tcp.c revision ec0a196626bd12e0ba108d7daa6d95a4fb25c2c5
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp.c,v 1.216 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 *
22 * Fixes:
23 *		Alan Cox	:	Numerous verify_area() calls
24 *		Alan Cox	:	Set the ACK bit on a reset
25 *		Alan Cox	:	Stopped it crashing if it closed while
26 *					sk->inuse=1 and was trying to connect
27 *					(tcp_err()).
28 *		Alan Cox	:	All icmp error handling was broken
29 *					pointers passed where wrong and the
30 *					socket was looked up backwards. Nobody
31 *					tested any icmp error code obviously.
32 *		Alan Cox	:	tcp_err() now handled properly. It
33 *					wakes people on errors. poll
34 *					behaves and the icmp error race
35 *					has gone by moving it into sock.c
36 *		Alan Cox	:	tcp_send_reset() fixed to work for
37 *					everything not just packets for
38 *					unknown sockets.
39 *		Alan Cox	:	tcp option processing.
40 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
41 *					syn rule wrong]
42 *		Herp Rosmanith  :	More reset fixes
43 *		Alan Cox	:	No longer acks invalid rst frames.
44 *					Acking any kind of RST is right out.
45 *		Alan Cox	:	Sets an ignore me flag on an rst
46 *					receive otherwise odd bits of prattle
47 *					escape still
48 *		Alan Cox	:	Fixed another acking RST frame bug.
49 *					Should stop LAN workplace lockups.
50 *		Alan Cox	: 	Some tidyups using the new skb list
51 *					facilities
52 *		Alan Cox	:	sk->keepopen now seems to work
53 *		Alan Cox	:	Pulls options out correctly on accepts
54 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
55 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
56 *					bit to skb ops.
57 *		Alan Cox	:	Tidied tcp_data to avoid a potential
58 *					nasty.
59 *		Alan Cox	:	Added some better commenting, as the
60 *					tcp is hard to follow
61 *		Alan Cox	:	Removed incorrect check for 20 * psh
62 *	Michael O'Reilly	:	ack < copied bug fix.
63 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
64 *		Alan Cox	:	FIN with no memory -> CRASH
65 *		Alan Cox	:	Added socket option proto entries.
66 *					Also added awareness of them to accept.
67 *		Alan Cox	:	Added TCP options (SOL_TCP)
68 *		Alan Cox	:	Switched wakeup calls to callbacks,
69 *					so the kernel can layer network
70 *					sockets.
71 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
72 *		Alan Cox	:	Handle FIN (more) properly (we hope).
73 *		Alan Cox	:	RST frames sent on unsynchronised
74 *					state ack error.
75 *		Alan Cox	:	Put in missing check for SYN bit.
76 *		Alan Cox	:	Added tcp_select_window() aka NET2E
77 *					window non shrink trick.
78 *		Alan Cox	:	Added a couple of small NET2E timer
79 *					fixes
80 *		Charles Hedrick :	TCP fixes
81 *		Toomas Tamm	:	TCP window fixes
82 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
83 *		Charles Hedrick	:	Rewrote most of it to actually work
84 *		Linus		:	Rewrote tcp_read() and URG handling
85 *					completely
86 *		Gerhard Koerting:	Fixed some missing timer handling
87 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
88 *		Gerhard Koerting:	PC/TCP workarounds
89 *		Adam Caldwell	:	Assorted timer/timing errors
90 *		Matthew Dillon	:	Fixed another RST bug
91 *		Alan Cox	:	Move to kernel side addressing changes.
92 *		Alan Cox	:	Beginning work on TCP fastpathing
93 *					(not yet usable)
94 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
95 *		Alan Cox	:	TCP fast path debugging
96 *		Alan Cox	:	Window clamping
97 *		Michael Riepe	:	Bug in tcp_check()
98 *		Matt Dillon	:	More TCP improvements and RST bug fixes
99 *		Matt Dillon	:	Yet more small nasties remove from the
100 *					TCP code (Be very nice to this man if
101 *					tcp finally works 100%) 8)
102 *		Alan Cox	:	BSD accept semantics.
103 *		Alan Cox	:	Reset on closedown bug.
104 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
105 *		Michael Pall	:	Handle poll() after URG properly in
106 *					all cases.
107 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
108 *					(multi URG PUSH broke rlogin).
109 *		Michael Pall	:	Fix the multi URG PUSH problem in
110 *					tcp_readable(), poll() after URG
111 *					works now.
112 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
113 *					BSD api.
114 *		Alan Cox	:	Changed the semantics of sk->socket to
115 *					fix a race and a signal problem with
116 *					accept() and async I/O.
117 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
118 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
119 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
120 *					clients/servers which listen in on
121 *					fixed ports.
122 *		Alan Cox	:	Cleaned the above up and shrank it to
123 *					a sensible code size.
124 *		Alan Cox	:	Self connect lockup fix.
125 *		Alan Cox	:	No connect to multicast.
126 *		Ross Biro	:	Close unaccepted children on master
127 *					socket close.
128 *		Alan Cox	:	Reset tracing code.
129 *		Alan Cox	:	Spurious resets on shutdown.
130 *		Alan Cox	:	Giant 15 minute/60 second timer error
131 *		Alan Cox	:	Small whoops in polling before an
132 *					accept.
133 *		Alan Cox	:	Kept the state trace facility since
134 *					it's handy for debugging.
135 *		Alan Cox	:	More reset handler fixes.
136 *		Alan Cox	:	Started rewriting the code based on
137 *					the RFC's for other useful protocol
138 *					references see: Comer, KA9Q NOS, and
139 *					for a reference on the difference
140 *					between specifications and how BSD
141 *					works see the 4.4lite source.
142 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
143 *					close.
144 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
145 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
146 *		Alan Cox	:	Reimplemented timers as per the RFC
147 *					and using multiple timers for sanity.
148 *		Alan Cox	:	Small bug fixes, and a lot of new
149 *					comments.
150 *		Alan Cox	:	Fixed dual reader crash by locking
151 *					the buffers (much like datagram.c)
152 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
153 *					now gets fed up of retrying without
154 *					(even a no space) answer.
155 *		Alan Cox	:	Extracted closing code better
156 *		Alan Cox	:	Fixed the closing state machine to
157 *					resemble the RFC.
158 *		Alan Cox	:	More 'per spec' fixes.
159 *		Jorge Cwik	:	Even faster checksumming.
160 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
161 *					only frames. At least one pc tcp stack
162 *					generates them.
163 *		Alan Cox	:	Cache last socket.
164 *		Alan Cox	:	Per route irtt.
165 *		Matt Day	:	poll()->select() match BSD precisely on error
166 *		Alan Cox	:	New buffers
167 *		Marc Tamsky	:	Various sk->prot->retransmits and
168 *					sk->retransmits misupdating fixed.
169 *					Fixed tcp_write_timeout: stuck close,
170 *					and TCP syn retries gets used now.
171 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
172 *					ack if state is TCP_CLOSED.
173 *		Alan Cox	:	Look up device on a retransmit - routes may
174 *					change. Doesn't yet cope with MSS shrink right
175 *					but it's a start!
176 *		Marc Tamsky	:	Closing in closing fixes.
177 *		Mike Shaver	:	RFC1122 verifications.
178 *		Alan Cox	:	rcv_saddr errors.
179 *		Alan Cox	:	Block double connect().
180 *		Alan Cox	:	Small hooks for enSKIP.
181 *		Alexey Kuznetsov:	Path MTU discovery.
182 *		Alan Cox	:	Support soft errors.
183 *		Alan Cox	:	Fix MTU discovery pathological case
184 *					when the remote claims no mtu!
185 *		Marc Tamsky	:	TCP_CLOSE fix.
186 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
187 *					window but wrong (fixes NT lpd problems)
188 *		Pedro Roque	:	Better TCP window handling, delayed ack.
189 *		Joerg Reuter	:	No modification of locked buffers in
190 *					tcp_do_retransmit()
191 *		Eric Schenk	:	Changed receiver side silly window
192 *					avoidance algorithm to BSD style
193 *					algorithm. This doubles throughput
194 *					against machines running Solaris,
195 *					and seems to result in general
196 *					improvement.
197 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
198 *	Willy Konynenberg	:	Transparent proxying support.
199 *	Mike McLagan		:	Routing by source
200 *		Keith Owens	:	Do proper merging with partial SKB's in
201 *					tcp_do_sendmsg to avoid burstiness.
202 *		Eric Schenk	:	Fix fast close down bug with
203 *					shutdown() followed by close().
204 *		Andi Kleen 	:	Make poll agree with SIGIO
205 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
206 *					lingertime == 0 (RFC 793 ABORT Call)
207 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
208 *					csum_and_copy_from_user() if possible.
209 *
210 *		This program is free software; you can redistribute it and/or
211 *		modify it under the terms of the GNU General Public License
212 *		as published by the Free Software Foundation; either version
213 *		2 of the License, or(at your option) any later version.
214 *
215 * Description of States:
216 *
217 *	TCP_SYN_SENT		sent a connection request, waiting for ack
218 *
219 *	TCP_SYN_RECV		received a connection request, sent ack,
220 *				waiting for final ack in three-way handshake.
221 *
222 *	TCP_ESTABLISHED		connection established
223 *
224 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
225 *				transmission of remaining buffered data
226 *
227 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
228 *				to shutdown
229 *
230 *	TCP_CLOSING		both sides have shutdown but we still have
231 *				data we have to finish sending
232 *
233 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
234 *				closed, can only be entered from FIN_WAIT2
235 *				or CLOSING.  Required because the other end
236 *				may not have gotten our last ACK causing it
237 *				to retransmit the data packet (which we ignore)
238 *
239 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
240 *				us to finish writing our data and to shutdown
241 *				(we have to close() to move on to LAST_ACK)
242 *
243 *	TCP_LAST_ACK		out side has shutdown after remote has
244 *				shutdown.  There may still be data in our
245 *				buffer that we have to finish sending
246 *
247 *	TCP_CLOSE		socket is finished
248 */
249
250#include <linux/kernel.h>
251#include <linux/module.h>
252#include <linux/types.h>
253#include <linux/fcntl.h>
254#include <linux/poll.h>
255#include <linux/init.h>
256#include <linux/fs.h>
257#include <linux/skbuff.h>
258#include <linux/splice.h>
259#include <linux/net.h>
260#include <linux/socket.h>
261#include <linux/random.h>
262#include <linux/bootmem.h>
263#include <linux/cache.h>
264#include <linux/err.h>
265#include <linux/crypto.h>
266
267#include <net/icmp.h>
268#include <net/tcp.h>
269#include <net/xfrm.h>
270#include <net/ip.h>
271#include <net/netdma.h>
272#include <net/sock.h>
273
274#include <asm/uaccess.h>
275#include <asm/ioctls.h>
276
277int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
278
279DEFINE_SNMP_STAT(struct tcp_mib, tcp_statistics) __read_mostly;
280
281atomic_t tcp_orphan_count = ATOMIC_INIT(0);
282
283EXPORT_SYMBOL_GPL(tcp_orphan_count);
284
285int sysctl_tcp_mem[3] __read_mostly;
286int sysctl_tcp_wmem[3] __read_mostly;
287int sysctl_tcp_rmem[3] __read_mostly;
288
289EXPORT_SYMBOL(sysctl_tcp_mem);
290EXPORT_SYMBOL(sysctl_tcp_rmem);
291EXPORT_SYMBOL(sysctl_tcp_wmem);
292
293atomic_t tcp_memory_allocated;	/* Current allocated memory. */
294atomic_t tcp_sockets_allocated;	/* Current number of TCP sockets. */
295
296EXPORT_SYMBOL(tcp_memory_allocated);
297EXPORT_SYMBOL(tcp_sockets_allocated);
298
299/*
300 * TCP splice context
301 */
302struct tcp_splice_state {
303	struct pipe_inode_info *pipe;
304	size_t len;
305	unsigned int flags;
306};
307
308/*
309 * Pressure flag: try to collapse.
