tcp.c revision b139ba4e90dccbf4cd4efb112af96a5c9e0b098c
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#define pr_fmt(fmt) "TCP: " fmt
249
250#include <linux/kernel.h>
251#include <linux/module.h>
252#include <linux/types.h>
253#include <linux/fcntl.h>
254#include <linux/poll.h>
255#include <linux/init.h>
256#include <linux/fs.h>
257#include <linux/skbuff.h>
258#include <linux/scatterlist.h>
259#include <linux/splice.h>
260#include <linux/net.h>
261#include <linux/socket.h>
262#include <linux/random.h>
263#include <linux/bootmem.h>
264#include <linux/highmem.h>
265#include <linux/swap.h>
266#include <linux/cache.h>
267#include <linux/err.h>
268#include <linux/crypto.h>
269#include <linux/time.h>
270#include <linux/slab.h>
271
272#include <net/icmp.h>
273#include <net/tcp.h>
274#include <net/xfrm.h>
275#include <net/ip.h>
276#include <net/netdma.h>
277#include <net/sock.h>
278
279#include <asm/uaccess.h>
280#include <asm/ioctls.h>
281
282int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
283
284struct percpu_counter tcp_orphan_count;
285EXPORT_SYMBOL_GPL(tcp_orphan_count);
286
287int sysctl_tcp_wmem[3] __read_mostly;
288int sysctl_tcp_rmem[3] __read_mostly;
289
290EXPORT_SYMBOL(sysctl_tcp_rmem);
291EXPORT_SYMBOL(sysctl_tcp_wmem);
292
293atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
294EXPORT_SYMBOL(tcp_memory_allocated);
295
296/*
297 * Current number of TCP sockets.
298 */
299struct percpu_counter tcp_sockets_allocated;
300EXPORT_SYMBOL(tcp_sockets_allocated);
301
302/*
303 * TCP splice context
304 */
305struct tcp_splice_state {
306	struct pipe_inode_info *pipe;
307	size_t len;
308	unsigned int flags;
309};
310
311/*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317int tcp_memory_pressure __read_mostly;
318EXPORT_SYMBOL(tcp_memory_pressure);
319
320void tcp_enter_memory_pressure(struct sock *sk)
321{
322	if (!tcp_memory_pressure) {
323		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324		tcp_memory_pressure = 1;
325	}
326}
327EXPORT_SYMBOL(tcp_enter_memory_pressure);
328
329/* Convert seconds to retransmits based on initial and max timeout */
330static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331{
332	u8 res = 0;
333
334	if (seconds > 0) {
335		int period = timeout;
336
337		res = 1;
338		while (seconds > period && res < 255) {
339			res++;
340			timeout <<= 1;
341			if (timeout > rto_max)
342				timeout = rto_max;
343			period += timeout;
344		}
345	}
346	return res;
347}
348
349/* Convert retransmits to seconds based on initial and max timeout */
350static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351{
352	int period = 0;
353
354	if (retrans > 0) {
355		period = timeout;
356		while (--retrans) {
357			timeout <<= 1;
358			if (timeout > rto_max)
359				timeout = rto_max;
360			period += timeout;
361		}
362	}
363	return period;
364}
365
366/*
367 *	Wait for a TCP event.
368 *
369 *	Note that we don't need to lock the socket, as the upper poll layers
370 *	take care of normal races (between the test and the event) and we don't
371 *	go look at any of the socket buffers directly.
372 */
373unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
374{
375	unsigned int mask;
376	struct sock *sk = sock->sk;
377	const struct tcp_sock *tp = tcp_sk(sk);
378
379	sock_poll_wait(file, sk_sleep(sk), wait);
380	if (sk->sk_state == TCP_LISTEN)
381		return inet_csk_listen_poll(sk);
382
383	/* Socket is not locked. We are protected from async events
384	 * by poll logic and correct handling of state changes
385	 * made by other threads is impossible in any case.
386	 */
387
388	mask = 0;
389
390	/*
391	 * POLLHUP is certainly not done right. But poll() doesn't
392	 * have a notion of HUP in just one direction, and for a
393	 * socket the read side is more interesting.
394	 *
395	 * Some poll() documentation says that POLLHUP is incompatible
396	 * with the POLLOUT/POLLWR flags, so somebody should check this
397	 * all. But careful, it tends to be safer to return too many
398	 * bits than too few, and you can easily break real applications
399	 * if you don't tell them that something has hung up!
400	 *
401	 * Check-me.
402	 *
403	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
404	 * our fs/select.c). It means that after we received EOF,
405	 * poll always returns immediately, making impossible poll() on write()
406	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
407	 * if and only if shutdown has been made in both directions.
408	 * Actually, it is interesting to look how Solaris and DUX
409	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
410	 * then we could set it on SND_SHUTDOWN. BTW examples given
411	 * in Stevens' books assume exactly this behaviour, it explains
412	 * why POLLHUP is incompatible with POLLOUT.	--ANK
413	 *
414	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
415	 * blocking on fresh not-connected or disconnected socket. --ANK
416	 */
417	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
418		mask |= POLLHUP;
419	if (sk->sk_shutdown & RCV_SHUTDOWN)
420		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
421
422	/* Connected? */
423	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
424		int target = sock_rcvlowat(sk, 0, INT_MAX);
425
426		if (tp->urg_seq == tp->copied_seq &&
427		    !sock_flag(sk, SOCK_URGINLINE) &&
428		    tp->urg_data)
429			target++;
430
431		/* Potential race condition. If read of tp below will
432		 * escape above sk->sk_state, we can be illegally awaken
433		 * in SYN_* states. */
434		if (tp->rcv_nxt - tp->copied_seq >= target)
435			mask |= POLLIN | POLLRDNORM;
436
437		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
438			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
439				mask |= POLLOUT | POLLWRNORM;
440			} else {  /* send SIGIO later */
441				set_bit(SOCK_ASYNC_NOSPACE,
442					&sk->sk_socket->flags);
443				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
444
445				/* Race breaker. If space is freed after
446				 * wspace test but before the flags are set,
447				 * IO signal will be lost.
448				 */
449				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
450					mask |= POLLOUT | POLLWRNORM;
451			}
452		} else
453			mask |= POLLOUT | POLLWRNORM;
454
455		if (tp->urg_data & TCP_URG_VALID)
456			mask |= POLLPRI;
457	}
458	/* This barrier is coupled with smp_wmb() in tcp_reset() */
459	smp_rmb();
460	if (sk->sk_err)
461		mask |= POLLERR;
462
463	return mask;
464}
465EXPORT_SYMBOL(tcp_poll);
466
467int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
468{
469	struct tcp_sock *tp = tcp_sk(sk);
470	int answ;
471
472	switch (cmd) {
473	case SIOCINQ:
474		if (sk->sk_state == TCP_LISTEN)
475			return -EINVAL;
476
477		lock_sock(sk);
478		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
479			answ = 0;
480		else if (sock_flag(sk, SOCK_URGINLINE) ||
481			 !tp->urg_data ||
482			 before(tp->urg_seq, tp->copied_seq) ||
483			 !before(tp->urg_seq, tp->rcv_nxt)) {
484			struct sk_buff *skb;
485
486			answ = tp->rcv_nxt - tp->copied_seq;
487
488			/* Subtract 1, if FIN is in queue. */
489			skb = skb_peek_tail(&sk->sk_receive_queue);
490			if (answ && skb)
491				answ -= tcp_hdr(skb)->fin;
492		} else
493			answ = tp->urg_seq - tp->copied_seq;
494		release_sock(sk);
495		break;
496	case SIOCATMARK:
497		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
498		break;
499	case SIOCOUTQ:
500		if (sk->sk_state == TCP_LISTEN)
501			return -EINVAL;
502
503		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
504			answ = 0;
505		else
506			answ = tp->write_seq - tp->snd_una;
507		break;
508	case SIOCOUTQNSD:
509		if (sk->sk_state == TCP_LISTEN)
510			return -EINVAL;
511
512		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
513			answ = 0;
514		else
515			answ = tp->write_seq - tp->snd_nxt;
516		break;
517	default:
518		return -ENOIOCTLCMD;
519	}
520
521	return put_user(answ, (int __user *)arg);
522}
523EXPORT_SYMBOL(tcp_ioctl);
524
525static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
526{
527	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
528	tp->pushed_seq = tp->write_seq;
529}
530
531static inline int forced_push(const struct tcp_sock *tp)
532{
533	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
534}
535
536static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
537{
538	struct tcp_sock *tp = tcp_sk(sk);
539	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
540
541	skb->csum    = 0;
542	tcb->seq     = tcb->end_seq = tp->write_seq;
543	tcb->tcp_flags = TCPHDR_ACK;
544	tcb->sacked  = 0;
545	skb_header_release(skb);
546	tcp_add_write_queue_tail(sk, skb);
547	sk->sk_wmem_queued += skb->truesize;
548	sk_mem_charge(sk, skb->truesize);
549	if (tp->nonagle & TCP_NAGLE_PUSH)
550		tp->nonagle &= ~TCP_NAGLE_PUSH;
551}
552
553static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
554{
555	if (flags & MSG_OOB)
556		tp->snd_up = tp->write_seq;
557}
558
559static inline void tcp_push(struct sock *sk, int flags, int mss_now,
560			    int nonagle)
561{
562	if (tcp_send_head(sk)) {
563		struct tcp_sock *tp = tcp_sk(sk);
564
565		if (!(flags & MSG_MORE) || forced_push(tp))
566			tcp_mark_push(tp, tcp_write_queue_tail(sk));
567
568		tcp_mark_urg(tp, flags);
569		__tcp_push_pending_frames(sk, mss_now,
570					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
571	}
572}
573
574static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
575				unsigned int offset, size_t len)
576{
577	struct tcp_splice_state *tss = rd_desc->arg.data;
578	int ret;
579
580	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
581			      tss->flags);
582	if (ret > 0)
583		rd_desc->count -= ret;
584	return ret;
585}
586
587static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
588{
589	/* Store TCP splice context information in read_descriptor_t. */
590	read_descriptor_t rd_desc = {
591		.arg.data = tss,
592		.count	  = tss->len,
593	};
594
595	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
596}
597
598/**
599 *  tcp_splice_read - splice data from TCP socket to a pipe
600 * @sock:	socket to splice from
601 * @ppos:	position (not valid)
602 * @pipe:	pipe to splice to
603 * @len:	number of bytes to splice
604 * @flags:	splice modifier flags
605 *
606 * Description:
607 *    Will read pages from given socket and fill them into a pipe.
608 *
609 **/
610ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
611			struct pipe_inode_info *pipe, size_t len,
612			unsigned int flags)
613{
614	struct sock *sk = sock->sk;
615	struct tcp_splice_state tss = {
616		.pipe = pipe,
617		.len = len,
618		.flags = flags,
619	};
620	long timeo;
621	ssize_t spliced;
622	int ret;
623
624	sock_rps_record_flow(sk);
625	/*
626	 * We can't seek on a socket input
627	 */
628	if (unlikely(*ppos))
629		return -ESPIPE;
630
631	ret = spliced = 0;
632
633	lock_sock(sk);
634
635	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
636	while (tss.len) {
637		ret = __tcp_splice_read(sk, &tss);
638		if (ret < 0)
639			break;
640		else if (!ret) {
641			if (spliced)
642				break;
643			if (sock_flag(sk, SOCK_DONE))
644				break;
645			if (sk->sk_err) {
646				ret = sock_error(sk);
647				break;
648			}
649			if (sk->sk_shutdown & RCV_SHUTDOWN)
650				break;
651			if (sk->sk_state == TCP_CLOSE) {
652				/*
653				 * This occurs when user tries to read
654				 * from never connected socket.
655				 */
656				if (!sock_flag(sk, SOCK_DONE))
657					ret = -ENOTCONN;
658				break;
659			}
660			if (!timeo) {
661				ret = -EAGAIN;
662				break;
663			}
664			sk_wait_data(sk, &timeo);
665			if (signal_pending(current)) {
666				ret = sock_intr_errno(timeo);
667				break;
668			}
669			continue;
670		}
671		tss.len -= ret;
672		spliced += ret;
673
674		if (!timeo)
675			break;
676		release_sock(sk);
677		lock_sock(sk);
678
679		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
680		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
681		    signal_pending(current))
682			break;
683	}
684
685	release_sock(sk);
686
687	if (spliced)
688		return spliced;
689
690	return ret;
691}
692EXPORT_SYMBOL(tcp_splice_read);
693
694struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
695{
696	struct sk_buff *skb;
697
698	/* The TCP header must be at least 32-bit aligned.  */
699	size = ALIGN(size, 4);
700
701	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
702	if (skb) {
703		if (sk_wmem_schedule(sk, skb->truesize)) {
704			skb_reserve(skb, sk->sk_prot->max_header);
705			/*
706			 * Make sure that we have exactly size bytes
707			 * available to the caller, no more, no less.
