = 3160 kmem_cache_create("tcp_bind_bucket", 3161 sizeof(struct inet_bind_bucket), 0, 3162 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3163 3164 /* Size and allocate the main established and bind bucket 3165 * hash tables. 3166 * 3167 * The methodology is similar to that of the buffer cache. 3168 */ 3169 tcp_hashinfo.ehash = 3170 alloc_large_system_hash("TCP established", 3171 sizeof(struct inet_ehash_bucket), 3172 thash_entries, 3173 17, /* one slot per 128 KB of memory */ 3174 0, 3175 NULL, 3176 &tcp_hashinfo.ehash_mask, 3177 0, 3178 thash_entries ? 0 : 512 * 1024); 3179 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3180 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3181 3182 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3183 panic("TCP: failed to alloc ehash_locks"); 3184 tcp_hashinfo.bhash = 3185 alloc_large_system_hash("TCP bind", 3186 sizeof(struct inet_bind_hashbucket), 3187 tcp_hashinfo.ehash_mask + 1, 3188 17, /* one slot per 128 KB of memory */ 3189 0, 3190 &tcp_hashinfo.bhash_size, 3191 NULL, 3192 0, 3193 64 * 1024); 3194 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3195 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3196 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3197 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3198 } 3199 3200 3201 cnt = tcp_hashinfo.ehash_mask + 1; 3202 3203 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3204 sysctl_tcp_max_orphans = cnt / 2; 3205 sysctl_max_syn_backlog = max(128, cnt / 256); 3206 3207 tcp_init_mem(); 3208 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3209 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3210 max_wshare = min(4UL*1024*1024, limit); 3211 max_rshare = min(6UL*1024*1024, limit); 3212 3213 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3214 sysctl_tcp_wmem[1] = 16*1024; 3215 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3216 3217 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3218 sysctl_tcp_rmem[1] = 87380; 3219 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3220 3221 pr_info("Hash tables configured (established %u bind %u)\n", 3222 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3223 3224 tcp_metrics_init(); 3225 3226 tcp_register_congestion_control(&tcp_reno); 3227 3228 tcp_tasklet_init(); 3229} 3230