310 * Technical note: it is used by multiple contexts non atomically.
311 * All the __sk_mem_schedule() is of this nature: accounting
312 * is strict, actions are advisory and have some latency.
313 */
314int tcp_memory_pressure __read_mostly;
315
316EXPORT_SYMBOL(tcp_memory_pressure);
317
318void tcp_enter_memory_pressure(void)
319{
320	if (!tcp_memory_pressure) {
321		NET_INC_STATS(LINUX_MIB_TCPMEMORYPRESSURES);
322		tcp_memory_pressure = 1;
323	}
324}
325
326EXPORT_SYMBOL(tcp_enter_memory_pressure);
327
328/*
329 *	Wait for a TCP event.
330 *
331 *	Note that we don't need to lock the socket, as the upper poll layers
332 *	take care of normal races (between the test and the event) and we don't
333 *	go look at any of the socket buffers directly.
334 */
335unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
336{
337	unsigned int mask;
338	struct sock *sk = sock->sk;
339	struct tcp_sock *tp = tcp_sk(sk);
340
341	poll_wait(file, sk->sk_sleep, wait);
342	if (sk->sk_state == TCP_LISTEN)
343		return inet_csk_listen_poll(sk);
344
345	/* Socket is not locked. We are protected from async events
346	   by poll logic and correct handling of state changes
347	   made by another threads is impossible in any case.
348	 */
349
350	mask = 0;
351	if (sk->sk_err)
352		mask = POLLERR;
353
354	/*
355	 * POLLHUP is certainly not done right. But poll() doesn't
356	 * have a notion of HUP in just one direction, and for a
357	 * socket the read side is more interesting.
358	 *
359	 * Some poll() documentation says that POLLHUP is incompatible
360	 * with the POLLOUT/POLLWR flags, so somebody should check this
361	 * all. But careful, it tends to be safer to return too many
362	 * bits than too few, and you can easily break real applications
363	 * if you don't tell them that something has hung up!
364	 *
365	 * Check-me.
366	 *
367	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
368	 * our fs/select.c). It means that after we received EOF,
369	 * poll always returns immediately, making impossible poll() on write()
370	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
371	 * if and only if shutdown has been made in both directions.
372	 * Actually, it is interesting to look how Solaris and DUX
373	 * solve this dilemma. I would prefer, if PULLHUP were maskable,
374	 * then we could set it on SND_SHUTDOWN. BTW examples given
375	 * in Stevens' books assume exactly this behaviour, it explains
376	 * why PULLHUP is incompatible with POLLOUT.	--ANK
377	 *
378	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
379	 * blocking on fresh not-connected or disconnected socket. --ANK
380	 */
381	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
382		mask |= POLLHUP;
383	if (sk->sk_shutdown & RCV_SHUTDOWN)
384		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
385
386	/* Connected? */
387	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
388		/* Potential race condition. If read of tp below will
389		 * escape above sk->sk_state, we can be illegally awaken
390		 * in SYN_* states. */
391		if ((tp->rcv_nxt != tp->copied_seq) &&
392		    (tp->urg_seq != tp->copied_seq ||
393		     tp->rcv_nxt != tp->copied_seq + 1 ||
394		     sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data))
395			mask |= POLLIN | POLLRDNORM;
396
397		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
398			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
399				mask |= POLLOUT | POLLWRNORM;
400			} else {  /* send SIGIO later */
401				set_bit(SOCK_ASYNC_NOSPACE,
402					&sk->sk_socket->flags);
403				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
404
405				/* Race breaker. If space is freed after
406				 * wspace test but before the flags are set,
407				 * IO signal will be lost.
408				 */
409				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
410					mask |= POLLOUT | POLLWRNORM;
411			}
412		}
413
414		if (tp->urg_data & TCP_URG_VALID)
415			mask |= POLLPRI;
416	}
417	return mask;
418}
419
420int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
421{
422	struct tcp_sock *tp = tcp_sk(sk);
423	int answ;
424
425	switch (cmd) {
426	case SIOCINQ:
427		if (sk->sk_state == TCP_LISTEN)
428			return -EINVAL;
429
430		lock_sock(sk);
431		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
432			answ = 0;
433		else if (sock_flag(sk, SOCK_URGINLINE) ||
434			 !tp->urg_data ||
435			 before(tp->urg_seq, tp->copied_seq) ||
436			 !before(tp->urg_seq, tp->rcv_nxt)) {
437			answ = tp->rcv_nxt - tp->copied_seq;
438
439			/* Subtract 1, if FIN is in queue. */
440			if (answ && !skb_queue_empty(&sk->sk_receive_queue))
441				answ -=
442		       tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
443		} else
444			answ = tp->urg_seq - tp->copied_seq;
445		release_sock(sk);
446		break;
447	case SIOCATMARK:
448		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
449		break;
450	case SIOCOUTQ:
451		if (sk->sk_state == TCP_LISTEN)
452			return -EINVAL;
453
454		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
455			answ = 0;
456		else
457			answ = tp->write_seq - tp->snd_una;
458		break;
459	default:
460		return -ENOIOCTLCMD;
461	}
462
463	return put_user(answ, (int __user *)arg);
464}
465
466static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
467{
468	TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
469	tp->pushed_seq = tp->write_seq;
470}
471
472static inline int forced_push(struct tcp_sock *tp)
473{
474	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
475}
476
477static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
478{
479	struct tcp_sock *tp = tcp_sk(sk);
480	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
481
482	skb->csum    = 0;
483	tcb->seq     = tcb->end_seq = tp->write_seq;
484	tcb->flags   = TCPCB_FLAG_ACK;
485	tcb->sacked  = 0;
486	skb_header_release(skb);
487	tcp_add_write_queue_tail(sk, skb);
488	sk->sk_wmem_queued += skb->truesize;
489	sk_mem_charge(sk, skb->truesize);
490	if (tp->nonagle & TCP_NAGLE_PUSH)
491		tp->nonagle &= ~TCP_NAGLE_PUSH;
492}
493
494static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
495				struct sk_buff *skb)
496{
497	if (flags & MSG_OOB) {
498		tp->urg_mode = 1;
499		tp->snd_up = tp->write_seq;
500	}
501}
502
503static inline void tcp_push(struct sock *sk, int flags, int mss_now,
504			    int nonagle)
505{
506	struct tcp_sock *tp = tcp_sk(sk);
507
508	if (tcp_send_head(sk)) {
509		struct sk_buff *skb = tcp_write_queue_tail(sk);
510		if (!(flags & MSG_MORE) || forced_push(tp))
511			tcp_mark_push(tp, skb);
512		tcp_mark_urg(tp, flags, skb);
513		__tcp_push_pending_frames(sk, mss_now,
514					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
515	}
516}
517
518static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
519				unsigned int offset, size_t len)
520{
521	struct tcp_splice_state *tss = rd_desc->arg.data;
522
523	return skb_splice_bits(skb, offset, tss->pipe, tss->len, tss->flags);
524}
525
526static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
527{
528	/* Store TCP splice context information in read_descriptor_t. */
529	read_descriptor_t rd_desc = {
530		.arg.data = tss,
531	};
532
533	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
534}
535
536/**
537 *  tcp_splice_read - splice data from TCP socket to a pipe
538 * @sock:	socket to splice from
539 * @ppos:	position (not valid)
540 * @pipe:	pipe to splice to
541 * @len:	number of bytes to splice
542 * @flags:	splice modifier flags
543 *
544 * Description:
545 *    Will read pages from given socket and fill them into a pipe.
546 *
547 **/
548ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
549			struct pipe_inode_info *pipe, size_t len,
550			unsigned int flags)
551{
552	struct sock *sk = sock->sk;
553	struct tcp_splice_state tss = {
554		.pipe = pipe,
555		.len = len,
556		.flags = flags,
557	};
558	long timeo;
559	ssize_t spliced;
560	int ret;
561
562	/*
563	 * We can't seek on a socket input
564	 */
565	if (unlikely(*ppos))
566		return -ESPIPE;
567
568	ret = spliced = 0;
569
570	lock_sock(sk);
571
572	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
573	while (tss.len) {
574		ret = __tcp_splice_read(sk, &tss);
575		if (ret < 0)
576			break;
577		else if (!ret) {
578			if (spliced)
579				break;
580			if (flags & SPLICE_F_NONBLOCK) {
581				ret = -EAGAIN;
582				break;
583			}
584			if (sock_flag(sk, SOCK_DONE))
585				break;
586			if (sk->sk_err) {
587				ret = sock_error(sk);
588				break;
589			}
590			if (sk->sk_shutdown & RCV_SHUTDOWN)
591				break;
592			if (sk->sk_state == TCP_CLOSE) {
593				/*
594				 * This occurs when user tries to read
595				 * from never connected socket.
596				 */
597				if (!sock_flag(sk, SOCK_DONE))
598					ret = -ENOTCONN;
599				break;
600			}
601			if (!timeo) {
602				ret = -EAGAIN;
603				break;
604			}
605			sk_wait_data(sk, &timeo);
606			if (signal_pending(current)) {
607				ret = sock_intr_errno(timeo);
608				break;
609			}
610			continue;
611		}
612		tss.len -= ret;
613		spliced += ret;
614
615		release_sock(sk);
616		lock_sock(sk);
617
618		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
619		    (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo ||
620		    signal_pending(current))
621			break;
622	}
623
624	release_sock(sk);
625
626	if (spliced)
627		return spliced;
628
629	return ret;
630}
631
632struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
633{
634	struct sk_buff *skb;
635
636	/* The TCP header must be at least 32-bit aligned.  */
637	size = ALIGN(size, 4);
638
639	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
640	if (skb) {
641		if (sk_wmem_schedule(sk, skb->truesize)) {
642			/*
643			 * Make sure that we have exactly size bytes
644			 * available to the caller, no more, no less.
