tcp.c revision ae86b9e3846f6fc5509dee721f2bdba1db8ab96a
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#define pr_fmt(fmt) "TCP: " fmt
249
250#include <linux/kernel.h>
251#include <linux/module.h>
252#include <linux/types.h>
253#include <linux/fcntl.h>
254#include <linux/poll.h>
255#include <linux/init.h>
256#include <linux/fs.h>
257#include <linux/skbuff.h>
258#include <linux/scatterlist.h>
259#include <linux/splice.h>
260#include <linux/net.h>
261#include <linux/socket.h>
262#include <linux/random.h>
263#include <linux/bootmem.h>
264#include <linux/highmem.h>
265#include <linux/swap.h>
266#include <linux/cache.h>
267#include <linux/err.h>
268#include <linux/crypto.h>
269#include <linux/time.h>
270#include <linux/slab.h>
271
272#include <net/icmp.h>
273#include <net/tcp.h>
274#include <net/xfrm.h>
275#include <net/ip.h>
276#include <net/netdma.h>
277#include <net/sock.h>
278
279#include <asm/uaccess.h>
280#include <asm/ioctls.h>
281
282int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
283
284struct percpu_counter tcp_orphan_count;
285EXPORT_SYMBOL_GPL(tcp_orphan_count);
286
287int sysctl_tcp_wmem[3] __read_mostly;
288int sysctl_tcp_rmem[3] __read_mostly;
289
290EXPORT_SYMBOL(sysctl_tcp_rmem);
291EXPORT_SYMBOL(sysctl_tcp_wmem);
292
293atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
294EXPORT_SYMBOL(tcp_memory_allocated);
295
296/*
297 * Current number of TCP sockets.
298 */
299struct percpu_counter tcp_sockets_allocated;
300EXPORT_SYMBOL(tcp_sockets_allocated);
301
302/*
303 * TCP splice context
304 */
305struct tcp_splice_state {
306	struct pipe_inode_info *pipe;
307	size_t len;
308	unsigned int flags;
309};
310
311/*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317int tcp_memory_pressure __read_mostly;
318EXPORT_SYMBOL(tcp_memory_pressure);
319
320void tcp_enter_memory_pressure(struct sock *sk)
321{
322	if (!tcp_memory_pressure) {
323		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324		tcp_memory_pressure = 1;
325	}
326}
327EXPORT_SYMBOL(tcp_enter_memory_pressure);
328
329/* Convert seconds to retransmits based on initial and max timeout */
330static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331{
332	u8 res = 0;
333
334	if (seconds > 0) {
335		int period = timeout;
336
337		res = 1;
338		while (seconds > period && res < 255) {
339			res++;
340			timeout <<= 1;
341			if (timeout > rto_max)
342				timeout = rto_max;
343			period += timeout;
344		}
345	}
346	return res;
347}
348
349/* Convert retransmits to seconds based on initial and max timeout */
350static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351{
352	int period = 0;
353
354	if (retrans > 0) {
355		period = timeout;
356		while (--retrans) {
357			timeout <<= 1;
358			if (timeout > rto_max)
359				timeout = rto_max;
360			period += timeout;
361		}
362	}
363	return period;
364}
365
366/* Address-family independent initialization for a tcp_sock.
367 *
368 * NOTE: A lot of things set to zero explicitly by call to
369 *       sk_alloc() so need not be done here.
370 */
371void tcp_init_sock(struct sock *sk)
372{
373	struct inet_connection_sock *icsk = inet_csk(sk);
374	struct tcp_sock *tp = tcp_sk(sk);
375
376	skb_queue_head_init(&tp->out_of_order_queue);
377	tcp_init_xmit_timers(sk);
378	tcp_prequeue_init(tp);
379
380	icsk->icsk_rto = TCP_TIMEOUT_INIT;
381	tp->mdev = TCP_TIMEOUT_INIT;
382
383	/* So many TCP implementations out there (incorrectly) count the
384	 * initial SYN frame in their delayed-ACK and congestion control
385	 * algorithms that we must have the following bandaid to talk
386	 * efficiently to them.  -DaveM
387	 */
388	tp->snd_cwnd = TCP_INIT_CWND;
389
390	/* See draft-stevens-tcpca-spec-01 for discussion of the
391	 * initialization of these values.
392	 */
393	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
394	tp->snd_cwnd_clamp = ~0;
395	tp->mss_cache = TCP_MSS_DEFAULT;
396
397	tp->reordering = sysctl_tcp_reordering;
398	tcp_enable_early_retrans(tp);
399	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
400
401	sk->sk_state = TCP_CLOSE;
402
403	sk->sk_write_space = sk_stream_write_space;
404	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
405
406	icsk->icsk_sync_mss = tcp_sync_mss;
407
408	/* TCP Cookie Transactions */
409	if (sysctl_tcp_cookie_size > 0) {
410		/* Default, cookies without s_data_payload. */
411		tp->cookie_values =
412			kzalloc(sizeof(*tp->cookie_values),
413				sk->sk_allocation);
414		if (tp->cookie_values != NULL)
415			kref_init(&tp->cookie_values->kref);
416	}
417	/* Presumed zeroed, in order of appearance:
418	 *	cookie_in_always, cookie_out_never,
419	 *	s_data_constant, s_data_in, s_data_out
420	 */
421	sk->sk_sndbuf = sysctl_tcp_wmem[1];
422	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
423
424	local_bh_disable();
425	sock_update_memcg(sk);
426	sk_sockets_allocated_inc(sk);
427	local_bh_enable();
428}
429EXPORT_SYMBOL(tcp_init_sock);
430
431/*
432 *	Wait for a TCP event.
433 *
434 *	Note that we don't need to lock the socket, as the upper poll layers
435 *	take care of normal races (between the test and the event) and we don't
436 *	go look at any of the socket buffers directly.
437 */
438unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
439{
440	unsigned int mask;
441	struct sock *sk = sock->sk;
442	const struct tcp_sock *tp = tcp_sk(sk);
443
444	sock_poll_wait(file, sk_sleep(sk), wait);
445	if (sk->sk_state == TCP_LISTEN)
446		return inet_csk_listen_poll(sk);
447
448	/* Socket is not locked. We are protected from async events
449	 * by poll logic and correct handling of state changes
450	 * made by other threads is impossible in any case.
451	 */
452
453	mask = 0;
454
455	/*
456	 * POLLHUP is certainly not done right. But poll() doesn't
457	 * have a notion of HUP in just one direction, and for a
458	 * socket the read side is more interesting.
459	 *
460	 * Some poll() documentation says that POLLHUP is incompatible
461	 * with the POLLOUT/POLLWR flags, so somebody should check this
462	 * all. But careful, it tends to be safer to return too many
463	 * bits than too few, and you can easily break real applications
464	 * if you don't tell them that something has hung up!
465	 *
466	 * Check-me.
467	 *
468	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
469	 * our fs/select.c). It means that after we received EOF,
470	 * poll always returns immediately, making impossible poll() on write()
471	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
472	 * if and only if shutdown has been made in both directions.
473	 * Actually, it is interesting to look how Solaris and DUX
474	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
475	 * then we could set it on SND_SHUTDOWN. BTW examples given
476	 * in Stevens' books assume exactly this behaviour, it explains
477	 * why POLLHUP is incompatible with POLLOUT.	--ANK
478	 *
479	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
480	 * blocking on fresh not-connected or disconnected socket. --ANK
481	 */
482	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
483		mask |= POLLHUP;
484	if (sk->sk_shutdown & RCV_SHUTDOWN)
485		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
486
487	/* Connected? */
488	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
489		int target = sock_rcvlowat(sk, 0, INT_MAX);
490
491		if (tp->urg_seq == tp->copied_seq &&
492		    !sock_flag(sk, SOCK_URGINLINE) &&
493		    tp->urg_data)
494			target++;
495
496		/* Potential race condition. If read of tp below will
497		 * escape above sk->sk_state, we can be illegally awaken
498		 * in SYN_* states. */
499		if (tp->rcv_nxt - tp->copied_seq >= target)
500			mask |= POLLIN | POLLRDNORM;
501
502		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
503			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
504				mask |= POLLOUT | POLLWRNORM;
505			} else {  /* send SIGIO later */
506				set_bit(SOCK_ASYNC_NOSPACE,
507					&sk->sk_socket->flags);
508				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
509
510				/* Race breaker. If space is freed after
511				 * wspace test but before the flags are set,
512				 * IO signal will be lost.
513				 */
514				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
515					mask |= POLLOUT | POLLWRNORM;
516			}
517		} else
518			mask |= POLLOUT | POLLWRNORM;
519
520		if (tp->urg_data & TCP_URG_VALID)
521			mask |= POLLPRI;
522	}
523	/* This barrier is coupled with smp_wmb() in tcp_reset() */
524	smp_rmb();
525	if (sk->sk_err)
526		mask |= POLLERR;
527
528	return mask;
529}
530EXPORT_SYMBOL(tcp_poll);
531
532int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
533{
534	struct tcp_sock *tp = tcp_sk(sk);
535	int answ;
536
537	switch (cmd) {
538	case SIOCINQ:
539		if (sk->sk_state == TCP_LISTEN)
540			return -EINVAL;
541
542		lock_sock(sk);
543		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
544			answ = 0;
545		else if (sock_flag(sk, SOCK_URGINLINE) ||
546			 !tp->urg_data ||
547			 before(tp->urg_seq, tp->copied_seq) ||
548			 !before(tp->urg_seq, tp->rcv_nxt)) {
549			struct sk_buff *skb;
550
551			answ = tp->rcv_nxt - tp->copied_seq;
552
553			/* Subtract 1, if FIN is in queue. */
554			skb = skb_peek_tail(&sk->sk_receive_queue);
555			if (answ && skb)
556				answ -= tcp_hdr(skb)->fin;
557		} else
558			answ = tp->urg_seq - tp->copied_seq;
559		release_sock(sk);
560		break;
561	case SIOCATMARK:
562		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
563		break;
564	case SIOCOUTQ:
565		if (sk->sk_state == TCP_LISTEN)
566			return -EINVAL;
567
568		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
569			answ = 0;
570		else
571			answ = tp->write_seq - tp->snd_una;
572		break;
573	case SIOCOUTQNSD:
574		if (sk->sk_state == TCP_LISTEN)
575			return -EINVAL;
576
577		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
578			answ = 0;
579		else
580			answ = tp->write_seq - tp->snd_nxt;
581		break;
582	default:
583		return -ENOIOCTLCMD;
584	}
585
586	return put_user(answ, (int __user *)arg);
587}
588EXPORT_SYMBOL(tcp_ioctl);
589
590static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
591{
592	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
593	tp->pushed_seq = tp->write_seq;
594}
595
596static inline bool forced_push(const struct tcp_sock *tp)
597{
598	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
599}
600
601static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
602{
603	struct tcp_sock *tp = tcp_sk(sk);
604	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
605
606	skb->csum    = 0;
607	tcb->seq     = tcb->end_seq = tp->write_seq;
608	tcb->tcp_flags = TCPHDR_ACK;
609	tcb->sacked  = 0;
610	skb_header_release(skb);
611	tcp_add_write_queue_tail(sk, skb);
612	sk->sk_wmem_queued += skb->truesize;
613	sk_mem_charge(sk, skb->truesize);
614	if (tp->nonagle & TCP_NAGLE_PUSH)
615		tp->nonagle &= ~TCP_NAGLE_PUSH;
616}
617
618static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
619{
620	if (flags & MSG_OOB)
621		tp->snd_up = tp->write_seq;
622}
623
624static inline void tcp_push(struct sock *sk, int flags, int mss_now,
625			    int nonagle)
626{
627	if (tcp_send_head(sk)) {
628		struct tcp_sock *tp = tcp_sk(sk);
629
630		if (!(flags & MSG_MORE) || forced_push(tp))
631			tcp_mark_push(tp, tcp_write_queue_tail(sk));
632
633		tcp_mark_urg(tp, flags);
634		__tcp_push_pending_frames(sk, mss_now,
635					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
636	}
637}
638
639static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
640				unsigned int offset, size_t len)
641{
642	struct tcp_splice_state *tss = rd_desc->arg.data;
643	int ret;
644
645	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
646			      tss->flags);
647	if (ret > 0)
648		rd_desc->count -= ret;
649	return ret;
650}
651
652static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
653{
654	/* Store TCP splice context information in read_descriptor_t. */
655	read_descriptor_t rd_desc = {
656		.arg.data = tss,
657		.count	  = tss->len,
658	};
659
660	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
661}
662
663/**
664 *  tcp_splice_read - splice data from TCP socket to a pipe
665 * @sock:	socket to splice from
666 * @ppos:	position (not valid)
667 * @pipe:	pipe to splice to
668 * @len:	number of bytes to splice
669 * @flags:	splice modifier flags
670 *
671 * Description:
672 *    Will read pages from given socket and fill them into a pipe.