708			 */
709			skb->avail_size = size;
710			return skb;
711		}
712		__kfree_skb(skb);
713	} else {
714		sk->sk_prot->enter_memory_pressure(sk);
715		sk_stream_moderate_sndbuf(sk);
716	}
717	return NULL;
718}
719
720static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
721				       int large_allowed)
722{
723	struct tcp_sock *tp = tcp_sk(sk);
724	u32 xmit_size_goal, old_size_goal;
725
726	xmit_size_goal = mss_now;
727
728	if (large_allowed && sk_can_gso(sk)) {
729		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
730				  inet_csk(sk)->icsk_af_ops->net_header_len -
731				  inet_csk(sk)->icsk_ext_hdr_len -
732				  tp->tcp_header_len);
733
734		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
735
736		/* We try hard to avoid divides here */
737		old_size_goal = tp->xmit_size_goal_segs * mss_now;
738
739		if (likely(old_size_goal <= xmit_size_goal &&
740			   old_size_goal + mss_now > xmit_size_goal)) {
741			xmit_size_goal = old_size_goal;
742		} else {
743			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
744			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
745		}
746	}
747
748	return max(xmit_size_goal, mss_now);
749}
750
751static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
752{
753	int mss_now;
754
755	mss_now = tcp_current_mss(sk);
756	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
757
758	return mss_now;
759}
760
761static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
762			 size_t psize, int flags)
763{
764	struct tcp_sock *tp = tcp_sk(sk);
765	int mss_now, size_goal;
766	int err;
767	ssize_t copied;
768	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
769
770	/* Wait for a connection to finish. */
771	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
772		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
773			goto out_err;
774
775	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
776
777	mss_now = tcp_send_mss(sk, &size_goal, flags);
778	copied = 0;
779
780	err = -EPIPE;
781	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
782		goto out_err;
783
784	while (psize > 0) {
785		struct sk_buff *skb = tcp_write_queue_tail(sk);
786		struct page *page = pages[poffset / PAGE_SIZE];
787		int copy, i, can_coalesce;
788		int offset = poffset % PAGE_SIZE;
789		int size = min_t(size_t, psize, PAGE_SIZE - offset);
790
791		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
792new_segment:
793			if (!sk_stream_memory_free(sk))
794				goto wait_for_sndbuf;
795
796			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
797			if (!skb)
798				goto wait_for_memory;
799
800			skb_entail(sk, skb);
801			copy = size_goal;
802		}
803
804		if (copy > size)
805			copy = size;
806
807		i = skb_shinfo(skb)->nr_frags;
808		can_coalesce = skb_can_coalesce(skb, i, page, offset);
809		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
810			tcp_mark_push(tp, skb);
811			goto new_segment;
812		}
813		if (!sk_wmem_schedule(sk, copy))
814			goto wait_for_memory;
815
816		if (can_coalesce) {
817			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
818		} else {
819			get_page(page);
820			skb_fill_page_desc(skb, i, page, offset, copy);
821		}
822
823		skb->len += copy;
824		skb->data_len += copy;
825		skb->truesize += copy;
826		sk->sk_wmem_queued += copy;
827		sk_mem_charge(sk, copy);
828		skb->ip_summed = CHECKSUM_PARTIAL;
829		tp->write_seq += copy;
830		TCP_SKB_CB(skb)->end_seq += copy;
831		skb_shinfo(skb)->gso_segs = 0;
832
833		if (!copied)
834			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
835
836		copied += copy;
837		poffset += copy;
838		if (!(psize -= copy))
839			goto out;
840
841		if (skb->len < size_goal || (flags & MSG_OOB))
842			continue;
843
844		if (forced_push(tp)) {
845			tcp_mark_push(tp, skb);
846			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
847		} else if (skb == tcp_send_head(sk))
848			tcp_push_one(sk, mss_now);
849		continue;
850
851wait_for_sndbuf:
852		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
853wait_for_memory:
854		if (copied)
855			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
856
857		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
858			goto do_error;
859
860		mss_now = tcp_send_mss(sk, &size_goal, flags);
861	}
862
863out:
864	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
865		tcp_push(sk, flags, mss_now, tp->nonagle);
866	return copied;
867
868do_error:
869	if (copied)
870		goto out;
871out_err:
872	return sk_stream_error(sk, flags, err);
873}
874
875int tcp_sendpage(struct sock *sk, struct page *page, int offset,
876		 size_t size, int flags)
877{
878	ssize_t res;
879
880	if (!(sk->sk_route_caps & NETIF_F_SG) ||
881	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
882		return sock_no_sendpage(sk->sk_socket, page, offset, size,
883					flags);
884
885	lock_sock(sk);
886	res = do_tcp_sendpages(sk, &page, offset, size, flags);
887	release_sock(sk);
888	return res;
889}
890EXPORT_SYMBOL(tcp_sendpage);
891
892static inline int select_size(const struct sock *sk, bool sg)
893{
894	const struct tcp_sock *tp = tcp_sk(sk);
895	int tmp = tp->mss_cache;
896
897	if (sg) {
898		if (sk_can_gso(sk)) {
899			/* Small frames wont use a full page:
900			 * Payload will immediately follow tcp header.
901			 */
902			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
903		} else {
904			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
905
906			if (tmp >= pgbreak &&
907			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
908				tmp = pgbreak;
909		}
910	}
911
912	return tmp;
913}
914
915static int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
916{
917	struct sk_buff *skb;
918	struct tcp_skb_cb *cb;
919	struct tcphdr *th;
920
921	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
922	if (!skb)
923		goto err;
924
925	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
926	skb_reset_transport_header(skb);
927	memset(th, 0, sizeof(*th));
928
929	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
930		goto err_free;
931
932	cb = TCP_SKB_CB(skb);
933
934	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
935	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
936	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
937
938	tcp_queue_rcv(sk, skb, sizeof(*th));
939
940	return size;
941
942err_free:
943	kfree_skb(skb);
944err:
945	return -ENOMEM;
946}
947
948int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
949		size_t size)
950{
951	struct iovec *iov;
952	struct tcp_sock *tp = tcp_sk(sk);
953	struct sk_buff *skb;
954	int iovlen, flags, err, copied;
955	int mss_now = 0, size_goal;
956	bool sg;
957	long timeo;
958
959	lock_sock(sk);
960
961	flags = msg->msg_flags;
962	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
963
964	/* Wait for a connection to finish. */
965	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
966		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
967			goto out_err;
968
969	if (unlikely(tp->repair)) {
970		if (tp->repair_queue == TCP_RECV_QUEUE) {
971			copied = tcp_send_rcvq(sk, msg, size);
972			goto out;
973		}
974
975		err = -EINVAL;
976		if (tp->repair_queue == TCP_NO_QUEUE)
977			goto out_err;
978
979		/* 'common' sending to sendq */
980	}
981
982	/* This should be in poll */
983	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
984
985	mss_now = tcp_send_mss(sk, &size_goal, flags);
986
987	/* Ok commence sending. */
988	iovlen = msg->msg_iovlen;
989	iov = msg->msg_iov;
990	copied = 0;
991
992	err = -EPIPE;
993	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
994		goto out_err;
995
996	sg = !!(sk->sk_route_caps & NETIF_F_SG);
997
998	while (--iovlen >= 0) {
999		size_t seglen = iov->iov_len;
1000		unsigned char __user *from = iov->iov_base;
1001
1002		iov++;
1003
1004		while (seglen > 0) {
1005			int copy = 0;
1006			int max = size_goal;
1007
1008			skb = tcp_write_queue_tail(sk);
1009			if (tcp_send_head(sk)) {
1010				if (skb->ip_summed == CHECKSUM_NONE)
1011					max = mss_now;
1012				copy = max - skb->len;
1013			}
1014
1015			if (copy <= 0) {
1016new_segment:
1017				/* Allocate new segment. If the interface is SG,
1018				 * allocate skb fitting to single page.
1019				 */
1020				if (!sk_stream_memory_free(sk))
1021					goto wait_for_sndbuf;
1022
1023				skb = sk_stream_alloc_skb(sk,
1024							  select_size(sk, sg),
1025							  sk->sk_allocation);
1026				if (!skb)
1027					goto wait_for_memory;
1028
1029				/*
1030				 * Check whether we can use HW checksum.
1031				 */
1032				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1033					skb->ip_summed = CHECKSUM_PARTIAL;
1034
1035				skb_entail(sk, skb);
1036				copy = size_goal;
1037				max = size_goal;
1038			}
1039
1040			/* Try to append data to the end of skb. */
1041			if (copy > seglen)
1042				copy = seglen;
1043
1044			/* Where to copy to? */
1045			if (skb_availroom(skb) > 0) {
1046				/* We have some space in skb head. Superb! */
1047				copy = min_t(int, copy, skb_availroom(skb));
1048				err = skb_add_data_nocache(sk, skb, from, copy);
1049				if (err)
1050					goto do_fault;
1051			} else {
1052				int merge = 0;
1053				int i = skb_shinfo(skb)->nr_frags;
1054				struct page *page = sk->sk_sndmsg_page;
1055				int off;
1056
1057				if (page && page_count(page) == 1)
1058					sk->sk_sndmsg_off = 0;
1059
1060				off = sk->sk_sndmsg_off;
1061
1062				if (skb_can_coalesce(skb, i, page, off) &&
1063				    off != PAGE_SIZE) {
1064					/* We can extend the last page
1065					 * fragment. */
1066					merge = 1;
1067				} else if (i == MAX_SKB_FRAGS || !sg) {
1068					/* Need to add new fragment and cannot
1069					 * do this because interface is non-SG,
1070					 * or because all the page slots are
1071					 * busy. */
1072					tcp_mark_push(tp, skb);
1073					goto new_segment;
1074				} else if (page) {
1075					if (off == PAGE_SIZE) {
1076						put_page(page);
1077						sk->sk_sndmsg_page = page = NULL;
1078						off = 0;
1079					}
1080				} else
1081					off = 0;
1082
1083				if (copy > PAGE_SIZE - off)
1084					copy = PAGE_SIZE - off;
1085
1086				if (!sk_wmem_schedule(sk, copy))
1087					goto wait_for_memory;
1088
1089				if (!page) {
1090					/* Allocate new cache page. */
1091					if (!(page = sk_stream_alloc_page(sk)))
1092						goto wait_for_memory;
1093				}
1094
1095				/* Time to copy data. We are close to
1096				 * the end! */
1097				err = skb_copy_to_page_nocache(sk, from, skb,
1098							       page, off, copy);
1099				if (err) {
1100					/* If this page was new, give it to the
1101					 * socket so it does not get leaked.
1102					 */
1103					if (!sk->sk_sndmsg_page) {
1104						sk->sk_sndmsg_page = page;
1105						sk->sk_sndmsg_off = 0;
1106					}
1107					goto do_error;
1108				}
1109
1110				/* Update the skb. */
1111				if (merge) {
1112					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1113				} else {
1114					skb_fill_page_desc(skb, i, page, off, copy);
1115					if (sk->sk_sndmsg_page) {
1116						get_page(page);
1117					} else if (off + copy < PAGE_SIZE) {
1118						get_page(page);
1119						sk->sk_sndmsg_page = page;
1120					}
1121				}
1122
1123				sk->sk_sndmsg_off = off + copy;
1124			}
1125
1126			if (!copied)
1127				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1128
1129			tp->write_seq += copy;
1130			TCP_SKB_CB(skb)->end_seq += copy;
1131			skb_shinfo(skb)->gso_segs = 0;
1132
1133			from += copy;
1134			copied += copy;
1135			if ((seglen -= copy) == 0 && iovlen == 0)
1136				goto out;
1137
1138			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1139				continue;
1140
1141			if (forced_push(tp)) {
1142				tcp_mark_push(tp, skb);
1143				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1144			} else if (skb == tcp_send_head(sk))
1145				tcp_push_one(sk, mss_now);
1146			continue;
1147
1148wait_for_sndbuf:
1149			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1150wait_for_memory:
1151			if (copied && likely(!tp->repair))
1152				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1153
1154			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1155				goto do_error;
1156
1157			mss_now = tcp_send_mss(sk, &size_goal, flags);
1158		}
1159	}
1160
1161out:
1162	if (copied && likely(!tp->repair))
1163		tcp_push(sk, flags, mss_now, tp->nonagle);
1164	release_sock(sk);
1165	return copied;
1166
1167do_fault:
1168	if (!skb->len) {
1169		tcp_unlink_write_queue(skb, sk);
1170		/* It is the one place in all of TCP, except connection
1171		 * reset, where we can be unlinking the send_head.