645			 */
646			skb_reserve(skb, skb_tailroom(skb) - size);
647			return skb;
648		}
649		__kfree_skb(skb);
650	} else {
651		sk->sk_prot->enter_memory_pressure();
652		sk_stream_moderate_sndbuf(sk);
653	}
654	return NULL;
655}
656
657static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
658			 size_t psize, int flags)
659{
660	struct tcp_sock *tp = tcp_sk(sk);
661	int mss_now, size_goal;
662	int err;
663	ssize_t copied;
664	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
665
666	/* Wait for a connection to finish. */
667	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
668		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
669			goto out_err;
670
671	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
672
673	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
674	size_goal = tp->xmit_size_goal;
675	copied = 0;
676
677	err = -EPIPE;
678	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
679		goto do_error;
680
681	while (psize > 0) {
682		struct sk_buff *skb = tcp_write_queue_tail(sk);
683		struct page *page = pages[poffset / PAGE_SIZE];
684		int copy, i, can_coalesce;
685		int offset = poffset % PAGE_SIZE;
686		int size = min_t(size_t, psize, PAGE_SIZE - offset);
687
688		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
689new_segment:
690			if (!sk_stream_memory_free(sk))
691				goto wait_for_sndbuf;
692
693			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
694			if (!skb)
695				goto wait_for_memory;
696
697			skb_entail(sk, skb);
698			copy = size_goal;
699		}
700
701		if (copy > size)
702			copy = size;
703
704		i = skb_shinfo(skb)->nr_frags;
705		can_coalesce = skb_can_coalesce(skb, i, page, offset);
706		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
707			tcp_mark_push(tp, skb);
708			goto new_segment;
709		}
710		if (!sk_wmem_schedule(sk, copy))
711			goto wait_for_memory;
712
713		if (can_coalesce) {
714			skb_shinfo(skb)->frags[i - 1].size += copy;
715		} else {
716			get_page(page);
717			skb_fill_page_desc(skb, i, page, offset, copy);
718		}
719
720		skb->len += copy;
721		skb->data_len += copy;
722		skb->truesize += copy;
723		sk->sk_wmem_queued += copy;
724		sk_mem_charge(sk, copy);
725		skb->ip_summed = CHECKSUM_PARTIAL;
726		tp->write_seq += copy;
727		TCP_SKB_CB(skb)->end_seq += copy;
728		skb_shinfo(skb)->gso_segs = 0;
729
730		if (!copied)
731			TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
732
733		copied += copy;
734		poffset += copy;
735		if (!(psize -= copy))
736			goto out;
737
738		if (skb->len < size_goal || (flags & MSG_OOB))
739			continue;
740
741		if (forced_push(tp)) {
742			tcp_mark_push(tp, skb);
743			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
744		} else if (skb == tcp_send_head(sk))
745			tcp_push_one(sk, mss_now);
746		continue;
747
748wait_for_sndbuf:
749		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
750wait_for_memory:
751		if (copied)
752			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
753
754		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
755			goto do_error;
756
757		mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
758		size_goal = tp->xmit_size_goal;
759	}
760
761out:
762	if (copied)
763		tcp_push(sk, flags, mss_now, tp->nonagle);
764	return copied;
765
766do_error:
767	if (copied)
768		goto out;
769out_err:
770	return sk_stream_error(sk, flags, err);
771}
772
773ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
774		     size_t size, int flags)
775{
776	ssize_t res;
777	struct sock *sk = sock->sk;
778
779	if (!(sk->sk_route_caps & NETIF_F_SG) ||
780	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
781		return sock_no_sendpage(sock, page, offset, size, flags);
782
783	lock_sock(sk);
784	TCP_CHECK_TIMER(sk);
785	res = do_tcp_sendpages(sk, &page, offset, size, flags);
786	TCP_CHECK_TIMER(sk);
787	release_sock(sk);
788	return res;
789}
790
791#define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
792#define TCP_OFF(sk)	(sk->sk_sndmsg_off)
793
794static inline int select_size(struct sock *sk)
795{
796	struct tcp_sock *tp = tcp_sk(sk);
797	int tmp = tp->mss_cache;
798
799	if (sk->sk_route_caps & NETIF_F_SG) {
800		if (sk_can_gso(sk))
801			tmp = 0;
802		else {
803			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
804
805			if (tmp >= pgbreak &&
806			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
807				tmp = pgbreak;
808		}
809	}
810
811	return tmp;
812}
813
814int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
815		size_t size)
816{
817	struct sock *sk = sock->sk;
818	struct iovec *iov;
819	struct tcp_sock *tp = tcp_sk(sk);
820	struct sk_buff *skb;
821	int iovlen, flags;
822	int mss_now, size_goal;
823	int err, copied;
824	long timeo;
825
826	lock_sock(sk);
827	TCP_CHECK_TIMER(sk);
828
829	flags = msg->msg_flags;
830	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
831
832	/* Wait for a connection to finish. */
833	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
834		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
835			goto out_err;
836
837	/* This should be in poll */
838	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
839
840	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
841	size_goal = tp->xmit_size_goal;
842
843	/* Ok commence sending. */
844	iovlen = msg->msg_iovlen;
845	iov = msg->msg_iov;
846	copied = 0;
847
848	err = -EPIPE;
849	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
850		goto do_error;
851
852	while (--iovlen >= 0) {
853		int seglen = iov->iov_len;
854		unsigned char __user *from = iov->iov_base;
855
856		iov++;
857
858		while (seglen > 0) {
859			int copy;
860
861			skb = tcp_write_queue_tail(sk);
862
863			if (!tcp_send_head(sk) ||
864			    (copy = size_goal - skb->len) <= 0) {
865
866new_segment:
867				/* Allocate new segment. If the interface is SG,
868				 * allocate skb fitting to single page.
869				 */
870				if (!sk_stream_memory_free(sk))
871					goto wait_for_sndbuf;
872
873				skb = sk_stream_alloc_skb(sk, select_size(sk),
874						sk->sk_allocation);
875				if (!skb)
876					goto wait_for_memory;
877
878				/*
879				 * Check whether we can use HW checksum.
880				 */
881				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
882					skb->ip_summed = CHECKSUM_PARTIAL;
883
884				skb_entail(sk, skb);
885				copy = size_goal;
886			}
887
888			/* Try to append data to the end of skb. */
889			if (copy > seglen)
890				copy = seglen;
891
892			/* Where to copy to? */
893			if (skb_tailroom(skb) > 0) {
894				/* We have some space in skb head. Superb! */
895				if (copy > skb_tailroom(skb))
896					copy = skb_tailroom(skb);
897				if ((err = skb_add_data(skb, from, copy)) != 0)
898					goto do_fault;
899			} else {
900				int merge = 0;
901				int i = skb_shinfo(skb)->nr_frags;
902				struct page *page = TCP_PAGE(sk);
903				int off = TCP_OFF(sk);
904
905				if (skb_can_coalesce(skb, i, page, off) &&
906				    off != PAGE_SIZE) {
907					/* We can extend the last page
908					 * fragment. */
909					merge = 1;
910				} else if (i == MAX_SKB_FRAGS ||
911					   (!i &&
912					   !(sk->sk_route_caps & NETIF_F_SG))) {
913					/* Need to add new fragment and cannot
914					 * do this because interface is non-SG,
915					 * or because all the page slots are
916					 * busy. */
917					tcp_mark_push(tp, skb);
918					goto new_segment;
919				} else if (page) {
920					if (off == PAGE_SIZE) {
921						put_page(page);
922						TCP_PAGE(sk) = page = NULL;
923						off = 0;
924					}
925				} else
926					off = 0;
927
928				if (copy > PAGE_SIZE - off)
929					copy = PAGE_SIZE - off;
930
931				if (!sk_wmem_schedule(sk, copy))
932					goto wait_for_memory;
933
934				if (!page) {
935					/* Allocate new cache page. */
936					if (!(page = sk_stream_alloc_page(sk)))
937						goto wait_for_memory;
938				}
939
940				/* Time to copy data. We are close to
941				 * the end! */
942				err = skb_copy_to_page(sk, from, skb, page,
943						       off, copy);
944				if (err) {
945					/* If this page was new, give it to the
946					 * socket so it does not get leaked.
947					 */
948					if (!TCP_PAGE(sk)) {
949						TCP_PAGE(sk) = page;
950						TCP_OFF(sk) = 0;
951					}
952					goto do_error;
953				}
954
955				/* Update the skb. */
956				if (merge) {
957					skb_shinfo(skb)->frags[i - 1].size +=
958									copy;
959				} else {
960					skb_fill_page_desc(skb, i, page, off, copy);
961					if (TCP_PAGE(sk)) {
962						get_page(page);
963					} else if (off + copy < PAGE_SIZE) {
964						get_page(page);
965						TCP_PAGE(sk) = page;
966					}
967				}
968
969				TCP_OFF(sk) = off + copy;
970			}
971
972			if (!copied)
973				TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
974
975			tp->write_seq += copy;
976			TCP_SKB_CB(skb)->end_seq += copy;
977			skb_shinfo(skb)->gso_segs = 0;
978
979			from += copy;
980			copied += copy;
981			if ((seglen -= copy) == 0 && iovlen == 0)
982				goto out;
983
984			if (skb->len < size_goal || (flags & MSG_OOB))
985				continue;
986
987			if (forced_push(tp)) {
988				tcp_mark_push(tp, skb);
989				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
990			} else if (skb == tcp_send_head(sk))
991				tcp_push_one(sk, mss_now);
992			continue;
993
994wait_for_sndbuf:
995			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
996wait_for_memory:
997			if (copied)
998				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
999
1000			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1001				goto do_error;
1002
1003			mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
1004			size_goal = tp->xmit_size_goal;
1005		}
1006	}
1007
1008out:
1009	if (copied)
1010		tcp_push(sk, flags, mss_now, tp->nonagle);
1011	TCP_CHECK_TIMER(sk);
1012	release_sock(sk);
1013	return copied;
1014
1015do_fault:
1016	if (!skb->len) {
1017		tcp_unlink_write_queue(skb, sk);
1018		/* It is the one place in all of TCP, except connection
1019		 * reset, where we can be unlinking the send_head.
