tcp.c revision e239345f642e6a255d0ba1e3d92c2f9ec5a44fbe
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#define pr_fmt(fmt) "TCP: " fmt
249
250#include <linux/kernel.h>
251#include <linux/module.h>
252#include <linux/types.h>
253#include <linux/fcntl.h>
254#include <linux/poll.h>
255#include <linux/init.h>
256#include <linux/fs.h>
257#include <linux/skbuff.h>
258#include <linux/scatterlist.h>
259#include <linux/splice.h>
260#include <linux/net.h>
261#include <linux/socket.h>
262#include <linux/random.h>
263#include <linux/bootmem.h>
264#include <linux/highmem.h>
265#include <linux/swap.h>
266#include <linux/cache.h>
267#include <linux/err.h>
268#include <linux/crypto.h>
269#include <linux/time.h>
270#include <linux/slab.h>
271
272#include <net/icmp.h>
273#include <net/inet_common.h>
274#include <net/tcp.h>
275#include <net/xfrm.h>
276#include <net/ip.h>
277#include <net/netdma.h>
278#include <net/sock.h>
279
280#include <asm/uaccess.h>
281#include <asm/ioctls.h>
282
283int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
284
285struct percpu_counter tcp_orphan_count;
286EXPORT_SYMBOL_GPL(tcp_orphan_count);
287
288int sysctl_tcp_wmem[3] __read_mostly;
289int sysctl_tcp_rmem[3] __read_mostly;
290
291EXPORT_SYMBOL(sysctl_tcp_rmem);
292EXPORT_SYMBOL(sysctl_tcp_wmem);
293
294atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
295EXPORT_SYMBOL(tcp_memory_allocated);
296
297/*
298 * Current number of TCP sockets.
299 */
300struct percpu_counter tcp_sockets_allocated;
301EXPORT_SYMBOL(tcp_sockets_allocated);
302
303/*
304 * TCP splice context
305 */
306struct tcp_splice_state {
307	struct pipe_inode_info *pipe;
308	size_t len;
309	unsigned int flags;
310};
311
312/*
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
317 */
318int tcp_memory_pressure __read_mostly;
319EXPORT_SYMBOL(tcp_memory_pressure);
320
321void tcp_enter_memory_pressure(struct sock *sk)
322{
323	if (!tcp_memory_pressure) {
324		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325		tcp_memory_pressure = 1;
326	}
327}
328EXPORT_SYMBOL(tcp_enter_memory_pressure);
329
330/* Convert seconds to retransmits based on initial and max timeout */
331static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
332{
333	u8 res = 0;
334
335	if (seconds > 0) {
336		int period = timeout;
337
338		res = 1;
339		while (seconds > period && res < 255) {
340			res++;
341			timeout <<= 1;
342			if (timeout > rto_max)
343				timeout = rto_max;
344			period += timeout;
345		}
346	}
347	return res;
348}
349
350/* Convert retransmits to seconds based on initial and max timeout */
351static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
352{
353	int period = 0;
354
355	if (retrans > 0) {
356		period = timeout;
357		while (--retrans) {
358			timeout <<= 1;
359			if (timeout > rto_max)
360				timeout = rto_max;
361			period += timeout;
362		}
363	}
364	return period;
365}
366
367/* Address-family independent initialization for a tcp_sock.
368 *
369 * NOTE: A lot of things set to zero explicitly by call to
370 *       sk_alloc() so need not be done here.
371 */
372void tcp_init_sock(struct sock *sk)
373{
374	struct inet_connection_sock *icsk = inet_csk(sk);
375	struct tcp_sock *tp = tcp_sk(sk);
376
377	skb_queue_head_init(&tp->out_of_order_queue);
378	tcp_init_xmit_timers(sk);
379	tcp_prequeue_init(tp);
380	INIT_LIST_HEAD(&tp->tsq_node);
381
382	icsk->icsk_rto = TCP_TIMEOUT_INIT;
383	tp->mdev = TCP_TIMEOUT_INIT;
384
385	/* So many TCP implementations out there (incorrectly) count the
386	 * initial SYN frame in their delayed-ACK and congestion control
387	 * algorithms that we must have the following bandaid to talk
388	 * efficiently to them.  -DaveM
389	 */
390	tp->snd_cwnd = TCP_INIT_CWND;
391
392	/* See draft-stevens-tcpca-spec-01 for discussion of the
393	 * initialization of these values.
394	 */
395	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
396	tp->snd_cwnd_clamp = ~0;
397	tp->mss_cache = TCP_MSS_DEFAULT;
398
399	tp->reordering = sysctl_tcp_reordering;
400	tcp_enable_early_retrans(tp);
401	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
402
403	sk->sk_state = TCP_CLOSE;
404
405	sk->sk_write_space = sk_stream_write_space;
406	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
407
408	icsk->icsk_sync_mss = tcp_sync_mss;
409
410	/* TCP Cookie Transactions */
411	if (sysctl_tcp_cookie_size > 0) {
412		/* Default, cookies without s_data_payload. */
413		tp->cookie_values =
414			kzalloc(sizeof(*tp->cookie_values),
415				sk->sk_allocation);
416		if (tp->cookie_values != NULL)
417			kref_init(&tp->cookie_values->kref);
418	}
419	/* Presumed zeroed, in order of appearance:
420	 *	cookie_in_always, cookie_out_never,
421	 *	s_data_constant, s_data_in, s_data_out
422	 */
423	sk->sk_sndbuf = sysctl_tcp_wmem[1];
424	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
425
426	local_bh_disable();
427	sock_update_memcg(sk);
428	sk_sockets_allocated_inc(sk);
429	local_bh_enable();
430}
431EXPORT_SYMBOL(tcp_init_sock);
432
433/*
434 *	Wait for a TCP event.
435 *
436 *	Note that we don't need to lock the socket, as the upper poll layers
437 *	take care of normal races (between the test and the event) and we don't
438 *	go look at any of the socket buffers directly.
439 */
440unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
441{
442	unsigned int mask;
443	struct sock *sk = sock->sk;
444	const struct tcp_sock *tp = tcp_sk(sk);
445
446	sock_poll_wait(file, sk_sleep(sk), wait);
447	if (sk->sk_state == TCP_LISTEN)
448		return inet_csk_listen_poll(sk);
449
450	/* Socket is not locked. We are protected from async events
451	 * by poll logic and correct handling of state changes
452	 * made by other threads is impossible in any case.
453	 */
454
455	mask = 0;
456
457	/*
458	 * POLLHUP is certainly not done right. But poll() doesn't
459	 * have a notion of HUP in just one direction, and for a
460	 * socket the read side is more interesting.
461	 *
462	 * Some poll() documentation says that POLLHUP is incompatible
463	 * with the POLLOUT/POLLWR flags, so somebody should check this
464	 * all. But careful, it tends to be safer to return too many
465	 * bits than too few, and you can easily break real applications
466	 * if you don't tell them that something has hung up!
467	 *
468	 * Check-me.
469	 *
470	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
471	 * our fs/select.c). It means that after we received EOF,
472	 * poll always returns immediately, making impossible poll() on write()
473	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
474	 * if and only if shutdown has been made in both directions.
475	 * Actually, it is interesting to look how Solaris and DUX
476	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
477	 * then we could set it on SND_SHUTDOWN. BTW examples given
478	 * in Stevens' books assume exactly this behaviour, it explains
479	 * why POLLHUP is incompatible with POLLOUT.	--ANK
480	 *
481	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
482	 * blocking on fresh not-connected or disconnected socket. --ANK
483	 */
484	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
485		mask |= POLLHUP;
486	if (sk->sk_shutdown & RCV_SHUTDOWN)
487		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
488
489	/* Connected or passive Fast Open socket? */
490	if (sk->sk_state != TCP_SYN_SENT &&
491	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
492		int target = sock_rcvlowat(sk, 0, INT_MAX);
493
494		if (tp->urg_seq == tp->copied_seq &&
495		    !sock_flag(sk, SOCK_URGINLINE) &&
496		    tp->urg_data)
497			target++;
498
499		/* Potential race condition. If read of tp below will
500		 * escape above sk->sk_state, we can be illegally awaken
501		 * in SYN_* states. */
502		if (tp->rcv_nxt - tp->copied_seq >= target)
503			mask |= POLLIN | POLLRDNORM;
504
505		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
506			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
507				mask |= POLLOUT | POLLWRNORM;
508			} else {  /* send SIGIO later */
509				set_bit(SOCK_ASYNC_NOSPACE,
510					&sk->sk_socket->flags);
511				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
512
513				/* Race breaker. If space is freed after
514				 * wspace test but before the flags are set,
515				 * IO signal will be lost.
516				 */
517				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
518					mask |= POLLOUT | POLLWRNORM;
519			}
520		} else
521			mask |= POLLOUT | POLLWRNORM;
522
523		if (tp->urg_data & TCP_URG_VALID)
524			mask |= POLLPRI;
525	}
526	/* This barrier is coupled with smp_wmb() in tcp_reset() */
527	smp_rmb();
528	if (sk->sk_err)
529		mask |= POLLERR;
530
531	return mask;
532}
533EXPORT_SYMBOL(tcp_poll);
534
535int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
536{
537	struct tcp_sock *tp = tcp_sk(sk);
538	int answ;
539	bool slow;
540
541	switch (cmd) {
542	case SIOCINQ:
543		if (sk->sk_state == TCP_LISTEN)
544			return -EINVAL;
545
546		slow = lock_sock_fast(sk);
547		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
548			answ = 0;
549		else if (sock_flag(sk, SOCK_URGINLINE) ||
550			 !tp->urg_data ||
551			 before(tp->urg_seq, tp->copied_seq) ||
552			 !before(tp->urg_seq, tp->rcv_nxt)) {
553
554			answ = tp->rcv_nxt - tp->copied_seq;
555
556			/* Subtract 1, if FIN was received */
557			if (answ && sock_flag(sk, SOCK_DONE))
558				answ--;
559		} else
560			answ = tp->urg_seq - tp->copied_seq;
561		unlock_sock_fast(sk, slow);
562		break;
563	case SIOCATMARK:
564		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
565		break;
566	case SIOCOUTQ:
567		if (sk->sk_state == TCP_LISTEN)
568			return -EINVAL;
569
570		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
571			answ = 0;
572		else
573			answ = tp->write_seq - tp->snd_una;
574		break;
575	case SIOCOUTQNSD:
576		if (sk->sk_state == TCP_LISTEN)
577			return -EINVAL;
578
579		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
580			answ = 0;
581		else
582			answ = tp->write_seq - tp->snd_nxt;
583		break;
584	default:
585		return -ENOIOCTLCMD;
586	}
587
588	return put_user(answ, (int __user *)arg);
589}
590EXPORT_SYMBOL(tcp_ioctl);
591
592static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
593{
594	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
595	tp->pushed_seq = tp->write_seq;
596}
597
598static inline bool forced_push(const struct tcp_sock *tp)
599{
600	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
601}
602
603static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
604{
605	struct tcp_sock *tp = tcp_sk(sk);
606	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
607
608	skb->csum    = 0;
609	tcb->seq     = tcb->end_seq = tp->write_seq;
610	tcb->tcp_flags = TCPHDR_ACK;
611	tcb->sacked  = 0;
612	skb_header_release(skb);
613	tcp_add_write_queue_tail(sk, skb);
614	sk->sk_wmem_queued += skb->truesize;
615	sk_mem_charge(sk, skb->truesize);
616	if (tp->nonagle & TCP_NAGLE_PUSH)
617		tp->nonagle &= ~TCP_NAGLE_PUSH;
618}
619
620static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
621{
622	if (flags & MSG_OOB)
623		tp->snd_up = tp->write_seq;
624}
625
626static inline void tcp_push(struct sock *sk, int flags, int mss_now,
627			    int nonagle)
628{
629	if (tcp_send_head(sk)) {
630		struct tcp_sock *tp = tcp_sk(sk);
631
632		if (!(flags & MSG_MORE) || forced_push(tp))
633			tcp_mark_push(tp, tcp_write_queue_tail(sk));
634
635		tcp_mark_urg(tp, flags);
636		__tcp_push_pending_frames(sk, mss_now,
637					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
638	}
639}
640
641static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
642				unsigned int offset, size_t len)
643{
644	struct tcp_splice_state *tss = rd_desc->arg.data;
645	int ret;
646
647	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
648			      tss->flags);
649	if (ret > 0)
650		rd_desc->count -= ret;
651	return ret;
652}
653
654static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
655{
656	/* Store TCP splice context information in read_descriptor_t. */
657	read_descriptor_t rd_desc = {
658		.arg.data = tss,
659		.count	  = tss->len,
660	};
661
662	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
663}
664
665/**
666 *  tcp_splice_read - splice data from TCP socket to a pipe
667 * @sock:	socket to splice from
668 * @ppos:	position (not valid)
669 * @pipe:	pipe to splice to
670 * @len:	number of bytes to splice
671 * @flags:	splice modifier flags
672 *
673 * Description:
674 *    Will read pages from given socket and fill them into a pipe.
