tcp_input.c revision 31713c333ddbb66d694829082620b69b71c4b09a
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 *		Pedro Roque	:	Fast Retransmit/Recovery.
26 *					Two receive queues.
27 *					Retransmit queue handled by TCP.
28 *					Better retransmit timer handling.
29 *					New congestion avoidance.
30 *					Header prediction.
31 *					Variable renaming.
32 *
33 *		Eric		:	Fast Retransmit.
34 *		Randy Scott	:	MSS option defines.
35 *		Eric Schenk	:	Fixes to slow start algorithm.
36 *		Eric Schenk	:	Yet another double ACK bug.
37 *		Eric Schenk	:	Delayed ACK bug fixes.
38 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39 *		David S. Miller	:	Don't allow zero congestion window.
40 *		Eric Schenk	:	Fix retransmitter so that it sends
41 *					next packet on ack of previous packet.
42 *		Andi Kleen	:	Moved open_request checking here
43 *					and process RSTs for open_requests.
44 *		Andi Kleen	:	Better prune_queue, and other fixes.
45 *		Andrey Savochkin:	Fix RTT measurements in the presence of
46 *					timestamps.
47 *		Andrey Savochkin:	Check sequence numbers correctly when
48 *					removing SACKs due to in sequence incoming
49 *					data segments.
50 *		Andi Kleen:		Make sure we never ack data there is not
51 *					enough room for. Also make this condition
52 *					a fatal error if it might still happen.
53 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54 *					connections with MSS<min(MTU,ann. MSS)
55 *					work without delayed acks.
56 *		Andi Kleen:		Process packets with PSH set in the
57 *					fast path.
58 *		J Hadi Salim:		ECN support
59 *	 	Andrei Gurtov,
60 *		Pasi Sarolahti,
61 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62 *					engine. Lots of bugs are found.
63 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64 */
65
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
73#include <net/netdma.h>
74
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly;
89int sysctl_tcp_frto_response __read_mostly;
90int sysctl_tcp_nometrics_save __read_mostly;
91
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
94
95#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101#define FLAG_ECE		0x40 /* ECE in this ACK				*/
102#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105
106#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
109#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
110
111#define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
112#define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
113#define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
114
115#define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118
119/* Adapt the MSS value used to make delayed ack decision to the
120 * real world.
121 */
122static void tcp_measure_rcv_mss(struct sock *sk,
123				const struct sk_buff *skb)
124{
125	struct inet_connection_sock *icsk = inet_csk(sk);
126	const unsigned int lss = icsk->icsk_ack.last_seg_size;
127	unsigned int len;
128
129	icsk->icsk_ack.last_seg_size = 0;
130
131	/* skb->len may jitter because of SACKs, even if peer
132	 * sends good full-sized frames.
133	 */
134	len = skb_shinfo(skb)->gso_size ?: skb->len;
135	if (len >= icsk->icsk_ack.rcv_mss) {
136		icsk->icsk_ack.rcv_mss = len;
137	} else {
138		/* Otherwise, we make more careful check taking into account,
139		 * that SACKs block is variable.
140		 *
141		 * "len" is invariant segment length, including TCP header.
142		 */
143		len += skb->data - skb->h.raw;
144		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145		    /* If PSH is not set, packet should be
146		     * full sized, provided peer TCP is not badly broken.
147		     * This observation (if it is correct 8)) allows
148		     * to handle super-low mtu links fairly.
149		     */
150		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
152			/* Subtract also invariant (if peer is RFC compliant),
153			 * tcp header plus fixed timestamp option length.
154			 * Resulting "len" is MSS free of SACK jitter.