1020		 */
1021		tcp_check_send_head(sk, skb);
1022		sk_wmem_free_skb(sk, skb);
1023	}
1024
1025do_error:
1026	if (copied)
1027		goto out;
1028out_err:
1029	err = sk_stream_error(sk, flags, err);
1030	TCP_CHECK_TIMER(sk);
1031	release_sock(sk);
1032	return err;
1033}
1034
1035/*
1036 *	Handle reading urgent data. BSD has very simple semantics for
1037 *	this, no blocking and very strange errors 8)
1038 */
1039
1040static int tcp_recv_urg(struct sock *sk, long timeo,
1041			struct msghdr *msg, int len, int flags,
1042			int *addr_len)
1043{
1044	struct tcp_sock *tp = tcp_sk(sk);
1045
1046	/* No URG data to read. */
1047	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1048	    tp->urg_data == TCP_URG_READ)
1049		return -EINVAL;	/* Yes this is right ! */
1050
1051	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1052		return -ENOTCONN;
1053
1054	if (tp->urg_data & TCP_URG_VALID) {
1055		int err = 0;
1056		char c = tp->urg_data;
1057
1058		if (!(flags & MSG_PEEK))
1059			tp->urg_data = TCP_URG_READ;
1060
1061		/* Read urgent data. */
1062		msg->msg_flags |= MSG_OOB;
1063
1064		if (len > 0) {
1065			if (!(flags & MSG_TRUNC))
1066				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1067			len = 1;
1068		} else
1069			msg->msg_flags |= MSG_TRUNC;
1070
1071		return err ? -EFAULT : len;
1072	}
1073
1074	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1075		return 0;
1076
1077	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1078	 * the available implementations agree in this case:
1079	 * this call should never block, independent of the
1080	 * blocking state of the socket.
1081	 * Mike <pall@rz.uni-karlsruhe.de>
1082	 */
1083	return -EAGAIN;
1084}
1085
1086/* Clean up the receive buffer for full frames taken by the user,
1087 * then send an ACK if necessary.  COPIED is the number of bytes
1088 * tcp_recvmsg has given to the user so far, it speeds up the
1089 * calculation of whether or not we must ACK for the sake of
1090 * a window update.
1091 */
1092void tcp_cleanup_rbuf(struct sock *sk, int copied)
1093{
1094	struct tcp_sock *tp = tcp_sk(sk);
1095	int time_to_ack = 0;
1096
1097#if TCP_DEBUG
1098	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1099
1100	BUG_TRAP(!skb || before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1101#endif
1102
1103	if (inet_csk_ack_scheduled(sk)) {
1104		const struct inet_connection_sock *icsk = inet_csk(sk);
1105		   /* Delayed ACKs frequently hit locked sockets during bulk
1106		    * receive. */
1107		if (icsk->icsk_ack.blocked ||
1108		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1109		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1110		    /*
1111		     * If this read emptied read buffer, we send ACK, if
1112		     * connection is not bidirectional, user drained
1113		     * receive buffer and there was a small segment
1114		     * in queue.
1115		     */
1116		    (copied > 0 &&
1117		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1118		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1119		       !icsk->icsk_ack.pingpong)) &&
1120		      !atomic_read(&sk->sk_rmem_alloc)))
1121			time_to_ack = 1;
1122	}
1123
1124	/* We send an ACK if we can now advertise a non-zero window
1125	 * which has been raised "significantly".
1126	 *
1127	 * Even if window raised up to infinity, do not send window open ACK
1128	 * in states, where we will not receive more. It is useless.
1129	 */
1130	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1131		__u32 rcv_window_now = tcp_receive_window(tp);
1132
1133		/* Optimize, __tcp_select_window() is not cheap. */
1134		if (2*rcv_window_now <= tp->window_clamp) {
1135			__u32 new_window = __tcp_select_window(sk);
1136
1137			/* Send ACK now, if this read freed lots of space
1138			 * in our buffer. Certainly, new_window is new window.
1139			 * We can advertise it now, if it is not less than current one.
1140			 * "Lots" means "at least twice" here.
1141			 */
1142			if (new_window && new_window >= 2 * rcv_window_now)
1143				time_to_ack = 1;
1144		}
1145	}
1146	if (time_to_ack)
1147		tcp_send_ack(sk);
1148}
1149
1150static void tcp_prequeue_process(struct sock *sk)
1151{
1152	struct sk_buff *skb;
1153	struct tcp_sock *tp = tcp_sk(sk);
1154
1155	NET_INC_STATS_USER(LINUX_MIB_TCPPREQUEUED);
1156
1157	/* RX process wants to run with disabled BHs, though it is not
1158	 * necessary */
1159	local_bh_disable();
1160	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1161		sk->sk_backlog_rcv(sk, skb);
1162	local_bh_enable();
1163
1164	/* Clear memory counter. */
1165	tp->ucopy.memory = 0;
1166}
1167
1168static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1169{
1170	struct sk_buff *skb;
1171	u32 offset;
1172
1173	skb_queue_walk(&sk->sk_receive_queue, skb) {
1174		offset = seq - TCP_SKB_CB(skb)->seq;
1175		if (tcp_hdr(skb)->syn)
1176			offset--;
1177		if (offset < skb->len || tcp_hdr(skb)->fin) {
1178			*off = offset;
1179			return skb;
1180		}
1181	}
1182	return NULL;
1183}
1184
1185/*
1186 * This routine provides an alternative to tcp_recvmsg() for routines
1187 * that would like to handle copying from skbuffs directly in 'sendfile'
1188 * fashion.
1189 * Note:
1190 *	- It is assumed that the socket was locked by the caller.
1191 *	- The routine does not block.
1192 *	- At present, there is no support for reading OOB data
1193 *	  or for 'peeking' the socket using this routine
1194 *	  (although both would be easy to implement).
1195 */
1196int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1197		  sk_read_actor_t recv_actor)
1198{
1199	struct sk_buff *skb;
1200	struct tcp_sock *tp = tcp_sk(sk);
1201	u32 seq = tp->copied_seq;
1202	u32 offset;
1203	int copied = 0;
1204
1205	if (sk->sk_state == TCP_LISTEN)
1206		return -ENOTCONN;
1207	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1208		if (offset < skb->len) {
1209			size_t used, len;
1210
1211			len = skb->len - offset;
1212			/* Stop reading if we hit a patch of urgent data */
1213			if (tp->urg_data) {
1214				u32 urg_offset = tp->urg_seq - seq;
1215				if (urg_offset < len)
1216					len = urg_offset;
1217				if (!len)
1218					break;
1219			}
1220			used = recv_actor(desc, skb, offset, len);
1221			if (used < 0) {
1222				if (!copied)
1223					copied = used;
1224				break;
1225			} else if (used <= len) {
1226				seq += used;
1227				copied += used;
1228				offset += used;
1229			}
1230			/*
1231			 * If recv_actor drops the lock (e.g. TCP splice
1232			 * receive) the skb pointer might be invalid when
1233			 * getting here: tcp_collapse might have deleted it
1234			 * while aggregating skbs from the socket queue.
1235			 */
1236			skb = tcp_recv_skb(sk, seq-1, &offset);
1237			if (!skb || (offset+1 != skb->len))
1238				break;
1239		}
1240		if (tcp_hdr(skb)->fin) {
1241			sk_eat_skb(sk, skb, 0);
1242			++seq;
1243			break;
1244		}
1245		sk_eat_skb(sk, skb, 0);
1246		if (!desc->count)
1247			break;
1248	}
1249	tp->copied_seq = seq;
1250
1251	tcp_rcv_space_adjust(sk);
1252
1253	/* Clean up data we have read: This will do ACK frames. */
1254	if (copied > 0)
1255		tcp_cleanup_rbuf(sk, copied);
1256	return copied;
1257}
1258
1259/*
1260 *	This routine copies from a sock struct into the user buffer.
1261 *
1262 *	Technical note: in 2.3 we work on _locked_ socket, so that
1263 *	tricks with *seq access order and skb->users are not required.
1264 *	Probably, code can be easily improved even more.
1265 */
1266
1267int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1268		size_t len, int nonblock, int flags, int *addr_len)
1269{
1270	struct tcp_sock *tp = tcp_sk(sk);
1271	int copied = 0;
1272	u32 peek_seq;
1273	u32 *seq;
1274	unsigned long used;
1275	int err;
1276	int target;		/* Read at least this many bytes */
1277	long timeo;
1278	struct task_struct *user_recv = NULL;
1279	int copied_early = 0;
1280	struct sk_buff *skb;
1281
1282	lock_sock(sk);
1283
1284	TCP_CHECK_TIMER(sk);
1285
1286	err = -ENOTCONN;
1287	if (sk->sk_state == TCP_LISTEN)
1288		goto out;
1289
1290	timeo = sock_rcvtimeo(sk, nonblock);
1291
1292	/* Urgent data needs to be handled specially. */
1293	if (flags & MSG_OOB)
1294		goto recv_urg;
1295
1296	seq = &tp->copied_seq;
1297	if (flags & MSG_PEEK) {
1298		peek_seq = tp->copied_seq;
1299		seq = &peek_seq;
1300	}
1301
1302	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1303
1304#ifdef CONFIG_NET_DMA
1305	tp->ucopy.dma_chan = NULL;
1306	preempt_disable();
1307	skb = skb_peek_tail(&sk->sk_receive_queue);
1308	{
1309		int available = 0;
1310
1311		if (skb)
1312			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1313		if ((available < target) &&
1314		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1315		    !sysctl_tcp_low_latency &&
1316		    __get_cpu_var(softnet_data).net_dma) {
1317			preempt_enable_no_resched();
1318			tp->ucopy.pinned_list =
1319					dma_pin_iovec_pages(msg->msg_iov, len);
1320		} else {
1321			preempt_enable_no_resched();
1322		}
1323	}
1324#endif
1325
1326	do {
1327		u32 offset;
1328
1329		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1330		if (tp->urg_data && tp->urg_seq == *seq) {
1331			if (copied)
1332				break;
1333			if (signal_pending(current)) {
1334				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1335				break;
1336			}
1337		}
1338
1339		/* Next get a buffer. */
1340
1341		skb = skb_peek(&sk->sk_receive_queue);
1342		do {
1343			if (!skb)
1344				break;
1345
1346			/* Now that we have two receive queues this
1347			 * shouldn't happen.
1348			 */
1349			if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1350				printk(KERN_INFO "recvmsg bug: copied %X "
1351				       "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1352				break;
1353			}
1354			offset = *seq - TCP_SKB_CB(skb)->seq;
1355			if (tcp_hdr(skb)->syn)
1356				offset--;
1357			if (offset < skb->len)
1358				goto found_ok_skb;
1359			if (tcp_hdr(skb)->fin)
1360				goto found_fin_ok;
1361			BUG_TRAP(flags & MSG_PEEK);
1362			skb = skb->next;
1363		} while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1364
1365		/* Well, if we have backlog, try to process it now yet. */
1366
1367		if (copied >= target && !sk->sk_backlog.tail)
1368			break;
1369
1370		if (copied) {
1371			if (sk->sk_err ||
1372			    sk->sk_state == TCP_CLOSE ||
1373			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1374			    !timeo ||
1375			    signal_pending(current) ||
1376			    (flags & MSG_PEEK))
1377				break;
1378		} else {
1379			if (sock_flag(sk, SOCK_DONE))
1380				break;
1381
1382			if (sk->sk_err) {
1383				copied = sock_error(sk);
1384				break;
1385			}
1386
1387			if (sk->sk_shutdown & RCV_SHUTDOWN)
1388				break;
1389
1390			if (sk->sk_state == TCP_CLOSE) {
1391				if (!sock_flag(sk, SOCK_DONE)) {
1392					/* This occurs when user tries to read
1393					 * from never connected socket.
