tcp.c revision beedad923ad6237f03265fdf86eb8a1b50d14ae9
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248#include <linux/kernel.h> 249#include <linux/module.h> 250#include <linux/types.h> 251#include <linux/fcntl.h> 252#include <linux/poll.h> 253#include <linux/init.h> 254#include <linux/fs.h> 255#include <linux/skbuff.h> 256#include <linux/scatterlist.h> 257#include <linux/splice.h> 258#include <linux/net.h> 259#include <linux/socket.h> 260#include <linux/random.h> 261#include <linux/bootmem.h> 262#include <linux/highmem.h> 263#include <linux/swap.h> 264#include <linux/cache.h> 265#include <linux/err.h> 266#include <linux/crypto.h> 267 268#include <net/icmp.h> 269#include <net/tcp.h> 270#include <net/xfrm.h> 271#include <net/ip.h> 272#include <net/netdma.h> 273#include <net/sock.h> 274 275#include <asm/uaccess.h> 276#include <asm/ioctls.h> 277 278int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 279 280struct percpu_counter tcp_orphan_count; 281EXPORT_SYMBOL_GPL(tcp_orphan_count); 282 283int sysctl_tcp_mem[3] __read_mostly; 284int sysctl_tcp_wmem[3] __read_mostly; 285int sysctl_tcp_rmem[3] __read_mostly; 286 287EXPORT_SYMBOL(sysctl_tcp_mem); 288EXPORT_SYMBOL(sysctl_tcp_rmem); 289EXPORT_SYMBOL(sysctl_tcp_wmem); 290 291atomic_t tcp_memory_allocated; /* Current allocated memory. */ 292EXPORT_SYMBOL(tcp_memory_allocated); 293 294/* 295 * Current number of TCP sockets. 296 */ 297struct percpu_counter tcp_sockets_allocated; 298EXPORT_SYMBOL(tcp_sockets_allocated); 299 300/* 301 * TCP splice context 302 */ 303struct tcp_splice_state { 304 struct pipe_inode_info *pipe; 305 size_t len; 306 unsigned int flags; 307}; 308 309/* 310 * Pressure flag: try to collapse. 311 * Technical note: it is used by multiple contexts non atomically. 312 * All the __sk_mem_schedule() is of this nature: accounting 313 * is strict, actions are advisory and have some latency. 314 */ 315int tcp_memory_pressure __read_mostly; 316 317EXPORT_SYMBOL(tcp_memory_pressure); 318 319void tcp_enter_memory_pressure(struct sock *sk) 320{ 321 if (!tcp_memory_pressure) { 322 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 323 tcp_memory_pressure = 1; 324 } 325} 326 327EXPORT_SYMBOL(tcp_enter_memory_pressure); 328 329/* 330 * Wait for a TCP event. 331 * 332 * Note that we don't need to lock the socket, as the upper poll layers 333 * take care of normal races (between the test and the event) and we don't 334 * go look at any of the socket buffers directly. 335 */ 336unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 337{ 338 unsigned int mask; 339 struct sock *sk = sock->sk; 340 struct tcp_sock *tp = tcp_sk(sk); 341 342 poll_wait(file, sk->sk_sleep, wait); 343 if (sk->sk_state == TCP_LISTEN) 344 return inet_csk_listen_poll(sk); 345 346 /* Socket is not locked. We are protected from async events 347 * by poll logic and correct handling of state changes 348 * made by other threads is impossible in any case. 349 */ 350 351 mask = 0; 352 if (sk->sk_err) 353 mask = POLLERR; 354 355 /* 356 * POLLHUP is certainly not done right. But poll() doesn't 357 * have a notion of HUP in just one direction, and for a 358 * socket the read side is more interesting. 359 * 360 * Some poll() documentation says that POLLHUP is incompatible 361 * with the POLLOUT/POLLWR flags, so somebody should check this 362 * all. But careful, it tends to be safer to return too many 363 * bits than too few, and you can easily break real applications 364 * if you don't tell them that something has hung up! 365 * 366 * Check-me. 367 * 368 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 369 * our fs/select.c). It means that after we received EOF, 370 * poll always returns immediately, making impossible poll() on write() 371 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 372 * if and only if shutdown has been made in both directions. 373 * Actually, it is interesting to look how Solaris and DUX 374 * solve this dilemma. I would prefer, if POLLHUP were maskable, 375 * then we could set it on SND_SHUTDOWN. BTW examples given 376 * in Stevens' books assume exactly this behaviour, it explains 377 * why POLLHUP is incompatible with POLLOUT. --ANK 378 * 379 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 380 * blocking on fresh not-connected or disconnected socket. --ANK 381 */ 382 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 383 mask |= POLLHUP; 384 if (sk->sk_shutdown & RCV_SHUTDOWN) 385 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 386 387 /* Connected? */ 388 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) { 389 int target = sock_rcvlowat(sk, 0, INT_MAX); 390 391 if (tp->urg_seq == tp->copied_seq && 392 !sock_flag(sk, SOCK_URGINLINE) && 393 tp->urg_data) 394 target--; 395 396 /* Potential race condition. If read of tp below will 397 * escape above sk->sk_state, we can be illegally awaken 398 * in SYN_* states. */ 399 if (tp->rcv_nxt - tp->copied_seq >= target) 400 mask |= POLLIN | POLLRDNORM; 401 402 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 403 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 404 mask |= POLLOUT | POLLWRNORM; 405 } else { /* send SIGIO later */ 406 set_bit(SOCK_ASYNC_NOSPACE, 407 &sk->sk_socket->flags); 408 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 409 410 /* Race breaker. If space is freed after 411 * wspace test but before the flags are set, 412 * IO signal will be lost. 413 */ 414 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 415 mask |= POLLOUT | POLLWRNORM; 416 } 417 } 418 419 if (tp->urg_data & TCP_URG_VALID) 420 mask |= POLLPRI; 421 } 422 return mask; 423} 424 425int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 426{ 427 struct tcp_sock *tp = tcp_sk(sk); 428 int answ; 429 430 switch (cmd) { 431 case SIOCINQ: 432 if (sk->sk_state == TCP_LISTEN) 433 return -EINVAL; 434 435 lock_sock(sk); 436 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 437 answ = 0; 438 else if (sock_flag(sk, SOCK_URGINLINE) || 439 !tp->urg_data || 440 before(tp->urg_seq, tp->copied_seq) || 441 !before(tp->urg_seq, tp->rcv_nxt)) { 442 answ = tp->rcv_nxt - tp->copied_seq; 443 444 /* Subtract 1, if FIN is in queue. */ 445 if (answ && !skb_queue_empty(&sk->sk_receive_queue)) 446 answ -= 447 tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin; 448 } else 449 answ = tp->urg_seq - tp->copied_seq; 450 release_sock(sk); 451 break; 452 case SIOCATMARK: 453 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 454 break; 455 case SIOCOUTQ: 456 if (sk->sk_state == TCP_LISTEN) 457 return -EINVAL; 458 459 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 460 answ = 0; 461 else 462 answ = tp->write_seq - tp->snd_una; 463 break; 464 default: 465 return -ENOIOCTLCMD; 466 } 467 468 return put_user(answ, (int __user *)arg); 469} 470 471static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 472{ 473 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 474 tp->pushed_seq = tp->write_seq; 475} 476 477static inline int forced_push(struct tcp_sock *tp) 478{ 479 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 480} 481 482static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 483{ 484 struct tcp_sock *tp = tcp_sk(sk); 485 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 486 487 skb->csum = 0; 488 tcb->seq = tcb->end_seq = tp->write_seq; 489 tcb->flags = TCPCB_FLAG_ACK; 490 tcb->sacked = 0; 491 skb_header_release(skb); 492 tcp_add_write_queue_tail(sk, skb); 493 sk->sk_wmem_queued += skb->truesize; 494 sk_mem_charge(sk, skb->truesize); 495 if (tp->nonagle & TCP_NAGLE_PUSH) 496 tp->nonagle &= ~TCP_NAGLE_PUSH; 497} 498 499static inline void tcp_mark_urg(struct tcp_sock *tp, int flags, 500 struct sk_buff *skb) 501{ 502 if (flags & MSG_OOB) 503 tp->snd_up = tp->write_seq; 504} 505 506static inline void tcp_push(struct sock *sk, int flags, int mss_now, 507 int nonagle) 508{ 509 struct tcp_sock *tp = tcp_sk(sk); 510 511 if (tcp_send_head(sk)) { 512 struct sk_buff *skb = tcp_write_queue_tail(sk); 513 if (!(flags & MSG_MORE) || forced_push(tp)) 514 tcp_mark_push(tp, skb); 515 tcp_mark_urg(tp, flags, skb); 516 __tcp_push_pending_frames(sk, mss_now, 517 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 518 } 519} 520 521static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 522 unsigned int offset, size_t len) 523{ 524 struct tcp_splice_state *tss = rd_desc->arg.data; 525 int ret; 526 527 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 528 tss->flags); 529 if (ret > 0) 530 rd_desc->count -= ret; 531 return ret; 532} 533 534static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 535{ 536 /* Store TCP splice context information in read_descriptor_t. */ 537 read_descriptor_t rd_desc = { 538 .arg.data = tss, 539 .count = tss->len, 540 }; 541 542 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 543} 544 545/** 546 * tcp_splice_read - splice data from TCP socket to a pipe 547 * @sock: socket to splice from 548 * @ppos: position (not valid) 549 * @pipe: pipe to splice to 550 * @len: number of bytes to splice 551 * @flags: splice modifier flags 552 * 553 * Description: 554 * Will read pages from given socket and fill them into a pipe. 555 * 556 **/ 557ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 558 struct pipe_inode_info *pipe, size_t len, 559 unsigned int flags) 560{ 561 struct sock *sk = sock->sk; 562 struct tcp_splice_state tss = { 563 .pipe = pipe, 564 .len = len, 565 .flags = flags, 566 }; 567 long timeo; 568 ssize_t spliced; 569 int ret; 570 571 /* 572 * We can't seek on a socket input 573 */ 574 if (unlikely(*ppos)) 575 return -ESPIPE; 576 577 ret = spliced = 0; 578 579 lock_sock(sk); 580 581 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK); 582 while (tss.len) { 583 ret = __tcp_splice_read(sk, &tss); 584 if (ret < 0) 585 break; 586 else if (!ret) { 587 if (spliced) 588 break; 589 if (sock_flag(sk, SOCK_DONE)) 590 break; 591 if (sk->sk_err) { 592 ret = sock_error(sk); 593 break; 594 } 595 if (sk->sk_shutdown & RCV_SHUTDOWN) 596 break; 597 if (sk->sk_state == TCP_CLOSE) { 598 /* 599 * This occurs when user tries to read 600 * from never connected socket. 