675 *
676 **/
677ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
678			struct pipe_inode_info *pipe, size_t len,
679			unsigned int flags)
680{
681	struct sock *sk = sock->sk;
682	struct tcp_splice_state tss = {
683		.pipe = pipe,
684		.len = len,
685		.flags = flags,
686	};
687	long timeo;
688	ssize_t spliced;
689	int ret;
690
691	sock_rps_record_flow(sk);
692	/*
693	 * We can't seek on a socket input
694	 */
695	if (unlikely(*ppos))
696		return -ESPIPE;
697
698	ret = spliced = 0;
699
700	lock_sock(sk);
701
702	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
703	while (tss.len) {
704		ret = __tcp_splice_read(sk, &tss);
705		if (ret < 0)
706			break;
707		else if (!ret) {
708			if (spliced)
709				break;
710			if (sock_flag(sk, SOCK_DONE))
711				break;
712			if (sk->sk_err) {
713				ret = sock_error(sk);
714				break;
715			}
716			if (sk->sk_shutdown & RCV_SHUTDOWN)
717				break;
718			if (sk->sk_state == TCP_CLOSE) {
719				/*
720				 * This occurs when user tries to read
721				 * from never connected socket.
722				 */
723				if (!sock_flag(sk, SOCK_DONE))
724					ret = -ENOTCONN;
725				break;
726			}
727			if (!timeo) {
728				ret = -EAGAIN;
729				break;
730			}
731			sk_wait_data(sk, &timeo);
732			if (signal_pending(current)) {
733				ret = sock_intr_errno(timeo);
734				break;
735			}
736			continue;
737		}
738		tss.len -= ret;
739		spliced += ret;
740
741		if (!timeo)
742			break;
743		release_sock(sk);
744		lock_sock(sk);
745
746		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
747		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
748		    signal_pending(current))
749			break;
750	}
751
752	release_sock(sk);
753
754	if (spliced)
755		return spliced;
756
757	return ret;
758}
759EXPORT_SYMBOL(tcp_splice_read);
760
761struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
762{
763	struct sk_buff *skb;
764
765	/* The TCP header must be at least 32-bit aligned.  */
766	size = ALIGN(size, 4);
767
768	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
769	if (skb) {
770		if (sk_wmem_schedule(sk, skb->truesize)) {
771			skb_reserve(skb, sk->sk_prot->max_header);
772			/*
773			 * Make sure that we have exactly size bytes
774			 * available to the caller, no more, no less.
775			 */
776			skb->avail_size = size;
777			return skb;
778		}
779		__kfree_skb(skb);
780	} else {
781		sk->sk_prot->enter_memory_pressure(sk);
782		sk_stream_moderate_sndbuf(sk);
783	}
784	return NULL;
785}
786
787static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
788				       int large_allowed)
789{
790	struct tcp_sock *tp = tcp_sk(sk);
791	u32 xmit_size_goal, old_size_goal;
792
793	xmit_size_goal = mss_now;
794
795	if (large_allowed && sk_can_gso(sk)) {
796		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
797				  inet_csk(sk)->icsk_af_ops->net_header_len -
798				  inet_csk(sk)->icsk_ext_hdr_len -
799				  tp->tcp_header_len);
800
801		/* TSQ : try to have two TSO segments in flight */
802		xmit_size_goal = min_t(u32, xmit_size_goal,
803				       sysctl_tcp_limit_output_bytes >> 1);
804
805		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
806
807		/* We try hard to avoid divides here */
808		old_size_goal = tp->xmit_size_goal_segs * mss_now;
809
810		if (likely(old_size_goal <= xmit_size_goal &&
811			   old_size_goal + mss_now > xmit_size_goal)) {
812			xmit_size_goal = old_size_goal;
813		} else {
814			tp->xmit_size_goal_segs =
815				min_t(u16, xmit_size_goal / mss_now,
816				      sk->sk_gso_max_segs);
817			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
818		}
819	}
820
821	return max(xmit_size_goal, mss_now);
822}
823
824static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
825{
826	int mss_now;
827
828	mss_now = tcp_current_mss(sk);
829	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
830
831	return mss_now;
832}
833
834static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
835				size_t size, int flags)
836{
837	struct tcp_sock *tp = tcp_sk(sk);
838	int mss_now, size_goal;
839	int err;
840	ssize_t copied;
841	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
842
843	/* Wait for a connection to finish. One exception is TCP Fast Open
844	 * (passive side) where data is allowed to be sent before a connection
845	 * is fully established.
846	 */
847	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
848	    !tcp_passive_fastopen(sk)) {
849		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
850			goto out_err;
851	}
852
853	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
854
855	mss_now = tcp_send_mss(sk, &size_goal, flags);
856	copied = 0;
857
858	err = -EPIPE;
859	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
860		goto out_err;
861
862	while (size > 0) {
863		struct sk_buff *skb = tcp_write_queue_tail(sk);
864		int copy, i;
865		bool can_coalesce;
866
867		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
868new_segment:
869			if (!sk_stream_memory_free(sk))
870				goto wait_for_sndbuf;
871
872			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
873			if (!skb)
874				goto wait_for_memory;
875
876			skb_entail(sk, skb);
877			copy = size_goal;
878		}
879
880		if (copy > size)
881			copy = size;
882
883		i = skb_shinfo(skb)->nr_frags;
884		can_coalesce = skb_can_coalesce(skb, i, page, offset);
885		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
886			tcp_mark_push(tp, skb);
887			goto new_segment;
888		}
889		if (!sk_wmem_schedule(sk, copy))
890			goto wait_for_memory;
891
892		if (can_coalesce) {
893			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
894		} else {
895			get_page(page);
896			skb_fill_page_desc(skb, i, page, offset, copy);
897		}
898
899		skb->len += copy;
900		skb->data_len += copy;
901		skb->truesize += copy;
902		sk->sk_wmem_queued += copy;
903		sk_mem_charge(sk, copy);
904		skb->ip_summed = CHECKSUM_PARTIAL;
905		tp->write_seq += copy;
906		TCP_SKB_CB(skb)->end_seq += copy;
907		skb_shinfo(skb)->gso_segs = 0;
908
909		if (!copied)
910			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
911
912		copied += copy;
913		offset += copy;
914		if (!(size -= copy))
915			goto out;
916
917		if (skb->len < size_goal || (flags & MSG_OOB))
918			continue;
919
920		if (forced_push(tp)) {
921			tcp_mark_push(tp, skb);
922			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
923		} else if (skb == tcp_send_head(sk))
924			tcp_push_one(sk, mss_now);
925		continue;
926
927wait_for_sndbuf:
928		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
929wait_for_memory:
930		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
931
932		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
933			goto do_error;
934
935		mss_now = tcp_send_mss(sk, &size_goal, flags);
936	}
937
938out:
939	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
940		tcp_push(sk, flags, mss_now, tp->nonagle);
941	return copied;
942
943do_error:
944	if (copied)
945		goto out;
946out_err:
947	return sk_stream_error(sk, flags, err);
948}
949
950int tcp_sendpage(struct sock *sk, struct page *page, int offset,
951		 size_t size, int flags)
952{
953	ssize_t res;
954
955	if (!(sk->sk_route_caps & NETIF_F_SG) ||
956	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
957		return sock_no_sendpage(sk->sk_socket, page, offset, size,
958					flags);
959
960	lock_sock(sk);
961	res = do_tcp_sendpages(sk, page, offset, size, flags);
962	release_sock(sk);
963	return res;
964}
965EXPORT_SYMBOL(tcp_sendpage);
966
967static inline int select_size(const struct sock *sk, bool sg)
968{
969	const struct tcp_sock *tp = tcp_sk(sk);
970	int tmp = tp->mss_cache;
971
972	if (sg) {
973		if (sk_can_gso(sk)) {
974			/* Small frames wont use a full page:
975			 * Payload will immediately follow tcp header.
976			 */
977			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
978		} else {
979			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
980
981			if (tmp >= pgbreak &&
982			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
983				tmp = pgbreak;
984		}
985	}
986
987	return tmp;
988}
989
990void tcp_free_fastopen_req(struct tcp_sock *tp)
991{
992	if (tp->fastopen_req != NULL) {
993		kfree(tp->fastopen_req);
994		tp->fastopen_req = NULL;
995	}
996}
997
998static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
999{
1000	struct tcp_sock *tp = tcp_sk(sk);
1001	int err, flags;
1002
1003	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1004		return -EOPNOTSUPP;
1005	if (tp->fastopen_req != NULL)
1006		return -EALREADY; /* Another Fast Open is in progress */
1007
1008	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1009				   sk->sk_allocation);
1010	if (unlikely(tp->fastopen_req == NULL))
1011		return -ENOBUFS;
1012	tp->fastopen_req->data = msg;
1013
1014	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1015	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1016				    msg->msg_namelen, flags);
1017	*size = tp->fastopen_req->copied;
1018	tcp_free_fastopen_req(tp);
1019	return err;
1020}
1021
1022int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1023		size_t size)
1024{
1025	struct iovec *iov;
1026	struct tcp_sock *tp = tcp_sk(sk);
1027	struct sk_buff *skb;
1028	int iovlen, flags, err, copied = 0;
1029	int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1030	bool sg;
1031	long timeo;
1032
1033	lock_sock(sk);
1034
1035	flags = msg->msg_flags;
1036	if (flags & MSG_FASTOPEN) {
1037		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1038		if (err == -EINPROGRESS && copied_syn > 0)
1039			goto out;
1040		else if (err)
1041			goto out_err;
1042		offset = copied_syn;
1043	}
1044
1045	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1046
1047	/* Wait for a connection to finish. One exception is TCP Fast Open
1048	 * (passive side) where data is allowed to be sent before a connection
1049	 * is fully established.
1050	 */
1051	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1052	    !tcp_passive_fastopen(sk)) {
1053		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1054			goto do_error;
1055	}
1056
1057	if (unlikely(tp->repair)) {
1058		if (tp->repair_queue == TCP_RECV_QUEUE) {
1059			copied = tcp_send_rcvq(sk, msg, size);
1060			goto out;
1061		}
1062
1063		err = -EINVAL;
1064		if (tp->repair_queue == TCP_NO_QUEUE)
1065			goto out_err;
1066
1067		/* 'common' sending to sendq */
1068	}
1069
1070	/* This should be in poll */
1071	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1072
1073	mss_now = tcp_send_mss(sk, &size_goal, flags);
1074
1075	/* Ok commence sending. */
1076	iovlen = msg->msg_iovlen;
1077	iov = msg->msg_iov;
1078	copied = 0;
1079
1080	err = -EPIPE;
1081	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1082		goto out_err;
1083
1084	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1085
1086	while (--iovlen >= 0) {
1087		size_t seglen = iov->iov_len;
1088		unsigned char __user *from = iov->iov_base;
1089
1090		iov++;
1091		if (unlikely(offset > 0)) {  /* Skip bytes copied in SYN */
1092			if (offset >= seglen) {
1093				offset -= seglen;
1094				continue;
1095			}
1096			seglen -= offset;
1097			from += offset;
1098			offset = 0;
1099		}
1100
1101		while (seglen > 0) {
1102			int copy = 0;
1103			int max = size_goal;
1104
1105			skb = tcp_write_queue_tail(sk);
1106			if (tcp_send_head(sk)) {
1107				if (skb->ip_summed == CHECKSUM_NONE)
1108					max = mss_now;
1109				copy = max - skb->len;
1110			}
1111
1112			if (copy <= 0) {
1113new_segment:
1114				/* Allocate new segment. If the interface is SG,
1115				 * allocate skb fitting to single page.
1116				 */
1117				if (!sk_stream_memory_free(sk))
1118					goto wait_for_sndbuf;
1119
1120				skb = sk_stream_alloc_skb(sk,
1121							  select_size(sk, sg),
1122							  sk->sk_allocation);
1123				if (!skb)
1124					goto wait_for_memory;
1125
1126				/*
1127				 * Check whether we can use HW checksum.
