tcp.c revision eb4dea5853046727bfbb579f0c9a8cae7369f7c6
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#include <linux/kernel.h>
249#include <linux/module.h>
250#include <linux/types.h>
251#include <linux/fcntl.h>
252#include <linux/poll.h>
253#include <linux/init.h>
254#include <linux/fs.h>
255#include <linux/skbuff.h>
256#include <linux/scatterlist.h>
257#include <linux/splice.h>
258#include <linux/net.h>
259#include <linux/socket.h>
260#include <linux/random.h>
261#include <linux/bootmem.h>
262#include <linux/highmem.h>
263#include <linux/swap.h>
264#include <linux/cache.h>
265#include <linux/err.h>
266#include <linux/crypto.h>
267
268#include <net/icmp.h>
269#include <net/tcp.h>
270#include <net/xfrm.h>
271#include <net/ip.h>
272#include <net/netdma.h>
273#include <net/sock.h>
274
275#include <asm/uaccess.h>
276#include <asm/ioctls.h>
277
278int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
279
280struct percpu_counter tcp_orphan_count;
281EXPORT_SYMBOL_GPL(tcp_orphan_count);
282
283int sysctl_tcp_mem[3] __read_mostly;
284int sysctl_tcp_wmem[3] __read_mostly;
285int sysctl_tcp_rmem[3] __read_mostly;
286
287EXPORT_SYMBOL(sysctl_tcp_mem);
288EXPORT_SYMBOL(sysctl_tcp_rmem);
289EXPORT_SYMBOL(sysctl_tcp_wmem);
290
291atomic_t tcp_memory_allocated;	/* Current allocated memory. */
292EXPORT_SYMBOL(tcp_memory_allocated);
293
294/*
295 * Current number of TCP sockets.
296 */
297struct percpu_counter tcp_sockets_allocated;
298EXPORT_SYMBOL(tcp_sockets_allocated);
299
300/*
301 * TCP splice context
302 */
303struct tcp_splice_state {
304	struct pipe_inode_info *pipe;
305	size_t len;
306	unsigned int flags;
307};
308
309/*
310 * Pressure flag: try to collapse.
311 * Technical note: it is used by multiple contexts non atomically.
312 * All the __sk_mem_schedule() is of this nature: accounting
313 * is strict, actions are advisory and have some latency.
314 */
315int tcp_memory_pressure __read_mostly;
316
317EXPORT_SYMBOL(tcp_memory_pressure);
318
319void tcp_enter_memory_pressure(struct sock *sk)
320{
321	if (!tcp_memory_pressure) {
322		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
323		tcp_memory_pressure = 1;
324	}
325}
326
327EXPORT_SYMBOL(tcp_enter_memory_pressure);
328
329/*
330 *	Wait for a TCP event.
331 *
332 *	Note that we don't need to lock the socket, as the upper poll layers
333 *	take care of normal races (between the test and the event) and we don't
334 *	go look at any of the socket buffers directly.
335 */
336unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
337{
338	unsigned int mask;
339	struct sock *sk = sock->sk;
340	struct tcp_sock *tp = tcp_sk(sk);
341
342	poll_wait(file, sk->sk_sleep, wait);
343	if (sk->sk_state == TCP_LISTEN)
344		return inet_csk_listen_poll(sk);
345
346	/* Socket is not locked. We are protected from async events
347	 * by poll logic and correct handling of state changes
348	 * made by other threads is impossible in any case.
349	 */
350
351	mask = 0;
352	if (sk->sk_err)
353		mask = POLLERR;
354
355	/*
356	 * POLLHUP is certainly not done right. But poll() doesn't
357	 * have a notion of HUP in just one direction, and for a
358	 * socket the read side is more interesting.
359	 *
360	 * Some poll() documentation says that POLLHUP is incompatible
361	 * with the POLLOUT/POLLWR flags, so somebody should check this
362	 * all. But careful, it tends to be safer to return too many
363	 * bits than too few, and you can easily break real applications
364	 * if you don't tell them that something has hung up!
365	 *
366	 * Check-me.
367	 *
368	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
369	 * our fs/select.c). It means that after we received EOF,
370	 * poll always returns immediately, making impossible poll() on write()
371	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
372	 * if and only if shutdown has been made in both directions.
373	 * Actually, it is interesting to look how Solaris and DUX
374	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
375	 * then we could set it on SND_SHUTDOWN. BTW examples given
376	 * in Stevens' books assume exactly this behaviour, it explains
377	 * why POLLHUP is incompatible with POLLOUT.	--ANK
378	 *
379	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
380	 * blocking on fresh not-connected or disconnected socket. --ANK
381	 */
382	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
383		mask |= POLLHUP;
384	if (sk->sk_shutdown & RCV_SHUTDOWN)
385		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
386
387	/* Connected? */
388	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
389		int target = sock_rcvlowat(sk, 0, INT_MAX);
390
391		if (tp->urg_seq == tp->copied_seq &&
392		    !sock_flag(sk, SOCK_URGINLINE) &&
393		    tp->urg_data)
394			target--;
395
396		/* Potential race condition. If read of tp below will
397		 * escape above sk->sk_state, we can be illegally awaken
398		 * in SYN_* states. */
399		if (tp->rcv_nxt - tp->copied_seq >= target)
400			mask |= POLLIN | POLLRDNORM;
401
402		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
403			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
404				mask |= POLLOUT | POLLWRNORM;
405			} else {  /* send SIGIO later */
406				set_bit(SOCK_ASYNC_NOSPACE,
407					&sk->sk_socket->flags);
408				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
409
410				/* Race breaker. If space is freed after
411				 * wspace test but before the flags are set,
412				 * IO signal will be lost.
413				 */
414				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
415					mask |= POLLOUT | POLLWRNORM;
416			}
417		}
418
419		if (tp->urg_data & TCP_URG_VALID)
420			mask |= POLLPRI;
421	}
422	return mask;
423}
424
425int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
426{
427	struct tcp_sock *tp = tcp_sk(sk);
428	int answ;
429
430	switch (cmd) {
431	case SIOCINQ:
432		if (sk->sk_state == TCP_LISTEN)
433			return -EINVAL;
434
435		lock_sock(sk);
436		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
437			answ = 0;
438		else if (sock_flag(sk, SOCK_URGINLINE) ||
439			 !tp->urg_data ||
440			 before(tp->urg_seq, tp->copied_seq) ||
441			 !before(tp->urg_seq, tp->rcv_nxt)) {
442			answ = tp->rcv_nxt - tp->copied_seq;
443
444			/* Subtract 1, if FIN is in queue. */
445			if (answ && !skb_queue_empty(&sk->sk_receive_queue))
446				answ -=
447		       tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
448		} else
449			answ = tp->urg_seq - tp->copied_seq;
450		release_sock(sk);
451		break;
452	case SIOCATMARK:
453		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
454		break;
455	case SIOCOUTQ:
456		if (sk->sk_state == TCP_LISTEN)
457			return -EINVAL;
458
459		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
460			answ = 0;
461		else
462			answ = tp->write_seq - tp->snd_una;
463		break;
464	default:
465		return -ENOIOCTLCMD;
466	}
467
468	return put_user(answ, (int __user *)arg);
469}
470
471static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
472{
473	TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
474	tp->pushed_seq = tp->write_seq;
475}
476
477static inline int forced_push(struct tcp_sock *tp)
478{
479	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
480}
481
482static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
483{
484	struct tcp_sock *tp = tcp_sk(sk);
485	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
486
487	skb->csum    = 0;
488	tcb->seq     = tcb->end_seq = tp->write_seq;
489	tcb->flags   = TCPCB_FLAG_ACK;
490	tcb->sacked  = 0;
491	skb_header_release(skb);
492	tcp_add_write_queue_tail(sk, skb);
493	sk->sk_wmem_queued += skb->truesize;
494	sk_mem_charge(sk, skb->truesize);
495	if (tp->nonagle & TCP_NAGLE_PUSH)
496		tp->nonagle &= ~TCP_NAGLE_PUSH;
497}
498
499static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
500				struct sk_buff *skb)
501{
502	if (flags & MSG_OOB)
503		tp->snd_up = tp->write_seq;
504}
505
506static inline void tcp_push(struct sock *sk, int flags, int mss_now,
507			    int nonagle)
508{
509	struct tcp_sock *tp = tcp_sk(sk);
510
511	if (tcp_send_head(sk)) {
512		struct sk_buff *skb = tcp_write_queue_tail(sk);
513		if (!(flags & MSG_MORE) || forced_push(tp))
514			tcp_mark_push(tp, skb);
515		tcp_mark_urg(tp, flags, skb);
516		__tcp_push_pending_frames(sk, mss_now,
517					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
518	}
519}
520
521static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
522				unsigned int offset, size_t len)
523{
524	struct tcp_splice_state *tss = rd_desc->arg.data;
525
526	return skb_splice_bits(skb, offset, tss->pipe, tss->len, tss->flags);
527}
528
529static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
530{
531	/* Store TCP splice context information in read_descriptor_t. */
532	read_descriptor_t rd_desc = {
533		.arg.data = tss,
534	};
535
536	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
537}
538
539/**
540 *  tcp_splice_read - splice data from TCP socket to a pipe
541 * @sock:	socket to splice from
542 * @ppos:	position (not valid)
543 * @pipe:	pipe to splice to
544 * @len:	number of bytes to splice
545 * @flags:	splice modifier flags
546 *
547 * Description:
548 *    Will read pages from given socket and fill them into a pipe.
549 *
550 **/
551ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
552			struct pipe_inode_info *pipe, size_t len,
553			unsigned int flags)
554{
555	struct sock *sk = sock->sk;
556	struct tcp_splice_state tss = {
557		.pipe = pipe,
558		.len = len,
559		.flags = flags,
560	};
561	long timeo;
562	ssize_t spliced;
563	int ret;
564
565	/*
566	 * We can't seek on a socket input
567	 */
568	if (unlikely(*ppos))
569		return -ESPIPE;
570
571	ret = spliced = 0;
572
573	lock_sock(sk);
574
575	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
576	while (tss.len) {
577		ret = __tcp_splice_read(sk, &tss);
578		if (ret < 0)
579			break;
580		else if (!ret) {
581			if (spliced)
582				break;
583			if (flags & SPLICE_F_NONBLOCK) {
584				ret = -EAGAIN;
585				break;
586			}
587			if (sock_flag(sk, SOCK_DONE))
588				break;
589			if (sk->sk_err) {
590				ret = sock_error(sk);
591				break;
592			}
593			if (sk->sk_shutdown & RCV_SHUTDOWN)
594				break;
595			if (sk->sk_state == TCP_CLOSE) {
596				/*
597				 * This occurs when user tries to read
598				 * from never connected socket.
