tcp.c revision ee9952831cfd0bbe834f4a26489d7dce74582e37
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 *		Alan Cox	:	Numerous verify_area() calls
22 *		Alan Cox	:	Set the ACK bit on a reset
23 *		Alan Cox	:	Stopped it crashing if it closed while
24 *					sk->inuse=1 and was trying to connect
25 *					(tcp_err()).
26 *		Alan Cox	:	All icmp error handling was broken
27 *					pointers passed where wrong and the
28 *					socket was looked up backwards. Nobody
29 *					tested any icmp error code obviously.
30 *		Alan Cox	:	tcp_err() now handled properly. It
31 *					wakes people on errors. poll
32 *					behaves and the icmp error race
33 *					has gone by moving it into sock.c
34 *		Alan Cox	:	tcp_send_reset() fixed to work for
35 *					everything not just packets for
36 *					unknown sockets.
37 *		Alan Cox	:	tcp option processing.
38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39 *					syn rule wrong]
40 *		Herp Rosmanith  :	More reset fixes
41 *		Alan Cox	:	No longer acks invalid rst frames.
42 *					Acking any kind of RST is right out.
43 *		Alan Cox	:	Sets an ignore me flag on an rst
44 *					receive otherwise odd bits of prattle
45 *					escape still
46 *		Alan Cox	:	Fixed another acking RST frame bug.
47 *					Should stop LAN workplace lockups.
48 *		Alan Cox	: 	Some tidyups using the new skb list
49 *					facilities
50 *		Alan Cox	:	sk->keepopen now seems to work
51 *		Alan Cox	:	Pulls options out correctly on accepts
52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54 *					bit to skb ops.
55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
56 *					nasty.
57 *		Alan Cox	:	Added some better commenting, as the
58 *					tcp is hard to follow
59 *		Alan Cox	:	Removed incorrect check for 20 * psh
60 *	Michael O'Reilly	:	ack < copied bug fix.
61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62 *		Alan Cox	:	FIN with no memory -> CRASH
63 *		Alan Cox	:	Added socket option proto entries.
64 *					Also added awareness of them to accept.
65 *		Alan Cox	:	Added TCP options (SOL_TCP)
66 *		Alan Cox	:	Switched wakeup calls to callbacks,
67 *					so the kernel can layer network
68 *					sockets.
69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
71 *		Alan Cox	:	RST frames sent on unsynchronised
72 *					state ack error.
73 *		Alan Cox	:	Put in missing check for SYN bit.
74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
75 *					window non shrink trick.
76 *		Alan Cox	:	Added a couple of small NET2E timer
77 *					fixes
78 *		Charles Hedrick :	TCP fixes
79 *		Toomas Tamm	:	TCP window fixes
80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81 *		Charles Hedrick	:	Rewrote most of it to actually work
82 *		Linus		:	Rewrote tcp_read() and URG handling
83 *					completely
84 *		Gerhard Koerting:	Fixed some missing timer handling
85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86 *		Gerhard Koerting:	PC/TCP workarounds
87 *		Adam Caldwell	:	Assorted timer/timing errors
88 *		Matthew Dillon	:	Fixed another RST bug
89 *		Alan Cox	:	Move to kernel side addressing changes.
90 *		Alan Cox	:	Beginning work on TCP fastpathing
91 *					(not yet usable)
92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93 *		Alan Cox	:	TCP fast path debugging
94 *		Alan Cox	:	Window clamping
95 *		Michael Riepe	:	Bug in tcp_check()
96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
97 *		Matt Dillon	:	Yet more small nasties remove from the
98 *					TCP code (Be very nice to this man if
99 *					tcp finally works 100%) 8)
100 *		Alan Cox	:	BSD accept semantics.
101 *		Alan Cox	:	Reset on closedown bug.
102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103 *		Michael Pall	:	Handle poll() after URG properly in
104 *					all cases.
105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106 *					(multi URG PUSH broke rlogin).
107 *		Michael Pall	:	Fix the multi URG PUSH problem in
108 *					tcp_readable(), poll() after URG
109 *					works now.
110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111 *					BSD api.
112 *		Alan Cox	:	Changed the semantics of sk->socket to
113 *					fix a race and a signal problem with
114 *					accept() and async I/O.
115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118 *					clients/servers which listen in on
119 *					fixed ports.
120 *		Alan Cox	:	Cleaned the above up and shrank it to
121 *					a sensible code size.
122 *		Alan Cox	:	Self connect lockup fix.
123 *		Alan Cox	:	No connect to multicast.
124 *		Ross Biro	:	Close unaccepted children on master
125 *					socket close.
126 *		Alan Cox	:	Reset tracing code.
127 *		Alan Cox	:	Spurious resets on shutdown.
128 *		Alan Cox	:	Giant 15 minute/60 second timer error
129 *		Alan Cox	:	Small whoops in polling before an
130 *					accept.
131 *		Alan Cox	:	Kept the state trace facility since
132 *					it's handy for debugging.
133 *		Alan Cox	:	More reset handler fixes.
134 *		Alan Cox	:	Started rewriting the code based on
135 *					the RFC's for other useful protocol
136 *					references see: Comer, KA9Q NOS, and
137 *					for a reference on the difference
138 *					between specifications and how BSD
139 *					works see the 4.4lite source.
140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141 *					close.
142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144 *		Alan Cox	:	Reimplemented timers as per the RFC
145 *					and using multiple timers for sanity.
146 *		Alan Cox	:	Small bug fixes, and a lot of new
147 *					comments.
148 *		Alan Cox	:	Fixed dual reader crash by locking
149 *					the buffers (much like datagram.c)
150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151 *					now gets fed up of retrying without
152 *					(even a no space) answer.
153 *		Alan Cox	:	Extracted closing code better
154 *		Alan Cox	:	Fixed the closing state machine to
155 *					resemble the RFC.
156 *		Alan Cox	:	More 'per spec' fixes.
157 *		Jorge Cwik	:	Even faster checksumming.
158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159 *					only frames. At least one pc tcp stack
160 *					generates them.
161 *		Alan Cox	:	Cache last socket.
162 *		Alan Cox	:	Per route irtt.
163 *		Matt Day	:	poll()->select() match BSD precisely on error
164 *		Alan Cox	:	New buffers
165 *		Marc Tamsky	:	Various sk->prot->retransmits and
166 *					sk->retransmits misupdating fixed.
167 *					Fixed tcp_write_timeout: stuck close,
168 *					and TCP syn retries gets used now.
169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170 *					ack if state is TCP_CLOSED.
171 *		Alan Cox	:	Look up device on a retransmit - routes may
172 *					change. Doesn't yet cope with MSS shrink right
173 *					but it's a start!
174 *		Marc Tamsky	:	Closing in closing fixes.
175 *		Mike Shaver	:	RFC1122 verifications.
176 *		Alan Cox	:	rcv_saddr errors.
177 *		Alan Cox	:	Block double connect().
178 *		Alan Cox	:	Small hooks for enSKIP.
179 *		Alexey Kuznetsov:	Path MTU discovery.
180 *		Alan Cox	:	Support soft errors.
181 *		Alan Cox	:	Fix MTU discovery pathological case
182 *					when the remote claims no mtu!
183 *		Marc Tamsky	:	TCP_CLOSE fix.
184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185 *					window but wrong (fixes NT lpd problems)
186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
187 *		Joerg Reuter	:	No modification of locked buffers in
188 *					tcp_do_retransmit()
189 *		Eric Schenk	:	Changed receiver side silly window
190 *					avoidance algorithm to BSD style
191 *					algorithm. This doubles throughput
192 *					against machines running Solaris,
193 *					and seems to result in general
194 *					improvement.
195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196 *	Willy Konynenberg	:	Transparent proxying support.
197 *	Mike McLagan		:	Routing by source
198 *		Keith Owens	:	Do proper merging with partial SKB's in
199 *					tcp_do_sendmsg to avoid burstiness.
200 *		Eric Schenk	:	Fix fast close down bug with
201 *					shutdown() followed by close().
202 *		Andi Kleen 	:	Make poll agree with SIGIO
203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204 *					lingertime == 0 (RFC 793 ABORT Call)
205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206 *					csum_and_copy_from_user() if possible.
207 *
208 *		This program is free software; you can redistribute it and/or
209 *		modify it under the terms of the GNU General Public License
210 *		as published by the Free Software Foundation; either version
211 *		2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
216 *
217 *	TCP_SYN_RECV		received a connection request, sent ack,
218 *				waiting for final ack in three-way handshake.
219 *
220 *	TCP_ESTABLISHED		connection established
221 *
222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223 *				transmission of remaining buffered data
224 *
225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226 *				to shutdown
227 *
228 *	TCP_CLOSING		both sides have shutdown but we still have
229 *				data we have to finish sending
230 *
231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232 *				closed, can only be entered from FIN_WAIT2
233 *				or CLOSING.  Required because the other end
234 *				may not have gotten our last ACK causing it
235 *				to retransmit the data packet (which we ignore)
236 *
237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238 *				us to finish writing our data and to shutdown
239 *				(we have to close() to move on to LAST_ACK)
240 *
241 *	TCP_LAST_ACK		out side has shutdown after remote has
242 *				shutdown.  There may still be data in our
243 *				buffer that we have to finish sending
244 *
245 *	TCP_CLOSE		socket is finished
246 */
247
248#define pr_fmt(fmt) "TCP: " fmt
249
250#include <linux/kernel.h>
251#include <linux/module.h>
252#include <linux/types.h>
253#include <linux/fcntl.h>
254#include <linux/poll.h>
255#include <linux/init.h>
256#include <linux/fs.h>
257#include <linux/skbuff.h>
258#include <linux/scatterlist.h>
259#include <linux/splice.h>
260#include <linux/net.h>
261#include <linux/socket.h>
262#include <linux/random.h>
263#include <linux/bootmem.h>
264#include <linux/highmem.h>
265#include <linux/swap.h>
266#include <linux/cache.h>
267#include <linux/err.h>
268#include <linux/crypto.h>
269#include <linux/time.h>
270#include <linux/slab.h>
271
272#include <net/icmp.h>
273#include <net/tcp.h>
274#include <net/xfrm.h>
275#include <net/ip.h>
276#include <net/netdma.h>
277#include <net/sock.h>
278
279#include <asm/uaccess.h>
280#include <asm/ioctls.h>
281
282int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
283
284struct percpu_counter tcp_orphan_count;
285EXPORT_SYMBOL_GPL(tcp_orphan_count);
286
287int sysctl_tcp_wmem[3] __read_mostly;
288int sysctl_tcp_rmem[3] __read_mostly;
289
290EXPORT_SYMBOL(sysctl_tcp_rmem);
291EXPORT_SYMBOL(sysctl_tcp_wmem);
292
293atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
294EXPORT_SYMBOL(tcp_memory_allocated);
295
296/*
297 * Current number of TCP sockets.
298 */
299struct percpu_counter tcp_sockets_allocated;
300EXPORT_SYMBOL(tcp_sockets_allocated);
301
302/*
303 * TCP splice context
304 */
305struct tcp_splice_state {
306	struct pipe_inode_info *pipe;
307	size_t len;
308	unsigned int flags;
309};
310
311/*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317int tcp_memory_pressure __read_mostly;
318EXPORT_SYMBOL(tcp_memory_pressure);
319
320void tcp_enter_memory_pressure(struct sock *sk)
321{
322	if (!tcp_memory_pressure) {
323		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324		tcp_memory_pressure = 1;
325	}
326}
327EXPORT_SYMBOL(tcp_enter_memory_pressure);
328
329/* Convert seconds to retransmits based on initial and max timeout */
330static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331{
332	u8 res = 0;
333
334	if (seconds > 0) {
335		int period = timeout;
336
337		res = 1;
338		while (seconds > period && res < 255) {
339			res++;
340			timeout <<= 1;
341			if (timeout > rto_max)
342				timeout = rto_max;
343			period += timeout;
344		}
345	}
346	return res;
347}
348
349/* Convert retransmits to seconds based on initial and max timeout */
350static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351{
352	int period = 0;
353
354	if (retrans > 0) {
355		period = timeout;
356		while (--retrans) {
357			timeout <<= 1;
358			if (timeout > rto_max)
359				timeout = rto_max;
360			period += timeout;
361		}
362	}
363	return period;
364}
365
366/*
367 *	Wait for a TCP event.
368 *
369 *	Note that we don't need to lock the socket, as the upper poll layers
370 *	take care of normal races (between the test and the event) and we don't
371 *	go look at any of the socket buffers directly.
372 */
373unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
374{
375	unsigned int mask;
376	struct sock *sk = sock->sk;
377	const struct tcp_sock *tp = tcp_sk(sk);
378
379	sock_poll_wait(file, sk_sleep(sk), wait);
380	if (sk->sk_state == TCP_LISTEN)
381		return inet_csk_listen_poll(sk);
382
383	/* Socket is not locked. We are protected from async events
384	 * by poll logic and correct handling of state changes
385	 * made by other threads is impossible in any case.
386	 */
387
388	mask = 0;
389
390	/*
391	 * POLLHUP is certainly not done right. But poll() doesn't
392	 * have a notion of HUP in just one direction, and for a
393	 * socket the read side is more interesting.