1128				 */
1129				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1130					skb->ip_summed = CHECKSUM_PARTIAL;
1131
1132				skb_entail(sk, skb);
1133				copy = size_goal;
1134				max = size_goal;
1135			}
1136
1137			/* Try to append data to the end of skb. */
1138			if (copy > seglen)
1139				copy = seglen;
1140
1141			/* Where to copy to? */
1142			if (skb_availroom(skb) > 0) {
1143				/* We have some space in skb head. Superb! */
1144				copy = min_t(int, copy, skb_availroom(skb));
1145				err = skb_add_data_nocache(sk, skb, from, copy);
1146				if (err)
1147					goto do_fault;
1148			} else {
1149				bool merge = true;
1150				int i = skb_shinfo(skb)->nr_frags;
1151				struct page_frag *pfrag = sk_page_frag(sk);
1152
1153				if (!sk_page_frag_refill(sk, pfrag))
1154					goto wait_for_memory;
1155
1156				if (!skb_can_coalesce(skb, i, pfrag->page,
1157						      pfrag->offset)) {
1158					if (i == MAX_SKB_FRAGS || !sg) {
1159						tcp_mark_push(tp, skb);
1160						goto new_segment;
1161					}
1162					merge = false;
1163				}
1164
1165				copy = min_t(int, copy, pfrag->size - pfrag->offset);
1166
1167				if (!sk_wmem_schedule(sk, copy))
1168					goto wait_for_memory;
1169
1170				err = skb_copy_to_page_nocache(sk, from, skb,
1171							       pfrag->page,
1172							       pfrag->offset,
1173							       copy);
1174				if (err)
1175					goto do_error;
1176
1177				/* Update the skb. */
1178				if (merge) {
1179					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1180				} else {
1181					skb_fill_page_desc(skb, i, pfrag->page,
1182							   pfrag->offset, copy);
1183					get_page(pfrag->page);
1184				}
1185				pfrag->offset += copy;
1186			}
1187
1188			if (!copied)
1189				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1190
1191			tp->write_seq += copy;
1192			TCP_SKB_CB(skb)->end_seq += copy;
1193			skb_shinfo(skb)->gso_segs = 0;
1194
1195			from += copy;
1196			copied += copy;
1197			if ((seglen -= copy) == 0 && iovlen == 0)
1198				goto out;
1199
1200			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1201				continue;
1202
1203			if (forced_push(tp)) {
1204				tcp_mark_push(tp, skb);
1205				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1206			} else if (skb == tcp_send_head(sk))
1207				tcp_push_one(sk, mss_now);
1208			continue;
1209
1210wait_for_sndbuf:
1211			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1212wait_for_memory:
1213			if (copied)
1214				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1215
1216			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1217				goto do_error;
1218
1219			mss_now = tcp_send_mss(sk, &size_goal, flags);
1220		}
1221	}
1222
1223out:
1224	if (copied)
1225		tcp_push(sk, flags, mss_now, tp->nonagle);
1226	release_sock(sk);
1227	return copied + copied_syn;
1228
1229do_fault:
1230	if (!skb->len) {
1231		tcp_unlink_write_queue(skb, sk);
1232		/* It is the one place in all of TCP, except connection
1233		 * reset, where we can be unlinking the send_head.
1234		 */
1235		tcp_check_send_head(sk, skb);
1236		sk_wmem_free_skb(sk, skb);
1237	}
1238
1239do_error:
1240	if (copied + copied_syn)
1241		goto out;
1242out_err:
1243	err = sk_stream_error(sk, flags, err);
1244	release_sock(sk);
1245	return err;
1246}
1247EXPORT_SYMBOL(tcp_sendmsg);
1248
1249/*
1250 *	Handle reading urgent data. BSD has very simple semantics for
1251 *	this, no blocking and very strange errors 8)
1252 */
1253
1254static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1255{
1256	struct tcp_sock *tp = tcp_sk(sk);
1257
1258	/* No URG data to read. */
1259	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1260	    tp->urg_data == TCP_URG_READ)
1261		return -EINVAL;	/* Yes this is right ! */
1262
1263	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1264		return -ENOTCONN;
1265
1266	if (tp->urg_data & TCP_URG_VALID) {
1267		int err = 0;
1268		char c = tp->urg_data;
1269
1270		if (!(flags & MSG_PEEK))
1271			tp->urg_data = TCP_URG_READ;
1272
1273		/* Read urgent data. */
1274		msg->msg_flags |= MSG_OOB;
1275
1276		if (len > 0) {
1277			if (!(flags & MSG_TRUNC))
1278				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1279			len = 1;
1280		} else
1281			msg->msg_flags |= MSG_TRUNC;
1282
1283		return err ? -EFAULT : len;
1284	}
1285
1286	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1287		return 0;
1288
1289	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1290	 * the available implementations agree in this case:
1291	 * this call should never block, independent of the
1292	 * blocking state of the socket.
1293	 * Mike <pall@rz.uni-karlsruhe.de>
1294	 */
1295	return -EAGAIN;
1296}
1297
1298static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1299{
1300	struct sk_buff *skb;
1301	int copied = 0, err = 0;
1302
1303	/* XXX -- need to support SO_PEEK_OFF */
1304
1305	skb_queue_walk(&sk->sk_write_queue, skb) {
1306		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1307		if (err)
1308			break;
1309
1310		copied += skb->len;
1311	}
1312
1313	return err ?: copied;
1314}
1315
1316/* Clean up the receive buffer for full frames taken by the user,
1317 * then send an ACK if necessary.  COPIED is the number of bytes
1318 * tcp_recvmsg has given to the user so far, it speeds up the
1319 * calculation of whether or not we must ACK for the sake of
1320 * a window update.
1321 */
1322void tcp_cleanup_rbuf(struct sock *sk, int copied)
1323{
1324	struct tcp_sock *tp = tcp_sk(sk);
1325	bool time_to_ack = false;
1326
1327	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1328
1329	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1330	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1331	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1332
1333	if (inet_csk_ack_scheduled(sk)) {
1334		const struct inet_connection_sock *icsk = inet_csk(sk);
1335		   /* Delayed ACKs frequently hit locked sockets during bulk
1336		    * receive. */
1337		if (icsk->icsk_ack.blocked ||
1338		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1339		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1340		    /*
1341		     * If this read emptied read buffer, we send ACK, if
1342		     * connection is not bidirectional, user drained
1343		     * receive buffer and there was a small segment
1344		     * in queue.
1345		     */
1346		    (copied > 0 &&
1347		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1348		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1349		       !icsk->icsk_ack.pingpong)) &&
1350		      !atomic_read(&sk->sk_rmem_alloc)))
1351			time_to_ack = true;
1352	}
1353
1354	/* We send an ACK if we can now advertise a non-zero window
1355	 * which has been raised "significantly".
1356	 *
1357	 * Even if window raised up to infinity, do not send window open ACK
1358	 * in states, where we will not receive more. It is useless.
1359	 */
1360	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1361		__u32 rcv_window_now = tcp_receive_window(tp);
1362
1363		/* Optimize, __tcp_select_window() is not cheap. */
1364		if (2*rcv_window_now <= tp->window_clamp) {
1365			__u32 new_window = __tcp_select_window(sk);
1366
1367			/* Send ACK now, if this read freed lots of space
1368			 * in our buffer. Certainly, new_window is new window.
1369			 * We can advertise it now, if it is not less than current one.
1370			 * "Lots" means "at least twice" here.
1371			 */
1372			if (new_window && new_window >= 2 * rcv_window_now)
1373				time_to_ack = true;
1374		}
1375	}
1376	if (time_to_ack)
1377		tcp_send_ack(sk);
1378}
1379
1380static void tcp_prequeue_process(struct sock *sk)
1381{
1382	struct sk_buff *skb;
1383	struct tcp_sock *tp = tcp_sk(sk);
1384
1385	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1386
1387	/* RX process wants to run with disabled BHs, though it is not
1388	 * necessary */
1389	local_bh_disable();
1390	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1391		sk_backlog_rcv(sk, skb);
1392	local_bh_enable();
1393
1394	/* Clear memory counter. */
1395	tp->ucopy.memory = 0;
1396}
1397
1398#ifdef CONFIG_NET_DMA
1399static void tcp_service_net_dma(struct sock *sk, bool wait)
1400{
1401	dma_cookie_t done, used;
1402	dma_cookie_t last_issued;
1403	struct tcp_sock *tp = tcp_sk(sk);
1404
1405	if (!tp->ucopy.dma_chan)
1406		return;
1407
1408	last_issued = tp->ucopy.dma_cookie;
1409	dma_async_issue_pending(tp->ucopy.dma_chan);
1410
1411	do {
1412		if (dma_async_is_tx_complete(tp->ucopy.dma_chan,
1413					      last_issued, &done,
1414					      &used) == DMA_SUCCESS) {
1415			/* Safe to free early-copied skbs now */
1416			__skb_queue_purge(&sk->sk_async_wait_queue);
1417			break;
1418		} else {
1419			struct sk_buff *skb;
1420			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1421			       (dma_async_is_complete(skb->dma_cookie, done,
1422						      used) == DMA_SUCCESS)) {
1423				__skb_dequeue(&sk->sk_async_wait_queue);
1424				kfree_skb(skb);
1425			}
1426		}
1427	} while (wait);
1428}
1429#endif
1430
1431static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1432{
1433	struct sk_buff *skb;
1434	u32 offset;
1435
1436	skb_queue_walk(&sk->sk_receive_queue, skb) {
1437		offset = seq - TCP_SKB_CB(skb)->seq;
1438		if (tcp_hdr(skb)->syn)
1439			offset--;
1440		if (offset < skb->len || tcp_hdr(skb)->fin) {
1441			*off = offset;
1442			return skb;
1443		}
1444	}
1445	return NULL;
1446}
1447
1448/*
1449 * This routine provides an alternative to tcp_recvmsg() for routines
1450 * that would like to handle copying from skbuffs directly in 'sendfile'
1451 * fashion.
1452 * Note:
1453 *	- It is assumed that the socket was locked by the caller.
1454 *	- The routine does not block.
1455 *	- At present, there is no support for reading OOB data
1456 *	  or for 'peeking' the socket using this routine
1457 *	  (although both would be easy to implement).
1458 */
1459int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1460		  sk_read_actor_t recv_actor)
1461{
1462	struct sk_buff *skb;
1463	struct tcp_sock *tp = tcp_sk(sk);
1464	u32 seq = tp->copied_seq;
1465	u32 offset;
1466	int copied = 0;
1467
1468	if (sk->sk_state == TCP_LISTEN)
1469		return -ENOTCONN;
1470	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1471		if (offset < skb->len) {
1472			int used;
1473			size_t len;
1474
1475			len = skb->len - offset;
1476			/* Stop reading if we hit a patch of urgent data */
1477			if (tp->urg_data) {
1478				u32 urg_offset = tp->urg_seq - seq;
1479				if (urg_offset < len)
1480					len = urg_offset;
1481				if (!len)
1482					break;
1483			}
1484			used = recv_actor(desc, skb, offset, len);
1485			if (used < 0) {
1486				if (!copied)
1487					copied = used;
1488				break;
1489			} else if (used <= len) {
1490				seq += used;
1491				copied += used;
1492				offset += used;
1493			}
1494			/* If recv_actor drops the lock (e.g. TCP splice
1495			 * receive) the skb pointer might be invalid when
1496			 * getting here: tcp_collapse might have deleted it
1497			 * while aggregating skbs from the socket queue.
1498			 */
1499			skb = tcp_recv_skb(sk, seq - 1, &offset);
1500			if (!skb)
1501				break;
1502			/* TCP coalescing might have appended data to the skb.
1503			 * Try to splice more frags
1504			 */
1505			if (offset + 1 != skb->len)
1506				continue;
1507		}
1508		if (tcp_hdr(skb)->fin) {
1509			sk_eat_skb(sk, skb, false);
1510			++seq;
1511			break;
1512		}
1513		sk_eat_skb(sk, skb, false);
1514		if (!desc->count)
1515			break;
1516		tp->copied_seq = seq;
1517	}
1518	tp->copied_seq = seq;
1519
1520	tcp_rcv_space_adjust(sk);
1521
1522	/* Clean up data we have read: This will do ACK frames. */
1523	if (copied > 0)
1524		tcp_cleanup_rbuf(sk, copied);
1525	return copied;
1526}
1527EXPORT_SYMBOL(tcp_read_sock);
1528
1529/*
1530 *	This routine copies from a sock struct into the user buffer.
1531 *
1532 *	Technical note: in 2.3 we work on _locked_ socket, so that
1533 *	tricks with *seq access order and skb->users are not required.
1534 *	Probably, code can be easily improved even more.
1535 */
1536
1537int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1538		size_t len, int nonblock, int flags, int *addr_len)
1539{
1540	struct tcp_sock *tp = tcp_sk(sk);
1541	int copied = 0;
1542	u32 peek_seq;
1543	u32 *seq;
1544	unsigned long used;
1545	int err;
1546	int target;		/* Read at least this many bytes */
1547	long timeo;
1548	struct task_struct *user_recv = NULL;
1549	bool copied_early = false;
1550	struct sk_buff *skb;
1551	u32 urg_hole = 0;
1552
1553	lock_sock(sk);
1554
1555	err = -ENOTCONN;
1556	if (sk->sk_state == TCP_LISTEN)
1557		goto out;
1558
1559	timeo = sock_rcvtimeo(sk, nonblock);
1560
1561	/* Urgent data needs to be handled specially. */
1562	if (flags & MSG_OOB)
1563		goto recv_urg;
1564
1565	if (unlikely(tp->repair)) {
1566		err = -EPERM;
1567		if (!(flags & MSG_PEEK))
1568			goto out;
1569
1570		if (tp->repair_queue == TCP_SEND_QUEUE)
1571			goto recv_sndq;
1572
1573		err = -EINVAL;
1574		if (tp->repair_queue == TCP_NO_QUEUE)
1575			goto out;
1576
1577		/* 'common' recv queue MSG_PEEK-ing */
1578	}
1579
1580	seq = &tp->copied_seq;
1581	if (flags & MSG_PEEK) {
1582		peek_seq = tp->copied_seq;
1583		seq = &peek_seq;
1584	}
1585
1586	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1587
1588#ifdef CONFIG_NET_DMA
1589	tp->ucopy.dma_chan = NULL;
1590	preempt_disable();
1591	skb = skb_peek_tail(&sk->sk_receive_queue);
1592	{
1593		int available = 0;
1594
1595		if (skb)
1596			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1597		if ((available < target) &&
1598		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1599		    !sysctl_tcp_low_latency &&
1600		    net_dma_find_channel()) {
1601			preempt_enable_no_resched();
1602			tp->ucopy.pinned_list =
1603					dma_pin_iovec_pages(msg->msg_iov, len);
1604		} else {
1605			preempt_enable_no_resched();
1606		}
1607	}
1608#endif
1609
1610	do {
1611		u32 offset;
1612
1613		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1614		if (tp->urg_data && tp->urg_seq == *seq) {
1615			if (copied)
1616				break;
1617			if (signal_pending(current)) {
1618				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1619				break;
1620			}
1621		}
1622
1623		/* Next get a buffer. */
1624
1625		skb_queue_walk(&sk->sk_receive_queue, skb) {
1626			/* Now that we have two receive queues this
1627			 * shouldn't happen.