599				 */
600				if (!sock_flag(sk, SOCK_DONE))
601					ret = -ENOTCONN;
602				break;
603			}
604			if (!timeo) {
605				ret = -EAGAIN;
606				break;
607			}
608			sk_wait_data(sk, &timeo);
609			if (signal_pending(current)) {
610				ret = sock_intr_errno(timeo);
611				break;
612			}
613			continue;
614		}
615		tss.len -= ret;
616		spliced += ret;
617
618		release_sock(sk);
619		lock_sock(sk);
620
621		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
622		    (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo ||
623		    signal_pending(current))
624			break;
625	}
626
627	release_sock(sk);
628
629	if (spliced)
630		return spliced;
631
632	return ret;
633}
634
635struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
636{
637	struct sk_buff *skb;
638
639	/* The TCP header must be at least 32-bit aligned.  */
640	size = ALIGN(size, 4);
641
642	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
643	if (skb) {
644		if (sk_wmem_schedule(sk, skb->truesize)) {
645			/*
646			 * Make sure that we have exactly size bytes
647			 * available to the caller, no more, no less.
648			 */
649			skb_reserve(skb, skb_tailroom(skb) - size);
650			return skb;
651		}
652		__kfree_skb(skb);
653	} else {
654		sk->sk_prot->enter_memory_pressure(sk);
655		sk_stream_moderate_sndbuf(sk);
656	}
657	return NULL;
658}
659
660static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
661			 size_t psize, int flags)
662{
663	struct tcp_sock *tp = tcp_sk(sk);
664	int mss_now, size_goal;
665	int err;
666	ssize_t copied;
667	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
668
669	/* Wait for a connection to finish. */
670	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
671		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
672			goto out_err;
673
674	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
675
676	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
677	size_goal = tp->xmit_size_goal;
678	copied = 0;
679
680	err = -EPIPE;
681	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
682		goto do_error;
683
684	while (psize > 0) {
685		struct sk_buff *skb = tcp_write_queue_tail(sk);
686		struct page *page = pages[poffset / PAGE_SIZE];
687		int copy, i, can_coalesce;
688		int offset = poffset % PAGE_SIZE;
689		int size = min_t(size_t, psize, PAGE_SIZE - offset);
690
691		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
692new_segment:
693			if (!sk_stream_memory_free(sk))
694				goto wait_for_sndbuf;
695
696			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
697			if (!skb)
698				goto wait_for_memory;
699
700			skb_entail(sk, skb);
701			copy = size_goal;
702		}
703
704		if (copy > size)
705			copy = size;
706
707		i = skb_shinfo(skb)->nr_frags;
708		can_coalesce = skb_can_coalesce(skb, i, page, offset);
709		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
710			tcp_mark_push(tp, skb);
711			goto new_segment;
712		}
713		if (!sk_wmem_schedule(sk, copy))
714			goto wait_for_memory;
715
716		if (can_coalesce) {
717			skb_shinfo(skb)->frags[i - 1].size += copy;
718		} else {
719			get_page(page);
720			skb_fill_page_desc(skb, i, page, offset, copy);
721		}
722
723		skb->len += copy;
724		skb->data_len += copy;
725		skb->truesize += copy;
726		sk->sk_wmem_queued += copy;
727		sk_mem_charge(sk, copy);
728		skb->ip_summed = CHECKSUM_PARTIAL;
729		tp->write_seq += copy;
730		TCP_SKB_CB(skb)->end_seq += copy;
731		skb_shinfo(skb)->gso_segs = 0;
732
733		if (!copied)
734			TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
735
736		copied += copy;
737		poffset += copy;
738		if (!(psize -= copy))
739			goto out;
740
741		if (skb->len < size_goal || (flags & MSG_OOB))
742			continue;
743
744		if (forced_push(tp)) {
745			tcp_mark_push(tp, skb);
746			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
747		} else if (skb == tcp_send_head(sk))
748			tcp_push_one(sk, mss_now);
749		continue;
750
751wait_for_sndbuf:
752		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
753wait_for_memory:
754		if (copied)
755			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
756
757		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
758			goto do_error;
759
760		mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
761		size_goal = tp->xmit_size_goal;
762	}
763
764out:
765	if (copied)
766		tcp_push(sk, flags, mss_now, tp->nonagle);
767	return copied;
768
769do_error:
770	if (copied)
771		goto out;
772out_err:
773	return sk_stream_error(sk, flags, err);
774}
775
776ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
777		     size_t size, int flags)
778{
779	ssize_t res;
780	struct sock *sk = sock->sk;
781
782	if (!(sk->sk_route_caps & NETIF_F_SG) ||
783	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
784		return sock_no_sendpage(sock, page, offset, size, flags);
785
786	lock_sock(sk);
787	TCP_CHECK_TIMER(sk);
788	res = do_tcp_sendpages(sk, &page, offset, size, flags);
789	TCP_CHECK_TIMER(sk);
790	release_sock(sk);
791	return res;
792}
793
794#define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
795#define TCP_OFF(sk)	(sk->sk_sndmsg_off)
796
797static inline int select_size(struct sock *sk)
798{
799	struct tcp_sock *tp = tcp_sk(sk);
800	int tmp = tp->mss_cache;
801
802	if (sk->sk_route_caps & NETIF_F_SG) {
803		if (sk_can_gso(sk))
804			tmp = 0;
805		else {
806			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
807
808			if (tmp >= pgbreak &&
809			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
810				tmp = pgbreak;
811		}
812	}
813
814	return tmp;
815}
816
817int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
818		size_t size)
819{
820	struct sock *sk = sock->sk;
821	struct iovec *iov;
822	struct tcp_sock *tp = tcp_sk(sk);
823	struct sk_buff *skb;
824	int iovlen, flags;
825	int mss_now, size_goal;
826	int err, copied;
827	long timeo;
828
829	lock_sock(sk);
830	TCP_CHECK_TIMER(sk);
831
832	flags = msg->msg_flags;
833	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
834
835	/* Wait for a connection to finish. */
836	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
837		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
838			goto out_err;
839
840	/* This should be in poll */
841	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
842
843	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
844	size_goal = tp->xmit_size_goal;
845
846	/* Ok commence sending. */
847	iovlen = msg->msg_iovlen;
848	iov = msg->msg_iov;
849	copied = 0;
850
851	err = -EPIPE;
852	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
853		goto do_error;
854
855	while (--iovlen >= 0) {
856		int seglen = iov->iov_len;
857		unsigned char __user *from = iov->iov_base;
858
859		iov++;
860
861		while (seglen > 0) {
862			int copy;
863
864			skb = tcp_write_queue_tail(sk);
865
866			if (!tcp_send_head(sk) ||
867			    (copy = size_goal - skb->len) <= 0) {
868
869new_segment:
870				/* Allocate new segment. If the interface is SG,
871				 * allocate skb fitting to single page.
872				 */
873				if (!sk_stream_memory_free(sk))
874					goto wait_for_sndbuf;
875
876				skb = sk_stream_alloc_skb(sk, select_size(sk),
877						sk->sk_allocation);
878				if (!skb)
879					goto wait_for_memory;
880
881				/*
882				 * Check whether we can use HW checksum.
883				 */
884				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
885					skb->ip_summed = CHECKSUM_PARTIAL;
886
887				skb_entail(sk, skb);
888				copy = size_goal;
889			}
890
891			/* Try to append data to the end of skb. */
892			if (copy > seglen)
893				copy = seglen;
894
895			/* Where to copy to? */
896			if (skb_tailroom(skb) > 0) {
897				/* We have some space in skb head. Superb! */
898				if (copy > skb_tailroom(skb))
899					copy = skb_tailroom(skb);
900				if ((err = skb_add_data(skb, from, copy)) != 0)
901					goto do_fault;
902			} else {
903				int merge = 0;
904				int i = skb_shinfo(skb)->nr_frags;
905				struct page *page = TCP_PAGE(sk);
906				int off = TCP_OFF(sk);
907
908				if (skb_can_coalesce(skb, i, page, off) &&
909				    off != PAGE_SIZE) {
910					/* We can extend the last page
911					 * fragment. */
912					merge = 1;
913				} else if (i == MAX_SKB_FRAGS ||
914					   (!i &&
915					   !(sk->sk_route_caps & NETIF_F_SG))) {
916					/* Need to add new fragment and cannot
917					 * do this because interface is non-SG,
918					 * or because all the page slots are
919					 * busy. */
920					tcp_mark_push(tp, skb);
921					goto new_segment;
922				} else if (page) {
923					if (off == PAGE_SIZE) {
924						put_page(page);
925						TCP_PAGE(sk) = page = NULL;
926						off = 0;
927					}
928				} else
929					off = 0;
930
931				if (copy > PAGE_SIZE - off)
932					copy = PAGE_SIZE - off;
933
934				if (!sk_wmem_schedule(sk, copy))
935					goto wait_for_memory;
936
937				if (!page) {
938					/* Allocate new cache page. */
939					if (!(page = sk_stream_alloc_page(sk)))
940						goto wait_for_memory;
941				}
942
943				/* Time to copy data. We are close to
944				 * the end! */
945				err = skb_copy_to_page(sk, from, skb, page,
946						       off, copy);
947				if (err) {
948					/* If this page was new, give it to the
949					 * socket so it does not get leaked.