1172		 */
1173		tcp_check_send_head(sk, skb);
1174		sk_wmem_free_skb(sk, skb);
1175	}
1176
1177do_error:
1178	if (copied)
1179		goto out;
1180out_err:
1181	err = sk_stream_error(sk, flags, err);
1182	release_sock(sk);
1183	return err;
1184}
1185EXPORT_SYMBOL(tcp_sendmsg);
1186
1187/*
1188 *	Handle reading urgent data. BSD has very simple semantics for
1189 *	this, no blocking and very strange errors 8)
1190 */
1191
1192static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1193{
1194	struct tcp_sock *tp = tcp_sk(sk);
1195
1196	/* No URG data to read. */
1197	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1198	    tp->urg_data == TCP_URG_READ)
1199		return -EINVAL;	/* Yes this is right ! */
1200
1201	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1202		return -ENOTCONN;
1203
1204	if (tp->urg_data & TCP_URG_VALID) {
1205		int err = 0;
1206		char c = tp->urg_data;
1207
1208		if (!(flags & MSG_PEEK))
1209			tp->urg_data = TCP_URG_READ;
1210
1211		/* Read urgent data. */
1212		msg->msg_flags |= MSG_OOB;
1213
1214		if (len > 0) {
1215			if (!(flags & MSG_TRUNC))
1216				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1217			len = 1;
1218		} else
1219			msg->msg_flags |= MSG_TRUNC;
1220
1221		return err ? -EFAULT : len;
1222	}
1223
1224	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1225		return 0;
1226
1227	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1228	 * the available implementations agree in this case:
1229	 * this call should never block, independent of the
1230	 * blocking state of the socket.
1231	 * Mike <pall@rz.uni-karlsruhe.de>
1232	 */
1233	return -EAGAIN;
1234}
1235
1236static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1237{
1238	struct sk_buff *skb;
1239	int copied = 0, err = 0;
1240
1241	/* XXX -- need to support SO_PEEK_OFF */
1242
1243	skb_queue_walk(&sk->sk_write_queue, skb) {
1244		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1245		if (err)
1246			break;
1247
1248		copied += skb->len;
1249	}
1250
1251	return err ?: copied;
1252}
1253
1254/* Clean up the receive buffer for full frames taken by the user,
1255 * then send an ACK if necessary.  COPIED is the number of bytes
1256 * tcp_recvmsg has given to the user so far, it speeds up the
1257 * calculation of whether or not we must ACK for the sake of
1258 * a window update.
1259 */
1260void tcp_cleanup_rbuf(struct sock *sk, int copied)
1261{
1262	struct tcp_sock *tp = tcp_sk(sk);
1263	int time_to_ack = 0;
1264
1265	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1266
1267	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1268	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1269	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1270
1271	if (inet_csk_ack_scheduled(sk)) {
1272		const struct inet_connection_sock *icsk = inet_csk(sk);
1273		   /* Delayed ACKs frequently hit locked sockets during bulk
1274		    * receive. */
1275		if (icsk->icsk_ack.blocked ||
1276		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1277		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1278		    /*
1279		     * If this read emptied read buffer, we send ACK, if
1280		     * connection is not bidirectional, user drained
1281		     * receive buffer and there was a small segment
1282		     * in queue.
1283		     */
1284		    (copied > 0 &&
1285		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1286		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1287		       !icsk->icsk_ack.pingpong)) &&
1288		      !atomic_read(&sk->sk_rmem_alloc)))
1289			time_to_ack = 1;
1290	}
1291
1292	/* We send an ACK if we can now advertise a non-zero window
1293	 * which has been raised "significantly".
1294	 *
1295	 * Even if window raised up to infinity, do not send window open ACK
1296	 * in states, where we will not receive more. It is useless.
1297	 */
1298	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1299		__u32 rcv_window_now = tcp_receive_window(tp);
1300
1301		/* Optimize, __tcp_select_window() is not cheap. */
1302		if (2*rcv_window_now <= tp->window_clamp) {
1303			__u32 new_window = __tcp_select_window(sk);
1304
1305			/* Send ACK now, if this read freed lots of space
1306			 * in our buffer. Certainly, new_window is new window.
1307			 * We can advertise it now, if it is not less than current one.
1308			 * "Lots" means "at least twice" here.
1309			 */
1310			if (new_window && new_window >= 2 * rcv_window_now)
1311				time_to_ack = 1;
1312		}
1313	}
1314	if (time_to_ack)
1315		tcp_send_ack(sk);
1316}
1317
1318static void tcp_prequeue_process(struct sock *sk)
1319{
1320	struct sk_buff *skb;
1321	struct tcp_sock *tp = tcp_sk(sk);
1322
1323	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1324
1325	/* RX process wants to run with disabled BHs, though it is not
1326	 * necessary */
1327	local_bh_disable();
1328	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1329		sk_backlog_rcv(sk, skb);
1330	local_bh_enable();
1331
1332	/* Clear memory counter. */
1333	tp->ucopy.memory = 0;
1334}
1335
1336#ifdef CONFIG_NET_DMA
1337static void tcp_service_net_dma(struct sock *sk, bool wait)
1338{
1339	dma_cookie_t done, used;
1340	dma_cookie_t last_issued;
1341	struct tcp_sock *tp = tcp_sk(sk);
1342
1343	if (!tp->ucopy.dma_chan)
1344		return;
1345
1346	last_issued = tp->ucopy.dma_cookie;
1347	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1348
1349	do {
1350		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1351					      last_issued, &done,
1352					      &used) == DMA_SUCCESS) {
1353			/* Safe to free early-copied skbs now */
1354			__skb_queue_purge(&sk->sk_async_wait_queue);
1355			break;
1356		} else {
1357			struct sk_buff *skb;
1358			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1359			       (dma_async_is_complete(skb->dma_cookie, done,
1360						      used) == DMA_SUCCESS)) {
1361				__skb_dequeue(&sk->sk_async_wait_queue);
1362				kfree_skb(skb);
1363			}
1364		}
1365	} while (wait);
1366}
1367#endif
1368
1369static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1370{
1371	struct sk_buff *skb;
1372	u32 offset;
1373
1374	skb_queue_walk(&sk->sk_receive_queue, skb) {
1375		offset = seq - TCP_SKB_CB(skb)->seq;
1376		if (tcp_hdr(skb)->syn)
1377			offset--;
1378		if (offset < skb->len || tcp_hdr(skb)->fin) {
1379			*off = offset;
1380			return skb;
1381		}
1382	}
1383	return NULL;
1384}
1385
1386/*
1387 * This routine provides an alternative to tcp_recvmsg() for routines
1388 * that would like to handle copying from skbuffs directly in 'sendfile'
1389 * fashion.
1390 * Note:
1391 *	- It is assumed that the socket was locked by the caller.
1392 *	- The routine does not block.
1393 *	- At present, there is no support for reading OOB data
1394 *	  or for 'peeking' the socket using this routine
1395 *	  (although both would be easy to implement).
1396 */
1397int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1398		  sk_read_actor_t recv_actor)
1399{
1400	struct sk_buff *skb;
1401	struct tcp_sock *tp = tcp_sk(sk);
1402	u32 seq = tp->copied_seq;
1403	u32 offset;
1404	int copied = 0;
1405
1406	if (sk->sk_state == TCP_LISTEN)
1407		return -ENOTCONN;
1408	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1409		if (offset < skb->len) {
1410			int used;
1411			size_t len;
1412
1413			len = skb->len - offset;
1414			/* Stop reading if we hit a patch of urgent data */
1415			if (tp->urg_data) {
1416				u32 urg_offset = tp->urg_seq - seq;
1417				if (urg_offset < len)
1418					len = urg_offset;
1419				if (!len)
1420					break;
1421			}
1422			used = recv_actor(desc, skb, offset, len);
1423			if (used < 0) {
1424				if (!copied)
1425					copied = used;
1426				break;
1427			} else if (used <= len) {
1428				seq += used;
1429				copied += used;
1430				offset += used;
1431			}
1432			/*
1433			 * If recv_actor drops the lock (e.g. TCP splice
1434			 * receive) the skb pointer might be invalid when
1435			 * getting here: tcp_collapse might have deleted it
1436			 * while aggregating skbs from the socket queue.
1437			 */
1438			skb = tcp_recv_skb(sk, seq-1, &offset);
1439			if (!skb || (offset+1 != skb->len))
1440				break;
1441		}
1442		if (tcp_hdr(skb)->fin) {
1443			sk_eat_skb(sk, skb, 0);
1444			++seq;
1445			break;
1446		}
1447		sk_eat_skb(sk, skb, 0);
1448		if (!desc->count)
1449			break;
1450		tp->copied_seq = seq;
1451	}
1452	tp->copied_seq = seq;
1453
1454	tcp_rcv_space_adjust(sk);
1455
1456	/* Clean up data we have read: This will do ACK frames. */
1457	if (copied > 0)
1458		tcp_cleanup_rbuf(sk, copied);
1459	return copied;
1460}
1461EXPORT_SYMBOL(tcp_read_sock);
1462
1463/*
1464 *	This routine copies from a sock struct into the user buffer.
1465 *
1466 *	Technical note: in 2.3 we work on _locked_ socket, so that
1467 *	tricks with *seq access order and skb->users are not required.
1468 *	Probably, code can be easily improved even more.
1469 */
1470
1471int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1472		size_t len, int nonblock, int flags, int *addr_len)
1473{
1474	struct tcp_sock *tp = tcp_sk(sk);
1475	int copied = 0;
1476	u32 peek_seq;
1477	u32 *seq;
1478	unsigned long used;
1479	int err;
1480	int target;		/* Read at least this many bytes */
1481	long timeo;
1482	struct task_struct *user_recv = NULL;
1483	int copied_early = 0;
1484	struct sk_buff *skb;
1485	u32 urg_hole = 0;
1486
1487	lock_sock(sk);
1488
1489	err = -ENOTCONN;
1490	if (sk->sk_state == TCP_LISTEN)
1491		goto out;
1492
1493	timeo = sock_rcvtimeo(sk, nonblock);
1494
1495	/* Urgent data needs to be handled specially. */
1496	if (flags & MSG_OOB)
1497		goto recv_urg;
1498
1499	if (unlikely(tp->repair)) {
1500		err = -EPERM;
1501		if (!(flags & MSG_PEEK))
1502			goto out;
1503
1504		if (tp->repair_queue == TCP_SEND_QUEUE)
1505			goto recv_sndq;
1506
1507		err = -EINVAL;
1508		if (tp->repair_queue == TCP_NO_QUEUE)
1509			goto out;
1510
1511		/* 'common' recv queue MSG_PEEK-ing */
1512	}
1513
1514	seq = &tp->copied_seq;
1515	if (flags & MSG_PEEK) {
1516		peek_seq = tp->copied_seq;
1517		seq = &peek_seq;
1518	}
1519
1520	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1521
1522#ifdef CONFIG_NET_DMA
1523	tp->ucopy.dma_chan = NULL;
1524	preempt_disable();
1525	skb = skb_peek_tail(&sk->sk_receive_queue);
1526	{
1527		int available = 0;
1528
1529		if (skb)
1530			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1531		if ((available < target) &&
1532		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1533		    !sysctl_tcp_low_latency &&
1534		    net_dma_find_channel()) {
1535			preempt_enable_no_resched();
1536			tp->ucopy.pinned_list =
1537					dma_pin_iovec_pages(msg->msg_iov, len);
1538		} else {
1539			preempt_enable_no_resched();
1540		}
1541	}
1542#endif
1543
1544	do {
1545		u32 offset;
1546
1547		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1548		if (tp->urg_data && tp->urg_seq == *seq) {
1549			if (copied)
1550				break;
1551			if (signal_pending(current)) {
1552				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1553				break;
1554			}
1555		}
1556
1557		/* Next get a buffer. */
1558
1559		skb_queue_walk(&sk->sk_receive_queue, skb) {
1560			/* Now that we have two receive queues this
1561			 * shouldn't happen.