1628			 */
1629			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1630				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1631				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1632				 flags))
1633				break;
1634
1635			offset = *seq - TCP_SKB_CB(skb)->seq;
1636			if (tcp_hdr(skb)->syn)
1637				offset--;
1638			if (offset < skb->len)
1639				goto found_ok_skb;
1640			if (tcp_hdr(skb)->fin)
1641				goto found_fin_ok;
1642			WARN(!(flags & MSG_PEEK),
1643			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1644			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1645		}
1646
1647		/* Well, if we have backlog, try to process it now yet. */
1648
1649		if (copied >= target && !sk->sk_backlog.tail)
1650			break;
1651
1652		if (copied) {
1653			if (sk->sk_err ||
1654			    sk->sk_state == TCP_CLOSE ||
1655			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1656			    !timeo ||
1657			    signal_pending(current))
1658				break;
1659		} else {
1660			if (sock_flag(sk, SOCK_DONE))
1661				break;
1662
1663			if (sk->sk_err) {
1664				copied = sock_error(sk);
1665				break;
1666			}
1667
1668			if (sk->sk_shutdown & RCV_SHUTDOWN)
1669				break;
1670
1671			if (sk->sk_state == TCP_CLOSE) {
1672				if (!sock_flag(sk, SOCK_DONE)) {
1673					/* This occurs when user tries to read
1674					 * from never connected socket.
1675					 */
1676					copied = -ENOTCONN;
1677					break;
1678				}
1679				break;
1680			}
1681
1682			if (!timeo) {
1683				copied = -EAGAIN;
1684				break;
1685			}
1686
1687			if (signal_pending(current)) {
1688				copied = sock_intr_errno(timeo);
1689				break;
1690			}
1691		}
1692
1693		tcp_cleanup_rbuf(sk, copied);
1694
1695		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1696			/* Install new reader */
1697			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1698				user_recv = current;
1699				tp->ucopy.task = user_recv;
1700				tp->ucopy.iov = msg->msg_iov;
1701			}
1702
1703			tp->ucopy.len = len;
1704
1705			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1706				!(flags & (MSG_PEEK | MSG_TRUNC)));
1707
1708			/* Ugly... If prequeue is not empty, we have to
1709			 * process it before releasing socket, otherwise
1710			 * order will be broken at second iteration.
1711			 * More elegant solution is required!!!
1712			 *
1713			 * Look: we have the following (pseudo)queues:
1714			 *
1715			 * 1. packets in flight
1716			 * 2. backlog
1717			 * 3. prequeue
1718			 * 4. receive_queue
1719			 *
1720			 * Each queue can be processed only if the next ones
1721			 * are empty. At this point we have empty receive_queue.
1722			 * But prequeue _can_ be not empty after 2nd iteration,
1723			 * when we jumped to start of loop because backlog
1724			 * processing added something to receive_queue.
1725			 * We cannot release_sock(), because backlog contains
1726			 * packets arrived _after_ prequeued ones.
1727			 *
1728			 * Shortly, algorithm is clear --- to process all
1729			 * the queues in order. We could make it more directly,
1730			 * requeueing packets from backlog to prequeue, if
1731			 * is not empty. It is more elegant, but eats cycles,
1732			 * unfortunately.
1733			 */
1734			if (!skb_queue_empty(&tp->ucopy.prequeue))
1735				goto do_prequeue;
1736
1737			/* __ Set realtime policy in scheduler __ */
1738		}
1739
1740#ifdef CONFIG_NET_DMA
1741		if (tp->ucopy.dma_chan) {
1742			if (tp->rcv_wnd == 0 &&
1743			    !skb_queue_empty(&sk->sk_async_wait_queue)) {
1744				tcp_service_net_dma(sk, true);
1745				tcp_cleanup_rbuf(sk, copied);
1746			} else
1747				dma_async_issue_pending(tp->ucopy.dma_chan);
1748		}
1749#endif
1750		if (copied >= target) {
1751			/* Do not sleep, just process backlog. */
1752			release_sock(sk);
1753			lock_sock(sk);
1754		} else
1755			sk_wait_data(sk, &timeo);
1756
1757#ifdef CONFIG_NET_DMA
1758		tcp_service_net_dma(sk, false);  /* Don't block */
1759		tp->ucopy.wakeup = 0;
1760#endif
1761
1762		if (user_recv) {
1763			int chunk;
1764
1765			/* __ Restore normal policy in scheduler __ */
1766
1767			if ((chunk = len - tp->ucopy.len) != 0) {
1768				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1769				len -= chunk;
1770				copied += chunk;
1771			}
1772
1773			if (tp->rcv_nxt == tp->copied_seq &&
1774			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1775do_prequeue:
1776				tcp_prequeue_process(sk);
1777
1778				if ((chunk = len - tp->ucopy.len) != 0) {
1779					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1780					len -= chunk;
1781					copied += chunk;
1782				}
1783			}
1784		}
1785		if ((flags & MSG_PEEK) &&
1786		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1787			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1788					    current->comm,
1789					    task_pid_nr(current));
1790			peek_seq = tp->copied_seq;
1791		}
1792		continue;
1793
1794	found_ok_skb:
1795		/* Ok so how much can we use? */
1796		used = skb->len - offset;
1797		if (len < used)
1798			used = len;
1799
1800		/* Do we have urgent data here? */
1801		if (tp->urg_data) {
1802			u32 urg_offset = tp->urg_seq - *seq;
1803			if (urg_offset < used) {
1804				if (!urg_offset) {
1805					if (!sock_flag(sk, SOCK_URGINLINE)) {
1806						++*seq;
1807						urg_hole++;
1808						offset++;
1809						used--;
1810						if (!used)
1811							goto skip_copy;
1812					}
1813				} else
1814					used = urg_offset;
1815			}
1816		}
1817
1818		if (!(flags & MSG_TRUNC)) {
1819#ifdef CONFIG_NET_DMA
1820			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1821				tp->ucopy.dma_chan = net_dma_find_channel();
1822
1823			if (tp->ucopy.dma_chan) {
1824				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1825					tp->ucopy.dma_chan, skb, offset,
1826					msg->msg_iov, used,
1827					tp->ucopy.pinned_list);
1828
1829				if (tp->ucopy.dma_cookie < 0) {
1830
1831					pr_alert("%s: dma_cookie < 0\n",
1832						 __func__);
1833
1834					/* Exception. Bailout! */
1835					if (!copied)
1836						copied = -EFAULT;
1837					break;
1838				}
1839
1840				dma_async_issue_pending(tp->ucopy.dma_chan);
1841
1842				if ((offset + used) == skb->len)
1843					copied_early = true;
1844
1845			} else
1846#endif
1847			{
1848				err = skb_copy_datagram_iovec(skb, offset,
1849						msg->msg_iov, used);
1850				if (err) {
1851					/* Exception. Bailout! */
1852					if (!copied)
1853						copied = -EFAULT;
1854					break;
1855				}
1856			}
1857		}
1858
1859		*seq += used;
1860		copied += used;
1861		len -= used;
1862
1863		tcp_rcv_space_adjust(sk);
1864
1865skip_copy:
1866		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1867			tp->urg_data = 0;
1868			tcp_fast_path_check(sk);
1869		}
1870		if (used + offset < skb->len)
1871			continue;
1872
1873		if (tcp_hdr(skb)->fin)
1874			goto found_fin_ok;
1875		if (!(flags & MSG_PEEK)) {
1876			sk_eat_skb(sk, skb, copied_early);
1877			copied_early = false;
1878		}
1879		continue;
1880
1881	found_fin_ok:
1882		/* Process the FIN. */
1883		++*seq;
1884		if (!(flags & MSG_PEEK)) {
1885			sk_eat_skb(sk, skb, copied_early);
1886			copied_early = false;
1887		}
1888		break;
1889	} while (len > 0);
1890
1891	if (user_recv) {
1892		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1893			int chunk;
1894
1895			tp->ucopy.len = copied > 0 ? len : 0;
1896
1897			tcp_prequeue_process(sk);
1898
1899			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1900				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1901				len -= chunk;
1902				copied += chunk;
1903			}
1904		}
1905
1906		tp->ucopy.task = NULL;
1907		tp->ucopy.len = 0;
1908	}
1909
1910#ifdef CONFIG_NET_DMA
1911	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1912	tp->ucopy.dma_chan = NULL;
1913
1914	if (tp->ucopy.pinned_list) {
1915		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1916		tp->ucopy.pinned_list = NULL;
1917	}
1918#endif
1919
1920	/* According to UNIX98, msg_name/msg_namelen are ignored
1921	 * on connected socket. I was just happy when found this 8) --ANK
1922	 */
1923
1924	/* Clean up data we have read: This will do ACK frames. */
1925	tcp_cleanup_rbuf(sk, copied);
1926
1927	release_sock(sk);
1928	return copied;
1929
1930out:
1931	release_sock(sk);
1932	return err;
1933
1934recv_urg:
1935	err = tcp_recv_urg(sk, msg, len, flags);
1936	goto out;
1937
1938recv_sndq:
1939	err = tcp_peek_sndq(sk, msg, len);
1940	goto out;
1941}
1942EXPORT_SYMBOL(tcp_recvmsg);
1943
1944void tcp_set_state(struct sock *sk, int state)
1945{
1946	int oldstate = sk->sk_state;
1947
1948	switch (state) {
1949	case TCP_ESTABLISHED:
1950		if (oldstate != TCP_ESTABLISHED)
1951			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1952		break;
1953
1954	case TCP_CLOSE:
1955		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1956			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1957
1958		sk->sk_prot->unhash(sk);
1959		if (inet_csk(sk)->icsk_bind_hash &&
1960		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1961			inet_put_port(sk);
1962		/* fall through */
1963	default:
1964		if (oldstate == TCP_ESTABLISHED)
1965			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1966	}
1967
1968	/* Change state AFTER socket is unhashed to avoid closed
1969	 * socket sitting in hash tables.
1970	 */
1971	sk->sk_state = state;
1972
1973#ifdef STATE_TRACE
1974	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1975#endif
1976}
1977EXPORT_SYMBOL_GPL(tcp_set_state);
1978
1979/*
1980 *	State processing on a close. This implements the state shift for
1981 *	sending our FIN frame. Note that we only send a FIN for some
1982 *	states. A shutdown() may have already sent the FIN, or we may be
1983 *	closed.
1984 */
1985
1986static const unsigned char new_state[16] = {
1987  /* current state:        new state:      action:	*/
1988  /* (Invalid)		*/ TCP_CLOSE,
1989  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1990  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1991  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1992  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1993  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1994  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1995  /* TCP_CLOSE		*/ TCP_CLOSE,
1996  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1997  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1998  /* TCP_LISTEN		*/ TCP_CLOSE,
1999  /* TCP_CLOSING	*/ TCP_CLOSING,
2000};
2001
2002static int tcp_close_state(struct sock *sk)
2003{
2004	int next = (int)new_state[sk->sk_state];
2005	int ns = next & TCP_STATE_MASK;
2006
2007	tcp_set_state(sk, ns);
2008
2009	return next & TCP_ACTION_FIN;
2010}
2011
2012/*
2013 *	Shutdown the sending side of a connection. Much like close except
2014 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2015 */
2016
2017void tcp_shutdown(struct sock *sk, int how)
2018{
2019	/*	We need to grab some memory, and put together a FIN,
2020	 *	and then put it into the queue to be sent.