950					 */
951					if (!TCP_PAGE(sk)) {
952						TCP_PAGE(sk) = page;
953						TCP_OFF(sk) = 0;
954					}
955					goto do_error;
956				}
957
958				/* Update the skb. */
959				if (merge) {
960					skb_shinfo(skb)->frags[i - 1].size +=
961									copy;
962				} else {
963					skb_fill_page_desc(skb, i, page, off, copy);
964					if (TCP_PAGE(sk)) {
965						get_page(page);
966					} else if (off + copy < PAGE_SIZE) {
967						get_page(page);
968						TCP_PAGE(sk) = page;
969					}
970				}
971
972				TCP_OFF(sk) = off + copy;
973			}
974
975			if (!copied)
976				TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
977
978			tp->write_seq += copy;
979			TCP_SKB_CB(skb)->end_seq += copy;
980			skb_shinfo(skb)->gso_segs = 0;
981
982			from += copy;
983			copied += copy;
984			if ((seglen -= copy) == 0 && iovlen == 0)
985				goto out;
986
987			if (skb->len < size_goal || (flags & MSG_OOB))
988				continue;
989
990			if (forced_push(tp)) {
991				tcp_mark_push(tp, skb);
992				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
993			} else if (skb == tcp_send_head(sk))
994				tcp_push_one(sk, mss_now);
995			continue;
996
997wait_for_sndbuf:
998			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
999wait_for_memory:
1000			if (copied)
1001				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1002
1003			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1004				goto do_error;
1005
1006			mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
1007			size_goal = tp->xmit_size_goal;
1008		}
1009	}
1010
1011out:
1012	if (copied)
1013		tcp_push(sk, flags, mss_now, tp->nonagle);
1014	TCP_CHECK_TIMER(sk);
1015	release_sock(sk);
1016	return copied;
1017
1018do_fault:
1019	if (!skb->len) {
1020		tcp_unlink_write_queue(skb, sk);
1021		/* It is the one place in all of TCP, except connection
1022		 * reset, where we can be unlinking the send_head.
1023		 */
1024		tcp_check_send_head(sk, skb);
1025		sk_wmem_free_skb(sk, skb);
1026	}
1027
1028do_error:
1029	if (copied)
1030		goto out;
1031out_err:
1032	err = sk_stream_error(sk, flags, err);
1033	TCP_CHECK_TIMER(sk);
1034	release_sock(sk);
1035	return err;
1036}
1037
1038/*
1039 *	Handle reading urgent data. BSD has very simple semantics for
1040 *	this, no blocking and very strange errors 8)
1041 */
1042
1043static int tcp_recv_urg(struct sock *sk, long timeo,
1044			struct msghdr *msg, int len, int flags,
1045			int *addr_len)
1046{
1047	struct tcp_sock *tp = tcp_sk(sk);
1048
1049	/* No URG data to read. */
1050	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1051	    tp->urg_data == TCP_URG_READ)
1052		return -EINVAL;	/* Yes this is right ! */
1053
1054	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1055		return -ENOTCONN;
1056
1057	if (tp->urg_data & TCP_URG_VALID) {
1058		int err = 0;
1059		char c = tp->urg_data;
1060
1061		if (!(flags & MSG_PEEK))
1062			tp->urg_data = TCP_URG_READ;
1063
1064		/* Read urgent data. */
1065		msg->msg_flags |= MSG_OOB;
1066
1067		if (len > 0) {
1068			if (!(flags & MSG_TRUNC))
1069				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1070			len = 1;
1071		} else
1072			msg->msg_flags |= MSG_TRUNC;
1073
1074		return err ? -EFAULT : len;
1075	}
1076
1077	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1078		return 0;
1079
1080	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1081	 * the available implementations agree in this case:
1082	 * this call should never block, independent of the
1083	 * blocking state of the socket.
1084	 * Mike <pall@rz.uni-karlsruhe.de>
1085	 */
1086	return -EAGAIN;
1087}
1088
1089/* Clean up the receive buffer for full frames taken by the user,
1090 * then send an ACK if necessary.  COPIED is the number of bytes
1091 * tcp_recvmsg has given to the user so far, it speeds up the
1092 * calculation of whether or not we must ACK for the sake of
1093 * a window update.
1094 */
1095void tcp_cleanup_rbuf(struct sock *sk, int copied)
1096{
1097	struct tcp_sock *tp = tcp_sk(sk);
1098	int time_to_ack = 0;
1099
1100#if TCP_DEBUG
1101	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1102
1103	WARN_ON(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1104#endif
1105
1106	if (inet_csk_ack_scheduled(sk)) {
1107		const struct inet_connection_sock *icsk = inet_csk(sk);
1108		   /* Delayed ACKs frequently hit locked sockets during bulk
1109		    * receive. */
1110		if (icsk->icsk_ack.blocked ||
1111		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1112		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1113		    /*
1114		     * If this read emptied read buffer, we send ACK, if
1115		     * connection is not bidirectional, user drained
1116		     * receive buffer and there was a small segment
1117		     * in queue.
1118		     */
1119		    (copied > 0 &&
1120		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1121		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1122		       !icsk->icsk_ack.pingpong)) &&
1123		      !atomic_read(&sk->sk_rmem_alloc)))
1124			time_to_ack = 1;
1125	}
1126
1127	/* We send an ACK if we can now advertise a non-zero window
1128	 * which has been raised "significantly".
1129	 *
1130	 * Even if window raised up to infinity, do not send window open ACK
1131	 * in states, where we will not receive more. It is useless.
1132	 */
1133	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1134		__u32 rcv_window_now = tcp_receive_window(tp);
1135
1136		/* Optimize, __tcp_select_window() is not cheap. */
1137		if (2*rcv_window_now <= tp->window_clamp) {
1138			__u32 new_window = __tcp_select_window(sk);
1139
1140			/* Send ACK now, if this read freed lots of space
1141			 * in our buffer. Certainly, new_window is new window.
1142			 * We can advertise it now, if it is not less than current one.
1143			 * "Lots" means "at least twice" here.
1144			 */
1145			if (new_window && new_window >= 2 * rcv_window_now)
1146				time_to_ack = 1;
1147		}
1148	}
1149	if (time_to_ack)
1150		tcp_send_ack(sk);
1151}
1152
1153static void tcp_prequeue_process(struct sock *sk)
1154{
1155	struct sk_buff *skb;
1156	struct tcp_sock *tp = tcp_sk(sk);
1157
1158	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1159
1160	/* RX process wants to run with disabled BHs, though it is not
1161	 * necessary */
1162	local_bh_disable();
1163	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1164		sk_backlog_rcv(sk, skb);
1165	local_bh_enable();
1166
1167	/* Clear memory counter. */
1168	tp->ucopy.memory = 0;
1169}
1170
1171static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1172{
1173	struct sk_buff *skb;
1174	u32 offset;
1175
1176	skb_queue_walk(&sk->sk_receive_queue, skb) {
1177		offset = seq - TCP_SKB_CB(skb)->seq;
1178		if (tcp_hdr(skb)->syn)
1179			offset--;
1180		if (offset < skb->len || tcp_hdr(skb)->fin) {
1181			*off = offset;
1182			return skb;
1183		}
1184	}
1185	return NULL;
1186}
1187
1188/*
1189 * This routine provides an alternative to tcp_recvmsg() for routines
1190 * that would like to handle copying from skbuffs directly in 'sendfile'
1191 * fashion.
1192 * Note:
1193 *	- It is assumed that the socket was locked by the caller.
1194 *	- The routine does not block.
1195 *	- At present, there is no support for reading OOB data
1196 *	  or for 'peeking' the socket using this routine
1197 *	  (although both would be easy to implement).
1198 */
1199int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1200		  sk_read_actor_t recv_actor)
1201{
1202	struct sk_buff *skb;
1203	struct tcp_sock *tp = tcp_sk(sk);
1204	u32 seq = tp->copied_seq;
1205	u32 offset;
1206	int copied = 0;
1207
1208	if (sk->sk_state == TCP_LISTEN)
1209		return -ENOTCONN;
1210	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1211		if (offset < skb->len) {
1212			int used;
1213			size_t len;
1214
1215			len = skb->len - offset;
1216			/* Stop reading if we hit a patch of urgent data */
1217			if (tp->urg_data) {
1218				u32 urg_offset = tp->urg_seq - seq;
1219				if (urg_offset < len)
1220					len = urg_offset;
1221				if (!len)
1222					break;
1223			}
1224			used = recv_actor(desc, skb, offset, len);
1225			if (used < 0) {
1226				if (!copied)
1227					copied = used;
1228				break;
1229			} else if (used <= len) {
1230				seq += used;
1231				copied += used;
1232				offset += used;
1233			}
1234			/*
1235			 * If recv_actor drops the lock (e.g. TCP splice
1236			 * receive) the skb pointer might be invalid when
1237			 * getting here: tcp_collapse might have deleted it
1238			 * while aggregating skbs from the socket queue.
1239			 */
1240			skb = tcp_recv_skb(sk, seq-1, &offset);
1241			if (!skb || (offset+1 != skb->len))
1242				break;
1243		}
1244		if (tcp_hdr(skb)->fin) {
1245			sk_eat_skb(sk, skb, 0);
1246			++seq;
1247			break;
1248		}
1249		sk_eat_skb(sk, skb, 0);
1250		if (!desc->count)
1251			break;
1252	}
1253	tp->copied_seq = seq;
1254
1255	tcp_rcv_space_adjust(sk);
1256
1257	/* Clean up data we have read: This will do ACK frames. */
1258	if (copied > 0)
1259		tcp_cleanup_rbuf(sk, copied);
1260	return copied;
1261}
1262
1263/*
1264 *	This routine copies from a sock struct into the user buffer.
1265 *
1266 *	Technical note: in 2.3 we work on _locked_ socket, so that
1267 *	tricks with *seq access order and skb->users are not required.
1268 *	Probably, code can be easily improved even more.