1394					 */
1395					copied = -ENOTCONN;
1396					break;
1397				}
1398				break;
1399			}
1400
1401			if (!timeo) {
1402				copied = -EAGAIN;
1403				break;
1404			}
1405
1406			if (signal_pending(current)) {
1407				copied = sock_intr_errno(timeo);
1408				break;
1409			}
1410		}
1411
1412		tcp_cleanup_rbuf(sk, copied);
1413
1414		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1415			/* Install new reader */
1416			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1417				user_recv = current;
1418				tp->ucopy.task = user_recv;
1419				tp->ucopy.iov = msg->msg_iov;
1420			}
1421
1422			tp->ucopy.len = len;
1423
1424			BUG_TRAP(tp->copied_seq == tp->rcv_nxt ||
1425				 (flags & (MSG_PEEK | MSG_TRUNC)));
1426
1427			/* Ugly... If prequeue is not empty, we have to
1428			 * process it before releasing socket, otherwise
1429			 * order will be broken at second iteration.
1430			 * More elegant solution is required!!!
1431			 *
1432			 * Look: we have the following (pseudo)queues:
1433			 *
1434			 * 1. packets in flight
1435			 * 2. backlog
1436			 * 3. prequeue
1437			 * 4. receive_queue
1438			 *
1439			 * Each queue can be processed only if the next ones
1440			 * are empty. At this point we have empty receive_queue.
1441			 * But prequeue _can_ be not empty after 2nd iteration,
1442			 * when we jumped to start of loop because backlog
1443			 * processing added something to receive_queue.
1444			 * We cannot release_sock(), because backlog contains
1445			 * packets arrived _after_ prequeued ones.
1446			 *
1447			 * Shortly, algorithm is clear --- to process all
1448			 * the queues in order. We could make it more directly,
1449			 * requeueing packets from backlog to prequeue, if
1450			 * is not empty. It is more elegant, but eats cycles,
1451			 * unfortunately.
1452			 */
1453			if (!skb_queue_empty(&tp->ucopy.prequeue))
1454				goto do_prequeue;
1455
1456			/* __ Set realtime policy in scheduler __ */
1457		}
1458
1459		if (copied >= target) {
1460			/* Do not sleep, just process backlog. */
1461			release_sock(sk);
1462			lock_sock(sk);
1463		} else
1464			sk_wait_data(sk, &timeo);
1465
1466#ifdef CONFIG_NET_DMA
1467		tp->ucopy.wakeup = 0;
1468#endif
1469
1470		if (user_recv) {
1471			int chunk;
1472
1473			/* __ Restore normal policy in scheduler __ */
1474
1475			if ((chunk = len - tp->ucopy.len) != 0) {
1476				NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1477				len -= chunk;
1478				copied += chunk;
1479			}
1480
1481			if (tp->rcv_nxt == tp->copied_seq &&
1482			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1483do_prequeue:
1484				tcp_prequeue_process(sk);
1485
1486				if ((chunk = len - tp->ucopy.len) != 0) {
1487					NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1488					len -= chunk;
1489					copied += chunk;
1490				}
1491			}
1492		}
1493		if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1494			if (net_ratelimit())
1495				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1496				       current->comm, task_pid_nr(current));
1497			peek_seq = tp->copied_seq;
1498		}
1499		continue;
1500
1501	found_ok_skb:
1502		/* Ok so how much can we use? */
1503		used = skb->len - offset;
1504		if (len < used)
1505			used = len;
1506
1507		/* Do we have urgent data here? */
1508		if (tp->urg_data) {
1509			u32 urg_offset = tp->urg_seq - *seq;
1510			if (urg_offset < used) {
1511				if (!urg_offset) {
1512					if (!sock_flag(sk, SOCK_URGINLINE)) {
1513						++*seq;
1514						offset++;
1515						used--;
1516						if (!used)
1517							goto skip_copy;
1518					}
1519				} else
1520					used = urg_offset;
1521			}
1522		}
1523
1524		if (!(flags & MSG_TRUNC)) {
1525#ifdef CONFIG_NET_DMA
1526			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1527				tp->ucopy.dma_chan = get_softnet_dma();
1528
1529			if (tp->ucopy.dma_chan) {
1530				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1531					tp->ucopy.dma_chan, skb, offset,
1532					msg->msg_iov, used,
1533					tp->ucopy.pinned_list);
1534
1535				if (tp->ucopy.dma_cookie < 0) {
1536
1537					printk(KERN_ALERT "dma_cookie < 0\n");
1538
1539					/* Exception. Bailout! */
1540					if (!copied)
1541						copied = -EFAULT;
1542					break;
1543				}
1544				if ((offset + used) == skb->len)
1545					copied_early = 1;
1546
1547			} else
1548#endif
1549			{
1550				err = skb_copy_datagram_iovec(skb, offset,
1551						msg->msg_iov, used);
1552				if (err) {
1553					/* Exception. Bailout! */
1554					if (!copied)
1555						copied = -EFAULT;
1556					break;
1557				}
1558			}
1559		}
1560
1561		*seq += used;
1562		copied += used;
1563		len -= used;
1564
1565		tcp_rcv_space_adjust(sk);
1566
1567skip_copy:
1568		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1569			tp->urg_data = 0;
1570			tcp_fast_path_check(sk);
1571		}
1572		if (used + offset < skb->len)
1573			continue;
1574
1575		if (tcp_hdr(skb)->fin)
1576			goto found_fin_ok;
1577		if (!(flags & MSG_PEEK)) {
1578			sk_eat_skb(sk, skb, copied_early);
1579			copied_early = 0;
1580		}
1581		continue;
1582
1583	found_fin_ok:
1584		/* Process the FIN. */
1585		++*seq;
1586		if (!(flags & MSG_PEEK)) {
1587			sk_eat_skb(sk, skb, copied_early);
1588			copied_early = 0;
1589		}
1590		break;
1591	} while (len > 0);
1592
1593	if (user_recv) {
1594		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1595			int chunk;
1596
1597			tp->ucopy.len = copied > 0 ? len : 0;
1598
1599			tcp_prequeue_process(sk);
1600
1601			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1602				NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1603				len -= chunk;
1604				copied += chunk;
1605			}
1606		}
1607
1608		tp->ucopy.task = NULL;
1609		tp->ucopy.len = 0;
1610	}
1611
1612#ifdef CONFIG_NET_DMA
1613	if (tp->ucopy.dma_chan) {
1614		dma_cookie_t done, used;
1615
1616		dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1617
1618		while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1619						 tp->ucopy.dma_cookie, &done,
1620						 &used) == DMA_IN_PROGRESS) {
1621			/* do partial cleanup of sk_async_wait_queue */
1622			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1623			       (dma_async_is_complete(skb->dma_cookie, done,
1624						      used) == DMA_SUCCESS)) {
1625				__skb_dequeue(&sk->sk_async_wait_queue);
1626				kfree_skb(skb);
1627			}
1628		}
1629
1630		/* Safe to free early-copied skbs now */
1631		__skb_queue_purge(&sk->sk_async_wait_queue);
1632		dma_chan_put(tp->ucopy.dma_chan);
1633		tp->ucopy.dma_chan = NULL;
1634	}
1635	if (tp->ucopy.pinned_list) {
1636		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1637		tp->ucopy.pinned_list = NULL;
1638	}
1639#endif
1640
1641	/* According to UNIX98, msg_name/msg_namelen are ignored
1642	 * on connected socket. I was just happy when found this 8) --ANK
1643	 */
1644
1645	/* Clean up data we have read: This will do ACK frames. */
1646	tcp_cleanup_rbuf(sk, copied);
1647
1648	TCP_CHECK_TIMER(sk);
1649	release_sock(sk);
1650	return copied;
1651
1652out:
1653	TCP_CHECK_TIMER(sk);
1654	release_sock(sk);
1655	return err;
1656
1657recv_urg:
1658	err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1659	goto out;
1660}
1661
1662void tcp_set_state(struct sock *sk, int state)
1663{
1664	int oldstate = sk->sk_state;
1665
1666	switch (state) {
1667	case TCP_ESTABLISHED:
1668		if (oldstate != TCP_ESTABLISHED)
1669			TCP_INC_STATS(TCP_MIB_CURRESTAB);
1670		break;
1671
1672	case TCP_CLOSE:
1673		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1674			TCP_INC_STATS(TCP_MIB_ESTABRESETS);
1675
1676		sk->sk_prot->unhash(sk);
1677		if (inet_csk(sk)->icsk_bind_hash &&
1678		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1679			inet_put_port(sk);
1680		/* fall through */
1681	default:
1682		if (oldstate==TCP_ESTABLISHED)
1683			TCP_DEC_STATS(TCP_MIB_CURRESTAB);
1684	}
1685
1686	/* Change state AFTER socket is unhashed to avoid closed
1687	 * socket sitting in hash tables.
1688	 */
1689	sk->sk_state = state;
1690
1691#ifdef STATE_TRACE
1692	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n",sk, statename[oldstate],statename[state]);
1693#endif
1694}
1695EXPORT_SYMBOL_GPL(tcp_set_state);
1696
1697/*
1698 *	State processing on a close. This implements the state shift for
1699 *	sending our FIN frame. Note that we only send a FIN for some
1700 *	states. A shutdown() may have already sent the FIN, or we may be
1701 *	closed.
1702 */
1703
1704static const unsigned char new_state[16] = {
1705  /* current state:        new state:      action:	*/
1706  /* (Invalid)		*/ TCP_CLOSE,
1707  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1708  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1709  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1710  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1711  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1712  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1713  /* TCP_CLOSE		*/ TCP_CLOSE,
1714  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1715  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1716  /* TCP_LISTEN		*/ TCP_CLOSE,
1717  /* TCP_CLOSING	*/ TCP_CLOSING,
1718};
1719
1720static int tcp_close_state(struct sock *sk)
1721{
1722	int next = (int)new_state[sk->sk_state];
1723	int ns = next & TCP_STATE_MASK;
1724
1725	tcp_set_state(sk, ns);
1726
1727	return next & TCP_ACTION_FIN;
1728}
1729
1730/*
1731 *	Shutdown the sending side of a connection. Much like close except
1732 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1733 */
1734
1735void tcp_shutdown(struct sock *sk, int how)
1736{
1737	/*	We need to grab some memory, and put together a FIN,
1738	 *	and then put it into the queue to be sent.