673 *
674 **/
675ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
676			struct pipe_inode_info *pipe, size_t len,
677			unsigned int flags)
678{
679	struct sock *sk = sock->sk;
680	struct tcp_splice_state tss = {
681		.pipe = pipe,
682		.len = len,
683		.flags = flags,
684	};
685	long timeo;
686	ssize_t spliced;
687	int ret;
688
689	sock_rps_record_flow(sk);
690	/*
691	 * We can't seek on a socket input
692	 */
693	if (unlikely(*ppos))
694		return -ESPIPE;
695
696	ret = spliced = 0;
697
698	lock_sock(sk);
699
700	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
701	while (tss.len) {
702		ret = __tcp_splice_read(sk, &tss);
703		if (ret < 0)
704			break;
705		else if (!ret) {
706			if (spliced)
707				break;
708			if (sock_flag(sk, SOCK_DONE))
709				break;
710			if (sk->sk_err) {
711				ret = sock_error(sk);
712				break;
713			}
714			if (sk->sk_shutdown & RCV_SHUTDOWN)
715				break;
716			if (sk->sk_state == TCP_CLOSE) {
717				/*
718				 * This occurs when user tries to read
719				 * from never connected socket.
720				 */
721				if (!sock_flag(sk, SOCK_DONE))
722					ret = -ENOTCONN;
723				break;
724			}
725			if (!timeo) {
726				ret = -EAGAIN;
727				break;
728			}
729			sk_wait_data(sk, &timeo);
730			if (signal_pending(current)) {
731				ret = sock_intr_errno(timeo);
732				break;
733			}
734			continue;
735		}
736		tss.len -= ret;
737		spliced += ret;
738
739		if (!timeo)
740			break;
741		release_sock(sk);
742		lock_sock(sk);
743
744		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
745		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
746		    signal_pending(current))
747			break;
748	}
749
750	release_sock(sk);
751
752	if (spliced)
753		return spliced;
754
755	return ret;
756}
757EXPORT_SYMBOL(tcp_splice_read);
758
759struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
760{
761	struct sk_buff *skb;
762
763	/* The TCP header must be at least 32-bit aligned.  */
764	size = ALIGN(size, 4);
765
766	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
767	if (skb) {
768		if (sk_wmem_schedule(sk, skb->truesize)) {
769			skb_reserve(skb, sk->sk_prot->max_header);
770			/*
771			 * Make sure that we have exactly size bytes
772			 * available to the caller, no more, no less.
773			 */
774			skb->avail_size = size;
775			return skb;
776		}
777		__kfree_skb(skb);
778	} else {
779		sk->sk_prot->enter_memory_pressure(sk);
780		sk_stream_moderate_sndbuf(sk);
781	}
782	return NULL;
783}
784
785static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
786				       int large_allowed)
787{
788	struct tcp_sock *tp = tcp_sk(sk);
789	u32 xmit_size_goal, old_size_goal;
790
791	xmit_size_goal = mss_now;
792
793	if (large_allowed && sk_can_gso(sk)) {
794		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
795				  inet_csk(sk)->icsk_af_ops->net_header_len -
796				  inet_csk(sk)->icsk_ext_hdr_len -
797				  tp->tcp_header_len);
798
799		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
800
801		/* We try hard to avoid divides here */
802		old_size_goal = tp->xmit_size_goal_segs * mss_now;
803
804		if (likely(old_size_goal <= xmit_size_goal &&
805			   old_size_goal + mss_now > xmit_size_goal)) {
806			xmit_size_goal = old_size_goal;
807		} else {
808			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
809			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
810		}
811	}
812
813	return max(xmit_size_goal, mss_now);
814}
815
816static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
817{
818	int mss_now;
819
820	mss_now = tcp_current_mss(sk);
821	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
822
823	return mss_now;
824}
825
826static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
827			 size_t psize, int flags)
828{
829	struct tcp_sock *tp = tcp_sk(sk);
830	int mss_now, size_goal;
831	int err;
832	ssize_t copied;
833	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
834
835	/* Wait for a connection to finish. */
836	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
837		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
838			goto out_err;
839
840	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
841
842	mss_now = tcp_send_mss(sk, &size_goal, flags);
843	copied = 0;
844
845	err = -EPIPE;
846	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
847		goto out_err;
848
849	while (psize > 0) {
850		struct sk_buff *skb = tcp_write_queue_tail(sk);
851		struct page *page = pages[poffset / PAGE_SIZE];
852		int copy, i;
853		int offset = poffset % PAGE_SIZE;
854		int size = min_t(size_t, psize, PAGE_SIZE - offset);
855		bool can_coalesce;
856
857		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
858new_segment:
859			if (!sk_stream_memory_free(sk))
860				goto wait_for_sndbuf;
861
862			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
863			if (!skb)
864				goto wait_for_memory;
865
866			skb_entail(sk, skb);
867			copy = size_goal;
868		}
869
870		if (copy > size)
871			copy = size;
872
873		i = skb_shinfo(skb)->nr_frags;
874		can_coalesce = skb_can_coalesce(skb, i, page, offset);
875		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
876			tcp_mark_push(tp, skb);
877			goto new_segment;
878		}
879		if (!sk_wmem_schedule(sk, copy))
880			goto wait_for_memory;
881
882		if (can_coalesce) {
883			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
884		} else {
885			get_page(page);
886			skb_fill_page_desc(skb, i, page, offset, copy);
887		}
888
889		skb->len += copy;
890		skb->data_len += copy;
891		skb->truesize += copy;
892		sk->sk_wmem_queued += copy;
893		sk_mem_charge(sk, copy);
894		skb->ip_summed = CHECKSUM_PARTIAL;
895		tp->write_seq += copy;
896		TCP_SKB_CB(skb)->end_seq += copy;
897		skb_shinfo(skb)->gso_segs = 0;
898
899		if (!copied)
900			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
901
902		copied += copy;
903		poffset += copy;
904		if (!(psize -= copy))
905			goto out;
906
907		if (skb->len < size_goal || (flags & MSG_OOB))
908			continue;
909
910		if (forced_push(tp)) {
911			tcp_mark_push(tp, skb);
912			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
913		} else if (skb == tcp_send_head(sk))
914			tcp_push_one(sk, mss_now);
915		continue;
916
917wait_for_sndbuf:
918		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
919wait_for_memory:
920		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
921
922		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
923			goto do_error;
924
925		mss_now = tcp_send_mss(sk, &size_goal, flags);
926	}
927
928out:
929	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
930		tcp_push(sk, flags, mss_now, tp->nonagle);
931	return copied;
932
933do_error:
934	if (copied)
935		goto out;
936out_err:
937	return sk_stream_error(sk, flags, err);
938}
939
940int tcp_sendpage(struct sock *sk, struct page *page, int offset,
941		 size_t size, int flags)
942{
943	ssize_t res;
944
945	if (!(sk->sk_route_caps & NETIF_F_SG) ||
946	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
947		return sock_no_sendpage(sk->sk_socket, page, offset, size,
948					flags);
949
950	lock_sock(sk);
951	res = do_tcp_sendpages(sk, &page, offset, size, flags);
952	release_sock(sk);
953	return res;
954}
955EXPORT_SYMBOL(tcp_sendpage);
956
957static inline int select_size(const struct sock *sk, bool sg)
958{
959	const struct tcp_sock *tp = tcp_sk(sk);
960	int tmp = tp->mss_cache;
961
962	if (sg) {
963		if (sk_can_gso(sk)) {
964			/* Small frames wont use a full page:
965			 * Payload will immediately follow tcp header.
966			 */
967			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
968		} else {
969			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
970
971			if (tmp >= pgbreak &&
972			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
973				tmp = pgbreak;
974		}
975	}
976
977	return tmp;
978}
979
980int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
981		size_t size)
982{
983	struct iovec *iov;
984	struct tcp_sock *tp = tcp_sk(sk);
985	struct sk_buff *skb;
986	int iovlen, flags, err, copied;
987	int mss_now = 0, size_goal;
988	bool sg;
989	long timeo;
990
991	lock_sock(sk);
992
993	flags = msg->msg_flags;
994	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
995
996	/* Wait for a connection to finish. */
997	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
998		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
999			goto out_err;
1000
1001	if (unlikely(tp->repair)) {
1002		if (tp->repair_queue == TCP_RECV_QUEUE) {
1003			copied = tcp_send_rcvq(sk, msg, size);
1004			goto out;
1005		}
1006
1007		err = -EINVAL;
1008		if (tp->repair_queue == TCP_NO_QUEUE)
1009			goto out_err;
1010
1011		/* 'common' sending to sendq */
1012	}
1013
1014	/* This should be in poll */
1015	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1016
1017	mss_now = tcp_send_mss(sk, &size_goal, flags);
1018
1019	/* Ok commence sending. */
1020	iovlen = msg->msg_iovlen;
1021	iov = msg->msg_iov;
1022	copied = 0;
1023
1024	err = -EPIPE;
1025	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1026		goto out_err;
1027
1028	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1029
1030	while (--iovlen >= 0) {
1031		size_t seglen = iov->iov_len;
1032		unsigned char __user *from = iov->iov_base;
1033
1034		iov++;
1035
1036		while (seglen > 0) {
1037			int copy = 0;
1038			int max = size_goal;
1039
1040			skb = tcp_write_queue_tail(sk);
1041			if (tcp_send_head(sk)) {
1042				if (skb->ip_summed == CHECKSUM_NONE)
1043					max = mss_now;
1044				copy = max - skb->len;
1045			}
1046
1047			if (copy <= 0) {
1048new_segment:
1049				/* Allocate new segment. If the interface is SG,
1050				 * allocate skb fitting to single page.
1051				 */
1052				if (!sk_stream_memory_free(sk))
1053					goto wait_for_sndbuf;
1054
1055				skb = sk_stream_alloc_skb(sk,
1056							  select_size(sk, sg),
1057							  sk->sk_allocation);
1058				if (!skb)
1059					goto wait_for_memory;
1060
1061				/*
1062				 * Check whether we can use HW checksum.
1063				 */
1064				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1065					skb->ip_summed = CHECKSUM_PARTIAL;
1066
1067				skb_entail(sk, skb);
1068				copy = size_goal;
1069				max = size_goal;
1070			}
1071
1072			/* Try to append data to the end of skb. */
1073			if (copy > seglen)
1074				copy = seglen;
1075
1076			/* Where to copy to? */
1077			if (skb_availroom(skb) > 0) {
1078				/* We have some space in skb head. Superb! */
1079				copy = min_t(int, copy, skb_availroom(skb));
1080				err = skb_add_data_nocache(sk, skb, from, copy);
1081				if (err)
1082					goto do_fault;
1083			} else {
1084				bool merge = false;
1085				int i = skb_shinfo(skb)->nr_frags;
1086				struct page *page = sk->sk_sndmsg_page;
1087				int off;
1088
1089				if (page && page_count(page) == 1)
1090					sk->sk_sndmsg_off = 0;
1091
1092				off = sk->sk_sndmsg_off;
1093
1094				if (skb_can_coalesce(skb, i, page, off) &&
1095				    off != PAGE_SIZE) {
1096					/* We can extend the last page
1097					 * fragment. */
1098					merge = true;
1099				} else if (i == MAX_SKB_FRAGS || !sg) {
1100					/* Need to add new fragment and cannot
1101					 * do this because interface is non-SG,
1102					 * or because all the page slots are
1103					 * busy. */
1104					tcp_mark_push(tp, skb);
1105					goto new_segment;
1106				} else if (page) {
1107					if (off == PAGE_SIZE) {
1108						put_page(page);
1109						sk->sk_sndmsg_page = page = NULL;
1110						off = 0;
1111					}
1112				} else
1113					off = 0;
1114
1115				if (copy > PAGE_SIZE - off)
1116					copy = PAGE_SIZE - off;
1117
1118				if (!sk_wmem_schedule(sk, copy))
1119					goto wait_for_memory;
1120
1121				if (!page) {
1122					/* Allocate new cache page. */
1123					if (!(page = sk_stream_alloc_page(sk)))
1124						goto wait_for_memory;
1125				}
1126
1127				/* Time to copy data. We are close to
1128				 * the end! */
1129				err = skb_copy_to_page_nocache(sk, from, skb,
1130							       page, off, copy);
1131				if (err) {
1132					/* If this page was new, give it to the
1133					 * socket so it does not get leaked.