394	 *
395	 * Some poll() documentation says that POLLHUP is incompatible
396	 * with the POLLOUT/POLLWR flags, so somebody should check this
397	 * all. But careful, it tends to be safer to return too many
398	 * bits than too few, and you can easily break real applications
399	 * if you don't tell them that something has hung up!
400	 *
401	 * Check-me.
402	 *
403	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
404	 * our fs/select.c). It means that after we received EOF,
405	 * poll always returns immediately, making impossible poll() on write()
406	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
407	 * if and only if shutdown has been made in both directions.
408	 * Actually, it is interesting to look how Solaris and DUX
409	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
410	 * then we could set it on SND_SHUTDOWN. BTW examples given
411	 * in Stevens' books assume exactly this behaviour, it explains
412	 * why POLLHUP is incompatible with POLLOUT.	--ANK
413	 *
414	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
415	 * blocking on fresh not-connected or disconnected socket. --ANK
416	 */
417	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
418		mask |= POLLHUP;
419	if (sk->sk_shutdown & RCV_SHUTDOWN)
420		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
421
422	/* Connected? */
423	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
424		int target = sock_rcvlowat(sk, 0, INT_MAX);
425
426		if (tp->urg_seq == tp->copied_seq &&
427		    !sock_flag(sk, SOCK_URGINLINE) &&
428		    tp->urg_data)
429			target++;
430
431		/* Potential race condition. If read of tp below will
432		 * escape above sk->sk_state, we can be illegally awaken
433		 * in SYN_* states. */
434		if (tp->rcv_nxt - tp->copied_seq >= target)
435			mask |= POLLIN | POLLRDNORM;
436
437		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
438			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
439				mask |= POLLOUT | POLLWRNORM;
440			} else {  /* send SIGIO later */
441				set_bit(SOCK_ASYNC_NOSPACE,
442					&sk->sk_socket->flags);
443				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
444
445				/* Race breaker. If space is freed after
446				 * wspace test but before the flags are set,
447				 * IO signal will be lost.
448				 */
449				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
450					mask |= POLLOUT | POLLWRNORM;
451			}
452		} else
453			mask |= POLLOUT | POLLWRNORM;
454
455		if (tp->urg_data & TCP_URG_VALID)
456			mask |= POLLPRI;
457	}
458	/* This barrier is coupled with smp_wmb() in tcp_reset() */
459	smp_rmb();
460	if (sk->sk_err)
461		mask |= POLLERR;
462
463	return mask;
464}
465EXPORT_SYMBOL(tcp_poll);
466
467int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
468{
469	struct tcp_sock *tp = tcp_sk(sk);
470	int answ;
471
472	switch (cmd) {
473	case SIOCINQ:
474		if (sk->sk_state == TCP_LISTEN)
475			return -EINVAL;
476
477		lock_sock(sk);
478		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
479			answ = 0;
480		else if (sock_flag(sk, SOCK_URGINLINE) ||
481			 !tp->urg_data ||
482			 before(tp->urg_seq, tp->copied_seq) ||
483			 !before(tp->urg_seq, tp->rcv_nxt)) {
484			struct sk_buff *skb;
485
486			answ = tp->rcv_nxt - tp->copied_seq;
487
488			/* Subtract 1, if FIN is in queue. */
489			skb = skb_peek_tail(&sk->sk_receive_queue);
490			if (answ && skb)
491				answ -= tcp_hdr(skb)->fin;
492		} else
493			answ = tp->urg_seq - tp->copied_seq;
494		release_sock(sk);
495		break;
496	case SIOCATMARK:
497		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
498		break;
499	case SIOCOUTQ:
500		if (sk->sk_state == TCP_LISTEN)
501			return -EINVAL;
502
503		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
504			answ = 0;
505		else
506			answ = tp->write_seq - tp->snd_una;
507		break;
508	case SIOCOUTQNSD:
509		if (sk->sk_state == TCP_LISTEN)
510			return -EINVAL;
511
512		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
513			answ = 0;
514		else
515			answ = tp->write_seq - tp->snd_nxt;
516		break;
517	default:
518		return -ENOIOCTLCMD;
519	}
520
521	return put_user(answ, (int __user *)arg);
522}
523EXPORT_SYMBOL(tcp_ioctl);
524
525static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
526{
527	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
528	tp->pushed_seq = tp->write_seq;
529}
530
531static inline int forced_push(const struct tcp_sock *tp)
532{
533	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
534}
535
536static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
537{
538	struct tcp_sock *tp = tcp_sk(sk);
539	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
540
541	skb->csum    = 0;
542	tcb->seq     = tcb->end_seq = tp->write_seq;
543	tcb->tcp_flags = TCPHDR_ACK;
544	tcb->sacked  = 0;
545	skb_header_release(skb);
546	tcp_add_write_queue_tail(sk, skb);
547	sk->sk_wmem_queued += skb->truesize;
548	sk_mem_charge(sk, skb->truesize);
549	if (tp->nonagle & TCP_NAGLE_PUSH)
550		tp->nonagle &= ~TCP_NAGLE_PUSH;
551}
552
553static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
554{
555	if (flags & MSG_OOB)
556		tp->snd_up = tp->write_seq;
557}
558
559static inline void tcp_push(struct sock *sk, int flags, int mss_now,
560			    int nonagle)
561{
562	if (tcp_send_head(sk)) {
563		struct tcp_sock *tp = tcp_sk(sk);
564
565		if (!(flags & MSG_MORE) || forced_push(tp))
566			tcp_mark_push(tp, tcp_write_queue_tail(sk));
567
568		tcp_mark_urg(tp, flags);
569		__tcp_push_pending_frames(sk, mss_now,
570					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
571	}
572}
573
574static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
575				unsigned int offset, size_t len)
576{
577	struct tcp_splice_state *tss = rd_desc->arg.data;
578	int ret;
579
580	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
581			      tss->flags);
582	if (ret > 0)
583		rd_desc->count -= ret;
584	return ret;
585}
586
587static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
588{
589	/* Store TCP splice context information in read_descriptor_t. */
590	read_descriptor_t rd_desc = {
591		.arg.data = tss,
592		.count	  = tss->len,
593	};
594
595	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
596}
597
598/**
599 *  tcp_splice_read - splice data from TCP socket to a pipe
600 * @sock:	socket to splice from
601 * @ppos:	position (not valid)
602 * @pipe:	pipe to splice to
603 * @len:	number of bytes to splice
604 * @flags:	splice modifier flags
605 *
606 * Description:
607 *    Will read pages from given socket and fill them into a pipe.
608 *
609 **/
610ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
611			struct pipe_inode_info *pipe, size_t len,
612			unsigned int flags)
613{
614	struct sock *sk = sock->sk;
615	struct tcp_splice_state tss = {
616		.pipe = pipe,
617		.len = len,
618		.flags = flags,
619	};
620	long timeo;
621	ssize_t spliced;
622	int ret;
623
624	sock_rps_record_flow(sk);
625	/*
626	 * We can't seek on a socket input
627	 */
628	if (unlikely(*ppos))
629		return -ESPIPE;
630
631	ret = spliced = 0;
632
633	lock_sock(sk);
634
635	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
636	while (tss.len) {
637		ret = __tcp_splice_read(sk, &tss);
638		if (ret < 0)
639			break;
640		else if (!ret) {
641			if (spliced)
642				break;
643			if (sock_flag(sk, SOCK_DONE))
644				break;
645			if (sk->sk_err) {
646				ret = sock_error(sk);
647				break;
648			}
649			if (sk->sk_shutdown & RCV_SHUTDOWN)
650				break;
651			if (sk->sk_state == TCP_CLOSE) {
652				/*
653				 * This occurs when user tries to read
654				 * from never connected socket.
655				 */
656				if (!sock_flag(sk, SOCK_DONE))
657					ret = -ENOTCONN;
658				break;
659			}
660			if (!timeo) {
661				ret = -EAGAIN;
662				break;
663			}
664			sk_wait_data(sk, &timeo);
665			if (signal_pending(current)) {
666				ret = sock_intr_errno(timeo);
667				break;
668			}
669			continue;
670		}
671		tss.len -= ret;
672		spliced += ret;
673
674		if (!timeo)
675			break;
676		release_sock(sk);
677		lock_sock(sk);
678
679		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
680		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
681		    signal_pending(current))
682			break;
683	}
684
685	release_sock(sk);
686
687	if (spliced)
688		return spliced;
689
690	return ret;
691}
692EXPORT_SYMBOL(tcp_splice_read);
693
694struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
695{
696	struct sk_buff *skb;
697
698	/* The TCP header must be at least 32-bit aligned.  */
699	size = ALIGN(size, 4);
700
701	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
702	if (skb) {
703		if (sk_wmem_schedule(sk, skb->truesize)) {
704			skb_reserve(skb, sk->sk_prot->max_header);
705			/*
706			 * Make sure that we have exactly size bytes
707			 * available to the caller, no more, no less.
708			 */
709			skb->avail_size = size;
710			return skb;
711		}
712		__kfree_skb(skb);
713	} else {
714		sk->sk_prot->enter_memory_pressure(sk);
715		sk_stream_moderate_sndbuf(sk);
716	}
717	return NULL;
718}
719
720static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
721				       int large_allowed)
722{
723	struct tcp_sock *tp = tcp_sk(sk);
724	u32 xmit_size_goal, old_size_goal;
725
726	xmit_size_goal = mss_now;
727
728	if (large_allowed && sk_can_gso(sk)) {
729		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
730				  inet_csk(sk)->icsk_af_ops->net_header_len -
731				  inet_csk(sk)->icsk_ext_hdr_len -
732				  tp->tcp_header_len);
733
734		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
735
736		/* We try hard to avoid divides here */
737		old_size_goal = tp->xmit_size_goal_segs * mss_now;
738
739		if (likely(old_size_goal <= xmit_size_goal &&
740			   old_size_goal + mss_now > xmit_size_goal)) {
741			xmit_size_goal = old_size_goal;
742		} else {
743			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
744			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
745		}
746	}
747
748	return max(xmit_size_goal, mss_now);
749}
750
751static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
752{
753	int mss_now;
754
755	mss_now = tcp_current_mss(sk);
756	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
757
758	return mss_now;
759}
760
761static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
762			 size_t psize, int flags)
763{
764	struct tcp_sock *tp = tcp_sk(sk);
765	int mss_now, size_goal;
766	int err;
767	ssize_t copied;
768	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
769
770	/* Wait for a connection to finish. */
771	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
772		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
773			goto out_err;
774
775	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
776
777	mss_now = tcp_send_mss(sk, &size_goal, flags);
778	copied = 0;
779
780	err = -EPIPE;
781	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
782		goto out_err;
783
784	while (psize > 0) {
785		struct sk_buff *skb = tcp_write_queue_tail(sk);
786		struct page *page = pages[poffset / PAGE_SIZE];
787		int copy, i, can_coalesce;
788		int offset = poffset % PAGE_SIZE;
789		int size = min_t(size_t, psize, PAGE_SIZE - offset);
790
791		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
792new_segment:
793			if (!sk_stream_memory_free(sk))
794				goto wait_for_sndbuf;
795
796			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
797			if (!skb)
798				goto wait_for_memory;
799
800			skb_entail(sk, skb);
801			copy = size_goal;
802		}
803
804		if (copy > size)
805			copy = size;
806
807		i = skb_shinfo(skb)->nr_frags;
808		can_coalesce = skb_can_coalesce(skb, i, page, offset);
809		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
810			tcp_mark_push(tp, skb);
811			goto new_segment;
812		}
813		if (!sk_wmem_schedule(sk, copy))
814			goto wait_for_memory;
815
816		if (can_coalesce) {
817			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
818		} else {
819			get_page(page);
820			skb_fill_page_desc(skb, i, page, offset, copy);
821		}
822
823		skb->len += copy;
824		skb->data_len += copy;
825		skb->truesize += copy;
826		sk->sk_wmem_queued += copy;
827		sk_mem_charge(sk, copy);
828		skb->ip_summed = CHECKSUM_PARTIAL;
829		tp->write_seq += copy;
830		TCP_SKB_CB(skb)->end_seq += copy;
831		skb_shinfo(skb)->gso_segs = 0;
832
833		if (!copied)
834			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
835
836		copied += copy;
837		poffset += copy;
838		if (!(psize -= copy))
839			goto out;
840
841		if (skb->len < size_goal || (flags & MSG_OOB))
842			continue;
843
844		if (forced_push(tp)) {
845			tcp_mark_push(tp, skb);
846			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
847		} else if (skb == tcp_send_head(sk))
848			tcp_push_one(sk, mss_now);
849		continue;
850
851wait_for_sndbuf:
852		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
853wait_for_memory:
854		if (copied)
855			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
856
857		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
858			goto do_error;
859
860		mss_now = tcp_send_mss(sk, &size_goal, flags);
861	}
862
863out:
864	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
865		tcp_push(sk, flags, mss_now, tp->nonagle);
866	return copied;
867
868do_error:
869	if (copied)
870		goto out;
871out_err:
872	return sk_stream_error(sk, flags, err);
873}
874
875int tcp_sendpage(struct sock *sk, struct page *page, int offset,
876		 size_t size, int flags)
877{
878	ssize_t res;
879
880	if (!(sk->sk_route_caps & NETIF_F_SG) ||
881	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
882		return sock_no_sendpage(sk->sk_socket, page, offset, size,
883					flags);
884
885	lock_sock(sk);
886	res = do_tcp_sendpages(sk, &page, offset, size, flags);
887	release_sock(sk);
888	return res;
889}
890EXPORT_SYMBOL(tcp_sendpage);
891
892static inline int select_size(const struct sock *sk, bool sg)
893{
894	const struct tcp_sock *tp = tcp_sk(sk);
895	int tmp = tp->mss_cache;
896
897	if (sg) {
898		if (sk_can_gso(sk)) {
899			/* Small frames wont use a full page:
900			 * Payload will immediately follow tcp header.