2021	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2022	 */
2023	if (!(how & SEND_SHUTDOWN))
2024		return;
2025
2026	/* If we've already sent a FIN, or it's a closed state, skip this. */
2027	if ((1 << sk->sk_state) &
2028	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2029	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2030		/* Clear out any half completed packets.  FIN if needed. */
2031		if (tcp_close_state(sk))
2032			tcp_send_fin(sk);
2033	}
2034}
2035EXPORT_SYMBOL(tcp_shutdown);
2036
2037bool tcp_check_oom(struct sock *sk, int shift)
2038{
2039	bool too_many_orphans, out_of_socket_memory;
2040
2041	too_many_orphans = tcp_too_many_orphans(sk, shift);
2042	out_of_socket_memory = tcp_out_of_memory(sk);
2043
2044	if (too_many_orphans)
2045		net_info_ratelimited("too many orphaned sockets\n");
2046	if (out_of_socket_memory)
2047		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2048	return too_many_orphans || out_of_socket_memory;
2049}
2050
2051void tcp_close(struct sock *sk, long timeout)
2052{
2053	struct sk_buff *skb;
2054	int data_was_unread = 0;
2055	int state;
2056
2057	lock_sock(sk);
2058	sk->sk_shutdown = SHUTDOWN_MASK;
2059
2060	if (sk->sk_state == TCP_LISTEN) {
2061		tcp_set_state(sk, TCP_CLOSE);
2062
2063		/* Special case. */
2064		inet_csk_listen_stop(sk);
2065
2066		goto adjudge_to_death;
2067	}
2068
2069	/*  We need to flush the recv. buffs.  We do this only on the
2070	 *  descriptor close, not protocol-sourced closes, because the
2071	 *  reader process may not have drained the data yet!
2072	 */
2073	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2074		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2075			  tcp_hdr(skb)->fin;
2076		data_was_unread += len;
2077		__kfree_skb(skb);
2078	}
2079
2080	sk_mem_reclaim(sk);
2081
2082	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2083	if (sk->sk_state == TCP_CLOSE)
2084		goto adjudge_to_death;
2085
2086	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2087	 * data was lost. To witness the awful effects of the old behavior of
2088	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2089	 * GET in an FTP client, suspend the process, wait for the client to
2090	 * advertise a zero window, then kill -9 the FTP client, wheee...
2091	 * Note: timeout is always zero in such a case.
2092	 */
2093	if (unlikely(tcp_sk(sk)->repair)) {
2094		sk->sk_prot->disconnect(sk, 0);
2095	} else if (data_was_unread) {
2096		/* Unread data was tossed, zap the connection. */
2097		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2098		tcp_set_state(sk, TCP_CLOSE);
2099		tcp_send_active_reset(sk, sk->sk_allocation);
2100	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2101		/* Check zero linger _after_ checking for unread data. */
2102		sk->sk_prot->disconnect(sk, 0);
2103		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2104	} else if (tcp_close_state(sk)) {
2105		/* We FIN if the application ate all the data before
2106		 * zapping the connection.
2107		 */
2108
2109		/* RED-PEN. Formally speaking, we have broken TCP state
2110		 * machine. State transitions:
2111		 *
2112		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2113		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2114		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2115		 *
2116		 * are legal only when FIN has been sent (i.e. in window),
2117		 * rather than queued out of window. Purists blame.
2118		 *
2119		 * F.e. "RFC state" is ESTABLISHED,
2120		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2121		 *
2122		 * The visible declinations are that sometimes
2123		 * we enter time-wait state, when it is not required really
2124		 * (harmless), do not send active resets, when they are
2125		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2126		 * they look as CLOSING or LAST_ACK for Linux)
2127		 * Probably, I missed some more holelets.
2128		 * 						--ANK
2129		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2130		 * in a single packet! (May consider it later but will
2131		 * probably need API support or TCP_CORK SYN-ACK until
2132		 * data is written and socket is closed.)
2133		 */
2134		tcp_send_fin(sk);
2135	}
2136
2137	sk_stream_wait_close(sk, timeout);
2138
2139adjudge_to_death:
2140	state = sk->sk_state;
2141	sock_hold(sk);
2142	sock_orphan(sk);
2143
2144	/* It is the last release_sock in its life. It will remove backlog. */
2145	release_sock(sk);
2146
2147
2148	/* Now socket is owned by kernel and we acquire BH lock
2149	   to finish close. No need to check for user refs.
2150	 */
2151	local_bh_disable();
2152	bh_lock_sock(sk);
2153	WARN_ON(sock_owned_by_user(sk));
2154
2155	percpu_counter_inc(sk->sk_prot->orphan_count);
2156
2157	/* Have we already been destroyed by a softirq or backlog? */
2158	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2159		goto out;
2160
2161	/*	This is a (useful) BSD violating of the RFC. There is a
2162	 *	problem with TCP as specified in that the other end could
2163	 *	keep a socket open forever with no application left this end.
2164	 *	We use a 3 minute timeout (about the same as BSD) then kill
2165	 *	our end. If they send after that then tough - BUT: long enough
2166	 *	that we won't make the old 4*rto = almost no time - whoops
2167	 *	reset mistake.
2168	 *
2169	 *	Nope, it was not mistake. It is really desired behaviour
2170	 *	f.e. on http servers, when such sockets are useless, but
2171	 *	consume significant resources. Let's do it with special
2172	 *	linger2	option.					--ANK
2173	 */
2174
2175	if (sk->sk_state == TCP_FIN_WAIT2) {
2176		struct tcp_sock *tp = tcp_sk(sk);
2177		if (tp->linger2 < 0) {
2178			tcp_set_state(sk, TCP_CLOSE);
2179			tcp_send_active_reset(sk, GFP_ATOMIC);
2180			NET_INC_STATS_BH(sock_net(sk),
2181					LINUX_MIB_TCPABORTONLINGER);
2182		} else {
2183			const int tmo = tcp_fin_time(sk);
2184
2185			if (tmo > TCP_TIMEWAIT_LEN) {
2186				inet_csk_reset_keepalive_timer(sk,
2187						tmo - TCP_TIMEWAIT_LEN);
2188			} else {
2189				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2190				goto out;
2191			}
2192		}
2193	}
2194	if (sk->sk_state != TCP_CLOSE) {
2195		sk_mem_reclaim(sk);
2196		if (tcp_check_oom(sk, 0)) {
2197			tcp_set_state(sk, TCP_CLOSE);
2198			tcp_send_active_reset(sk, GFP_ATOMIC);
2199			NET_INC_STATS_BH(sock_net(sk),
2200					LINUX_MIB_TCPABORTONMEMORY);
2201		}
2202	}
2203
2204	if (sk->sk_state == TCP_CLOSE) {
2205		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2206		/* We could get here with a non-NULL req if the socket is
2207		 * aborted (e.g., closed with unread data) before 3WHS
2208		 * finishes.
2209		 */
2210		if (req != NULL)
2211			reqsk_fastopen_remove(sk, req, false);
2212		inet_csk_destroy_sock(sk);
2213	}
2214	/* Otherwise, socket is reprieved until protocol close. */
2215
2216out:
2217	bh_unlock_sock(sk);
2218	local_bh_enable();
2219	sock_put(sk);
2220}
2221EXPORT_SYMBOL(tcp_close);
2222
2223/* These states need RST on ABORT according to RFC793 */
2224
2225static inline bool tcp_need_reset(int state)
2226{
2227	return (1 << state) &
2228	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2229		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2230}
2231
2232int tcp_disconnect(struct sock *sk, int flags)
2233{
2234	struct inet_sock *inet = inet_sk(sk);
2235	struct inet_connection_sock *icsk = inet_csk(sk);
2236	struct tcp_sock *tp = tcp_sk(sk);
2237	int err = 0;
2238	int old_state = sk->sk_state;
2239
2240	if (old_state != TCP_CLOSE)
2241		tcp_set_state(sk, TCP_CLOSE);
2242
2243	/* ABORT function of RFC793 */
2244	if (old_state == TCP_LISTEN) {
2245		inet_csk_listen_stop(sk);
2246	} else if (unlikely(tp->repair)) {
2247		sk->sk_err = ECONNABORTED;
2248	} else if (tcp_need_reset(old_state) ||
2249		   (tp->snd_nxt != tp->write_seq &&
2250		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2251		/* The last check adjusts for discrepancy of Linux wrt. RFC
2252		 * states
2253		 */
2254		tcp_send_active_reset(sk, gfp_any());
2255		sk->sk_err = ECONNRESET;
2256	} else if (old_state == TCP_SYN_SENT)
2257		sk->sk_err = ECONNRESET;
2258
2259	tcp_clear_xmit_timers(sk);
2260	__skb_queue_purge(&sk->sk_receive_queue);
2261	tcp_write_queue_purge(sk);
2262	__skb_queue_purge(&tp->out_of_order_queue);
2263#ifdef CONFIG_NET_DMA
2264	__skb_queue_purge(&sk->sk_async_wait_queue);
2265#endif
2266
2267	inet->inet_dport = 0;
2268
2269	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2270		inet_reset_saddr(sk);
2271
2272	sk->sk_shutdown = 0;
2273	sock_reset_flag(sk, SOCK_DONE);
2274	tp->srtt = 0;
2275	if ((tp->write_seq += tp->max_window + 2) == 0)
2276		tp->write_seq = 1;
2277	icsk->icsk_backoff = 0;
2278	tp->snd_cwnd = 2;
2279	icsk->icsk_probes_out = 0;
2280	tp->packets_out = 0;
2281	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2282	tp->snd_cwnd_cnt = 0;
2283	tp->bytes_acked = 0;
2284	tp->window_clamp = 0;
2285	tcp_set_ca_state(sk, TCP_CA_Open);
2286	tcp_clear_retrans(tp);
2287	inet_csk_delack_init(sk);
2288	tcp_init_send_head(sk);
2289	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2290	__sk_dst_reset(sk);
2291
2292	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2293
2294	sk->sk_error_report(sk);
2295	return err;
2296}
2297EXPORT_SYMBOL(tcp_disconnect);
2298
2299void tcp_sock_destruct(struct sock *sk)
2300{
2301	inet_sock_destruct(sk);
2302
2303	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2304}
2305
2306static inline bool tcp_can_repair_sock(const struct sock *sk)
2307{
2308	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2309		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2310}
2311
2312static int tcp_repair_options_est(struct tcp_sock *tp,
2313		struct tcp_repair_opt __user *optbuf, unsigned int len)
2314{
2315	struct tcp_repair_opt opt;
2316
2317	while (len >= sizeof(opt)) {
2318		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2319			return -EFAULT;
2320
2321		optbuf++;
2322		len -= sizeof(opt);
2323
2324		switch (opt.opt_code) {
2325		case TCPOPT_MSS:
2326			tp->rx_opt.mss_clamp = opt.opt_val;
2327			break;
2328		case TCPOPT_WINDOW:
2329			{
2330				u16 snd_wscale = opt.opt_val & 0xFFFF;
2331				u16 rcv_wscale = opt.opt_val >> 16;
2332
2333				if (snd_wscale > 14 || rcv_wscale > 14)
2334					return -EFBIG;
2335
2336				tp->rx_opt.snd_wscale = snd_wscale;
2337				tp->rx_opt.rcv_wscale = rcv_wscale;
2338				tp->rx_opt.wscale_ok = 1;
2339			}
2340			break;
2341		case TCPOPT_SACK_PERM:
2342			if (opt.opt_val != 0)
2343				return -EINVAL;
2344
2345			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2346			if (sysctl_tcp_fack)
2347				tcp_enable_fack(tp);
2348			break;
2349		case TCPOPT_TIMESTAMP:
2350			if (opt.opt_val != 0)
2351				return -EINVAL;
2352
2353			tp->rx_opt.tstamp_ok = 1;
2354			break;
2355		}
2356	}
2357
2358	return 0;
2359}
2360
2361/*
2362 *	Socket option code for TCP.
2363 */
2364static int do_tcp_setsockopt(struct sock *sk, int level,
2365		int optname, char __user *optval, unsigned int optlen)
2366{
2367	struct tcp_sock *tp = tcp_sk(sk);
2368	struct inet_connection_sock *icsk = inet_csk(sk);
2369	int val;
2370	int err = 0;
2371
2372	/* These are data/string values, all the others are ints */
2373	switch (optname) {
2374	case TCP_CONGESTION: {
2375		char name[TCP_CA_NAME_MAX];
2376
2377		if (optlen < 1)
2378			return -EINVAL;
2379
2380		val = strncpy_from_user(name, optval,
2381					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2382		if (val < 0)
2383			return -EFAULT;
2384		name[val] = 0;
2385
2386		lock_sock(sk);
2387		err = tcp_set_congestion_control(sk, name);
2388		release_sock(sk);
2389		return err;
2390	}
2391	case TCP_COOKIE_TRANSACTIONS: {
2392		struct tcp_cookie_transactions ctd;
2393		struct tcp_cookie_values *cvp = NULL;
2394
2395		if (sizeof(ctd) > optlen)
2396			return -EINVAL;
2397		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2398			return -EFAULT;
2399
2400		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2401		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2402			return -EINVAL;
2403
2404		if (ctd.tcpct_cookie_desired == 0) {
2405			/* default to global value */
2406		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2407			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2408			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2409			return -EINVAL;
2410		}
2411
2412		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2413			/* Supercedes all other values */
2414			lock_sock(sk);
2415			if (tp->cookie_values != NULL) {
2416				kref_put(&tp->cookie_values->kref,
2417					 tcp_cookie_values_release);
2418				tp->cookie_values = NULL;
2419			}
2420			tp->rx_opt.cookie_in_always = 0; /* false */
2421			tp->rx_opt.cookie_out_never = 1; /* true */
2422			release_sock(sk);
2423			return err;
2424		}
2425
2426		/* Allocate ancillary memory before locking.