1739	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1740	 */
1741	if (!(how & SEND_SHUTDOWN))
1742		return;
1743
1744	/* If we've already sent a FIN, or it's a closed state, skip this. */
1745	if ((1 << sk->sk_state) &
1746	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1747	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1748		/* Clear out any half completed packets.  FIN if needed. */
1749		if (tcp_close_state(sk))
1750			tcp_send_fin(sk);
1751	}
1752}
1753
1754void tcp_close(struct sock *sk, long timeout)
1755{
1756	struct sk_buff *skb;
1757	int data_was_unread = 0;
1758	int state;
1759
1760	lock_sock(sk);
1761	sk->sk_shutdown = SHUTDOWN_MASK;
1762
1763	if (sk->sk_state == TCP_LISTEN) {
1764		tcp_set_state(sk, TCP_CLOSE);
1765
1766		/* Special case. */
1767		inet_csk_listen_stop(sk);
1768
1769		goto adjudge_to_death;
1770	}
1771
1772	/*  We need to flush the recv. buffs.  We do this only on the
1773	 *  descriptor close, not protocol-sourced closes, because the
1774	 *  reader process may not have drained the data yet!
1775	 */
1776	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1777		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1778			  tcp_hdr(skb)->fin;
1779		data_was_unread += len;
1780		__kfree_skb(skb);
1781	}
1782
1783	sk_mem_reclaim(sk);
1784
1785	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1786	 * data was lost. To witness the awful effects of the old behavior of
1787	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1788	 * GET in an FTP client, suspend the process, wait for the client to
1789	 * advertise a zero window, then kill -9 the FTP client, wheee...
1790	 * Note: timeout is always zero in such a case.
1791	 */
1792	if (data_was_unread) {
1793		/* Unread data was tossed, zap the connection. */
1794		NET_INC_STATS_USER(LINUX_MIB_TCPABORTONCLOSE);
1795		tcp_set_state(sk, TCP_CLOSE);
1796		tcp_send_active_reset(sk, GFP_KERNEL);
1797	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1798		/* Check zero linger _after_ checking for unread data. */
1799		sk->sk_prot->disconnect(sk, 0);
1800		NET_INC_STATS_USER(LINUX_MIB_TCPABORTONDATA);
1801	} else if (tcp_close_state(sk)) {
1802		/* We FIN if the application ate all the data before
1803		 * zapping the connection.
1804		 */
1805
1806		/* RED-PEN. Formally speaking, we have broken TCP state
1807		 * machine. State transitions:
1808		 *
1809		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1810		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1811		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1812		 *
1813		 * are legal only when FIN has been sent (i.e. in window),
1814		 * rather than queued out of window. Purists blame.
1815		 *
1816		 * F.e. "RFC state" is ESTABLISHED,
1817		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1818		 *
1819		 * The visible declinations are that sometimes
1820		 * we enter time-wait state, when it is not required really
1821		 * (harmless), do not send active resets, when they are
1822		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1823		 * they look as CLOSING or LAST_ACK for Linux)
1824		 * Probably, I missed some more holelets.
1825		 * 						--ANK
1826		 */
1827		tcp_send_fin(sk);
1828	}
1829
1830	sk_stream_wait_close(sk, timeout);
1831
1832adjudge_to_death:
1833	state = sk->sk_state;
1834	sock_hold(sk);
1835	sock_orphan(sk);
1836	atomic_inc(sk->sk_prot->orphan_count);
1837
1838	/* It is the last release_sock in its life. It will remove backlog. */
1839	release_sock(sk);
1840
1841
1842	/* Now socket is owned by kernel and we acquire BH lock
1843	   to finish close. No need to check for user refs.
1844	 */
1845	local_bh_disable();
1846	bh_lock_sock(sk);
1847	BUG_TRAP(!sock_owned_by_user(sk));
1848
1849	/* Have we already been destroyed by a softirq or backlog? */
1850	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1851		goto out;
1852
1853	/*	This is a (useful) BSD violating of the RFC. There is a
1854	 *	problem with TCP as specified in that the other end could
1855	 *	keep a socket open forever with no application left this end.
1856	 *	We use a 3 minute timeout (about the same as BSD) then kill
1857	 *	our end. If they send after that then tough - BUT: long enough
1858	 *	that we won't make the old 4*rto = almost no time - whoops
1859	 *	reset mistake.
1860	 *
1861	 *	Nope, it was not mistake. It is really desired behaviour
1862	 *	f.e. on http servers, when such sockets are useless, but
1863	 *	consume significant resources. Let's do it with special
1864	 *	linger2	option.					--ANK
1865	 */
1866
1867	if (sk->sk_state == TCP_FIN_WAIT2) {
1868		struct tcp_sock *tp = tcp_sk(sk);
1869		if (tp->linger2 < 0) {
1870			tcp_set_state(sk, TCP_CLOSE);
1871			tcp_send_active_reset(sk, GFP_ATOMIC);
1872			NET_INC_STATS_BH(LINUX_MIB_TCPABORTONLINGER);
1873		} else {
1874			const int tmo = tcp_fin_time(sk);
1875
1876			if (tmo > TCP_TIMEWAIT_LEN) {
1877				inet_csk_reset_keepalive_timer(sk,
1878						tmo - TCP_TIMEWAIT_LEN);
1879			} else {
1880				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1881				goto out;
1882			}
1883		}
1884	}
1885	if (sk->sk_state != TCP_CLOSE) {
1886		sk_mem_reclaim(sk);
1887		if (tcp_too_many_orphans(sk,
1888				atomic_read(sk->sk_prot->orphan_count))) {
1889			if (net_ratelimit())
1890				printk(KERN_INFO "TCP: too many of orphaned "
1891				       "sockets\n");
1892			tcp_set_state(sk, TCP_CLOSE);
1893			tcp_send_active_reset(sk, GFP_ATOMIC);
1894			NET_INC_STATS_BH(LINUX_MIB_TCPABORTONMEMORY);
1895		}
1896	}
1897
1898	if (sk->sk_state == TCP_CLOSE)
1899		inet_csk_destroy_sock(sk);
1900	/* Otherwise, socket is reprieved until protocol close. */
1901
1902out:
1903	bh_unlock_sock(sk);
1904	local_bh_enable();
1905	sock_put(sk);
1906}
1907
1908/* These states need RST on ABORT according to RFC793 */
1909
1910static inline int tcp_need_reset(int state)
1911{
1912	return (1 << state) &
1913	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1914		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1915}
1916
1917int tcp_disconnect(struct sock *sk, int flags)
1918{
1919	struct inet_sock *inet = inet_sk(sk);
1920	struct inet_connection_sock *icsk = inet_csk(sk);
1921	struct tcp_sock *tp = tcp_sk(sk);
1922	int err = 0;
1923	int old_state = sk->sk_state;
1924
1925	if (old_state != TCP_CLOSE)
1926		tcp_set_state(sk, TCP_CLOSE);
1927
1928	/* ABORT function of RFC793 */
1929	if (old_state == TCP_LISTEN) {
1930		inet_csk_listen_stop(sk);
1931	} else if (tcp_need_reset(old_state) ||
1932		   (tp->snd_nxt != tp->write_seq &&
1933		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1934		/* The last check adjusts for discrepancy of Linux wrt. RFC
1935		 * states
1936		 */
1937		tcp_send_active_reset(sk, gfp_any());
1938		sk->sk_err = ECONNRESET;
1939	} else if (old_state == TCP_SYN_SENT)
1940		sk->sk_err = ECONNRESET;
1941
1942	tcp_clear_xmit_timers(sk);
1943	__skb_queue_purge(&sk->sk_receive_queue);
1944	tcp_write_queue_purge(sk);
1945	__skb_queue_purge(&tp->out_of_order_queue);
1946#ifdef CONFIG_NET_DMA
1947	__skb_queue_purge(&sk->sk_async_wait_queue);
1948#endif
1949
1950	inet->dport = 0;
1951
1952	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1953		inet_reset_saddr(sk);
1954
1955	sk->sk_shutdown = 0;
1956	sock_reset_flag(sk, SOCK_DONE);
1957	tp->srtt = 0;
1958	if ((tp->write_seq += tp->max_window + 2) == 0)
1959		tp->write_seq = 1;
1960	icsk->icsk_backoff = 0;
1961	tp->snd_cwnd = 2;
1962	icsk->icsk_probes_out = 0;
1963	tp->packets_out = 0;
1964	tp->snd_ssthresh = 0x7fffffff;
1965	tp->snd_cwnd_cnt = 0;
1966	tp->bytes_acked = 0;
1967	tcp_set_ca_state(sk, TCP_CA_Open);
1968	tcp_clear_retrans(tp);
1969	inet_csk_delack_init(sk);
1970	tcp_init_send_head(sk);
1971	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
1972	__sk_dst_reset(sk);
1973
1974	BUG_TRAP(!inet->num || icsk->icsk_bind_hash);
1975
1976	sk->sk_error_report(sk);
1977	return err;
1978}
1979
1980/*
1981 *	Socket option code for TCP.
1982 */
1983static int do_tcp_setsockopt(struct sock *sk, int level,
1984		int optname, char __user *optval, int optlen)
1985{
1986	struct tcp_sock *tp = tcp_sk(sk);
1987	struct inet_connection_sock *icsk = inet_csk(sk);
1988	int val;
1989	int err = 0;
1990
1991	/* This is a string value all the others are int's */
1992	if (optname == TCP_CONGESTION) {
1993		char name[TCP_CA_NAME_MAX];
1994
1995		if (optlen < 1)
1996			return -EINVAL;
1997
1998		val = strncpy_from_user(name, optval,
1999					min(TCP_CA_NAME_MAX-1, optlen));
2000		if (val < 0)
2001			return -EFAULT;
2002		name[val] = 0;
2003
2004		lock_sock(sk);
2005		err = tcp_set_congestion_control(sk, name);
2006		release_sock(sk);
2007		return err;
2008	}
2009
2010	if (optlen < sizeof(int))
2011		return -EINVAL;
2012
2013	if (get_user(val, (int __user *)optval))
2014		return -EFAULT;
2015
2016	lock_sock(sk);
2017
2018	switch (optname) {
2019	case TCP_MAXSEG:
2020		/* Values greater than interface MTU won't take effect. However
2021		 * at the point when this call is done we typically don't yet
2022		 * know which interface is going to be used */
2023		if (val < 8 || val > MAX_TCP_WINDOW) {
2024			err = -EINVAL;
2025			break;
2026		}
2027		tp->rx_opt.user_mss = val;
2028		break;
2029
2030	case TCP_NODELAY:
2031		if (val) {
2032			/* TCP_NODELAY is weaker than TCP_CORK, so that
2033			 * this option on corked socket is remembered, but
2034			 * it is not activated until cork is cleared.
2035			 *
2036			 * However, when TCP_NODELAY is set we make
2037			 * an explicit push, which overrides even TCP_CORK
2038			 * for currently queued segments.
2039			 */
2040			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2041			tcp_push_pending_frames(sk);
2042		} else {
2043			tp->nonagle &= ~TCP_NAGLE_OFF;
2044		}
2045		break;
2046
2047	case TCP_CORK:
2048		/* When set indicates to always queue non-full frames.