901			 */
902			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
903		} else {
904			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
905
906			if (tmp >= pgbreak &&
907			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
908				tmp = pgbreak;
909		}
910	}
911
912	return tmp;
913}
914
915int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
916		size_t size)
917{
918	struct iovec *iov;
919	struct tcp_sock *tp = tcp_sk(sk);
920	struct sk_buff *skb;
921	int iovlen, flags, err, copied;
922	int mss_now = 0, size_goal;
923	bool sg;
924	long timeo;
925
926	lock_sock(sk);
927
928	flags = msg->msg_flags;
929	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
930
931	/* Wait for a connection to finish. */
932	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
933		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
934			goto out_err;
935
936	/* This should be in poll */
937	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
938
939	mss_now = tcp_send_mss(sk, &size_goal, flags);
940
941	/* Ok commence sending. */
942	iovlen = msg->msg_iovlen;
943	iov = msg->msg_iov;
944	copied = 0;
945
946	err = -EPIPE;
947	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
948		goto out_err;
949
950	sg = !!(sk->sk_route_caps & NETIF_F_SG);
951
952	while (--iovlen >= 0) {
953		size_t seglen = iov->iov_len;
954		unsigned char __user *from = iov->iov_base;
955
956		iov++;
957
958		while (seglen > 0) {
959			int copy = 0;
960			int max = size_goal;
961
962			skb = tcp_write_queue_tail(sk);
963			if (tcp_send_head(sk)) {
964				if (skb->ip_summed == CHECKSUM_NONE)
965					max = mss_now;
966				copy = max - skb->len;
967			}
968
969			if (copy <= 0) {
970new_segment:
971				/* Allocate new segment. If the interface is SG,
972				 * allocate skb fitting to single page.
973				 */
974				if (!sk_stream_memory_free(sk))
975					goto wait_for_sndbuf;
976
977				skb = sk_stream_alloc_skb(sk,
978							  select_size(sk, sg),
979							  sk->sk_allocation);
980				if (!skb)
981					goto wait_for_memory;
982
983				/*
984				 * Check whether we can use HW checksum.
985				 */
986				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
987					skb->ip_summed = CHECKSUM_PARTIAL;
988
989				skb_entail(sk, skb);
990				copy = size_goal;
991				max = size_goal;
992			}
993
994			/* Try to append data to the end of skb. */
995			if (copy > seglen)
996				copy = seglen;
997
998			/* Where to copy to? */
999			if (skb_availroom(skb) > 0) {
1000				/* We have some space in skb head. Superb! */
1001				copy = min_t(int, copy, skb_availroom(skb));
1002				err = skb_add_data_nocache(sk, skb, from, copy);
1003				if (err)
1004					goto do_fault;
1005			} else {
1006				int merge = 0;
1007				int i = skb_shinfo(skb)->nr_frags;
1008				struct page *page = sk->sk_sndmsg_page;
1009				int off;
1010
1011				if (page && page_count(page) == 1)
1012					sk->sk_sndmsg_off = 0;
1013
1014				off = sk->sk_sndmsg_off;
1015
1016				if (skb_can_coalesce(skb, i, page, off) &&
1017				    off != PAGE_SIZE) {
1018					/* We can extend the last page
1019					 * fragment. */
1020					merge = 1;
1021				} else if (i == MAX_SKB_FRAGS || !sg) {
1022					/* Need to add new fragment and cannot
1023					 * do this because interface is non-SG,
1024					 * or because all the page slots are
1025					 * busy. */
1026					tcp_mark_push(tp, skb);
1027					goto new_segment;
1028				} else if (page) {
1029					if (off == PAGE_SIZE) {
1030						put_page(page);
1031						sk->sk_sndmsg_page = page = NULL;
1032						off = 0;
1033					}
1034				} else
1035					off = 0;
1036
1037				if (copy > PAGE_SIZE - off)
1038					copy = PAGE_SIZE - off;
1039
1040				if (!sk_wmem_schedule(sk, copy))
1041					goto wait_for_memory;
1042
1043				if (!page) {
1044					/* Allocate new cache page. */
1045					if (!(page = sk_stream_alloc_page(sk)))
1046						goto wait_for_memory;
1047				}
1048
1049				/* Time to copy data. We are close to
1050				 * the end! */
1051				err = skb_copy_to_page_nocache(sk, from, skb,
1052							       page, off, copy);
1053				if (err) {
1054					/* If this page was new, give it to the
1055					 * socket so it does not get leaked.
1056					 */
1057					if (!sk->sk_sndmsg_page) {
1058						sk->sk_sndmsg_page = page;
1059						sk->sk_sndmsg_off = 0;
1060					}
1061					goto do_error;
1062				}
1063
1064				/* Update the skb. */
1065				if (merge) {
1066					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1067				} else {
1068					skb_fill_page_desc(skb, i, page, off, copy);
1069					if (sk->sk_sndmsg_page) {
1070						get_page(page);
1071					} else if (off + copy < PAGE_SIZE) {
1072						get_page(page);
1073						sk->sk_sndmsg_page = page;
1074					}
1075				}
1076
1077				sk->sk_sndmsg_off = off + copy;
1078			}
1079
1080			if (!copied)
1081				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1082
1083			tp->write_seq += copy;
1084			TCP_SKB_CB(skb)->end_seq += copy;
1085			skb_shinfo(skb)->gso_segs = 0;
1086
1087			from += copy;
1088			copied += copy;
1089			if ((seglen -= copy) == 0 && iovlen == 0)
1090				goto out;
1091
1092			if (skb->len < max || (flags & MSG_OOB))
1093				continue;
1094
1095			if (forced_push(tp)) {
1096				tcp_mark_push(tp, skb);
1097				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1098			} else if (skb == tcp_send_head(sk))
1099				tcp_push_one(sk, mss_now);
1100			continue;
1101
1102wait_for_sndbuf:
1103			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1104wait_for_memory:
1105			if (copied)
1106				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1107
1108			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1109				goto do_error;
1110
1111			mss_now = tcp_send_mss(sk, &size_goal, flags);
1112		}
1113	}
1114
1115out:
1116	if (copied)
1117		tcp_push(sk, flags, mss_now, tp->nonagle);
1118	release_sock(sk);
1119	return copied;
1120
1121do_fault:
1122	if (!skb->len) {
1123		tcp_unlink_write_queue(skb, sk);
1124		/* It is the one place in all of TCP, except connection
1125		 * reset, where we can be unlinking the send_head.
1126		 */
1127		tcp_check_send_head(sk, skb);
1128		sk_wmem_free_skb(sk, skb);
1129	}
1130
1131do_error:
1132	if (copied)
1133		goto out;
1134out_err:
1135	err = sk_stream_error(sk, flags, err);
1136	release_sock(sk);
1137	return err;
1138}
1139EXPORT_SYMBOL(tcp_sendmsg);
1140
1141/*
1142 *	Handle reading urgent data. BSD has very simple semantics for
1143 *	this, no blocking and very strange errors 8)
1144 */
1145
1146static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1147{
1148	struct tcp_sock *tp = tcp_sk(sk);
1149
1150	/* No URG data to read. */
1151	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1152	    tp->urg_data == TCP_URG_READ)
1153		return -EINVAL;	/* Yes this is right ! */
1154
1155	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1156		return -ENOTCONN;
1157
1158	if (tp->urg_data & TCP_URG_VALID) {
1159		int err = 0;
1160		char c = tp->urg_data;
1161
1162		if (!(flags & MSG_PEEK))
1163			tp->urg_data = TCP_URG_READ;
1164
1165		/* Read urgent data. */
1166		msg->msg_flags |= MSG_OOB;
1167
1168		if (len > 0) {
1169			if (!(flags & MSG_TRUNC))
1170				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1171			len = 1;
1172		} else
1173			msg->msg_flags |= MSG_TRUNC;
1174
1175		return err ? -EFAULT : len;
1176	}
1177
1178	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1179		return 0;
1180
1181	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1182	 * the available implementations agree in this case:
1183	 * this call should never block, independent of the
1184	 * blocking state of the socket.
1185	 * Mike <pall@rz.uni-karlsruhe.de>
1186	 */
1187	return -EAGAIN;
1188}
1189
1190/* Clean up the receive buffer for full frames taken by the user,
1191 * then send an ACK if necessary.  COPIED is the number of bytes
1192 * tcp_recvmsg has given to the user so far, it speeds up the
1193 * calculation of whether or not we must ACK for the sake of
1194 * a window update.
1195 */
1196void tcp_cleanup_rbuf(struct sock *sk, int copied)
1197{
1198	struct tcp_sock *tp = tcp_sk(sk);
1199	int time_to_ack = 0;
1200
1201	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1202
1203	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1204	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1205	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1206
1207	if (inet_csk_ack_scheduled(sk)) {
1208		const struct inet_connection_sock *icsk = inet_csk(sk);
1209		   /* Delayed ACKs frequently hit locked sockets during bulk
1210		    * receive. */
1211		if (icsk->icsk_ack.blocked ||
1212		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1213		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1214		    /*
1215		     * If this read emptied read buffer, we send ACK, if
1216		     * connection is not bidirectional, user drained
1217		     * receive buffer and there was a small segment
1218		     * in queue.
1219		     */
1220		    (copied > 0 &&
1221		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1222		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1223		       !icsk->icsk_ack.pingpong)) &&
1224		      !atomic_read(&sk->sk_rmem_alloc)))
1225			time_to_ack = 1;
1226	}
1227
1228	/* We send an ACK if we can now advertise a non-zero window
1229	 * which has been raised "significantly".
1230	 *
1231	 * Even if window raised up to infinity, do not send window open ACK
1232	 * in states, where we will not receive more. It is useless.
1233	 */
1234	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1235		__u32 rcv_window_now = tcp_receive_window(tp);
1236
1237		/* Optimize, __tcp_select_window() is not cheap. */
1238		if (2*rcv_window_now <= tp->window_clamp) {
1239			__u32 new_window = __tcp_select_window(sk);
1240
1241			/* Send ACK now, if this read freed lots of space
1242			 * in our buffer. Certainly, new_window is new window.
1243			 * We can advertise it now, if it is not less than current one.
1244			 * "Lots" means "at least twice" here.
1245			 */
1246			if (new_window && new_window >= 2 * rcv_window_now)
1247				time_to_ack = 1;
1248		}
1249	}
1250	if (time_to_ack)
1251		tcp_send_ack(sk);
1252}
1253
1254static void tcp_prequeue_process(struct sock *sk)
1255{
1256	struct sk_buff *skb;
1257	struct tcp_sock *tp = tcp_sk(sk);
1258
1259	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1260
1261	/* RX process wants to run with disabled BHs, though it is not
1262	 * necessary */
1263	local_bh_disable();
1264	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1265		sk_backlog_rcv(sk, skb);
1266	local_bh_enable();
1267
1268	/* Clear memory counter. */
1269	tp->ucopy.memory = 0;
1270}
1271
1272#ifdef CONFIG_NET_DMA
1273static void tcp_service_net_dma(struct sock *sk, bool wait)
1274{
1275	dma_cookie_t done, used;
1276	dma_cookie_t last_issued;
1277	struct tcp_sock *tp = tcp_sk(sk);
1278
1279	if (!tp->ucopy.dma_chan)
1280		return;
1281
1282	last_issued = tp->ucopy.dma_cookie;
1283	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1284
1285	do {
1286		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1287					      last_issued, &done,
1288					      &used) == DMA_SUCCESS) {
1289			/* Safe to free early-copied skbs now */
1290			__skb_queue_purge(&sk->sk_async_wait_queue);
1291			break;
1292		} else {
1293			struct sk_buff *skb;
1294			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1295			       (dma_async_is_complete(skb->dma_cookie, done,
1296						      used) == DMA_SUCCESS)) {
1297				__skb_dequeue(&sk->sk_async_wait_queue);
1298				kfree_skb(skb);
1299			}
1300		}
1301	} while (wait);
1302}
1303#endif
1304
1305static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1306{
1307	struct sk_buff *skb;
1308	u32 offset;
1309
1310	skb_queue_walk(&sk->sk_receive_queue, skb) {
1311		offset = seq - TCP_SKB_CB(skb)->seq;
1312		if (tcp_hdr(skb)->syn)
1313			offset--;
1314		if (offset < skb->len || tcp_hdr(skb)->fin) {
1315			*off = offset;
1316			return skb;
1317		}
1318	}
1319	return NULL;
1320}
1321
1322/*
1323 * This routine provides an alternative to tcp_recvmsg() for routines
1324 * that would like to handle copying from skbuffs directly in 'sendfile'
1325 * fashion.