601 */ 602 if (!sock_flag(sk, SOCK_DONE)) 603 ret = -ENOTCONN; 604 break; 605 } 606 if (!timeo) { 607 ret = -EAGAIN; 608 break; 609 } 610 sk_wait_data(sk, &timeo); 611 if (signal_pending(current)) { 612 ret = sock_intr_errno(timeo); 613 break; 614 } 615 continue; 616 } 617 tss.len -= ret; 618 spliced += ret; 619 620 if (!timeo) 621 break; 622 release_sock(sk); 623 lock_sock(sk); 624 625 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 626 (sk->sk_shutdown & RCV_SHUTDOWN) || 627 signal_pending(current)) 628 break; 629 } 630 631 release_sock(sk); 632 633 if (spliced) 634 return spliced; 635 636 return ret; 637} 638 639struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 640{ 641 struct sk_buff *skb; 642 643 /* The TCP header must be at least 32-bit aligned. */ 644 size = ALIGN(size, 4); 645 646 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 647 if (skb) { 648 if (sk_wmem_schedule(sk, skb->truesize)) { 649 /* 650 * Make sure that we have exactly size bytes 651 * available to the caller, no more, no less. 652 */ 653 skb_reserve(skb, skb_tailroom(skb) - size); 654 return skb; 655 } 656 __kfree_skb(skb); 657 } else { 658 sk->sk_prot->enter_memory_pressure(sk); 659 sk_stream_moderate_sndbuf(sk); 660 } 661 return NULL; 662} 663 664static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 665 int large_allowed) 666{ 667 struct tcp_sock *tp = tcp_sk(sk); 668 u32 xmit_size_goal, old_size_goal; 669 670 xmit_size_goal = mss_now; 671 672 if (large_allowed && sk_can_gso(sk)) { 673 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 674 inet_csk(sk)->icsk_af_ops->net_header_len - 675 inet_csk(sk)->icsk_ext_hdr_len - 676 tp->tcp_header_len); 677 678 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 679 680 /* We try hard to avoid divides here */ 681 old_size_goal = tp->xmit_size_goal_segs * mss_now; 682 683 if (likely(old_size_goal <= xmit_size_goal && 684 old_size_goal + mss_now > xmit_size_goal)) { 685 xmit_size_goal = old_size_goal; 686 } else { 687 tp->xmit_size_goal_segs = xmit_size_goal / mss_now; 688 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 689 } 690 } 691 692 return max(xmit_size_goal, mss_now); 693} 694 695static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 696{ 697 int mss_now; 698 699 mss_now = tcp_current_mss(sk); 700 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 701 702 return mss_now; 703} 704 705static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset, 706 size_t psize, int flags) 707{ 708 struct tcp_sock *tp = tcp_sk(sk); 709 int mss_now, size_goal; 710 int err; 711 ssize_t copied; 712 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 713 714 /* Wait for a connection to finish. */ 715 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 716 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 717 goto out_err; 718 719 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 720 721 mss_now = tcp_send_mss(sk, &size_goal, flags); 722 copied = 0; 723 724 err = -EPIPE; 725 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 726 goto out_err; 727 728 while (psize > 0) { 729 struct sk_buff *skb = tcp_write_queue_tail(sk); 730 struct page *page = pages[poffset / PAGE_SIZE]; 731 int copy, i, can_coalesce; 732 int offset = poffset % PAGE_SIZE; 733 int size = min_t(size_t, psize, PAGE_SIZE - offset); 734 735 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 736new_segment: 737 if (!sk_stream_memory_free(sk)) 738 goto wait_for_sndbuf; 739 740 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 741 if (!skb) 742 goto wait_for_memory; 743 744 skb_entail(sk, skb); 745 copy = size_goal; 746 } 747 748 if (copy > size) 749 copy = size; 750 751 i = skb_shinfo(skb)->nr_frags; 752 can_coalesce = skb_can_coalesce(skb, i, page, offset); 753 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 754 tcp_mark_push(tp, skb); 755 goto new_segment; 756 } 757 if (!sk_wmem_schedule(sk, copy)) 758 goto wait_for_memory; 759 760 if (can_coalesce) { 761 skb_shinfo(skb)->frags[i - 1].size += copy; 762 } else { 763 get_page(page); 764 skb_fill_page_desc(skb, i, page, offset, copy); 765 } 766 767 skb->len += copy; 768 skb->data_len += copy; 769 skb->truesize += copy; 770 sk->sk_wmem_queued += copy; 771 sk_mem_charge(sk, copy); 772 skb->ip_summed = CHECKSUM_PARTIAL; 773 tp->write_seq += copy; 774 TCP_SKB_CB(skb)->end_seq += copy; 775 skb_shinfo(skb)->gso_segs = 0; 776 777 if (!copied) 778 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH; 779 780 copied += copy; 781 poffset += copy; 782 if (!(psize -= copy)) 783 goto out; 784 785 if (skb->len < size_goal || (flags & MSG_OOB)) 786 continue; 787 788 if (forced_push(tp)) { 789 tcp_mark_push(tp, skb); 790 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 791 } else if (skb == tcp_send_head(sk)) 792 tcp_push_one(sk, mss_now); 793 continue; 794 795wait_for_sndbuf: 796 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 797wait_for_memory: 798 if (copied) 799 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 800 801 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 802 goto do_error; 803 804 mss_now = tcp_send_mss(sk, &size_goal, flags); 805 } 806 807out: 808 if (copied) 809 tcp_push(sk, flags, mss_now, tp->nonagle); 810 return copied; 811 812do_error: 813 if (copied) 814 goto out; 815out_err: 816 return sk_stream_error(sk, flags, err); 817} 818 819ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset, 820 size_t size, int flags) 821{ 822 ssize_t res; 823 struct sock *sk = sock->sk; 824 825 if (!(sk->sk_route_caps & NETIF_F_SG) || 826 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 827 return sock_no_sendpage(sock, page, offset, size, flags); 828 829 lock_sock(sk); 830 TCP_CHECK_TIMER(sk); 831 res = do_tcp_sendpages(sk, &page, offset, size, flags); 832 TCP_CHECK_TIMER(sk); 833 release_sock(sk); 834 return res; 835} 836 837#define TCP_PAGE(sk) (sk->sk_sndmsg_page) 838#define TCP_OFF(sk) (sk->sk_sndmsg_off) 839 840static inline int select_size(struct sock *sk) 841{ 842 struct tcp_sock *tp = tcp_sk(sk); 843 int tmp = tp->mss_cache; 844 845 if (sk->sk_route_caps & NETIF_F_SG) { 846 if (sk_can_gso(sk)) 847 tmp = 0; 848 else { 849 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 850 851 if (tmp >= pgbreak && 852 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 853 tmp = pgbreak; 854 } 855 } 856 857 return tmp; 858} 859 860int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, 861 size_t size) 862{ 863 struct sock *sk = sock->sk; 864 struct iovec *iov; 865 struct tcp_sock *tp = tcp_sk(sk); 866 struct sk_buff *skb; 867 int iovlen, flags; 868 int mss_now, size_goal; 869 int err, copied; 870 long timeo; 871 872 lock_sock(sk); 873 TCP_CHECK_TIMER(sk); 874 875 flags = msg->msg_flags; 876 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 877 878 /* Wait for a connection to finish. */ 879 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 880 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 881 goto out_err; 882 883 /* This should be in poll */ 884 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 885 886 mss_now = tcp_send_mss(sk, &size_goal, flags); 887 888 /* Ok commence sending. */ 889 iovlen = msg->msg_iovlen; 890 iov = msg->msg_iov; 891 copied = 0; 892 893 err = -EPIPE; 894 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 895 goto out_err; 896 897 while (--iovlen >= 0) { 898 int seglen = iov->iov_len; 899 unsigned char __user *from = iov->iov_base; 900 901 iov++; 902 903 while (seglen > 0) { 904 int copy; 905 906 skb = tcp_write_queue_tail(sk); 907 908 if (!tcp_send_head(sk) || 909 (copy = size_goal - skb->len) <= 0) { 910 911new_segment: 912 /* Allocate new segment. If the interface is SG, 913 * allocate skb fitting to single page. 914 */ 915 if (!sk_stream_memory_free(sk)) 916 goto wait_for_sndbuf; 917 918 skb = sk_stream_alloc_skb(sk, select_size(sk), 919 sk->sk_allocation); 920 if (!skb) 921 goto wait_for_memory; 922 923 /* 924 * Check whether we can use HW checksum. 925 */ 926 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 927 skb->ip_summed = CHECKSUM_PARTIAL; 928 929 skb_entail(sk, skb); 930 copy = size_goal; 931 } 932 933 /* Try to append data to the end of skb. */ 934 if (copy > seglen) 935 copy = seglen; 936 937 /* Where to copy to? */ 938 if (skb_tailroom(skb) > 0) { 939 /* We have some space in skb head. Superb! */ 940 if (copy > skb_tailroom(skb)) 941 copy = skb_tailroom(skb); 942 if ((err = skb_add_data(skb, from, copy)) != 0) 943 goto do_fault; 944 } else { 945 int merge = 0; 946 int i = skb_shinfo(skb)->nr_frags; 947 struct page *page = TCP_PAGE(sk); 948 int off = TCP_OFF(sk); 949 950 if (skb_can_coalesce(skb, i, page, off) && 951 off != PAGE_SIZE) { 952 /* We can extend the last page 953 * fragment. */ 954 merge = 1; 955 } else if (i == MAX_SKB_FRAGS || 956 (!i && 957 !