tcp.c revision a3433f35a55f7604742cae620c6dc6edfc70db6a
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#include <linux/kernel.h>
249#include <linux/module.h>
250#include <linux/types.h>
251#include <linux/fcntl.h>
252#include <linux/poll.h>
253#include <linux/init.h>
254#include <linux/fs.h>
255#include <linux/skbuff.h>
256#include <linux/scatterlist.h>
257#include <linux/splice.h>
258#include <linux/net.h>
259#include <linux/socket.h>
260#include <linux/random.h>
261#include <linux/bootmem.h>
262#include <linux/highmem.h>
263#include <linux/swap.h>
264#include <linux/cache.h>
265#include <linux/err.h>
266#include <linux/crypto.h>
267#include <linux/time.h>
268#include <linux/slab.h>
269
270#include <net/icmp.h>
271#include <net/tcp.h>
272#include <net/xfrm.h>
273#include <net/ip.h>
274#include <net/netdma.h>
275#include <net/sock.h>
276
277#include <asm/uaccess.h>
278#include <asm/ioctls.h>
279
280int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
281
282struct percpu_counter tcp_orphan_count;
283EXPORT_SYMBOL_GPL(tcp_orphan_count);
284
285int sysctl_tcp_mem[3] __read_mostly;
286int sysctl_tcp_wmem[3] __read_mostly;
287int sysctl_tcp_rmem[3] __read_mostly;
288
289EXPORT_SYMBOL(sysctl_tcp_mem);
290EXPORT_SYMBOL(sysctl_tcp_rmem);
291EXPORT_SYMBOL(sysctl_tcp_wmem);
292
293atomic_t tcp_memory_allocated;	/* Current allocated memory. */
294EXPORT_SYMBOL(tcp_memory_allocated);
295
296/*
297 * Current number of TCP sockets.
298 */
299struct percpu_counter tcp_sockets_allocated;
300EXPORT_SYMBOL(tcp_sockets_allocated);
301
302/*
303 * TCP splice context
304 */
305struct tcp_splice_state {
306	struct pipe_inode_info *pipe;
307	size_t len;
308	unsigned int flags;
309};
310
311/*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317int tcp_memory_pressure __read_mostly;
318
319EXPORT_SYMBOL(tcp_memory_pressure);
320
321void tcp_enter_memory_pressure(struct sock *sk)
322{
323	if (!tcp_memory_pressure) {
324		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325		tcp_memory_pressure = 1;
326	}
327}
328
329EXPORT_SYMBOL(tcp_enter_memory_pressure);
330
331/* Convert seconds to retransmits based on initial and max timeout */
332static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
333{
334	u8 res = 0;
335
336	if (seconds > 0) {
337		int period = timeout;
338
339		res = 1;
340		while (seconds > period && res < 255) {
341			res++;
342			timeout <<= 1;
343			if (timeout > rto_max)
344				timeout = rto_max;
345			period += timeout;
346		}
347	}
348	return res;
349}
350
351/* Convert retransmits to seconds based on initial and max timeout */
352static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
353{
354	int period = 0;
355
356	if (retrans > 0) {
357		period = timeout;
358		while (--retrans) {
359			timeout <<= 1;
360			if (timeout > rto_max)
361				timeout = rto_max;
362			period += timeout;
363		}
364	}
365	return period;
366}
367
368/*
369 *	Wait for a TCP event.
370 *
371 *	Note that we don't need to lock the socket, as the upper poll layers
372 *	take care of normal races (between the test and the event) and we don't
373 *	go look at any of the socket buffers directly.
374 */
375unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
376{
377	unsigned int mask;
378	struct sock *sk = sock->sk;
379	struct tcp_sock *tp = tcp_sk(sk);
380
381	sock_poll_wait(file, sk_sleep(sk), wait);
382	if (sk->sk_state == TCP_LISTEN)
383		return inet_csk_listen_poll(sk);
384
385	/* Socket is not locked. We are protected from async events
386	 * by poll logic and correct handling of state changes
387	 * made by other threads is impossible in any case.
388	 */
389
390	mask = 0;
391	if (sk->sk_err)
392		mask = POLLERR;
393
394	/*
395	 * POLLHUP is certainly not done right. But poll() doesn't
396	 * have a notion of HUP in just one direction, and for a
397	 * socket the read side is more interesting.
398	 *
399	 * Some poll() documentation says that POLLHUP is incompatible
400	 * with the POLLOUT/POLLWR flags, so somebody should check this
401	 * all. But careful, it tends to be safer to return too many
402	 * bits than too few, and you can easily break real applications
403	 * if you don't tell them that something has hung up!
404	 *
405	 * Check-me.
406	 *
407	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
408	 * our fs/select.c). It means that after we received EOF,
409	 * poll always returns immediately, making impossible poll() on write()
410	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
411	 * if and only if shutdown has been made in both directions.
412	 * Actually, it is interesting to look how Solaris and DUX
413	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
414	 * then we could set it on SND_SHUTDOWN. BTW examples given
415	 * in Stevens' books assume exactly this behaviour, it explains
416	 * why POLLHUP is incompatible with POLLOUT.	--ANK
417	 *
418	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
419	 * blocking on fresh not-connected or disconnected socket. --ANK
420	 */
421	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
422		mask |= POLLHUP;
423	if (sk->sk_shutdown & RCV_SHUTDOWN)
424		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
425
426	/* Connected? */
427	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
428		int target = sock_rcvlowat(sk, 0, INT_MAX);
429
430		if (tp->urg_seq == tp->copied_seq &&
431		    !sock_flag(sk, SOCK_URGINLINE) &&
432		    tp->urg_data)
433			target++;
434
435		/* Potential race condition. If read of tp below will
436		 * escape above sk->sk_state, we can be illegally awaken
437		 * in SYN_* states. */
438		if (tp->rcv_nxt - tp->copied_seq >= target)
439			mask |= POLLIN | POLLRDNORM;
440
441		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
442			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
443				mask |= POLLOUT | POLLWRNORM;
444			} else {  /* send SIGIO later */
445				set_bit(SOCK_ASYNC_NOSPACE,
446					&sk->sk_socket->flags);
447				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
448
449				/* Race breaker. If space is freed after
450				 * wspace test but before the flags are set,
451				 * IO signal will be lost.
452				 */
453				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
454					mask |= POLLOUT | POLLWRNORM;
455			}
456		}
457
458		if (tp->urg_data & TCP_URG_VALID)
459			mask |= POLLPRI;
460	}
461	return mask;
462}
463
464int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
465{
466	struct tcp_sock *tp = tcp_sk(sk);
467	int answ;
468
469	switch (cmd) {
470	case SIOCINQ:
471		if (sk->sk_state == TCP_LISTEN)
472			return -EINVAL;
473
474		lock_sock(sk);
475		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
476			answ = 0;
477		else if (sock_flag(sk, SOCK_URGINLINE) ||
478			 !tp->urg_data ||
479			 before(tp->urg_seq, tp->copied_seq) ||
480			 !before(tp->urg_seq, tp->rcv_nxt)) {
481			struct sk_buff *skb;
482
483			answ = tp->rcv_nxt - tp->copied_seq;
484
485			/* Subtract 1, if FIN is in queue. */
486			skb = skb_peek_tail(&sk->sk_receive_queue);
487			if (answ && skb)
488				answ -= tcp_hdr(skb)->fin;
489		} else
490			answ = tp->urg_seq - tp->copied_seq;
491		release_sock(sk);
492		break;
493	case SIOCATMARK:
494		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
495		break;
496	case SIOCOUTQ:
497		if (sk->sk_state == TCP_LISTEN)
498			return -EINVAL;
499
500		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
501			answ = 0;
502		else
503			answ = tp->write_seq - tp->snd_una;
504		break;
505	default:
506		return -ENOIOCTLCMD;
507	}
508
509	return put_user(answ, (int __user *)arg);
510}
511
512static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
513{
514	TCP_SKB_CB(skb)->flags |= TCPHDR_PSH;
515	tp->pushed_seq = tp->write_seq;
516}
517
518static inline int forced_push(struct tcp_sock *tp)
519{
520	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
521}
522
523static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
524{
525	struct tcp_sock *tp = tcp_sk(sk);
526	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
527
528	skb->csum    = 0;
529	tcb->seq     = tcb->end_seq = tp->write_seq;
530	tcb->flags   = TCPHDR_ACK;
531	tcb->sacked  = 0;
532	skb_header_release(skb);
533	tcp_add_write_queue_tail(sk, skb);
534	sk->sk_wmem_queued += skb->truesize;
535	sk_mem_charge(sk, skb->truesize);
536	if (tp->nonagle & TCP_NAGLE_PUSH)
537		tp->nonagle &= ~TCP_NAGLE_PUSH;
538}
539
540static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
541{
542	if (flags & MSG_OOB)
543		tp->snd_up = tp->write_seq;
544}
545
546static inline void tcp_push(struct sock *sk, int flags, int mss_now,
547			    int nonagle)
548{
549	if (tcp_send_head(sk)) {
550		struct tcp_sock *tp = tcp_sk(sk);
551
552		if (!(flags & MSG_MORE) || forced_push(tp))
553			tcp_mark_push(tp, tcp_write_queue_tail(sk));
554
555		tcp_mark_urg(tp, flags);
556		__tcp_push_pending_frames(sk, mss_now,
557					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
558	}
559}
560
561static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
562				unsigned int offset, size_t len)
563{
564	struct tcp_splice_state *tss = rd_desc->arg.data;
565	int ret;
566
567	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
568			      tss->flags);
569	if (ret > 0)
570		rd_desc->count -= ret;
571	return ret;
572}
573
574static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
575{
576	/* Store TCP splice context information in read_descriptor_t. */
577	read_descriptor_t rd_desc = {
578		.arg.data = tss,
579		.count	  = tss->len,
580	};
581
582	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
583}
584
585/**
586 *  tcp_splice_read - splice data from TCP socket to a pipe
587 * @sock:	socket to splice from
588 * @ppos:	position (not valid)
589 * @pipe:	pipe to splice to
590 * @len:	number of bytes to splice
591 * @flags:	splice modifier flags
592 *
593 * Description:
594 *    Will read pages from given socket and fill them into a pipe.
595 *
596 **/
597ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
598			struct pipe_inode_info *pipe, size_t len,
599			unsigned int flags)
600{
601	struct sock *sk = sock->sk;
602	struct tcp_splice_state tss = {
603		.pipe = pipe,
604		.len = len,
605		.flags = flags,
606	};
607	long timeo;
608	ssize_t spliced;
609	int ret;
610
611	/*
612	 * We can't seek on a socket input
613	 */
614	if (unlikely(*ppos))
615		return -ESPIPE;
616
617	ret = spliced = 0;
618
619	lock_sock(sk);
620
621	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
622	while (tss.len) {
623		ret = __tcp_splice_read(sk, &tss);
624		if (ret < 0)
625			break;
626		else if (!ret) {
627			if (spliced)
628				break;
629			if (sock_flag(sk, SOCK_DONE))
630				break;
631			if (sk->sk_err) {
632				ret = sock_error(sk);
633				break;
634			}
635			if (sk->sk_shutdown & RCV_SHUTDOWN)
636				break;
637			if (sk->sk_state == TCP_CLOSE) {
638				/*
639				 * This occurs when user tries to read
640				 * from never connected socket.