1134					 */
1135					if (!sk->sk_sndmsg_page) {
1136						sk->sk_sndmsg_page = page;
1137						sk->sk_sndmsg_off = 0;
1138					}
1139					goto do_error;
1140				}
1141
1142				/* Update the skb. */
1143				if (merge) {
1144					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1145				} else {
1146					skb_fill_page_desc(skb, i, page, off, copy);
1147					if (sk->sk_sndmsg_page) {
1148						get_page(page);
1149					} else if (off + copy < PAGE_SIZE) {
1150						get_page(page);
1151						sk->sk_sndmsg_page = page;
1152					}
1153				}
1154
1155				sk->sk_sndmsg_off = off + copy;
1156			}
1157
1158			if (!copied)
1159				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1160
1161			tp->write_seq += copy;
1162			TCP_SKB_CB(skb)->end_seq += copy;
1163			skb_shinfo(skb)->gso_segs = 0;
1164
1165			from += copy;
1166			copied += copy;
1167			if ((seglen -= copy) == 0 && iovlen == 0)
1168				goto out;
1169
1170			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1171				continue;
1172
1173			if (forced_push(tp)) {
1174				tcp_mark_push(tp, skb);
1175				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1176			} else if (skb == tcp_send_head(sk))
1177				tcp_push_one(sk, mss_now);
1178			continue;
1179
1180wait_for_sndbuf:
1181			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1182wait_for_memory:
1183			if (copied && likely(!tp->repair))
1184				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1185
1186			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1187				goto do_error;
1188
1189			mss_now = tcp_send_mss(sk, &size_goal, flags);
1190		}
1191	}
1192
1193out:
1194	if (copied && likely(!tp->repair))
1195		tcp_push(sk, flags, mss_now, tp->nonagle);
1196	release_sock(sk);
1197	return copied;
1198
1199do_fault:
1200	if (!skb->len) {
1201		tcp_unlink_write_queue(skb, sk);
1202		/* It is the one place in all of TCP, except connection
1203		 * reset, where we can be unlinking the send_head.
1204		 */
1205		tcp_check_send_head(sk, skb);
1206		sk_wmem_free_skb(sk, skb);
1207	}
1208
1209do_error:
1210	if (copied)
1211		goto out;
1212out_err:
1213	err = sk_stream_error(sk, flags, err);
1214	release_sock(sk);
1215	return err;
1216}
1217EXPORT_SYMBOL(tcp_sendmsg);
1218
1219/*
1220 *	Handle reading urgent data. BSD has very simple semantics for
1221 *	this, no blocking and very strange errors 8)
1222 */
1223
1224static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1225{
1226	struct tcp_sock *tp = tcp_sk(sk);
1227
1228	/* No URG data to read. */
1229	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1230	    tp->urg_data == TCP_URG_READ)
1231		return -EINVAL;	/* Yes this is right ! */
1232
1233	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1234		return -ENOTCONN;
1235
1236	if (tp->urg_data & TCP_URG_VALID) {
1237		int err = 0;
1238		char c = tp->urg_data;
1239
1240		if (!(flags & MSG_PEEK))
1241			tp->urg_data = TCP_URG_READ;
1242
1243		/* Read urgent data. */
1244		msg->msg_flags |= MSG_OOB;
1245
1246		if (len > 0) {
1247			if (!(flags & MSG_TRUNC))
1248				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1249			len = 1;
1250		} else
1251			msg->msg_flags |= MSG_TRUNC;
1252
1253		return err ? -EFAULT : len;
1254	}
1255
1256	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1257		return 0;
1258
1259	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1260	 * the available implementations agree in this case:
1261	 * this call should never block, independent of the
1262	 * blocking state of the socket.
1263	 * Mike <pall@rz.uni-karlsruhe.de>
1264	 */
1265	return -EAGAIN;
1266}
1267
1268static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1269{
1270	struct sk_buff *skb;
1271	int copied = 0, err = 0;
1272
1273	/* XXX -- need to support SO_PEEK_OFF */
1274
1275	skb_queue_walk(&sk->sk_write_queue, skb) {
1276		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1277		if (err)
1278			break;
1279
1280		copied += skb->len;
1281	}
1282
1283	return err ?: copied;
1284}
1285
1286/* Clean up the receive buffer for full frames taken by the user,
1287 * then send an ACK if necessary.  COPIED is the number of bytes
1288 * tcp_recvmsg has given to the user so far, it speeds up the
1289 * calculation of whether or not we must ACK for the sake of
1290 * a window update.
1291 */
1292void tcp_cleanup_rbuf(struct sock *sk, int copied)
1293{
1294	struct tcp_sock *tp = tcp_sk(sk);
1295	bool time_to_ack = false;
1296
1297	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1298
1299	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1300	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1301	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1302
1303	if (inet_csk_ack_scheduled(sk)) {
1304		const struct inet_connection_sock *icsk = inet_csk(sk);
1305		   /* Delayed ACKs frequently hit locked sockets during bulk
1306		    * receive. */
1307		if (icsk->icsk_ack.blocked ||
1308		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1309		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1310		    /*
1311		     * If this read emptied read buffer, we send ACK, if
1312		     * connection is not bidirectional, user drained
1313		     * receive buffer and there was a small segment
1314		     * in queue.
1315		     */
1316		    (copied > 0 &&
1317		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1318		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1319		       !icsk->icsk_ack.pingpong)) &&
1320		      !atomic_read(&sk->sk_rmem_alloc)))
1321			time_to_ack = true;
1322	}
1323
1324	/* We send an ACK if we can now advertise a non-zero window
1325	 * which has been raised "significantly".
1326	 *
1327	 * Even if window raised up to infinity, do not send window open ACK
1328	 * in states, where we will not receive more. It is useless.
1329	 */
1330	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1331		__u32 rcv_window_now = tcp_receive_window(tp);
1332
1333		/* Optimize, __tcp_select_window() is not cheap. */
1334		if (2*rcv_window_now <= tp->window_clamp) {
1335			__u32 new_window = __tcp_select_window(sk);
1336
1337			/* Send ACK now, if this read freed lots of space
1338			 * in our buffer. Certainly, new_window is new window.
1339			 * We can advertise it now, if it is not less than current one.
1340			 * "Lots" means "at least twice" here.
1341			 */
1342			if (new_window && new_window >= 2 * rcv_window_now)
1343				time_to_ack = true;
1344		}
1345	}
1346	if (time_to_ack)
1347		tcp_send_ack(sk);
1348}
1349
1350static void tcp_prequeue_process(struct sock *sk)
1351{
1352	struct sk_buff *skb;
1353	struct tcp_sock *tp = tcp_sk(sk);
1354
1355	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1356
1357	/* RX process wants to run with disabled BHs, though it is not
1358	 * necessary */
1359	local_bh_disable();
1360	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1361		sk_backlog_rcv(sk, skb);
1362	local_bh_enable();
1363
1364	/* Clear memory counter. */
1365	tp->ucopy.memory = 0;
1366}
1367
1368#ifdef CONFIG_NET_DMA
1369static void tcp_service_net_dma(struct sock *sk, bool wait)
1370{
1371	dma_cookie_t done, used;
1372	dma_cookie_t last_issued;
1373	struct tcp_sock *tp = tcp_sk(sk);
1374
1375	if (!tp->ucopy.dma_chan)
1376		return;
1377
1378	last_issued = tp->ucopy.dma_cookie;
1379	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1380
1381	do {
1382		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1383					      last_issued, &done,
1384					      &used) == DMA_SUCCESS) {
1385			/* Safe to free early-copied skbs now */
1386			__skb_queue_purge(&sk->sk_async_wait_queue);
1387			break;
1388		} else {
1389			struct sk_buff *skb;
1390			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1391			       (dma_async_is_complete(skb->dma_cookie, done,
1392						      used) == DMA_SUCCESS)) {
1393				__skb_dequeue(&sk->sk_async_wait_queue);
1394				kfree_skb(skb);
1395			}
1396		}
1397	} while (wait);
1398}
1399#endif
1400
1401static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1402{
1403	struct sk_buff *skb;
1404	u32 offset;
1405
1406	skb_queue_walk(&sk->sk_receive_queue, skb) {
1407		offset = seq - TCP_SKB_CB(skb)->seq;
1408		if (tcp_hdr(skb)->syn)
1409			offset--;
1410		if (offset < skb->len || tcp_hdr(skb)->fin) {
1411			*off = offset;
1412			return skb;
1413		}
1414	}
1415	return NULL;
1416}
1417
1418/*
1419 * This routine provides an alternative to tcp_recvmsg() for routines
1420 * that would like to handle copying from skbuffs directly in 'sendfile'
1421 * fashion.
1422 * Note:
1423 *	- It is assumed that the socket was locked by the caller.
1424 *	- The routine does not block.
1425 *	- At present, there is no support for reading OOB data
1426 *	  or for 'peeking' the socket using this routine
1427 *	  (although both would be easy to implement).
1428 */
1429int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1430		  sk_read_actor_t recv_actor)
1431{
1432	struct sk_buff *skb;
1433	struct tcp_sock *tp = tcp_sk(sk);
1434	u32 seq = tp->copied_seq;
1435	u32 offset;
1436	int copied = 0;
1437
1438	if (sk->sk_state == TCP_LISTEN)
1439		return -ENOTCONN;
1440	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1441		if (offset < skb->len) {
1442			int used;
1443			size_t len;
1444
1445			len = skb->len - offset;
1446			/* Stop reading if we hit a patch of urgent data */
1447			if (tp->urg_data) {
1448				u32 urg_offset = tp->urg_seq - seq;
1449				if (urg_offset < len)
1450					len = urg_offset;
1451				if (!len)
1452					break;
1453			}
1454			used = recv_actor(desc, skb, offset, len);
1455			if (used < 0) {
1456				if (!copied)
1457					copied = used;
1458				break;
1459			} else if (used <= len) {
1460				seq += used;
1461				copied += used;
1462				offset += used;
1463			}
1464			/*
1465			 * If recv_actor drops the lock (e.g. TCP splice
1466			 * receive) the skb pointer might be invalid when
1467			 * getting here: tcp_collapse might have deleted it
1468			 * while aggregating skbs from the socket queue.
1469			 */
1470			skb = tcp_recv_skb(sk, seq-1, &offset);
1471			if (!skb || (offset+1 != skb->len))
1472				break;
1473		}
1474		if (tcp_hdr(skb)->fin) {
1475			sk_eat_skb(sk, skb, false);
1476			++seq;
1477			break;
1478		}
1479		sk_eat_skb(sk, skb, false);
1480		if (!desc->count)
1481			break;
1482		tp->copied_seq = seq;
1483	}
1484	tp->copied_seq = seq;
1485
1486	tcp_rcv_space_adjust(sk);
1487
1488	/* Clean up data we have read: This will do ACK frames. */
1489	if (copied > 0)
1490		tcp_cleanup_rbuf(sk, copied);
1491	return copied;
1492}
1493EXPORT_SYMBOL(tcp_read_sock);
1494
1495/*
1496 *	This routine copies from a sock struct into the user buffer.
1497 *
1498 *	Technical note: in 2.3 we work on _locked_ socket, so that
1499 *	tricks with *seq access order and skb->users are not required.
1500 *	Probably, code can be easily improved even more.
1501 */
1502
1503int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1504		size_t len, int nonblock, int flags, int *addr_len)
1505{
1506	struct tcp_sock *tp = tcp_sk(sk);
1507	int copied = 0;
1508	u32 peek_seq;
1509	u32 *seq;
1510	unsigned long used;
1511	int err;
1512	int target;		/* Read at least this many bytes */
1513	long timeo;
1514	struct task_struct *user_recv = NULL;
1515	bool copied_early = false;
1516	struct sk_buff *skb;
1517	u32 urg_hole = 0;
1518
1519	lock_sock(sk);
1520
1521	err = -ENOTCONN;
1522	if (sk->sk_state == TCP_LISTEN)
1523		goto out;
1524
1525	timeo = sock_rcvtimeo(sk, nonblock);
1526
1527	/* Urgent data needs to be handled specially. */
1528	if (flags & MSG_OOB)
1529		goto recv_urg;
1530
1531	if (unlikely(tp->repair)) {
1532		err = -EPERM;
1533		if (!(flags & MSG_PEEK))
1534			goto out;
1535
1536		if (tp->repair_queue == TCP_SEND_QUEUE)
1537			goto recv_sndq;
1538
1539		err = -EINVAL;
1540		if (tp->repair_queue == TCP_NO_QUEUE)
1541			goto out;
1542
1543		/* 'common' recv queue MSG_PEEK-ing */
1544	}
1545
1546	seq = &tp->copied_seq;
1547	if (flags & MSG_PEEK) {
1548		peek_seq = tp->copied_seq;
1549		seq = &peek_seq;
1550	}
1551
1552	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1553
1554#ifdef CONFIG_NET_DMA
1555	tp->ucopy.dma_chan = NULL;
1556	preempt_disable();
1557	skb = skb_peek_tail(&sk->sk_receive_queue);
1558	{
1559		int available = 0;
1560
1561		if (skb)
1562			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1563		if ((available < target) &&
1564		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1565		    !sysctl_tcp_low_latency &&
1566		    net_dma_find_channel()) {
1567			preempt_enable_no_resched();
1568			tp->ucopy.pinned_list =
1569					dma_pin_iovec_pages(msg->msg_iov, len);
1570		} else {
1571			preempt_enable_no_resched();
1572		}
1573	}
1574#endif
1575
1576	do {
1577		u32 offset;
1578
1579		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1580		if (tp->urg_data && tp->urg_seq == *seq) {
1581			if (copied)
1582				break;
1583			if (signal_pending(current)) {
1584				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1585				break;
1586			}
1587		}
1588
1589		/* Next get a buffer. */
1590
1591		skb_queue_walk(&sk->sk_receive_queue, skb) {
1592			/* Now that we have two receive queues this
1593			 * shouldn't happen.