1326 * Note:
1327 *	- It is assumed that the socket was locked by the caller.
1328 *	- The routine does not block.
1329 *	- At present, there is no support for reading OOB data
1330 *	  or for 'peeking' the socket using this routine
1331 *	  (although both would be easy to implement).
1332 */
1333int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1334		  sk_read_actor_t recv_actor)
1335{
1336	struct sk_buff *skb;
1337	struct tcp_sock *tp = tcp_sk(sk);
1338	u32 seq = tp->copied_seq;
1339	u32 offset;
1340	int copied = 0;
1341
1342	if (sk->sk_state == TCP_LISTEN)
1343		return -ENOTCONN;
1344	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1345		if (offset < skb->len) {
1346			int used;
1347			size_t len;
1348
1349			len = skb->len - offset;
1350			/* Stop reading if we hit a patch of urgent data */
1351			if (tp->urg_data) {
1352				u32 urg_offset = tp->urg_seq - seq;
1353				if (urg_offset < len)
1354					len = urg_offset;
1355				if (!len)
1356					break;
1357			}
1358			used = recv_actor(desc, skb, offset, len);
1359			if (used < 0) {
1360				if (!copied)
1361					copied = used;
1362				break;
1363			} else if (used <= len) {
1364				seq += used;
1365				copied += used;
1366				offset += used;
1367			}
1368			/*
1369			 * If recv_actor drops the lock (e.g. TCP splice
1370			 * receive) the skb pointer might be invalid when
1371			 * getting here: tcp_collapse might have deleted it
1372			 * while aggregating skbs from the socket queue.
1373			 */
1374			skb = tcp_recv_skb(sk, seq-1, &offset);
1375			if (!skb || (offset+1 != skb->len))
1376				break;
1377		}
1378		if (tcp_hdr(skb)->fin) {
1379			sk_eat_skb(sk, skb, 0);
1380			++seq;
1381			break;
1382		}
1383		sk_eat_skb(sk, skb, 0);
1384		if (!desc->count)
1385			break;
1386		tp->copied_seq = seq;
1387	}
1388	tp->copied_seq = seq;
1389
1390	tcp_rcv_space_adjust(sk);
1391
1392	/* Clean up data we have read: This will do ACK frames. */
1393	if (copied > 0)
1394		tcp_cleanup_rbuf(sk, copied);
1395	return copied;
1396}
1397EXPORT_SYMBOL(tcp_read_sock);
1398
1399/*
1400 *	This routine copies from a sock struct into the user buffer.
1401 *
1402 *	Technical note: in 2.3 we work on _locked_ socket, so that
1403 *	tricks with *seq access order and skb->users are not required.
1404 *	Probably, code can be easily improved even more.
1405 */
1406
1407int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1408		size_t len, int nonblock, int flags, int *addr_len)
1409{
1410	struct tcp_sock *tp = tcp_sk(sk);
1411	int copied = 0;
1412	u32 peek_seq;
1413	u32 *seq;
1414	unsigned long used;
1415	int err;
1416	int target;		/* Read at least this many bytes */
1417	long timeo;
1418	struct task_struct *user_recv = NULL;
1419	int copied_early = 0;
1420	struct sk_buff *skb;
1421	u32 urg_hole = 0;
1422
1423	lock_sock(sk);
1424
1425	err = -ENOTCONN;
1426	if (sk->sk_state == TCP_LISTEN)
1427		goto out;
1428
1429	timeo = sock_rcvtimeo(sk, nonblock);
1430
1431	/* Urgent data needs to be handled specially. */
1432	if (flags & MSG_OOB)
1433		goto recv_urg;
1434
1435	seq = &tp->copied_seq;
1436	if (flags & MSG_PEEK) {
1437		peek_seq = tp->copied_seq;
1438		seq = &peek_seq;
1439	}
1440
1441	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1442
1443#ifdef CONFIG_NET_DMA
1444	tp->ucopy.dma_chan = NULL;
1445	preempt_disable();
1446	skb = skb_peek_tail(&sk->sk_receive_queue);
1447	{
1448		int available = 0;
1449
1450		if (skb)
1451			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1452		if ((available < target) &&
1453		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1454		    !sysctl_tcp_low_latency &&
1455		    net_dma_find_channel()) {
1456			preempt_enable_no_resched();
1457			tp->ucopy.pinned_list =
1458					dma_pin_iovec_pages(msg->msg_iov, len);
1459		} else {
1460			preempt_enable_no_resched();
1461		}
1462	}
1463#endif
1464
1465	do {
1466		u32 offset;
1467
1468		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1469		if (tp->urg_data && tp->urg_seq == *seq) {
1470			if (copied)
1471				break;
1472			if (signal_pending(current)) {
1473				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1474				break;
1475			}
1476		}
1477
1478		/* Next get a buffer. */
1479
1480		skb_queue_walk(&sk->sk_receive_queue, skb) {
1481			/* Now that we have two receive queues this
1482			 * shouldn't happen.
1483			 */
1484			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1485				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1486				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1487				 flags))
1488				break;
1489
1490			offset = *seq - TCP_SKB_CB(skb)->seq;
1491			if (tcp_hdr(skb)->syn)
1492				offset--;
1493			if (offset < skb->len)
1494				goto found_ok_skb;
1495			if (tcp_hdr(skb)->fin)
1496				goto found_fin_ok;
1497			WARN(!(flags & MSG_PEEK),
1498			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1499			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1500		}
1501
1502		/* Well, if we have backlog, try to process it now yet. */
1503
1504		if (copied >= target && !sk->sk_backlog.tail)
1505			break;
1506
1507		if (copied) {
1508			if (sk->sk_err ||
1509			    sk->sk_state == TCP_CLOSE ||
1510			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1511			    !timeo ||
1512			    signal_pending(current))
1513				break;
1514		} else {
1515			if (sock_flag(sk, SOCK_DONE))
1516				break;
1517
1518			if (sk->sk_err) {
1519				copied = sock_error(sk);
1520				break;
1521			}
1522
1523			if (sk->sk_shutdown & RCV_SHUTDOWN)
1524				break;
1525
1526			if (sk->sk_state == TCP_CLOSE) {
1527				if (!sock_flag(sk, SOCK_DONE)) {
1528					/* This occurs when user tries to read
1529					 * from never connected socket.
1530					 */
1531					copied = -ENOTCONN;
1532					break;
1533				}
1534				break;
1535			}
1536
1537			if (!timeo) {
1538				copied = -EAGAIN;
1539				break;
1540			}
1541
1542			if (signal_pending(current)) {
1543				copied = sock_intr_errno(timeo);
1544				break;
1545			}
1546		}
1547
1548		tcp_cleanup_rbuf(sk, copied);
1549
1550		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1551			/* Install new reader */
1552			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1553				user_recv = current;
1554				tp->ucopy.task = user_recv;
1555				tp->ucopy.iov = msg->msg_iov;
1556			}
1557
1558			tp->ucopy.len = len;
1559
1560			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1561				!(flags & (MSG_PEEK | MSG_TRUNC)));
1562
1563			/* Ugly... If prequeue is not empty, we have to
1564			 * process it before releasing socket, otherwise
1565			 * order will be broken at second iteration.
1566			 * More elegant solution is required!!!
1567			 *
1568			 * Look: we have the following (pseudo)queues:
1569			 *
1570			 * 1. packets in flight
1571			 * 2. backlog
1572			 * 3. prequeue
1573			 * 4. receive_queue
1574			 *
1575			 * Each queue can be processed only if the next ones
1576			 * are empty. At this point we have empty receive_queue.
1577			 * But prequeue _can_ be not empty after 2nd iteration,
1578			 * when we jumped to start of loop because backlog
1579			 * processing added something to receive_queue.
1580			 * We cannot release_sock(), because backlog contains
1581			 * packets arrived _after_ prequeued ones.
1582			 *
1583			 * Shortly, algorithm is clear --- to process all
1584			 * the queues in order. We could make it more directly,
1585			 * requeueing packets from backlog to prequeue, if
1586			 * is not empty. It is more elegant, but eats cycles,
1587			 * unfortunately.
1588			 */
1589			if (!skb_queue_empty(&tp->ucopy.prequeue))
1590				goto do_prequeue;
1591
1592			/* __ Set realtime policy in scheduler __ */
1593		}
1594
1595#ifdef CONFIG_NET_DMA
1596		if (tp->ucopy.dma_chan)
1597			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1598#endif
1599		if (copied >= target) {
1600			/* Do not sleep, just process backlog. */
1601			release_sock(sk);
1602			lock_sock(sk);
1603		} else
1604			sk_wait_data(sk, &timeo);
1605
1606#ifdef CONFIG_NET_DMA
1607		tcp_service_net_dma(sk, false);  /* Don't block */
1608		tp->ucopy.wakeup = 0;
1609#endif
1610
1611		if (user_recv) {
1612			int chunk;
1613
1614			/* __ Restore normal policy in scheduler __ */
1615
1616			if ((chunk = len - tp->ucopy.len) != 0) {
1617				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1618				len -= chunk;
1619				copied += chunk;
1620			}
1621
1622			if (tp->rcv_nxt == tp->copied_seq &&
1623			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1624do_prequeue:
1625				tcp_prequeue_process(sk);
1626
1627				if ((chunk = len - tp->ucopy.len) != 0) {
1628					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1629					len -= chunk;
1630					copied += chunk;
1631				}
1632			}
1633		}
1634		if ((flags & MSG_PEEK) &&
1635		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1636			if (net_ratelimit())
1637				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1638				       current->comm, task_pid_nr(current));
1639			peek_seq = tp->copied_seq;
1640		}
1641		continue;
1642
1643	found_ok_skb:
1644		/* Ok so how much can we use? */
1645		used = skb->len - offset;
1646		if (len < used)
1647			used = len;
1648
1649		/* Do we have urgent data here? */
1650		if (tp->urg_data) {
1651			u32 urg_offset = tp->urg_seq - *seq;
1652			if (urg_offset < used) {
1653				if (!urg_offset) {
1654					if (!sock_flag(sk, SOCK_URGINLINE)) {
1655						++*seq;
1656						urg_hole++;
1657						offset++;
1658						used--;
1659						if (!used)
1660							goto skip_copy;
1661					}
1662				} else
1663					used = urg_offset;
1664			}
1665		}
1666
1667		if (!(flags & MSG_TRUNC)) {
1668#ifdef CONFIG_NET_DMA
1669			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1670				tp->ucopy.dma_chan = net_dma_find_channel();
1671
1672			if (tp->ucopy.dma_chan) {
1673				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1674					tp->ucopy.dma_chan, skb, offset,
1675					msg->msg_iov, used,
1676					tp->ucopy.pinned_list);
1677
1678				if (tp->ucopy.dma_cookie < 0) {
1679
1680					pr_alert("%s: dma_cookie < 0\n",
1681						 __func__);
1682
1683					/* Exception. Bailout! */
1684					if (!copied)
1685						copied = -EFAULT;
1686					break;
1687				}
1688
1689				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1690
1691				if ((offset + used) == skb->len)
1692					copied_early = 1;
1693
1694			} else
1695#endif
1696			{
1697				err = skb_copy_datagram_iovec(skb, offset,
1698						msg->msg_iov, used);
1699				if (err) {
1700					/* Exception. Bailout! */
1701					if (!copied)
1702						copied = -EFAULT;
1703					break;
1704				}
1705			}
1706		}
1707
1708		*seq += used;
1709		copied += used;
1710		len -= used;
1711
1712		tcp_rcv_space_adjust(sk);
1713
1714skip_copy:
1715		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1716			tp->urg_data = 0;
1717			tcp_fast_path_check(sk);
1718		}
1719		if (used + offset < skb->len)
1720			continue;
1721
1722		if (tcp_hdr(skb)->fin)
1723			goto found_fin_ok;
1724		if (!(flags & MSG_PEEK)) {
1725			sk_eat_skb(sk, skb, copied_early);
1726			copied_early = 0;
1727		}
1728		continue;
1729
1730	found_fin_ok:
1731		/* Process the FIN. */
1732		++*seq;
1733		if (!(flags & MSG_PEEK)) {
1734			sk_eat_skb(sk, skb, copied_early);
1735			copied_early = 0;
1736		}
1737		break;
1738	} while (len > 0);
1739
1740	if (user_recv) {
1741		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1742			int chunk;
1743
1744			tp->ucopy.len = copied > 0 ? len : 0;
1745
1746			tcp_prequeue_process(sk);
1747
1748			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1749				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1750				len -= chunk;
1751				copied += chunk;
1752			}
1753		}
1754
1755		tp->ucopy.task = NULL;
1756		tp->ucopy.len = 0;
1757	}
1758
1759#ifdef CONFIG_NET_DMA
1760	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1761	tp->ucopy.dma_chan = NULL;
1762
1763	if (tp->ucopy.pinned_list) {
1764		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1765		tp->ucopy.pinned_list = NULL;
1766	}
1767#endif
1768
1769	/* According to UNIX98, msg_name/msg_namelen are ignored
1770	 * on connected socket. I was just happy when found this 8) --ANK
1771	 */
1772
1773	/* Clean up data we have read: This will do ACK frames. */
1774	tcp_cleanup_rbuf(sk, copied);
1775
1776	release_sock(sk);
1777	return copied;
1778
1779out:
1780	release_sock(sk);
1781	return err;
1782
1783recv_urg:
1784	err = tcp_recv_urg(sk, msg, len, flags);
1785	goto out;
1786}
1787EXPORT_SYMBOL(tcp_recvmsg);
1788
1789void tcp_set_state(struct sock *sk, int state)
1790{
1791	int oldstate = sk->sk_state;
1792
1793	switch (state) {
1794	case TCP_ESTABLISHED:
1795		if (oldstate != TCP_ESTABLISHED)
1796			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1797		break;
1798
1799	case TCP_CLOSE:
1800		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1801			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1802
1803		sk->sk_prot->unhash(sk);
1804		if (inet_csk(sk)->icsk_bind_hash &&
1805		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1806			inet_put_port(sk);
1807		/* fall through */
1808	default:
1809		if (oldstate == TCP_ESTABLISHED)
1810			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1811	}
1812
1813	/* Change state AFTER socket is unhashed to avoid closed
1814	 * socket sitting in hash tables.