2049		 * Later the user clears this option and we transmit
2050		 * any pending partial frames in the queue.  This is
2051		 * meant to be used alongside sendfile() to get properly
2052		 * filled frames when the user (for example) must write
2053		 * out headers with a write() call first and then use
2054		 * sendfile to send out the data parts.
2055		 *
2056		 * TCP_CORK can be set together with TCP_NODELAY and it is
2057		 * stronger than TCP_NODELAY.
2058		 */
2059		if (val) {
2060			tp->nonagle |= TCP_NAGLE_CORK;
2061		} else {
2062			tp->nonagle &= ~TCP_NAGLE_CORK;
2063			if (tp->nonagle&TCP_NAGLE_OFF)
2064				tp->nonagle |= TCP_NAGLE_PUSH;
2065			tcp_push_pending_frames(sk);
2066		}
2067		break;
2068
2069	case TCP_KEEPIDLE:
2070		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2071			err = -EINVAL;
2072		else {
2073			tp->keepalive_time = val * HZ;
2074			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2075			    !((1 << sk->sk_state) &
2076			      (TCPF_CLOSE | TCPF_LISTEN))) {
2077				__u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2078				if (tp->keepalive_time > elapsed)
2079					elapsed = tp->keepalive_time - elapsed;
2080				else
2081					elapsed = 0;
2082				inet_csk_reset_keepalive_timer(sk, elapsed);
2083			}
2084		}
2085		break;
2086	case TCP_KEEPINTVL:
2087		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2088			err = -EINVAL;
2089		else
2090			tp->keepalive_intvl = val * HZ;
2091		break;
2092	case TCP_KEEPCNT:
2093		if (val < 1 || val > MAX_TCP_KEEPCNT)
2094			err = -EINVAL;
2095		else
2096			tp->keepalive_probes = val;
2097		break;
2098	case TCP_SYNCNT:
2099		if (val < 1 || val > MAX_TCP_SYNCNT)
2100			err = -EINVAL;
2101		else
2102			icsk->icsk_syn_retries = val;
2103		break;
2104
2105	case TCP_LINGER2:
2106		if (val < 0)
2107			tp->linger2 = -1;
2108		else if (val > sysctl_tcp_fin_timeout / HZ)
2109			tp->linger2 = 0;
2110		else
2111			tp->linger2 = val * HZ;
2112		break;
2113
2114	case TCP_DEFER_ACCEPT:
2115		icsk->icsk_accept_queue.rskq_defer_accept = 0;
2116		if (val > 0) {
2117			/* Translate value in seconds to number of
2118			 * retransmits */
2119			while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
2120			       val > ((TCP_TIMEOUT_INIT / HZ) <<
2121				       icsk->icsk_accept_queue.rskq_defer_accept))
2122				icsk->icsk_accept_queue.rskq_defer_accept++;
2123			icsk->icsk_accept_queue.rskq_defer_accept++;
2124		}
2125		break;
2126
2127	case TCP_WINDOW_CLAMP:
2128		if (!val) {
2129			if (sk->sk_state != TCP_CLOSE) {
2130				err = -EINVAL;
2131				break;
2132			}
2133			tp->window_clamp = 0;
2134		} else
2135			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2136						SOCK_MIN_RCVBUF / 2 : val;
2137		break;
2138
2139	case TCP_QUICKACK:
2140		if (!val) {
2141			icsk->icsk_ack.pingpong = 1;
2142		} else {
2143			icsk->icsk_ack.pingpong = 0;
2144			if ((1 << sk->sk_state) &
2145			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2146			    inet_csk_ack_scheduled(sk)) {
2147				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2148				tcp_cleanup_rbuf(sk, 1);
2149				if (!(val & 1))
2150					icsk->icsk_ack.pingpong = 1;
2151			}
2152		}
2153		break;
2154
2155#ifdef CONFIG_TCP_MD5SIG
2156	case TCP_MD5SIG:
2157		/* Read the IP->Key mappings from userspace */
2158		err = tp->af_specific->md5_parse(sk, optval, optlen);
2159		break;
2160#endif
2161
2162	default:
2163		err = -ENOPROTOOPT;
2164		break;
2165	}
2166
2167	release_sock(sk);
2168	return err;
2169}
2170
2171int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2172		   int optlen)
2173{
2174	struct inet_connection_sock *icsk = inet_csk(sk);
2175
2176	if (level != SOL_TCP)
2177		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2178						     optval, optlen);
2179	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2180}
2181
2182#ifdef CONFIG_COMPAT
2183int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2184			  char __user *optval, int optlen)
2185{
2186	if (level != SOL_TCP)
2187		return inet_csk_compat_setsockopt(sk, level, optname,
2188						  optval, optlen);
2189	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2190}
2191
2192EXPORT_SYMBOL(compat_tcp_setsockopt);
2193#endif
2194
2195/* Return information about state of tcp endpoint in API format. */
2196void tcp_get_info(struct sock *sk, struct tcp_info *info)
2197{
2198	struct tcp_sock *tp = tcp_sk(sk);
2199	const struct inet_connection_sock *icsk = inet_csk(sk);
2200	u32 now = tcp_time_stamp;
2201
2202	memset(info, 0, sizeof(*info));
2203
2204	info->tcpi_state = sk->sk_state;
2205	info->tcpi_ca_state = icsk->icsk_ca_state;
2206	info->tcpi_retransmits = icsk->icsk_retransmits;
2207	info->tcpi_probes = icsk->icsk_probes_out;
2208	info->tcpi_backoff = icsk->icsk_backoff;
2209
2210	if (tp->rx_opt.tstamp_ok)
2211		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2212	if (tcp_is_sack(tp))
2213		info->tcpi_options |= TCPI_OPT_SACK;
2214	if (tp->rx_opt.wscale_ok) {
2215		info->tcpi_options |= TCPI_OPT_WSCALE;
2216		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2217		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2218	}
2219
2220	if (tp->ecn_flags&TCP_ECN_OK)
2221		info->tcpi_options |= TCPI_OPT_ECN;
2222
2223	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2224	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2225	info->tcpi_snd_mss = tp->mss_cache;
2226	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2227
2228	if (sk->sk_state == TCP_LISTEN) {
2229		info->tcpi_unacked = sk->sk_ack_backlog;
2230		info->tcpi_sacked = sk->sk_max_ack_backlog;
2231	} else {
2232		info->tcpi_unacked = tp->packets_out;
2233		info->tcpi_sacked = tp->sacked_out;
2234	}
2235	info->tcpi_lost = tp->lost_out;
2236	info->tcpi_retrans = tp->retrans_out;
2237	info->tcpi_fackets = tp->fackets_out;
2238
2239	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2240	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2241	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2242
2243	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2244	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2245	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2246	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2247	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2248	info->tcpi_snd_cwnd = tp->snd_cwnd;
2249	info->tcpi_advmss = tp->advmss;
2250	info->tcpi_reordering = tp->reordering;
2251
2252	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2253	info->tcpi_rcv_space = tp->rcvq_space.space;
2254
2255	info->tcpi_total_retrans = tp->total_retrans;
2256}
2257
2258EXPORT_SYMBOL_GPL(tcp_get_info);
2259
2260static int do_tcp_getsockopt(struct sock *sk, int level,
2261		int optname, char __user *optval, int __user *optlen)
2262{
2263	struct inet_connection_sock *icsk = inet_csk(sk);
2264	struct tcp_sock *tp = tcp_sk(sk);
2265	int val, len;
2266
2267	if (get_user(len, optlen))
2268		return -EFAULT;
2269
2270	len = min_t(unsigned int, len, sizeof(int));
2271
2272	if (len < 0)
2273		return -EINVAL;
2274
2275	switch (optname) {
2276	case TCP_MAXSEG:
2277		val = tp->mss_cache;
2278		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2279			val = tp->rx_opt.user_mss;
2280		break;
2281	case TCP_NODELAY:
2282		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2283		break;
2284	case TCP_CORK:
2285		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2286		break;
2287	case TCP_KEEPIDLE:
2288		val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2289		break;
2290	case TCP_KEEPINTVL:
2291		val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2292		break;
2293	case TCP_KEEPCNT:
2294		val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2295		break;
2296	case TCP_SYNCNT:
2297		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2298		break;
2299	case TCP_LINGER2:
2300		val = tp->linger2;
2301		if (val >= 0)
2302			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2303		break;
2304	case TCP_DEFER_ACCEPT:
2305		val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2306			((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2307		break;
2308	case TCP_WINDOW_CLAMP:
2309		val = tp->window_clamp;
2310		break;
2311	case TCP_INFO: {
2312		struct tcp_info info;
2313
2314		if (get_user(len, optlen))
2315			return -EFAULT;
2316
2317		tcp_get_info(sk, &info);
2318
2319		len = min_t(unsigned int, len, sizeof(info));
2320		if (put_user(len, optlen))
2321			return -EFAULT;
2322		if (copy_to_user(optval, &info, len))
2323			return -EFAULT;
2324		return 0;
2325	}
2326	case TCP_QUICKACK:
2327		val = !icsk->icsk_ack.pingpong;
2328		break;
2329
2330	case TCP_CONGESTION:
2331		if (get_user(len, optlen))
2332			return -EFAULT;
2333		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2334		if (put_user(len, optlen))
2335			return -EFAULT;
2336		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2337			return -EFAULT;
2338		return 0;
2339	default:
2340		return -ENOPROTOOPT;
2341	}
2342
2343	if (put_user(len, optlen))
2344		return -EFAULT;
2345	if (copy_to_user(optval, &val, len))
2346		return -EFAULT;
2347	return 0;
2348}
2349
2350int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2351		   int __user *optlen)
2352{
2353	struct inet_connection_sock *icsk = inet_csk(sk);
2354
2355	if (level != SOL_TCP)
2356		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2357						     optval, optlen);
2358	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2359}
2360
2361#ifdef CONFIG_COMPAT
2362int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2363			  char __user *optval, int __user *optlen)
2364{
2365	if (level != SOL_TCP)
2366		return inet_csk_compat_getsockopt(sk, level, optname,
2367						  optval, optlen);
2368	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2369}
2370
2371EXPORT_SYMBOL(compat_tcp_getsockopt);
2372#endif
2373
2374struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2375{
2376	struct sk_buff *segs = ERR_PTR(-EINVAL);
2377	struct tcphdr *th;
2378	unsigned thlen;
2379	unsigned int seq;
2380	__be32 delta;
2381	unsigned int oldlen;
2382	unsigned int len;
2383