1562			 */
1563			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1564				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1565				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1566				 flags))
1567				break;
1568
1569			offset = *seq - TCP_SKB_CB(skb)->seq;
1570			if (tcp_hdr(skb)->syn)
1571				offset--;
1572			if (offset < skb->len)
1573				goto found_ok_skb;
1574			if (tcp_hdr(skb)->fin)
1575				goto found_fin_ok;
1576			WARN(!(flags & MSG_PEEK),
1577			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1578			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1579		}
1580
1581		/* Well, if we have backlog, try to process it now yet. */
1582
1583		if (copied >= target && !sk->sk_backlog.tail)
1584			break;
1585
1586		if (copied) {
1587			if (sk->sk_err ||
1588			    sk->sk_state == TCP_CLOSE ||
1589			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1590			    !timeo ||
1591			    signal_pending(current))
1592				break;
1593		} else {
1594			if (sock_flag(sk, SOCK_DONE))
1595				break;
1596
1597			if (sk->sk_err) {
1598				copied = sock_error(sk);
1599				break;
1600			}
1601
1602			if (sk->sk_shutdown & RCV_SHUTDOWN)
1603				break;
1604
1605			if (sk->sk_state == TCP_CLOSE) {
1606				if (!sock_flag(sk, SOCK_DONE)) {
1607					/* This occurs when user tries to read
1608					 * from never connected socket.
1609					 */
1610					copied = -ENOTCONN;
1611					break;
1612				}
1613				break;
1614			}
1615
1616			if (!timeo) {
1617				copied = -EAGAIN;
1618				break;
1619			}
1620
1621			if (signal_pending(current)) {
1622				copied = sock_intr_errno(timeo);
1623				break;
1624			}
1625		}
1626
1627		tcp_cleanup_rbuf(sk, copied);
1628
1629		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1630			/* Install new reader */
1631			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1632				user_recv = current;
1633				tp->ucopy.task = user_recv;
1634				tp->ucopy.iov = msg->msg_iov;
1635			}
1636
1637			tp->ucopy.len = len;
1638
1639			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1640				!(flags & (MSG_PEEK | MSG_TRUNC)));
1641
1642			/* Ugly... If prequeue is not empty, we have to
1643			 * process it before releasing socket, otherwise
1644			 * order will be broken at second iteration.
1645			 * More elegant solution is required!!!
1646			 *
1647			 * Look: we have the following (pseudo)queues:
1648			 *
1649			 * 1. packets in flight
1650			 * 2. backlog
1651			 * 3. prequeue
1652			 * 4. receive_queue
1653			 *
1654			 * Each queue can be processed only if the next ones
1655			 * are empty. At this point we have empty receive_queue.
1656			 * But prequeue _can_ be not empty after 2nd iteration,
1657			 * when we jumped to start of loop because backlog
1658			 * processing added something to receive_queue.
1659			 * We cannot release_sock(), because backlog contains
1660			 * packets arrived _after_ prequeued ones.
1661			 *
1662			 * Shortly, algorithm is clear --- to process all
1663			 * the queues in order. We could make it more directly,
1664			 * requeueing packets from backlog to prequeue, if
1665			 * is not empty. It is more elegant, but eats cycles,
1666			 * unfortunately.
1667			 */
1668			if (!skb_queue_empty(&tp->ucopy.prequeue))
1669				goto do_prequeue;
1670
1671			/* __ Set realtime policy in scheduler __ */
1672		}
1673
1674#ifdef CONFIG_NET_DMA
1675		if (tp->ucopy.dma_chan)
1676			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1677#endif
1678		if (copied >= target) {
1679			/* Do not sleep, just process backlog. */
1680			release_sock(sk);
1681			lock_sock(sk);
1682		} else
1683			sk_wait_data(sk, &timeo);
1684
1685#ifdef CONFIG_NET_DMA
1686		tcp_service_net_dma(sk, false);  /* Don't block */
1687		tp->ucopy.wakeup = 0;
1688#endif
1689
1690		if (user_recv) {
1691			int chunk;
1692
1693			/* __ Restore normal policy in scheduler __ */
1694
1695			if ((chunk = len - tp->ucopy.len) != 0) {
1696				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1697				len -= chunk;
1698				copied += chunk;
1699			}
1700
1701			if (tp->rcv_nxt == tp->copied_seq &&
1702			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1703do_prequeue:
1704				tcp_prequeue_process(sk);
1705
1706				if ((chunk = len - tp->ucopy.len) != 0) {
1707					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1708					len -= chunk;
1709					copied += chunk;
1710				}
1711			}
1712		}
1713		if ((flags & MSG_PEEK) &&
1714		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1715			if (net_ratelimit())
1716				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1717				       current->comm, task_pid_nr(current));
1718			peek_seq = tp->copied_seq;
1719		}
1720		continue;
1721
1722	found_ok_skb:
1723		/* Ok so how much can we use? */
1724		used = skb->len - offset;
1725		if (len < used)
1726			used = len;
1727
1728		/* Do we have urgent data here? */
1729		if (tp->urg_data) {
1730			u32 urg_offset = tp->urg_seq - *seq;
1731			if (urg_offset < used) {
1732				if (!urg_offset) {
1733					if (!sock_flag(sk, SOCK_URGINLINE)) {
1734						++*seq;
1735						urg_hole++;
1736						offset++;
1737						used--;
1738						if (!used)
1739							goto skip_copy;
1740					}
1741				} else
1742					used = urg_offset;
1743			}
1744		}
1745
1746		if (!(flags & MSG_TRUNC)) {
1747#ifdef CONFIG_NET_DMA
1748			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1749				tp->ucopy.dma_chan = net_dma_find_channel();
1750
1751			if (tp->ucopy.dma_chan) {
1752				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1753					tp->ucopy.dma_chan, skb, offset,
1754					msg->msg_iov, used,
1755					tp->ucopy.pinned_list);
1756
1757				if (tp->ucopy.dma_cookie < 0) {
1758
1759					pr_alert("%s: dma_cookie < 0\n",
1760						 __func__);
1761
1762					/* Exception. Bailout! */
1763					if (!copied)
1764						copied = -EFAULT;
1765					break;
1766				}
1767
1768				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1769
1770				if ((offset + used) == skb->len)
1771					copied_early = 1;
1772
1773			} else
1774#endif
1775			{
1776				err = skb_copy_datagram_iovec(skb, offset,
1777						msg->msg_iov, used);
1778				if (err) {
1779					/* Exception. Bailout! */
1780					if (!copied)
1781						copied = -EFAULT;
1782					break;
1783				}
1784			}
1785		}
1786
1787		*seq += used;
1788		copied += used;
1789		len -= used;
1790
1791		tcp_rcv_space_adjust(sk);
1792
1793skip_copy:
1794		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1795			tp->urg_data = 0;
1796			tcp_fast_path_check(sk);
1797		}
1798		if (used + offset < skb->len)
1799			continue;
1800
1801		if (tcp_hdr(skb)->fin)
1802			goto found_fin_ok;
1803		if (!(flags & MSG_PEEK)) {
1804			sk_eat_skb(sk, skb, copied_early);
1805			copied_early = 0;
1806		}
1807		continue;
1808
1809	found_fin_ok:
1810		/* Process the FIN. */
1811		++*seq;
1812		if (!(flags & MSG_PEEK)) {
1813			sk_eat_skb(sk, skb, copied_early);
1814			copied_early = 0;
1815		}
1816		break;
1817	} while (len > 0);
1818
1819	if (user_recv) {
1820		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1821			int chunk;
1822
1823			tp->ucopy.len = copied > 0 ? len : 0;
1824
1825			tcp_prequeue_process(sk);
1826
1827			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1828				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1829				len -= chunk;
1830				copied += chunk;
1831			}
1832		}
1833
1834		tp->ucopy.task = NULL;
1835		tp->ucopy.len = 0;
1836	}
1837
1838#ifdef CONFIG_NET_DMA
1839	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1840	tp->ucopy.dma_chan = NULL;
1841
1842	if (tp->ucopy.pinned_list) {
1843		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1844		tp->ucopy.pinned_list = NULL;
1845	}
1846#endif
1847
1848	/* According to UNIX98, msg_name/msg_namelen are ignored
1849	 * on connected socket. I was just happy when found this 8) --ANK
1850	 */
1851
1852	/* Clean up data we have read: This will do ACK frames. */
1853	tcp_cleanup_rbuf(sk, copied);
1854
1855	release_sock(sk);
1856	return copied;
1857
1858out:
1859	release_sock(sk);
1860	return err;
1861
1862recv_urg:
1863	err = tcp_recv_urg(sk, msg, len, flags);
1864	goto out;
1865
1866recv_sndq:
1867	err = tcp_peek_sndq(sk, msg, len);
1868	goto out;
1869}
1870EXPORT_SYMBOL(tcp_recvmsg);
1871
1872void tcp_set_state(struct sock *sk, int state)
1873{
1874	int oldstate = sk->sk_state;
1875
1876	switch (state) {
1877	case TCP_ESTABLISHED:
1878		if (oldstate != TCP_ESTABLISHED)
1879			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1880		break;
1881
1882	case TCP_CLOSE:
1883		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1884			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1885
1886		sk->sk_prot->unhash(sk);
1887		if (inet_csk(sk)->icsk_bind_hash &&
1888		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1889			inet_put_port(sk);
1890		/* fall through */
1891	default:
1892		if (oldstate == TCP_ESTABLISHED)
1893			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1894	}
1895
1896	/* Change state AFTER socket is unhashed to avoid closed
1897	 * socket sitting in hash tables.
1898	 */
1899	sk->sk_state = state;
1900
1901#ifdef STATE_TRACE
1902	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1903#endif
1904}
1905EXPORT_SYMBOL_GPL(tcp_set_state);
1906
1907/*
1908 *	State processing on a close. This implements the state shift for
1909 *	sending our FIN frame. Note that we only send a FIN for some
1910 *	states. A shutdown() may have already sent the FIN, or we may be
1911 *	closed.
1912 */
1913
1914static const unsigned char new_state[16] = {
1915  /* current state:        new state:      action:	*/
1916  /* (Invalid)		*/ TCP_CLOSE,
1917  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1918  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1919  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1920  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1921  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1922  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1923  /* TCP_CLOSE		*/ TCP_CLOSE,
1924  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1925  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1926  /* TCP_LISTEN		*/ TCP_CLOSE,
1927  /* TCP_CLOSING	*/ TCP_CLOSING,
1928};
1929
1930static int tcp_close_state(struct sock *sk)
1931{
1932	int next = (int)new_state[sk->sk_state];
1933	int ns = next & TCP_STATE_MASK;
1934
1935	tcp_set_state(sk, ns);
1936
1937	return next & TCP_ACTION_FIN;
1938}
1939
1940/*
1941 *	Shutdown the sending side of a connection. Much like close except
1942 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1943 */
1944
1945void tcp_shutdown(struct sock *sk, int how)
1946{
1947	/*	We need to grab some memory, and put together a FIN,
1948	 *	and then put it into the queue to be sent.
1949	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1950	 */
1951	if (!(how & SEND_SHUTDOWN))
1952		return;
1953
1954	/* If we've already sent a FIN, or it's a closed state, skip this. */
1955	if ((1 << sk->sk_state) &
1956	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1957	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1958		/* Clear out any half completed packets.  FIN if needed. */
1959		if (tcp_close_state(sk))
1960			tcp_send_fin(sk);
1961	}
1962}
1963EXPORT_SYMBOL(tcp_shutdown);
1964
1965bool tcp_check_oom(struct sock *sk, int shift)
1966{
1967	bool too_many_orphans, out_of_socket_memory;
1968
1969	too_many_orphans = tcp_too_many_orphans(sk, shift);
1970	out_of_socket_memory = tcp_out_of_memory(sk);
1971
1972	if (too_many_orphans && net_ratelimit())
1973		pr_info("too many orphaned sockets\n");
1974	if (out_of_socket_memory && net_ratelimit())
1975		pr_info("out of memory -- consider tuning tcp_mem\n");
1976	return too_many_orphans || out_of_socket_memory;
1977}
1978
1979void tcp_close(struct sock *sk, long timeout)
1980{
1981	struct sk_buff *skb;
1982	int data_was_unread = 0;
1983	int state;
1984
1985	lock_sock(sk);
1986	sk->sk_shutdown = SHUTDOWN_MASK;
1987
1988	if (sk->sk_state == TCP_LISTEN) {
1989		tcp_set_state(sk, TCP_CLOSE);
1990
1991		/* Special case. */
1992		inet_csk_listen_stop(sk);
1993
1994		goto adjudge_to_death;
1995	}
1996
1997	/*  We need to flush the recv. buffs.  We do this only on the
1998	 *  descriptor close, not protocol-sourced closes, because the
1999	 *  reader process may not have drained the data yet!