641				 */
642				if (!sock_flag(sk, SOCK_DONE))
643					ret = -ENOTCONN;
644				break;
645			}
646			if (!timeo) {
647				ret = -EAGAIN;
648				break;
649			}
650			sk_wait_data(sk, &timeo);
651			if (signal_pending(current)) {
652				ret = sock_intr_errno(timeo);
653				break;
654			}
655			continue;
656		}
657		tss.len -= ret;
658		spliced += ret;
659
660		if (!timeo)
661			break;
662		release_sock(sk);
663		lock_sock(sk);
664
665		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
666		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
667		    signal_pending(current))
668			break;
669	}
670
671	release_sock(sk);
672
673	if (spliced)
674		return spliced;
675
676	return ret;
677}
678
679struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
680{
681	struct sk_buff *skb;
682
683	/* The TCP header must be at least 32-bit aligned.  */
684	size = ALIGN(size, 4);
685
686	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
687	if (skb) {
688		if (sk_wmem_schedule(sk, skb->truesize)) {
689			/*
690			 * Make sure that we have exactly size bytes
691			 * available to the caller, no more, no less.
692			 */
693			skb_reserve(skb, skb_tailroom(skb) - size);
694			return skb;
695		}
696		__kfree_skb(skb);
697	} else {
698		sk->sk_prot->enter_memory_pressure(sk);
699		sk_stream_moderate_sndbuf(sk);
700	}
701	return NULL;
702}
703
704static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
705				       int large_allowed)
706{
707	struct tcp_sock *tp = tcp_sk(sk);
708	u32 xmit_size_goal, old_size_goal;
709
710	xmit_size_goal = mss_now;
711
712	if (large_allowed && sk_can_gso(sk)) {
713		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
714				  inet_csk(sk)->icsk_af_ops->net_header_len -
715				  inet_csk(sk)->icsk_ext_hdr_len -
716				  tp->tcp_header_len);
717
718		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
719
720		/* We try hard to avoid divides here */
721		old_size_goal = tp->xmit_size_goal_segs * mss_now;
722
723		if (likely(old_size_goal <= xmit_size_goal &&
724			   old_size_goal + mss_now > xmit_size_goal)) {
725			xmit_size_goal = old_size_goal;
726		} else {
727			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
728			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
729		}
730	}
731
732	return max(xmit_size_goal, mss_now);
733}
734
735static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
736{
737	int mss_now;
738
739	mss_now = tcp_current_mss(sk);
740	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
741
742	return mss_now;
743}
744
745static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
746			 size_t psize, int flags)
747{
748	struct tcp_sock *tp = tcp_sk(sk);
749	int mss_now, size_goal;
750	int err;
751	ssize_t copied;
752	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
753
754	/* Wait for a connection to finish. */
755	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
756		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
757			goto out_err;
758
759	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
760
761	mss_now = tcp_send_mss(sk, &size_goal, flags);
762	copied = 0;
763
764	err = -EPIPE;
765	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
766		goto out_err;
767
768	while (psize > 0) {
769		struct sk_buff *skb = tcp_write_queue_tail(sk);
770		struct page *page = pages[poffset / PAGE_SIZE];
771		int copy, i, can_coalesce;
772		int offset = poffset % PAGE_SIZE;
773		int size = min_t(size_t, psize, PAGE_SIZE - offset);
774
775		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
776new_segment:
777			if (!sk_stream_memory_free(sk))
778				goto wait_for_sndbuf;
779
780			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
781			if (!skb)
782				goto wait_for_memory;
783
784			skb_entail(sk, skb);
785			copy = size_goal;
786		}
787
788		if (copy > size)
789			copy = size;
790
791		i = skb_shinfo(skb)->nr_frags;
792		can_coalesce = skb_can_coalesce(skb, i, page, offset);
793		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
794			tcp_mark_push(tp, skb);
795			goto new_segment;
796		}
797		if (!sk_wmem_schedule(sk, copy))
798			goto wait_for_memory;
799
800		if (can_coalesce) {
801			skb_shinfo(skb)->frags[i - 1].size += copy;
802		} else {
803			get_page(page);
804			skb_fill_page_desc(skb, i, page, offset, copy);
805		}
806
807		skb->len += copy;
808		skb->data_len += copy;
809		skb->truesize += copy;
810		sk->sk_wmem_queued += copy;
811		sk_mem_charge(sk, copy);
812		skb->ip_summed = CHECKSUM_PARTIAL;
813		tp->write_seq += copy;
814		TCP_SKB_CB(skb)->end_seq += copy;
815		skb_shinfo(skb)->gso_segs = 0;
816
817		if (!copied)
818			TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
819
820		copied += copy;
821		poffset += copy;
822		if (!(psize -= copy))
823			goto out;
824
825		if (skb->len < size_goal || (flags & MSG_OOB))
826			continue;
827
828		if (forced_push(tp)) {
829			tcp_mark_push(tp, skb);
830			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
831		} else if (skb == tcp_send_head(sk))
832			tcp_push_one(sk, mss_now);
833		continue;
834
835wait_for_sndbuf:
836		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
837wait_for_memory:
838		if (copied)
839			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
840
841		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
842			goto do_error;
843
844		mss_now = tcp_send_mss(sk, &size_goal, flags);
845	}
846
847out:
848	if (copied)
849		tcp_push(sk, flags, mss_now, tp->nonagle);
850	return copied;
851
852do_error:
853	if (copied)
854		goto out;
855out_err:
856	return sk_stream_error(sk, flags, err);
857}
858
859ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
860		     size_t size, int flags)
861{
862	ssize_t res;
863	struct sock *sk = sock->sk;
864
865	if (!(sk->sk_route_caps & NETIF_F_SG) ||
866	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
867		return sock_no_sendpage(sock, page, offset, size, flags);
868
869	lock_sock(sk);
870	TCP_CHECK_TIMER(sk);
871	res = do_tcp_sendpages(sk, &page, offset, size, flags);
872	TCP_CHECK_TIMER(sk);
873	release_sock(sk);
874	return res;
875}
876
877#define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
878#define TCP_OFF(sk)	(sk->sk_sndmsg_off)
879
880static inline int select_size(struct sock *sk, int sg)
881{
882	struct tcp_sock *tp = tcp_sk(sk);
883	int tmp = tp->mss_cache;
884
885	if (sg) {
886		if (sk_can_gso(sk))
887			tmp = 0;
888		else {
889			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
890
891			if (tmp >= pgbreak &&
892			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
893				tmp = pgbreak;
894		}
895	}
896
897	return tmp;
898}
899
900int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
901		size_t size)
902{
903	struct sock *sk = sock->sk;
904	struct iovec *iov;
905	struct tcp_sock *tp = tcp_sk(sk);
906	struct sk_buff *skb;
907	int iovlen, flags;
908	int mss_now, size_goal;
909	int sg, err, copied;
910	long timeo;
911
912	lock_sock(sk);
913	TCP_CHECK_TIMER(sk);
914
915	flags = msg->msg_flags;
916	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
917
918	/* Wait for a connection to finish. */
919	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
920		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
921			goto out_err;
922
923	/* This should be in poll */
924	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
925
926	mss_now = tcp_send_mss(sk, &size_goal, flags);
927
928	/* Ok commence sending. */
929	iovlen = msg->msg_iovlen;
930	iov = msg->msg_iov;
931	copied = 0;
932
933	err = -EPIPE;
934	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
935		goto out_err;
936
937	sg = sk->sk_route_caps & NETIF_F_SG;
938
939	while (--iovlen >= 0) {
940		int seglen = iov->iov_len;
941		unsigned char __user *from = iov->iov_base;
942
943		iov++;
944
945		while (seglen > 0) {
946			int copy = 0;
947			int max = size_goal;
948
949			skb = tcp_write_queue_tail(sk);
950			if (tcp_send_head(sk)) {
951				if (skb->ip_summed == CHECKSUM_NONE)
952					max = mss_now;
953				copy = max - skb->len;
954			}
955
956			if (copy <= 0) {
957new_segment:
958				/* Allocate new segment. If the interface is SG,
959				 * allocate skb fitting to single page.
960				 */
961				if (!sk_stream_memory_free(sk))
962					goto wait_for_sndbuf;
963
964				skb = sk_stream_alloc_skb(sk,
965							  select_size(sk, sg),
966							  sk->sk_allocation);
967				if (!skb)
968					goto wait_for_memory;
969
970				/*
971				 * Check whether we can use HW checksum.
972				 */
973				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
974					skb->ip_summed = CHECKSUM_PARTIAL;
975
976				skb_entail(sk, skb);
977				copy = size_goal;
978				max = size_goal;
979			}
980
981			/* Try to append data to the end of skb. */
982			if (copy > seglen)
983				copy = seglen;
984
985			/* Where to copy to? */
986			if (skb_tailroom(skb) > 0) {
987				/* We have some space in skb head. Superb! */
988				if (copy > skb_tailroom(skb))
989					copy = skb_tailroom(skb);
990				if ((err = skb_add_data(skb, from, copy)) != 0)
991					goto do_fault;
992			} else {
993				int merge = 0;
994				int i = skb_shinfo(skb)->nr_frags;
995				struct page *page = TCP_PAGE(sk);
996				int off = TCP_OFF(sk);
997
998				if (skb_can_coalesce(skb, i, page, off) &&
999				    off != PAGE_SIZE) {
1000					/* We can extend the last page
1001					 * fragment. */
1002					merge = 1;
1003				} else if (i == MAX_SKB_FRAGS || !sg) {
1004					/* Need to add new fragment and cannot
1005					 * do this because interface is non-SG,
1006					 * or because all the page slots are
1007					 * busy. */
1008					tcp_mark_push(tp, skb);
1009					goto new_segment;
1010				} else if (page) {
1011					if (off == PAGE_SIZE) {
1012						put_page(page);
1013						TCP_PAGE(sk) = page = NULL;
1014						off = 0;
1015					}
1016				} else
1017					off = 0;
1018
1019				if (copy > PAGE_SIZE - off)
1020					copy = PAGE_SIZE - off;
1021
1022				if (!sk_wmem_schedule(sk, copy))
1023					goto wait_for_memory;
1024
1025				if (!page) {
1026					/* Allocate new cache page. */
1027					if (!(page = sk_stream_alloc_page(sk)))
1028						goto wait_for_memory;
1029				}
1030
1031				/* Time to copy data. We are close to
1032				 * the end! */
1033				err = skb_copy_to_page(sk, from, skb, page,
1034						       off, copy);
1035				if (err) {
1036					/* If this page was new, give it to the
1037					 * socket so it does not get leaked.
1038					 */
1039					if (!TCP_PAGE(sk)) {
1040						TCP_PAGE(sk) = page;
1041						TCP_OFF(sk) = 0;
1042					}
1043					goto do_error;
1044				}
1045
1046				/* Update the skb. */
1047				if (merge) {
1048					skb_shinfo(skb)->frags[i - 1].size +=
1049									copy;
1050				} else {
1051					skb_fill_page_desc(skb, i, page, off, copy);
1052					if (TCP_PAGE(sk)) {
1053						get_page(page);
1054					} else if (off + copy < PAGE_SIZE) {
1055						get_page(page);
1056						TCP_PAGE(sk) = page;
1057					}
1058				}
1059
1060				TCP_OFF(sk) = off + copy;
1061			}
1062
1063			if (!copied)
1064				TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
1065
1066			tp->write_seq += copy;
1067			TCP_SKB_CB(skb)->end_seq += copy;
1068			skb_shinfo(skb)->gso_segs = 0;
1069
1070			from += copy;
1071			copied += copy;
1072			if ((seglen -= copy) == 0 && iovlen == 0)
1073				goto out;
1074
1075			if (skb->len < max || (flags & MSG_OOB))
1076				continue;
1077
1078			if (forced_push(tp)) {
1079				tcp_mark_push(tp, skb);
1080				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1081			} else if (skb == tcp_send_head(sk))
1082				tcp_push_one(sk, mss_now);
1083			continue;
1084
1085wait_for_sndbuf:
1086			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1087wait_for_memory:
1088			if (copied)
1089				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1090
1091			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1092				goto do_error;
1093
1094			mss_now = tcp_send_mss(sk, &size_goal, flags);
1095		}
1096	}
1097
1098out:
1099	if (copied)
1100		tcp_push(sk, flags, mss_now, tp->nonagle);
1101	TCP_CHECK_TIMER(sk);
1102	release_sock(sk);
1103	return copied;
1104
1105do_fault:
1106	if (!skb->len) {
1107		tcp_unlink_write_queue(skb, sk);
1108		/* It is the one place in all of TCP, except connection
1109		 * reset, where we can be unlinking the send_head.