1269 */
1270
1271int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1272		size_t len, int nonblock, int flags, int *addr_len)
1273{
1274	struct tcp_sock *tp = tcp_sk(sk);
1275	int copied = 0;
1276	u32 peek_seq;
1277	u32 *seq;
1278	unsigned long used;
1279	int err;
1280	int target;		/* Read at least this many bytes */
1281	long timeo;
1282	struct task_struct *user_recv = NULL;
1283	int copied_early = 0;
1284	struct sk_buff *skb;
1285
1286	lock_sock(sk);
1287
1288	TCP_CHECK_TIMER(sk);
1289
1290	err = -ENOTCONN;
1291	if (sk->sk_state == TCP_LISTEN)
1292		goto out;
1293
1294	timeo = sock_rcvtimeo(sk, nonblock);
1295
1296	/* Urgent data needs to be handled specially. */
1297	if (flags & MSG_OOB)
1298		goto recv_urg;
1299
1300	seq = &tp->copied_seq;
1301	if (flags & MSG_PEEK) {
1302		peek_seq = tp->copied_seq;
1303		seq = &peek_seq;
1304	}
1305
1306	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1307
1308#ifdef CONFIG_NET_DMA
1309	tp->ucopy.dma_chan = NULL;
1310	preempt_disable();
1311	skb = skb_peek_tail(&sk->sk_receive_queue);
1312	{
1313		int available = 0;
1314
1315		if (skb)
1316			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1317		if ((available < target) &&
1318		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1319		    !sysctl_tcp_low_latency &&
1320		    __get_cpu_var(softnet_data).net_dma) {
1321			preempt_enable_no_resched();
1322			tp->ucopy.pinned_list =
1323					dma_pin_iovec_pages(msg->msg_iov, len);
1324		} else {
1325			preempt_enable_no_resched();
1326		}
1327	}
1328#endif
1329
1330	do {
1331		u32 offset;
1332
1333		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1334		if (tp->urg_data && tp->urg_seq == *seq) {
1335			if (copied)
1336				break;
1337			if (signal_pending(current)) {
1338				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1339				break;
1340			}
1341		}
1342
1343		/* Next get a buffer. */
1344
1345		skb = skb_peek(&sk->sk_receive_queue);
1346		do {
1347			if (!skb)
1348				break;
1349
1350			/* Now that we have two receive queues this
1351			 * shouldn't happen.
1352			 */
1353			if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1354				printk(KERN_INFO "recvmsg bug: copied %X "
1355				       "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1356				break;
1357			}
1358			offset = *seq - TCP_SKB_CB(skb)->seq;
1359			if (tcp_hdr(skb)->syn)
1360				offset--;
1361			if (offset < skb->len)
1362				goto found_ok_skb;
1363			if (tcp_hdr(skb)->fin)
1364				goto found_fin_ok;
1365			WARN_ON(!(flags & MSG_PEEK));
1366			skb = skb->next;
1367		} while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1368
1369		/* Well, if we have backlog, try to process it now yet. */
1370
1371		if (copied >= target && !sk->sk_backlog.tail)
1372			break;
1373
1374		if (copied) {
1375			if (sk->sk_err ||
1376			    sk->sk_state == TCP_CLOSE ||
1377			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1378			    !timeo ||
1379			    signal_pending(current))
1380				break;
1381		} else {
1382			if (sock_flag(sk, SOCK_DONE))
1383				break;
1384
1385			if (sk->sk_err) {
1386				copied = sock_error(sk);
1387				break;
1388			}
1389
1390			if (sk->sk_shutdown & RCV_SHUTDOWN)
1391				break;
1392
1393			if (sk->sk_state == TCP_CLOSE) {
1394				if (!sock_flag(sk, SOCK_DONE)) {
1395					/* This occurs when user tries to read
1396					 * from never connected socket.
1397					 */
1398					copied = -ENOTCONN;
1399					break;
1400				}
1401				break;
1402			}
1403
1404			if (!timeo) {
1405				copied = -EAGAIN;
1406				break;
1407			}
1408
1409			if (signal_pending(current)) {
1410				copied = sock_intr_errno(timeo);
1411				break;
1412			}
1413		}
1414
1415		tcp_cleanup_rbuf(sk, copied);
1416
1417		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1418			/* Install new reader */
1419			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1420				user_recv = current;
1421				tp->ucopy.task = user_recv;
1422				tp->ucopy.iov = msg->msg_iov;
1423			}
1424
1425			tp->ucopy.len = len;
1426
1427			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1428				!(flags & (MSG_PEEK | MSG_TRUNC)));
1429
1430			/* Ugly... If prequeue is not empty, we have to
1431			 * process it before releasing socket, otherwise
1432			 * order will be broken at second iteration.
1433			 * More elegant solution is required!!!
1434			 *
1435			 * Look: we have the following (pseudo)queues:
1436			 *
1437			 * 1. packets in flight
1438			 * 2. backlog
1439			 * 3. prequeue
1440			 * 4. receive_queue
1441			 *
1442			 * Each queue can be processed only if the next ones
1443			 * are empty. At this point we have empty receive_queue.
1444			 * But prequeue _can_ be not empty after 2nd iteration,
1445			 * when we jumped to start of loop because backlog
1446			 * processing added something to receive_queue.
1447			 * We cannot release_sock(), because backlog contains
1448			 * packets arrived _after_ prequeued ones.
1449			 *
1450			 * Shortly, algorithm is clear --- to process all
1451			 * the queues in order. We could make it more directly,
1452			 * requeueing packets from backlog to prequeue, if
1453			 * is not empty. It is more elegant, but eats cycles,
1454			 * unfortunately.
1455			 */
1456			if (!skb_queue_empty(&tp->ucopy.prequeue))
1457				goto do_prequeue;
1458
1459			/* __ Set realtime policy in scheduler __ */
1460		}
1461
1462		if (copied >= target) {
1463			/* Do not sleep, just process backlog. */
1464			release_sock(sk);
1465			lock_sock(sk);
1466		} else
1467			sk_wait_data(sk, &timeo);
1468
1469#ifdef CONFIG_NET_DMA
1470		tp->ucopy.wakeup = 0;
1471#endif
1472
1473		if (user_recv) {
1474			int chunk;
1475
1476			/* __ Restore normal policy in scheduler __ */
1477
1478			if ((chunk = len - tp->ucopy.len) != 0) {
1479				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1480				len -= chunk;
1481				copied += chunk;
1482			}
1483
1484			if (tp->rcv_nxt == tp->copied_seq &&
1485			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1486do_prequeue:
1487				tcp_prequeue_process(sk);
1488
1489				if ((chunk = len - tp->ucopy.len) != 0) {
1490					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1491					len -= chunk;
1492					copied += chunk;
1493				}
1494			}
1495		}
1496		if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1497			if (net_ratelimit())
1498				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1499				       current->comm, task_pid_nr(current));
1500			peek_seq = tp->copied_seq;
1501		}
1502		continue;
1503
1504	found_ok_skb:
1505		/* Ok so how much can we use? */
1506		used = skb->len - offset;
1507		if (len < used)
1508			used = len;
1509
1510		/* Do we have urgent data here? */
1511		if (tp->urg_data) {
1512			u32 urg_offset = tp->urg_seq - *seq;
1513			if (urg_offset < used) {
1514				if (!urg_offset) {
1515					if (!sock_flag(sk, SOCK_URGINLINE)) {
1516						++*seq;
1517						offset++;
1518						used--;
1519						if (!used)
1520							goto skip_copy;
1521					}
1522				} else
1523					used = urg_offset;
1524			}
1525		}
1526
1527		if (!(flags & MSG_TRUNC)) {
1528#ifdef CONFIG_NET_DMA
1529			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1530				tp->ucopy.dma_chan = get_softnet_dma();
1531
1532			if (tp->ucopy.dma_chan) {
1533				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1534					tp->ucopy.dma_chan, skb, offset,
1535					msg->msg_iov, used,
1536					tp->ucopy.pinned_list);
1537
1538				if (tp->ucopy.dma_cookie < 0) {
1539
1540					printk(KERN_ALERT "dma_cookie < 0\n");
1541
1542					/* Exception. Bailout! */
1543					if (!copied)
1544						copied = -EFAULT;
1545					break;
1546				}
1547				if ((offset + used) == skb->len)
1548					copied_early = 1;
1549
1550			} else
1551#endif
1552			{
1553				err = skb_copy_datagram_iovec(skb, offset,
1554						msg->msg_iov, used);
1555				if (err) {
1556					/* Exception. Bailout! */
1557					if (!copied)
1558						copied = -EFAULT;
1559					break;
1560				}
1561			}
1562		}
1563
1564		*seq += used;
1565		copied += used;
1566		len -= used;
1567
1568		tcp_rcv_space_adjust(sk);
1569
1570skip_copy:
1571		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1572			tp->urg_data = 0;
1573			tcp_fast_path_check(sk);
1574		}
1575		if (used + offset < skb->len)
1576			continue;
1577
1578		if (tcp_hdr(skb)->fin)
1579			goto found_fin_ok;
1580		if (!(flags & MSG_PEEK)) {
1581			sk_eat_skb(sk, skb, copied_early);
1582			copied_early = 0;
1583		}
1584		continue;
1585
1586	found_fin_ok:
1587		/* Process the FIN. */
1588		++*seq;
1589		if (!(flags & MSG_PEEK)) {
1590			sk_eat_skb(sk, skb, copied_early);
1591			copied_early = 0;
1592		}
1593		break;
1594	} while (len > 0);
1595
1596	if (user_recv) {
1597		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1598			int chunk;
1599
1600			tp->ucopy.len = copied > 0 ? len : 0;
1601
1602			tcp_prequeue_process(sk);
1603
1604			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1605				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1606				len -= chunk;
1607				copied += chunk;
1608			}
1609		}
1610
1611		tp->ucopy.task = NULL;
1612		tp->ucopy.len = 0;
1613	}
1614
1615#ifdef CONFIG_NET_DMA
1616	if (tp->ucopy.dma_chan) {
1617		dma_cookie_t done, used;
1618
1619		dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1620
1621		while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1622						 tp->ucopy.dma_cookie, &done,
1623						 &used) == DMA_IN_PROGRESS) {
1624			/* do partial cleanup of sk_async_wait_queue */
1625			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1626			       (dma_async_is_complete(skb->dma_cookie, done,
1627						      used) == DMA_SUCCESS)) {
1628				__skb_dequeue(&sk->sk_async_wait_queue);
1629				kfree_skb(skb);
1630			}
1631		}
1632
1633		/* Safe to free early-copied skbs now */
1634		__skb_queue_purge(&sk->sk_async_wait_queue);
1635		dma_chan_put(tp->ucopy.dma_chan);
1636		tp->ucopy.dma_chan = NULL;
1637	}
1638	if (tp->ucopy.pinned_list) {
1639		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1640		tp->ucopy.pinned_list = NULL;
1641	}
1642#endif
1643
1644	/* According to UNIX98, msg_name/msg_namelen are ignored
1645	 * on connected socket. I was just happy when found this 8) --ANK
1646	 */
1647
1648	/* Clean up data we have read: This will do ACK frames. */
1649	tcp_cleanup_rbuf(sk, copied);
1650
1651	TCP_CHECK_TIMER(sk);
1652	release_sock(sk);
1653	return copied;
1654
1655out:
1656	TCP_CHECK_TIMER(sk);
1657	release_sock(sk);
1658	return err;
1659
1660recv_urg:
1661	err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1662	goto out;
1663}
1664
1665void tcp_set_state(struct sock *sk, int state)
1666{
1667	int oldstate = sk->sk_state;
1668
1669	switch (state) {
1670	case TCP_ESTABLISHED:
1671		if (oldstate != TCP_ESTABLISHED)
1672			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1673		break;
1674
1675	case TCP_CLOSE:
1676		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1677			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1678
1679		sk->sk_prot->unhash(sk);
1680		if (inet_csk(sk)->icsk_bind_hash &&
1681		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1682			inet_put_port(sk);
1683		/* fall through */
1684	default:
1685		if (oldstate == TCP_ESTABLISHED)
1686			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1687	}
1688
1689	/* Change state AFTER socket is unhashed to avoid closed
1690	 * socket sitting in hash tables.