1815	 */
1816	sk->sk_state = state;
1817
1818#ifdef STATE_TRACE
1819	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1820#endif
1821}
1822EXPORT_SYMBOL_GPL(tcp_set_state);
1823
1824/*
1825 *	State processing on a close. This implements the state shift for
1826 *	sending our FIN frame. Note that we only send a FIN for some
1827 *	states. A shutdown() may have already sent the FIN, or we may be
1828 *	closed.
1829 */
1830
1831static const unsigned char new_state[16] = {
1832  /* current state:        new state:      action:	*/
1833  /* (Invalid)		*/ TCP_CLOSE,
1834  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1835  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1836  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1837  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1838  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1839  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1840  /* TCP_CLOSE		*/ TCP_CLOSE,
1841  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1842  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1843  /* TCP_LISTEN		*/ TCP_CLOSE,
1844  /* TCP_CLOSING	*/ TCP_CLOSING,
1845};
1846
1847static int tcp_close_state(struct sock *sk)
1848{
1849	int next = (int)new_state[sk->sk_state];
1850	int ns = next & TCP_STATE_MASK;
1851
1852	tcp_set_state(sk, ns);
1853
1854	return next & TCP_ACTION_FIN;
1855}
1856
1857/*
1858 *	Shutdown the sending side of a connection. Much like close except
1859 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1860 */
1861
1862void tcp_shutdown(struct sock *sk, int how)
1863{
1864	/*	We need to grab some memory, and put together a FIN,
1865	 *	and then put it into the queue to be sent.
1866	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1867	 */
1868	if (!(how & SEND_SHUTDOWN))
1869		return;
1870
1871	/* If we've already sent a FIN, or it's a closed state, skip this. */
1872	if ((1 << sk->sk_state) &
1873	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1874	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1875		/* Clear out any half completed packets.  FIN if needed. */
1876		if (tcp_close_state(sk))
1877			tcp_send_fin(sk);
1878	}
1879}
1880EXPORT_SYMBOL(tcp_shutdown);
1881
1882bool tcp_check_oom(struct sock *sk, int shift)
1883{
1884	bool too_many_orphans, out_of_socket_memory;
1885
1886	too_many_orphans = tcp_too_many_orphans(sk, shift);
1887	out_of_socket_memory = tcp_out_of_memory(sk);
1888
1889	if (too_many_orphans && net_ratelimit())
1890		pr_info("too many orphaned sockets\n");
1891	if (out_of_socket_memory && net_ratelimit())
1892		pr_info("out of memory -- consider tuning tcp_mem\n");
1893	return too_many_orphans || out_of_socket_memory;
1894}
1895
1896void tcp_close(struct sock *sk, long timeout)
1897{
1898	struct sk_buff *skb;
1899	int data_was_unread = 0;
1900	int state;
1901
1902	lock_sock(sk);
1903	sk->sk_shutdown = SHUTDOWN_MASK;
1904
1905	if (sk->sk_state == TCP_LISTEN) {
1906		tcp_set_state(sk, TCP_CLOSE);
1907
1908		/* Special case. */
1909		inet_csk_listen_stop(sk);
1910
1911		goto adjudge_to_death;
1912	}
1913
1914	/*  We need to flush the recv. buffs.  We do this only on the
1915	 *  descriptor close, not protocol-sourced closes, because the
1916	 *  reader process may not have drained the data yet!
1917	 */
1918	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1919		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1920			  tcp_hdr(skb)->fin;
1921		data_was_unread += len;
1922		__kfree_skb(skb);
1923	}
1924
1925	sk_mem_reclaim(sk);
1926
1927	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1928	if (sk->sk_state == TCP_CLOSE)
1929		goto adjudge_to_death;
1930
1931	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1932	 * data was lost. To witness the awful effects of the old behavior of
1933	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1934	 * GET in an FTP client, suspend the process, wait for the client to
1935	 * advertise a zero window, then kill -9 the FTP client, wheee...
1936	 * Note: timeout is always zero in such a case.
1937	 */
1938	if (unlikely(tcp_sk(sk)->repair)) {
1939		sk->sk_prot->disconnect(sk, 0);
1940	} else if (data_was_unread) {
1941		/* Unread data was tossed, zap the connection. */
1942		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1943		tcp_set_state(sk, TCP_CLOSE);
1944		tcp_send_active_reset(sk, sk->sk_allocation);
1945	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1946		/* Check zero linger _after_ checking for unread data. */
1947		sk->sk_prot->disconnect(sk, 0);
1948		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1949	} else if (tcp_close_state(sk)) {
1950		/* We FIN if the application ate all the data before
1951		 * zapping the connection.
1952		 */
1953
1954		/* RED-PEN. Formally speaking, we have broken TCP state
1955		 * machine. State transitions:
1956		 *
1957		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1958		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1959		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1960		 *
1961		 * are legal only when FIN has been sent (i.e. in window),
1962		 * rather than queued out of window. Purists blame.
1963		 *
1964		 * F.e. "RFC state" is ESTABLISHED,
1965		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1966		 *
1967		 * The visible declinations are that sometimes
1968		 * we enter time-wait state, when it is not required really
1969		 * (harmless), do not send active resets, when they are
1970		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1971		 * they look as CLOSING or LAST_ACK for Linux)
1972		 * Probably, I missed some more holelets.
1973		 * 						--ANK
1974		 */
1975		tcp_send_fin(sk);
1976	}
1977
1978	sk_stream_wait_close(sk, timeout);
1979
1980adjudge_to_death:
1981	state = sk->sk_state;
1982	sock_hold(sk);
1983	sock_orphan(sk);
1984
1985	/* It is the last release_sock in its life. It will remove backlog. */
1986	release_sock(sk);
1987
1988
1989	/* Now socket is owned by kernel and we acquire BH lock
1990	   to finish close. No need to check for user refs.
1991	 */
1992	local_bh_disable();
1993	bh_lock_sock(sk);
1994	WARN_ON(sock_owned_by_user(sk));
1995
1996	percpu_counter_inc(sk->sk_prot->orphan_count);
1997
1998	/* Have we already been destroyed by a softirq or backlog? */
1999	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2000		goto out;
2001
2002	/*	This is a (useful) BSD violating of the RFC. There is a
2003	 *	problem with TCP as specified in that the other end could
2004	 *	keep a socket open forever with no application left this end.
2005	 *	We use a 3 minute timeout (about the same as BSD) then kill
2006	 *	our end. If they send after that then tough - BUT: long enough
2007	 *	that we won't make the old 4*rto = almost no time - whoops
2008	 *	reset mistake.
2009	 *
2010	 *	Nope, it was not mistake. It is really desired behaviour
2011	 *	f.e. on http servers, when such sockets are useless, but
2012	 *	consume significant resources. Let's do it with special
2013	 *	linger2	option.					--ANK
2014	 */
2015
2016	if (sk->sk_state == TCP_FIN_WAIT2) {
2017		struct tcp_sock *tp = tcp_sk(sk);
2018		if (tp->linger2 < 0) {
2019			tcp_set_state(sk, TCP_CLOSE);
2020			tcp_send_active_reset(sk, GFP_ATOMIC);
2021			NET_INC_STATS_BH(sock_net(sk),
2022					LINUX_MIB_TCPABORTONLINGER);
2023		} else {
2024			const int tmo = tcp_fin_time(sk);
2025
2026			if (tmo > TCP_TIMEWAIT_LEN) {
2027				inet_csk_reset_keepalive_timer(sk,
2028						tmo - TCP_TIMEWAIT_LEN);
2029			} else {
2030				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2031				goto out;
2032			}
2033		}
2034	}
2035	if (sk->sk_state != TCP_CLOSE) {
2036		sk_mem_reclaim(sk);
2037		if (tcp_check_oom(sk, 0)) {
2038			tcp_set_state(sk, TCP_CLOSE);
2039			tcp_send_active_reset(sk, GFP_ATOMIC);
2040			NET_INC_STATS_BH(sock_net(sk),
2041					LINUX_MIB_TCPABORTONMEMORY);
2042		}
2043	}
2044
2045	if (sk->sk_state == TCP_CLOSE)
2046		inet_csk_destroy_sock(sk);
2047	/* Otherwise, socket is reprieved until protocol close. */
2048
2049out:
2050	bh_unlock_sock(sk);
2051	local_bh_enable();
2052	sock_put(sk);
2053}
2054EXPORT_SYMBOL(tcp_close);
2055
2056/* These states need RST on ABORT according to RFC793 */
2057
2058static inline int tcp_need_reset(int state)
2059{
2060	return (1 << state) &
2061	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2062		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2063}
2064
2065int tcp_disconnect(struct sock *sk, int flags)
2066{
2067	struct inet_sock *inet = inet_sk(sk);
2068	struct inet_connection_sock *icsk = inet_csk(sk);
2069	struct tcp_sock *tp = tcp_sk(sk);
2070	int err = 0;
2071	int old_state = sk->sk_state;
2072
2073	if (old_state != TCP_CLOSE)
2074		tcp_set_state(sk, TCP_CLOSE);
2075
2076	/* ABORT function of RFC793 */
2077	if (old_state == TCP_LISTEN) {
2078		inet_csk_listen_stop(sk);
2079	} else if (unlikely(tp->repair)) {
2080		sk->sk_err = ECONNABORTED;
2081	} else if (tcp_need_reset(old_state) ||
2082		   (tp->snd_nxt != tp->write_seq &&
2083		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2084		/* The last check adjusts for discrepancy of Linux wrt. RFC
2085		 * states
2086		 */
2087		tcp_send_active_reset(sk, gfp_any());
2088		sk->sk_err = ECONNRESET;
2089	} else if (old_state == TCP_SYN_SENT)
2090		sk->sk_err = ECONNRESET;
2091
2092	tcp_clear_xmit_timers(sk);
2093	__skb_queue_purge(&sk->sk_receive_queue);
2094	tcp_write_queue_purge(sk);
2095	__skb_queue_purge(&tp->out_of_order_queue);
2096#ifdef CONFIG_NET_DMA
2097	__skb_queue_purge(&sk->sk_async_wait_queue);
2098#endif
2099
2100	inet->inet_dport = 0;
2101
2102	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2103		inet_reset_saddr(sk);
2104
2105	sk->sk_shutdown = 0;
2106	sock_reset_flag(sk, SOCK_DONE);
2107	tp->srtt = 0;
2108	if ((tp->write_seq += tp->max_window + 2) == 0)
2109		tp->write_seq = 1;
2110	icsk->icsk_backoff = 0;
2111	tp->snd_cwnd = 2;
2112	icsk->icsk_probes_out = 0;
2113	tp->packets_out = 0;
2114	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2115	tp->snd_cwnd_cnt = 0;
2116	tp->bytes_acked = 0;
2117	tp->window_clamp = 0;
2118	tcp_set_ca_state(sk, TCP_CA_Open);
2119	tcp_clear_retrans(tp);
2120	inet_csk_delack_init(sk);
2121	tcp_init_send_head(sk);
2122	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2123	__sk_dst_reset(sk);
2124
2125	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2126
2127	sk->sk_error_report(sk);
2128	return err;
2129}
2130EXPORT_SYMBOL(tcp_disconnect);
2131
2132static inline int tcp_can_repair_sock(struct sock *sk)
2133{
2134	return capable(CAP_NET_ADMIN) &&
2135		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2136}
2137
2138/*
2139 *	Socket option code for TCP.