1110		 */
1111		tcp_check_send_head(sk, skb);
1112		sk_wmem_free_skb(sk, skb);
1113	}
1114
1115do_error:
1116	if (copied)
1117		goto out;
1118out_err:
1119	err = sk_stream_error(sk, flags, err);
1120	TCP_CHECK_TIMER(sk);
1121	release_sock(sk);
1122	return err;
1123}
1124
1125/*
1126 *	Handle reading urgent data. BSD has very simple semantics for
1127 *	this, no blocking and very strange errors 8)
1128 */
1129
1130static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1131{
1132	struct tcp_sock *tp = tcp_sk(sk);
1133
1134	/* No URG data to read. */
1135	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1136	    tp->urg_data == TCP_URG_READ)
1137		return -EINVAL;	/* Yes this is right ! */
1138
1139	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1140		return -ENOTCONN;
1141
1142	if (tp->urg_data & TCP_URG_VALID) {
1143		int err = 0;
1144		char c = tp->urg_data;
1145
1146		if (!(flags & MSG_PEEK))
1147			tp->urg_data = TCP_URG_READ;
1148
1149		/* Read urgent data. */
1150		msg->msg_flags |= MSG_OOB;
1151
1152		if (len > 0) {
1153			if (!(flags & MSG_TRUNC))
1154				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1155			len = 1;
1156		} else
1157			msg->msg_flags |= MSG_TRUNC;
1158
1159		return err ? -EFAULT : len;
1160	}
1161
1162	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1163		return 0;
1164
1165	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1166	 * the available implementations agree in this case:
1167	 * this call should never block, independent of the
1168	 * blocking state of the socket.
1169	 * Mike <pall@rz.uni-karlsruhe.de>
1170	 */
1171	return -EAGAIN;
1172}
1173
1174/* Clean up the receive buffer for full frames taken by the user,
1175 * then send an ACK if necessary.  COPIED is the number of bytes
1176 * tcp_recvmsg has given to the user so far, it speeds up the
1177 * calculation of whether or not we must ACK for the sake of
1178 * a window update.
1179 */
1180void tcp_cleanup_rbuf(struct sock *sk, int copied)
1181{
1182	struct tcp_sock *tp = tcp_sk(sk);
1183	int time_to_ack = 0;
1184
1185#if TCP_DEBUG
1186	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1187
1188	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1189	     KERN_INFO "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1190	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1191#endif
1192
1193	if (inet_csk_ack_scheduled(sk)) {
1194		const struct inet_connection_sock *icsk = inet_csk(sk);
1195		   /* Delayed ACKs frequently hit locked sockets during bulk
1196		    * receive. */
1197		if (icsk->icsk_ack.blocked ||
1198		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1199		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1200		    /*
1201		     * If this read emptied read buffer, we send ACK, if
1202		     * connection is not bidirectional, user drained
1203		     * receive buffer and there was a small segment
1204		     * in queue.
1205		     */
1206		    (copied > 0 &&
1207		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1208		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1209		       !icsk->icsk_ack.pingpong)) &&
1210		      !atomic_read(&sk->sk_rmem_alloc)))
1211			time_to_ack = 1;
1212	}
1213
1214	/* We send an ACK if we can now advertise a non-zero window
1215	 * which has been raised "significantly".
1216	 *
1217	 * Even if window raised up to infinity, do not send window open ACK
1218	 * in states, where we will not receive more. It is useless.
1219	 */
1220	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1221		__u32 rcv_window_now = tcp_receive_window(tp);
1222
1223		/* Optimize, __tcp_select_window() is not cheap. */
1224		if (2*rcv_window_now <= tp->window_clamp) {
1225			__u32 new_window = __tcp_select_window(sk);
1226
1227			/* Send ACK now, if this read freed lots of space
1228			 * in our buffer. Certainly, new_window is new window.
1229			 * We can advertise it now, if it is not less than current one.
1230			 * "Lots" means "at least twice" here.
1231			 */
1232			if (new_window && new_window >= 2 * rcv_window_now)
1233				time_to_ack = 1;
1234		}
1235	}
1236	if (time_to_ack)
1237		tcp_send_ack(sk);
1238}
1239
1240static void tcp_prequeue_process(struct sock *sk)
1241{
1242	struct sk_buff *skb;
1243	struct tcp_sock *tp = tcp_sk(sk);
1244
1245	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1246
1247	/* RX process wants to run with disabled BHs, though it is not
1248	 * necessary */
1249	local_bh_disable();
1250	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1251		sk_backlog_rcv(sk, skb);
1252	local_bh_enable();
1253
1254	/* Clear memory counter. */
1255	tp->ucopy.memory = 0;
1256}
1257
1258#ifdef CONFIG_NET_DMA
1259static void tcp_service_net_dma(struct sock *sk, bool wait)
1260{
1261	dma_cookie_t done, used;
1262	dma_cookie_t last_issued;
1263	struct tcp_sock *tp = tcp_sk(sk);
1264
1265	if (!tp->ucopy.dma_chan)
1266		return;
1267
1268	last_issued = tp->ucopy.dma_cookie;
1269	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1270
1271	do {
1272		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1273					      last_issued, &done,
1274					      &used) == DMA_SUCCESS) {
1275			/* Safe to free early-copied skbs now */
1276			__skb_queue_purge(&sk->sk_async_wait_queue);
1277			break;
1278		} else {
1279			struct sk_buff *skb;
1280			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1281			       (dma_async_is_complete(skb->dma_cookie, done,
1282						      used) == DMA_SUCCESS)) {
1283				__skb_dequeue(&sk->sk_async_wait_queue);
1284				kfree_skb(skb);
1285			}
1286		}
1287	} while (wait);
1288}
1289#endif
1290
1291static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1292{
1293	struct sk_buff *skb;
1294	u32 offset;
1295
1296	skb_queue_walk(&sk->sk_receive_queue, skb) {
1297		offset = seq - TCP_SKB_CB(skb)->seq;
1298		if (tcp_hdr(skb)->syn)
1299			offset--;
1300		if (offset < skb->len || tcp_hdr(skb)->fin) {
1301			*off = offset;
1302			return skb;
1303		}
1304	}
1305	return NULL;
1306}
1307
1308/*
1309 * This routine provides an alternative to tcp_recvmsg() for routines
1310 * that would like to handle copying from skbuffs directly in 'sendfile'
1311 * fashion.
1312 * Note:
1313 *	- It is assumed that the socket was locked by the caller.
1314 *	- The routine does not block.
1315 *	- At present, there is no support for reading OOB data
1316 *	  or for 'peeking' the socket using this routine
1317 *	  (although both would be easy to implement).
1318 */
1319int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1320		  sk_read_actor_t recv_actor)
1321{
1322	struct sk_buff *skb;
1323	struct tcp_sock *tp = tcp_sk(sk);
1324	u32 seq = tp->copied_seq;
1325	u32 offset;
1326	int copied = 0;
1327
1328	if (sk->sk_state == TCP_LISTEN)
1329		return -ENOTCONN;
1330	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1331		if (offset < skb->len) {
1332			int used;
1333			size_t len;
1334
1335			len = skb->len - offset;
1336			/* Stop reading if we hit a patch of urgent data */
1337			if (tp->urg_data) {
1338				u32 urg_offset = tp->urg_seq - seq;
1339				if (urg_offset < len)
1340					len = urg_offset;
1341				if (!len)
1342					break;
1343			}
1344			used = recv_actor(desc, skb, offset, len);
1345			if (used < 0) {
1346				if (!copied)
1347					copied = used;
1348				break;
1349			} else if (used <= len) {
1350				seq += used;
1351				copied += used;
1352				offset += used;
1353			}
1354			/*
1355			 * If recv_actor drops the lock (e.g. TCP splice
1356			 * receive) the skb pointer might be invalid when
1357			 * getting here: tcp_collapse might have deleted it
1358			 * while aggregating skbs from the socket queue.
1359			 */
1360			skb = tcp_recv_skb(sk, seq-1, &offset);
1361			if (!skb || (offset+1 != skb->len))
1362				break;
1363		}
1364		if (tcp_hdr(skb)->fin) {
1365			sk_eat_skb(sk, skb, 0);
1366			++seq;
1367			break;
1368		}
1369		sk_eat_skb(sk, skb, 0);
1370		if (!desc->count)
1371			break;
1372		tp->copied_seq = seq;
1373	}
1374	tp->copied_seq = seq;
1375
1376	tcp_rcv_space_adjust(sk);
1377
1378	/* Clean up data we have read: This will do ACK frames. */
1379	if (copied > 0)
1380		tcp_cleanup_rbuf(sk, copied);
1381	return copied;
1382}
1383
1384/*
1385 *	This routine copies from a sock struct into the user buffer.
1386 *
1387 *	Technical note: in 2.3 we work on _locked_ socket, so that
1388 *	tricks with *seq access order and skb->users are not required.
1389 *	Probably, code can be easily improved even more.
1390 */
1391
1392int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1393		size_t len, int nonblock, int flags, int *addr_len)
1394{
1395	struct tcp_sock *tp = tcp_sk(sk);
1396	int copied = 0;
1397	u32 peek_seq;
1398	u32 *seq;
1399	unsigned long used;
1400	int err;
1401	int target;		/* Read at least this many bytes */
1402	long timeo;
1403	struct task_struct *user_recv = NULL;
1404	int copied_early = 0;
1405	struct sk_buff *skb;
1406	u32 urg_hole = 0;
1407
1408	lock_sock(sk);
1409
1410	TCP_CHECK_TIMER(sk);
1411
1412	err = -ENOTCONN;
1413	if (sk->sk_state == TCP_LISTEN)
1414		goto out;
1415
1416	timeo = sock_rcvtimeo(sk, nonblock);
1417
1418	/* Urgent data needs to be handled specially. */
1419	if (flags & MSG_OOB)
1420		goto recv_urg;
1421
1422	seq = &tp->copied_seq;
1423	if (flags & MSG_PEEK) {
1424		peek_seq = tp->copied_seq;
1425		seq = &peek_seq;
1426	}
1427
1428	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1429
1430#ifdef CONFIG_NET_DMA
1431	tp->ucopy.dma_chan = NULL;
1432	preempt_disable();
1433	skb = skb_peek_tail(&sk->sk_receive_queue);
1434	{
1435		int available = 0;
1436
1437		if (skb)
1438			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1439		if ((available < target) &&
1440		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1441		    !sysctl_tcp_low_latency &&
1442		    dma_find_channel(DMA_MEMCPY)) {
1443			preempt_enable_no_resched();
1444			tp->ucopy.pinned_list =
1445					dma_pin_iovec_pages(msg->msg_iov, len);
1446		} else {
1447			preempt_enable_no_resched();
1448		}
1449	}
1450#endif
1451
1452	do {
1453		u32 offset;
1454
1455		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1456		if (tp->urg_data && tp->urg_seq == *seq) {
1457			if (copied)
1458				break;
1459			if (signal_pending(current)) {
1460				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1461				break;
1462			}
1463		}
1464
1465		/* Next get a buffer. */
1466
1467		skb_queue_walk(&sk->sk_receive_queue, skb) {
1468			/* Now that we have two receive queues this
1469			 * shouldn't happen.