1594			 */
1595			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1596				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1597				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1598				 flags))
1599				break;
1600
1601			offset = *seq - TCP_SKB_CB(skb)->seq;
1602			if (tcp_hdr(skb)->syn)
1603				offset--;
1604			if (offset < skb->len)
1605				goto found_ok_skb;
1606			if (tcp_hdr(skb)->fin)
1607				goto found_fin_ok;
1608			WARN(!(flags & MSG_PEEK),
1609			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1610			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1611		}
1612
1613		/* Well, if we have backlog, try to process it now yet. */
1614
1615		if (copied >= target && !sk->sk_backlog.tail)
1616			break;
1617
1618		if (copied) {
1619			if (sk->sk_err ||
1620			    sk->sk_state == TCP_CLOSE ||
1621			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1622			    !timeo ||
1623			    signal_pending(current))
1624				break;
1625		} else {
1626			if (sock_flag(sk, SOCK_DONE))
1627				break;
1628
1629			if (sk->sk_err) {
1630				copied = sock_error(sk);
1631				break;
1632			}
1633
1634			if (sk->sk_shutdown & RCV_SHUTDOWN)
1635				break;
1636
1637			if (sk->sk_state == TCP_CLOSE) {
1638				if (!sock_flag(sk, SOCK_DONE)) {
1639					/* This occurs when user tries to read
1640					 * from never connected socket.
1641					 */
1642					copied = -ENOTCONN;
1643					break;
1644				}
1645				break;
1646			}
1647
1648			if (!timeo) {
1649				copied = -EAGAIN;
1650				break;
1651			}
1652
1653			if (signal_pending(current)) {
1654				copied = sock_intr_errno(timeo);
1655				break;
1656			}
1657		}
1658
1659		tcp_cleanup_rbuf(sk, copied);
1660
1661		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1662			/* Install new reader */
1663			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1664				user_recv = current;
1665				tp->ucopy.task = user_recv;
1666				tp->ucopy.iov = msg->msg_iov;
1667			}
1668
1669			tp->ucopy.len = len;
1670
1671			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1672				!(flags & (MSG_PEEK | MSG_TRUNC)));
1673
1674			/* Ugly... If prequeue is not empty, we have to
1675			 * process it before releasing socket, otherwise
1676			 * order will be broken at second iteration.
1677			 * More elegant solution is required!!!
1678			 *
1679			 * Look: we have the following (pseudo)queues:
1680			 *
1681			 * 1. packets in flight
1682			 * 2. backlog
1683			 * 3. prequeue
1684			 * 4. receive_queue
1685			 *
1686			 * Each queue can be processed only if the next ones
1687			 * are empty. At this point we have empty receive_queue.
1688			 * But prequeue _can_ be not empty after 2nd iteration,
1689			 * when we jumped to start of loop because backlog
1690			 * processing added something to receive_queue.
1691			 * We cannot release_sock(), because backlog contains
1692			 * packets arrived _after_ prequeued ones.
1693			 *
1694			 * Shortly, algorithm is clear --- to process all
1695			 * the queues in order. We could make it more directly,
1696			 * requeueing packets from backlog to prequeue, if
1697			 * is not empty. It is more elegant, but eats cycles,
1698			 * unfortunately.
1699			 */
1700			if (!skb_queue_empty(&tp->ucopy.prequeue))
1701				goto do_prequeue;
1702
1703			/* __ Set realtime policy in scheduler __ */
1704		}
1705
1706#ifdef CONFIG_NET_DMA
1707		if (tp->ucopy.dma_chan)
1708			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1709#endif
1710		if (copied >= target) {
1711			/* Do not sleep, just process backlog. */
1712			release_sock(sk);
1713			lock_sock(sk);
1714		} else
1715			sk_wait_data(sk, &timeo);
1716
1717#ifdef CONFIG_NET_DMA
1718		tcp_service_net_dma(sk, false);  /* Don't block */
1719		tp->ucopy.wakeup = 0;
1720#endif
1721
1722		if (user_recv) {
1723			int chunk;
1724
1725			/* __ Restore normal policy in scheduler __ */
1726
1727			if ((chunk = len - tp->ucopy.len) != 0) {
1728				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1729				len -= chunk;
1730				copied += chunk;
1731			}
1732
1733			if (tp->rcv_nxt == tp->copied_seq &&
1734			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1735do_prequeue:
1736				tcp_prequeue_process(sk);
1737
1738				if ((chunk = len - tp->ucopy.len) != 0) {
1739					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1740					len -= chunk;
1741					copied += chunk;
1742				}
1743			}
1744		}
1745		if ((flags & MSG_PEEK) &&
1746		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1747			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1748					    current->comm,
1749					    task_pid_nr(current));
1750			peek_seq = tp->copied_seq;
1751		}
1752		continue;
1753
1754	found_ok_skb:
1755		/* Ok so how much can we use? */
1756		used = skb->len - offset;
1757		if (len < used)
1758			used = len;
1759
1760		/* Do we have urgent data here? */
1761		if (tp->urg_data) {
1762			u32 urg_offset = tp->urg_seq - *seq;
1763			if (urg_offset < used) {
1764				if (!urg_offset) {
1765					if (!sock_flag(sk, SOCK_URGINLINE)) {
1766						++*seq;
1767						urg_hole++;
1768						offset++;
1769						used--;
1770						if (!used)
1771							goto skip_copy;
1772					}
1773				} else
1774					used = urg_offset;
1775			}
1776		}
1777
1778		if (!(flags & MSG_TRUNC)) {
1779#ifdef CONFIG_NET_DMA
1780			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1781				tp->ucopy.dma_chan = net_dma_find_channel();
1782
1783			if (tp->ucopy.dma_chan) {
1784				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1785					tp->ucopy.dma_chan, skb, offset,
1786					msg->msg_iov, used,
1787					tp->ucopy.pinned_list);
1788
1789				if (tp->ucopy.dma_cookie < 0) {
1790
1791					pr_alert("%s: dma_cookie < 0\n",
1792						 __func__);
1793
1794					/* Exception. Bailout! */
1795					if (!copied)
1796						copied = -EFAULT;
1797					break;
1798				}
1799
1800				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1801
1802				if ((offset + used) == skb->len)
1803					copied_early = true;
1804
1805			} else
1806#endif
1807			{
1808				err = skb_copy_datagram_iovec(skb, offset,
1809						msg->msg_iov, used);
1810				if (err) {
1811					/* Exception. Bailout! */
1812					if (!copied)
1813						copied = -EFAULT;
1814					break;
1815				}
1816			}
1817		}
1818
1819		*seq += used;
1820		copied += used;
1821		len -= used;
1822
1823		tcp_rcv_space_adjust(sk);
1824
1825skip_copy:
1826		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1827			tp->urg_data = 0;
1828			tcp_fast_path_check(sk);
1829		}
1830		if (used + offset < skb->len)
1831			continue;
1832
1833		if (tcp_hdr(skb)->fin)
1834			goto found_fin_ok;
1835		if (!(flags & MSG_PEEK)) {
1836			sk_eat_skb(sk, skb, copied_early);
1837			copied_early = false;
1838		}
1839		continue;
1840
1841	found_fin_ok:
1842		/* Process the FIN. */
1843		++*seq;
1844		if (!(flags & MSG_PEEK)) {
1845			sk_eat_skb(sk, skb, copied_early);
1846			copied_early = false;
1847		}
1848		break;
1849	} while (len > 0);
1850
1851	if (user_recv) {
1852		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1853			int chunk;
1854
1855			tp->ucopy.len = copied > 0 ? len : 0;
1856
1857			tcp_prequeue_process(sk);
1858
1859			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1860				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1861				len -= chunk;
1862				copied += chunk;
1863			}
1864		}
1865
1866		tp->ucopy.task = NULL;
1867		tp->ucopy.len = 0;
1868	}
1869
1870#ifdef CONFIG_NET_DMA
1871	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1872	tp->ucopy.dma_chan = NULL;
1873
1874	if (tp->ucopy.pinned_list) {
1875		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1876		tp->ucopy.pinned_list = NULL;
1877	}
1878#endif
1879
1880	/* According to UNIX98, msg_name/msg_namelen are ignored
1881	 * on connected socket. I was just happy when found this 8) --ANK
1882	 */
1883
1884	/* Clean up data we have read: This will do ACK frames. */
1885	tcp_cleanup_rbuf(sk, copied);
1886
1887	release_sock(sk);
1888	return copied;
1889
1890out:
1891	release_sock(sk);
1892	return err;
1893
1894recv_urg:
1895	err = tcp_recv_urg(sk, msg, len, flags);
1896	goto out;
1897
1898recv_sndq:
1899	err = tcp_peek_sndq(sk, msg, len);
1900	goto out;
1901}
1902EXPORT_SYMBOL(tcp_recvmsg);
1903
1904void tcp_set_state(struct sock *sk, int state)
1905{
1906	int oldstate = sk->sk_state;
1907
1908	switch (state) {
1909	case TCP_ESTABLISHED:
1910		if (oldstate != TCP_ESTABLISHED)
1911			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1912		break;
1913
1914	case TCP_CLOSE:
1915		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1916			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1917
1918		sk->sk_prot->unhash(sk);
1919		if (inet_csk(sk)->icsk_bind_hash &&
1920		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1921			inet_put_port(sk);
1922		/* fall through */
1923	default:
1924		if (oldstate == TCP_ESTABLISHED)
1925			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1926	}
1927
1928	/* Change state AFTER socket is unhashed to avoid closed
1929	 * socket sitting in hash tables.
1930	 */
1931	sk->sk_state = state;
1932
1933#ifdef STATE_TRACE
1934	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1935#endif
1936}
1937EXPORT_SYMBOL_GPL(tcp_set_state);
1938
1939/*
1940 *	State processing on a close. This implements the state shift for
1941 *	sending our FIN frame. Note that we only send a FIN for some
1942 *	states. A shutdown() may have already sent the FIN, or we may be
1943 *	closed.
1944 */
1945
1946static const unsigned char new_state[16] = {
1947  /* current state:        new state:      action:	*/
1948  /* (Invalid)		*/ TCP_CLOSE,
1949  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1950  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1951  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1952  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1953  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1954  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1955  /* TCP_CLOSE		*/ TCP_CLOSE,
1956  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1957  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1958  /* TCP_LISTEN		*/ TCP_CLOSE,
1959  /* TCP_CLOSING	*/ TCP_CLOSING,
1960};
1961
1962static int tcp_close_state(struct sock *sk)
1963{
1964	int next = (int)new_state[sk->sk_state];
1965	int ns = next & TCP_STATE_MASK;
1966
1967	tcp_set_state(sk, ns);
1968
1969	return next & TCP_ACTION_FIN;
1970}
1971
1972/*
1973 *	Shutdown the sending side of a connection. Much like close except
1974 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1975 */
1976
1977void tcp_shutdown(struct sock *sk, int how)
1978{
1979	/*	We need to grab some memory, and put together a FIN,
1980	 *	and then put it into the queue to be sent.