2427		 */
2428		if (ctd.tcpct_used > 0 ||
2429		    (tp->cookie_values == NULL &&
2430		     (sysctl_tcp_cookie_size > 0 ||
2431		      ctd.tcpct_cookie_desired > 0 ||
2432		      ctd.tcpct_s_data_desired > 0))) {
2433			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2434				      GFP_KERNEL);
2435			if (cvp == NULL)
2436				return -ENOMEM;
2437
2438			kref_init(&cvp->kref);
2439		}
2440		lock_sock(sk);
2441		tp->rx_opt.cookie_in_always =
2442			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2443		tp->rx_opt.cookie_out_never = 0; /* false */
2444
2445		if (tp->cookie_values != NULL) {
2446			if (cvp != NULL) {
2447				/* Changed values are recorded by a changed
2448				 * pointer, ensuring the cookie will differ,
2449				 * without separately hashing each value later.
2450				 */
2451				kref_put(&tp->cookie_values->kref,
2452					 tcp_cookie_values_release);
2453			} else {
2454				cvp = tp->cookie_values;
2455			}
2456		}
2457
2458		if (cvp != NULL) {
2459			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2460
2461			if (ctd.tcpct_used > 0) {
2462				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2463				       ctd.tcpct_used);
2464				cvp->s_data_desired = ctd.tcpct_used;
2465				cvp->s_data_constant = 1; /* true */
2466			} else {
2467				/* No constant payload data. */
2468				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2469				cvp->s_data_constant = 0; /* false */
2470			}
2471
2472			tp->cookie_values = cvp;
2473		}
2474		release_sock(sk);
2475		return err;
2476	}
2477	default:
2478		/* fallthru */
2479		break;
2480	}
2481
2482	if (optlen < sizeof(int))
2483		return -EINVAL;
2484
2485	if (get_user(val, (int __user *)optval))
2486		return -EFAULT;
2487
2488	lock_sock(sk);
2489
2490	switch (optname) {
2491	case TCP_MAXSEG:
2492		/* Values greater than interface MTU won't take effect. However
2493		 * at the point when this call is done we typically don't yet
2494		 * know which interface is going to be used */
2495		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2496			err = -EINVAL;
2497			break;
2498		}
2499		tp->rx_opt.user_mss = val;
2500		break;
2501
2502	case TCP_NODELAY:
2503		if (val) {
2504			/* TCP_NODELAY is weaker than TCP_CORK, so that
2505			 * this option on corked socket is remembered, but
2506			 * it is not activated until cork is cleared.
2507			 *
2508			 * However, when TCP_NODELAY is set we make
2509			 * an explicit push, which overrides even TCP_CORK
2510			 * for currently queued segments.
2511			 */
2512			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2513			tcp_push_pending_frames(sk);
2514		} else {
2515			tp->nonagle &= ~TCP_NAGLE_OFF;
2516		}
2517		break;
2518
2519	case TCP_THIN_LINEAR_TIMEOUTS:
2520		if (val < 0 || val > 1)
2521			err = -EINVAL;
2522		else
2523			tp->thin_lto = val;
2524		break;
2525
2526	case TCP_THIN_DUPACK:
2527		if (val < 0 || val > 1)
2528			err = -EINVAL;
2529		else
2530			tp->thin_dupack = val;
2531			if (tp->thin_dupack)
2532				tcp_disable_early_retrans(tp);
2533		break;
2534
2535	case TCP_REPAIR:
2536		if (!tcp_can_repair_sock(sk))
2537			err = -EPERM;
2538		else if (val == 1) {
2539			tp->repair = 1;
2540			sk->sk_reuse = SK_FORCE_REUSE;
2541			tp->repair_queue = TCP_NO_QUEUE;
2542		} else if (val == 0) {
2543			tp->repair = 0;
2544			sk->sk_reuse = SK_NO_REUSE;
2545			tcp_send_window_probe(sk);
2546		} else
2547			err = -EINVAL;
2548
2549		break;
2550
2551	case TCP_REPAIR_QUEUE:
2552		if (!tp->repair)
2553			err = -EPERM;
2554		else if (val < TCP_QUEUES_NR)
2555			tp->repair_queue = val;
2556		else
2557			err = -EINVAL;
2558		break;
2559
2560	case TCP_QUEUE_SEQ:
2561		if (sk->sk_state != TCP_CLOSE)
2562			err = -EPERM;
2563		else if (tp->repair_queue == TCP_SEND_QUEUE)
2564			tp->write_seq = val;
2565		else if (tp->repair_queue == TCP_RECV_QUEUE)
2566			tp->rcv_nxt = val;
2567		else
2568			err = -EINVAL;
2569		break;
2570
2571	case TCP_REPAIR_OPTIONS:
2572		if (!tp->repair)
2573			err = -EINVAL;
2574		else if (sk->sk_state == TCP_ESTABLISHED)
2575			err = tcp_repair_options_est(tp,
2576					(struct tcp_repair_opt __user *)optval,
2577					optlen);
2578		else
2579			err = -EPERM;
2580		break;
2581
2582	case TCP_CORK:
2583		/* When set indicates to always queue non-full frames.
2584		 * Later the user clears this option and we transmit
2585		 * any pending partial frames in the queue.  This is
2586		 * meant to be used alongside sendfile() to get properly
2587		 * filled frames when the user (for example) must write
2588		 * out headers with a write() call first and then use
2589		 * sendfile to send out the data parts.
2590		 *
2591		 * TCP_CORK can be set together with TCP_NODELAY and it is
2592		 * stronger than TCP_NODELAY.
2593		 */
2594		if (val) {
2595			tp->nonagle |= TCP_NAGLE_CORK;
2596		} else {
2597			tp->nonagle &= ~TCP_NAGLE_CORK;
2598			if (tp->nonagle&TCP_NAGLE_OFF)
2599				tp->nonagle |= TCP_NAGLE_PUSH;
2600			tcp_push_pending_frames(sk);
2601		}
2602		break;
2603
2604	case TCP_KEEPIDLE:
2605		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2606			err = -EINVAL;
2607		else {
2608			tp->keepalive_time = val * HZ;
2609			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2610			    !((1 << sk->sk_state) &
2611			      (TCPF_CLOSE | TCPF_LISTEN))) {
2612				u32 elapsed = keepalive_time_elapsed(tp);
2613				if (tp->keepalive_time > elapsed)
2614					elapsed = tp->keepalive_time - elapsed;
2615				else
2616					elapsed = 0;
2617				inet_csk_reset_keepalive_timer(sk, elapsed);
2618			}
2619		}
2620		break;
2621	case TCP_KEEPINTVL:
2622		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2623			err = -EINVAL;
2624		else
2625			tp->keepalive_intvl = val * HZ;
2626		break;
2627	case TCP_KEEPCNT:
2628		if (val < 1 || val > MAX_TCP_KEEPCNT)
2629			err = -EINVAL;
2630		else
2631			tp->keepalive_probes = val;
2632		break;
2633	case TCP_SYNCNT:
2634		if (val < 1 || val > MAX_TCP_SYNCNT)
2635			err = -EINVAL;
2636		else
2637			icsk->icsk_syn_retries = val;
2638		break;
2639
2640	case TCP_LINGER2:
2641		if (val < 0)
2642			tp->linger2 = -1;
2643		else if (val > sysctl_tcp_fin_timeout / HZ)
2644			tp->linger2 = 0;
2645		else
2646			tp->linger2 = val * HZ;
2647		break;
2648
2649	case TCP_DEFER_ACCEPT:
2650		/* Translate value in seconds to number of retransmits */
2651		icsk->icsk_accept_queue.rskq_defer_accept =
2652			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2653					TCP_RTO_MAX / HZ);
2654		break;
2655
2656	case TCP_WINDOW_CLAMP:
2657		if (!val) {
2658			if (sk->sk_state != TCP_CLOSE) {
2659				err = -EINVAL;
2660				break;
2661			}
2662			tp->window_clamp = 0;
2663		} else
2664			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2665						SOCK_MIN_RCVBUF / 2 : val;
2666		break;
2667
2668	case TCP_QUICKACK:
2669		if (!val) {
2670			icsk->icsk_ack.pingpong = 1;
2671		} else {
2672			icsk->icsk_ack.pingpong = 0;
2673			if ((1 << sk->sk_state) &
2674			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2675			    inet_csk_ack_scheduled(sk)) {
2676				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2677				tcp_cleanup_rbuf(sk, 1);
2678				if (!(val & 1))
2679					icsk->icsk_ack.pingpong = 1;
2680			}
2681		}
2682		break;
2683
2684#ifdef CONFIG_TCP_MD5SIG
2685	case TCP_MD5SIG:
2686		/* Read the IP->Key mappings from userspace */
2687		err = tp->af_specific->md5_parse(sk, optval, optlen);
2688		break;
2689#endif
2690	case TCP_USER_TIMEOUT:
2691		/* Cap the max timeout in ms TCP will retry/retrans
2692		 * before giving up and aborting (ETIMEDOUT) a connection.
2693		 */
2694		if (val < 0)
2695			err = -EINVAL;
2696		else
2697			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2698		break;
2699
2700	case TCP_FASTOPEN:
2701		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2702		    TCPF_LISTEN)))
2703			err = fastopen_init_queue(sk, val);
2704		else
2705			err = -EINVAL;
2706		break;
2707	default:
2708		err = -ENOPROTOOPT;
2709		break;
2710	}
2711
2712	release_sock(sk);
2713	return err;
2714}
2715
2716int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2717		   unsigned int optlen)
2718{
2719	const struct inet_connection_sock *icsk = inet_csk(sk);
2720
2721	if (level != SOL_TCP)
2722		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2723						     optval, optlen);
2724	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2725}
2726EXPORT_SYMBOL(tcp_setsockopt);
2727
2728#ifdef CONFIG_COMPAT
2729int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2730			  char __user *optval, unsigned int optlen)
2731{
2732	if (level != SOL_TCP)
2733		return inet_csk_compat_setsockopt(sk, level, optname,
2734						  optval, optlen);
2735	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2736}
2737EXPORT_SYMBOL(compat_tcp_setsockopt);
2738#endif
2739
2740/* Return information about state of tcp endpoint in API format. */
2741void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2742{
2743	const struct tcp_sock *tp = tcp_sk(sk);
2744	const struct inet_connection_sock *icsk = inet_csk(sk);
2745	u32 now = tcp_time_stamp;
2746
2747	memset(info, 0, sizeof(*info));
2748
2749	info->tcpi_state = sk->sk_state;
2750	info->tcpi_ca_state = icsk->icsk_ca_state;
2751	info->tcpi_retransmits = icsk->icsk_retransmits;
2752	info->tcpi_probes = icsk->icsk_probes_out;
2753	info->tcpi_backoff = icsk->icsk_backoff;
2754
2755	if (tp->rx_opt.tstamp_ok)
2756		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2757	if (tcp_is_sack(tp))
2758		info->tcpi_options |= TCPI_OPT_SACK;
2759	if (tp->rx_opt.wscale_ok) {
2760		info->tcpi_options |= TCPI_OPT_WSCALE;
2761		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2762		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2763	}
2764
2765	if (tp->ecn_flags & TCP_ECN_OK)
2766		info->tcpi_options |= TCPI_OPT_ECN;
2767	if (tp->ecn_flags & TCP_ECN_SEEN)
2768		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2769	if (tp->syn_data_acked)
2770		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2771
2772	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2773	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2774	info->tcpi_snd_mss = tp->mss_cache;
2775	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2776
2777	if (sk->sk_state == TCP_LISTEN) {
2778		info->tcpi_unacked = sk->sk_ack_backlog;
2779		info->tcpi_sacked = sk->sk_max_ack_backlog;
2780	} else {
2781		info->tcpi_unacked = tp->packets_out;
2782		info->tcpi_sacked = tp->sacked_out;
2783	}
2784	info->tcpi_lost = tp->lost_out;
2785	info->tcpi_retrans = tp->retrans_out;
2786	info->tcpi_fackets = tp->fackets_out;
2787
2788	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2789	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2790	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2791
2792	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2793	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2794	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2795	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2796	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2797	info->tcpi_snd_cwnd = tp->snd_cwnd;
2798	info->tcpi_advmss = tp->advmss;
2799	info->tcpi_reordering = tp->reordering;
2800
2801	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2802	info->tcpi_rcv_space = tp->rcvq_space.space;
2803
2804	info->tcpi_total_retrans = tp->total_retrans;
2805}
2806EXPORT_SYMBOL_GPL(tcp_get_info);
2807
2808static int do_tcp_getsockopt(struct sock *sk, int level,
2809		int optname, char __user *optval, int __user *optlen)
2810{
2811	struct inet_connection_sock *icsk = inet_csk(sk);
2812	struct tcp_sock *tp = tcp_sk(sk);
2813	int val, len;
2814
2815	if (get_user(len, optlen))
2816		return -EFAULT;
2817
2818	len = min_t(unsigned int, len, sizeof(int));
2819
2820	if (len < 0)
2821		return -EINVAL;
2822
2823	switch (optname) {
2824	case TCP_MAXSEG:
2825		val = tp->mss_cache;
2826		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2827			val = tp->rx_opt.user_mss;
2828		if (tp->repair)
2829			val = tp->rx_opt.mss_clamp;
2830		break;
2831	case TCP_NODELAY:
2832		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2833		break;
2834	case TCP_CORK:
2835		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2836		break;
2837	case TCP_KEEPIDLE:
2838		val = keepalive_time_when(tp) / HZ;
2839		break;
2840	case TCP_KEEPINTVL:
2841		val = keepalive_intvl_when(tp) / HZ;
2842		break;
2843	case TCP_KEEPCNT:
2844		val = keepalive_probes(tp);
2845		break;
2846	case TCP_SYNCNT:
2847		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2848		break;
2849	case TCP_LINGER2:
2850		val = tp->linger2;
2851		if (val >= 0)
2852			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2853		break;
2854	case TCP_DEFER_ACCEPT:
2855		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2856				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2857		break;
2858	case TCP_WINDOW_CLAMP:
2859		val = tp->window_clamp;
2860		break;
2861	case TCP_INFO: {
2862		struct tcp_info info;
2863
2864		if (get_user(len, optlen))
2865			return -EFAULT;
2866
2867		tcp_get_info(sk, &info);
2868
2869		len = min_t(unsigned int, len, sizeof(info));
2870		if (put_user(len, optlen))
2871			return -EFAULT;
2872		if (copy_to_user(optval, &info, len))
2873			return -EFAULT;
2874		return 0;
2875	}
2876	case TCP_QUICKACK:
2877		val = !icsk->icsk_ack.pingpong;
2878		break;
2879
2880	case TCP_CONGESTION:
2881		if (get_user(len, optlen))
2882			return -EFAULT;
2883		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2884		if (put_user(len, optlen))
2885			return -EFAULT;
2886		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2887			return -EFAULT;
2888		return 0;
2889
2890	case TCP_COOKIE_TRANSACTIONS: {
2891		struct tcp_cookie_transactions ctd;
2892		struct tcp_cookie_values *cvp = tp->cookie_values;
2893
2894		if (get_user(len, optlen))
2895			return -EFAULT;
2896		if (len < sizeof(ctd))
2897			return -EINVAL;
2898
2899		memset(&ctd, 0, sizeof(ctd));
2900		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2901				   TCP_COOKIE_IN_ALWAYS : 0)
2902				| (tp->rx_opt.cookie_out_never ?