1691	 */
1692	sk->sk_state = state;
1693
1694#ifdef STATE_TRACE
1695	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1696#endif
1697}
1698EXPORT_SYMBOL_GPL(tcp_set_state);
1699
1700/*
1701 *	State processing on a close. This implements the state shift for
1702 *	sending our FIN frame. Note that we only send a FIN for some
1703 *	states. A shutdown() may have already sent the FIN, or we may be
1704 *	closed.
1705 */
1706
1707static const unsigned char new_state[16] = {
1708  /* current state:        new state:      action:	*/
1709  /* (Invalid)		*/ TCP_CLOSE,
1710  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1711  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1712  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1713  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1714  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1715  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1716  /* TCP_CLOSE		*/ TCP_CLOSE,
1717  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1718  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1719  /* TCP_LISTEN		*/ TCP_CLOSE,
1720  /* TCP_CLOSING	*/ TCP_CLOSING,
1721};
1722
1723static int tcp_close_state(struct sock *sk)
1724{
1725	int next = (int)new_state[sk->sk_state];
1726	int ns = next & TCP_STATE_MASK;
1727
1728	tcp_set_state(sk, ns);
1729
1730	return next & TCP_ACTION_FIN;
1731}
1732
1733/*
1734 *	Shutdown the sending side of a connection. Much like close except
1735 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1736 */
1737
1738void tcp_shutdown(struct sock *sk, int how)
1739{
1740	/*	We need to grab some memory, and put together a FIN,
1741	 *	and then put it into the queue to be sent.
1742	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1743	 */
1744	if (!(how & SEND_SHUTDOWN))
1745		return;
1746
1747	/* If we've already sent a FIN, or it's a closed state, skip this. */
1748	if ((1 << sk->sk_state) &
1749	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1750	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1751		/* Clear out any half completed packets.  FIN if needed. */
1752		if (tcp_close_state(sk))
1753			tcp_send_fin(sk);
1754	}
1755}
1756
1757void tcp_close(struct sock *sk, long timeout)
1758{
1759	struct sk_buff *skb;
1760	int data_was_unread = 0;
1761	int state;
1762
1763	lock_sock(sk);
1764	sk->sk_shutdown = SHUTDOWN_MASK;
1765
1766	if (sk->sk_state == TCP_LISTEN) {
1767		tcp_set_state(sk, TCP_CLOSE);
1768
1769		/* Special case. */
1770		inet_csk_listen_stop(sk);
1771
1772		goto adjudge_to_death;
1773	}
1774
1775	/*  We need to flush the recv. buffs.  We do this only on the
1776	 *  descriptor close, not protocol-sourced closes, because the
1777	 *  reader process may not have drained the data yet!
1778	 */
1779	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1780		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1781			  tcp_hdr(skb)->fin;
1782		data_was_unread += len;
1783		__kfree_skb(skb);
1784	}
1785
1786	sk_mem_reclaim(sk);
1787
1788	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1789	 * data was lost. To witness the awful effects of the old behavior of
1790	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1791	 * GET in an FTP client, suspend the process, wait for the client to
1792	 * advertise a zero window, then kill -9 the FTP client, wheee...
1793	 * Note: timeout is always zero in such a case.
1794	 */
1795	if (data_was_unread) {
1796		/* Unread data was tossed, zap the connection. */
1797		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1798		tcp_set_state(sk, TCP_CLOSE);
1799		tcp_send_active_reset(sk, GFP_KERNEL);
1800	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1801		/* Check zero linger _after_ checking for unread data. */
1802		sk->sk_prot->disconnect(sk, 0);
1803		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1804	} else if (tcp_close_state(sk)) {
1805		/* We FIN if the application ate all the data before
1806		 * zapping the connection.
1807		 */
1808
1809		/* RED-PEN. Formally speaking, we have broken TCP state
1810		 * machine. State transitions:
1811		 *
1812		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1813		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1814		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1815		 *
1816		 * are legal only when FIN has been sent (i.e. in window),
1817		 * rather than queued out of window. Purists blame.
1818		 *
1819		 * F.e. "RFC state" is ESTABLISHED,
1820		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1821		 *
1822		 * The visible declinations are that sometimes
1823		 * we enter time-wait state, when it is not required really
1824		 * (harmless), do not send active resets, when they are
1825		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1826		 * they look as CLOSING or LAST_ACK for Linux)
1827		 * Probably, I missed some more holelets.
1828		 * 						--ANK
1829		 */
1830		tcp_send_fin(sk);
1831	}
1832
1833	sk_stream_wait_close(sk, timeout);
1834
1835adjudge_to_death:
1836	state = sk->sk_state;
1837	sock_hold(sk);
1838	sock_orphan(sk);
1839
1840	/* It is the last release_sock in its life. It will remove backlog. */
1841	release_sock(sk);
1842
1843
1844	/* Now socket is owned by kernel and we acquire BH lock
1845	   to finish close. No need to check for user refs.
1846	 */
1847	local_bh_disable();
1848	bh_lock_sock(sk);
1849	WARN_ON(sock_owned_by_user(sk));
1850
1851	percpu_counter_inc(sk->sk_prot->orphan_count);
1852
1853	/* Have we already been destroyed by a softirq or backlog? */
1854	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1855		goto out;
1856
1857	/*	This is a (useful) BSD violating of the RFC. There is a
1858	 *	problem with TCP as specified in that the other end could
1859	 *	keep a socket open forever with no application left this end.
1860	 *	We use a 3 minute timeout (about the same as BSD) then kill
1861	 *	our end. If they send after that then tough - BUT: long enough
1862	 *	that we won't make the old 4*rto = almost no time - whoops
1863	 *	reset mistake.
1864	 *
1865	 *	Nope, it was not mistake. It is really desired behaviour
1866	 *	f.e. on http servers, when such sockets are useless, but
1867	 *	consume significant resources. Let's do it with special
1868	 *	linger2	option.					--ANK
1869	 */
1870
1871	if (sk->sk_state == TCP_FIN_WAIT2) {
1872		struct tcp_sock *tp = tcp_sk(sk);
1873		if (tp->linger2 < 0) {
1874			tcp_set_state(sk, TCP_CLOSE);
1875			tcp_send_active_reset(sk, GFP_ATOMIC);
1876			NET_INC_STATS_BH(sock_net(sk),
1877					LINUX_MIB_TCPABORTONLINGER);
1878		} else {
1879			const int tmo = tcp_fin_time(sk);
1880
1881			if (tmo > TCP_TIMEWAIT_LEN) {
1882				inet_csk_reset_keepalive_timer(sk,
1883						tmo - TCP_TIMEWAIT_LEN);
1884			} else {
1885				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1886				goto out;
1887			}
1888		}
1889	}
1890	if (sk->sk_state != TCP_CLOSE) {
1891		int orphan_count = percpu_counter_read_positive(
1892						sk->sk_prot->orphan_count);
1893
1894		sk_mem_reclaim(sk);
1895		if (tcp_too_many_orphans(sk, orphan_count)) {
1896			if (net_ratelimit())
1897				printk(KERN_INFO "TCP: too many of orphaned "
1898				       "sockets\n");
1899			tcp_set_state(sk, TCP_CLOSE);
1900			tcp_send_active_reset(sk, GFP_ATOMIC);
1901			NET_INC_STATS_BH(sock_net(sk),
1902					LINUX_MIB_TCPABORTONMEMORY);
1903		}
1904	}
1905
1906	if (sk->sk_state == TCP_CLOSE)
1907		inet_csk_destroy_sock(sk);
1908	/* Otherwise, socket is reprieved until protocol close. */
1909
1910out:
1911	bh_unlock_sock(sk);
1912	local_bh_enable();
1913	sock_put(sk);
1914}
1915
1916/* These states need RST on ABORT according to RFC793 */
1917
1918static inline int tcp_need_reset(int state)
1919{
1920	return (1 << state) &
1921	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1922		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1923}
1924
1925int tcp_disconnect(struct sock *sk, int flags)
1926{
1927	struct inet_sock *inet = inet_sk(sk);
1928	struct inet_connection_sock *icsk = inet_csk(sk);
1929	struct tcp_sock *tp = tcp_sk(sk);
1930	int err = 0;
1931	int old_state = sk->sk_state;
1932
1933	if (old_state != TCP_CLOSE)
1934		tcp_set_state(sk, TCP_CLOSE);
1935
1936	/* ABORT function of RFC793 */
1937	if (old_state == TCP_LISTEN) {
1938		inet_csk_listen_stop(sk);
1939	} else if (tcp_need_reset(old_state) ||
1940		   (tp->snd_nxt != tp->write_seq &&
1941		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1942		/* The last check adjusts for discrepancy of Linux wrt. RFC
1943		 * states
1944		 */
1945		tcp_send_active_reset(sk, gfp_any());
1946		sk->sk_err = ECONNRESET;
1947	} else if (old_state == TCP_SYN_SENT)
1948		sk->sk_err = ECONNRESET;
1949
1950	tcp_clear_xmit_timers(sk);
1951	__skb_queue_purge(&sk->sk_receive_queue);
1952	tcp_write_queue_purge(sk);
1953	__skb_queue_purge(&tp->out_of_order_queue);
1954#ifdef CONFIG_NET_DMA
1955	__skb_queue_purge(&sk->sk_async_wait_queue);
1956#endif
1957
1958	inet->dport = 0;
1959
1960	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1961		inet_reset_saddr(sk);
1962
1963	sk->sk_shutdown = 0;
1964	sock_reset_flag(sk, SOCK_DONE);
1965	tp->srtt = 0;
1966	if ((tp->write_seq += tp->max_window + 2) == 0)
1967		tp->write_seq = 1;
1968	icsk->icsk_backoff = 0;
1969	tp->snd_cwnd = 2;
1970	icsk->icsk_probes_out = 0;
1971	tp->packets_out = 0;
1972	tp->snd_ssthresh = 0x7fffffff;
1973	tp->snd_cwnd_cnt = 0;
1974	tp->bytes_acked = 0;
1975	tcp_set_ca_state(sk, TCP_CA_Open);
1976	tcp_clear_retrans(tp);
1977	inet_csk_delack_init(sk);
1978	tcp_init_send_head(sk);
1979	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
1980	__sk_dst_reset(sk);
1981
1982	WARN_ON(inet->num && !icsk->icsk_bind_hash);
1983
1984	sk->sk_error_report(sk);
1985	return err;
1986}
1987
1988/*
1989 *	Socket option code for TCP.