1981	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1982	 */
1983	if (!(how & SEND_SHUTDOWN))
1984		return;
1985
1986	/* If we've already sent a FIN, or it's a closed state, skip this. */
1987	if ((1 << sk->sk_state) &
1988	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1989	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1990		/* Clear out any half completed packets.  FIN if needed. */
1991		if (tcp_close_state(sk))
1992			tcp_send_fin(sk);
1993	}
1994}
1995EXPORT_SYMBOL(tcp_shutdown);
1996
1997bool tcp_check_oom(struct sock *sk, int shift)
1998{
1999	bool too_many_orphans, out_of_socket_memory;
2000
2001	too_many_orphans = tcp_too_many_orphans(sk, shift);
2002	out_of_socket_memory = tcp_out_of_memory(sk);
2003
2004	if (too_many_orphans)
2005		net_info_ratelimited("too many orphaned sockets\n");
2006	if (out_of_socket_memory)
2007		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2008	return too_many_orphans || out_of_socket_memory;
2009}
2010
2011void tcp_close(struct sock *sk, long timeout)
2012{
2013	struct sk_buff *skb;
2014	int data_was_unread = 0;
2015	int state;
2016
2017	lock_sock(sk);
2018	sk->sk_shutdown = SHUTDOWN_MASK;
2019
2020	if (sk->sk_state == TCP_LISTEN) {
2021		tcp_set_state(sk, TCP_CLOSE);
2022
2023		/* Special case. */
2024		inet_csk_listen_stop(sk);
2025
2026		goto adjudge_to_death;
2027	}
2028
2029	/*  We need to flush the recv. buffs.  We do this only on the
2030	 *  descriptor close, not protocol-sourced closes, because the
2031	 *  reader process may not have drained the data yet!
2032	 */
2033	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2034		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2035			  tcp_hdr(skb)->fin;
2036		data_was_unread += len;
2037		__kfree_skb(skb);
2038	}
2039
2040	sk_mem_reclaim(sk);
2041
2042	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2043	if (sk->sk_state == TCP_CLOSE)
2044		goto adjudge_to_death;
2045
2046	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2047	 * data was lost. To witness the awful effects of the old behavior of
2048	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2049	 * GET in an FTP client, suspend the process, wait for the client to
2050	 * advertise a zero window, then kill -9 the FTP client, wheee...
2051	 * Note: timeout is always zero in such a case.
2052	 */
2053	if (unlikely(tcp_sk(sk)->repair)) {
2054		sk->sk_prot->disconnect(sk, 0);
2055	} else if (data_was_unread) {
2056		/* Unread data was tossed, zap the connection. */
2057		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2058		tcp_set_state(sk, TCP_CLOSE);
2059		tcp_send_active_reset(sk, sk->sk_allocation);
2060	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2061		/* Check zero linger _after_ checking for unread data. */
2062		sk->sk_prot->disconnect(sk, 0);
2063		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2064	} else if (tcp_close_state(sk)) {
2065		/* We FIN if the application ate all the data before
2066		 * zapping the connection.
2067		 */
2068
2069		/* RED-PEN. Formally speaking, we have broken TCP state
2070		 * machine. State transitions:
2071		 *
2072		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2073		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2074		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2075		 *
2076		 * are legal only when FIN has been sent (i.e. in window),
2077		 * rather than queued out of window. Purists blame.
2078		 *
2079		 * F.e. "RFC state" is ESTABLISHED,
2080		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2081		 *
2082		 * The visible declinations are that sometimes
2083		 * we enter time-wait state, when it is not required really
2084		 * (harmless), do not send active resets, when they are
2085		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2086		 * they look as CLOSING or LAST_ACK for Linux)
2087		 * Probably, I missed some more holelets.
2088		 * 						--ANK
2089		 */
2090		tcp_send_fin(sk);
2091	}
2092
2093	sk_stream_wait_close(sk, timeout);
2094
2095adjudge_to_death:
2096	state = sk->sk_state;
2097	sock_hold(sk);
2098	sock_orphan(sk);
2099
2100	/* It is the last release_sock in its life. It will remove backlog. */
2101	release_sock(sk);
2102
2103
2104	/* Now socket is owned by kernel and we acquire BH lock
2105	   to finish close. No need to check for user refs.
2106	 */
2107	local_bh_disable();
2108	bh_lock_sock(sk);
2109	WARN_ON(sock_owned_by_user(sk));
2110
2111	percpu_counter_inc(sk->sk_prot->orphan_count);
2112
2113	/* Have we already been destroyed by a softirq or backlog? */
2114	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2115		goto out;
2116
2117	/*	This is a (useful) BSD violating of the RFC. There is a
2118	 *	problem with TCP as specified in that the other end could
2119	 *	keep a socket open forever with no application left this end.
2120	 *	We use a 3 minute timeout (about the same as BSD) then kill
2121	 *	our end. If they send after that then tough - BUT: long enough
2122	 *	that we won't make the old 4*rto = almost no time - whoops
2123	 *	reset mistake.
2124	 *
2125	 *	Nope, it was not mistake. It is really desired behaviour
2126	 *	f.e. on http servers, when such sockets are useless, but
2127	 *	consume significant resources. Let's do it with special
2128	 *	linger2	option.					--ANK
2129	 */
2130
2131	if (sk->sk_state == TCP_FIN_WAIT2) {
2132		struct tcp_sock *tp = tcp_sk(sk);
2133		if (tp->linger2 < 0) {
2134			tcp_set_state(sk, TCP_CLOSE);
2135			tcp_send_active_reset(sk, GFP_ATOMIC);
2136			NET_INC_STATS_BH(sock_net(sk),
2137					LINUX_MIB_TCPABORTONLINGER);
2138		} else {
2139			const int tmo = tcp_fin_time(sk);
2140
2141			if (tmo > TCP_TIMEWAIT_LEN) {
2142				inet_csk_reset_keepalive_timer(sk,
2143						tmo - TCP_TIMEWAIT_LEN);
2144			} else {
2145				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2146				goto out;
2147			}
2148		}
2149	}
2150	if (sk->sk_state != TCP_CLOSE) {
2151		sk_mem_reclaim(sk);
2152		if (tcp_check_oom(sk, 0)) {
2153			tcp_set_state(sk, TCP_CLOSE);
2154			tcp_send_active_reset(sk, GFP_ATOMIC);
2155			NET_INC_STATS_BH(sock_net(sk),
2156					LINUX_MIB_TCPABORTONMEMORY);
2157		}
2158	}
2159
2160	if (sk->sk_state == TCP_CLOSE)
2161		inet_csk_destroy_sock(sk);
2162	/* Otherwise, socket is reprieved until protocol close. */
2163
2164out:
2165	bh_unlock_sock(sk);
2166	local_bh_enable();
2167	sock_put(sk);
2168}
2169EXPORT_SYMBOL(tcp_close);
2170
2171/* These states need RST on ABORT according to RFC793 */
2172
2173static inline bool tcp_need_reset(int state)
2174{
2175	return (1 << state) &
2176	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2177		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2178}
2179
2180int tcp_disconnect(struct sock *sk, int flags)
2181{
2182	struct inet_sock *inet = inet_sk(sk);
2183	struct inet_connection_sock *icsk = inet_csk(sk);
2184	struct tcp_sock *tp = tcp_sk(sk);
2185	int err = 0;
2186	int old_state = sk->sk_state;
2187
2188	if (old_state != TCP_CLOSE)
2189		tcp_set_state(sk, TCP_CLOSE);
2190
2191	/* ABORT function of RFC793 */
2192	if (old_state == TCP_LISTEN) {
2193		inet_csk_listen_stop(sk);
2194	} else if (unlikely(tp->repair)) {
2195		sk->sk_err = ECONNABORTED;
2196	} else if (tcp_need_reset(old_state) ||
2197		   (tp->snd_nxt != tp->write_seq &&
2198		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2199		/* The last check adjusts for discrepancy of Linux wrt. RFC
2200		 * states
2201		 */
2202		tcp_send_active_reset(sk, gfp_any());
2203		sk->sk_err = ECONNRESET;
2204	} else if (old_state == TCP_SYN_SENT)
2205		sk->sk_err = ECONNRESET;
2206
2207	tcp_clear_xmit_timers(sk);
2208	__skb_queue_purge(&sk->sk_receive_queue);
2209	tcp_write_queue_purge(sk);
2210	__skb_queue_purge(&tp->out_of_order_queue);
2211#ifdef CONFIG_NET_DMA
2212	__skb_queue_purge(&sk->sk_async_wait_queue);
2213#endif
2214
2215	inet->inet_dport = 0;
2216
2217	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2218		inet_reset_saddr(sk);
2219
2220	sk->sk_shutdown = 0;
2221	sock_reset_flag(sk, SOCK_DONE);
2222	tp->srtt = 0;
2223	if ((tp->write_seq += tp->max_window + 2) == 0)
2224		tp->write_seq = 1;
2225	icsk->icsk_backoff = 0;
2226	tp->snd_cwnd = 2;
2227	icsk->icsk_probes_out = 0;
2228	tp->packets_out = 0;
2229	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2230	tp->snd_cwnd_cnt = 0;
2231	tp->bytes_acked = 0;
2232	tp->window_clamp = 0;
2233	tcp_set_ca_state(sk, TCP_CA_Open);
2234	tcp_clear_retrans(tp);
2235	inet_csk_delack_init(sk);
2236	tcp_init_send_head(sk);
2237	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2238	__sk_dst_reset(sk);
2239
2240	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2241
2242	sk->sk_error_report(sk);
2243	return err;
2244}
2245EXPORT_SYMBOL(tcp_disconnect);
2246
2247static inline bool tcp_can_repair_sock(const struct sock *sk)
2248{
2249	return capable(CAP_NET_ADMIN) &&
2250		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2251}
2252
2253static int tcp_repair_options_est(struct tcp_sock *tp,
2254		struct tcp_repair_opt __user *optbuf, unsigned int len)
2255{
2256	struct tcp_repair_opt opt;
2257
2258	while (len >= sizeof(opt)) {
2259		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2260			return -EFAULT;
2261
2262		optbuf++;
2263		len -= sizeof(opt);
2264
2265		switch (opt.opt_code) {
2266		case TCPOPT_MSS:
2267			tp->rx_opt.mss_clamp = opt.opt_val;
2268			break;
2269		case TCPOPT_WINDOW:
2270			if (opt.opt_val > 14)
2271				return -EFBIG;
2272
2273			tp->rx_opt.snd_wscale = opt.opt_val;
2274			break;
2275		case TCPOPT_SACK_PERM:
2276			if (opt.opt_val != 0)
2277				return -EINVAL;
2278
2279			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2280			if (sysctl_tcp_fack)
2281				tcp_enable_fack(tp);
2282			break;
2283		case TCPOPT_TIMESTAMP:
2284			if (opt.opt_val != 0)
2285				return -EINVAL;
2286
2287			tp->rx_opt.tstamp_ok = 1;
2288			break;
2289		}
2290	}
2291
2292	return 0;
2293}
2294
2295/*
2296 *	Socket option code for TCP.
2297 */
2298static int do_tcp_setsockopt(struct sock *sk, int level,
2299		int optname, char __user *optval, unsigned int optlen)
2300{
2301	struct tcp_sock *tp = tcp_sk(sk);
2302	struct inet_connection_sock *icsk = inet_csk(sk);
2303	int val;
2304	int err = 0;
2305
2306	/* These are data/string values, all the others are ints */
2307	switch (optname) {
2308	case TCP_CONGESTION: {
2309		char name[TCP_CA_NAME_MAX];
2310
2311		if (optlen < 1)
2312			return -EINVAL;
2313
2314		val = strncpy_from_user(name, optval,
2315					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2316		if (val < 0)
2317			return -EFAULT;
2318		name[val] = 0;
2319
2320		lock_sock(sk);
2321		err = tcp_set_congestion_control(sk, name);
2322		release_sock(sk);
2323		return err;
2324	}
2325	case TCP_COOKIE_TRANSACTIONS: {
2326		struct tcp_cookie_transactions ctd;
2327		struct tcp_cookie_values *cvp = NULL;
2328
2329		if (sizeof(ctd) > optlen)
2330			return -EINVAL;
2331		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2332			return -EFAULT;
2333
2334		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2335		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2336			return -EINVAL;
2337
2338		if (ctd.tcpct_cookie_desired == 0) {
2339			/* default to global value */
2340		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2341			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2342			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2343			return -EINVAL;
2344		}
2345
2346		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2347			/* Supercedes all other values */
2348			lock_sock(sk);
2349			if (tp->cookie_values != NULL) {
2350				kref_put(&tp->cookie_values->kref,
2351					 tcp_cookie_values_release);
2352				tp->cookie_values = NULL;
2353			}
2354			tp->rx_opt.cookie_in_always = 0; /* false */
2355			tp->rx_opt.cookie_out_never = 1; /* true */
2356			release_sock(sk);
2357			return err;
2358		}
2359
2360		/* Allocate ancillary memory before locking.
2361		 */
2362		if (ctd.tcpct_used > 0 ||
2363		    (tp->cookie_values == NULL &&
2364		     (sysctl_tcp_cookie_size > 0 ||
2365		      ctd.tcpct_cookie_desired > 0 ||
2366		      ctd.tcpct_s_data_desired > 0))) {
2367			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2368				      GFP_KERNEL);
2369			if (cvp == NULL)
2370				return -ENOMEM;
2371
2372			kref_init(&cvp->kref);
2373		}
2374		lock_sock(sk);
2375		tp->rx_opt.cookie_in_always =
2376			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2377		tp->rx_opt.cookie_out_never = 0; /* false */
2378
2379		if (tp->cookie_values != NULL) {
2380			if (cvp != NULL) {
2381				/* Changed values are recorded by a changed
2382				 * pointer, ensuring the cookie will differ,
2383				 * without separately hashing each value later.