1470			 */
1471			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1472			     KERN_INFO "recvmsg bug: copied %X "
1473				       "seq %X rcvnxt %X fl %X\n", *seq,
1474				       TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1475				       flags))
1476				break;
1477
1478			offset = *seq - TCP_SKB_CB(skb)->seq;
1479			if (tcp_hdr(skb)->syn)
1480				offset--;
1481			if (offset < skb->len)
1482				goto found_ok_skb;
1483			if (tcp_hdr(skb)->fin)
1484				goto found_fin_ok;
1485			WARN(!(flags & MSG_PEEK), KERN_INFO "recvmsg bug 2: "
1486					"copied %X seq %X rcvnxt %X fl %X\n",
1487					*seq, TCP_SKB_CB(skb)->seq,
1488					tp->rcv_nxt, flags);
1489		}
1490
1491		/* Well, if we have backlog, try to process it now yet. */
1492
1493		if (copied >= target && !sk->sk_backlog.tail)
1494			break;
1495
1496		if (copied) {
1497			if (sk->sk_err ||
1498			    sk->sk_state == TCP_CLOSE ||
1499			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1500			    !timeo ||
1501			    signal_pending(current))
1502				break;
1503		} else {
1504			if (sock_flag(sk, SOCK_DONE))
1505				break;
1506
1507			if (sk->sk_err) {
1508				copied = sock_error(sk);
1509				break;
1510			}
1511
1512			if (sk->sk_shutdown & RCV_SHUTDOWN)
1513				break;
1514
1515			if (sk->sk_state == TCP_CLOSE) {
1516				if (!sock_flag(sk, SOCK_DONE)) {
1517					/* This occurs when user tries to read
1518					 * from never connected socket.
1519					 */
1520					copied = -ENOTCONN;
1521					break;
1522				}
1523				break;
1524			}
1525
1526			if (!timeo) {
1527				copied = -EAGAIN;
1528				break;
1529			}
1530
1531			if (signal_pending(current)) {
1532				copied = sock_intr_errno(timeo);
1533				break;
1534			}
1535		}
1536
1537		tcp_cleanup_rbuf(sk, copied);
1538
1539		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1540			/* Install new reader */
1541			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1542				user_recv = current;
1543				tp->ucopy.task = user_recv;
1544				tp->ucopy.iov = msg->msg_iov;
1545			}
1546
1547			tp->ucopy.len = len;
1548
1549			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1550				!(flags & (MSG_PEEK | MSG_TRUNC)));
1551
1552			/* Ugly... If prequeue is not empty, we have to
1553			 * process it before releasing socket, otherwise
1554			 * order will be broken at second iteration.
1555			 * More elegant solution is required!!!
1556			 *
1557			 * Look: we have the following (pseudo)queues:
1558			 *
1559			 * 1. packets in flight
1560			 * 2. backlog
1561			 * 3. prequeue
1562			 * 4. receive_queue
1563			 *
1564			 * Each queue can be processed only if the next ones
1565			 * are empty. At this point we have empty receive_queue.
1566			 * But prequeue _can_ be not empty after 2nd iteration,
1567			 * when we jumped to start of loop because backlog
1568			 * processing added something to receive_queue.
1569			 * We cannot release_sock(), because backlog contains
1570			 * packets arrived _after_ prequeued ones.
1571			 *
1572			 * Shortly, algorithm is clear --- to process all
1573			 * the queues in order. We could make it more directly,
1574			 * requeueing packets from backlog to prequeue, if
1575			 * is not empty. It is more elegant, but eats cycles,
1576			 * unfortunately.
1577			 */
1578			if (!skb_queue_empty(&tp->ucopy.prequeue))
1579				goto do_prequeue;
1580
1581			/* __ Set realtime policy in scheduler __ */
1582		}
1583
1584#ifdef CONFIG_NET_DMA
1585		if (tp->ucopy.dma_chan)
1586			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1587#endif
1588		if (copied >= target) {
1589			/* Do not sleep, just process backlog. */
1590			release_sock(sk);
1591			lock_sock(sk);
1592		} else
1593			sk_wait_data(sk, &timeo);
1594
1595#ifdef CONFIG_NET_DMA
1596		tcp_service_net_dma(sk, false);  /* Don't block */
1597		tp->ucopy.wakeup = 0;
1598#endif
1599
1600		if (user_recv) {
1601			int chunk;
1602
1603			/* __ Restore normal policy in scheduler __ */
1604
1605			if ((chunk = len - tp->ucopy.len) != 0) {
1606				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1607				len -= chunk;
1608				copied += chunk;
1609			}
1610
1611			if (tp->rcv_nxt == tp->copied_seq &&
1612			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1613do_prequeue:
1614				tcp_prequeue_process(sk);
1615
1616				if ((chunk = len - tp->ucopy.len) != 0) {
1617					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1618					len -= chunk;
1619					copied += chunk;
1620				}
1621			}
1622		}
1623		if ((flags & MSG_PEEK) &&
1624		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1625			if (net_ratelimit())
1626				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1627				       current->comm, task_pid_nr(current));
1628			peek_seq = tp->copied_seq;
1629		}
1630		continue;
1631
1632	found_ok_skb:
1633		/* Ok so how much can we use? */
1634		used = skb->len - offset;
1635		if (len < used)
1636			used = len;
1637
1638		/* Do we have urgent data here? */
1639		if (tp->urg_data) {
1640			u32 urg_offset = tp->urg_seq - *seq;
1641			if (urg_offset < used) {
1642				if (!urg_offset) {
1643					if (!sock_flag(sk, SOCK_URGINLINE)) {
1644						++*seq;
1645						urg_hole++;
1646						offset++;
1647						used--;
1648						if (!used)
1649							goto skip_copy;
1650					}
1651				} else
1652					used = urg_offset;
1653			}
1654		}
1655
1656		if (!(flags & MSG_TRUNC)) {
1657#ifdef CONFIG_NET_DMA
1658			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1659				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1660
1661			if (tp->ucopy.dma_chan) {
1662				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1663					tp->ucopy.dma_chan, skb, offset,
1664					msg->msg_iov, used,
1665					tp->ucopy.pinned_list);
1666
1667				if (tp->ucopy.dma_cookie < 0) {
1668
1669					printk(KERN_ALERT "dma_cookie < 0\n");
1670
1671					/* Exception. Bailout! */
1672					if (!copied)
1673						copied = -EFAULT;
1674					break;
1675				}
1676
1677				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1678
1679				if ((offset + used) == skb->len)
1680					copied_early = 1;
1681
1682			} else
1683#endif
1684			{
1685				err = skb_copy_datagram_iovec(skb, offset,
1686						msg->msg_iov, used);
1687				if (err) {
1688					/* Exception. Bailout! */
1689					if (!copied)
1690						copied = -EFAULT;
1691					break;
1692				}
1693			}
1694		}
1695
1696		*seq += used;
1697		copied += used;
1698		len -= used;
1699
1700		tcp_rcv_space_adjust(sk);
1701
1702skip_copy:
1703		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1704			tp->urg_data = 0;
1705			tcp_fast_path_check(sk);
1706		}
1707		if (used + offset < skb->len)
1708			continue;
1709
1710		if (tcp_hdr(skb)->fin)
1711			goto found_fin_ok;
1712		if (!(flags & MSG_PEEK)) {
1713			sk_eat_skb(sk, skb, copied_early);
1714			copied_early = 0;
1715		}
1716		continue;
1717
1718	found_fin_ok:
1719		/* Process the FIN. */
1720		++*seq;
1721		if (!(flags & MSG_PEEK)) {
1722			sk_eat_skb(sk, skb, copied_early);
1723			copied_early = 0;
1724		}
1725		break;
1726	} while (len > 0);
1727
1728	if (user_recv) {
1729		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1730			int chunk;
1731
1732			tp->ucopy.len = copied > 0 ? len : 0;
1733
1734			tcp_prequeue_process(sk);
1735
1736			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1737				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1738				len -= chunk;
1739				copied += chunk;
1740			}
1741		}
1742
1743		tp->ucopy.task = NULL;
1744		tp->ucopy.len = 0;
1745	}
1746
1747#ifdef CONFIG_NET_DMA
1748	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1749	tp->ucopy.dma_chan = NULL;
1750
1751	if (tp->ucopy.pinned_list) {
1752		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1753		tp->ucopy.pinned_list = NULL;
1754	}
1755#endif
1756
1757	/* According to UNIX98, msg_name/msg_namelen are ignored
1758	 * on connected socket. I was just happy when found this 8) --ANK
1759	 */
1760
1761	/* Clean up data we have read: This will do ACK frames. */
1762	tcp_cleanup_rbuf(sk, copied);
1763
1764	TCP_CHECK_TIMER(sk);
1765	release_sock(sk);
1766	return copied;
1767
1768out:
1769	TCP_CHECK_TIMER(sk);
1770	release_sock(sk);
1771	return err;
1772
1773recv_urg:
1774	err = tcp_recv_urg(sk, msg, len, flags);
1775	goto out;
1776}
1777
1778void tcp_set_state(struct sock *sk, int state)
1779{
1780	int oldstate = sk->sk_state;
1781
1782	switch (state) {
1783	case TCP_ESTABLISHED:
1784		if (oldstate != TCP_ESTABLISHED)
1785			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1786		break;
1787
1788	case TCP_CLOSE:
1789		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1790			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1791
1792		sk->sk_prot->unhash(sk);
1793		if (inet_csk(sk)->icsk_bind_hash &&
1794		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1795			inet_put_port(sk);
1796		/* fall through */
1797	default:
1798		if (oldstate == TCP_ESTABLISHED)
1799			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1800	}
1801
1802	/* Change state AFTER socket is unhashed to avoid closed
1803	 * socket sitting in hash tables.
1804	 */
1805	sk->sk_state = state;
1806
1807#ifdef STATE_TRACE
1808	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1809#endif
1810}
1811EXPORT_SYMBOL_GPL(tcp_set_state);
1812
1813/*
1814 *	State processing on a close. This implements the state shift for
1815 *	sending our FIN frame. Note that we only send a FIN for some
1816 *	states. A shutdown() may have already sent the FIN, or we may be
1817 *	closed.
1818 */
1819
1820static const unsigned char new_state[16] = {
1821  /* current state:        new state:      action:	*/
1822  /* (Invalid)		*/ TCP_CLOSE,
1823  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1824  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1825  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1826  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1827  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1828  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1829  /* TCP_CLOSE		*/ TCP_CLOSE,
1830  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1831  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1832  /* TCP_LISTEN		*/ TCP_CLOSE,
1833  /* TCP_CLOSING	*/ TCP_CLOSING,
1834};
1835
1836static int tcp_close_state(struct sock *sk)
1837{
1838	int next = (int)new_state[sk->sk_state];
1839	int ns = next & TCP_STATE_MASK;
1840
1841	tcp_set_state(sk, ns);
1842
1843	return next & TCP_ACTION_FIN;
1844}
1845
1846/*
1847 *	Shutdown the sending side of a connection. Much like close except
1848 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1849 */
1850
1851void tcp_shutdown(struct sock *sk, int how)
1852{
1853	/*	We need to grab some memory, and put together a FIN,
1854	 *	and then put it into the queue to be sent.
1855	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1856	 */
1857	if (!(how & SEND_SHUTDOWN))
1858		return;
1859
1860	/* If we've already sent a FIN, or it's a closed state, skip this. */
1861	if ((1 << sk->sk_state) &
1862	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1863	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1864		/* Clear out any half completed packets.  FIN if needed. */
1865		if (tcp_close_state(sk))
1866			tcp_send_fin(sk);
1867	}
1868}
1869
1870void tcp_close(struct sock *sk, long timeout)
1871{
1872	struct sk_buff *skb;
1873	int data_was_unread = 0;
1874	int state;
1875
1876	lock_sock(sk);
1877	sk->sk_shutdown = SHUTDOWN_MASK;
1878
1879	if (sk->sk_state == TCP_LISTEN) {
1880		tcp_set_state(sk, TCP_CLOSE);
1881
1882		/* Special case. */
1883		inet_csk_listen_stop(sk);
1884
1885		goto adjudge_to_death;
1886	}
1887
1888	/*  We need to flush the recv. buffs.  We do this only on the
1889	 *  descriptor close, not protocol-sourced closes, because the
1890	 *  reader process may not have drained the data yet!