2000	 */
2001	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2002		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2003			  tcp_hdr(skb)->fin;
2004		data_was_unread += len;
2005		__kfree_skb(skb);
2006	}
2007
2008	sk_mem_reclaim(sk);
2009
2010	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2011	if (sk->sk_state == TCP_CLOSE)
2012		goto adjudge_to_death;
2013
2014	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2015	 * data was lost. To witness the awful effects of the old behavior of
2016	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2017	 * GET in an FTP client, suspend the process, wait for the client to
2018	 * advertise a zero window, then kill -9 the FTP client, wheee...
2019	 * Note: timeout is always zero in such a case.
2020	 */
2021	if (unlikely(tcp_sk(sk)->repair)) {
2022		sk->sk_prot->disconnect(sk, 0);
2023	} else if (data_was_unread) {
2024		/* Unread data was tossed, zap the connection. */
2025		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2026		tcp_set_state(sk, TCP_CLOSE);
2027		tcp_send_active_reset(sk, sk->sk_allocation);
2028	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2029		/* Check zero linger _after_ checking for unread data. */
2030		sk->sk_prot->disconnect(sk, 0);
2031		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2032	} else if (tcp_close_state(sk)) {
2033		/* We FIN if the application ate all the data before
2034		 * zapping the connection.
2035		 */
2036
2037		/* RED-PEN. Formally speaking, we have broken TCP state
2038		 * machine. State transitions:
2039		 *
2040		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2041		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2042		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2043		 *
2044		 * are legal only when FIN has been sent (i.e. in window),
2045		 * rather than queued out of window. Purists blame.
2046		 *
2047		 * F.e. "RFC state" is ESTABLISHED,
2048		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2049		 *
2050		 * The visible declinations are that sometimes
2051		 * we enter time-wait state, when it is not required really
2052		 * (harmless), do not send active resets, when they are
2053		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2054		 * they look as CLOSING or LAST_ACK for Linux)
2055		 * Probably, I missed some more holelets.
2056		 * 						--ANK
2057		 */
2058		tcp_send_fin(sk);
2059	}
2060
2061	sk_stream_wait_close(sk, timeout);
2062
2063adjudge_to_death:
2064	state = sk->sk_state;
2065	sock_hold(sk);
2066	sock_orphan(sk);
2067
2068	/* It is the last release_sock in its life. It will remove backlog. */
2069	release_sock(sk);
2070
2071
2072	/* Now socket is owned by kernel and we acquire BH lock
2073	   to finish close. No need to check for user refs.
2074	 */
2075	local_bh_disable();
2076	bh_lock_sock(sk);
2077	WARN_ON(sock_owned_by_user(sk));
2078
2079	percpu_counter_inc(sk->sk_prot->orphan_count);
2080
2081	/* Have we already been destroyed by a softirq or backlog? */
2082	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2083		goto out;
2084
2085	/*	This is a (useful) BSD violating of the RFC. There is a
2086	 *	problem with TCP as specified in that the other end could
2087	 *	keep a socket open forever with no application left this end.
2088	 *	We use a 3 minute timeout (about the same as BSD) then kill
2089	 *	our end. If they send after that then tough - BUT: long enough
2090	 *	that we won't make the old 4*rto = almost no time - whoops
2091	 *	reset mistake.
2092	 *
2093	 *	Nope, it was not mistake. It is really desired behaviour
2094	 *	f.e. on http servers, when such sockets are useless, but
2095	 *	consume significant resources. Let's do it with special
2096	 *	linger2	option.					--ANK
2097	 */
2098
2099	if (sk->sk_state == TCP_FIN_WAIT2) {
2100		struct tcp_sock *tp = tcp_sk(sk);
2101		if (tp->linger2 < 0) {
2102			tcp_set_state(sk, TCP_CLOSE);
2103			tcp_send_active_reset(sk, GFP_ATOMIC);
2104			NET_INC_STATS_BH(sock_net(sk),
2105					LINUX_MIB_TCPABORTONLINGER);
2106		} else {
2107			const int tmo = tcp_fin_time(sk);
2108
2109			if (tmo > TCP_TIMEWAIT_LEN) {
2110				inet_csk_reset_keepalive_timer(sk,
2111						tmo - TCP_TIMEWAIT_LEN);
2112			} else {
2113				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2114				goto out;
2115			}
2116		}
2117	}
2118	if (sk->sk_state != TCP_CLOSE) {
2119		sk_mem_reclaim(sk);
2120		if (tcp_check_oom(sk, 0)) {
2121			tcp_set_state(sk, TCP_CLOSE);
2122			tcp_send_active_reset(sk, GFP_ATOMIC);
2123			NET_INC_STATS_BH(sock_net(sk),
2124					LINUX_MIB_TCPABORTONMEMORY);
2125		}
2126	}
2127
2128	if (sk->sk_state == TCP_CLOSE)
2129		inet_csk_destroy_sock(sk);
2130	/* Otherwise, socket is reprieved until protocol close. */
2131
2132out:
2133	bh_unlock_sock(sk);
2134	local_bh_enable();
2135	sock_put(sk);
2136}
2137EXPORT_SYMBOL(tcp_close);
2138
2139/* These states need RST on ABORT according to RFC793 */
2140
2141static inline int tcp_need_reset(int state)
2142{
2143	return (1 << state) &
2144	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2145		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2146}
2147
2148int tcp_disconnect(struct sock *sk, int flags)
2149{
2150	struct inet_sock *inet = inet_sk(sk);
2151	struct inet_connection_sock *icsk = inet_csk(sk);
2152	struct tcp_sock *tp = tcp_sk(sk);
2153	int err = 0;
2154	int old_state = sk->sk_state;
2155
2156	if (old_state != TCP_CLOSE)
2157		tcp_set_state(sk, TCP_CLOSE);
2158
2159	/* ABORT function of RFC793 */
2160	if (old_state == TCP_LISTEN) {
2161		inet_csk_listen_stop(sk);
2162	} else if (unlikely(tp->repair)) {
2163		sk->sk_err = ECONNABORTED;
2164	} else if (tcp_need_reset(old_state) ||
2165		   (tp->snd_nxt != tp->write_seq &&
2166		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2167		/* The last check adjusts for discrepancy of Linux wrt. RFC
2168		 * states
2169		 */
2170		tcp_send_active_reset(sk, gfp_any());
2171		sk->sk_err = ECONNRESET;
2172	} else if (old_state == TCP_SYN_SENT)
2173		sk->sk_err = ECONNRESET;
2174
2175	tcp_clear_xmit_timers(sk);
2176	__skb_queue_purge(&sk->sk_receive_queue);
2177	tcp_write_queue_purge(sk);
2178	__skb_queue_purge(&tp->out_of_order_queue);
2179#ifdef CONFIG_NET_DMA
2180	__skb_queue_purge(&sk->sk_async_wait_queue);
2181#endif
2182
2183	inet->inet_dport = 0;
2184
2185	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2186		inet_reset_saddr(sk);
2187
2188	sk->sk_shutdown = 0;
2189	sock_reset_flag(sk, SOCK_DONE);
2190	tp->srtt = 0;
2191	if ((tp->write_seq += tp->max_window + 2) == 0)
2192		tp->write_seq = 1;
2193	icsk->icsk_backoff = 0;
2194	tp->snd_cwnd = 2;
2195	icsk->icsk_probes_out = 0;
2196	tp->packets_out = 0;
2197	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2198	tp->snd_cwnd_cnt = 0;
2199	tp->bytes_acked = 0;
2200	tp->window_clamp = 0;
2201	tcp_set_ca_state(sk, TCP_CA_Open);
2202	tcp_clear_retrans(tp);
2203	inet_csk_delack_init(sk);
2204	tcp_init_send_head(sk);
2205	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2206	__sk_dst_reset(sk);
2207
2208	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2209
2210	sk->sk_error_report(sk);
2211	return err;
2212}
2213EXPORT_SYMBOL(tcp_disconnect);
2214
2215static inline int tcp_can_repair_sock(struct sock *sk)
2216{
2217	return capable(CAP_NET_ADMIN) &&
2218		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2219}
2220
2221static int tcp_repair_options_est(struct tcp_sock *tp, char __user *optbuf, unsigned int len)
2222{
2223	/*
2224	 * Options are stored in CODE:VALUE form where CODE is 8bit and VALUE
2225	 * fits the respective TCPOLEN_ size
2226	 */
2227
2228	while (len > 0) {
2229		u8 opcode;
2230
2231		if (get_user(opcode, optbuf))
2232			return -EFAULT;
2233
2234		optbuf++;
2235		len--;
2236
2237		switch (opcode) {
2238		case TCPOPT_MSS: {
2239			u16 in_mss;
2240
2241			if (len < sizeof(in_mss))
2242				return -ENODATA;
2243			if (get_user(in_mss, optbuf))
2244				return -EFAULT;
2245
2246			tp->rx_opt.mss_clamp = in_mss;
2247
2248			optbuf += sizeof(in_mss);
2249			len -= sizeof(in_mss);
2250			break;
2251		}
2252		case TCPOPT_WINDOW: {
2253			u8 wscale;
2254
2255			if (len < sizeof(wscale))
2256				return -ENODATA;
2257			if (get_user(wscale, optbuf))
2258				return -EFAULT;
2259
2260			if (wscale > 14)
2261				return -EFBIG;
2262
2263			tp->rx_opt.snd_wscale = wscale;
2264
2265			optbuf += sizeof(wscale);
2266			len -= sizeof(wscale);
2267			break;
2268		}
2269		case TCPOPT_SACK_PERM:
2270			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2271			if (sysctl_tcp_fack)
2272				tcp_enable_fack(tp);
2273			break;
2274		case TCPOPT_TIMESTAMP:
2275			tp->rx_opt.tstamp_ok = 1;
2276			break;
2277		}
2278	}
2279
2280	return 0;
2281}
2282
2283/*
2284 *	Socket option code for TCP.
2285 */
2286static int do_tcp_setsockopt(struct sock *sk, int level,
2287		int optname, char __user *optval, unsigned int optlen)
2288{
2289	struct tcp_sock *tp = tcp_sk(sk);
2290	struct inet_connection_sock *icsk = inet_csk(sk);
2291	int val;
2292	int err = 0;
2293
2294	/* These are data/string values, all the others are ints */
2295	switch (optname) {
2296	case TCP_CONGESTION: {
2297		char name[TCP_CA_NAME_MAX];
2298
2299		if (optlen < 1)
2300			return -EINVAL;
2301
2302		val = strncpy_from_user(name, optval,
2303					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2304		if (val < 0)
2305			return -EFAULT;
2306		name[val] = 0;
2307
2308		lock_sock(sk);
2309		err = tcp_set_congestion_control(sk, name);
2310		release_sock(sk);
2311		return err;
2312	}
2313	case TCP_COOKIE_TRANSACTIONS: {
2314		struct tcp_cookie_transactions ctd;
2315		struct tcp_cookie_values *cvp = NULL;
2316
2317		if (sizeof(ctd) > optlen)
2318			return -EINVAL;
2319		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2320			return -EFAULT;
2321
2322		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2323		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2324			return -EINVAL;
2325
2326		if (ctd.tcpct_cookie_desired == 0) {
2327			/* default to global value */
2328		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2329			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2330			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2331			return -EINVAL;
2332		}
2333
2334		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2335			/* Supercedes all other values */
2336			lock_sock(sk);
2337			if (tp->cookie_values != NULL) {
2338				kref_put(&tp->cookie_values->kref,
2339					 tcp_cookie_values_release);
2340				tp->cookie_values = NULL;
2341			}
2342			tp->rx_opt.cookie_in_always = 0; /* false */
2343			tp->rx_opt.cookie_out_never = 1; /* true */
2344			release_sock(sk);
2345			return err;
2346		}
2347
2348		/* Allocate ancillary memory before locking.
2349		 */
2350		if (ctd.tcpct_used > 0 ||
2351		    (tp->cookie_values == NULL &&
2352		     (sysctl_tcp_cookie_size > 0 ||
2353		      ctd.tcpct_cookie_desired > 0 ||
2354		      ctd.tcpct_s_data_desired > 0))) {
2355			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2356				      GFP_KERNEL);
2357			if (cvp == NULL)
2358				return -ENOMEM;
2359
2360			kref_init(&cvp->kref);
2361		}
2362		lock_sock(sk);
2363		tp->rx_opt.cookie_in_always =
2364			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2365		tp->rx_opt.cookie_out_never = 0; /* false */
2366
2367		if (tp->cookie_values != NULL) {
2368			if (cvp != NULL) {
2369				/* Changed values are recorded by a changed
2370				 * pointer, ensuring the cookie will differ,
2371				 * without separately hashing each value later.