(sk->sk_route_caps & NETIF_F_SG))) { 958 /* Need to add new fragment and cannot 959 * do this because interface is non-SG, 960 * or because all the page slots are 961 * busy. */ 962 tcp_mark_push(tp, skb); 963 goto new_segment; 964 } else if (page) { 965 if (off == PAGE_SIZE) { 966 put_page(page); 967 TCP_PAGE(sk) = page = NULL; 968 off = 0; 969 } 970 } else 971 off = 0; 972 973 if (copy > PAGE_SIZE - off) 974 copy = PAGE_SIZE - off; 975 976 if (!sk_wmem_schedule(sk, copy)) 977 goto wait_for_memory; 978 979 if (!page) { 980 /* Allocate new cache page. */ 981 if (!(page = sk_stream_alloc_page(sk))) 982 goto wait_for_memory; 983 } 984 985 /* Time to copy data. We are close to 986 * the end! */ 987 err = skb_copy_to_page(sk, from, skb, page, 988 off, copy); 989 if (err) { 990 /* If this page was new, give it to the 991 * socket so it does not get leaked. 992 */ 993 if (!TCP_PAGE(sk)) { 994 TCP_PAGE(sk) = page; 995 TCP_OFF(sk) = 0; 996 } 997 goto do_error; 998 } 999 1000 /* Update the skb. */ 1001 if (merge) { 1002 skb_shinfo(skb)->frags[i - 1].size += 1003 copy; 1004 } else { 1005 skb_fill_page_desc(skb, i, page, off, copy); 1006 if (TCP_PAGE(sk)) { 1007 get_page(page); 1008 } else if (off + copy < PAGE_SIZE) { 1009 get_page(page); 1010 TCP_PAGE(sk) = page; 1011 } 1012 } 1013 1014 TCP_OFF(sk) = off + copy; 1015 } 1016 1017 if (!copied) 1018 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH; 1019 1020 tp->write_seq += copy; 1021 TCP_SKB_CB(skb)->end_seq += copy; 1022 skb_shinfo(skb)->gso_segs = 0; 1023 1024 from += copy; 1025 copied += copy; 1026 if ((seglen -= copy) == 0 && iovlen == 0) 1027 goto out; 1028 1029 if (skb->len < size_goal || (flags & MSG_OOB)) 1030 continue; 1031 1032 if (forced_push(tp)) { 1033 tcp_mark_push(tp, skb); 1034 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1035 } else if (skb == tcp_send_head(sk)) 1036 tcp_push_one(sk, mss_now); 1037 continue; 1038 1039wait_for_sndbuf: 1040 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1041wait_for_memory: 1042 if (copied) 1043 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1044 1045 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1046 goto do_error; 1047 1048 mss_now = tcp_send_mss(sk, &size_goal, flags); 1049 } 1050 } 1051 1052out: 1053 if (copied) 1054 tcp_push(sk, flags, mss_now, tp->nonagle); 1055 TCP_CHECK_TIMER(sk); 1056 release_sock(sk); 1057 return copied; 1058 1059do_fault: 1060 if (!skb->len) { 1061 tcp_unlink_write_queue(skb, sk); 1062 /* It is the one place in all of TCP, except connection 1063 * reset, where we can be unlinking the send_head. 1064 */ 1065 tcp_check_send_head(sk, skb); 1066 sk_wmem_free_skb(sk, skb); 1067 } 1068 1069do_error: 1070 if (copied) 1071 goto out; 1072out_err: 1073 err = sk_stream_error(sk, flags, err); 1074 TCP_CHECK_TIMER(sk); 1075 release_sock(sk); 1076 return err; 1077} 1078 1079/* 1080 * Handle reading urgent data. BSD has very simple semantics for 1081 * this, no blocking and very strange errors 8) 1082 */ 1083 1084static int tcp_recv_urg(struct sock *sk, long timeo, 1085 struct msghdr *msg, int len, int flags) 1086{ 1087 struct tcp_sock *tp = tcp_sk(sk); 1088 1089 /* No URG data to read. */ 1090 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1091 tp->urg_data == TCP_URG_READ) 1092 return -EINVAL; /* Yes this is right ! */ 1093 1094 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1095 return -ENOTCONN; 1096 1097 if (tp->urg_data & TCP_URG_VALID) { 1098 int err = 0; 1099 char c = tp->urg_data; 1100 1101 if (!(flags & MSG_PEEK)) 1102 tp->urg_data = TCP_URG_READ; 1103 1104 /* Read urgent data. */ 1105 msg->msg_flags |= MSG_OOB; 1106 1107 if (len > 0) { 1108 if (!(flags & MSG_TRUNC)) 1109 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1110 len = 1; 1111 } else 1112 msg->msg_flags |= MSG_TRUNC; 1113 1114 return err ? -EFAULT : len; 1115 } 1116 1117 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1118 return 0; 1119 1120 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1121 * the available implementations agree in this case: 1122 * this call should never block, independent of the 1123 * blocking state of the socket. 1124 * Mike <pall@rz.uni-karlsruhe.de> 1125 */ 1126 return -EAGAIN; 1127} 1128 1129/* Clean up the receive buffer for full frames taken by the user, 1130 * then send an ACK if necessary. COPIED is the number of bytes 1131 * tcp_recvmsg has given to the user so far, it speeds up the 1132 * calculation of whether or not we must ACK for the sake of 1133 * a window update. 1134 */ 1135void tcp_cleanup_rbuf(struct sock *sk, int copied) 1136{ 1137 struct tcp_sock *tp = tcp_sk(sk); 1138 int time_to_ack = 0; 1139 1140#if TCP_DEBUG 1141 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1142 1143 WARN_ON(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)); 1144#endif 1145 1146 if (inet_csk_ack_scheduled(sk)) { 1147 const struct inet_connection_sock *icsk = inet_csk(sk); 1148 /* Delayed ACKs frequently hit locked sockets during bulk 1149 * receive. */ 1150 if (icsk->icsk_ack.blocked || 1151 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1152 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1153 /* 1154 * If this read emptied read buffer, we send ACK, if 1155 * connection is not bidirectional, user drained 1156 * receive buffer and there was a small segment 1157 * in queue. 1158 */ 1159 (copied > 0 && 1160 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1161 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1162 !icsk->icsk_ack.pingpong)) && 1163 !atomic_read(&sk->sk_rmem_alloc))) 1164 time_to_ack = 1; 1165 } 1166 1167 /* We send an ACK if we can now advertise a non-zero window 1168 * which has been raised "significantly". 1169 * 1170 * Even if window raised up to infinity, do not send window open ACK 1171 * in states, where we will not receive more. It is useless. 1172 */ 1173 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1174 __u32 rcv_window_now = tcp_receive_window(tp); 1175 1176 /* Optimize, __tcp_select_window() is not cheap. */ 1177 if (2*rcv_window_now <= tp->window_clamp) { 1178 __u32 new_window = __tcp_select_window(sk); 1179 1180 /* Send ACK now, if this read freed lots of space 1181 * in our buffer. Certainly, new_window is new window. 1182 * We can advertise it now, if it is not less than current one. 1183 * "Lots" means "at least twice" here. 1184 */ 1185 if (new_window && new_window >= 2 * rcv_window_now) 1186 time_to_ack = 1; 1187 } 1188 } 1189 if (time_to_ack) 1190 tcp_send_ack(sk); 1191} 1192 1193static void tcp_prequeue_process(struct sock *sk) 1194{ 1195 struct sk_buff *skb; 1196 struct tcp_sock *tp = tcp_sk(sk); 1197 1198 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1199 1200 /* RX process wants to run with disabled BHs, though it is not 1201 * necessary */ 1202 local_bh_disable(); 1203 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1204 sk_backlog_rcv(sk, skb); 1205 local_bh_enable(); 1206 1207 /* Clear memory counter. */ 1208 tp->ucopy.memory = 0; 1209} 1210 1211static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1212{ 1213 struct sk_buff *skb; 1214 u32 offset; 1215 1216 skb_queue_walk(&sk->sk_receive_queue, skb) { 1217 offset = seq - TCP_SKB_CB(skb)->seq; 1218 if (tcp_hdr(skb)->syn) 1219 offset--; 1220 if (offset < skb->len || tcp_hdr(skb)->fin) { 1221 *off = offset; 1222 return skb; 1223 } 1224 } 1225 return NULL; 1226} 1227 1228/* 1229 * This routine provides an alternative to tcp_recvmsg() for routines 1230 * that would like to handle copying from skbuffs directly in 'sendfile' 1231 * fashion. 1232 * Note: 1233 * - It is assumed that the socket was locked by the caller. 1234 * - The routine does not block. 1235 * - At present, there is no support for reading OOB data 1236 * or for 'peeking' the socket using this routine 1237 * (although both would be easy to implement). 1238 */ 1239int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1240 sk_read_actor_t recv_actor) 1241{ 1242 struct sk_buff *skb; 1243 struct tcp_sock *tp = tcp_sk(sk); 1244 u32 seq = tp->copied_seq; 1245 u32 offset; 1246 int copied = 0; 1247 1248 if (sk->sk_state == TCP_LISTEN) 1249 return -ENOTCONN; 1250 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1251 if (offset < skb->len) { 1252 int used; 1253 size_t len; 1254 1255 len = skb->len - offset; 1256 /* Stop reading if we hit a patch of urgent data */ 1257 if (tp->urg_data) { 1258 u32 urg_offset = tp->urg_seq - seq; 1259 if (urg_offset < len) 1260 len = urg_offset; 1261 if (!len) 1262 break; 1263 } 1264 used = recv_actor(desc, skb, offset, len); 1265 if (used < 0) { 1266 if (!copied) 1267 copied = used; 1268 break; 1269 } else if (used <= len) { 1270 seq += used; 1271 copied += used; 1272 offset += used; 1273 } 1274 /* 1275 * If recv_actor drops the lock (e.g. TCP splice 1276 * receive) the skb pointer might be invalid when 1277 * getting here: tcp_collapse might have deleted it 1278 * while aggregating skbs from the socket queue. 