1891	 */
1892	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1893		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1894			  tcp_hdr(skb)->fin;
1895		data_was_unread += len;
1896		__kfree_skb(skb);
1897	}
1898
1899	sk_mem_reclaim(sk);
1900
1901	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1902	 * data was lost. To witness the awful effects of the old behavior of
1903	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1904	 * GET in an FTP client, suspend the process, wait for the client to
1905	 * advertise a zero window, then kill -9 the FTP client, wheee...
1906	 * Note: timeout is always zero in such a case.
1907	 */
1908	if (data_was_unread) {
1909		/* Unread data was tossed, zap the connection. */
1910		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1911		tcp_set_state(sk, TCP_CLOSE);
1912		tcp_send_active_reset(sk, sk->sk_allocation);
1913	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1914		/* Check zero linger _after_ checking for unread data. */
1915		sk->sk_prot->disconnect(sk, 0);
1916		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1917	} else if (tcp_close_state(sk)) {
1918		/* We FIN if the application ate all the data before
1919		 * zapping the connection.
1920		 */
1921
1922		/* RED-PEN. Formally speaking, we have broken TCP state
1923		 * machine. State transitions:
1924		 *
1925		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1926		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1927		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1928		 *
1929		 * are legal only when FIN has been sent (i.e. in window),
1930		 * rather than queued out of window. Purists blame.
1931		 *
1932		 * F.e. "RFC state" is ESTABLISHED,
1933		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1934		 *
1935		 * The visible declinations are that sometimes
1936		 * we enter time-wait state, when it is not required really
1937		 * (harmless), do not send active resets, when they are
1938		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1939		 * they look as CLOSING or LAST_ACK for Linux)
1940		 * Probably, I missed some more holelets.
1941		 * 						--ANK
1942		 */
1943		tcp_send_fin(sk);
1944	}
1945
1946	sk_stream_wait_close(sk, timeout);
1947
1948adjudge_to_death:
1949	state = sk->sk_state;
1950	sock_hold(sk);
1951	sock_orphan(sk);
1952
1953	/* It is the last release_sock in its life. It will remove backlog. */
1954	release_sock(sk);
1955
1956
1957	/* Now socket is owned by kernel and we acquire BH lock
1958	   to finish close. No need to check for user refs.
1959	 */
1960	local_bh_disable();
1961	bh_lock_sock(sk);
1962	WARN_ON(sock_owned_by_user(sk));
1963
1964	percpu_counter_inc(sk->sk_prot->orphan_count);
1965
1966	/* Have we already been destroyed by a softirq or backlog? */
1967	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1968		goto out;
1969
1970	/*	This is a (useful) BSD violating of the RFC. There is a
1971	 *	problem with TCP as specified in that the other end could
1972	 *	keep a socket open forever with no application left this end.
1973	 *	We use a 3 minute timeout (about the same as BSD) then kill
1974	 *	our end. If they send after that then tough - BUT: long enough
1975	 *	that we won't make the old 4*rto = almost no time - whoops
1976	 *	reset mistake.
1977	 *
1978	 *	Nope, it was not mistake. It is really desired behaviour
1979	 *	f.e. on http servers, when such sockets are useless, but
1980	 *	consume significant resources. Let's do it with special
1981	 *	linger2	option.					--ANK
1982	 */
1983
1984	if (sk->sk_state == TCP_FIN_WAIT2) {
1985		struct tcp_sock *tp = tcp_sk(sk);
1986		if (tp->linger2 < 0) {
1987			tcp_set_state(sk, TCP_CLOSE);
1988			tcp_send_active_reset(sk, GFP_ATOMIC);
1989			NET_INC_STATS_BH(sock_net(sk),
1990					LINUX_MIB_TCPABORTONLINGER);
1991		} else {
1992			const int tmo = tcp_fin_time(sk);
1993
1994			if (tmo > TCP_TIMEWAIT_LEN) {
1995				inet_csk_reset_keepalive_timer(sk,
1996						tmo - TCP_TIMEWAIT_LEN);
1997			} else {
1998				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1999				goto out;
2000			}
2001		}
2002	}
2003	if (sk->sk_state != TCP_CLOSE) {
2004		int orphan_count = percpu_counter_read_positive(
2005						sk->sk_prot->orphan_count);
2006
2007		sk_mem_reclaim(sk);
2008		if (tcp_too_many_orphans(sk, orphan_count)) {
2009			if (net_ratelimit())
2010				printk(KERN_INFO "TCP: too many of orphaned "
2011				       "sockets\n");
2012			tcp_set_state(sk, TCP_CLOSE);
2013			tcp_send_active_reset(sk, GFP_ATOMIC);
2014			NET_INC_STATS_BH(sock_net(sk),
2015					LINUX_MIB_TCPABORTONMEMORY);
2016		}
2017	}
2018
2019	if (sk->sk_state == TCP_CLOSE)
2020		inet_csk_destroy_sock(sk);
2021	/* Otherwise, socket is reprieved until protocol close. */
2022
2023out:
2024	bh_unlock_sock(sk);
2025	local_bh_enable();
2026	sock_put(sk);
2027}
2028
2029/* These states need RST on ABORT according to RFC793 */
2030
2031static inline int tcp_need_reset(int state)
2032{
2033	return (1 << state) &
2034	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2035		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2036}
2037
2038int tcp_disconnect(struct sock *sk, int flags)
2039{
2040	struct inet_sock *inet = inet_sk(sk);
2041	struct inet_connection_sock *icsk = inet_csk(sk);
2042	struct tcp_sock *tp = tcp_sk(sk);
2043	int err = 0;
2044	int old_state = sk->sk_state;
2045
2046	if (old_state != TCP_CLOSE)
2047		tcp_set_state(sk, TCP_CLOSE);
2048
2049	/* ABORT function of RFC793 */
2050	if (old_state == TCP_LISTEN) {
2051		inet_csk_listen_stop(sk);
2052	} else if (tcp_need_reset(old_state) ||
2053		   (tp->snd_nxt != tp->write_seq &&
2054		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2055		/* The last check adjusts for discrepancy of Linux wrt. RFC
2056		 * states
2057		 */
2058		tcp_send_active_reset(sk, gfp_any());
2059		sk->sk_err = ECONNRESET;
2060	} else if (old_state == TCP_SYN_SENT)
2061		sk->sk_err = ECONNRESET;
2062
2063	tcp_clear_xmit_timers(sk);
2064	__skb_queue_purge(&sk->sk_receive_queue);
2065	tcp_write_queue_purge(sk);
2066	__skb_queue_purge(&tp->out_of_order_queue);
2067#ifdef CONFIG_NET_DMA
2068	__skb_queue_purge(&sk->sk_async_wait_queue);
2069#endif
2070
2071	inet->inet_dport = 0;
2072
2073	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2074		inet_reset_saddr(sk);
2075
2076	sk->sk_shutdown = 0;
2077	sock_reset_flag(sk, SOCK_DONE);
2078	tp->srtt = 0;
2079	if ((tp->write_seq += tp->max_window + 2) == 0)
2080		tp->write_seq = 1;
2081	icsk->icsk_backoff = 0;
2082	tp->snd_cwnd = 2;
2083	icsk->icsk_probes_out = 0;
2084	tp->packets_out = 0;
2085	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2086	tp->snd_cwnd_cnt = 0;
2087	tp->bytes_acked = 0;
2088	tp->window_clamp = 0;
2089	tcp_set_ca_state(sk, TCP_CA_Open);
2090	tcp_clear_retrans(tp);
2091	inet_csk_delack_init(sk);
2092	tcp_init_send_head(sk);
2093	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2094	__sk_dst_reset(sk);
2095
2096	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2097
2098	sk->sk_error_report(sk);
2099	return err;
2100}
2101
2102/*
2103 *	Socket option code for TCP.
2104 */
2105static int do_tcp_setsockopt(struct sock *sk, int level,
2106		int optname, char __user *optval, unsigned int optlen)
2107{
2108	struct tcp_sock *tp = tcp_sk(sk);
2109	struct inet_connection_sock *icsk = inet_csk(sk);
2110	int val;
2111	int err = 0;
2112
2113	/* These are data/string values, all the others are ints */
2114	switch (optname) {
2115	case TCP_CONGESTION: {
2116		char name[TCP_CA_NAME_MAX];
2117
2118		if (optlen < 1)
2119			return -EINVAL;
2120
2121		val = strncpy_from_user(name, optval,
2122					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2123		if (val < 0)
2124			return -EFAULT;
2125		name[val] = 0;
2126
2127		lock_sock(sk);
2128		err = tcp_set_congestion_control(sk, name);
2129		release_sock(sk);
2130		return err;
2131	}
2132	case TCP_COOKIE_TRANSACTIONS: {
2133		struct tcp_cookie_transactions ctd;
2134		struct tcp_cookie_values *cvp = NULL;
2135
2136		if (sizeof(ctd) > optlen)
2137			return -EINVAL;
2138		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2139			return -EFAULT;
2140
2141		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2142		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2143			return -EINVAL;
2144
2145		if (ctd.tcpct_cookie_desired == 0) {
2146			/* default to global value */
2147		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2148			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2149			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2150			return -EINVAL;
2151		}
2152
2153		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2154			/* Supercedes all other values */
2155			lock_sock(sk);
2156			if (tp->cookie_values != NULL) {
2157				kref_put(&tp->cookie_values->kref,
2158					 tcp_cookie_values_release);
2159				tp->cookie_values = NULL;
2160			}
2161			tp->rx_opt.cookie_in_always = 0; /* false */
2162			tp->rx_opt.cookie_out_never = 1; /* true */
2163			release_sock(sk);
2164			return err;
2165		}
2166
2167		/* Allocate ancillary memory before locking.
2168		 */
2169		if (ctd.tcpct_used > 0 ||
2170		    (tp->cookie_values == NULL &&
2171		     (sysctl_tcp_cookie_size > 0 ||
2172		      ctd.tcpct_cookie_desired > 0 ||
2173		      ctd.tcpct_s_data_desired > 0))) {
2174			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2175				      GFP_KERNEL);
2176			if (cvp == NULL)
2177				return -ENOMEM;
2178		}
2179		lock_sock(sk);
2180		tp->rx_opt.cookie_in_always =
2181			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2182		tp->rx_opt.cookie_out_never = 0; /* false */
2183
2184		if (tp->cookie_values != NULL) {
2185			if (cvp != NULL) {
2186				/* Changed values are recorded by a changed
2187				 * pointer, ensuring the cookie will differ,
2188				 * without separately hashing each value later.
2189				 */
2190				kref_put(&tp->cookie_values->kref,
2191					 tcp_cookie_values_release);
2192				kref_init(&cvp->kref);
2193				tp->cookie_values = cvp;
2194			} else {
2195				cvp = tp->cookie_values;
2196			}
2197		}
2198		if (cvp != NULL) {
2199			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2200
2201			if (ctd.tcpct_used > 0) {
2202				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2203				       ctd.tcpct_used);
2204				cvp->s_data_desired = ctd.tcpct_used;
2205				cvp->s_data_constant = 1; /* true */
2206			} else {
2207				/* No constant payload data. */
2208				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2209				cvp->s_data_constant = 0; /* false */
2210			}
2211		}
2212		release_sock(sk);
2213		return err;
2214	}
2215	default:
2216		/* fallthru */
2217		break;
2218	}
2219
2220	if (optlen < sizeof(int))
2221		return -EINVAL;
2222
2223	if (get_user(val, (int __user *)optval))
2224		return -EFAULT;
2225
2226	lock_sock(sk);
2227
2228	switch (optname) {
2229	case TCP_MAXSEG:
2230		/* Values greater than interface MTU won't take effect. However
2231		 * at the point when this call is done we typically don't yet
2232		 * know which interface is going to be used */
2233		if (val < 8 || val > MAX_TCP_WINDOW) {
2234			err = -EINVAL;
2235			break;
2236		}
2237		tp->rx_opt.user_mss = val;
2238		break;
2239
2240	case TCP_NODELAY:
2241		if (val) {
2242			/* TCP_NODELAY is weaker than TCP_CORK, so that
2243			 * this option on corked socket is remembered, but
2244			 * it is not activated until cork is cleared.