2372				 */
2373				kref_put(&tp->cookie_values->kref,
2374					 tcp_cookie_values_release);
2375			} else {
2376				cvp = tp->cookie_values;
2377			}
2378		}
2379
2380		if (cvp != NULL) {
2381			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2382
2383			if (ctd.tcpct_used > 0) {
2384				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2385				       ctd.tcpct_used);
2386				cvp->s_data_desired = ctd.tcpct_used;
2387				cvp->s_data_constant = 1; /* true */
2388			} else {
2389				/* No constant payload data. */
2390				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2391				cvp->s_data_constant = 0; /* false */
2392			}
2393
2394			tp->cookie_values = cvp;
2395		}
2396		release_sock(sk);
2397		return err;
2398	}
2399	default:
2400		/* fallthru */
2401		break;
2402	}
2403
2404	if (optlen < sizeof(int))
2405		return -EINVAL;
2406
2407	if (get_user(val, (int __user *)optval))
2408		return -EFAULT;
2409
2410	lock_sock(sk);
2411
2412	switch (optname) {
2413	case TCP_MAXSEG:
2414		/* Values greater than interface MTU won't take effect. However
2415		 * at the point when this call is done we typically don't yet
2416		 * know which interface is going to be used */
2417		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2418			err = -EINVAL;
2419			break;
2420		}
2421		tp->rx_opt.user_mss = val;
2422		break;
2423
2424	case TCP_NODELAY:
2425		if (val) {
2426			/* TCP_NODELAY is weaker than TCP_CORK, so that
2427			 * this option on corked socket is remembered, but
2428			 * it is not activated until cork is cleared.
2429			 *
2430			 * However, when TCP_NODELAY is set we make
2431			 * an explicit push, which overrides even TCP_CORK
2432			 * for currently queued segments.
2433			 */
2434			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2435			tcp_push_pending_frames(sk);
2436		} else {
2437			tp->nonagle &= ~TCP_NAGLE_OFF;
2438		}
2439		break;
2440
2441	case TCP_THIN_LINEAR_TIMEOUTS:
2442		if (val < 0 || val > 1)
2443			err = -EINVAL;
2444		else
2445			tp->thin_lto = val;
2446		break;
2447
2448	case TCP_THIN_DUPACK:
2449		if (val < 0 || val > 1)
2450			err = -EINVAL;
2451		else
2452			tp->thin_dupack = val;
2453		break;
2454
2455	case TCP_REPAIR:
2456		if (!tcp_can_repair_sock(sk))
2457			err = -EPERM;
2458		else if (val == 1) {
2459			tp->repair = 1;
2460			sk->sk_reuse = SK_FORCE_REUSE;
2461			tp->repair_queue = TCP_NO_QUEUE;
2462		} else if (val == 0) {
2463			tp->repair = 0;
2464			sk->sk_reuse = SK_NO_REUSE;
2465			tcp_send_window_probe(sk);
2466		} else
2467			err = -EINVAL;
2468
2469		break;
2470
2471	case TCP_REPAIR_QUEUE:
2472		if (!tp->repair)
2473			err = -EPERM;
2474		else if (val < TCP_QUEUES_NR)
2475			tp->repair_queue = val;
2476		else
2477			err = -EINVAL;
2478		break;
2479
2480	case TCP_QUEUE_SEQ:
2481		if (sk->sk_state != TCP_CLOSE)
2482			err = -EPERM;
2483		else if (tp->repair_queue == TCP_SEND_QUEUE)
2484			tp->write_seq = val;
2485		else if (tp->repair_queue == TCP_RECV_QUEUE)
2486			tp->rcv_nxt = val;
2487		else
2488			err = -EINVAL;
2489		break;
2490
2491	case TCP_REPAIR_OPTIONS:
2492		if (!tp->repair)
2493			err = -EINVAL;
2494		else if (sk->sk_state == TCP_ESTABLISHED)
2495			err = tcp_repair_options_est(tp, optval, optlen);
2496		else
2497			err = -EPERM;
2498		break;
2499
2500	case TCP_CORK:
2501		/* When set indicates to always queue non-full frames.
2502		 * Later the user clears this option and we transmit
2503		 * any pending partial frames in the queue.  This is
2504		 * meant to be used alongside sendfile() to get properly
2505		 * filled frames when the user (for example) must write
2506		 * out headers with a write() call first and then use
2507		 * sendfile to send out the data parts.
2508		 *
2509		 * TCP_CORK can be set together with TCP_NODELAY and it is
2510		 * stronger than TCP_NODELAY.
2511		 */
2512		if (val) {
2513			tp->nonagle |= TCP_NAGLE_CORK;
2514		} else {
2515			tp->nonagle &= ~TCP_NAGLE_CORK;
2516			if (tp->nonagle&TCP_NAGLE_OFF)
2517				tp->nonagle |= TCP_NAGLE_PUSH;
2518			tcp_push_pending_frames(sk);
2519		}
2520		break;
2521
2522	case TCP_KEEPIDLE:
2523		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2524			err = -EINVAL;
2525		else {
2526			tp->keepalive_time = val * HZ;
2527			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2528			    !((1 << sk->sk_state) &
2529			      (TCPF_CLOSE | TCPF_LISTEN))) {
2530				u32 elapsed = keepalive_time_elapsed(tp);
2531				if (tp->keepalive_time > elapsed)
2532					elapsed = tp->keepalive_time - elapsed;
2533				else
2534					elapsed = 0;
2535				inet_csk_reset_keepalive_timer(sk, elapsed);
2536			}
2537		}
2538		break;
2539	case TCP_KEEPINTVL:
2540		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2541			err = -EINVAL;
2542		else
2543			tp->keepalive_intvl = val * HZ;
2544		break;
2545	case TCP_KEEPCNT:
2546		if (val < 1 || val > MAX_TCP_KEEPCNT)
2547			err = -EINVAL;
2548		else
2549			tp->keepalive_probes = val;
2550		break;
2551	case TCP_SYNCNT:
2552		if (val < 1 || val > MAX_TCP_SYNCNT)
2553			err = -EINVAL;
2554		else
2555			icsk->icsk_syn_retries = val;
2556		break;
2557
2558	case TCP_LINGER2:
2559		if (val < 0)
2560			tp->linger2 = -1;
2561		else if (val > sysctl_tcp_fin_timeout / HZ)
2562			tp->linger2 = 0;
2563		else
2564			tp->linger2 = val * HZ;
2565		break;
2566
2567	case TCP_DEFER_ACCEPT:
2568		/* Translate value in seconds to number of retransmits */
2569		icsk->icsk_accept_queue.rskq_defer_accept =
2570			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2571					TCP_RTO_MAX / HZ);
2572		break;
2573
2574	case TCP_WINDOW_CLAMP:
2575		if (!val) {
2576			if (sk->sk_state != TCP_CLOSE) {
2577				err = -EINVAL;
2578				break;
2579			}
2580			tp->window_clamp = 0;
2581		} else
2582			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2583						SOCK_MIN_RCVBUF / 2 : val;
2584		break;
2585
2586	case TCP_QUICKACK:
2587		if (!val) {
2588			icsk->icsk_ack.pingpong = 1;
2589		} else {
2590			icsk->icsk_ack.pingpong = 0;
2591			if ((1 << sk->sk_state) &
2592			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2593			    inet_csk_ack_scheduled(sk)) {
2594				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2595				tcp_cleanup_rbuf(sk, 1);
2596				if (!(val & 1))
2597					icsk->icsk_ack.pingpong = 1;
2598			}
2599		}
2600		break;
2601
2602#ifdef CONFIG_TCP_MD5SIG
2603	case TCP_MD5SIG:
2604		/* Read the IP->Key mappings from userspace */
2605		err = tp->af_specific->md5_parse(sk, optval, optlen);
2606		break;
2607#endif
2608	case TCP_USER_TIMEOUT:
2609		/* Cap the max timeout in ms TCP will retry/retrans
2610		 * before giving up and aborting (ETIMEDOUT) a connection.
2611		 */
2612		icsk->icsk_user_timeout = msecs_to_jiffies(val);
2613		break;
2614	default:
2615		err = -ENOPROTOOPT;
2616		break;
2617	}
2618
2619	release_sock(sk);
2620	return err;
2621}
2622
2623int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2624		   unsigned int optlen)
2625{
2626	const struct inet_connection_sock *icsk = inet_csk(sk);
2627
2628	if (level != SOL_TCP)
2629		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2630						     optval, optlen);
2631	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2632}
2633EXPORT_SYMBOL(tcp_setsockopt);
2634
2635#ifdef CONFIG_COMPAT
2636int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2637			  char __user *optval, unsigned int optlen)
2638{
2639	if (level != SOL_TCP)
2640		return inet_csk_compat_setsockopt(sk, level, optname,
2641						  optval, optlen);
2642	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2643}
2644EXPORT_SYMBOL(compat_tcp_setsockopt);
2645#endif
2646
2647/* Return information about state of tcp endpoint in API format. */
2648void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2649{
2650	const struct tcp_sock *tp = tcp_sk(sk);
2651	const struct inet_connection_sock *icsk = inet_csk(sk);
2652	u32 now = tcp_time_stamp;
2653
2654	memset(info, 0, sizeof(*info));
2655
2656	info->tcpi_state = sk->sk_state;
2657	info->tcpi_ca_state = icsk->icsk_ca_state;
2658	info->tcpi_retransmits = icsk->icsk_retransmits;
2659	info->tcpi_probes = icsk->icsk_probes_out;
2660	info->tcpi_backoff = icsk->icsk_backoff;
2661
2662	if (tp->rx_opt.tstamp_ok)
2663		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2664	if (tcp_is_sack(tp))
2665		info->tcpi_options |= TCPI_OPT_SACK;
2666	if (tp->rx_opt.wscale_ok) {
2667		info->tcpi_options |= TCPI_OPT_WSCALE;
2668		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2669		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2670	}
2671
2672	if (tp->ecn_flags & TCP_ECN_OK)
2673		info->tcpi_options |= TCPI_OPT_ECN;
2674	if (tp->ecn_flags & TCP_ECN_SEEN)
2675		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2676
2677	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2678	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2679	info->tcpi_snd_mss = tp->mss_cache;
2680	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2681
2682	if (sk->sk_state == TCP_LISTEN) {
2683		info->tcpi_unacked = sk->sk_ack_backlog;
2684		info->tcpi_sacked = sk->sk_max_ack_backlog;
2685	} else {
2686		info->tcpi_unacked = tp->packets_out;
2687		info->tcpi_sacked = tp->sacked_out;
2688	}
2689	info->tcpi_lost = tp->lost_out;
2690	info->tcpi_retrans = tp->retrans_out;
2691	info->tcpi_fackets = tp->fackets_out;
2692
2693	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2694	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2695	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2696
2697	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2698	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2699	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2700	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2701	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2702	info->tcpi_snd_cwnd = tp->snd_cwnd;
2703	info->tcpi_advmss = tp->advmss;
2704	info->tcpi_reordering = tp->reordering;
2705
2706	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2707	info->tcpi_rcv_space = tp->rcvq_space.space;
2708
2709	info->tcpi_total_retrans = tp->total_retrans;
2710}
2711EXPORT_SYMBOL_GPL(tcp_get_info);
2712
2713static int do_tcp_getsockopt(struct sock *sk, int level,
2714		int optname, char __user *optval, int __user *optlen)
2715{
2716	struct inet_connection_sock *icsk = inet_csk(sk);
2717	struct tcp_sock *tp = tcp_sk(sk);
2718	int val, len;
2719
2720	if (get_user(len, optlen))
2721		return -EFAULT;
2722
2723	len = min_t(unsigned int, len, sizeof(int));
2724
2725	if (len < 0)
2726		return -EINVAL;
2727
2728	switch (optname) {
2729	case TCP_MAXSEG:
2730		val = tp->mss_cache;
2731		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2732			val = tp->rx_opt.user_mss;
2733		if (tp->repair)
2734			val = tp->rx_opt.mss_clamp;
2735		break;
2736	case TCP_NODELAY:
2737		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2738		break;
2739	case TCP_CORK:
2740		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2741		break;
2742	case TCP_KEEPIDLE:
2743		val = keepalive_time_when(tp) / HZ;
2744		break;
2745	case TCP_KEEPINTVL:
2746		val = keepalive_intvl_when(tp) / HZ;
2747		break;
2748	case TCP_KEEPCNT:
2749		val = keepalive_probes(tp);
2750		break;
2751	case TCP_SYNCNT:
2752		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2753		break;
2754	case TCP_LINGER2:
2755		val = tp->linger2;
2756		if (val >= 0)
2757			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2758		break;
2759	case TCP_DEFER_ACCEPT:
2760		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2761				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2762		break;
2763	case TCP_WINDOW_CLAMP:
2764		val = tp->window_clamp;
2765		break;
2766	case TCP_INFO: {
2767		struct tcp_info info;
2768
2769		if (get_user(len, optlen))
2770			return -EFAULT;
2771
2772		tcp_get_info(sk, &info);
2773
2774		len = min_t(unsigned int, len, sizeof(info));
2775		if (put_user(len, optlen))
2776			return -EFAULT;
2777		if (copy_to_user(optval, &info, len))
2778			return -EFAULT;
2779		return 0;
2780	}
2781	case TCP_QUICKACK:
2782		val = !icsk->icsk_ack.pingpong;
2783		break;
2784
2785	case TCP_CONGESTION:
2786		if (get_user(len, optlen))
2787			return -EFAULT;
2788		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2789		if (put_user(len, optlen))
2790			return -EFAULT;
2791		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2792			return -EFAULT;
2793		return 0;
2794
2795	case TCP_COOKIE_TRANSACTIONS: {
2796		struct tcp_cookie_transactions ctd;
2797		struct tcp_cookie_values *cvp = tp->cookie_values;
2798
2799		if (get_user(len, optlen))
2800			return -EFAULT;
2801		if (len < sizeof(ctd))
2802			return -EINVAL;
2803
2804		memset(&ctd, 0, sizeof(ctd));
2805		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2806				   TCP_COOKIE_IN_ALWAYS : 0)
2807				| (tp->rx_opt.cookie_out_never ?