2384				 */
2385				kref_put(&tp->cookie_values->kref,
2386					 tcp_cookie_values_release);
2387			} else {
2388				cvp = tp->cookie_values;
2389			}
2390		}
2391
2392		if (cvp != NULL) {
2393			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2394
2395			if (ctd.tcpct_used > 0) {
2396				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2397				       ctd.tcpct_used);
2398				cvp->s_data_desired = ctd.tcpct_used;
2399				cvp->s_data_constant = 1; /* true */
2400			} else {
2401				/* No constant payload data. */
2402				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2403				cvp->s_data_constant = 0; /* false */
2404			}
2405
2406			tp->cookie_values = cvp;
2407		}
2408		release_sock(sk);
2409		return err;
2410	}
2411	default:
2412		/* fallthru */
2413		break;
2414	}
2415
2416	if (optlen < sizeof(int))
2417		return -EINVAL;
2418
2419	if (get_user(val, (int __user *)optval))
2420		return -EFAULT;
2421
2422	lock_sock(sk);
2423
2424	switch (optname) {
2425	case TCP_MAXSEG:
2426		/* Values greater than interface MTU won't take effect. However
2427		 * at the point when this call is done we typically don't yet
2428		 * know which interface is going to be used */
2429		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2430			err = -EINVAL;
2431			break;
2432		}
2433		tp->rx_opt.user_mss = val;
2434		break;
2435
2436	case TCP_NODELAY:
2437		if (val) {
2438			/* TCP_NODELAY is weaker than TCP_CORK, so that
2439			 * this option on corked socket is remembered, but
2440			 * it is not activated until cork is cleared.
2441			 *
2442			 * However, when TCP_NODELAY is set we make
2443			 * an explicit push, which overrides even TCP_CORK
2444			 * for currently queued segments.
2445			 */
2446			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2447			tcp_push_pending_frames(sk);
2448		} else {
2449			tp->nonagle &= ~TCP_NAGLE_OFF;
2450		}
2451		break;
2452
2453	case TCP_THIN_LINEAR_TIMEOUTS:
2454		if (val < 0 || val > 1)
2455			err = -EINVAL;
2456		else
2457			tp->thin_lto = val;
2458		break;
2459
2460	case TCP_THIN_DUPACK:
2461		if (val < 0 || val > 1)
2462			err = -EINVAL;
2463		else
2464			tp->thin_dupack = val;
2465			if (tp->thin_dupack)
2466				tcp_disable_early_retrans(tp);
2467		break;
2468
2469	case TCP_REPAIR:
2470		if (!tcp_can_repair_sock(sk))
2471			err = -EPERM;
2472		else if (val == 1) {
2473			tp->repair = 1;
2474			sk->sk_reuse = SK_FORCE_REUSE;
2475			tp->repair_queue = TCP_NO_QUEUE;
2476		} else if (val == 0) {
2477			tp->repair = 0;
2478			sk->sk_reuse = SK_NO_REUSE;
2479			tcp_send_window_probe(sk);
2480		} else
2481			err = -EINVAL;
2482
2483		break;
2484
2485	case TCP_REPAIR_QUEUE:
2486		if (!tp->repair)
2487			err = -EPERM;
2488		else if (val < TCP_QUEUES_NR)
2489			tp->repair_queue = val;
2490		else
2491			err = -EINVAL;
2492		break;
2493
2494	case TCP_QUEUE_SEQ:
2495		if (sk->sk_state != TCP_CLOSE)
2496			err = -EPERM;
2497		else if (tp->repair_queue == TCP_SEND_QUEUE)
2498			tp->write_seq = val;
2499		else if (tp->repair_queue == TCP_RECV_QUEUE)
2500			tp->rcv_nxt = val;
2501		else
2502			err = -EINVAL;
2503		break;
2504
2505	case TCP_REPAIR_OPTIONS:
2506		if (!tp->repair)
2507			err = -EINVAL;
2508		else if (sk->sk_state == TCP_ESTABLISHED)
2509			err = tcp_repair_options_est(tp,
2510					(struct tcp_repair_opt __user *)optval,
2511					optlen);
2512		else
2513			err = -EPERM;
2514		break;
2515
2516	case TCP_CORK:
2517		/* When set indicates to always queue non-full frames.
2518		 * Later the user clears this option and we transmit
2519		 * any pending partial frames in the queue.  This is
2520		 * meant to be used alongside sendfile() to get properly
2521		 * filled frames when the user (for example) must write
2522		 * out headers with a write() call first and then use
2523		 * sendfile to send out the data parts.
2524		 *
2525		 * TCP_CORK can be set together with TCP_NODELAY and it is
2526		 * stronger than TCP_NODELAY.
2527		 */
2528		if (val) {
2529			tp->nonagle |= TCP_NAGLE_CORK;
2530		} else {
2531			tp->nonagle &= ~TCP_NAGLE_CORK;
2532			if (tp->nonagle&TCP_NAGLE_OFF)
2533				tp->nonagle |= TCP_NAGLE_PUSH;
2534			tcp_push_pending_frames(sk);
2535		}
2536		break;
2537
2538	case TCP_KEEPIDLE:
2539		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2540			err = -EINVAL;
2541		else {
2542			tp->keepalive_time = val * HZ;
2543			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2544			    !((1 << sk->sk_state) &
2545			      (TCPF_CLOSE | TCPF_LISTEN))) {
2546				u32 elapsed = keepalive_time_elapsed(tp);
2547				if (tp->keepalive_time > elapsed)
2548					elapsed = tp->keepalive_time - elapsed;
2549				else
2550					elapsed = 0;
2551				inet_csk_reset_keepalive_timer(sk, elapsed);
2552			}
2553		}
2554		break;
2555	case TCP_KEEPINTVL:
2556		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2557			err = -EINVAL;
2558		else
2559			tp->keepalive_intvl = val * HZ;
2560		break;
2561	case TCP_KEEPCNT:
2562		if (val < 1 || val > MAX_TCP_KEEPCNT)
2563			err = -EINVAL;
2564		else
2565			tp->keepalive_probes = val;
2566		break;
2567	case TCP_SYNCNT:
2568		if (val < 1 || val > MAX_TCP_SYNCNT)
2569			err = -EINVAL;
2570		else
2571			icsk->icsk_syn_retries = val;
2572		break;
2573
2574	case TCP_LINGER2:
2575		if (val < 0)
2576			tp->linger2 = -1;
2577		else if (val > sysctl_tcp_fin_timeout / HZ)
2578			tp->linger2 = 0;
2579		else
2580			tp->linger2 = val * HZ;
2581		break;
2582
2583	case TCP_DEFER_ACCEPT:
2584		/* Translate value in seconds to number of retransmits */
2585		icsk->icsk_accept_queue.rskq_defer_accept =
2586			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2587					TCP_RTO_MAX / HZ);
2588		break;
2589
2590	case TCP_WINDOW_CLAMP:
2591		if (!val) {
2592			if (sk->sk_state != TCP_CLOSE) {
2593				err = -EINVAL;
2594				break;
2595			}
2596			tp->window_clamp = 0;
2597		} else
2598			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2599						SOCK_MIN_RCVBUF / 2 : val;
2600		break;
2601
2602	case TCP_QUICKACK:
2603		if (!val) {
2604			icsk->icsk_ack.pingpong = 1;
2605		} else {
2606			icsk->icsk_ack.pingpong = 0;
2607			if ((1 << sk->sk_state) &
2608			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2609			    inet_csk_ack_scheduled(sk)) {
2610				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2611				tcp_cleanup_rbuf(sk, 1);
2612				if (!(val & 1))
2613					icsk->icsk_ack.pingpong = 1;
2614			}
2615		}
2616		break;
2617
2618#ifdef CONFIG_TCP_MD5SIG
2619	case TCP_MD5SIG:
2620		/* Read the IP->Key mappings from userspace */
2621		err = tp->af_specific->md5_parse(sk, optval, optlen);
2622		break;
2623#endif
2624	case TCP_USER_TIMEOUT:
2625		/* Cap the max timeout in ms TCP will retry/retrans
2626		 * before giving up and aborting (ETIMEDOUT) a connection.
2627		 */
2628		icsk->icsk_user_timeout = msecs_to_jiffies(val);
2629		break;
2630	default:
2631		err = -ENOPROTOOPT;
2632		break;
2633	}
2634
2635	release_sock(sk);
2636	return err;
2637}
2638
2639int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2640		   unsigned int optlen)
2641{
2642	const struct inet_connection_sock *icsk = inet_csk(sk);
2643
2644	if (level != SOL_TCP)
2645		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2646						     optval, optlen);
2647	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2648}
2649EXPORT_SYMBOL(tcp_setsockopt);
2650
2651#ifdef CONFIG_COMPAT
2652int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2653			  char __user *optval, unsigned int optlen)
2654{
2655	if (level != SOL_TCP)
2656		return inet_csk_compat_setsockopt(sk, level, optname,
2657						  optval, optlen);
2658	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2659}
2660EXPORT_SYMBOL(compat_tcp_setsockopt);
2661#endif
2662
2663/* Return information about state of tcp endpoint in API format. */
2664void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2665{
2666	const struct tcp_sock *tp = tcp_sk(sk);
2667	const struct inet_connection_sock *icsk = inet_csk(sk);
2668	u32 now = tcp_time_stamp;
2669
2670	memset(info, 0, sizeof(*info));
2671
2672	info->tcpi_state = sk->sk_state;
2673	info->tcpi_ca_state = icsk->icsk_ca_state;
2674	info->tcpi_retransmits = icsk->icsk_retransmits;
2675	info->tcpi_probes = icsk->icsk_probes_out;
2676	info->tcpi_backoff = icsk->icsk_backoff;
2677
2678	if (tp->rx_opt.tstamp_ok)
2679		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2680	if (tcp_is_sack(tp))
2681		info->tcpi_options |= TCPI_OPT_SACK;
2682	if (tp->rx_opt.wscale_ok) {
2683		info->tcpi_options |= TCPI_OPT_WSCALE;
2684		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2685		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2686	}
2687
2688	if (tp->ecn_flags & TCP_ECN_OK)
2689		info->tcpi_options |= TCPI_OPT_ECN;
2690	if (tp->ecn_flags & TCP_ECN_SEEN)
2691		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2692
2693	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2694	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2695	info->tcpi_snd_mss = tp->mss_cache;
2696	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2697
2698	if (sk->sk_state == TCP_LISTEN) {
2699		info->tcpi_unacked = sk->sk_ack_backlog;
2700		info->tcpi_sacked = sk->sk_max_ack_backlog;
2701	} else {
2702		info->tcpi_unacked = tp->packets_out;
2703		info->tcpi_sacked = tp->sacked_out;
2704	}
2705	info->tcpi_lost = tp->lost_out;
2706	info->tcpi_retrans = tp->retrans_out;
2707	info->tcpi_fackets = tp->fackets_out;
2708
2709	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2710	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2711	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2712
2713	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2714	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2715	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2716	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2717	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2718	info->tcpi_snd_cwnd = tp->snd_cwnd;
2719	info->tcpi_advmss = tp->advmss;
2720	info->tcpi_reordering = tp->reordering;
2721
2722	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2723	info->tcpi_rcv_space = tp->rcvq_space.space;
2724
2725	info->tcpi_total_retrans = tp->total_retrans;
2726}
2727EXPORT_SYMBOL_GPL(tcp_get_info);
2728
2729static int do_tcp_getsockopt(struct sock *sk, int level,
2730		int optname, char __user *optval, int __user *optlen)
2731{
2732	struct inet_connection_sock *icsk = inet_csk(sk);
2733	struct tcp_sock *tp = tcp_sk(sk);
2734	int val, len;
2735
2736	if (get_user(len, optlen))
2737		return -EFAULT;
2738
2739	len = min_t(unsigned int, len, sizeof(int));
2740
2741	if (len < 0)
2742		return -EINVAL;
2743
2744	switch (optname) {
2745	case TCP_MAXSEG:
2746		val = tp->mss_cache;
2747		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2748			val = tp->rx_opt.user_mss;
2749		if (tp->repair)
2750			val = tp->rx_opt.mss_clamp;
2751		break;
2752	case TCP_NODELAY:
2753		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2754		break;
2755	case TCP_CORK:
2756		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2757		break;
2758	case TCP_KEEPIDLE:
2759		val = keepalive_time_when(tp) / HZ;
2760		break;
2761	case TCP_KEEPINTVL:
2762		val = keepalive_intvl_when(tp) / HZ;
2763		break;
2764	case TCP_KEEPCNT:
2765		val = keepalive_probes(tp);
2766		break;
2767	case TCP_SYNCNT:
2768		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2769		break;
2770	case TCP_LINGER2:
2771		val = tp->linger2;
2772		if (val >= 0)
2773			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2774		break;
2775	case TCP_DEFER_ACCEPT:
2776		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2777				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2778		break;
2779	case TCP_WINDOW_CLAMP:
2780		val = tp->window_clamp;
2781		break;
2782	case TCP_INFO: {
2783		struct tcp_info info;
2784
2785		if (get_user(len, optlen))
2786			return -EFAULT;
2787
2788		tcp_get_info(sk, &info);
2789
2790		len = min_t(unsigned int, len, sizeof(info));
2791		if (put_user(len, optlen))
2792			return -EFAULT;
2793		if (copy_to_user(optval, &info, len))
2794			return -EFAULT;
2795		return 0;
2796	}
2797	case TCP_QUICKACK:
2798		val = !icsk->icsk_ack.pingpong;
2799		break;
2800
2801	case TCP_CONGESTION:
2802		if (get_user(len, optlen))
2803			return -EFAULT;
2804		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2805		if (put_user(len, optlen))
2806			return -EFAULT;
2807		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2808			return -EFAULT;
2809		return 0;
2810
2811	case TCP_COOKIE_TRANSACTIONS: {
2812		struct tcp_cookie_transactions ctd;
2813		struct tcp_cookie_values *cvp = tp->cookie_values;
2814
2815		if (get_user(len, optlen))
2816			return -EFAULT;
2817		if (len < sizeof(ctd))
2818			return -EINVAL;
2819
2820		memset(&ctd, 0, sizeof(ctd));
2821		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2822				   TCP_COOKIE_IN_ALWAYS : 0)
2823				| (tp->rx_opt.cookie_out_never ?