2140 */
2141static int do_tcp_setsockopt(struct sock *sk, int level,
2142		int optname, char __user *optval, unsigned int optlen)
2143{
2144	struct tcp_sock *tp = tcp_sk(sk);
2145	struct inet_connection_sock *icsk = inet_csk(sk);
2146	int val;
2147	int err = 0;
2148
2149	/* These are data/string values, all the others are ints */
2150	switch (optname) {
2151	case TCP_CONGESTION: {
2152		char name[TCP_CA_NAME_MAX];
2153
2154		if (optlen < 1)
2155			return -EINVAL;
2156
2157		val = strncpy_from_user(name, optval,
2158					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2159		if (val < 0)
2160			return -EFAULT;
2161		name[val] = 0;
2162
2163		lock_sock(sk);
2164		err = tcp_set_congestion_control(sk, name);
2165		release_sock(sk);
2166		return err;
2167	}
2168	case TCP_COOKIE_TRANSACTIONS: {
2169		struct tcp_cookie_transactions ctd;
2170		struct tcp_cookie_values *cvp = NULL;
2171
2172		if (sizeof(ctd) > optlen)
2173			return -EINVAL;
2174		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2175			return -EFAULT;
2176
2177		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2178		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2179			return -EINVAL;
2180
2181		if (ctd.tcpct_cookie_desired == 0) {
2182			/* default to global value */
2183		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2184			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2185			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2186			return -EINVAL;
2187		}
2188
2189		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2190			/* Supercedes all other values */
2191			lock_sock(sk);
2192			if (tp->cookie_values != NULL) {
2193				kref_put(&tp->cookie_values->kref,
2194					 tcp_cookie_values_release);
2195				tp->cookie_values = NULL;
2196			}
2197			tp->rx_opt.cookie_in_always = 0; /* false */
2198			tp->rx_opt.cookie_out_never = 1; /* true */
2199			release_sock(sk);
2200			return err;
2201		}
2202
2203		/* Allocate ancillary memory before locking.
2204		 */
2205		if (ctd.tcpct_used > 0 ||
2206		    (tp->cookie_values == NULL &&
2207		     (sysctl_tcp_cookie_size > 0 ||
2208		      ctd.tcpct_cookie_desired > 0 ||
2209		      ctd.tcpct_s_data_desired > 0))) {
2210			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2211				      GFP_KERNEL);
2212			if (cvp == NULL)
2213				return -ENOMEM;
2214
2215			kref_init(&cvp->kref);
2216		}
2217		lock_sock(sk);
2218		tp->rx_opt.cookie_in_always =
2219			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2220		tp->rx_opt.cookie_out_never = 0; /* false */
2221
2222		if (tp->cookie_values != NULL) {
2223			if (cvp != NULL) {
2224				/* Changed values are recorded by a changed
2225				 * pointer, ensuring the cookie will differ,
2226				 * without separately hashing each value later.
2227				 */
2228				kref_put(&tp->cookie_values->kref,
2229					 tcp_cookie_values_release);
2230			} else {
2231				cvp = tp->cookie_values;
2232			}
2233		}
2234
2235		if (cvp != NULL) {
2236			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2237
2238			if (ctd.tcpct_used > 0) {
2239				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2240				       ctd.tcpct_used);
2241				cvp->s_data_desired = ctd.tcpct_used;
2242				cvp->s_data_constant = 1; /* true */
2243			} else {
2244				/* No constant payload data. */
2245				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2246				cvp->s_data_constant = 0; /* false */
2247			}
2248
2249			tp->cookie_values = cvp;
2250		}
2251		release_sock(sk);
2252		return err;
2253	}
2254	default:
2255		/* fallthru */
2256		break;
2257	}
2258
2259	if (optlen < sizeof(int))
2260		return -EINVAL;
2261
2262	if (get_user(val, (int __user *)optval))
2263		return -EFAULT;
2264
2265	lock_sock(sk);
2266
2267	switch (optname) {
2268	case TCP_MAXSEG:
2269		/* Values greater than interface MTU won't take effect. However
2270		 * at the point when this call is done we typically don't yet
2271		 * know which interface is going to be used */
2272		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2273			err = -EINVAL;
2274			break;
2275		}
2276		tp->rx_opt.user_mss = val;
2277		break;
2278
2279	case TCP_NODELAY:
2280		if (val) {
2281			/* TCP_NODELAY is weaker than TCP_CORK, so that
2282			 * this option on corked socket is remembered, but
2283			 * it is not activated until cork is cleared.
2284			 *
2285			 * However, when TCP_NODELAY is set we make
2286			 * an explicit push, which overrides even TCP_CORK
2287			 * for currently queued segments.
2288			 */
2289			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2290			tcp_push_pending_frames(sk);
2291		} else {
2292			tp->nonagle &= ~TCP_NAGLE_OFF;
2293		}
2294		break;
2295
2296	case TCP_THIN_LINEAR_TIMEOUTS:
2297		if (val < 0 || val > 1)
2298			err = -EINVAL;
2299		else
2300			tp->thin_lto = val;
2301		break;
2302
2303	case TCP_THIN_DUPACK:
2304		if (val < 0 || val > 1)
2305			err = -EINVAL;
2306		else
2307			tp->thin_dupack = val;
2308		break;
2309
2310	case TCP_REPAIR:
2311		if (!tcp_can_repair_sock(sk))
2312			err = -EPERM;
2313		else if (val == 1) {
2314			tp->repair = 1;
2315			sk->sk_reuse = SK_FORCE_REUSE;
2316			tp->repair_queue = TCP_NO_QUEUE;
2317		} else if (val == 0) {
2318			tp->repair = 0;
2319			sk->sk_reuse = SK_NO_REUSE;
2320			tcp_send_window_probe(sk);
2321		} else
2322			err = -EINVAL;
2323
2324		break;
2325
2326	case TCP_REPAIR_QUEUE:
2327		if (!tp->repair)
2328			err = -EPERM;
2329		else if (val < TCP_QUEUES_NR)
2330			tp->repair_queue = val;
2331		else
2332			err = -EINVAL;
2333		break;
2334
2335	case TCP_QUEUE_SEQ:
2336		if (sk->sk_state != TCP_CLOSE)
2337			err = -EPERM;
2338		else if (tp->repair_queue == TCP_SEND_QUEUE)
2339			tp->write_seq = val;
2340		else if (tp->repair_queue == TCP_RECV_QUEUE)
2341			tp->rcv_nxt = val;
2342		else
2343			err = -EINVAL;
2344		break;
2345
2346	case TCP_CORK:
2347		/* When set indicates to always queue non-full frames.
2348		 * Later the user clears this option and we transmit
2349		 * any pending partial frames in the queue.  This is
2350		 * meant to be used alongside sendfile() to get properly
2351		 * filled frames when the user (for example) must write
2352		 * out headers with a write() call first and then use
2353		 * sendfile to send out the data parts.
2354		 *
2355		 * TCP_CORK can be set together with TCP_NODELAY and it is
2356		 * stronger than TCP_NODELAY.
2357		 */
2358		if (val) {
2359			tp->nonagle |= TCP_NAGLE_CORK;
2360		} else {
2361			tp->nonagle &= ~TCP_NAGLE_CORK;
2362			if (tp->nonagle&TCP_NAGLE_OFF)
2363				tp->nonagle |= TCP_NAGLE_PUSH;
2364			tcp_push_pending_frames(sk);
2365		}
2366		break;
2367
2368	case TCP_KEEPIDLE:
2369		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2370			err = -EINVAL;
2371		else {
2372			tp->keepalive_time = val * HZ;
2373			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2374			    !((1 << sk->sk_state) &
2375			      (TCPF_CLOSE | TCPF_LISTEN))) {
2376				u32 elapsed = keepalive_time_elapsed(tp);
2377				if (tp->keepalive_time > elapsed)
2378					elapsed = tp->keepalive_time - elapsed;
2379				else
2380					elapsed = 0;
2381				inet_csk_reset_keepalive_timer(sk, elapsed);
2382			}
2383		}
2384		break;
2385	case TCP_KEEPINTVL:
2386		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2387			err = -EINVAL;
2388		else
2389			tp->keepalive_intvl = val * HZ;
2390		break;
2391	case TCP_KEEPCNT:
2392		if (val < 1 || val > MAX_TCP_KEEPCNT)
2393			err = -EINVAL;
2394		else
2395			tp->keepalive_probes = val;
2396		break;
2397	case TCP_SYNCNT:
2398		if (val < 1 || val > MAX_TCP_SYNCNT)
2399			err = -EINVAL;
2400		else
2401			icsk->icsk_syn_retries = val;
2402		break;
2403
2404	case TCP_LINGER2:
2405		if (val < 0)
2406			tp->linger2 = -1;
2407		else if (val > sysctl_tcp_fin_timeout / HZ)
2408			tp->linger2 = 0;
2409		else
2410			tp->linger2 = val * HZ;
2411		break;
2412
2413	case TCP_DEFER_ACCEPT:
2414		/* Translate value in seconds to number of retransmits */
2415		icsk->icsk_accept_queue.rskq_defer_accept =
2416			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2417					TCP_RTO_MAX / HZ);
2418		break;
2419
2420	case TCP_WINDOW_CLAMP:
2421		if (!val) {
2422			if (sk->sk_state != TCP_CLOSE) {
2423				err = -EINVAL;
2424				break;
2425			}
2426			tp->window_clamp = 0;
2427		} else
2428			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2429						SOCK_MIN_RCVBUF / 2 : val;
2430		break;
2431
2432	case TCP_QUICKACK:
2433		if (!val) {
2434			icsk->icsk_ack.pingpong = 1;
2435		} else {
2436			icsk->icsk_ack.pingpong = 0;
2437			if ((1 << sk->sk_state) &
2438			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2439			    inet_csk_ack_scheduled(sk)) {
2440				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2441				tcp_cleanup_rbuf(sk, 1);
2442				if (!(val & 1))
2443					icsk->icsk_ack.pingpong = 1;
2444			}
2445		}
2446		break;
2447
2448#ifdef CONFIG_TCP_MD5SIG
2449	case TCP_MD5SIG:
2450		/* Read the IP->Key mappings from userspace */
2451		err = tp->af_specific->md5_parse(sk, optval, optlen);
2452		break;
2453#endif
2454	case TCP_USER_TIMEOUT:
2455		/* Cap the max timeout in ms TCP will retry/retrans
2456		 * before giving up and aborting (ETIMEDOUT) a connection.
2457		 */
2458		icsk->icsk_user_timeout = msecs_to_jiffies(val);
2459		break;
2460	default:
2461		err = -ENOPROTOOPT;
2462		break;
2463	}
2464
2465	release_sock(sk);
2466	return err;
2467}
2468
2469int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2470		   unsigned int optlen)
2471{
2472	const struct inet_connection_sock *icsk = inet_csk(sk);
2473
2474	if (level != SOL_TCP)
2475		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2476						     optval, optlen);
2477	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2478}
2479EXPORT_SYMBOL(tcp_setsockopt);
2480
2481#ifdef CONFIG_COMPAT
2482int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2483			  char __user *optval, unsigned int optlen)
2484{
2485	if (level != SOL_TCP)
2486		return inet_csk_compat_setsockopt(sk, level, optname,
2487						  optval, optlen);
2488	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2489}
2490EXPORT_SYMBOL(compat_tcp_setsockopt);
2491#endif
2492
2493/* Return information about state of tcp endpoint in API format. */
2494void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2495{
2496	const struct tcp_sock *tp = tcp_sk(sk);
2497	const struct inet_connection_sock *icsk = inet_csk(sk);
2498	u32 now = tcp_time_stamp;
2499
2500	memset(info, 0, sizeof(*info));
2501
2502	info->tcpi_state = sk->sk_state;
2503	info->tcpi_ca_state = icsk->icsk_ca_state;
2504	info->tcpi_retransmits = icsk->icsk_retransmits;
2505	info->tcpi_probes = icsk->icsk_probes_out;
2506	info->tcpi_backoff = icsk->icsk_backoff;
2507
2508	if (tp->rx_opt.tstamp_ok)
2509		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2510	if (tcp_is_sack(tp))
2511		info->tcpi_options |= TCPI_OPT_SACK;
2512	if (tp->rx_opt.wscale_ok) {
2513		info->tcpi_options |= TCPI_OPT_WSCALE;
2514		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2515		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2516	}
2517
2518	if (tp->ecn_flags & TCP_ECN_OK)
2519		info->tcpi_options |= TCPI_OPT_ECN;
2520	if (tp->ecn_flags & TCP_ECN_SEEN)
2521		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2522
2523	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2524	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2525	info->tcpi_snd_mss = tp->mss_cache;
2526	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2527
2528	if (sk->sk_state == TCP_LISTEN) {
2529		info->tcpi_unacked = sk->sk_ack_backlog;
2530		info->tcpi_sacked = sk->sk_max_ack_backlog;
2531	} else {
2532		info->tcpi_unacked = tp->packets_out;
2533		info->tcpi_sacked = tp->sacked_out;
2534	}
2535	info->tcpi_lost = tp->lost_out;
2536	info->tcpi_retrans = tp->retrans_out;
2537	info->tcpi_fackets = tp->fackets_out;
2538
2539	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2540	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2541	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2542
2543	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2544	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2545	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2546	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2547	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2548	info->tcpi_snd_cwnd = tp->snd_cwnd;
2549	info->tcpi_advmss = tp->advmss;
2550	info->tcpi_reordering = tp->reordering;
2551
2552	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2553	info->tcpi_rcv_space = tp->rcvq_space.space;
2554
2555	info->tcpi_total_retrans = tp->total_retrans;
2556}
2557EXPORT_SYMBOL_GPL(tcp_get_info);
2558
2559static int do_tcp_getsockopt(struct sock *sk, int level,
2560		int optname, char __user *optval, int __user *optlen)
2561{
2562	struct inet_connection_sock *icsk = inet_csk(sk);
2563	struct tcp_sock *tp = tcp_sk(sk);
2564	int val, len;
2565
2566	if (get_user(len, optlen))
2567		return -EFAULT;
2568
2569	len = min_t(unsigned int, len, sizeof(int));
2570
2571	if (len < 0)
2572		return -EINVAL;
2573
2574	switch (optname) {
2575	case TCP_MAXSEG:
2576		val = tp->mss_cache;
2577		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2578			val = tp->rx_opt.user_mss;
2579		break;
2580	case TCP_NODELAY:
2581		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2582		break;
2583	case TCP_CORK:
2584		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2585		break;
2586	case TCP_KEEPIDLE:
2587		val = keepalive_time_when(tp) / HZ;
2588		break;
2589	case TCP_KEEPINTVL:
2590		val = keepalive_intvl_when(tp) / HZ;
2591		break;
2592	case TCP_KEEPCNT:
2593		val = keepalive_probes(tp);
2594		break;
2595	case TCP_SYNCNT:
2596		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2597		break;
2598	case TCP_LINGER2:
2599		val = tp->linger2;
2600		if (val >= 0)
2601			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2602		break;
2603	case TCP_DEFER_ACCEPT:
2604		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2605				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2606		break;
2607	case TCP_WINDOW_CLAMP:
2608		val = tp->window_clamp;
2609		break;
2610	case TCP_INFO: {
2611		struct tcp_info info;
2612
2613		if (get_user(len, optlen))
2614			return -EFAULT;
2615
2616		tcp_get_info(sk, &info);
2617
2618		len = min_t(unsigned int, len, sizeof(info));
2619		if (put_user(len, optlen))
2620			return -EFAULT;
2621		if (copy_to_user(optval, &info, len))
2622			return -EFAULT;
2623		return 0;
2624	}
2625	case TCP_QUICKACK:
2626		val = !icsk->icsk_ack.pingpong;
2627		break;
2628
2629	case TCP_CONGESTION:
2630		if (get_user(len, optlen))
2631			return -EFAULT;
2632		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2633		if (put_user(len, optlen))
2634			return -EFAULT;
2635		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2636			return -EFAULT;
2637		return 0;
2638
2639	case TCP_COOKIE_TRANSACTIONS: {
2640		struct tcp_cookie_transactions ctd;
2641		struct tcp_cookie_values *cvp = tp->cookie_values;
2642
2643		if (get_user(len, optlen))
2644			return -EFAULT;
2645		if (len < sizeof(ctd))
2646			return -EINVAL;
2647
2648		memset(&ctd, 0, sizeof(ctd));
2649		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2650				   TCP_COOKIE_IN_ALWAYS : 0)
2651				| (tp->rx_opt.cookie_out_never ?