2245			 *
2246			 * However, when TCP_NODELAY is set we make
2247			 * an explicit push, which overrides even TCP_CORK
2248			 * for currently queued segments.
2249			 */
2250			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2251			tcp_push_pending_frames(sk);
2252		} else {
2253			tp->nonagle &= ~TCP_NAGLE_OFF;
2254		}
2255		break;
2256
2257	case TCP_THIN_LINEAR_TIMEOUTS:
2258		if (val < 0 || val > 1)
2259			err = -EINVAL;
2260		else
2261			tp->thin_lto = val;
2262		break;
2263
2264	case TCP_THIN_DUPACK:
2265		if (val < 0 || val > 1)
2266			err = -EINVAL;
2267		else
2268			tp->thin_dupack = val;
2269		break;
2270
2271	case TCP_CORK:
2272		/* When set indicates to always queue non-full frames.
2273		 * Later the user clears this option and we transmit
2274		 * any pending partial frames in the queue.  This is
2275		 * meant to be used alongside sendfile() to get properly
2276		 * filled frames when the user (for example) must write
2277		 * out headers with a write() call first and then use
2278		 * sendfile to send out the data parts.
2279		 *
2280		 * TCP_CORK can be set together with TCP_NODELAY and it is
2281		 * stronger than TCP_NODELAY.
2282		 */
2283		if (val) {
2284			tp->nonagle |= TCP_NAGLE_CORK;
2285		} else {
2286			tp->nonagle &= ~TCP_NAGLE_CORK;
2287			if (tp->nonagle&TCP_NAGLE_OFF)
2288				tp->nonagle |= TCP_NAGLE_PUSH;
2289			tcp_push_pending_frames(sk);
2290		}
2291		break;
2292
2293	case TCP_KEEPIDLE:
2294		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2295			err = -EINVAL;
2296		else {
2297			tp->keepalive_time = val * HZ;
2298			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2299			    !((1 << sk->sk_state) &
2300			      (TCPF_CLOSE | TCPF_LISTEN))) {
2301				u32 elapsed = keepalive_time_elapsed(tp);
2302				if (tp->keepalive_time > elapsed)
2303					elapsed = tp->keepalive_time - elapsed;
2304				else
2305					elapsed = 0;
2306				inet_csk_reset_keepalive_timer(sk, elapsed);
2307			}
2308		}
2309		break;
2310	case TCP_KEEPINTVL:
2311		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2312			err = -EINVAL;
2313		else
2314			tp->keepalive_intvl = val * HZ;
2315		break;
2316	case TCP_KEEPCNT:
2317		if (val < 1 || val > MAX_TCP_KEEPCNT)
2318			err = -EINVAL;
2319		else
2320			tp->keepalive_probes = val;
2321		break;
2322	case TCP_SYNCNT:
2323		if (val < 1 || val > MAX_TCP_SYNCNT)
2324			err = -EINVAL;
2325		else
2326			icsk->icsk_syn_retries = val;
2327		break;
2328
2329	case TCP_LINGER2:
2330		if (val < 0)
2331			tp->linger2 = -1;
2332		else if (val > sysctl_tcp_fin_timeout / HZ)
2333			tp->linger2 = 0;
2334		else
2335			tp->linger2 = val * HZ;
2336		break;
2337
2338	case TCP_DEFER_ACCEPT:
2339		/* Translate value in seconds to number of retransmits */
2340		icsk->icsk_accept_queue.rskq_defer_accept =
2341			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2342					TCP_RTO_MAX / HZ);
2343		break;
2344
2345	case TCP_WINDOW_CLAMP:
2346		if (!val) {
2347			if (sk->sk_state != TCP_CLOSE) {
2348				err = -EINVAL;
2349				break;
2350			}
2351			tp->window_clamp = 0;
2352		} else
2353			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2354						SOCK_MIN_RCVBUF / 2 : val;
2355		break;
2356
2357	case TCP_QUICKACK:
2358		if (!val) {
2359			icsk->icsk_ack.pingpong = 1;
2360		} else {
2361			icsk->icsk_ack.pingpong = 0;
2362			if ((1 << sk->sk_state) &
2363			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2364			    inet_csk_ack_scheduled(sk)) {
2365				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2366				tcp_cleanup_rbuf(sk, 1);
2367				if (!(val & 1))
2368					icsk->icsk_ack.pingpong = 1;
2369			}
2370		}
2371		break;
2372
2373#ifdef CONFIG_TCP_MD5SIG
2374	case TCP_MD5SIG:
2375		/* Read the IP->Key mappings from userspace */
2376		err = tp->af_specific->md5_parse(sk, optval, optlen);
2377		break;
2378#endif
2379
2380	default:
2381		err = -ENOPROTOOPT;
2382		break;
2383	}
2384
2385	release_sock(sk);
2386	return err;
2387}
2388
2389int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2390		   unsigned int optlen)
2391{
2392	struct inet_connection_sock *icsk = inet_csk(sk);
2393
2394	if (level != SOL_TCP)
2395		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2396						     optval, optlen);
2397	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2398}
2399
2400#ifdef CONFIG_COMPAT
2401int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2402			  char __user *optval, unsigned int optlen)
2403{
2404	if (level != SOL_TCP)
2405		return inet_csk_compat_setsockopt(sk, level, optname,
2406						  optval, optlen);
2407	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2408}
2409
2410EXPORT_SYMBOL(compat_tcp_setsockopt);
2411#endif
2412
2413/* Return information about state of tcp endpoint in API format. */
2414void tcp_get_info(struct sock *sk, struct tcp_info *info)
2415{
2416	struct tcp_sock *tp = tcp_sk(sk);
2417	const struct inet_connection_sock *icsk = inet_csk(sk);
2418	u32 now = tcp_time_stamp;
2419
2420	memset(info, 0, sizeof(*info));
2421
2422	info->tcpi_state = sk->sk_state;
2423	info->tcpi_ca_state = icsk->icsk_ca_state;
2424	info->tcpi_retransmits = icsk->icsk_retransmits;
2425	info->tcpi_probes = icsk->icsk_probes_out;
2426	info->tcpi_backoff = icsk->icsk_backoff;
2427
2428	if (tp->rx_opt.tstamp_ok)
2429		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2430	if (tcp_is_sack(tp))
2431		info->tcpi_options |= TCPI_OPT_SACK;
2432	if (tp->rx_opt.wscale_ok) {
2433		info->tcpi_options |= TCPI_OPT_WSCALE;
2434		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2435		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2436	}
2437
2438	if (tp->ecn_flags&TCP_ECN_OK)
2439		info->tcpi_options |= TCPI_OPT_ECN;
2440
2441	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2442	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2443	info->tcpi_snd_mss = tp->mss_cache;
2444	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2445
2446	if (sk->sk_state == TCP_LISTEN) {
2447		info->tcpi_unacked = sk->sk_ack_backlog;
2448		info->tcpi_sacked = sk->sk_max_ack_backlog;
2449	} else {
2450		info->tcpi_unacked = tp->packets_out;
2451		info->tcpi_sacked = tp->sacked_out;
2452	}
2453	info->tcpi_lost = tp->lost_out;
2454	info->tcpi_retrans = tp->retrans_out;
2455	info->tcpi_fackets = tp->fackets_out;
2456
2457	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2458	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2459	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2460
2461	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2462	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2463	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2464	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2465	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2466	info->tcpi_snd_cwnd = tp->snd_cwnd;
2467	info->tcpi_advmss = tp->advmss;
2468	info->tcpi_reordering = tp->reordering;
2469
2470	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2471	info->tcpi_rcv_space = tp->rcvq_space.space;
2472
2473	info->tcpi_total_retrans = tp->total_retrans;
2474}
2475
2476EXPORT_SYMBOL_GPL(tcp_get_info);
2477
2478static int do_tcp_getsockopt(struct sock *sk, int level,
2479		int optname, char __user *optval, int __user *optlen)
2480{
2481	struct inet_connection_sock *icsk = inet_csk(sk);
2482	struct tcp_sock *tp = tcp_sk(sk);
2483	int val, len;
2484
2485	if (get_user(len, optlen))
2486		return -EFAULT;
2487
2488	len = min_t(unsigned int, len, sizeof(int));
2489
2490	if (len < 0)
2491		return -EINVAL;
2492
2493	switch (optname) {
2494	case TCP_MAXSEG:
2495		val = tp->mss_cache;
2496		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2497			val = tp->rx_opt.user_mss;
2498		break;
2499	case TCP_NODELAY:
2500		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2501		break;
2502	case TCP_CORK:
2503		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2504		break;
2505	case TCP_KEEPIDLE:
2506		val = keepalive_time_when(tp) / HZ;
2507		break;
2508	case TCP_KEEPINTVL:
2509		val = keepalive_intvl_when(tp) / HZ;
2510		break;
2511	case TCP_KEEPCNT:
2512		val = keepalive_probes(tp);
2513		break;
2514	case TCP_SYNCNT:
2515		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2516		break;
2517	case TCP_LINGER2:
2518		val = tp->linger2;
2519		if (val >= 0)
2520			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2521		break;
2522	case TCP_DEFER_ACCEPT:
2523		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2524				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2525		break;
2526	case TCP_WINDOW_CLAMP:
2527		val = tp->window_clamp;
2528		break;
2529	case TCP_INFO: {
2530		struct tcp_info info;
2531
2532		if (get_user(len, optlen))
2533			return -EFAULT;
2534
2535		tcp_get_info(sk, &info);
2536
2537		len = min_t(unsigned int, len, sizeof(info));
2538		if (put_user(len, optlen))
2539			return -EFAULT;
2540		if (copy_to_user(optval, &info, len))
2541			return -EFAULT;
2542		return 0;
2543	}
2544	case TCP_QUICKACK:
2545		val = !icsk->icsk_ack.pingpong;
2546		break;
2547
2548	case TCP_CONGESTION:
2549		if (get_user(len, optlen))
2550			return -EFAULT;
2551		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2552		if (put_user(len, optlen))
2553			return -EFAULT;
2554		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2555			return -EFAULT;
2556		return 0;
2557
2558	case TCP_COOKIE_TRANSACTIONS: {
2559		struct tcp_cookie_transactions ctd;
2560		struct tcp_cookie_values *cvp = tp->cookie_values;
2561
2562		if (get_user(len, optlen))
2563			return -EFAULT;
2564		if (len < sizeof(ctd))
2565			return -EINVAL;
2566
2567		memset(&ctd, 0, sizeof(ctd));
2568		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2569				   TCP_COOKIE_IN_ALWAYS : 0)
2570				| (tp->rx_opt.cookie_out_never ?
2571				   TCP_COOKIE_OUT_NEVER : 0);
2572
2573		if (cvp != NULL) {
2574			ctd.tcpct_flags |= (cvp->s_data_in ?
2575					    TCP_S_DATA_IN : 0)
2576					 | (cvp->s_data_out ?