2824				   TCP_COOKIE_OUT_NEVER : 0);
2825
2826		if (cvp != NULL) {
2827			ctd.tcpct_flags |= (cvp->s_data_in ?
2828					    TCP_S_DATA_IN : 0)
2829					 | (cvp->s_data_out ?
2830					    TCP_S_DATA_OUT : 0);
2831
2832			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2833			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2834
2835			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2836			       cvp->cookie_pair_size);
2837			ctd.tcpct_used = cvp->cookie_pair_size;
2838		}
2839
2840		if (put_user(sizeof(ctd), optlen))
2841			return -EFAULT;
2842		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2843			return -EFAULT;
2844		return 0;
2845	}
2846	case TCP_THIN_LINEAR_TIMEOUTS:
2847		val = tp->thin_lto;
2848		break;
2849	case TCP_THIN_DUPACK:
2850		val = tp->thin_dupack;
2851		break;
2852
2853	case TCP_REPAIR:
2854		val = tp->repair;
2855		break;
2856
2857	case TCP_REPAIR_QUEUE:
2858		if (tp->repair)
2859			val = tp->repair_queue;
2860		else
2861			return -EINVAL;
2862		break;
2863
2864	case TCP_QUEUE_SEQ:
2865		if (tp->repair_queue == TCP_SEND_QUEUE)
2866			val = tp->write_seq;
2867		else if (tp->repair_queue == TCP_RECV_QUEUE)
2868			val = tp->rcv_nxt;
2869		else
2870			return -EINVAL;
2871		break;
2872
2873	case TCP_USER_TIMEOUT:
2874		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2875		break;
2876	default:
2877		return -ENOPROTOOPT;
2878	}
2879
2880	if (put_user(len, optlen))
2881		return -EFAULT;
2882	if (copy_to_user(optval, &val, len))
2883		return -EFAULT;
2884	return 0;
2885}
2886
2887int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2888		   int __user *optlen)
2889{
2890	struct inet_connection_sock *icsk = inet_csk(sk);
2891
2892	if (level != SOL_TCP)
2893		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2894						     optval, optlen);
2895	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2896}
2897EXPORT_SYMBOL(tcp_getsockopt);
2898
2899#ifdef CONFIG_COMPAT
2900int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2901			  char __user *optval, int __user *optlen)
2902{
2903	if (level != SOL_TCP)
2904		return inet_csk_compat_getsockopt(sk, level, optname,
2905						  optval, optlen);
2906	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2907}
2908EXPORT_SYMBOL(compat_tcp_getsockopt);
2909#endif
2910
2911struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2912	netdev_features_t features)
2913{
2914	struct sk_buff *segs = ERR_PTR(-EINVAL);
2915	struct tcphdr *th;
2916	unsigned int thlen;
2917	unsigned int seq;
2918	__be32 delta;
2919	unsigned int oldlen;
2920	unsigned int mss;
2921
2922	if (!pskb_may_pull(skb, sizeof(*th)))
2923		goto out;
2924
2925	th = tcp_hdr(skb);
2926	thlen = th->doff * 4;
2927	if (thlen < sizeof(*th))
2928		goto out;
2929
2930	if (!pskb_may_pull(skb, thlen))
2931		goto out;
2932
2933	oldlen = (u16)~skb->len;
2934	__skb_pull(skb, thlen);
2935
2936	mss = skb_shinfo(skb)->gso_size;
2937	if (unlikely(skb->len <= mss))
2938		goto out;
2939
2940	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2941		/* Packet is from an untrusted source, reset gso_segs. */
2942		int type = skb_shinfo(skb)->gso_type;
2943
2944		if (unlikely(type &
2945			     ~(SKB_GSO_TCPV4 |
2946			       SKB_GSO_DODGY |
2947			       SKB_GSO_TCP_ECN |
2948			       SKB_GSO_TCPV6 |
2949			       0) ||
2950			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2951			goto out;
2952
2953		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2954
2955		segs = NULL;
2956		goto out;
2957	}
2958
2959	segs = skb_segment(skb, features);
2960	if (IS_ERR(segs))
2961		goto out;
2962
2963	delta = htonl(oldlen + (thlen + mss));
2964
2965	skb = segs;
2966	th = tcp_hdr(skb);
2967	seq = ntohl(th->seq);
2968
2969	do {
2970		th->fin = th->psh = 0;
2971
2972		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2973				       (__force u32)delta));
2974		if (skb->ip_summed != CHECKSUM_PARTIAL)
2975			th->check =
2976			     csum_fold(csum_partial(skb_transport_header(skb),
2977						    thlen, skb->csum));
2978
2979		seq += mss;
2980		skb = skb->next;
2981		th = tcp_hdr(skb);
2982
2983		th->seq = htonl(seq);
2984		th->cwr = 0;
2985	} while (skb->next);
2986
2987	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2988		      skb->data_len);
2989	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2990				(__force u32)delta));
2991	if (skb->ip_summed != CHECKSUM_PARTIAL)
2992		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2993						   thlen, skb->csum));
2994
2995out:
2996	return segs;
2997}
2998EXPORT_SYMBOL(tcp_tso_segment);
2999
3000struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3001{
3002	struct sk_buff **pp = NULL;
3003	struct sk_buff *p;
3004	struct tcphdr *th;
3005	struct tcphdr *th2;
3006	unsigned int len;
3007	unsigned int thlen;
3008	__be32 flags;
3009	unsigned int mss = 1;
3010	unsigned int hlen;
3011	unsigned int off;
3012	int flush = 1;
3013	int i;
3014
3015	off = skb_gro_offset(skb);
3016	hlen = off + sizeof(*th);
3017	th = skb_gro_header_fast(skb, off);
3018	if (skb_gro_header_hard(skb, hlen)) {
3019		th = skb_gro_header_slow(skb, hlen, off);
3020		if (unlikely(!th))
3021			goto out;
3022	}
3023
3024	thlen = th->doff * 4;
3025	if (thlen < sizeof(*th))
3026		goto out;
3027
3028	hlen = off + thlen;
3029	if (skb_gro_header_hard(skb, hlen)) {
3030		th = skb_gro_header_slow(skb, hlen, off);
3031		if (unlikely(!th))
3032			goto out;
3033	}
3034
3035	skb_gro_pull(skb, thlen);
3036
3037	len = skb_gro_len(skb);
3038	flags = tcp_flag_word(th);
3039
3040	for (; (p = *head); head = &p->next) {
3041		if (!NAPI_GRO_CB(p)->same_flow)
3042			continue;
3043
3044		th2 = tcp_hdr(p);
3045
3046		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3047			NAPI_GRO_CB(p)->same_flow = 0;
3048			continue;
3049		}
3050
3051		goto found;
3052	}
3053
3054	goto out_check_final;
3055
3056found:
3057	flush = NAPI_GRO_CB(p)->flush;
3058	flush |= (__force int)(flags & TCP_FLAG_CWR);
3059	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3060		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3061	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3062	for (i = sizeof(*th); i < thlen; i += 4)
3063		flush |= *(u32 *)((u8 *)th + i) ^
3064			 *(u32 *)((u8 *)th2 + i);
3065
3066	mss = skb_shinfo(p)->gso_size;
3067
3068	flush |= (len - 1) >= mss;
3069	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3070
3071	if (flush || skb_gro_receive(head, skb)) {
3072		mss = 1;
3073		goto out_check_final;
3074	}
3075
3076	p = *head;
3077	th2 = tcp_hdr(p);
3078	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3079
3080out_check_final:
3081	flush = len < mss;
3082	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3083					TCP_FLAG_RST | TCP_FLAG_SYN |
3084					TCP_FLAG_FIN));
3085
3086	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3087		pp = head;
3088
3089out:
3090	NAPI_GRO_CB(skb)->flush |= flush;
3091
3092	return pp;
3093}
3094EXPORT_SYMBOL(tcp_gro_receive);
3095
3096int tcp_gro_complete(struct sk_buff *skb)
3097{
3098	struct tcphdr *th = tcp_hdr(skb);
3099
3100	skb->csum_start = skb_transport_header(skb) - skb->head;
3101	skb->csum_offset = offsetof(struct tcphdr, check);
3102	skb->ip_summed = CHECKSUM_PARTIAL;
3103
3104	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3105
3106	if (th->cwr)
3107		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3108
3109	return 0;
3110}
3111EXPORT_SYMBOL(tcp_gro_complete);
3112
3113#ifdef CONFIG_TCP_MD5SIG
3114static unsigned long tcp_md5sig_users;
3115static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3116static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3117
3118static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3119{
3120	int cpu;
3121
3122	for_each_possible_cpu(cpu) {
3123		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3124
3125		if (p->md5_desc.tfm)
3126			crypto_free_hash(p->md5_desc.tfm);
3127	}
3128	free_percpu(pool);
3129}
3130
3131void tcp_free_md5sig_pool(void)
3132{
3133	struct tcp_md5sig_pool __percpu *pool = NULL;
3134
3135	spin_lock_bh(&tcp_md5sig_pool_lock);
3136	if (--tcp_md5sig_users == 0) {
3137		pool = tcp_md5sig_pool;
3138		tcp_md5sig_pool = NULL;
3139	}
3140	spin_unlock_bh(&tcp_md5sig_pool_lock);
3141	if (pool)
3142		__tcp_free_md5sig_pool(pool);
3143}
3144EXPORT_SYMBOL(tcp_free_md5sig_pool);
3145
3146static struct tcp_md5sig_pool __percpu *
3147__tcp_alloc_md5sig_pool(struct sock *sk)
3148{
3149	int cpu;
3150	struct tcp_md5sig_pool __percpu *pool;
3151
3152	pool = alloc_percpu(struct tcp_md5sig_pool);
3153	if (!pool)
3154		return NULL;
3155
3156	for_each_possible_cpu(cpu) {
3157		struct crypto_hash *hash;
3158
3159		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3160		if (!hash || IS_ERR(hash))
3161			goto out_free;
3162
3163		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3164	}
3165	return pool;
3166out_free:
3167	__tcp_free_md5sig_pool(pool);
3168	return NULL;
3169}
3170
3171struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3172{
3173	struct tcp_md5sig_pool __percpu *pool;
3174	bool alloc = false;
3175
3176retry:
3177	spin_lock_bh(&tcp_md5sig_pool_lock);
3178	pool = tcp_md5sig_pool;
3179	if (tcp_md5sig_users++ == 0) {
3180		alloc = true;
3181		spin_unlock_bh(&tcp_md5sig_pool_lock);
3182	} else if (!pool) {
3183		tcp_md5sig_users--;
3184		spin_unlock_bh(&tcp_md5sig_pool_lock);
3185		cpu_relax();
3186		goto retry;
3187	} else
3188		spin_unlock_bh(&tcp_md5sig_pool_lock);
3189
3190	if (alloc) {
3191		/* we cannot hold spinlock here because this may sleep. */
3192		struct tcp_md5sig_pool __percpu *p;
3193
3194		p = __tcp_alloc_md5sig_pool(sk);
3195		spin_lock_bh(&tcp_md5sig_pool_lock);
3196		if (!p) {
3197			tcp_md5sig_users--;
3198			spin_unlock_bh(&tcp_md5sig_pool_lock);
3199			return NULL;
3200		}
3201		pool = tcp_md5sig_pool;
3202		if (pool) {
3203			/* oops, it has already been assigned. */
3204			spin_unlock_bh(&tcp_md5sig_pool_lock);
3205			__tcp_free_md5sig_pool(p);
3206		} else {
3207			tcp_md5sig_pool = pool = p;
3208			spin_unlock_bh(&tcp_md5sig_pool_lock);
3209		}
3210	}
3211	return pool;
3212}
3213EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3214
3215
3216/**
3217 *	tcp_get_md5sig_pool - get md5sig_pool for this user
3218 *
3219 *	We use percpu structure, so if we succeed, we exit with preemption
3220 *	and BH disabled, to make sure another thread or softirq handling
3221 *	wont try to get same context.