2652				   TCP_COOKIE_OUT_NEVER : 0);
2653
2654		if (cvp != NULL) {
2655			ctd.tcpct_flags |= (cvp->s_data_in ?
2656					    TCP_S_DATA_IN : 0)
2657					 | (cvp->s_data_out ?
2658					    TCP_S_DATA_OUT : 0);
2659
2660			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2661			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2662
2663			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2664			       cvp->cookie_pair_size);
2665			ctd.tcpct_used = cvp->cookie_pair_size;
2666		}
2667
2668		if (put_user(sizeof(ctd), optlen))
2669			return -EFAULT;
2670		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2671			return -EFAULT;
2672		return 0;
2673	}
2674	case TCP_THIN_LINEAR_TIMEOUTS:
2675		val = tp->thin_lto;
2676		break;
2677	case TCP_THIN_DUPACK:
2678		val = tp->thin_dupack;
2679		break;
2680
2681	case TCP_REPAIR:
2682		val = tp->repair;
2683		break;
2684
2685	case TCP_REPAIR_QUEUE:
2686		if (tp->repair)
2687			val = tp->repair_queue;
2688		else
2689			return -EINVAL;
2690		break;
2691
2692	case TCP_QUEUE_SEQ:
2693		if (tp->repair_queue == TCP_SEND_QUEUE)
2694			val = tp->write_seq;
2695		else if (tp->repair_queue == TCP_RECV_QUEUE)
2696			val = tp->rcv_nxt;
2697		else
2698			return -EINVAL;
2699		break;
2700
2701	case TCP_USER_TIMEOUT:
2702		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2703		break;
2704	default:
2705		return -ENOPROTOOPT;
2706	}
2707
2708	if (put_user(len, optlen))
2709		return -EFAULT;
2710	if (copy_to_user(optval, &val, len))
2711		return -EFAULT;
2712	return 0;
2713}
2714
2715int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2716		   int __user *optlen)
2717{
2718	struct inet_connection_sock *icsk = inet_csk(sk);
2719
2720	if (level != SOL_TCP)
2721		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2722						     optval, optlen);
2723	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2724}
2725EXPORT_SYMBOL(tcp_getsockopt);
2726
2727#ifdef CONFIG_COMPAT
2728int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2729			  char __user *optval, int __user *optlen)
2730{
2731	if (level != SOL_TCP)
2732		return inet_csk_compat_getsockopt(sk, level, optname,
2733						  optval, optlen);
2734	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2735}
2736EXPORT_SYMBOL(compat_tcp_getsockopt);
2737#endif
2738
2739struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2740	netdev_features_t features)
2741{
2742	struct sk_buff *segs = ERR_PTR(-EINVAL);
2743	struct tcphdr *th;
2744	unsigned int thlen;
2745	unsigned int seq;
2746	__be32 delta;
2747	unsigned int oldlen;
2748	unsigned int mss;
2749
2750	if (!pskb_may_pull(skb, sizeof(*th)))
2751		goto out;
2752
2753	th = tcp_hdr(skb);
2754	thlen = th->doff * 4;
2755	if (thlen < sizeof(*th))
2756		goto out;
2757
2758	if (!pskb_may_pull(skb, thlen))
2759		goto out;
2760
2761	oldlen = (u16)~skb->len;
2762	__skb_pull(skb, thlen);
2763
2764	mss = skb_shinfo(skb)->gso_size;
2765	if (unlikely(skb->len <= mss))
2766		goto out;
2767
2768	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2769		/* Packet is from an untrusted source, reset gso_segs. */
2770		int type = skb_shinfo(skb)->gso_type;
2771
2772		if (unlikely(type &
2773			     ~(SKB_GSO_TCPV4 |
2774			       SKB_GSO_DODGY |
2775			       SKB_GSO_TCP_ECN |
2776			       SKB_GSO_TCPV6 |
2777			       0) ||
2778			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2779			goto out;
2780
2781		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2782
2783		segs = NULL;
2784		goto out;
2785	}
2786
2787	segs = skb_segment(skb, features);
2788	if (IS_ERR(segs))
2789		goto out;
2790
2791	delta = htonl(oldlen + (thlen + mss));
2792
2793	skb = segs;
2794	th = tcp_hdr(skb);
2795	seq = ntohl(th->seq);
2796
2797	do {
2798		th->fin = th->psh = 0;
2799
2800		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2801				       (__force u32)delta));
2802		if (skb->ip_summed != CHECKSUM_PARTIAL)
2803			th->check =
2804			     csum_fold(csum_partial(skb_transport_header(skb),
2805						    thlen, skb->csum));
2806
2807		seq += mss;
2808		skb = skb->next;
2809		th = tcp_hdr(skb);
2810
2811		th->seq = htonl(seq);
2812		th->cwr = 0;
2813	} while (skb->next);
2814
2815	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2816		      skb->data_len);
2817	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2818				(__force u32)delta));
2819	if (skb->ip_summed != CHECKSUM_PARTIAL)
2820		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2821						   thlen, skb->csum));
2822
2823out:
2824	return segs;
2825}
2826EXPORT_SYMBOL(tcp_tso_segment);
2827
2828struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2829{
2830	struct sk_buff **pp = NULL;
2831	struct sk_buff *p;
2832	struct tcphdr *th;
2833	struct tcphdr *th2;
2834	unsigned int len;
2835	unsigned int thlen;
2836	__be32 flags;
2837	unsigned int mss = 1;
2838	unsigned int hlen;
2839	unsigned int off;
2840	int flush = 1;
2841	int i;
2842
2843	off = skb_gro_offset(skb);
2844	hlen = off + sizeof(*th);
2845	th = skb_gro_header_fast(skb, off);
2846	if (skb_gro_header_hard(skb, hlen)) {
2847		th = skb_gro_header_slow(skb, hlen, off);
2848		if (unlikely(!th))
2849			goto out;
2850	}
2851
2852	thlen = th->doff * 4;
2853	if (thlen < sizeof(*th))
2854		goto out;
2855
2856	hlen = off + thlen;
2857	if (skb_gro_header_hard(skb, hlen)) {
2858		th = skb_gro_header_slow(skb, hlen, off);
2859		if (unlikely(!th))
2860			goto out;
2861	}
2862
2863	skb_gro_pull(skb, thlen);
2864
2865	len = skb_gro_len(skb);
2866	flags = tcp_flag_word(th);
2867
2868	for (; (p = *head); head = &p->next) {
2869		if (!NAPI_GRO_CB(p)->same_flow)
2870			continue;
2871
2872		th2 = tcp_hdr(p);
2873
2874		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2875			NAPI_GRO_CB(p)->same_flow = 0;
2876			continue;
2877		}
2878
2879		goto found;
2880	}
2881
2882	goto out_check_final;
2883
2884found:
2885	flush = NAPI_GRO_CB(p)->flush;
2886	flush |= (__force int)(flags & TCP_FLAG_CWR);
2887	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2888		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2889	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2890	for (i = sizeof(*th); i < thlen; i += 4)
2891		flush |= *(u32 *)((u8 *)th + i) ^
2892			 *(u32 *)((u8 *)th2 + i);
2893
2894	mss = skb_shinfo(p)->gso_size;
2895
2896	flush |= (len - 1) >= mss;
2897	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2898
2899	if (flush || skb_gro_receive(head, skb)) {
2900		mss = 1;
2901		goto out_check_final;
2902	}
2903
2904	p = *head;
2905	th2 = tcp_hdr(p);
2906	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2907
2908out_check_final:
2909	flush = len < mss;
2910	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2911					TCP_FLAG_RST | TCP_FLAG_SYN |
2912					TCP_FLAG_FIN));
2913
2914	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2915		pp = head;
2916
2917out:
2918	NAPI_GRO_CB(skb)->flush |= flush;
2919
2920	return pp;
2921}
2922EXPORT_SYMBOL(tcp_gro_receive);
2923
2924int tcp_gro_complete(struct sk_buff *skb)
2925{
2926	struct tcphdr *th = tcp_hdr(skb);
2927
2928	skb->csum_start = skb_transport_header(skb) - skb->head;
2929	skb->csum_offset = offsetof(struct tcphdr, check);
2930	skb->ip_summed = CHECKSUM_PARTIAL;
2931
2932	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2933
2934	if (th->cwr)
2935		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2936
2937	return 0;
2938}
2939EXPORT_SYMBOL(tcp_gro_complete);
2940
2941#ifdef CONFIG_TCP_MD5SIG
2942static unsigned long tcp_md5sig_users;
2943static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
2944static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2945
2946static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
2947{
2948	int cpu;
2949
2950	for_each_possible_cpu(cpu) {
2951		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
2952
2953		if (p->md5_desc.tfm)
2954			crypto_free_hash(p->md5_desc.tfm);
2955	}
2956	free_percpu(pool);
2957}
2958
2959void tcp_free_md5sig_pool(void)
2960{
2961	struct tcp_md5sig_pool __percpu *pool = NULL;
2962
2963	spin_lock_bh(&tcp_md5sig_pool_lock);
2964	if (--tcp_md5sig_users == 0) {
2965		pool = tcp_md5sig_pool;
2966		tcp_md5sig_pool = NULL;
2967	}
2968	spin_unlock_bh(&tcp_md5sig_pool_lock);
2969	if (pool)
2970		__tcp_free_md5sig_pool(pool);
2971}
2972EXPORT_SYMBOL(tcp_free_md5sig_pool);
2973
2974static struct tcp_md5sig_pool __percpu *
2975__tcp_alloc_md5sig_pool(struct sock *sk)
2976{
2977	int cpu;
2978	struct tcp_md5sig_pool __percpu *pool;
2979
2980	pool = alloc_percpu(struct tcp_md5sig_pool);
2981	if (!pool)
2982		return NULL;
2983
2984	for_each_possible_cpu(cpu) {
2985		struct crypto_hash *hash;
2986
2987		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2988		if (!hash || IS_ERR(hash))
2989			goto out_free;
2990
2991		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
2992	}
2993	return pool;
2994out_free:
2995	__tcp_free_md5sig_pool(pool);
2996	return NULL;
2997}
2998
2999struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3000{
3001	struct tcp_md5sig_pool __percpu *pool;
3002	int alloc = 0;
3003
3004retry:
3005	spin_lock_bh(&tcp_md5sig_pool_lock);
3006	pool = tcp_md5sig_pool;
3007	if (tcp_md5sig_users++ == 0) {
3008		alloc = 1;
3009		spin_unlock_bh(&tcp_md5sig_pool_lock);
3010	} else if (!pool) {
3011		tcp_md5sig_users--;
3012		spin_unlock_bh(&tcp_md5sig_pool_lock);
3013		cpu_relax();
3014		goto retry;
3015	} else
3016		spin_unlock_bh(&tcp_md5sig_pool_lock);
3017
3018	if (alloc) {
3019		/* we cannot hold spinlock here because this may sleep. */
3020		struct tcp_md5sig_pool __percpu *p;
3021
3022		p = __tcp_alloc_md5sig_pool(sk);
3023		spin_lock_bh(&tcp_md5sig_pool_lock);
3024		if (!p) {
3025			tcp_md5sig_users--;
3026			spin_unlock_bh(&tcp_md5sig_pool_lock);
3027			return NULL;
3028		}
3029		pool = tcp_md5sig_pool;
3030		if (pool) {
3031			/* oops, it has already been assigned. */
3032			spin_unlock_bh(&tcp_md5sig_pool_lock);
3033			__tcp_free_md5sig_pool(p);
3034		} else {
3035			tcp_md5sig_pool = pool = p;
3036			spin_unlock_bh(&tcp_md5sig_pool_lock);
3037		}
3038	}
3039	return pool;
3040}
3041EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3042
3043
3044/**
3045 *	tcp_get_md5sig_pool - get md5sig_pool for this user
3046 *
3047 *	We use percpu structure, so if we succeed, we exit with preemption
3048 *	and BH disabled, to make sure another thread or softirq handling
3049 *	wont try to get same context.