2577					    TCP_S_DATA_OUT : 0);
2578
2579			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2580			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2581
2582			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2583			       cvp->cookie_pair_size);
2584			ctd.tcpct_used = cvp->cookie_pair_size;
2585		}
2586
2587		if (put_user(sizeof(ctd), optlen))
2588			return -EFAULT;
2589		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2590			return -EFAULT;
2591		return 0;
2592	}
2593	default:
2594		return -ENOPROTOOPT;
2595	}
2596
2597	if (put_user(len, optlen))
2598		return -EFAULT;
2599	if (copy_to_user(optval, &val, len))
2600		return -EFAULT;
2601	return 0;
2602}
2603
2604int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2605		   int __user *optlen)
2606{
2607	struct inet_connection_sock *icsk = inet_csk(sk);
2608
2609	if (level != SOL_TCP)
2610		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2611						     optval, optlen);
2612	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2613}
2614
2615#ifdef CONFIG_COMPAT
2616int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2617			  char __user *optval, int __user *optlen)
2618{
2619	if (level != SOL_TCP)
2620		return inet_csk_compat_getsockopt(sk, level, optname,
2621						  optval, optlen);
2622	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2623}
2624
2625EXPORT_SYMBOL(compat_tcp_getsockopt);
2626#endif
2627
2628struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2629{
2630	struct sk_buff *segs = ERR_PTR(-EINVAL);
2631	struct tcphdr *th;
2632	unsigned thlen;
2633	unsigned int seq;
2634	__be32 delta;
2635	unsigned int oldlen;
2636	unsigned int mss;
2637
2638	if (!pskb_may_pull(skb, sizeof(*th)))
2639		goto out;
2640
2641	th = tcp_hdr(skb);
2642	thlen = th->doff * 4;
2643	if (thlen < sizeof(*th))
2644		goto out;
2645
2646	if (!pskb_may_pull(skb, thlen))
2647		goto out;
2648
2649	oldlen = (u16)~skb->len;
2650	__skb_pull(skb, thlen);
2651
2652	mss = skb_shinfo(skb)->gso_size;
2653	if (unlikely(skb->len <= mss))
2654		goto out;
2655
2656	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2657		/* Packet is from an untrusted source, reset gso_segs. */
2658		int type = skb_shinfo(skb)->gso_type;
2659
2660		if (unlikely(type &
2661			     ~(SKB_GSO_TCPV4 |
2662			       SKB_GSO_DODGY |
2663			       SKB_GSO_TCP_ECN |
2664			       SKB_GSO_TCPV6 |
2665			       0) ||
2666			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2667			goto out;
2668
2669		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2670
2671		segs = NULL;
2672		goto out;
2673	}
2674
2675	segs = skb_segment(skb, features);
2676	if (IS_ERR(segs))
2677		goto out;
2678
2679	delta = htonl(oldlen + (thlen + mss));
2680
2681	skb = segs;
2682	th = tcp_hdr(skb);
2683	seq = ntohl(th->seq);
2684
2685	do {
2686		th->fin = th->psh = 0;
2687
2688		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2689				       (__force u32)delta));
2690		if (skb->ip_summed != CHECKSUM_PARTIAL)
2691			th->check =
2692			     csum_fold(csum_partial(skb_transport_header(skb),
2693						    thlen, skb->csum));
2694
2695		seq += mss;
2696		skb = skb->next;
2697		th = tcp_hdr(skb);
2698
2699		th->seq = htonl(seq);
2700		th->cwr = 0;
2701	} while (skb->next);
2702
2703	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2704		      skb->data_len);
2705	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2706				(__force u32)delta));
2707	if (skb->ip_summed != CHECKSUM_PARTIAL)
2708		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2709						   thlen, skb->csum));
2710
2711out:
2712	return segs;
2713}
2714EXPORT_SYMBOL(tcp_tso_segment);
2715
2716struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2717{
2718	struct sk_buff **pp = NULL;
2719	struct sk_buff *p;
2720	struct tcphdr *th;
2721	struct tcphdr *th2;
2722	unsigned int len;
2723	unsigned int thlen;
2724	__be32 flags;
2725	unsigned int mss = 1;
2726	unsigned int hlen;
2727	unsigned int off;
2728	int flush = 1;
2729	int i;
2730
2731	off = skb_gro_offset(skb);
2732	hlen = off + sizeof(*th);
2733	th = skb_gro_header_fast(skb, off);
2734	if (skb_gro_header_hard(skb, hlen)) {
2735		th = skb_gro_header_slow(skb, hlen, off);
2736		if (unlikely(!th))
2737			goto out;
2738	}
2739
2740	thlen = th->doff * 4;
2741	if (thlen < sizeof(*th))
2742		goto out;
2743
2744	hlen = off + thlen;
2745	if (skb_gro_header_hard(skb, hlen)) {
2746		th = skb_gro_header_slow(skb, hlen, off);
2747		if (unlikely(!th))
2748			goto out;
2749	}
2750
2751	skb_gro_pull(skb, thlen);
2752
2753	len = skb_gro_len(skb);
2754	flags = tcp_flag_word(th);
2755
2756	for (; (p = *head); head = &p->next) {
2757		if (!NAPI_GRO_CB(p)->same_flow)
2758			continue;
2759
2760		th2 = tcp_hdr(p);
2761
2762		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2763			NAPI_GRO_CB(p)->same_flow = 0;
2764			continue;
2765		}
2766
2767		goto found;
2768	}
2769
2770	goto out_check_final;
2771
2772found:
2773	flush = NAPI_GRO_CB(p)->flush;
2774	flush |= (__force int)(flags & TCP_FLAG_CWR);
2775	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2776		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2777	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2778	for (i = sizeof(*th); i < thlen; i += 4)
2779		flush |= *(u32 *)((u8 *)th + i) ^
2780			 *(u32 *)((u8 *)th2 + i);
2781
2782	mss = skb_shinfo(p)->gso_size;
2783
2784	flush |= (len - 1) >= mss;
2785	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2786
2787	if (flush || skb_gro_receive(head, skb)) {
2788		mss = 1;
2789		goto out_check_final;
2790	}
2791
2792	p = *head;
2793	th2 = tcp_hdr(p);
2794	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2795
2796out_check_final:
2797	flush = len < mss;
2798	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2799					TCP_FLAG_RST | TCP_FLAG_SYN |
2800					TCP_FLAG_FIN));
2801
2802	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2803		pp = head;
2804
2805out:
2806	NAPI_GRO_CB(skb)->flush |= flush;
2807
2808	return pp;
2809}
2810EXPORT_SYMBOL(tcp_gro_receive);
2811
2812int tcp_gro_complete(struct sk_buff *skb)
2813{
2814	struct tcphdr *th = tcp_hdr(skb);
2815
2816	skb->csum_start = skb_transport_header(skb) - skb->head;
2817	skb->csum_offset = offsetof(struct tcphdr, check);
2818	skb->ip_summed = CHECKSUM_PARTIAL;
2819
2820	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2821
2822	if (th->cwr)
2823		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2824
2825	return 0;
2826}
2827EXPORT_SYMBOL(tcp_gro_complete);
2828
2829#ifdef CONFIG_TCP_MD5SIG
2830static unsigned long tcp_md5sig_users;
2831static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool;
2832static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2833
2834static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool)
2835{
2836	int cpu;
2837	for_each_possible_cpu(cpu) {
2838		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2839		if (p) {
2840			if (p->md5_desc.tfm)
2841				crypto_free_hash(p->md5_desc.tfm);
2842			kfree(p);
2843		}
2844	}
2845	free_percpu(pool);
2846}
2847
2848void tcp_free_md5sig_pool(void)
2849{
2850	struct tcp_md5sig_pool * __percpu *pool = NULL;
2851
2852	spin_lock_bh(&tcp_md5sig_pool_lock);
2853	if (--tcp_md5sig_users == 0) {
2854		pool = tcp_md5sig_pool;
2855		tcp_md5sig_pool = NULL;
2856	}
2857	spin_unlock_bh(&tcp_md5sig_pool_lock);
2858	if (pool)
2859		__tcp_free_md5sig_pool(pool);
2860}
2861
2862EXPORT_SYMBOL(tcp_free_md5sig_pool);
2863
2864static struct tcp_md5sig_pool * __percpu *
2865__tcp_alloc_md5sig_pool(struct sock *sk)
2866{
2867	int cpu;
2868	struct tcp_md5sig_pool * __percpu *pool;
2869
2870	pool = alloc_percpu(struct tcp_md5sig_pool *);
2871	if (!pool)
2872		return NULL;
2873
2874	for_each_possible_cpu(cpu) {
2875		struct tcp_md5sig_pool *p;
2876		struct crypto_hash *hash;
2877
2878		p = kzalloc(sizeof(*p), sk->sk_allocation);
2879		if (!p)
2880			goto out_free;
2881		*per_cpu_ptr(pool, cpu) = p;
2882
2883		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2884		if (!hash || IS_ERR(hash))
2885			goto out_free;
2886
2887		p->md5_desc.tfm = hash;
2888	}
2889	return pool;
2890out_free:
2891	__tcp_free_md5sig_pool(pool);
2892	return NULL;
2893}
2894
2895struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2896{
2897	struct tcp_md5sig_pool * __percpu *pool;
2898	int alloc = 0;
2899
2900retry:
2901	spin_lock_bh(&tcp_md5sig_pool_lock);
2902	pool = tcp_md5sig_pool;
2903	if (tcp_md5sig_users++ == 0) {
2904		alloc = 1;
2905		spin_unlock_bh(&tcp_md5sig_pool_lock);
2906	} else if (!pool) {
2907		tcp_md5sig_users--;
2908		spin_unlock_bh(&tcp_md5sig_pool_lock);
2909		cpu_relax();
2910		goto retry;
2911	} else
2912		spin_unlock_bh(&tcp_md5sig_pool_lock);
2913
2914	if (alloc) {
2915		/* we cannot hold spinlock here because this may sleep. */
2916		struct tcp_md5sig_pool * __percpu *p;
2917
2918		p = __tcp_alloc_md5sig_pool(sk);
2919		spin_lock_bh(&tcp_md5sig_pool_lock);
2920		if (!p) {
2921			tcp_md5sig_users--;
2922			spin_unlock_bh(&tcp_md5sig_pool_lock);
2923			return NULL;
2924		}
2925		pool = tcp_md5sig_pool;
2926		if (pool) {
2927			/* oops, it has already been assigned. */
2928			spin_unlock_bh(&tcp_md5sig_pool_lock);
2929			__tcp_free_md5sig_pool(p);
2930		} else {
2931			tcp_md5sig_pool = pool = p;
2932			spin_unlock_bh(&tcp_md5sig_pool_lock);
2933		}
2934	}
2935	return pool;
2936}
2937
2938EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2939
2940
2941/**
2942 *	tcp_get_md5sig_pool - get md5sig_pool for this user
2943 *
2944 *	We use percpu structure, so if we succeed, we exit with preemption
2945 *	and BH disabled, to make sure another thread or softirq handling
2946 *	wont try to get same context.