2808				   TCP_COOKIE_OUT_NEVER : 0);
2809
2810		if (cvp != NULL) {
2811			ctd.tcpct_flags |= (cvp->s_data_in ?
2812					    TCP_S_DATA_IN : 0)
2813					 | (cvp->s_data_out ?
2814					    TCP_S_DATA_OUT : 0);
2815
2816			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2817			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2818
2819			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2820			       cvp->cookie_pair_size);
2821			ctd.tcpct_used = cvp->cookie_pair_size;
2822		}
2823
2824		if (put_user(sizeof(ctd), optlen))
2825			return -EFAULT;
2826		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2827			return -EFAULT;
2828		return 0;
2829	}
2830	case TCP_THIN_LINEAR_TIMEOUTS:
2831		val = tp->thin_lto;
2832		break;
2833	case TCP_THIN_DUPACK:
2834		val = tp->thin_dupack;
2835		break;
2836
2837	case TCP_REPAIR:
2838		val = tp->repair;
2839		break;
2840
2841	case TCP_REPAIR_QUEUE:
2842		if (tp->repair)
2843			val = tp->repair_queue;
2844		else
2845			return -EINVAL;
2846		break;
2847
2848	case TCP_QUEUE_SEQ:
2849		if (tp->repair_queue == TCP_SEND_QUEUE)
2850			val = tp->write_seq;
2851		else if (tp->repair_queue == TCP_RECV_QUEUE)
2852			val = tp->rcv_nxt;
2853		else
2854			return -EINVAL;
2855		break;
2856
2857	case TCP_USER_TIMEOUT:
2858		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2859		break;
2860	default:
2861		return -ENOPROTOOPT;
2862	}
2863
2864	if (put_user(len, optlen))
2865		return -EFAULT;
2866	if (copy_to_user(optval, &val, len))
2867		return -EFAULT;
2868	return 0;
2869}
2870
2871int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2872		   int __user *optlen)
2873{
2874	struct inet_connection_sock *icsk = inet_csk(sk);
2875
2876	if (level != SOL_TCP)
2877		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2878						     optval, optlen);
2879	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2880}
2881EXPORT_SYMBOL(tcp_getsockopt);
2882
2883#ifdef CONFIG_COMPAT
2884int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2885			  char __user *optval, int __user *optlen)
2886{
2887	if (level != SOL_TCP)
2888		return inet_csk_compat_getsockopt(sk, level, optname,
2889						  optval, optlen);
2890	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2891}
2892EXPORT_SYMBOL(compat_tcp_getsockopt);
2893#endif
2894
2895struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2896	netdev_features_t features)
2897{
2898	struct sk_buff *segs = ERR_PTR(-EINVAL);
2899	struct tcphdr *th;
2900	unsigned int thlen;
2901	unsigned int seq;
2902	__be32 delta;
2903	unsigned int oldlen;
2904	unsigned int mss;
2905
2906	if (!pskb_may_pull(skb, sizeof(*th)))
2907		goto out;
2908
2909	th = tcp_hdr(skb);
2910	thlen = th->doff * 4;
2911	if (thlen < sizeof(*th))
2912		goto out;
2913
2914	if (!pskb_may_pull(skb, thlen))
2915		goto out;
2916
2917	oldlen = (u16)~skb->len;
2918	__skb_pull(skb, thlen);
2919
2920	mss = skb_shinfo(skb)->gso_size;
2921	if (unlikely(skb->len <= mss))
2922		goto out;
2923
2924	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2925		/* Packet is from an untrusted source, reset gso_segs. */
2926		int type = skb_shinfo(skb)->gso_type;
2927
2928		if (unlikely(type &
2929			     ~(SKB_GSO_TCPV4 |
2930			       SKB_GSO_DODGY |
2931			       SKB_GSO_TCP_ECN |
2932			       SKB_GSO_TCPV6 |
2933			       0) ||
2934			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2935			goto out;
2936
2937		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2938
2939		segs = NULL;
2940		goto out;
2941	}
2942
2943	segs = skb_segment(skb, features);
2944	if (IS_ERR(segs))
2945		goto out;
2946
2947	delta = htonl(oldlen + (thlen + mss));
2948
2949	skb = segs;
2950	th = tcp_hdr(skb);
2951	seq = ntohl(th->seq);
2952
2953	do {
2954		th->fin = th->psh = 0;
2955
2956		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2957				       (__force u32)delta));
2958		if (skb->ip_summed != CHECKSUM_PARTIAL)
2959			th->check =
2960			     csum_fold(csum_partial(skb_transport_header(skb),
2961						    thlen, skb->csum));
2962
2963		seq += mss;
2964		skb = skb->next;
2965		th = tcp_hdr(skb);
2966
2967		th->seq = htonl(seq);
2968		th->cwr = 0;
2969	} while (skb->next);
2970
2971	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2972		      skb->data_len);
2973	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2974				(__force u32)delta));
2975	if (skb->ip_summed != CHECKSUM_PARTIAL)
2976		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2977						   thlen, skb->csum));
2978
2979out:
2980	return segs;
2981}
2982EXPORT_SYMBOL(tcp_tso_segment);
2983
2984struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2985{
2986	struct sk_buff **pp = NULL;
2987	struct sk_buff *p;
2988	struct tcphdr *th;
2989	struct tcphdr *th2;
2990	unsigned int len;
2991	unsigned int thlen;
2992	__be32 flags;
2993	unsigned int mss = 1;
2994	unsigned int hlen;
2995	unsigned int off;
2996	int flush = 1;
2997	int i;
2998
2999	off = skb_gro_offset(skb);
3000	hlen = off + sizeof(*th);
3001	th = skb_gro_header_fast(skb, off);
3002	if (skb_gro_header_hard(skb, hlen)) {
3003		th = skb_gro_header_slow(skb, hlen, off);
3004		if (unlikely(!th))
3005			goto out;
3006	}
3007
3008	thlen = th->doff * 4;
3009	if (thlen < sizeof(*th))
3010		goto out;
3011
3012	hlen = off + thlen;
3013	if (skb_gro_header_hard(skb, hlen)) {
3014		th = skb_gro_header_slow(skb, hlen, off);
3015		if (unlikely(!th))
3016			goto out;
3017	}
3018
3019	skb_gro_pull(skb, thlen);
3020
3021	len = skb_gro_len(skb);
3022	flags = tcp_flag_word(th);
3023
3024	for (; (p = *head); head = &p->next) {
3025		if (!NAPI_GRO_CB(p)->same_flow)
3026			continue;
3027
3028		th2 = tcp_hdr(p);
3029
3030		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3031			NAPI_GRO_CB(p)->same_flow = 0;
3032			continue;
3033		}
3034
3035		goto found;
3036	}
3037
3038	goto out_check_final;
3039
3040found:
3041	flush = NAPI_GRO_CB(p)->flush;
3042	flush |= (__force int)(flags & TCP_FLAG_CWR);
3043	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3044		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3045	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3046	for (i = sizeof(*th); i < thlen; i += 4)
3047		flush |= *(u32 *)((u8 *)th + i) ^
3048			 *(u32 *)((u8 *)th2 + i);
3049
3050	mss = skb_shinfo(p)->gso_size;
3051
3052	flush |= (len - 1) >= mss;
3053	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3054
3055	if (flush || skb_gro_receive(head, skb)) {
3056		mss = 1;
3057		goto out_check_final;
3058	}
3059
3060	p = *head;
3061	th2 = tcp_hdr(p);
3062	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3063
3064out_check_final:
3065	flush = len < mss;
3066	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3067					TCP_FLAG_RST | TCP_FLAG_SYN |
3068					TCP_FLAG_FIN));
3069
3070	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3071		pp = head;
3072
3073out:
3074	NAPI_GRO_CB(skb)->flush |= flush;
3075
3076	return pp;
3077}
3078EXPORT_SYMBOL(tcp_gro_receive);
3079
3080int tcp_gro_complete(struct sk_buff *skb)
3081{
3082	struct tcphdr *th = tcp_hdr(skb);
3083
3084	skb->csum_start = skb_transport_header(skb) - skb->head;
3085	skb->csum_offset = offsetof(struct tcphdr, check);
3086	skb->ip_summed = CHECKSUM_PARTIAL;
3087
3088	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3089
3090	if (th->cwr)
3091		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3092
3093	return 0;
3094}
3095EXPORT_SYMBOL(tcp_gro_complete);
3096
3097#ifdef CONFIG_TCP_MD5SIG
3098static unsigned long tcp_md5sig_users;
3099static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3100static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3101
3102static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3103{
3104	int cpu;
3105
3106	for_each_possible_cpu(cpu) {
3107		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3108
3109		if (p->md5_desc.tfm)
3110			crypto_free_hash(p->md5_desc.tfm);
3111	}
3112	free_percpu(pool);
3113}
3114
3115void tcp_free_md5sig_pool(void)
3116{
3117	struct tcp_md5sig_pool __percpu *pool = NULL;
3118
3119	spin_lock_bh(&tcp_md5sig_pool_lock);
3120	if (--tcp_md5sig_users == 0) {
3121		pool = tcp_md5sig_pool;
3122		tcp_md5sig_pool = NULL;
3123	}
3124	spin_unlock_bh(&tcp_md5sig_pool_lock);
3125	if (pool)
3126		__tcp_free_md5sig_pool(pool);
3127}
3128EXPORT_SYMBOL(tcp_free_md5sig_pool);
3129
3130static struct tcp_md5sig_pool __percpu *
3131__tcp_alloc_md5sig_pool(struct sock *sk)
3132{
3133	int cpu;
3134	struct tcp_md5sig_pool __percpu *pool;
3135
3136	pool = alloc_percpu(struct tcp_md5sig_pool);
3137	if (!pool)
3138		return NULL;
3139
3140	for_each_possible_cpu(cpu) {
3141		struct crypto_hash *hash;
3142
3143		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3144		if (!hash || IS_ERR(hash))
3145			goto out_free;
3146
3147		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3148	}
3149	return pool;
3150out_free:
3151	__tcp_free_md5sig_pool(pool);
3152	return NULL;
3153}
3154
3155struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3156{
3157	struct tcp_md5sig_pool __percpu *pool;
3158	int alloc = 0;
3159
3160retry:
3161	spin_lock_bh(&tcp_md5sig_pool_lock);
3162	pool = tcp_md5sig_pool;
3163	if (tcp_md5sig_users++ == 0) {
3164		alloc = 1;
3165		spin_unlock_bh(&tcp_md5sig_pool_lock);
3166	} else if (!pool) {
3167		tcp_md5sig_users--;
3168		spin_unlock_bh(&tcp_md5sig_pool_lock);
3169		cpu_relax();
3170		goto retry;
3171	} else
3172		spin_unlock_bh(&tcp_md5sig_pool_lock);
3173
3174	if (alloc) {
3175		/* we cannot hold spinlock here because this may sleep. */
3176		struct tcp_md5sig_pool __percpu *p;
3177
3178		p = __tcp_alloc_md5sig_pool(sk);
3179		spin_lock_bh(&tcp_md5sig_pool_lock);
3180		if (!p) {
3181			tcp_md5sig_users--;
3182			spin_unlock_bh(&tcp_md5sig_pool_lock);
3183			return NULL;
3184		}
3185		pool = tcp_md5sig_pool;
3186		if (pool) {
3187			/* oops, it has already been assigned. */
3188			spin_unlock_bh(&tcp_md5sig_pool_lock);
3189			__tcp_free_md5sig_pool(p);
3190		} else {
3191			tcp_md5sig_pool = pool = p;
3192			spin_unlock_bh(&tcp_md5sig_pool_lock);
3193		}
3194	}
3195	return pool;
3196}
3197EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3198
3199
3200/**
3201 *	tcp_get_md5sig_pool - get md5sig_pool for this user
3202 *
3203 *	We use percpu structure, so if we succeed, we exit with preemption
3204 *	and BH disabled, to make sure another thread or softirq handling
3205 *	wont try to get same context.