3050 */
3051struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3052{
3053	struct tcp_md5sig_pool __percpu *p;
3054
3055	local_bh_disable();
3056
3057	spin_lock(&tcp_md5sig_pool_lock);
3058	p = tcp_md5sig_pool;
3059	if (p)
3060		tcp_md5sig_users++;
3061	spin_unlock(&tcp_md5sig_pool_lock);
3062
3063	if (p)
3064		return this_cpu_ptr(p);
3065
3066	local_bh_enable();
3067	return NULL;
3068}
3069EXPORT_SYMBOL(tcp_get_md5sig_pool);
3070
3071void tcp_put_md5sig_pool(void)
3072{
3073	local_bh_enable();
3074	tcp_free_md5sig_pool();
3075}
3076EXPORT_SYMBOL(tcp_put_md5sig_pool);
3077
3078int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3079			const struct tcphdr *th)
3080{
3081	struct scatterlist sg;
3082	struct tcphdr hdr;
3083	int err;
3084
3085	/* We are not allowed to change tcphdr, make a local copy */
3086	memcpy(&hdr, th, sizeof(hdr));
3087	hdr.check = 0;
3088
3089	/* options aren't included in the hash */
3090	sg_init_one(&sg, &hdr, sizeof(hdr));
3091	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3092	return err;
3093}
3094EXPORT_SYMBOL(tcp_md5_hash_header);
3095
3096int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3097			  const struct sk_buff *skb, unsigned int header_len)
3098{
3099	struct scatterlist sg;
3100	const struct tcphdr *tp = tcp_hdr(skb);
3101	struct hash_desc *desc = &hp->md5_desc;
3102	unsigned int i;
3103	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3104					   skb_headlen(skb) - header_len : 0;
3105	const struct skb_shared_info *shi = skb_shinfo(skb);
3106	struct sk_buff *frag_iter;
3107
3108	sg_init_table(&sg, 1);
3109
3110	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3111	if (crypto_hash_update(desc, &sg, head_data_len))
3112		return 1;
3113
3114	for (i = 0; i < shi->nr_frags; ++i) {
3115		const struct skb_frag_struct *f = &shi->frags[i];
3116		struct page *page = skb_frag_page(f);
3117		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3118		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3119			return 1;
3120	}
3121
3122	skb_walk_frags(skb, frag_iter)
3123		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3124			return 1;
3125
3126	return 0;
3127}
3128EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3129
3130int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3131{
3132	struct scatterlist sg;
3133
3134	sg_init_one(&sg, key->key, key->keylen);
3135	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3136}
3137EXPORT_SYMBOL(tcp_md5_hash_key);
3138
3139#endif
3140
3141/**
3142 * Each Responder maintains up to two secret values concurrently for
3143 * efficient secret rollover.  Each secret value has 4 states:
3144 *
3145 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3146 *    Generates new Responder-Cookies, but not yet used for primary
3147 *    verification.  This is a short-term state, typically lasting only
3148 *    one round trip time (RTT).
3149 *
3150 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3151 *    Used both for generation and primary verification.
3152 *
3153 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3154 *    Used for verification, until the first failure that can be
3155 *    verified by the newer Generating secret.  At that time, this
3156 *    cookie's state is changed to Secondary, and the Generating
3157 *    cookie's state is changed to Primary.  This is a short-term state,
3158 *    typically lasting only one round trip time (RTT).
3159 *
3160 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3161 *    Used for secondary verification, after primary verification
3162 *    failures.  This state lasts no more than twice the Maximum Segment
3163 *    Lifetime (2MSL).  Then, the secret is discarded.
3164 */
3165struct tcp_cookie_secret {
3166	/* The secret is divided into two parts.  The digest part is the
3167	 * equivalent of previously hashing a secret and saving the state,
3168	 * and serves as an initialization vector (IV).  The message part
3169	 * serves as the trailing secret.
3170	 */
3171	u32				secrets[COOKIE_WORKSPACE_WORDS];
3172	unsigned long			expires;
3173};
3174
3175#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3176#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3177#define TCP_SECRET_LIFE (HZ * 600)
3178
3179static struct tcp_cookie_secret tcp_secret_one;
3180static struct tcp_cookie_secret tcp_secret_two;
3181
3182/* Essentially a circular list, without dynamic allocation. */
3183static struct tcp_cookie_secret *tcp_secret_generating;
3184static struct tcp_cookie_secret *tcp_secret_primary;
3185static struct tcp_cookie_secret *tcp_secret_retiring;
3186static struct tcp_cookie_secret *tcp_secret_secondary;
3187
3188static DEFINE_SPINLOCK(tcp_secret_locker);
3189
3190/* Select a pseudo-random word in the cookie workspace.
3191 */
3192static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3193{
3194	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3195}
3196
3197/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3198 * Called in softirq context.
3199 * Returns: 0 for success.
3200 */
3201int tcp_cookie_generator(u32 *bakery)
3202{
3203	unsigned long jiffy = jiffies;
3204
3205	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3206		spin_lock_bh(&tcp_secret_locker);
3207		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3208			/* refreshed by another */
3209			memcpy(bakery,
3210			       &tcp_secret_generating->secrets[0],
3211			       COOKIE_WORKSPACE_WORDS);
3212		} else {
3213			/* still needs refreshing */
3214			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3215
3216			/* The first time, paranoia assumes that the
3217			 * randomization function isn't as strong.  But,
3218			 * this secret initialization is delayed until
3219			 * the last possible moment (packet arrival).
3220			 * Although that time is observable, it is
3221			 * unpredictably variable.  Mash in the most
3222			 * volatile clock bits available, and expire the
3223			 * secret extra quickly.
3224			 */
3225			if (unlikely(tcp_secret_primary->expires ==
3226				     tcp_secret_secondary->expires)) {
3227				struct timespec tv;
3228
3229				getnstimeofday(&tv);
3230				bakery[COOKIE_DIGEST_WORDS+0] ^=
3231					(u32)tv.tv_nsec;
3232
3233				tcp_secret_secondary->expires = jiffy
3234					+ TCP_SECRET_1MSL
3235					+ (0x0f & tcp_cookie_work(bakery, 0));
3236			} else {
3237				tcp_secret_secondary->expires = jiffy
3238					+ TCP_SECRET_LIFE
3239					+ (0xff & tcp_cookie_work(bakery, 1));
3240				tcp_secret_primary->expires = jiffy
3241					+ TCP_SECRET_2MSL
3242					+ (0x1f & tcp_cookie_work(bakery, 2));
3243			}
3244			memcpy(&tcp_secret_secondary->secrets[0],
3245			       bakery, COOKIE_WORKSPACE_WORDS);
3246
3247			rcu_assign_pointer(tcp_secret_generating,
3248					   tcp_secret_secondary);
3249			rcu_assign_pointer(tcp_secret_retiring,
3250					   tcp_secret_primary);
3251			/*
3252			 * Neither call_rcu() nor synchronize_rcu() needed.
3253			 * Retiring data is not freed.  It is replaced after
3254			 * further (locked) pointer updates, and a quiet time
3255			 * (minimum 1MSL, maximum LIFE - 2MSL).
3256			 */
3257		}
3258		spin_unlock_bh(&tcp_secret_locker);
3259	} else {
3260		rcu_read_lock_bh();
3261		memcpy(bakery,
3262		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3263		       COOKIE_WORKSPACE_WORDS);
3264		rcu_read_unlock_bh();
3265	}
3266	return 0;
3267}
3268EXPORT_SYMBOL(tcp_cookie_generator);
3269
3270void tcp_done(struct sock *sk)
3271{
3272	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3273		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3274
3275	tcp_set_state(sk, TCP_CLOSE);
3276	tcp_clear_xmit_timers(sk);
3277
3278	sk->sk_shutdown = SHUTDOWN_MASK;
3279
3280	if (!sock_flag(sk, SOCK_DEAD))
3281		sk->sk_state_change(sk);
3282	else
3283		inet_csk_destroy_sock(sk);
3284}
3285EXPORT_SYMBOL_GPL(tcp_done);
3286
3287extern struct tcp_congestion_ops tcp_reno;
3288
3289static __initdata unsigned long thash_entries;
3290static int __init set_thash_entries(char *str)
3291{
3292	if (!str)
3293		return 0;
3294	thash_entries = simple_strtoul(str, &str, 0);
3295	return 1;
3296}
3297__setup("thash_entries=", set_thash_entries);
3298
3299void tcp_init_mem(struct net *net)
3300{
3301	unsigned long limit = nr_free_buffer_pages() / 8;
3302	limit = max(limit, 128UL);
3303	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3304	net->ipv4.sysctl_tcp_mem[1] = limit;
3305	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3306}
3307
3308void __init tcp_init(void)
3309{
3310	struct sk_buff *skb = NULL;
3311	unsigned long limit;
3312	int max_share, cnt;
3313	unsigned int i;
3314	unsigned long jiffy = jiffies;
3315
3316	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3317
3318	percpu_counter_init(&tcp_sockets_allocated, 0);
3319	percpu_counter_init(&tcp_orphan_count, 0);
3320	tcp_hashinfo.bind_bucket_cachep =
3321		kmem_cache_create("tcp_bind_bucket",
3322				  sizeof(struct inet_bind_bucket), 0,
3323				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3324
3325	/* Size and allocate the main established and bind bucket
3326	 * hash tables.
3327	 *
3328	 * The methodology is similar to that of the buffer cache.
3329	 */
3330	tcp_hashinfo.ehash =
3331		alloc_large_system_hash("TCP established",
3332					sizeof(struct inet_ehash_bucket),
3333					thash_entries,
3334					(totalram_pages >= 128 * 1024) ?
3335					13 : 15,
3336					0,
3337					NULL,
3338					&tcp_hashinfo.ehash_mask,
3339					thash_entries ? 0 : 512 * 1024);
3340	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3341		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3342		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3343	}
3344	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3345		panic("TCP: failed to alloc ehash_locks");
3346	tcp_hashinfo.bhash =
3347		alloc_large_system_hash("TCP bind",
3348					sizeof(struct inet_bind_hashbucket),
3349					tcp_hashinfo.ehash_mask + 1,
3350					(totalram_pages >= 128 * 1024) ?
3351					13 : 15,
3352					0,
3353					&tcp_hashinfo.bhash_size,
3354					NULL,
3355					64 * 1024);
3356	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3357	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3358		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3359		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3360	}
3361
3362
3363	cnt = tcp_hashinfo.ehash_mask + 1;
3364
3365	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3366	sysctl_tcp_max_orphans = cnt / 2;
3367	sysctl_max_syn_backlog = max(128, cnt / 256);
3368
3369	tcp_init_mem(&init_net);
3370	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3371	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3372	max_share = min(4UL*1024*1024, limit);
3373
3374	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3375	sysctl_tcp_wmem[1] = 16*1024;
3376	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3377
3378	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3379	sysctl_tcp_rmem[1] = 87380;
3380	sysctl_tcp_rmem[2] = max(87380, max_share);
3381
3382	pr_info("Hash tables configured (established %u bind %u)\n",
3383		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3384
3385	tcp_register_congestion_control(&tcp_reno);
3386
3387	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3388	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3389	tcp_secret_one.expires = jiffy; /* past due */
3390	tcp_secret_two.expires = jiffy; /* past due */
3391	tcp_secret_generating = &tcp_secret_one;
3392	tcp_secret_primary = &tcp_secret_one;
3393	tcp_secret_retiring = &tcp_secret_two;
3394	tcp_secret_secondary = &tcp_secret_two;
3395}
3396