1990 */
1991static int do_tcp_setsockopt(struct sock *sk, int level,
1992		int optname, char __user *optval, int optlen)
1993{
1994	struct tcp_sock *tp = tcp_sk(sk);
1995	struct inet_connection_sock *icsk = inet_csk(sk);
1996	int val;
1997	int err = 0;
1998
1999	/* This is a string value all the others are int's */
2000	if (optname == TCP_CONGESTION) {
2001		char name[TCP_CA_NAME_MAX];
2002
2003		if (optlen < 1)
2004			return -EINVAL;
2005
2006		val = strncpy_from_user(name, optval,
2007					min(TCP_CA_NAME_MAX-1, optlen));
2008		if (val < 0)
2009			return -EFAULT;
2010		name[val] = 0;
2011
2012		lock_sock(sk);
2013		err = tcp_set_congestion_control(sk, name);
2014		release_sock(sk);
2015		return err;
2016	}
2017
2018	if (optlen < sizeof(int))
2019		return -EINVAL;
2020
2021	if (get_user(val, (int __user *)optval))
2022		return -EFAULT;
2023
2024	lock_sock(sk);
2025
2026	switch (optname) {
2027	case TCP_MAXSEG:
2028		/* Values greater than interface MTU won't take effect. However
2029		 * at the point when this call is done we typically don't yet
2030		 * know which interface is going to be used */
2031		if (val < 8 || val > MAX_TCP_WINDOW) {
2032			err = -EINVAL;
2033			break;
2034		}
2035		tp->rx_opt.user_mss = val;
2036		break;
2037
2038	case TCP_NODELAY:
2039		if (val) {
2040			/* TCP_NODELAY is weaker than TCP_CORK, so that
2041			 * this option on corked socket is remembered, but
2042			 * it is not activated until cork is cleared.
2043			 *
2044			 * However, when TCP_NODELAY is set we make
2045			 * an explicit push, which overrides even TCP_CORK
2046			 * for currently queued segments.
2047			 */
2048			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2049			tcp_push_pending_frames(sk);
2050		} else {
2051			tp->nonagle &= ~TCP_NAGLE_OFF;
2052		}
2053		break;
2054
2055	case TCP_CORK:
2056		/* When set indicates to always queue non-full frames.
2057		 * Later the user clears this option and we transmit
2058		 * any pending partial frames in the queue.  This is
2059		 * meant to be used alongside sendfile() to get properly
2060		 * filled frames when the user (for example) must write
2061		 * out headers with a write() call first and then use
2062		 * sendfile to send out the data parts.
2063		 *
2064		 * TCP_CORK can be set together with TCP_NODELAY and it is
2065		 * stronger than TCP_NODELAY.
2066		 */
2067		if (val) {
2068			tp->nonagle |= TCP_NAGLE_CORK;
2069		} else {
2070			tp->nonagle &= ~TCP_NAGLE_CORK;
2071			if (tp->nonagle&TCP_NAGLE_OFF)
2072				tp->nonagle |= TCP_NAGLE_PUSH;
2073			tcp_push_pending_frames(sk);
2074		}
2075		break;
2076
2077	case TCP_KEEPIDLE:
2078		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2079			err = -EINVAL;
2080		else {
2081			tp->keepalive_time = val * HZ;
2082			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2083			    !((1 << sk->sk_state) &
2084			      (TCPF_CLOSE | TCPF_LISTEN))) {
2085				__u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2086				if (tp->keepalive_time > elapsed)
2087					elapsed = tp->keepalive_time - elapsed;
2088				else
2089					elapsed = 0;
2090				inet_csk_reset_keepalive_timer(sk, elapsed);
2091			}
2092		}
2093		break;
2094	case TCP_KEEPINTVL:
2095		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2096			err = -EINVAL;
2097		else
2098			tp->keepalive_intvl = val * HZ;
2099		break;
2100	case TCP_KEEPCNT:
2101		if (val < 1 || val > MAX_TCP_KEEPCNT)
2102			err = -EINVAL;
2103		else
2104			tp->keepalive_probes = val;
2105		break;
2106	case TCP_SYNCNT:
2107		if (val < 1 || val > MAX_TCP_SYNCNT)
2108			err = -EINVAL;
2109		else
2110			icsk->icsk_syn_retries = val;
2111		break;
2112
2113	case TCP_LINGER2:
2114		if (val < 0)
2115			tp->linger2 = -1;
2116		else if (val > sysctl_tcp_fin_timeout / HZ)
2117			tp->linger2 = 0;
2118		else
2119			tp->linger2 = val * HZ;
2120		break;
2121
2122	case TCP_DEFER_ACCEPT:
2123		icsk->icsk_accept_queue.rskq_defer_accept = 0;
2124		if (val > 0) {
2125			/* Translate value in seconds to number of
2126			 * retransmits */
2127			while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
2128			       val > ((TCP_TIMEOUT_INIT / HZ) <<
2129				       icsk->icsk_accept_queue.rskq_defer_accept))
2130				icsk->icsk_accept_queue.rskq_defer_accept++;
2131			icsk->icsk_accept_queue.rskq_defer_accept++;
2132		}
2133		break;
2134
2135	case TCP_WINDOW_CLAMP:
2136		if (!val) {
2137			if (sk->sk_state != TCP_CLOSE) {
2138				err = -EINVAL;
2139				break;
2140			}
2141			tp->window_clamp = 0;
2142		} else
2143			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2144						SOCK_MIN_RCVBUF / 2 : val;
2145		break;
2146
2147	case TCP_QUICKACK:
2148		if (!val) {
2149			icsk->icsk_ack.pingpong = 1;
2150		} else {
2151			icsk->icsk_ack.pingpong = 0;
2152			if ((1 << sk->sk_state) &
2153			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2154			    inet_csk_ack_scheduled(sk)) {
2155				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2156				tcp_cleanup_rbuf(sk, 1);
2157				if (!(val & 1))
2158					icsk->icsk_ack.pingpong = 1;
2159			}
2160		}
2161		break;
2162
2163#ifdef CONFIG_TCP_MD5SIG
2164	case TCP_MD5SIG:
2165		/* Read the IP->Key mappings from userspace */
2166		err = tp->af_specific->md5_parse(sk, optval, optlen);
2167		break;
2168#endif
2169
2170	default:
2171		err = -ENOPROTOOPT;
2172		break;
2173	}
2174
2175	release_sock(sk);
2176	return err;
2177}
2178
2179int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2180		   int optlen)
2181{
2182	struct inet_connection_sock *icsk = inet_csk(sk);
2183
2184	if (level != SOL_TCP)
2185		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2186						     optval, optlen);
2187	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2188}
2189
2190#ifdef CONFIG_COMPAT
2191int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2192			  char __user *optval, int optlen)
2193{
2194	if (level != SOL_TCP)
2195		return inet_csk_compat_setsockopt(sk, level, optname,
2196						  optval, optlen);
2197	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2198}
2199
2200EXPORT_SYMBOL(compat_tcp_setsockopt);
2201#endif
2202
2203/* Return information about state of tcp endpoint in API format. */
2204void tcp_get_info(struct sock *sk, struct tcp_info *info)
2205{
2206	struct tcp_sock *tp = tcp_sk(sk);
2207	const struct inet_connection_sock *icsk = inet_csk(sk);
2208	u32 now = tcp_time_stamp;
2209
2210	memset(info, 0, sizeof(*info));
2211
2212	info->tcpi_state = sk->sk_state;
2213	info->tcpi_ca_state = icsk->icsk_ca_state;
2214	info->tcpi_retransmits = icsk->icsk_retransmits;
2215	info->tcpi_probes = icsk->icsk_probes_out;
2216	info->tcpi_backoff = icsk->icsk_backoff;
2217
2218	if (tp->rx_opt.tstamp_ok)
2219		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2220	if (tcp_is_sack(tp))
2221		info->tcpi_options |= TCPI_OPT_SACK;
2222	if (tp->rx_opt.wscale_ok) {
2223		info->tcpi_options |= TCPI_OPT_WSCALE;
2224		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2225		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2226	}
2227
2228	if (tp->ecn_flags&TCP_ECN_OK)
2229		info->tcpi_options |= TCPI_OPT_ECN;
2230
2231	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2232	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2233	info->tcpi_snd_mss = tp->mss_cache;
2234	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2235
2236	if (sk->sk_state == TCP_LISTEN) {
2237		info->tcpi_unacked = sk->sk_ack_backlog;
2238		info->tcpi_sacked = sk->sk_max_ack_backlog;
2239	} else {
2240		info->tcpi_unacked = tp->packets_out;
2241		info->tcpi_sacked = tp->sacked_out;
2242	}
2243	info->tcpi_lost = tp->lost_out;
2244	info->tcpi_retrans = tp->retrans_out;
2245	info->tcpi_fackets = tp->fackets_out;
2246
2247	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2248	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2249	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2250
2251	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2252	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2253	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2254	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2255	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2256	info->tcpi_snd_cwnd = tp->snd_cwnd;
2257	info->tcpi_advmss = tp->advmss;
2258	info->tcpi_reordering = tp->reordering;
2259
2260	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2261	info->tcpi_rcv_space = tp->rcvq_space.space;
2262
2263	info->tcpi_total_retrans = tp->total_retrans;
2264}
2265
2266EXPORT_SYMBOL_GPL(tcp_get_info);
2267
2268static int do_tcp_getsockopt(struct sock *sk, int level,
2269		int optname, char __user *optval, int __user *optlen)
2270{
2271	struct inet_connection_sock *icsk = inet_csk(sk);
2272	struct tcp_sock *tp = tcp_sk(sk);
2273	int val, len;