3206 */
3207struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3208{
3209	struct tcp_md5sig_pool __percpu *p;
3210
3211	local_bh_disable();
3212
3213	spin_lock(&tcp_md5sig_pool_lock);
3214	p = tcp_md5sig_pool;
3215	if (p)
3216		tcp_md5sig_users++;
3217	spin_unlock(&tcp_md5sig_pool_lock);
3218
3219	if (p)
3220		return this_cpu_ptr(p);
3221
3222	local_bh_enable();
3223	return NULL;
3224}
3225EXPORT_SYMBOL(tcp_get_md5sig_pool);
3226
3227void tcp_put_md5sig_pool(void)
3228{
3229	local_bh_enable();
3230	tcp_free_md5sig_pool();
3231}
3232EXPORT_SYMBOL(tcp_put_md5sig_pool);
3233
3234int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3235			const struct tcphdr *th)
3236{
3237	struct scatterlist sg;
3238	struct tcphdr hdr;
3239	int err;
3240
3241	/* We are not allowed to change tcphdr, make a local copy */
3242	memcpy(&hdr, th, sizeof(hdr));
3243	hdr.check = 0;
3244
3245	/* options aren't included in the hash */
3246	sg_init_one(&sg, &hdr, sizeof(hdr));
3247	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3248	return err;
3249}
3250EXPORT_SYMBOL(tcp_md5_hash_header);
3251
3252int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3253			  const struct sk_buff *skb, unsigned int header_len)
3254{
3255	struct scatterlist sg;
3256	const struct tcphdr *tp = tcp_hdr(skb);
3257	struct hash_desc *desc = &hp->md5_desc;
3258	unsigned int i;
3259	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3260					   skb_headlen(skb) - header_len : 0;
3261	const struct skb_shared_info *shi = skb_shinfo(skb);
3262	struct sk_buff *frag_iter;
3263
3264	sg_init_table(&sg, 1);
3265
3266	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3267	if (crypto_hash_update(desc, &sg, head_data_len))
3268		return 1;
3269
3270	for (i = 0; i < shi->nr_frags; ++i) {
3271		const struct skb_frag_struct *f = &shi->frags[i];
3272		struct page *page = skb_frag_page(f);
3273		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3274		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3275			return 1;
3276	}
3277
3278	skb_walk_frags(skb, frag_iter)
3279		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3280			return 1;
3281
3282	return 0;
3283}
3284EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3285
3286int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3287{
3288	struct scatterlist sg;
3289
3290	sg_init_one(&sg, key->key, key->keylen);
3291	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3292}
3293EXPORT_SYMBOL(tcp_md5_hash_key);
3294
3295#endif
3296
3297/**
3298 * Each Responder maintains up to two secret values concurrently for
3299 * efficient secret rollover.  Each secret value has 4 states:
3300 *
3301 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3302 *    Generates new Responder-Cookies, but not yet used for primary
3303 *    verification.  This is a short-term state, typically lasting only
3304 *    one round trip time (RTT).
3305 *
3306 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3307 *    Used both for generation and primary verification.
3308 *
3309 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3310 *    Used for verification, until the first failure that can be
3311 *    verified by the newer Generating secret.  At that time, this
3312 *    cookie's state is changed to Secondary, and the Generating
3313 *    cookie's state is changed to Primary.  This is a short-term state,
3314 *    typically lasting only one round trip time (RTT).
3315 *
3316 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3317 *    Used for secondary verification, after primary verification
3318 *    failures.  This state lasts no more than twice the Maximum Segment
3319 *    Lifetime (2MSL).  Then, the secret is discarded.
3320 */
3321struct tcp_cookie_secret {
3322	/* The secret is divided into two parts.  The digest part is the
3323	 * equivalent of previously hashing a secret and saving the state,
3324	 * and serves as an initialization vector (IV).  The message part
3325	 * serves as the trailing secret.
3326	 */
3327	u32				secrets[COOKIE_WORKSPACE_WORDS];
3328	unsigned long			expires;
3329};
3330
3331#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3332#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3333#define TCP_SECRET_LIFE (HZ * 600)
3334
3335static struct tcp_cookie_secret tcp_secret_one;
3336static struct tcp_cookie_secret tcp_secret_two;
3337
3338/* Essentially a circular list, without dynamic allocation. */
3339static struct tcp_cookie_secret *tcp_secret_generating;
3340static struct tcp_cookie_secret *tcp_secret_primary;
3341static struct tcp_cookie_secret *tcp_secret_retiring;
3342static struct tcp_cookie_secret *tcp_secret_secondary;
3343
3344static DEFINE_SPINLOCK(tcp_secret_locker);
3345
3346/* Select a pseudo-random word in the cookie workspace.
3347 */
3348static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3349{
3350	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3351}
3352
3353/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3354 * Called in softirq context.
3355 * Returns: 0 for success.
3356 */
3357int tcp_cookie_generator(u32 *bakery)
3358{
3359	unsigned long jiffy = jiffies;
3360
3361	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3362		spin_lock_bh(&tcp_secret_locker);
3363		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3364			/* refreshed by another */
3365			memcpy(bakery,
3366			       &tcp_secret_generating->secrets[0],
3367			       COOKIE_WORKSPACE_WORDS);
3368		} else {
3369			/* still needs refreshing */
3370			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3371
3372			/* The first time, paranoia assumes that the
3373			 * randomization function isn't as strong.  But,
3374			 * this secret initialization is delayed until
3375			 * the last possible moment (packet arrival).
3376			 * Although that time is observable, it is
3377			 * unpredictably variable.  Mash in the most
3378			 * volatile clock bits available, and expire the
3379			 * secret extra quickly.
3380			 */
3381			if (unlikely(tcp_secret_primary->expires ==
3382				     tcp_secret_secondary->expires)) {
3383				struct timespec tv;
3384
3385				getnstimeofday(&tv);
3386				bakery[COOKIE_DIGEST_WORDS+0] ^=
3387					(u32)tv.tv_nsec;
3388
3389				tcp_secret_secondary->expires = jiffy
3390					+ TCP_SECRET_1MSL
3391					+ (0x0f & tcp_cookie_work(bakery, 0));
3392			} else {
3393				tcp_secret_secondary->expires = jiffy
3394					+ TCP_SECRET_LIFE
3395					+ (0xff & tcp_cookie_work(bakery, 1));
3396				tcp_secret_primary->expires = jiffy
3397					+ TCP_SECRET_2MSL
3398					+ (0x1f & tcp_cookie_work(bakery, 2));
3399			}
3400			memcpy(&tcp_secret_secondary->secrets[0],
3401			       bakery, COOKIE_WORKSPACE_WORDS);
3402
3403			rcu_assign_pointer(tcp_secret_generating,
3404					   tcp_secret_secondary);
3405			rcu_assign_pointer(tcp_secret_retiring,
3406					   tcp_secret_primary);
3407			/*
3408			 * Neither call_rcu() nor synchronize_rcu() needed.
3409			 * Retiring data is not freed.  It is replaced after
3410			 * further (locked) pointer updates, and a quiet time
3411			 * (minimum 1MSL, maximum LIFE - 2MSL).
3412			 */
3413		}
3414		spin_unlock_bh(&tcp_secret_locker);
3415	} else {
3416		rcu_read_lock_bh();
3417		memcpy(bakery,
3418		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3419		       COOKIE_WORKSPACE_WORDS);
3420		rcu_read_unlock_bh();
3421	}
3422	return 0;
3423}
3424EXPORT_SYMBOL(tcp_cookie_generator);
3425
3426void tcp_done(struct sock *sk)
3427{
3428	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3429		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3430
3431	tcp_set_state(sk, TCP_CLOSE);
3432	tcp_clear_xmit_timers(sk);
3433
3434	sk->sk_shutdown = SHUTDOWN_MASK;
3435
3436	if (!sock_flag(sk, SOCK_DEAD))
3437		sk->sk_state_change(sk);
3438	else
3439		inet_csk_destroy_sock(sk);
3440}
3441EXPORT_SYMBOL_GPL(tcp_done);
3442
3443extern struct tcp_congestion_ops tcp_reno;
3444
3445static __initdata unsigned long thash_entries;
3446static int __init set_thash_entries(char *str)
3447{
3448	if (!str)
3449		return 0;
3450	thash_entries = simple_strtoul(str, &str, 0);
3451	return 1;
3452}
3453__setup("thash_entries=", set_thash_entries);
3454
3455void tcp_init_mem(struct net *net)
3456{
3457	unsigned long limit = nr_free_buffer_pages() / 8;
3458	limit = max(limit, 128UL);
3459	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3460	net->ipv4.sysctl_tcp_mem[1] = limit;
3461	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3462}
3463
3464void __init tcp_init(void)
3465{
3466	struct sk_buff *skb = NULL;
3467	unsigned long limit;
3468	int max_share, cnt;
3469	unsigned int i;
3470	unsigned long jiffy = jiffies;
3471
3472	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3473
3474	percpu_counter_init(&tcp_sockets_allocated, 0);
3475	percpu_counter_init(&tcp_orphan_count, 0);
3476	tcp_hashinfo.bind_bucket_cachep =
3477		kmem_cache_create("tcp_bind_bucket",
3478				  sizeof(struct inet_bind_bucket), 0,
3479				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3480
3481	/* Size and allocate the main established and bind bucket
3482	 * hash tables.
3483	 *
3484	 * The methodology is similar to that of the buffer cache.
3485	 */
3486	tcp_hashinfo.ehash =
3487		alloc_large_system_hash("TCP established",
3488					sizeof(struct inet_ehash_bucket),
3489					thash_entries,
3490					(totalram_pages >= 128 * 1024) ?
3491					13 : 15,
3492					0,
3493					NULL,
3494					&tcp_hashinfo.ehash_mask,
3495					thash_entries ? 0 : 512 * 1024);
3496	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3497		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3498		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3499	}
3500	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3501		panic("TCP: failed to alloc ehash_locks");
3502	tcp_hashinfo.bhash =
3503		alloc_large_system_hash("TCP bind",
3504					sizeof(struct inet_bind_hashbucket),
3505					tcp_hashinfo.ehash_mask + 1,
3506					(totalram_pages >= 128 * 1024) ?
3507					13 : 15,
3508					0,
3509					&tcp_hashinfo.bhash_size,
3510					NULL,
3511					64 * 1024);
3512	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3513	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3514		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3515		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3516	}
3517
3518
3519	cnt = tcp_hashinfo.ehash_mask + 1;
3520
3521	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3522	sysctl_tcp_max_orphans = cnt / 2;
3523	sysctl_max_syn_backlog = max(128, cnt / 256);
3524
3525	tcp_init_mem(&init_net);
3526	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3527	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3528	max_share = min(4UL*1024*1024, limit);
3529
3530	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3531	sysctl_tcp_wmem[1] = 16*1024;
3532	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3533
3534	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3535	sysctl_tcp_rmem[1] = 87380;
3536	sysctl_tcp_rmem[2] = max(87380, max_share);
3537
3538	pr_info("Hash tables configured (established %u bind %u)\n",
3539		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3540
3541	tcp_register_congestion_control(&tcp_reno);
3542
3543	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3544	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3545	tcp_secret_one.expires = jiffy; /* past due */
3546	tcp_secret_two.expires = jiffy; /* past due */
3547	tcp_secret_generating = &tcp_secret_one;
3548	tcp_secret_primary = &tcp_secret_one;
3549	tcp_secret_retiring = &tcp_secret_two;
3550	tcp_secret_secondary = &tcp_secret_two;
3551}
3552