2384	if (!pskb_may_pull(skb, sizeof(*th)))
2385		goto out;
2386
2387	th = tcp_hdr(skb);
2388	thlen = th->doff * 4;
2389	if (thlen < sizeof(*th))
2390		goto out;
2391
2392	if (!pskb_may_pull(skb, thlen))
2393		goto out;
2394
2395	oldlen = (u16)~skb->len;
2396	__skb_pull(skb, thlen);
2397
2398	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2399		/* Packet is from an untrusted source, reset gso_segs. */
2400		int type = skb_shinfo(skb)->gso_type;
2401		int mss;
2402
2403		if (unlikely(type &
2404			     ~(SKB_GSO_TCPV4 |
2405			       SKB_GSO_DODGY |
2406			       SKB_GSO_TCP_ECN |
2407			       SKB_GSO_TCPV6 |
2408			       0) ||
2409			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2410			goto out;
2411
2412		mss = skb_shinfo(skb)->gso_size;
2413		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2414
2415		segs = NULL;
2416		goto out;
2417	}
2418
2419	segs = skb_segment(skb, features);
2420	if (IS_ERR(segs))
2421		goto out;
2422
2423	len = skb_shinfo(skb)->gso_size;
2424	delta = htonl(oldlen + (thlen + len));
2425
2426	skb = segs;
2427	th = tcp_hdr(skb);
2428	seq = ntohl(th->seq);
2429
2430	do {
2431		th->fin = th->psh = 0;
2432
2433		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2434				       (__force u32)delta));
2435		if (skb->ip_summed != CHECKSUM_PARTIAL)
2436			th->check =
2437			     csum_fold(csum_partial(skb_transport_header(skb),
2438						    thlen, skb->csum));
2439
2440		seq += len;
2441		skb = skb->next;
2442		th = tcp_hdr(skb);
2443
2444		th->seq = htonl(seq);
2445		th->cwr = 0;
2446	} while (skb->next);
2447
2448	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2449		      skb->data_len);
2450	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2451				(__force u32)delta));
2452	if (skb->ip_summed != CHECKSUM_PARTIAL)
2453		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2454						   thlen, skb->csum));
2455
2456out:
2457	return segs;
2458}
2459EXPORT_SYMBOL(tcp_tso_segment);
2460
2461#ifdef CONFIG_TCP_MD5SIG
2462static unsigned long tcp_md5sig_users;
2463static struct tcp_md5sig_pool **tcp_md5sig_pool;
2464static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2465
2466static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2467{
2468	int cpu;
2469	for_each_possible_cpu(cpu) {
2470		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2471		if (p) {
2472			if (p->md5_desc.tfm)
2473				crypto_free_hash(p->md5_desc.tfm);
2474			kfree(p);
2475			p = NULL;
2476		}
2477	}
2478	free_percpu(pool);
2479}
2480
2481void tcp_free_md5sig_pool(void)
2482{
2483	struct tcp_md5sig_pool **pool = NULL;
2484
2485	spin_lock_bh(&tcp_md5sig_pool_lock);
2486	if (--tcp_md5sig_users == 0) {
2487		pool = tcp_md5sig_pool;
2488		tcp_md5sig_pool = NULL;
2489	}
2490	spin_unlock_bh(&tcp_md5sig_pool_lock);
2491	if (pool)
2492		__tcp_free_md5sig_pool(pool);
2493}
2494
2495EXPORT_SYMBOL(tcp_free_md5sig_pool);
2496
2497static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2498{
2499	int cpu;
2500	struct tcp_md5sig_pool **pool;
2501
2502	pool = alloc_percpu(struct tcp_md5sig_pool *);
2503	if (!pool)
2504		return NULL;
2505
2506	for_each_possible_cpu(cpu) {
2507		struct tcp_md5sig_pool *p;
2508		struct crypto_hash *hash;
2509
2510		p = kzalloc(sizeof(*p), GFP_KERNEL);
2511		if (!p)
2512			goto out_free;
2513		*per_cpu_ptr(pool, cpu) = p;
2514
2515		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2516		if (!hash || IS_ERR(hash))
2517			goto out_free;
2518
2519		p->md5_desc.tfm = hash;
2520	}
2521	return pool;
2522out_free:
2523	__tcp_free_md5sig_pool(pool);
2524	return NULL;
2525}
2526
2527struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2528{
2529	struct tcp_md5sig_pool **pool;
2530	int alloc = 0;
2531
2532retry:
2533	spin_lock_bh(&tcp_md5sig_pool_lock);
2534	pool = tcp_md5sig_pool;
2535	if (tcp_md5sig_users++ == 0) {
2536		alloc = 1;
2537		spin_unlock_bh(&tcp_md5sig_pool_lock);
2538	} else if (!pool) {
2539		tcp_md5sig_users--;
2540		spin_unlock_bh(&tcp_md5sig_pool_lock);
2541		cpu_relax();
2542		goto retry;
2543	} else
2544		spin_unlock_bh(&tcp_md5sig_pool_lock);
2545
2546	if (alloc) {
2547		/* we cannot hold spinlock here because this may sleep. */
2548		struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2549		spin_lock_bh(&tcp_md5sig_pool_lock);
2550		if (!p) {
2551			tcp_md5sig_users--;
2552			spin_unlock_bh(&tcp_md5sig_pool_lock);
2553			return NULL;
2554		}
2555		pool = tcp_md5sig_pool;
2556		if (pool) {
2557			/* oops, it has already been assigned. */
2558			spin_unlock_bh(&tcp_md5sig_pool_lock);
2559			__tcp_free_md5sig_pool(p);
2560		} else {
2561			tcp_md5sig_pool = pool = p;
2562			spin_unlock_bh(&tcp_md5sig_pool_lock);
2563		}
2564	}
2565	return pool;
2566}
2567
2568EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2569
2570struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2571{
2572	struct tcp_md5sig_pool **p;
2573	spin_lock_bh(&tcp_md5sig_pool_lock);
2574	p = tcp_md5sig_pool;
2575	if (p)
2576		tcp_md5sig_users++;
2577	spin_unlock_bh(&tcp_md5sig_pool_lock);
2578	return (p ? *per_cpu_ptr(p, cpu) : NULL);
2579}
2580
2581EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2582
2583void __tcp_put_md5sig_pool(void)
2584{
2585	tcp_free_md5sig_pool();
2586}
2587
2588EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2589#endif
2590
2591void tcp_done(struct sock *sk)
2592{
2593	if(sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2594		TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
2595
2596	tcp_set_state(sk, TCP_CLOSE);
2597	tcp_clear_xmit_timers(sk);
2598
2599	sk->sk_shutdown = SHUTDOWN_MASK;
2600
2601	if (!sock_flag(sk, SOCK_DEAD))
2602		sk->sk_state_change(sk);
2603	else
2604		inet_csk_destroy_sock(sk);
2605}
2606EXPORT_SYMBOL_GPL(tcp_done);
2607
2608extern struct tcp_congestion_ops tcp_reno;
2609
2610static __initdata unsigned long thash_entries;
2611static int __init set_thash_entries(char *str)
2612{
2613	if (!str)
2614		return 0;
2615	thash_entries = simple_strtoul(str, &str, 0);
2616	return 1;
2617}
2618__setup("thash_entries=", set_thash_entries);
2619
2620void __init tcp_init(void)
2621{
2622	struct sk_buff *skb = NULL;
2623	unsigned long limit;
2624	int order, i, max_share;
2625
2626	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
2627
2628	tcp_hashinfo.bind_bucket_cachep =
2629		kmem_cache_create("tcp_bind_bucket",
2630				  sizeof(struct inet_bind_bucket), 0,
2631				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2632
2633	/* Size and allocate the main established and bind bucket
2634	 * hash tables.
2635	 *
2636	 * The methodology is similar to that of the buffer cache.
2637	 */
2638	tcp_hashinfo.ehash =
2639		alloc_large_system_hash("TCP established",
2640					sizeof(struct inet_ehash_bucket),
2641					thash_entries,
2642					(num_physpages >= 128 * 1024) ?
2643					13 : 15,
2644					0,
2645					&tcp_hashinfo.ehash_size,
2646					NULL,
2647					thash_entries ? 0 : 512 * 1024);
2648	tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2649	for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2650		INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].chain);
2651		INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].twchain);
2652	}
2653	if (inet_ehash_locks_alloc(&tcp_hashinfo))
2654		panic("TCP: failed to alloc ehash_locks");
2655	tcp_hashinfo.bhash =
2656		alloc_large_system_hash("TCP bind",
2657					sizeof(struct inet_bind_hashbucket),
2658					tcp_hashinfo.ehash_size,
2659					(num_physpages >= 128 * 1024) ?
2660					13 : 15,
2661					0,
2662					&tcp_hashinfo.bhash_size,
2663					NULL,
2664					64 * 1024);
2665	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2666	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2667		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2668		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2669	}
2670
2671	/* Try to be a bit smarter and adjust defaults depending
2672	 * on available memory.
2673	 */
2674	for (order = 0; ((1 << order) << PAGE_SHIFT) <
2675			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2676			order++)
2677		;
2678	if (order >= 4) {
2679		tcp_death_row.sysctl_max_tw_buckets = 180000;
2680		sysctl_tcp_max_orphans = 4096 << (order - 4);
2681		sysctl_max_syn_backlog = 1024;
2682	} else if (order < 3) {
2683		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2684		sysctl_tcp_max_orphans >>= (3 - order);
2685		sysctl_max_syn_backlog = 128;
2686	}
2687
2688	/* Set the pressure threshold to be a fraction of global memory that
2689	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2690	 * memory, with a floor of 128 pages.
2691	 */
2692	limit = min(nr_all_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2693	limit = (limit * (nr_all_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2694	limit = max(limit, 128UL);
2695	sysctl_tcp_mem[0] = limit / 4 * 3;
2696	sysctl_tcp_mem[1] = limit;
2697	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2698
2699	/* Set per-socket limits to no more than 1/128 the pressure threshold */
2700	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2701	max_share = min(4UL*1024*1024, limit);
2702
2703	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
2704	sysctl_tcp_wmem[1] = 16*1024;
2705	sysctl_tcp_wmem[2] = max(64*1024, max_share);
2706
2707	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
2708	sysctl_tcp_rmem[1] = 87380;
2709	sysctl_tcp_rmem[2] = max(87380, max_share);
2710
2711	printk(KERN_INFO "TCP: Hash tables configured "
2712	       "(established %d bind %d)\n",
2713	       tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2714
2715	tcp_register_congestion_control(&tcp_reno);
2716}
2717
2718EXPORT_SYMBOL(tcp_close);
2719EXPORT_SYMBOL(tcp_disconnect);
2720EXPORT_SYMBOL(tcp_getsockopt);
2721EXPORT_SYMBOL(tcp_ioctl);
2722EXPORT_SYMBOL(tcp_poll);
2723EXPORT_SYMBOL(tcp_read_sock);
2724EXPORT_SYMBOL(tcp_recvmsg);
2725EXPORT_SYMBOL(tcp_sendmsg);
2726EXPORT_SYMBOL(tcp_splice_read);
2727EXPORT_SYMBOL(tcp_sendpage);
2728EXPORT_SYMBOL(tcp_setsockopt);
2729EXPORT_SYMBOL(tcp_shutdown);
2730EXPORT_SYMBOL(tcp_statistics);
2731