3222 */
3223struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3224{
3225	struct tcp_md5sig_pool __percpu *p;
3226
3227	local_bh_disable();
3228
3229	spin_lock(&tcp_md5sig_pool_lock);
3230	p = tcp_md5sig_pool;
3231	if (p)
3232		tcp_md5sig_users++;
3233	spin_unlock(&tcp_md5sig_pool_lock);
3234
3235	if (p)
3236		return this_cpu_ptr(p);
3237
3238	local_bh_enable();
3239	return NULL;
3240}
3241EXPORT_SYMBOL(tcp_get_md5sig_pool);
3242
3243void tcp_put_md5sig_pool(void)
3244{
3245	local_bh_enable();
3246	tcp_free_md5sig_pool();
3247}
3248EXPORT_SYMBOL(tcp_put_md5sig_pool);
3249
3250int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3251			const struct tcphdr *th)
3252{
3253	struct scatterlist sg;
3254	struct tcphdr hdr;
3255	int err;
3256
3257	/* We are not allowed to change tcphdr, make a local copy */
3258	memcpy(&hdr, th, sizeof(hdr));
3259	hdr.check = 0;
3260
3261	/* options aren't included in the hash */
3262	sg_init_one(&sg, &hdr, sizeof(hdr));
3263	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3264	return err;
3265}
3266EXPORT_SYMBOL(tcp_md5_hash_header);
3267
3268int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3269			  const struct sk_buff *skb, unsigned int header_len)
3270{
3271	struct scatterlist sg;
3272	const struct tcphdr *tp = tcp_hdr(skb);
3273	struct hash_desc *desc = &hp->md5_desc;
3274	unsigned int i;
3275	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3276					   skb_headlen(skb) - header_len : 0;
3277	const struct skb_shared_info *shi = skb_shinfo(skb);
3278	struct sk_buff *frag_iter;
3279
3280	sg_init_table(&sg, 1);
3281
3282	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3283	if (crypto_hash_update(desc, &sg, head_data_len))
3284		return 1;
3285
3286	for (i = 0; i < shi->nr_frags; ++i) {
3287		const struct skb_frag_struct *f = &shi->frags[i];
3288		struct page *page = skb_frag_page(f);
3289		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3290		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3291			return 1;
3292	}
3293
3294	skb_walk_frags(skb, frag_iter)
3295		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3296			return 1;
3297
3298	return 0;
3299}
3300EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3301
3302int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3303{
3304	struct scatterlist sg;
3305
3306	sg_init_one(&sg, key->key, key->keylen);
3307	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3308}
3309EXPORT_SYMBOL(tcp_md5_hash_key);
3310
3311#endif
3312
3313/* Each Responder maintains up to two secret values concurrently for
3314 * efficient secret rollover.  Each secret value has 4 states:
3315 *
3316 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3317 *    Generates new Responder-Cookies, but not yet used for primary
3318 *    verification.  This is a short-term state, typically lasting only
3319 *    one round trip time (RTT).
3320 *
3321 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3322 *    Used both for generation and primary verification.
3323 *
3324 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3325 *    Used for verification, until the first failure that can be
3326 *    verified by the newer Generating secret.  At that time, this
3327 *    cookie's state is changed to Secondary, and the Generating
3328 *    cookie's state is changed to Primary.  This is a short-term state,
3329 *    typically lasting only one round trip time (RTT).
3330 *
3331 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3332 *    Used for secondary verification, after primary verification
3333 *    failures.  This state lasts no more than twice the Maximum Segment
3334 *    Lifetime (2MSL).  Then, the secret is discarded.
3335 */
3336struct tcp_cookie_secret {
3337	/* The secret is divided into two parts.  The digest part is the
3338	 * equivalent of previously hashing a secret and saving the state,
3339	 * and serves as an initialization vector (IV).  The message part
3340	 * serves as the trailing secret.
3341	 */
3342	u32				secrets[COOKIE_WORKSPACE_WORDS];
3343	unsigned long			expires;
3344};
3345
3346#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3347#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3348#define TCP_SECRET_LIFE (HZ * 600)
3349
3350static struct tcp_cookie_secret tcp_secret_one;
3351static struct tcp_cookie_secret tcp_secret_two;
3352
3353/* Essentially a circular list, without dynamic allocation. */
3354static struct tcp_cookie_secret *tcp_secret_generating;
3355static struct tcp_cookie_secret *tcp_secret_primary;
3356static struct tcp_cookie_secret *tcp_secret_retiring;
3357static struct tcp_cookie_secret *tcp_secret_secondary;
3358
3359static DEFINE_SPINLOCK(tcp_secret_locker);
3360
3361/* Select a pseudo-random word in the cookie workspace.
3362 */
3363static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3364{
3365	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3366}
3367
3368/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3369 * Called in softirq context.
3370 * Returns: 0 for success.
3371 */
3372int tcp_cookie_generator(u32 *bakery)
3373{
3374	unsigned long jiffy = jiffies;
3375
3376	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3377		spin_lock_bh(&tcp_secret_locker);
3378		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3379			/* refreshed by another */
3380			memcpy(bakery,
3381			       &tcp_secret_generating->secrets[0],
3382			       COOKIE_WORKSPACE_WORDS);
3383		} else {
3384			/* still needs refreshing */
3385			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3386
3387			/* The first time, paranoia assumes that the
3388			 * randomization function isn't as strong.  But,
3389			 * this secret initialization is delayed until
3390			 * the last possible moment (packet arrival).
3391			 * Although that time is observable, it is
3392			 * unpredictably variable.  Mash in the most
3393			 * volatile clock bits available, and expire the
3394			 * secret extra quickly.
3395			 */
3396			if (unlikely(tcp_secret_primary->expires ==
3397				     tcp_secret_secondary->expires)) {
3398				struct timespec tv;
3399
3400				getnstimeofday(&tv);
3401				bakery[COOKIE_DIGEST_WORDS+0] ^=
3402					(u32)tv.tv_nsec;
3403
3404				tcp_secret_secondary->expires = jiffy
3405					+ TCP_SECRET_1MSL
3406					+ (0x0f & tcp_cookie_work(bakery, 0));
3407			} else {
3408				tcp_secret_secondary->expires = jiffy
3409					+ TCP_SECRET_LIFE
3410					+ (0xff & tcp_cookie_work(bakery, 1));
3411				tcp_secret_primary->expires = jiffy
3412					+ TCP_SECRET_2MSL
3413					+ (0x1f & tcp_cookie_work(bakery, 2));
3414			}
3415			memcpy(&tcp_secret_secondary->secrets[0],
3416			       bakery, COOKIE_WORKSPACE_WORDS);
3417
3418			rcu_assign_pointer(tcp_secret_generating,
3419					   tcp_secret_secondary);
3420			rcu_assign_pointer(tcp_secret_retiring,
3421					   tcp_secret_primary);
3422			/*
3423			 * Neither call_rcu() nor synchronize_rcu() needed.
3424			 * Retiring data is not freed.  It is replaced after
3425			 * further (locked) pointer updates, and a quiet time
3426			 * (minimum 1MSL, maximum LIFE - 2MSL).
3427			 */
3428		}
3429		spin_unlock_bh(&tcp_secret_locker);
3430	} else {
3431		rcu_read_lock_bh();
3432		memcpy(bakery,
3433		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3434		       COOKIE_WORKSPACE_WORDS);
3435		rcu_read_unlock_bh();
3436	}
3437	return 0;
3438}
3439EXPORT_SYMBOL(tcp_cookie_generator);
3440
3441void tcp_done(struct sock *sk)
3442{
3443	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3444		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3445
3446	tcp_set_state(sk, TCP_CLOSE);
3447	tcp_clear_xmit_timers(sk);
3448
3449	sk->sk_shutdown = SHUTDOWN_MASK;
3450
3451	if (!sock_flag(sk, SOCK_DEAD))
3452		sk->sk_state_change(sk);
3453	else
3454		inet_csk_destroy_sock(sk);
3455}
3456EXPORT_SYMBOL_GPL(tcp_done);
3457
3458extern struct tcp_congestion_ops tcp_reno;
3459
3460static __initdata unsigned long thash_entries;
3461static int __init set_thash_entries(char *str)
3462{
3463	ssize_t ret;
3464
3465	if (!str)
3466		return 0;
3467
3468	ret = kstrtoul(str, 0, &thash_entries);
3469	if (ret)
3470		return 0;
3471
3472	return 1;
3473}
3474__setup("thash_entries=", set_thash_entries);
3475
3476void tcp_init_mem(struct net *net)
3477{
3478	unsigned long limit = nr_free_buffer_pages() / 8;
3479	limit = max(limit, 128UL);
3480	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3481	net->ipv4.sysctl_tcp_mem[1] = limit;
3482	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3483}
3484
3485void __init tcp_init(void)
3486{
3487	struct sk_buff *skb = NULL;
3488	unsigned long limit;
3489	int max_rshare, max_wshare, cnt;
3490	unsigned int i;
3491	unsigned long jiffy = jiffies;
3492
3493	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3494
3495	percpu_counter_init(&tcp_sockets_allocated, 0);
3496	percpu_counter_init(&tcp_orphan_count, 0);
3497	tcp_hashinfo.bind_bucket_cachep =
3498		kmem_cache_create("tcp_bind_bucket",
3499				  sizeof(struct inet_bind_bucket), 0,
3500				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3501
3502	/* Size and allocate the main established and bind bucket
3503	 * hash tables.
3504	 *
3505	 * The methodology is similar to that of the buffer cache.
3506	 */
3507	tcp_hashinfo.ehash =
3508		alloc_large_system_hash("TCP established",
3509					sizeof(struct inet_ehash_bucket),
3510					thash_entries,
3511					(totalram_pages >= 128 * 1024) ?
3512					13 : 15,
3513					0,
3514					NULL,
3515					&tcp_hashinfo.ehash_mask,
3516					0,
3517					thash_entries ? 0 : 512 * 1024);
3518	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3519		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3520		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3521	}
3522	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3523		panic("TCP: failed to alloc ehash_locks");
3524	tcp_hashinfo.bhash =
3525		alloc_large_system_hash("TCP bind",
3526					sizeof(struct inet_bind_hashbucket),
3527					tcp_hashinfo.ehash_mask + 1,
3528					(totalram_pages >= 128 * 1024) ?
3529					13 : 15,
3530					0,
3531					&tcp_hashinfo.bhash_size,
3532					NULL,
3533					0,
3534					64 * 1024);
3535	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3536	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3537		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3538		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3539	}
3540
3541
3542	cnt = tcp_hashinfo.ehash_mask + 1;
3543
3544	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3545	sysctl_tcp_max_orphans = cnt / 2;
3546	sysctl_max_syn_backlog = max(128, cnt / 256);
3547
3548	tcp_init_mem(&init_net);
3549	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3550	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3551	max_wshare = min(4UL*1024*1024, limit);
3552	max_rshare = min(6UL*1024*1024, limit);
3553
3554	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3555	sysctl_tcp_wmem[1] = 16*1024;
3556	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3557
3558	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3559	sysctl_tcp_rmem[1] = 87380;
3560	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3561
3562	pr_info("Hash tables configured (established %u bind %u)\n",
3563		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3564
3565	tcp_metrics_init();
3566
3567	tcp_register_congestion_control(&tcp_reno);
3568
3569	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3570	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3571	tcp_secret_one.expires = jiffy; /* past due */
3572	tcp_secret_two.expires = jiffy; /* past due */
3573	tcp_secret_generating = &tcp_secret_one;
3574	tcp_secret_primary = &tcp_secret_one;
3575	tcp_secret_retiring = &tcp_secret_two;
3576	tcp_secret_secondary = &tcp_secret_two;
3577}
3578