2947 */
2948struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2949{
2950	struct tcp_md5sig_pool * __percpu *p;
2951
2952	local_bh_disable();
2953
2954	spin_lock(&tcp_md5sig_pool_lock);
2955	p = tcp_md5sig_pool;
2956	if (p)
2957		tcp_md5sig_users++;
2958	spin_unlock(&tcp_md5sig_pool_lock);
2959
2960	if (p)
2961		return *per_cpu_ptr(p, smp_processor_id());
2962
2963	local_bh_enable();
2964	return NULL;
2965}
2966EXPORT_SYMBOL(tcp_get_md5sig_pool);
2967
2968void tcp_put_md5sig_pool(void)
2969{
2970	local_bh_enable();
2971	tcp_free_md5sig_pool();
2972}
2973EXPORT_SYMBOL(tcp_put_md5sig_pool);
2974
2975int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2976			struct tcphdr *th)
2977{
2978	struct scatterlist sg;
2979	int err;
2980
2981	__sum16 old_checksum = th->check;
2982	th->check = 0;
2983	/* options aren't included in the hash */
2984	sg_init_one(&sg, th, sizeof(struct tcphdr));
2985	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
2986	th->check = old_checksum;
2987	return err;
2988}
2989
2990EXPORT_SYMBOL(tcp_md5_hash_header);
2991
2992int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2993			  struct sk_buff *skb, unsigned header_len)
2994{
2995	struct scatterlist sg;
2996	const struct tcphdr *tp = tcp_hdr(skb);
2997	struct hash_desc *desc = &hp->md5_desc;
2998	unsigned i;
2999	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3000				       skb_headlen(skb) - header_len : 0;
3001	const struct skb_shared_info *shi = skb_shinfo(skb);
3002	struct sk_buff *frag_iter;
3003
3004	sg_init_table(&sg, 1);
3005
3006	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3007	if (crypto_hash_update(desc, &sg, head_data_len))
3008		return 1;
3009
3010	for (i = 0; i < shi->nr_frags; ++i) {
3011		const struct skb_frag_struct *f = &shi->frags[i];
3012		sg_set_page(&sg, f->page, f->size, f->page_offset);
3013		if (crypto_hash_update(desc, &sg, f->size))
3014			return 1;
3015	}
3016
3017	skb_walk_frags(skb, frag_iter)
3018		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3019			return 1;
3020
3021	return 0;
3022}
3023
3024EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3025
3026int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
3027{
3028	struct scatterlist sg;
3029
3030	sg_init_one(&sg, key->key, key->keylen);
3031	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3032}
3033
3034EXPORT_SYMBOL(tcp_md5_hash_key);
3035
3036#endif
3037
3038/**
3039 * Each Responder maintains up to two secret values concurrently for
3040 * efficient secret rollover.  Each secret value has 4 states:
3041 *
3042 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3043 *    Generates new Responder-Cookies, but not yet used for primary
3044 *    verification.  This is a short-term state, typically lasting only
3045 *    one round trip time (RTT).
3046 *
3047 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3048 *    Used both for generation and primary verification.
3049 *
3050 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3051 *    Used for verification, until the first failure that can be
3052 *    verified by the newer Generating secret.  At that time, this
3053 *    cookie's state is changed to Secondary, and the Generating
3054 *    cookie's state is changed to Primary.  This is a short-term state,
3055 *    typically lasting only one round trip time (RTT).
3056 *
3057 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3058 *    Used for secondary verification, after primary verification
3059 *    failures.  This state lasts no more than twice the Maximum Segment
3060 *    Lifetime (2MSL).  Then, the secret is discarded.
3061 */
3062struct tcp_cookie_secret {
3063	/* The secret is divided into two parts.  The digest part is the
3064	 * equivalent of previously hashing a secret and saving the state,
3065	 * and serves as an initialization vector (IV).  The message part
3066	 * serves as the trailing secret.
3067	 */
3068	u32				secrets[COOKIE_WORKSPACE_WORDS];
3069	unsigned long			expires;
3070};
3071
3072#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3073#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3074#define TCP_SECRET_LIFE (HZ * 600)
3075
3076static struct tcp_cookie_secret tcp_secret_one;
3077static struct tcp_cookie_secret tcp_secret_two;
3078
3079/* Essentially a circular list, without dynamic allocation. */
3080static struct tcp_cookie_secret *tcp_secret_generating;
3081static struct tcp_cookie_secret *tcp_secret_primary;
3082static struct tcp_cookie_secret *tcp_secret_retiring;
3083static struct tcp_cookie_secret *tcp_secret_secondary;
3084
3085static DEFINE_SPINLOCK(tcp_secret_locker);
3086
3087/* Select a pseudo-random word in the cookie workspace.
3088 */
3089static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3090{
3091	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3092}
3093
3094/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3095 * Called in softirq context.
3096 * Returns: 0 for success.
3097 */
3098int tcp_cookie_generator(u32 *bakery)
3099{
3100	unsigned long jiffy = jiffies;
3101
3102	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3103		spin_lock_bh(&tcp_secret_locker);
3104		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3105			/* refreshed by another */
3106			memcpy(bakery,
3107			       &tcp_secret_generating->secrets[0],
3108			       COOKIE_WORKSPACE_WORDS);
3109		} else {
3110			/* still needs refreshing */
3111			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3112
3113			/* The first time, paranoia assumes that the
3114			 * randomization function isn't as strong.  But,
3115			 * this secret initialization is delayed until
3116			 * the last possible moment (packet arrival).
3117			 * Although that time is observable, it is
3118			 * unpredictably variable.  Mash in the most
3119			 * volatile clock bits available, and expire the
3120			 * secret extra quickly.
3121			 */
3122			if (unlikely(tcp_secret_primary->expires ==
3123				     tcp_secret_secondary->expires)) {
3124				struct timespec tv;
3125
3126				getnstimeofday(&tv);
3127				bakery[COOKIE_DIGEST_WORDS+0] ^=
3128					(u32)tv.tv_nsec;
3129
3130				tcp_secret_secondary->expires = jiffy
3131					+ TCP_SECRET_1MSL
3132					+ (0x0f & tcp_cookie_work(bakery, 0));
3133			} else {
3134				tcp_secret_secondary->expires = jiffy
3135					+ TCP_SECRET_LIFE
3136					+ (0xff & tcp_cookie_work(bakery, 1));
3137				tcp_secret_primary->expires = jiffy
3138					+ TCP_SECRET_2MSL
3139					+ (0x1f & tcp_cookie_work(bakery, 2));
3140			}
3141			memcpy(&tcp_secret_secondary->secrets[0],
3142			       bakery, COOKIE_WORKSPACE_WORDS);
3143
3144			rcu_assign_pointer(tcp_secret_generating,
3145					   tcp_secret_secondary);
3146			rcu_assign_pointer(tcp_secret_retiring,
3147					   tcp_secret_primary);
3148			/*
3149			 * Neither call_rcu() nor synchronize_rcu() needed.
3150			 * Retiring data is not freed.  It is replaced after
3151			 * further (locked) pointer updates, and a quiet time
3152			 * (minimum 1MSL, maximum LIFE - 2MSL).
3153			 */
3154		}
3155		spin_unlock_bh(&tcp_secret_locker);
3156	} else {
3157		rcu_read_lock_bh();
3158		memcpy(bakery,
3159		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3160		       COOKIE_WORKSPACE_WORDS);
3161		rcu_read_unlock_bh();
3162	}
3163	return 0;
3164}
3165EXPORT_SYMBOL(tcp_cookie_generator);
3166
3167void tcp_done(struct sock *sk)
3168{
3169	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3170		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3171
3172	tcp_set_state(sk, TCP_CLOSE);
3173	tcp_clear_xmit_timers(sk);
3174
3175	sk->sk_shutdown = SHUTDOWN_MASK;
3176
3177	if (!sock_flag(sk, SOCK_DEAD))
3178		sk->sk_state_change(sk);
3179	else
3180		inet_csk_destroy_sock(sk);
3181}
3182EXPORT_SYMBOL_GPL(tcp_done);
3183
3184extern struct tcp_congestion_ops tcp_reno;
3185
3186static __initdata unsigned long thash_entries;
3187static int __init set_thash_entries(char *str)
3188{
3189	if (!str)
3190		return 0;
3191	thash_entries = simple_strtoul(str, &str, 0);
3192	return 1;
3193}
3194__setup("thash_entries=", set_thash_entries);
3195
3196void __init tcp_init(void)
3197{
3198	struct sk_buff *skb = NULL;
3199	unsigned long nr_pages, limit;
3200	int order, i, max_share;
3201	unsigned long jiffy = jiffies;
3202
3203	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3204
3205	percpu_counter_init(&tcp_sockets_allocated, 0);
3206	percpu_counter_init(&tcp_orphan_count, 0);
3207	tcp_hashinfo.bind_bucket_cachep =
3208		kmem_cache_create("tcp_bind_bucket",
3209				  sizeof(struct inet_bind_bucket), 0,
3210				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3211
3212	/* Size and allocate the main established and bind bucket
3213	 * hash tables.
3214	 *
3215	 * The methodology is similar to that of the buffer cache.
3216	 */
3217	tcp_hashinfo.ehash =
3218		alloc_large_system_hash("TCP established",
3219					sizeof(struct inet_ehash_bucket),
3220					thash_entries,
3221					(totalram_pages >= 128 * 1024) ?
3222					13 : 15,
3223					0,
3224					NULL,
3225					&tcp_hashinfo.ehash_mask,
3226					thash_entries ? 0 : 512 * 1024);
3227	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3228		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3229		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3230	}
3231	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3232		panic("TCP: failed to alloc ehash_locks");
3233	tcp_hashinfo.bhash =
3234		alloc_large_system_hash("TCP bind",
3235					sizeof(struct inet_bind_hashbucket),
3236					tcp_hashinfo.ehash_mask + 1,
3237					(totalram_pages >= 128 * 1024) ?
3238					13 : 15,
3239					0,
3240					&tcp_hashinfo.bhash_size,
3241					NULL,
3242					64 * 1024);
3243	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
3244	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3245		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3246		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3247	}
3248
3249	/* Try to be a bit smarter and adjust defaults depending
3250	 * on available memory.
3251	 */
3252	for (order = 0; ((1 << order) << PAGE_SHIFT) <
3253			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
3254			order++)
3255		;
3256	if (order >= 4) {
3257		tcp_death_row.sysctl_max_tw_buckets = 180000;
3258		sysctl_tcp_max_orphans = 4096 << (order - 4);
3259		sysctl_max_syn_backlog = 1024;
3260	} else if (order < 3) {
3261		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
3262		sysctl_tcp_max_orphans >>= (3 - order);
3263		sysctl_max_syn_backlog = 128;
3264	}
3265
3266	/* Set the pressure threshold to be a fraction of global memory that
3267	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
3268	 * memory, with a floor of 128 pages.
3269	 */
3270	nr_pages = totalram_pages - totalhigh_pages;
3271	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
3272	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
3273	limit = max(limit, 128UL);
3274	sysctl_tcp_mem[0] = limit / 4 * 3;
3275	sysctl_tcp_mem[1] = limit;
3276	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3277
3278	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3279	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
3280	max_share = min(4UL*1024*1024, limit);
3281
3282	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3283	sysctl_tcp_wmem[1] = 16*1024;
3284	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3285
3286	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3287	sysctl_tcp_rmem[1] = 87380;
3288	sysctl_tcp_rmem[2] = max(87380, max_share);
3289
3290	printk(KERN_INFO "TCP: Hash tables configured "
3291	       "(established %u bind %u)\n",
3292	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3293
3294	tcp_register_congestion_control(&tcp_reno);
3295
3296	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3297	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3298	tcp_secret_one.expires = jiffy; /* past due */
3299	tcp_secret_two.expires = jiffy; /* past due */
3300	tcp_secret_generating = &tcp_secret_one;
3301	tcp_secret_primary = &tcp_secret_one;
3302	tcp_secret_retiring = &tcp_secret_two;
3303	tcp_secret_secondary = &tcp_secret_two;
3304}
3305
3306EXPORT_SYMBOL(tcp_close);
3307EXPORT_SYMBOL(tcp_disconnect);
3308EXPORT_SYMBOL(tcp_getsockopt);
3309EXPORT_SYMBOL(tcp_ioctl);
3310EXPORT_SYMBOL(tcp_poll);
3311EXPORT_SYMBOL(tcp_read_sock);
3312EXPORT_SYMBOL(tcp_recvmsg);
3313EXPORT_SYMBOL(tcp_sendmsg);
3314EXPORT_SYMBOL(tcp_splice_read);
3315EXPORT_SYMBOL(tcp_sendpage);
3316EXPORT_SYMBOL(tcp_setsockopt);
3317EXPORT_SYMBOL(tcp_shutdown);
3318