1279 */ 1280 skb = tcp_recv_skb(sk, seq-1, &offset); 1281 if (!skb || (offset+1 != skb->len)) 1282 break; 1283 } 1284 if (tcp_hdr(skb)->fin) { 1285 sk_eat_skb(sk, skb, 0); 1286 ++seq; 1287 break; 1288 } 1289 sk_eat_skb(sk, skb, 0); 1290 if (!desc->count) 1291 break; 1292 } 1293 tp->copied_seq = seq; 1294 1295 tcp_rcv_space_adjust(sk); 1296 1297 /* Clean up data we have read: This will do ACK frames. */ 1298 if (copied > 0) 1299 tcp_cleanup_rbuf(sk, copied); 1300 return copied; 1301} 1302 1303/* 1304 * This routine copies from a sock struct into the user buffer. 1305 * 1306 * Technical note: in 2.3 we work on _locked_ socket, so that 1307 * tricks with *seq access order and skb->users are not required. 1308 * Probably, code can be easily improved even more. 1309 */ 1310 1311int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1312 size_t len, int nonblock, int flags, int *addr_len) 1313{ 1314 struct tcp_sock *tp = tcp_sk(sk); 1315 int copied = 0; 1316 u32 peek_seq; 1317 u32 *seq; 1318 unsigned long used; 1319 int err; 1320 int target; /* Read at least this many bytes */ 1321 long timeo; 1322 struct task_struct *user_recv = NULL; 1323 int copied_early = 0; 1324 struct sk_buff *skb; 1325 1326 lock_sock(sk); 1327 1328 TCP_CHECK_TIMER(sk); 1329 1330 err = -ENOTCONN; 1331 if (sk->sk_state == TCP_LISTEN) 1332 goto out; 1333 1334 timeo = sock_rcvtimeo(sk, nonblock); 1335 1336 /* Urgent data needs to be handled specially. */ 1337 if (flags & MSG_OOB) 1338 goto recv_urg; 1339 1340 seq = &tp->copied_seq; 1341 if (flags & MSG_PEEK) { 1342 peek_seq = tp->copied_seq; 1343 seq = &peek_seq; 1344 } 1345 1346 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1347 1348#ifdef CONFIG_NET_DMA 1349 tp->ucopy.dma_chan = NULL; 1350 preempt_disable(); 1351 skb = skb_peek_tail(&sk->sk_receive_queue); 1352 { 1353 int available = 0; 1354 1355 if (skb) 1356 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1357 if ((available < target) && 1358 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1359 !sysctl_tcp_low_latency && 1360 dma_find_channel(DMA_MEMCPY)) { 1361 preempt_enable_no_resched(); 1362 tp->ucopy.pinned_list = 1363 dma_pin_iovec_pages(msg->msg_iov, len); 1364 } else { 1365 preempt_enable_no_resched(); 1366 } 1367 } 1368#endif 1369 1370 do { 1371 u32 offset; 1372 1373 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1374 if (tp->urg_data && tp->urg_seq == *seq) { 1375 if (copied) 1376 break; 1377 if (signal_pending(current)) { 1378 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1379 break; 1380 } 1381 } 1382 1383 /* Next get a buffer. */ 1384 1385 skb = skb_peek(&sk->sk_receive_queue); 1386 do { 1387 if (!skb) 1388 break; 1389 1390 /* Now that we have two receive queues this 1391 * shouldn't happen. 1392 */ 1393 if (before(*seq, TCP_SKB_CB(skb)->seq)) { 1394 printk(KERN_INFO "recvmsg bug: copied %X " 1395 "seq %X\n", *seq, TCP_SKB_CB(skb)->seq); 1396 break; 1397 } 1398 offset = *seq - TCP_SKB_CB(skb)->seq; 1399 if (tcp_hdr(skb)->syn) 1400 offset--; 1401 if (offset < skb->len) 1402 goto found_ok_skb; 1403 if (tcp_hdr(skb)->fin) 1404 goto found_fin_ok; 1405 WARN_ON(!(flags & MSG_PEEK)); 1406 skb = skb->next; 1407 } while (skb != (struct sk_buff *)&sk->sk_receive_queue); 1408 1409 /* Well, if we have backlog, try to process it now yet. */ 1410 1411 if (copied >= target && !sk->sk_backlog.tail) 1412 break; 1413 1414 if (copied) { 1415 if (sk->sk_err || 1416 sk->sk_state == TCP_CLOSE || 1417 (sk->sk_shutdown & RCV_SHUTDOWN) || 1418 !timeo || 1419 signal_pending(current)) 1420 break; 1421 } else { 1422 if (sock_flag(sk, SOCK_DONE)) 1423 break; 1424 1425 if (sk->sk_err) { 1426 copied = sock_error(sk); 1427 break; 1428 } 1429 1430 if (sk->sk_shutdown & RCV_SHUTDOWN) 1431 break; 1432 1433 if (sk->sk_state == TCP_CLOSE) { 1434 if (!sock_flag(sk, SOCK_DONE)) { 1435 /* This occurs when user tries to read 1436 * from never connected socket. 1437 */ 1438 copied = -ENOTCONN; 1439 break; 1440 } 1441 break; 1442 } 1443 1444 if (!timeo) { 1445 copied = -EAGAIN; 1446 break; 1447 } 1448 1449 if (signal_pending(current)) { 1450 copied = sock_intr_errno(timeo); 1451 break; 1452 } 1453 } 1454 1455 tcp_cleanup_rbuf(sk, copied); 1456 1457 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1458 /* Install new reader */ 1459 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1460 user_recv = current; 1461 tp->ucopy.task = user_recv; 1462 tp->ucopy.iov = msg->msg_iov; 1463 } 1464 1465 tp->ucopy.len = len; 1466 1467 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1468 !(flags & (MSG_PEEK | MSG_TRUNC))); 1469 1470 /* Ugly... If prequeue is not empty, we have to 1471 * process it before releasing socket, otherwise 1472 * order will be broken at second iteration. 1473 * More elegant solution is required!!! 1474 * 1475 * Look: we have the following (pseudo)queues: 1476 * 1477 * 1. packets in flight 1478 * 2. backlog 1479 * 3. prequeue 1480 * 4. receive_queue 1481 * 1482 * Each queue can be processed only if the next ones 1483 * are empty. At this point we have empty receive_queue. 1484 * But prequeue _can_ be not empty after 2nd iteration, 1485 * when we jumped to start of loop because backlog 1486 * processing added something to receive_queue. 1487 * We cannot release_sock(), because backlog contains 1488 * packets arrived _after_ prequeued ones. 1489 * 1490 * Shortly, algorithm is clear --- to process all 1491 * the queues in order. We could make it more directly, 1492 * requeueing packets from backlog to prequeue, if 1493 * is not empty. It is more elegant, but eats cycles, 1494 * unfortunately. 1495 */ 1496 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1497 goto do_prequeue; 1498 1499 /* __ Set realtime policy in scheduler __ */ 1500 } 1501 1502 if (copied >= target) { 1503 /* Do not sleep, just process backlog. */ 1504 release_sock(sk); 1505 lock_sock(sk); 1506 } else 1507 sk_wait_data(sk, &timeo); 1508 1509#ifdef CONFIG_NET_DMA 1510 tp->ucopy.wakeup = 0; 1511#endif 1512 1513 if (user_recv) { 1514 int chunk; 1515 1516 /* __ Restore normal policy in scheduler __ */ 1517 1518 if ((chunk = len - tp->ucopy.len) != 0) { 1519 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1520 len -= chunk; 1521 copied += chunk; 1522 } 1523 1524 if (tp->rcv_nxt == tp->copied_seq && 1525 !skb_queue_empty(&tp->ucopy.prequeue)) { 1526do_prequeue: 1527 tcp_prequeue_process(sk); 1528 1529 if ((chunk = len - tp->ucopy.len) != 0) { 1530 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1531 len -= chunk; 1532 copied += chunk; 1533 } 1534 } 1535 } 1536 if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) { 1537 if (net_ratelimit()) 1538 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n", 1539 current->comm, task_pid_nr(current)); 1540 peek_seq = tp->copied_seq; 1541 } 1542 continue; 1543 1544 found_ok_skb: 1545 /* Ok so how much can we use? */ 1546 used = skb->len - offset; 1547 if (len < used) 1548 used = len; 1549 1550 /* Do we have urgent data here? */ 1551 if (tp->urg_data) { 1552 u32 urg_offset = tp->urg_seq - *seq; 1553 if (urg_offset < used) { 1554 if (!urg_offset) { 1555 if (!sock_flag(sk, SOCK_URGINLINE)) { 1556 ++*seq; 1557 offset++; 1558 used--; 1559 if (!used) 1560 goto skip_copy; 1561 } 1562 } else 1563 used = urg_offset; 1564 } 1565 } 1566 1567 if (!(flags & MSG_TRUNC)) { 1568#ifdef CONFIG_NET_DMA 1569 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1570 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 1571 1572 if (tp->ucopy.dma_chan) { 1573 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1574 tp->ucopy.dma_chan, skb, offset, 1575 msg->msg_iov, used, 1576 tp->ucopy.pinned_list); 1577 1578 if (tp->ucopy.dma_cookie < 0) { 1579 1580 printk(KERN_ALERT "dma_cookie < 0\n"); 1581 1582 /* Exception. Bailout! */ 1583 if (!copied) 1584 copied = -EFAULT; 1585 break; 1586 } 1587 if ((offset + used) == skb->len) 1588 copied_early = 1; 1589 1590 } else 1591#endif 1592 { 1593 err = skb_copy_datagram_iovec(skb, offset, 1594 msg->msg_iov, used); 1595 if (err) { 1596 /* Exception. Bailout! */ 1597 if (!copied) 1598 copied = -EFAULT; 1599 break; 1600 } 1601 } 1602 } 1603 1604 *seq += used; 1605 copied += used; 1606 len -= used; 1607 1608 tcp_rcv_space_adjust(sk); 1609 1610skip_copy: 1611 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1612 tp->urg_data = 0; 1613 tcp_fast_path_check(sk); 1614 } 1615 if (used + offset < skb->len) 1616 continue; 1617 1618 if (tcp_hdr(skb)->fin) 1619 goto found_fin_ok; 1620 if (!(flags & MSG_PEEK)) { 1621 sk_eat_skb(sk, skb, copied_early); 1622 copied_early = 0; 1623 } 1624 continue; 1625 1626 found_fin_ok: 1627 /* Process the FIN. */ 1628 ++*seq; 1629 if (!