2903				   TCP_COOKIE_OUT_NEVER : 0);
2904
2905		if (cvp != NULL) {
2906			ctd.tcpct_flags |= (cvp->s_data_in ?
2907					    TCP_S_DATA_IN : 0)
2908					 | (cvp->s_data_out ?
2909					    TCP_S_DATA_OUT : 0);
2910
2911			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2912			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2913
2914			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2915			       cvp->cookie_pair_size);
2916			ctd.tcpct_used = cvp->cookie_pair_size;
2917		}
2918
2919		if (put_user(sizeof(ctd), optlen))
2920			return -EFAULT;
2921		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2922			return -EFAULT;
2923		return 0;
2924	}
2925	case TCP_THIN_LINEAR_TIMEOUTS:
2926		val = tp->thin_lto;
2927		break;
2928	case TCP_THIN_DUPACK:
2929		val = tp->thin_dupack;
2930		break;
2931
2932	case TCP_REPAIR:
2933		val = tp->repair;
2934		break;
2935
2936	case TCP_REPAIR_QUEUE:
2937		if (tp->repair)
2938			val = tp->repair_queue;
2939		else
2940			return -EINVAL;
2941		break;
2942
2943	case TCP_QUEUE_SEQ:
2944		if (tp->repair_queue == TCP_SEND_QUEUE)
2945			val = tp->write_seq;
2946		else if (tp->repair_queue == TCP_RECV_QUEUE)
2947			val = tp->rcv_nxt;
2948		else
2949			return -EINVAL;
2950		break;
2951
2952	case TCP_USER_TIMEOUT:
2953		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2954		break;
2955	default:
2956		return -ENOPROTOOPT;
2957	}
2958
2959	if (put_user(len, optlen))
2960		return -EFAULT;
2961	if (copy_to_user(optval, &val, len))
2962		return -EFAULT;
2963	return 0;
2964}
2965
2966int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2967		   int __user *optlen)
2968{
2969	struct inet_connection_sock *icsk = inet_csk(sk);
2970
2971	if (level != SOL_TCP)
2972		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2973						     optval, optlen);
2974	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2975}
2976EXPORT_SYMBOL(tcp_getsockopt);
2977
2978#ifdef CONFIG_COMPAT
2979int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2980			  char __user *optval, int __user *optlen)
2981{
2982	if (level != SOL_TCP)
2983		return inet_csk_compat_getsockopt(sk, level, optname,
2984						  optval, optlen);
2985	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2986}
2987EXPORT_SYMBOL(compat_tcp_getsockopt);
2988#endif
2989
2990struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2991	netdev_features_t features)
2992{
2993	struct sk_buff *segs = ERR_PTR(-EINVAL);
2994	struct tcphdr *th;
2995	unsigned int thlen;
2996	unsigned int seq;
2997	__be32 delta;
2998	unsigned int oldlen;
2999	unsigned int mss;
3000
3001	if (!pskb_may_pull(skb, sizeof(*th)))
3002		goto out;
3003
3004	th = tcp_hdr(skb);
3005	thlen = th->doff * 4;
3006	if (thlen < sizeof(*th))
3007		goto out;
3008
3009	if (!pskb_may_pull(skb, thlen))
3010		goto out;
3011
3012	oldlen = (u16)~skb->len;
3013	__skb_pull(skb, thlen);
3014
3015	mss = skb_shinfo(skb)->gso_size;
3016	if (unlikely(skb->len <= mss))
3017		goto out;
3018
3019	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
3020		/* Packet is from an untrusted source, reset gso_segs. */
3021		int type = skb_shinfo(skb)->gso_type;
3022
3023		if (unlikely(type &
3024			     ~(SKB_GSO_TCPV4 |
3025			       SKB_GSO_DODGY |
3026			       SKB_GSO_TCP_ECN |
3027			       SKB_GSO_TCPV6 |
3028			       0) ||
3029			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3030			goto out;
3031
3032		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3033
3034		segs = NULL;
3035		goto out;
3036	}
3037
3038	segs = skb_segment(skb, features);
3039	if (IS_ERR(segs))
3040		goto out;
3041
3042	delta = htonl(oldlen + (thlen + mss));
3043
3044	skb = segs;
3045	th = tcp_hdr(skb);
3046	seq = ntohl(th->seq);
3047
3048	do {
3049		th->fin = th->psh = 0;
3050
3051		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3052				       (__force u32)delta));
3053		if (skb->ip_summed != CHECKSUM_PARTIAL)
3054			th->check =
3055			     csum_fold(csum_partial(skb_transport_header(skb),
3056						    thlen, skb->csum));
3057
3058		seq += mss;
3059		skb = skb->next;
3060		th = tcp_hdr(skb);
3061
3062		th->seq = htonl(seq);
3063		th->cwr = 0;
3064	} while (skb->next);
3065
3066	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3067		      skb->data_len);
3068	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3069				(__force u32)delta));
3070	if (skb->ip_summed != CHECKSUM_PARTIAL)
3071		th->check = csum_fold(csum_partial(skb_transport_header(skb),
3072						   thlen, skb->csum));
3073
3074out:
3075	return segs;
3076}
3077EXPORT_SYMBOL(tcp_tso_segment);
3078
3079struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3080{
3081	struct sk_buff **pp = NULL;
3082	struct sk_buff *p;
3083	struct tcphdr *th;
3084	struct tcphdr *th2;
3085	unsigned int len;
3086	unsigned int thlen;
3087	__be32 flags;
3088	unsigned int mss = 1;
3089	unsigned int hlen;
3090	unsigned int off;
3091	int flush = 1;
3092	int i;
3093
3094	off = skb_gro_offset(skb);
3095	hlen = off + sizeof(*th);
3096	th = skb_gro_header_fast(skb, off);
3097	if (skb_gro_header_hard(skb, hlen)) {
3098		th = skb_gro_header_slow(skb, hlen, off);
3099		if (unlikely(!th))
3100			goto out;
3101	}
3102
3103	thlen = th->doff * 4;
3104	if (thlen < sizeof(*th))
3105		goto out;
3106
3107	hlen = off + thlen;
3108	if (skb_gro_header_hard(skb, hlen)) {
3109		th = skb_gro_header_slow(skb, hlen, off);
3110		if (unlikely(!th))
3111			goto out;
3112	}
3113
3114	skb_gro_pull(skb, thlen);
3115
3116	len = skb_gro_len(skb);
3117	flags = tcp_flag_word(th);
3118
3119	for (; (p = *head); head = &p->next) {
3120		if (!NAPI_GRO_CB(p)->same_flow)
3121			continue;
3122
3123		th2 = tcp_hdr(p);
3124
3125		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3126			NAPI_GRO_CB(p)->same_flow = 0;
3127			continue;
3128		}
3129
3130		goto found;
3131	}
3132
3133	goto out_check_final;
3134
3135found:
3136	flush = NAPI_GRO_CB(p)->flush;
3137	flush |= (__force int)(flags & TCP_FLAG_CWR);
3138	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3139		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3140	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3141	for (i = sizeof(*th); i < thlen; i += 4)
3142		flush |= *(u32 *)((u8 *)th + i) ^
3143			 *(u32 *)((u8 *)th2 + i);
3144
3145	mss = skb_shinfo(p)->gso_size;
3146
3147	flush |= (len - 1) >= mss;
3148	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3149
3150	if (flush || skb_gro_receive(head, skb)) {
3151		mss = 1;
3152		goto out_check_final;
3153	}
3154
3155	p = *head;
3156	th2 = tcp_hdr(p);
3157	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3158
3159out_check_final:
3160	flush = len < mss;
3161	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3162					TCP_FLAG_RST | TCP_FLAG_SYN |
3163					TCP_FLAG_FIN));
3164
3165	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3166		pp = head;
3167
3168out:
3169	NAPI_GRO_CB(skb)->flush |= flush;
3170
3171	return pp;
3172}
3173EXPORT_SYMBOL(tcp_gro_receive);
3174
3175int tcp_gro_complete(struct sk_buff *skb)
3176{
3177	struct tcphdr *th = tcp_hdr(skb);
3178
3179	skb->csum_start = skb_transport_header(skb) - skb->head;
3180	skb->csum_offset = offsetof(struct tcphdr, check);
3181	skb->ip_summed = CHECKSUM_PARTIAL;
3182
3183	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3184
3185	if (th->cwr)
3186		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3187
3188	return 0;
3189}
3190EXPORT_SYMBOL(tcp_gro_complete);
3191
3192#ifdef CONFIG_TCP_MD5SIG
3193static unsigned long tcp_md5sig_users;
3194static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3195static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3196
3197static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3198{
3199	int cpu;
3200
3201	for_each_possible_cpu(cpu) {
3202		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3203
3204		if (p->md5_desc.tfm)
3205			crypto_free_hash(p->md5_desc.tfm);
3206	}
3207	free_percpu(pool);
3208}
3209
3210void tcp_free_md5sig_pool(void)
3211{
3212	struct tcp_md5sig_pool __percpu *pool = NULL;
3213
3214	spin_lock_bh(&tcp_md5sig_pool_lock);
3215	if (--tcp_md5sig_users == 0) {
3216		pool = tcp_md5sig_pool;
3217		tcp_md5sig_pool = NULL;
3218	}
3219	spin_unlock_bh(&tcp_md5sig_pool_lock);
3220	if (pool)
3221		__tcp_free_md5sig_pool(pool);
3222}
3223EXPORT_SYMBOL(tcp_free_md5sig_pool);
3224
3225static struct tcp_md5sig_pool __percpu *
3226__tcp_alloc_md5sig_pool(struct sock *sk)
3227{
3228	int cpu;
3229	struct tcp_md5sig_pool __percpu *pool;
3230
3231	pool = alloc_percpu(struct tcp_md5sig_pool);
3232	if (!pool)
3233		return NULL;
3234
3235	for_each_possible_cpu(cpu) {
3236		struct crypto_hash *hash;
3237
3238		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3239		if (!hash || IS_ERR(hash))
3240			goto out_free;
3241
3242		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3243	}
3244	return pool;
3245out_free:
3246	__tcp_free_md5sig_pool(pool);
3247	return NULL;
3248}
3249
3250struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3251{
3252	struct tcp_md5sig_pool __percpu *pool;
3253	bool alloc = false;
3254
3255retry:
3256	spin_lock_bh(&tcp_md5sig_pool_lock);
3257	pool = tcp_md5sig_pool;
3258	if (tcp_md5sig_users++ == 0) {
3259		alloc = true;
3260		spin_unlock_bh(&tcp_md5sig_pool_lock);
3261	} else if (!pool) {
3262		tcp_md5sig_users--;
3263		spin_unlock_bh(&tcp_md5sig_pool_lock);
3264		cpu_relax();
3265		goto retry;
3266	} else
3267		spin_unlock_bh(&tcp_md5sig_pool_lock);
3268
3269	if (alloc) {
3270		/* we cannot hold spinlock here because this may sleep. */
3271		struct tcp_md5sig_pool __percpu *p;
3272
3273		p = __tcp_alloc_md5sig_pool(sk);
3274		spin_lock_bh(&tcp_md5sig_pool_lock);
3275		if (!p) {
3276			tcp_md5sig_users--;
3277			spin_unlock_bh(&tcp_md5sig_pool_lock);
3278			return NULL;
3279		}
3280		pool = tcp_md5sig_pool;
3281		if (pool) {
3282			/* oops, it has already been assigned. */
3283			spin_unlock_bh(&tcp_md5sig_pool_lock);
3284			__tcp_free_md5sig_pool(p);
3285		} else {
3286			tcp_md5sig_pool = pool = p;
3287			spin_unlock_bh(&tcp_md5sig_pool_lock);
3288		}
3289	}
3290	return pool;
3291}
3292EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3293
3294
3295/**
3296 *	tcp_get_md5sig_pool - get md5sig_pool for this user
3297 *
3298 *	We use percpu structure, so if we succeed, we exit with preemption
3299 *	and BH disabled, to make sure another thread or softirq handling
3300 *	wont try to get same context.