2274
2275	if (get_user(len, optlen))
2276		return -EFAULT;
2277
2278	len = min_t(unsigned int, len, sizeof(int));
2279
2280	if (len < 0)
2281		return -EINVAL;
2282
2283	switch (optname) {
2284	case TCP_MAXSEG:
2285		val = tp->mss_cache;
2286		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2287			val = tp->rx_opt.user_mss;
2288		break;
2289	case TCP_NODELAY:
2290		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2291		break;
2292	case TCP_CORK:
2293		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2294		break;
2295	case TCP_KEEPIDLE:
2296		val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2297		break;
2298	case TCP_KEEPINTVL:
2299		val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2300		break;
2301	case TCP_KEEPCNT:
2302		val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2303		break;
2304	case TCP_SYNCNT:
2305		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2306		break;
2307	case TCP_LINGER2:
2308		val = tp->linger2;
2309		if (val >= 0)
2310			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2311		break;
2312	case TCP_DEFER_ACCEPT:
2313		val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2314			((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2315		break;
2316	case TCP_WINDOW_CLAMP:
2317		val = tp->window_clamp;
2318		break;
2319	case TCP_INFO: {
2320		struct tcp_info info;
2321
2322		if (get_user(len, optlen))
2323			return -EFAULT;
2324
2325		tcp_get_info(sk, &info);
2326
2327		len = min_t(unsigned int, len, sizeof(info));
2328		if (put_user(len, optlen))
2329			return -EFAULT;
2330		if (copy_to_user(optval, &info, len))
2331			return -EFAULT;
2332		return 0;
2333	}
2334	case TCP_QUICKACK:
2335		val = !icsk->icsk_ack.pingpong;
2336		break;
2337
2338	case TCP_CONGESTION:
2339		if (get_user(len, optlen))
2340			return -EFAULT;
2341		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2342		if (put_user(len, optlen))
2343			return -EFAULT;
2344		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2345			return -EFAULT;
2346		return 0;
2347	default:
2348		return -ENOPROTOOPT;
2349	}
2350
2351	if (put_user(len, optlen))
2352		return -EFAULT;
2353	if (copy_to_user(optval, &val, len))
2354		return -EFAULT;
2355	return 0;
2356}
2357
2358int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2359		   int __user *optlen)
2360{
2361	struct inet_connection_sock *icsk = inet_csk(sk);
2362
2363	if (level != SOL_TCP)
2364		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2365						     optval, optlen);
2366	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2367}
2368
2369#ifdef CONFIG_COMPAT
2370int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2371			  char __user *optval, int __user *optlen)
2372{
2373	if (level != SOL_TCP)
2374		return inet_csk_compat_getsockopt(sk, level, optname,
2375						  optval, optlen);
2376	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2377}
2378
2379EXPORT_SYMBOL(compat_tcp_getsockopt);
2380#endif
2381
2382struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2383{
2384	struct sk_buff *segs = ERR_PTR(-EINVAL);
2385	struct tcphdr *th;
2386	unsigned thlen;
2387	unsigned int seq;
2388	__be32 delta;
2389	unsigned int oldlen;
2390	unsigned int len;
2391
2392	if (!pskb_may_pull(skb, sizeof(*th)))
2393		goto out;
2394
2395	th = tcp_hdr(skb);
2396	thlen = th->doff * 4;
2397	if (thlen < sizeof(*th))
2398		goto out;
2399
2400	if (!pskb_may_pull(skb, thlen))
2401		goto out;
2402
2403	oldlen = (u16)~skb->len;
2404	__skb_pull(skb, thlen);
2405
2406	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2407		/* Packet is from an untrusted source, reset gso_segs. */
2408		int type = skb_shinfo(skb)->gso_type;
2409		int mss;
2410
2411		if (unlikely(type &
2412			     ~(SKB_GSO_TCPV4 |
2413			       SKB_GSO_DODGY |
2414			       SKB_GSO_TCP_ECN |
2415			       SKB_GSO_TCPV6 |
2416			       0) ||
2417			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2418			goto out;
2419
2420		mss = skb_shinfo(skb)->gso_size;
2421		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2422
2423		segs = NULL;
2424		goto out;
2425	}
2426
2427	segs = skb_segment(skb, features);
2428	if (IS_ERR(segs))
2429		goto out;
2430
2431	len = skb_shinfo(skb)->gso_size;
2432	delta = htonl(oldlen + (thlen + len));
2433
2434	skb = segs;
2435	th = tcp_hdr(skb);
2436	seq = ntohl(th->seq);
2437
2438	do {
2439		th->fin = th->psh = 0;
2440
2441		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2442				       (__force u32)delta));
2443		if (skb->ip_summed != CHECKSUM_PARTIAL)
2444			th->check =
2445			     csum_fold(csum_partial(skb_transport_header(skb),
2446						    thlen, skb->csum));
2447
2448		seq += len;
2449		skb = skb->next;
2450		th = tcp_hdr(skb);
2451
2452		th->seq = htonl(seq);
2453		th->cwr = 0;
2454	} while (skb->next);
2455
2456	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2457		      skb->data_len);
2458	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2459				(__force u32)delta));
2460	if (skb->ip_summed != CHECKSUM_PARTIAL)
2461		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2462						   thlen, skb->csum));
2463
2464out:
2465	return segs;
2466}
2467EXPORT_SYMBOL(tcp_tso_segment);
2468
2469struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2470{
2471	struct sk_buff **pp = NULL;
2472	struct sk_buff *p;
2473	struct tcphdr *th;
2474	struct tcphdr *th2;
2475	unsigned int thlen;
2476	unsigned int flags;
2477	unsigned int total;
2478	unsigned int mss = 1;
2479	int flush = 1;
2480
2481	if (!pskb_may_pull(skb, sizeof(*th)))
2482		goto out;
2483
2484	th = tcp_hdr(skb);
2485	thlen = th->doff * 4;
2486	if (thlen < sizeof(*th))
2487		goto out;
2488
2489	if (!pskb_may_pull(skb, thlen))
2490		goto out;
2491
2492	th = tcp_hdr(skb);
2493	__skb_pull(skb, thlen);
2494
2495	flags = tcp_flag_word(th);
2496
2497	for (; (p = *head); head = &p->next) {
2498		if (!NAPI_GRO_CB(p)->same_flow)
2499			continue;
2500
2501		th2 = tcp_hdr(p);
2502
2503		if (th->source != th2->source || th->dest != th2->dest) {
2504			NAPI_GRO_CB(p)->same_flow = 0;
2505			continue;
2506		}
2507
2508		goto found;
2509	}
2510
2511	goto out_check_final;
2512
2513found:
2514	flush = NAPI_GRO_CB(p)->flush;
2515	flush |= flags & TCP_FLAG_CWR;
2516	flush |= (flags ^ tcp_flag_word(th2)) &
2517		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH);
2518	flush |= th->ack_seq != th2->ack_seq || th->window != th2->window;
2519	flush |= memcmp(th + 1, th2 + 1, thlen - sizeof(*th));
2520
2521	total = p->len;
2522	mss = total;
2523	if (skb_shinfo(p)->frag_list)
2524		mss = skb_shinfo(p)->frag_list->len;
2525
2526	flush |= skb->len > mss || skb->len <= 0;
2527	flush |= ntohl(th2->seq) + total != ntohl(th->seq);
2528
2529	if (flush || skb_gro_receive(head, skb)) {
2530		mss = 1;
2531		goto out_check_final;
2532	}
2533
2534	p = *head;
2535	th2 = tcp_hdr(p);
2536	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2537
2538out_check_final:
2539	flush = skb->len < mss;
2540	flush |= flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST |
2541			  TCP_FLAG_SYN | TCP_FLAG_FIN);
2542
2543	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2544		pp = head;
2545
2546out:
2547	NAPI_GRO_CB(skb)->flush |= flush;
2548
2549	return pp;
2550}
2551
2552int tcp_gro_complete(struct sk_buff *skb)
2553{
2554	struct tcphdr *th = tcp_hdr(skb);
2555
2556	skb->csum_start = skb_transport_header(skb) - skb->head;
2557	skb->csum_offset = offsetof(struct tcphdr, check);
2558	skb->ip_summed = CHECKSUM_PARTIAL;
2559
2560	skb_shinfo(skb)->gso_size = skb_shinfo(skb)->frag_list->len;
2561	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2562
2563	if (th->cwr)
2564		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2565
2566	return 0;
2567}
2568
2569#ifdef CONFIG_TCP_MD5SIG
2570static unsigned long tcp_md5sig_users;
2571static struct tcp_md5sig_pool **tcp_md5sig_pool;
2572static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2573
2574static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2575{
2576	int cpu;
2577	for_each_possible_cpu(cpu) {
2578		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2579		if (p) {
2580			if (p->md5_desc.tfm)
2581				crypto_free_hash(p->md5_desc.tfm);
2582			kfree(p);
2583			p = NULL;
2584		}
2585	}
2586	free_percpu(pool);
2587}
2588
2589void tcp_free_md5sig_pool(void)
2590{
2591	struct tcp_md5sig_pool **pool = NULL;
2592
2593	spin_lock_bh(&tcp_md5sig_pool_lock);
2594	if (--tcp_md5sig_users == 0) {
2595		pool = tcp_md5sig_pool;
2596		tcp_md5sig_pool = NULL;
2597	}
2598	spin_unlock_bh(&tcp_md5sig_pool_lock);
2599	if (pool)
2600		__tcp_free_md5sig_pool(pool);
2601}
2602
2603EXPORT_SYMBOL(tcp_free_md5sig_pool);
2604
2605static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2606{
2607	int cpu;
2608	struct tcp_md5sig_pool **pool;