(flags & MSG_PEEK)) { 1630 sk_eat_skb(sk, skb, copied_early); 1631 copied_early = 0; 1632 } 1633 break; 1634 } while (len > 0); 1635 1636 if (user_recv) { 1637 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1638 int chunk; 1639 1640 tp->ucopy.len = copied > 0 ? len : 0; 1641 1642 tcp_prequeue_process(sk); 1643 1644 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1645 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1646 len -= chunk; 1647 copied += chunk; 1648 } 1649 } 1650 1651 tp->ucopy.task = NULL; 1652 tp->ucopy.len = 0; 1653 } 1654 1655#ifdef CONFIG_NET_DMA 1656 if (tp->ucopy.dma_chan) { 1657 dma_cookie_t done, used; 1658 1659 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1660 1661 while (dma_async_memcpy_complete(tp->ucopy.dma_chan, 1662 tp->ucopy.dma_cookie, &done, 1663 &used) == DMA_IN_PROGRESS) { 1664 /* do partial cleanup of sk_async_wait_queue */ 1665 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1666 (dma_async_is_complete(skb->dma_cookie, done, 1667 used) == DMA_SUCCESS)) { 1668 __skb_dequeue(&sk->sk_async_wait_queue); 1669 kfree_skb(skb); 1670 } 1671 } 1672 1673 /* Safe to free early-copied skbs now */ 1674 __skb_queue_purge(&sk->sk_async_wait_queue); 1675 tp->ucopy.dma_chan = NULL; 1676 } 1677 if (tp->ucopy.pinned_list) { 1678 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1679 tp->ucopy.pinned_list = NULL; 1680 } 1681#endif 1682 1683 /* According to UNIX98, msg_name/msg_namelen are ignored 1684 * on connected socket. I was just happy when found this 8) --ANK 1685 */ 1686 1687 /* Clean up data we have read: This will do ACK frames. */ 1688 tcp_cleanup_rbuf(sk, copied); 1689 1690 TCP_CHECK_TIMER(sk); 1691 release_sock(sk); 1692 return copied; 1693 1694out: 1695 TCP_CHECK_TIMER(sk); 1696 release_sock(sk); 1697 return err; 1698 1699recv_urg: 1700 err = tcp_recv_urg(sk, timeo, msg, len, flags); 1701 goto out; 1702} 1703 1704void tcp_set_state(struct sock *sk, int state) 1705{ 1706 int oldstate = sk->sk_state; 1707 1708 switch (state) { 1709 case TCP_ESTABLISHED: 1710 if (oldstate != TCP_ESTABLISHED) 1711 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1712 break; 1713 1714 case TCP_CLOSE: 1715 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1716 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1717 1718 sk->sk_prot->unhash(sk); 1719 if (inet_csk(sk)->icsk_bind_hash && 1720 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1721 inet_put_port(sk); 1722 /* fall through */ 1723 default: 1724 if (oldstate == TCP_ESTABLISHED) 1725 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1726 } 1727 1728 /* Change state AFTER socket is unhashed to avoid closed 1729 * socket sitting in hash tables. 1730 */ 1731 sk->sk_state = state; 1732 1733#ifdef STATE_TRACE 1734 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1735#endif 1736} 1737EXPORT_SYMBOL_GPL(tcp_set_state); 1738 1739/* 1740 * State processing on a close. This implements the state shift for 1741 * sending our FIN frame. Note that we only send a FIN for some 1742 * states. A shutdown() may have already sent the FIN, or we may be 1743 * closed. 1744 */ 1745 1746static const unsigned char new_state[16] = { 1747 /* current state: new state: action: */ 1748 /* (Invalid) */ TCP_CLOSE, 1749 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1750 /* TCP_SYN_SENT */ TCP_CLOSE, 1751 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1752 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 1753 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 1754 /* TCP_TIME_WAIT */ TCP_CLOSE, 1755 /* TCP_CLOSE */ TCP_CLOSE, 1756 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 1757 /* TCP_LAST_ACK */ TCP_LAST_ACK, 1758 /* TCP_LISTEN */ TCP_CLOSE, 1759 /* TCP_CLOSING */ TCP_CLOSING, 1760}; 1761 1762static int tcp_close_state(struct sock *sk) 1763{ 1764 int next = (int)new_state[sk->sk_state]; 1765 int ns = next & TCP_STATE_MASK; 1766 1767 tcp_set_state(sk, ns); 1768 1769 return next & TCP_ACTION_FIN; 1770} 1771 1772/* 1773 * Shutdown the sending side of a connection. Much like close except 1774 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1775 */ 1776 1777void tcp_shutdown(struct sock *sk, int how) 1778{ 1779 /* We need to grab some memory, and put together a FIN, 1780 * and then put it into the queue to be sent. 1781 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1782 */ 1783 if (!(how & SEND_SHUTDOWN)) 1784 return; 1785 1786 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1787 if ((1 << sk->sk_state) & 1788 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1789 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1790 /* Clear out any half completed packets. FIN if needed. */ 1791 if (tcp_close_state(sk)) 1792 tcp_send_fin(sk); 1793 } 1794} 1795 1796void tcp_close(struct sock *sk, long timeout) 1797{ 1798 struct sk_buff *skb; 1799 int data_was_unread = 0; 1800 int state; 1801 1802 lock_sock(sk); 1803 sk->sk_shutdown = SHUTDOWN_MASK; 1804 1805 if (sk->sk_state == TCP_LISTEN) { 1806 tcp_set_state(sk, TCP_CLOSE); 1807 1808 /* Special case. */ 1809 inet_csk_listen_stop(sk); 1810 1811 goto adjudge_to_death; 1812 } 1813 1814 /* We need to flush the recv. buffs. We do this only on the 1815 * descriptor close, not protocol-sourced closes, because the 1816 * reader process may not have drained the data yet! 1817 */ 1818 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 1819 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 1820 tcp_hdr(skb)->fin; 1821 data_was_unread += len; 1822 __kfree_skb(skb); 1823 } 1824 1825 sk_mem_reclaim(sk); 1826 1827 /* As outlined in RFC 2525, section 2.17, we send a RST here because 1828 * data was lost. To witness the awful effects of the old behavior of 1829 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 1830 * GET in an FTP client, suspend the process, wait for the client to 1831 * advertise a zero window, then kill -9 the FTP client, wheee... 1832 * Note: timeout is always zero in such a case. 1833 */ 1834 if (data_was_unread) { 1835 /* Unread data was tossed, zap the connection. */ 1836 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 1837 tcp_set_state(sk, TCP_CLOSE); 1838 tcp_send_active_reset(sk, GFP_KERNEL); 1839 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1840 /* Check zero linger _after_ checking for unread data. */ 1841 sk->sk_prot->disconnect(sk, 0); 1842 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 1843 } else if (tcp_close_state(sk)) { 1844 /* We FIN if the application ate all the data before 1845 * zapping the connection. 1846 */ 1847 1848 /* RED-PEN. Formally speaking, we have broken TCP state 1849 * machine. State transitions: 1850 * 1851 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 1852 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 1853 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 1854 * 1855 * are legal only when FIN has been sent (i.e. in window), 1856 * rather than queued out of window. Purists blame. 1857 * 1858 * F.e. "RFC state" is ESTABLISHED, 1859 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 1860 * 1861 * The visible declinations are that sometimes 1862 * we enter time-wait state, when it is not required really 1863 * (harmless), do not send active resets, when they are 1864 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 1865 * they look as CLOSING or LAST_ACK for Linux) 1866 * Probably, I missed some more holelets. 1867 * --ANK 1868 */ 1869 tcp_send_fin(sk); 1870 } 1871 1872 sk_stream_wait_close(sk, timeout); 1873 1874adjudge_to_death: 1875 state = sk->sk_state; 1876 sock_hold(sk); 1877 sock_orphan(sk); 1878 1879 /* It is the last release_sock in its life. It will remove backlog. */ 1880 release_sock(sk); 1881 1882 1883 /* Now socket is owned by kernel and we acquire BH lock 1884 to finish close. No need to check for user refs. 1885 */ 1886 local_bh_disable(); 1887 bh_lock_sock(sk); 1888 WARN_ON(sock_owned_by_user(sk)); 1889 1890 percpu_counter_inc(sk->sk_prot->orphan_count); 1891 1892 /* Have we already been destroyed by a softirq or backlog? */ 1893 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 1894 goto out; 1895 1896 /* This is a (useful) BSD violating of the RFC. There is a 1897 * problem with TCP as specified in that the other end could 1898 * keep a socket open forever with no application left this end. 1899 * We use a 3 minute timeout (about the same as BSD) then kill 1900 * our end. If they send after that then tough - BUT: long enough 1901 * that we won't make the old 4*rto = almost no time - whoops 1902 * reset mistake. 