3301 */
3302struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3303{
3304	struct tcp_md5sig_pool __percpu *p;
3305
3306	local_bh_disable();
3307
3308	spin_lock(&tcp_md5sig_pool_lock);
3309	p = tcp_md5sig_pool;
3310	if (p)
3311		tcp_md5sig_users++;
3312	spin_unlock(&tcp_md5sig_pool_lock);
3313
3314	if (p)
3315		return this_cpu_ptr(p);
3316
3317	local_bh_enable();
3318	return NULL;
3319}
3320EXPORT_SYMBOL(tcp_get_md5sig_pool);
3321
3322void tcp_put_md5sig_pool(void)
3323{
3324	local_bh_enable();
3325	tcp_free_md5sig_pool();
3326}
3327EXPORT_SYMBOL(tcp_put_md5sig_pool);
3328
3329int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3330			const struct tcphdr *th)
3331{
3332	struct scatterlist sg;
3333	struct tcphdr hdr;
3334	int err;
3335
3336	/* We are not allowed to change tcphdr, make a local copy */
3337	memcpy(&hdr, th, sizeof(hdr));
3338	hdr.check = 0;
3339
3340	/* options aren't included in the hash */
3341	sg_init_one(&sg, &hdr, sizeof(hdr));
3342	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3343	return err;
3344}
3345EXPORT_SYMBOL(tcp_md5_hash_header);
3346
3347int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3348			  const struct sk_buff *skb, unsigned int header_len)
3349{
3350	struct scatterlist sg;
3351	const struct tcphdr *tp = tcp_hdr(skb);
3352	struct hash_desc *desc = &hp->md5_desc;
3353	unsigned int i;
3354	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3355					   skb_headlen(skb) - header_len : 0;
3356	const struct skb_shared_info *shi = skb_shinfo(skb);
3357	struct sk_buff *frag_iter;
3358
3359	sg_init_table(&sg, 1);
3360
3361	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3362	if (crypto_hash_update(desc, &sg, head_data_len))
3363		return 1;
3364
3365	for (i = 0; i < shi->nr_frags; ++i) {
3366		const struct skb_frag_struct *f = &shi->frags[i];
3367		struct page *page = skb_frag_page(f);
3368		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3369		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3370			return 1;
3371	}
3372
3373	skb_walk_frags(skb, frag_iter)
3374		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3375			return 1;
3376
3377	return 0;
3378}
3379EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3380
3381int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3382{
3383	struct scatterlist sg;
3384
3385	sg_init_one(&sg, key->key, key->keylen);
3386	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3387}
3388EXPORT_SYMBOL(tcp_md5_hash_key);
3389
3390#endif
3391
3392/* Each Responder maintains up to two secret values concurrently for
3393 * efficient secret rollover.  Each secret value has 4 states:
3394 *
3395 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3396 *    Generates new Responder-Cookies, but not yet used for primary
3397 *    verification.  This is a short-term state, typically lasting only
3398 *    one round trip time (RTT).
3399 *
3400 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3401 *    Used both for generation and primary verification.
3402 *
3403 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3404 *    Used for verification, until the first failure that can be
3405 *    verified by the newer Generating secret.  At that time, this
3406 *    cookie's state is changed to Secondary, and the Generating
3407 *    cookie's state is changed to Primary.  This is a short-term state,
3408 *    typically lasting only one round trip time (RTT).
3409 *
3410 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3411 *    Used for secondary verification, after primary verification
3412 *    failures.  This state lasts no more than twice the Maximum Segment
3413 *    Lifetime (2MSL).  Then, the secret is discarded.
3414 */
3415struct tcp_cookie_secret {
3416	/* The secret is divided into two parts.  The digest part is the
3417	 * equivalent of previously hashing a secret and saving the state,
3418	 * and serves as an initialization vector (IV).  The message part
3419	 * serves as the trailing secret.
3420	 */
3421	u32				secrets[COOKIE_WORKSPACE_WORDS];
3422	unsigned long			expires;
3423};
3424
3425#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3426#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3427#define TCP_SECRET_LIFE (HZ * 600)
3428
3429static struct tcp_cookie_secret tcp_secret_one;
3430static struct tcp_cookie_secret tcp_secret_two;
3431
3432/* Essentially a circular list, without dynamic allocation. */
3433static struct tcp_cookie_secret *tcp_secret_generating;
3434static struct tcp_cookie_secret *tcp_secret_primary;
3435static struct tcp_cookie_secret *tcp_secret_retiring;
3436static struct tcp_cookie_secret *tcp_secret_secondary;
3437
3438static DEFINE_SPINLOCK(tcp_secret_locker);
3439
3440/* Select a pseudo-random word in the cookie workspace.
3441 */
3442static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3443{
3444	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3445}
3446
3447/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3448 * Called in softirq context.
3449 * Returns: 0 for success.
3450 */
3451int tcp_cookie_generator(u32 *bakery)
3452{
3453	unsigned long jiffy = jiffies;
3454
3455	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3456		spin_lock_bh(&tcp_secret_locker);
3457		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3458			/* refreshed by another */
3459			memcpy(bakery,
3460			       &tcp_secret_generating->secrets[0],
3461			       COOKIE_WORKSPACE_WORDS);
3462		} else {
3463			/* still needs refreshing */
3464			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3465
3466			/* The first time, paranoia assumes that the
3467			 * randomization function isn't as strong.  But,
3468			 * this secret initialization is delayed until
3469			 * the last possible moment (packet arrival).
3470			 * Although that time is observable, it is
3471			 * unpredictably variable.  Mash in the most
3472			 * volatile clock bits available, and expire the
3473			 * secret extra quickly.
3474			 */
3475			if (unlikely(tcp_secret_primary->expires ==
3476				     tcp_secret_secondary->expires)) {
3477				struct timespec tv;
3478
3479				getnstimeofday(&tv);
3480				bakery[COOKIE_DIGEST_WORDS+0] ^=
3481					(u32)tv.tv_nsec;
3482
3483				tcp_secret_secondary->expires = jiffy
3484					+ TCP_SECRET_1MSL
3485					+ (0x0f & tcp_cookie_work(bakery, 0));
3486			} else {
3487				tcp_secret_secondary->expires = jiffy
3488					+ TCP_SECRET_LIFE
3489					+ (0xff & tcp_cookie_work(bakery, 1));
3490				tcp_secret_primary->expires = jiffy
3491					+ TCP_SECRET_2MSL
3492					+ (0x1f & tcp_cookie_work(bakery, 2));
3493			}
3494			memcpy(&tcp_secret_secondary->secrets[0],
3495			       bakery, COOKIE_WORKSPACE_WORDS);
3496
3497			rcu_assign_pointer(tcp_secret_generating,
3498					   tcp_secret_secondary);
3499			rcu_assign_pointer(tcp_secret_retiring,
3500					   tcp_secret_primary);
3501			/*
3502			 * Neither call_rcu() nor synchronize_rcu() needed.
3503			 * Retiring data is not freed.  It is replaced after
3504			 * further (locked) pointer updates, and a quiet time
3505			 * (minimum 1MSL, maximum LIFE - 2MSL).
3506			 */
3507		}
3508		spin_unlock_bh(&tcp_secret_locker);
3509	} else {
3510		rcu_read_lock_bh();
3511		memcpy(bakery,
3512		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3513		       COOKIE_WORKSPACE_WORDS);
3514		rcu_read_unlock_bh();
3515	}
3516	return 0;
3517}
3518EXPORT_SYMBOL(tcp_cookie_generator);
3519
3520void tcp_done(struct sock *sk)
3521{
3522	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3523
3524	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3525		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3526
3527	tcp_set_state(sk, TCP_CLOSE);
3528	tcp_clear_xmit_timers(sk);
3529	if (req != NULL)
3530		reqsk_fastopen_remove(sk, req, false);
3531
3532	sk->sk_shutdown = SHUTDOWN_MASK;
3533
3534	if (!sock_flag(sk, SOCK_DEAD))
3535		sk->sk_state_change(sk);
3536	else
3537		inet_csk_destroy_sock(sk);
3538}
3539EXPORT_SYMBOL_GPL(tcp_done);
3540
3541extern struct tcp_congestion_ops tcp_reno;
3542
3543static __initdata unsigned long thash_entries;
3544static int __init set_thash_entries(char *str)
3545{
3546	ssize_t ret;
3547
3548	if (!str)
3549		return 0;
3550
3551	ret = kstrtoul(str, 0, &thash_entries);
3552	if (ret)
3553		return 0;
3554
3555	return 1;
3556}
3557__setup("thash_entries=", set_thash_entries);
3558
3559void tcp_init_mem(struct net *net)
3560{
3561	unsigned long limit = nr_free_buffer_pages() / 8;
3562	limit = max(limit, 128UL);
3563	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3564	net->ipv4.sysctl_tcp_mem[1] = limit;
3565	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3566}
3567
3568void __init tcp_init(void)
3569{
3570	struct sk_buff *skb = NULL;
3571	unsigned long limit;
3572	int max_rshare, max_wshare, cnt;
3573	unsigned int i;
3574	unsigned long jiffy = jiffies;
3575
3576	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3577
3578	percpu_counter_init(&tcp_sockets_allocated, 0);
3579	percpu_counter_init(&tcp_orphan_count, 0);
3580	tcp_hashinfo.bind_bucket_cachep =
3581		kmem_cache_create("tcp_bind_bucket",
3582				  sizeof(struct inet_bind_bucket), 0,
3583				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3584
3585	/* Size and allocate the main established and bind bucket
3586	 * hash tables.
3587	 *
3588	 * The methodology is similar to that of the buffer cache.
3589	 */
3590	tcp_hashinfo.ehash =
3591		alloc_large_system_hash("TCP established",
3592					sizeof(struct inet_ehash_bucket),
3593					thash_entries,
3594					17, /* one slot per 128 KB of memory */
3595					0,
3596					NULL,
3597					&tcp_hashinfo.ehash_mask,
3598					0,
3599					thash_entries ? 0 : 512 * 1024);
3600	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3601		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3602		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3603	}
3604	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3605		panic("TCP: failed to alloc ehash_locks");
3606	tcp_hashinfo.bhash =
3607		alloc_large_system_hash("TCP bind",
3608					sizeof(struct inet_bind_hashbucket),
3609					tcp_hashinfo.ehash_mask + 1,
3610					17, /* one slot per 128 KB of memory */
3611					0,
3612					&tcp_hashinfo.bhash_size,
3613					NULL,
3614					0,
3615					64 * 1024);
3616	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3617	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3618		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3619		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3620	}
3621
3622
3623	cnt = tcp_hashinfo.ehash_mask + 1;
3624
3625	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3626	sysctl_tcp_max_orphans = cnt / 2;
3627	sysctl_max_syn_backlog = max(128, cnt / 256);
3628
3629	tcp_init_mem(&init_net);
3630	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3631	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3632	max_wshare = min(4UL*1024*1024, limit);
3633	max_rshare = min(6UL*1024*1024, limit);
3634
3635	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3636	sysctl_tcp_wmem[1] = 16*1024;
3637	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3638
3639	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3640	sysctl_tcp_rmem[1] = 87380;
3641	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3642
3643	pr_info("Hash tables configured (established %u bind %u)\n",
3644		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3645
3646	tcp_metrics_init();
3647
3648	tcp_register_congestion_control(&tcp_reno);
3649
3650	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3651	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3652	tcp_secret_one.expires = jiffy; /* past due */
3653	tcp_secret_two.expires = jiffy; /* past due */
3654	tcp_secret_generating = &tcp_secret_one;
3655	tcp_secret_primary = &tcp_secret_one;
3656	tcp_secret_retiring = &tcp_secret_two;
3657	tcp_secret_secondary = &tcp_secret_two;
3658	tcp_tasklet_init();
3659}
3660