2609
2610	pool = alloc_percpu(struct tcp_md5sig_pool *);
2611	if (!pool)
2612		return NULL;
2613
2614	for_each_possible_cpu(cpu) {
2615		struct tcp_md5sig_pool *p;
2616		struct crypto_hash *hash;
2617
2618		p = kzalloc(sizeof(*p), GFP_KERNEL);
2619		if (!p)
2620			goto out_free;
2621		*per_cpu_ptr(pool, cpu) = p;
2622
2623		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2624		if (!hash || IS_ERR(hash))
2625			goto out_free;
2626
2627		p->md5_desc.tfm = hash;
2628	}
2629	return pool;
2630out_free:
2631	__tcp_free_md5sig_pool(pool);
2632	return NULL;
2633}
2634
2635struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2636{
2637	struct tcp_md5sig_pool **pool;
2638	int alloc = 0;
2639
2640retry:
2641	spin_lock_bh(&tcp_md5sig_pool_lock);
2642	pool = tcp_md5sig_pool;
2643	if (tcp_md5sig_users++ == 0) {
2644		alloc = 1;
2645		spin_unlock_bh(&tcp_md5sig_pool_lock);
2646	} else if (!pool) {
2647		tcp_md5sig_users--;
2648		spin_unlock_bh(&tcp_md5sig_pool_lock);
2649		cpu_relax();
2650		goto retry;
2651	} else
2652		spin_unlock_bh(&tcp_md5sig_pool_lock);
2653
2654	if (alloc) {
2655		/* we cannot hold spinlock here because this may sleep. */
2656		struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2657		spin_lock_bh(&tcp_md5sig_pool_lock);
2658		if (!p) {
2659			tcp_md5sig_users--;
2660			spin_unlock_bh(&tcp_md5sig_pool_lock);
2661			return NULL;
2662		}
2663		pool = tcp_md5sig_pool;
2664		if (pool) {
2665			/* oops, it has already been assigned. */
2666			spin_unlock_bh(&tcp_md5sig_pool_lock);
2667			__tcp_free_md5sig_pool(p);
2668		} else {
2669			tcp_md5sig_pool = pool = p;
2670			spin_unlock_bh(&tcp_md5sig_pool_lock);
2671		}
2672	}
2673	return pool;
2674}
2675
2676EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2677
2678struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2679{
2680	struct tcp_md5sig_pool **p;
2681	spin_lock_bh(&tcp_md5sig_pool_lock);
2682	p = tcp_md5sig_pool;
2683	if (p)
2684		tcp_md5sig_users++;
2685	spin_unlock_bh(&tcp_md5sig_pool_lock);
2686	return (p ? *per_cpu_ptr(p, cpu) : NULL);
2687}
2688
2689EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2690
2691void __tcp_put_md5sig_pool(void)
2692{
2693	tcp_free_md5sig_pool();
2694}
2695
2696EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2697
2698int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2699			struct tcphdr *th)
2700{
2701	struct scatterlist sg;
2702	int err;
2703
2704	__sum16 old_checksum = th->check;
2705	th->check = 0;
2706	/* options aren't included in the hash */
2707	sg_init_one(&sg, th, sizeof(struct tcphdr));
2708	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
2709	th->check = old_checksum;
2710	return err;
2711}
2712
2713EXPORT_SYMBOL(tcp_md5_hash_header);
2714
2715int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2716			  struct sk_buff *skb, unsigned header_len)
2717{
2718	struct scatterlist sg;
2719	const struct tcphdr *tp = tcp_hdr(skb);
2720	struct hash_desc *desc = &hp->md5_desc;
2721	unsigned i;
2722	const unsigned head_data_len = skb_headlen(skb) > header_len ?
2723				       skb_headlen(skb) - header_len : 0;
2724	const struct skb_shared_info *shi = skb_shinfo(skb);
2725
2726	sg_init_table(&sg, 1);
2727
2728	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2729	if (crypto_hash_update(desc, &sg, head_data_len))
2730		return 1;
2731
2732	for (i = 0; i < shi->nr_frags; ++i) {
2733		const struct skb_frag_struct *f = &shi->frags[i];
2734		sg_set_page(&sg, f->page, f->size, f->page_offset);
2735		if (crypto_hash_update(desc, &sg, f->size))
2736			return 1;
2737	}
2738
2739	return 0;
2740}
2741
2742EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2743
2744int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
2745{
2746	struct scatterlist sg;
2747
2748	sg_init_one(&sg, key->key, key->keylen);
2749	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2750}
2751
2752EXPORT_SYMBOL(tcp_md5_hash_key);
2753
2754#endif
2755
2756void tcp_done(struct sock *sk)
2757{
2758	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2759		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
2760
2761	tcp_set_state(sk, TCP_CLOSE);
2762	tcp_clear_xmit_timers(sk);
2763
2764	sk->sk_shutdown = SHUTDOWN_MASK;
2765
2766	if (!sock_flag(sk, SOCK_DEAD))
2767		sk->sk_state_change(sk);
2768	else
2769		inet_csk_destroy_sock(sk);
2770}
2771EXPORT_SYMBOL_GPL(tcp_done);
2772
2773extern struct tcp_congestion_ops tcp_reno;
2774
2775static __initdata unsigned long thash_entries;
2776static int __init set_thash_entries(char *str)
2777{
2778	if (!str)
2779		return 0;
2780	thash_entries = simple_strtoul(str, &str, 0);
2781	return 1;
2782}
2783__setup("thash_entries=", set_thash_entries);
2784
2785void __init tcp_init(void)
2786{
2787	struct sk_buff *skb = NULL;
2788	unsigned long nr_pages, limit;
2789	int order, i, max_share;
2790
2791	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
2792
2793	percpu_counter_init(&tcp_sockets_allocated, 0);
2794	percpu_counter_init(&tcp_orphan_count, 0);
2795	tcp_hashinfo.bind_bucket_cachep =
2796		kmem_cache_create("tcp_bind_bucket",
2797				  sizeof(struct inet_bind_bucket), 0,
2798				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2799
2800	/* Size and allocate the main established and bind bucket
2801	 * hash tables.
2802	 *
2803	 * The methodology is similar to that of the buffer cache.
2804	 */
2805	tcp_hashinfo.ehash =
2806		alloc_large_system_hash("TCP established",
2807					sizeof(struct inet_ehash_bucket),
2808					thash_entries,
2809					(num_physpages >= 128 * 1024) ?
2810					13 : 15,
2811					0,
2812					&tcp_hashinfo.ehash_size,
2813					NULL,
2814					thash_entries ? 0 : 512 * 1024);
2815	tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2816	for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2817		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
2818		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
2819	}
2820	if (inet_ehash_locks_alloc(&tcp_hashinfo))
2821		panic("TCP: failed to alloc ehash_locks");
2822	tcp_hashinfo.bhash =
2823		alloc_large_system_hash("TCP bind",
2824					sizeof(struct inet_bind_hashbucket),
2825					tcp_hashinfo.ehash_size,
2826					(num_physpages >= 128 * 1024) ?
2827					13 : 15,
2828					0,
2829					&tcp_hashinfo.bhash_size,
2830					NULL,
2831					64 * 1024);
2832	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2833	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2834		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2835		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2836	}
2837
2838	/* Try to be a bit smarter and adjust defaults depending
2839	 * on available memory.
2840	 */
2841	for (order = 0; ((1 << order) << PAGE_SHIFT) <
2842			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2843			order++)
2844		;
2845	if (order >= 4) {
2846		tcp_death_row.sysctl_max_tw_buckets = 180000;
2847		sysctl_tcp_max_orphans = 4096 << (order - 4);
2848		sysctl_max_syn_backlog = 1024;
2849	} else if (order < 3) {
2850		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2851		sysctl_tcp_max_orphans >>= (3 - order);
2852		sysctl_max_syn_backlog = 128;
2853	}
2854
2855	/* Set the pressure threshold to be a fraction of global memory that
2856	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2857	 * memory, with a floor of 128 pages.
2858	 */
2859	nr_pages = totalram_pages - totalhigh_pages;
2860	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2861	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2862	limit = max(limit, 128UL);
2863	sysctl_tcp_mem[0] = limit / 4 * 3;
2864	sysctl_tcp_mem[1] = limit;
2865	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2866
2867	/* Set per-socket limits to no more than 1/128 the pressure threshold */
2868	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2869	max_share = min(4UL*1024*1024, limit);
2870
2871	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
2872	sysctl_tcp_wmem[1] = 16*1024;
2873	sysctl_tcp_wmem[2] = max(64*1024, max_share);
2874
2875	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
2876	sysctl_tcp_rmem[1] = 87380;
2877	sysctl_tcp_rmem[2] = max(87380, max_share);
2878
2879	printk(KERN_INFO "TCP: Hash tables configured "
2880	       "(established %d bind %d)\n",
2881	       tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2882
2883	tcp_register_congestion_control(&tcp_reno);
2884}
2885
2886EXPORT_SYMBOL(tcp_close);
2887EXPORT_SYMBOL(tcp_disconnect);
2888EXPORT_SYMBOL(tcp_getsockopt);
2889EXPORT_SYMBOL(tcp_ioctl);
2890EXPORT_SYMBOL(tcp_poll);
2891EXPORT_SYMBOL(tcp_read_sock);
2892EXPORT_SYMBOL(tcp_recvmsg);
2893EXPORT_SYMBOL(tcp_sendmsg);
2894EXPORT_SYMBOL(tcp_splice_read);
2895EXPORT_SYMBOL(tcp_sendpage);
2896EXPORT_SYMBOL(tcp_setsockopt);
2897EXPORT_SYMBOL(tcp_shutdown);
2898