1903 * 1904 * Nope, it was not mistake. It is really desired behaviour 1905 * f.e. on http servers, when such sockets are useless, but 1906 * consume significant resources. Let's do it with special 1907 * linger2 option. --ANK 1908 */ 1909 1910 if (sk->sk_state == TCP_FIN_WAIT2) { 1911 struct tcp_sock *tp = tcp_sk(sk); 1912 if (tp->linger2 < 0) { 1913 tcp_set_state(sk, TCP_CLOSE); 1914 tcp_send_active_reset(sk, GFP_ATOMIC); 1915 NET_INC_STATS_BH(sock_net(sk), 1916 LINUX_MIB_TCPABORTONLINGER); 1917 } else { 1918 const int tmo = tcp_fin_time(sk); 1919 1920 if (tmo > TCP_TIMEWAIT_LEN) { 1921 inet_csk_reset_keepalive_timer(sk, 1922 tmo - TCP_TIMEWAIT_LEN); 1923 } else { 1924 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 1925 goto out; 1926 } 1927 } 1928 } 1929 if (sk->sk_state != TCP_CLOSE) { 1930 int orphan_count = percpu_counter_read_positive( 1931 sk->sk_prot->orphan_count); 1932 1933 sk_mem_reclaim(sk); 1934 if (tcp_too_many_orphans(sk, orphan_count)) { 1935 if (net_ratelimit()) 1936 printk(KERN_INFO "TCP: too many of orphaned " 1937 "sockets\n"); 1938 tcp_set_state(sk, TCP_CLOSE); 1939 tcp_send_active_reset(sk, GFP_ATOMIC); 1940 NET_INC_STATS_BH(sock_net(sk), 1941 LINUX_MIB_TCPABORTONMEMORY); 1942 } 1943 } 1944 1945 if (sk->sk_state == TCP_CLOSE) 1946 inet_csk_destroy_sock(sk); 1947 /* Otherwise, socket is reprieved until protocol close. */ 1948 1949out: 1950 bh_unlock_sock(sk); 1951 local_bh_enable(); 1952 sock_put(sk); 1953} 1954 1955/* These states need RST on ABORT according to RFC793 */ 1956 1957static inline int tcp_need_reset(int state) 1958{ 1959 return (1 << state) & 1960 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 1961 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 1962} 1963 1964int tcp_disconnect(struct sock *sk, int flags) 1965{ 1966 struct inet_sock *inet = inet_sk(sk); 1967 struct inet_connection_sock *icsk = inet_csk(sk); 1968 struct tcp_sock *tp = tcp_sk(sk); 1969 int err = 0; 1970 int old_state = sk->sk_state; 1971 1972 if (old_state != TCP_CLOSE) 1973 tcp_set_state(sk, TCP_CLOSE); 1974 1975 /* ABORT function of RFC793 */ 1976 if (old_state == TCP_LISTEN) { 1977 inet_csk_listen_stop(sk); 1978 } else if (tcp_need_reset(old_state) || 1979 (tp->snd_nxt != tp->write_seq && 1980 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 1981 /* The last check adjusts for discrepancy of Linux wrt. RFC 1982 * states 1983 */ 1984 tcp_send_active_reset(sk, gfp_any()); 1985 sk->sk_err = ECONNRESET; 1986 } else if (old_state == TCP_SYN_SENT) 1987 sk->sk_err = ECONNRESET; 1988 1989 tcp_clear_xmit_timers(sk); 1990 __skb_queue_purge(&sk->sk_receive_queue); 1991 tcp_write_queue_purge(sk); 1992 __skb_queue_purge(&tp->out_of_order_queue); 1993#ifdef CONFIG_NET_DMA 1994 __skb_queue_purge(&sk->sk_async_wait_queue); 1995#endif 1996 1997 inet->dport = 0; 1998 1999 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2000 inet_reset_saddr(sk); 2001 2002 sk->sk_shutdown = 0; 2003 sock_reset_flag(sk, SOCK_DONE); 2004 tp->srtt = 0; 2005 if ((tp->write_seq += tp->max_window + 2) == 0) 2006 tp->write_seq = 1; 2007 icsk->icsk_backoff = 0; 2008 tp->snd_cwnd = 2; 2009 icsk->icsk_probes_out = 0; 2010 tp->packets_out = 0; 2011 tp->snd_ssthresh = 0x7fffffff; 2012 tp->snd_cwnd_cnt = 0; 2013 tp->bytes_acked = 0; 2014 tcp_set_ca_state(sk, TCP_CA_Open); 2015 tcp_clear_retrans(tp); 2016 inet_csk_delack_init(sk); 2017 tcp_init_send_head(sk); 2018 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2019 __sk_dst_reset(sk); 2020 2021 WARN_ON(inet->num && !icsk->icsk_bind_hash); 2022 2023 sk->sk_error_report(sk); 2024 return err; 2025} 2026 2027/* 2028 * Socket option code for TCP. 2029 */ 2030static int do_tcp_setsockopt(struct sock *sk, int level, 2031 int optname, char __user *optval, int optlen) 2032{ 2033 struct tcp_sock *tp = tcp_sk(sk); 2034 struct inet_connection_sock *icsk = inet_csk(sk); 2035 int val; 2036 int err = 0; 2037 2038 /* This is a string value all the others are int's */ 2039 if (optname == TCP_CONGESTION) { 2040 char name[TCP_CA_NAME_MAX]; 2041 2042 if (optlen < 1) 2043 return -EINVAL; 2044 2045 val = strncpy_from_user(name, optval, 2046 min(TCP_CA_NAME_MAX-1, optlen)); 2047 if (val < 0) 2048 return -EFAULT; 2049 name[val] = 0; 2050 2051 lock_sock(sk); 2052 err = tcp_set_congestion_control(sk, name); 2053 release_sock(sk); 2054 return err; 2055 } 2056 2057 if (optlen < sizeof(int)) 2058 return -EINVAL; 2059 2060 if (get_user(val, (int __user *)optval)) 2061 return -EFAULT; 2062 2063 lock_sock(sk); 2064 2065 switch (optname) { 2066 case TCP_MAXSEG: 2067 /* Values greater than interface MTU won't take effect. However 2068 * at the point when this call is done we typically don't yet 2069 * know which interface is going to be used */ 2070 if (val < 8 || val > MAX_TCP_WINDOW) { 2071 err = -EINVAL; 2072 break; 2073 } 2074 tp->rx_opt.user_mss = val; 2075 break; 2076 2077 case TCP_NODELAY: 2078 if (val) { 2079 /* TCP_NODELAY is weaker than TCP_CORK, so that 2080 * this option on corked socket is remembered, but 2081 * it is not activated until cork is cleared. 2082 * 2083 * However, when TCP_NODELAY is set we make 2084 * an explicit push, which overrides even TCP_CORK 2085 * for currently queued segments. 2086 */ 2087 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2088 tcp_push_pending_frames(sk); 2089 } else { 2090 tp->nonagle &= ~TCP_NAGLE_OFF; 2091 } 2092 break; 2093 2094 case TCP_CORK: 2095 /* When set indicates to always queue non-full frames. 2096 * Later the user clears this option and we transmit 2097 * any pending partial frames in the queue. This is 2098 * meant to be used alongside sendfile() to get properly 2099 * filled frames when the user (for example) must write 2100 * out headers with a write() call first and then use 2101 * sendfile to send out the data parts. 2102 * 2103 * TCP_CORK can be set together with TCP_NODELAY and it is 2104 * stronger than TCP_NODELAY. 2105 */ 2106 if (val) { 2107 tp->nonagle |= TCP_NAGLE_CORK; 2108 } else { 2109 tp->nonagle &= ~TCP_NAGLE_CORK; 2110 if (tp->nonagle&TCP_NAGLE_OFF) 2111 tp->nonagle |= TCP_NAGLE_PUSH; 2112 tcp_push_pending_frames(sk); 2113 } 2114 break; 2115 2116 case TCP_KEEPIDLE: 2117 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2118 err = -EINVAL; 2119 else { 2120 tp->keepalive_time = val * HZ; 2121 if (sock_flag(sk, SOCK_KEEPOPEN) && 2122 !((1 << sk->sk_state) & 2123 (TCPF_CLOSE | TCPF_LISTEN))) { 2124 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp; 2125 if (tp->keepalive_time > elapsed) 2126 elapsed = tp->keepalive_time - elapsed; 2127 else 2128 elapsed = 0; 2129 inet_csk_reset_keepalive_timer(sk, elapsed); 2130 } 2131 } 2132 break; 2133 case TCP_KEEPINTVL: 2134 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2135 err = -EINVAL; 2136 else 2137 tp->keepalive_intvl = val * HZ; 2138 break; 2139 case TCP_KEEPCNT: 2140 if (val < 1 || val > MAX_TCP_KEEPCNT) 2141 err = -EINVAL; 2142 else 2143 tp->keepalive_probes = val; 2144 break; 2145 case TCP_SYNCNT: 2146 if (val < 1 || val > MAX_TCP_SYNCNT) 2147 err = -EINVAL; 2148 else 2149 icsk->icsk_syn_retries = val; 2150 break; 2151 2152 case TCP_LINGER2: 2153 if (val < 0) 2154 tp->linger2 = -1; 2155 else if (val > sysctl_tcp_fin_timeout / HZ) 2156 tp->linger2 = 0; 2157 else 2158 tp->linger2 = val * HZ; 2159 break; 2160 2161 case TCP_DEFER_ACCEPT: 2162 icsk->icsk_accept_queue.rskq_defer_accept = 0; 2163 if (val > 0) { 2164 /* Translate value in seconds to number of 2165 * retransmits */ 2166 while (icsk->icsk_accept_queue.rskq_defer_accept < 32 && 2167 val > ((TCP_TIMEOUT_INIT / HZ) << 2168 icsk->icsk_accept_queue.rskq_defer_accept)) 2169 icsk->icsk_accept_queue.rskq_defer_accept++; 2170 icsk->icsk_accept_queue.rskq_defer_accept++; 2171 } 2172 break; 2173 2174 case TCP_WINDOW_CLAMP: 2175 if (!val) { 2176 if (sk->sk_state != TCP_CLOSE) { 2177 err = -EINVAL; 2178 break; 2179 } 2180 tp->window_clamp = 0; 2181 } else 2182 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2183 SOCK_MIN_RCVBUF / 2 : val; 2184 break; 2185 2186 case TCP_QUICKACK: 2187 if (!val) { 2188 icsk->icsk_ack.pingpong = 1; 2189 } else { 2190 icsk->icsk_ack.pingpong = 0; 2191 if ((1 << sk->sk_state) & 2192 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2193 inet_csk_ack_scheduled(sk)) { 2194 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2195 tcp_cleanup_rbuf(sk, 1); 2196 if (!(val & 1)) 2197 icsk->icsk_ack.pingpong = 1; 2198 } 2199 } 2200 break; 2201 2202#ifdef CONFIG_TCP_MD5SIG 2203 case TCP_MD5SIG: 2204 /* Read the IP->Key mappings from userspace */ 2205 err = tp->af_specific->md5_parse(sk, optval, optlen); 2206 break; 2207#endif 2208 2209 default: 2210 err = -ENOPROTOOPT; 2211 break; 2212 } 2213 2214 release_sock(sk); 2215 return err; 2216} 2217 2218int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2219 int optlen) 2220{ 2221 struct inet_connection_sock *icsk = inet_csk(sk); 2222 2223 if (level != SOL_TCP) 2224 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2225 optval, optlen); 2226 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2227} 2228 2229#ifdef CONFIG_COMPAT 2230int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2231 char __user *optval, int optlen) 2232{ 2233 if (level != SOL_TCP) 2234 return inet_csk_compat_setsockopt(sk, level, optname, 2235 optval, optlen); 2236 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2237} 2238 2239EXPORT_SYMBOL(compat_tcp_setsockopt); 2240#endif 2241 2242/* Return information about state of tcp endpoint in API format. */ 2243void tcp_get_info(struct sock *sk, struct tcp_info *info) 2244{ 2245 struct tcp_sock *tp = tcp_sk(sk); 2246 const struct inet_connection_sock *icsk = inet_csk(sk); 2247 u32 now = tcp_time_stamp; 2248 2249 memset(info, 0, sizeof(*info)); 2250 2251 info->tcpi_state = sk->sk_state; 2252 info->tcpi_ca_state = icsk->icsk_ca_state; 2253 info->tcpi_retransmits = icsk->icsk_retransmits; 2254 info->tcpi_probes = icsk->icsk_probes_out; 2255 info->tcpi_backoff = icsk->icsk_backoff; 2256 2257 if (tp->rx_opt.tstamp_ok) 2258 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2259 if (tcp_is_sack(tp)) 2260 info->tcpi_options |= TCPI_OPT_SACK; 2261 if (tp->rx_opt.wscale_ok) { 2262 info->tcpi_options |= TCPI_OPT_WSCALE; 2263 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2264 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2265 } 2266 2267 if (tp->ecn_flags&TCP_ECN_OK) 2268 info->tcpi_options |= TCPI_OPT_ECN; 2269 2270 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2271 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2272 info->tcpi_snd_mss = tp->mss_cache; 2273 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2274 2275 if (sk->sk_state == TCP_LISTEN) { 2276 info->tcpi_unacked = sk->sk_ack_backlog; 2277 info->tcpi_sacked = sk->sk_max_ack_backlog; 2278 } else { 2279 info->tcpi_unacked = tp->packets_out; 2280 info->tcpi_sacked = tp->sacked_out; 2281 } 2282 info->tcpi_lost = tp->lost_out; 2283 info->tcpi_retrans = tp->retrans_out; 2284 info->tcpi_fackets = tp->fackets_out; 2285 2286 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2287 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2288 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2289 2290 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2291 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2292 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2293 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2294 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2295 info->tcpi_snd_cwnd = tp->snd_cwnd; 2296 info->tcpi_advmss = tp->advmss; 2297 info->tcpi_reordering = tp->reordering; 2298 2299 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2300 info->tcpi_rcv_space = tp->rcvq_space.space; 2301 2302 info->tcpi_total_retrans = tp->total_retrans; 2303} 2304 2305EXPORT_SYMBOL_GPL(tcp_get_info); 2306 2307static int do_tcp_getsockopt(struct sock *sk, int level, 2308 int optname, char __user *optval, int __user *optlen) 2309{ 2310 struct inet_connection_sock *icsk = inet_csk(sk); 2311 struct tcp_sock *tp = tcp_sk(sk); 2312 int val, len; 2313 2314 if (get_user(len, optlen)) 2315 return -EFAULT; 2316 2317 len = min_t(unsigned int, len, sizeof(int)); 2318 2319 if (len < 0) 2320 return -EINVAL; 2321 2322 switch (optname) { 2323 case TCP_MAXSEG: 2324 val = tp->mss_cache; 2325 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2326 val = tp->rx_opt.user_mss; 2327 break; 2328 case TCP_NODELAY: 2329 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2330 break; 2331 case TCP_CORK: 2332 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2333 break; 2334 case TCP_KEEPIDLE: 2335 val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ; 2336 break; 2337 case TCP_KEEPINTVL: 2338 val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ; 2339 break; 2340 case TCP_KEEPCNT: 2341 val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes; 2342 break; 2343 case TCP_SYNCNT: 2344 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2345 break; 2346 case TCP_LINGER2: 2347 val = tp->linger2; 2348 if (val >= 0) 2349 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2350 break; 2351 case TCP_DEFER_ACCEPT: 2352 val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 : 2353 ((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1)); 2354 break; 2355 case TCP_WINDOW_CLAMP: 2356 val = tp->window_clamp; 2357 break; 2358 case TCP_INFO: { 2359 struct tcp_info info; 2360 2361 if (get_user(len, optlen)) 2362 return -EFAULT; 2363 2364 tcp_get_info(sk, &info); 2365 2366 len = min_t(unsigned int, len, sizeof(info)); 2367 if (put_user(len, optlen)) 2368 return -EFAULT; 2369 if (copy_to_user(optval, &info, len)) 2370 return -EFAULT; 2371 return 0; 2372 } 2373 case TCP_QUICKACK: 2374 val = !icsk->icsk_ack.pingpong; 2375 break; 2376 2377 case TCP_CONGESTION: 2378 if (get_user(len, optlen)) 2379 return -EFAULT; 2380 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2381 if (put_user(len, optlen)) 2382 return -EFAULT; 2383 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2384 return -EFAULT; 2385 return 0; 2386 default: 2387 return -ENOPROTOOPT; 2388 } 2389 2390 if (put_user(len, optlen)) 2391 return -EFAULT; 2392 if (copy_to_user(optval, &val, len)) 2393 return -EFAULT; 2394 return 0; 2395} 2396 2397int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2398 int __user *optlen) 2399{ 2400 struct inet_connection_sock *icsk = inet_csk(sk); 2401 2402 if (level != SOL_TCP) 2403 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2404 optval, optlen); 2405 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2406} 2407 2408#ifdef CONFIG_COMPAT 2409int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2410 char __user *optval, int __user *optlen) 2411{ 2412 if (level != SOL_TCP) 2413 return inet_csk_compat_getsockopt(sk, level, optname, 2414 optval, optlen); 2415 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2416} 2417 2418EXPORT_SYMBOL(compat_tcp_getsockopt); 2419#endif 2420 2421struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features) 2422{ 2423 struct sk_buff *segs = ERR_PTR(-EINVAL); 2424 struct tcphdr *th; 2425 unsigned thlen; 2426 unsigned int seq; 2427 __be32 delta; 2428 unsigned int oldlen; 2429 unsigned int mss; 2430 2431 if (!pskb_may_pull(skb, sizeof(*th))) 2432 goto out; 2433 2434 th = tcp_hdr(skb); 2435 thlen = th->doff * 4; 2436 if (thlen < sizeof(*th)) 2437 goto out; 2438 2439 if (!pskb_may_pull(skb, thlen)) 2440 goto out; 2441 2442 oldlen = (u16)~skb->len; 2443 __skb_pull(skb, thlen); 2444 2445 mss = skb_shinfo(skb)->gso_size; 2446 if (unlikely(skb->len <= mss)) 2447 goto out; 2448 2449 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 2450 /* Packet is from an untrusted source, reset gso_segs. */ 2451 int type = skb_shinfo(skb)->gso_type; 2452 2453 if (unlikely(type & 2454 ~(SKB_GSO_TCPV4 | 2455 SKB_GSO_DODGY | 2456 SKB_GSO_TCP_ECN | 2457 SKB_GSO_TCPV6 | 2458 0) || 2459 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) 2460 goto out; 2461 2462 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 2463 2464 segs = NULL; 2465 goto out; 2466 } 2467 2468 segs = skb_segment(skb, features); 2469 if (IS_ERR(segs)) 2470 goto out; 2471 2472 delta = htonl(oldlen + (thlen + mss)); 2473 2474 skb = segs; 2475 th = tcp_hdr(skb); 2476 seq = ntohl(th->seq); 2477 2478 do { 2479 th->fin = th->psh = 0; 2480 2481 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2482 (__force u32)delta)); 2483 if (skb->ip_summed != CHECKSUM_PARTIAL) 2484 th->check = 2485 csum_fold(csum_partial(skb_transport_header(skb), 2486 thlen, skb->csum)); 2487 2488 seq += mss; 2489 skb = skb->next; 2490 th = tcp_hdr(skb); 2491 2492 th->seq = htonl(seq); 2493 th->cwr = 0; 2494 } while (skb->next); 2495 2496 delta = htonl(oldlen + (skb->tail - skb->transport_header) + 2497 skb->data_len); 2498 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2499 (__force u32)delta)); 2500 if (skb->ip_summed != CHECKSUM_PARTIAL) 2501 th->check = csum_fold(csum_partial(skb_transport_header(skb), 2502 thlen, skb->csum)); 2503 2504out: 2505 return segs; 2506} 2507EXPORT_SYMBOL(tcp_tso_segment); 2508 2509struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2510{ 2511 struct sk_buff **pp = NULL; 2512 struct sk_buff *p; 2513 struct tcphdr *th; 2514 struct tcphdr *th2; 2515 unsigned int thlen; 2516 unsigned int flags; 2517 unsigned int mss = 1; 2518 int flush = 1; 2519 int i; 2520 2521 th = skb_gro_header(skb, sizeof(*th)); 2522 if (unlikely(!th)) 2523 goto out; 2524 2525 thlen = th->doff * 4; 2526 if (thlen < sizeof(*th)) 2527 goto out; 2528 2529 th = skb_gro_header(skb, thlen); 2530 if (unlikely(!th)) 2531 goto out; 2532 2533 skb_gro_pull(skb, thlen); 2534 2535 flags = tcp_flag_word(th); 2536 2537 for (; (p = *head); head = &p->next) { 2538 if (!NAPI_GRO_CB(p)->same_flow) 2539 continue; 2540 2541 th2 = tcp_hdr(p); 2542 2543 if ((th->source ^ th2->source) | (th->dest ^ th2->dest)) { 2544 NAPI_GRO_CB(p)->same_flow = 0; 2545 continue; 2546 } 2547 2548 goto found; 2549 } 2550 2551 goto out_check_final; 2552 2553found: 2554 flush = NAPI_GRO_CB(p)->flush; 2555 flush |= flags & TCP_FLAG_CWR; 2556 flush |= (flags ^ tcp_flag_word(th2)) & 2557 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH); 2558 flush |= (th->ack_seq ^ th2->ack_seq) | (th->window ^ th2->window); 2559 for (i = sizeof(*th); !flush && i < thlen; i += 4) 2560 flush |= *(u32 *)((u8 *)th + i) ^ 2561 *(u32 *)((u8 *)th2 + i); 2562 2563 mss = skb_shinfo(p)->gso_size; 2564 2565 flush |= (skb_gro_len(skb) > mss) | !skb_gro_len(skb); 2566 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); 2567 2568 if (flush || skb_gro_receive(head, skb)) { 2569 mss = 1; 2570 goto out_check_final; 2571 } 2572 2573 p = *head; 2574 th2 = tcp_hdr(p); 2575 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); 2576 2577out_check_final: 2578 flush = skb_gro_len(skb) < mss; 2579 flush |= flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST | 2580 TCP_FLAG_SYN | TCP_FLAG_FIN); 2581 2582 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) 2583 pp = head; 2584 2585out: 2586 NAPI_GRO_CB(skb)->flush |= flush; 2587 2588 return pp; 2589} 2590EXPORT_SYMBOL(tcp_gro_receive); 2591 2592int tcp_gro_complete(struct sk_buff *skb) 2593{ 2594 struct tcphdr *th = tcp_hdr(skb); 2595 2596 skb->csum_start = skb_transport_header(skb) - skb->head; 2597 skb->csum_offset = offsetof(struct tcphdr, check); 2598 skb->ip_summed = CHECKSUM_PARTIAL; 2599 2600 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 2601 2602 if (th->cwr) 2603 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 2604 2605 return 0; 2606} 2607EXPORT_SYMBOL(tcp_gro_complete); 2608 2609#ifdef CONFIG_TCP_MD5SIG 2610static unsigned long tcp_md5sig_users; 2611static struct tcp_md5sig_pool **tcp_md5sig_pool; 2612static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); 2613 2614static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool) 2615{ 2616 int cpu; 2617 for_each_possible_cpu(cpu) { 2618 struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu); 2619 if (p) { 2620 if (p->md5_desc.tfm) 2621 crypto_free_hash(p->md5_desc.tfm); 2622 kfree(p); 2623 p = NULL; 2624 } 2625 } 2626 free_percpu(pool); 2627} 2628 2629void tcp_free_md5sig_pool(void) 2630{ 2631 struct tcp_md5sig_pool **pool = NULL; 2632 2633 spin_lock_bh(&tcp_md5sig_pool_lock); 2634 if (--tcp_md5sig_users == 0) { 2635 pool = tcp_md5sig_pool; 2636 tcp_md5sig_pool = NULL; 2637 } 2638 spin_unlock_bh(&tcp_md5sig_pool_lock); 2639 if (pool) 2640 __tcp_free_md5sig_pool(pool); 2641} 2642 2643EXPORT_SYMBOL(tcp_free_md5sig_pool); 2644 2645static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void) 2646{ 2647 int cpu; 2648 struct tcp_md5sig_pool **pool; 2649 2650 pool = alloc_percpu(struct tcp_md5sig_pool *); 2651 if (!pool) 2652 return NULL; 2653 2654 for_each_possible_cpu(cpu) { 2655 struct tcp_md5sig_pool *p; 2656 struct crypto_hash *hash; 2657 2658 p = kzalloc(sizeof(*p), GFP_KERNEL); 2659 if (!p) 2660 goto out_free; 2661 *per_cpu_ptr(pool, cpu) = p; 2662 2663 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2664 if (!hash || IS_ERR(hash)) 2665 goto out_free; 2666 2667 p->md5_desc.tfm = hash; 2668 } 2669 return pool; 2670out_free: 2671 __tcp_free_md5sig_pool(pool); 2672 return NULL; 2673} 2674 2675struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void) 2676{ 2677 struct tcp_md5sig_pool **pool; 2678 int alloc = 0; 2679 2680retry: 2681 spin_lock_bh(&tcp_md5sig_pool_lock); 2682 pool = tcp_md5sig_pool; 2683 if (tcp_md5sig_users++ == 0) { 2684 alloc = 1; 2685 spin_unlock_bh(&tcp_md5sig_pool_lock); 2686 } else if (!pool) { 2687 tcp_md5sig_users--; 2688 spin_unlock_bh(&tcp_md5sig_pool_lock); 2689 cpu_relax(); 2690 goto retry; 2691 } else 2692 spin_unlock_bh(&tcp_md5sig_pool_lock); 2693 2694 if (alloc) { 2695 /* we cannot hold spinlock here because this may sleep. */ 2696 struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool(); 2697 spin_lock_bh(&tcp_md5sig_pool_lock); 2698 if (!p) { 2699 tcp_md5sig_users--; 2700 spin_unlock_bh(&tcp_md5sig_pool_lock); 2701 return NULL; 2702 } 2703 pool = tcp_md5sig_pool; 2704 if (pool) { 2705 /* oops, it has already been assigned. */ 2706 spin_unlock_bh(&tcp_md5sig_pool_lock); 2707 __tcp_free_md5sig_pool(p); 2708 } else { 2709 tcp_md5sig_pool = pool = p; 2710 spin_unlock_bh(&tcp_md5sig_pool_lock); 2711 } 2712 } 2713 return pool; 2714} 2715 2716EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2717 2718struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu) 2719{ 2720 struct tcp_md5sig_pool **p; 2721 spin_lock_bh(&tcp_md5sig_pool_lock); 2722 p = tcp_md5sig_pool; 2723 if (p) 2724 tcp_md5sig_users++; 2725 spin_unlock_bh(&tcp_md5sig_pool_lock); 2726 return (p ? *per_cpu_ptr(p, cpu) : NULL); 2727} 2728 2729EXPORT_SYMBOL(__tcp_get_md5sig_pool); 2730 2731void __tcp_put_md5sig_pool(void) 2732{ 2733 tcp_free_md5sig_pool(); 2734} 2735 2736EXPORT_SYMBOL(__tcp_put_md5sig_pool); 2737 2738int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2739 struct tcphdr *th) 2740{ 2741 struct scatterlist sg; 2742 int err; 2743 2744 __sum16 old_checksum = th->check; 2745 th->check = 0; 2746 /* options aren't included in the hash */ 2747 sg_init_one(&sg, th, sizeof(struct tcphdr)); 2748 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr)); 2749 th->check = old_checksum; 2750 return err; 2751} 2752 2753EXPORT_SYMBOL(tcp_md5_hash_header); 2754 2755int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 2756 struct sk_buff *skb, unsigned header_len) 2757{ 2758 struct scatterlist sg; 2759 const struct tcphdr *tp = tcp_hdr(skb); 2760 struct hash_desc *desc = &hp->md5_desc; 2761 unsigned i; 2762 const unsigned head_data_len = skb_headlen(skb) > header_len ? 2763 skb_headlen(skb) - header_len : 0; 2764 const struct skb_shared_info *shi = skb_shinfo(skb); 2765 2766 sg_init_table(&sg, 1); 2767 2768 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 2769 if (crypto_hash_update(desc, &sg, head_data_len)) 2770 return 1; 2771 2772 for (i = 0; i < shi->nr_frags; ++i) { 2773 const struct skb_frag_struct *f = &shi->frags[i]; 2774 sg_set_page(&sg, f->page, f->size, f->page_offset); 2775 if (crypto_hash_update(desc, &sg, f->size)) 2776 return 1; 2777 } 2778 2779 return 0; 2780} 2781 2782EXPORT_SYMBOL(tcp_md5_hash_skb_data); 2783 2784int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key) 2785{ 2786 struct scatterlist sg; 2787 2788 sg_init_one(&sg, key->key, key->keylen); 2789 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 2790} 2791 2792EXPORT_SYMBOL(tcp_md5_hash_key); 2793 2794#endif 2795 2796void tcp_done(struct sock *sk) 2797{ 2798 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 2799 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 2800 2801 tcp_set_state(sk, TCP_CLOSE); 2802 tcp_clear_xmit_timers(sk); 2803 2804 sk->sk_shutdown = SHUTDOWN_MASK; 2805 2806 if (!sock_flag(sk, SOCK_DEAD)) 2807 sk->sk_state_change(sk); 2808 else 2809 inet_csk_destroy_sock(sk); 2810} 2811EXPORT_SYMBOL_GPL(tcp_done); 2812 2813extern struct tcp_congestion_ops tcp_reno; 2814 2815static __initdata unsigned long thash_entries; 2816static int __init set_thash_entries(char *str) 2817{ 2818 if (!str) 2819 return 0; 2820 thash_entries = simple_strtoul(str, &str, 0); 2821 return 1; 2822} 2823__setup("thash_entries=", set_thash_entries); 2824 2825void __init tcp_init(void) 2826{ 2827 struct sk_buff *skb = NULL; 2828 unsigned long nr_pages, limit; 2829 int order, i, max_share; 2830 2831 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 2832 2833 percpu_counter_init(&tcp_sockets_allocated, 0); 2834 percpu_counter_init(&tcp_orphan_count, 0); 2835 tcp_hashinfo.bind_bucket_cachep = 2836 kmem_cache_create("tcp_bind_bucket", 2837 sizeof(struct inet_bind_bucket), 0, 2838 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2839 2840 /* Size and allocate the main established and bind bucket 2841 * hash tables. 2842 * 2843 * The methodology is similar to that of the buffer cache. 2844 */ 2845 tcp_hashinfo.ehash = 2846 alloc_large_system_hash("TCP established", 2847 sizeof(struct inet_ehash_bucket), 2848 thash_entries, 2849 (num_physpages >= 128 * 1024) ? 2850 13 : 15, 2851 0, 2852 &tcp_hashinfo.ehash_size, 2853 NULL, 2854 thash_entries ? 0 : 512 * 1024); 2855 tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size; 2856 for (i = 0; i < tcp_hashinfo.ehash_size; i++) { 2857 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 2858 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 2859 } 2860 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 2861 panic("TCP: failed to alloc ehash_locks"); 2862 tcp_hashinfo.bhash = 2863 alloc_large_system_hash("TCP bind", 2864 sizeof(struct inet_bind_hashbucket), 2865 tcp_hashinfo.ehash_size, 2866 (num_physpages >= 128 * 1024) ? 2867 13 : 15, 2868 0, 2869 &tcp_hashinfo.bhash_size, 2870 NULL, 2871 64 * 1024); 2872 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size; 2873 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 2874 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 2875 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 2876 } 2877 2878 /* Try to be a bit smarter and adjust defaults depending 2879 * on available memory. 2880 */ 2881 for (order = 0; ((1 << order) << PAGE_SHIFT) < 2882 (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket)); 2883 order++) 2884 ; 2885 if (order >= 4) { 2886 tcp_death_row.sysctl_max_tw_buckets = 180000; 2887 sysctl_tcp_max_orphans = 4096 << (order - 4); 2888 sysctl_max_syn_backlog = 1024; 2889 } else if (order < 3) { 2890 tcp_death_row.sysctl_max_tw_buckets >>= (3 - order); 2891 sysctl_tcp_max_orphans >>= (3 - order); 2892 sysctl_max_syn_backlog = 128; 2893 } 2894 2895 /* Set the pressure threshold to be a fraction of global memory that 2896 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of 2897 * memory, with a floor of 128 pages. 2898 */ 2899 nr_pages = totalram_pages - totalhigh_pages; 2900 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT); 2901 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11); 2902 limit = max(limit, 128UL); 2903 sysctl_tcp_mem[0] = limit / 4 * 3; 2904 sysctl_tcp_mem[1] = limit; 2905 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; 2906 2907 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 2908 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7); 2909 max_share = min(4UL*1024*1024, limit); 2910 2911 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 2912 sysctl_tcp_wmem[1] = 16*1024; 2913 sysctl_tcp_wmem[2] = max(64*1024, max_share); 2914 2915 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 2916 sysctl_tcp_rmem[1] = 87380; 2917 sysctl_tcp_rmem[2] = max(87380, max_share); 2918 2919 printk(KERN_INFO "TCP: Hash tables configured " 2920 "(established %d bind %d)\n", 2921 tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size); 2922 2923 tcp_register_congestion_control(&tcp_reno); 2924} 2925 2926EXPORT_SYMBOL(tcp_close); 2927EXPORT_SYMBOL(tcp_disconnect); 2928EXPORT_SYMBOL(tcp_getsockopt); 2929EXPORT_SYMBOL(tcp_ioctl); 2930EXPORT_SYMBOL(tcp_poll); 2931EXPORT_SYMBOL(tcp_read_sock); 2932EXPORT_SYMBOL(tcp_recvmsg); 2933EXPORT_SYMBOL(tcp_sendmsg); 2934EXPORT_SYMBOL(tcp_splice_read); 2935EXPORT_SYMBOL(tcp_sendpage); 2936EXPORT_SYMBOL(tcp_setsockopt); 2937EXPORT_SYMBOL(tcp_shutdown); 2938