155			 */
156			len -= tcp_sk(sk)->tcp_header_len;
157			icsk->icsk_ack.last_seg_size = len;
158			if (len == lss) {
159				icsk->icsk_ack.rcv_mss = len;
160				return;
161			}
162		}
163		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
166	}
167}
168
169static void tcp_incr_quickack(struct sock *sk)
170{
171	struct inet_connection_sock *icsk = inet_csk(sk);
172	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173
174	if (quickacks==0)
175		quickacks=2;
176	if (quickacks > icsk->icsk_ack.quick)
177		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178}
179
180void tcp_enter_quickack_mode(struct sock *sk)
181{
182	struct inet_connection_sock *icsk = inet_csk(sk);
183	tcp_incr_quickack(sk);
184	icsk->icsk_ack.pingpong = 0;
185	icsk->icsk_ack.ato = TCP_ATO_MIN;
186}
187
188/* Send ACKs quickly, if "quick" count is not exhausted
189 * and the session is not interactive.
190 */
191
192static inline int tcp_in_quickack_mode(const struct sock *sk)
193{
194	const struct inet_connection_sock *icsk = inet_csk(sk);
195	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196}
197
198/* Buffer size and advertised window tuning.
199 *
200 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
201 */
202
203static void tcp_fixup_sndbuf(struct sock *sk)
204{
205	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
206		     sizeof(struct sk_buff);
207
208	if (sk->sk_sndbuf < 3 * sndmem)
209		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
210}
211
212/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
213 *
214 * All tcp_full_space() is split to two parts: "network" buffer, allocated
215 * forward and advertised in receiver window (tp->rcv_wnd) and
216 * "application buffer", required to isolate scheduling/application
217 * latencies from network.
218 * window_clamp is maximal advertised window. It can be less than
219 * tcp_full_space(), in this case tcp_full_space() - window_clamp
220 * is reserved for "application" buffer. The less window_clamp is
221 * the smoother our behaviour from viewpoint of network, but the lower
222 * throughput and the higher sensitivity of the connection to losses. 8)
223 *
224 * rcv_ssthresh is more strict window_clamp used at "slow start"
225 * phase to predict further behaviour of this connection.
226 * It is used for two goals:
227 * - to enforce header prediction at sender, even when application
228 *   requires some significant "application buffer". It is check #1.
229 * - to prevent pruning of receive queue because of misprediction
230 *   of receiver window. Check #2.
231 *
232 * The scheme does not work when sender sends good segments opening
233 * window and then starts to feed us spaghetti. But it should work
234 * in common situations. Otherwise, we have to rely on queue collapsing.
235 */
236
237/* Slow part of check#2. */
238static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
239			     const struct sk_buff *skb)
240{
241	/* Optimize this! */
242	int truesize = tcp_win_from_space(skb->truesize)/2;
243	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
244
245	while (tp->rcv_ssthresh <= window) {
246		if (truesize <= skb->len)
247			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
248
249		truesize >>= 1;
250		window >>= 1;
251	}
252	return 0;
253}
254
255static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
256			    struct sk_buff *skb)
257{
258	/* Check #1 */
259	if (tp->rcv_ssthresh < tp->window_clamp &&
260	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
261	    !tcp_memory_pressure) {
262		int incr;
263
264		/* Check #2. Increase window, if skb with such overhead
265		 * will fit to rcvbuf in future.
266		 */
267		if (tcp_win_from_space(skb->truesize) <= skb->len)
268			incr = 2*tp->advmss;
269		else
270			incr = __tcp_grow_window(sk, tp, skb);
271
272		if (incr) {
273			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
274			inet_csk(sk)->icsk_ack.quick |= 1;
275		}
276	}
277}
278
279/* 3. Tuning rcvbuf, when connection enters established state. */
280
281static void tcp_fixup_rcvbuf(struct sock *sk)
282{
283	struct tcp_sock *tp = tcp_sk(sk);
284	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
285
286	/* Try to select rcvbuf so that 4 mss-sized segments
287	 * will fit to window and corresponding skbs will fit to our rcvbuf.
288	 * (was 3; 4 is minimum to allow fast retransmit to work.)
289	 */
290	while (tcp_win_from_space(rcvmem) < tp->advmss)
291		rcvmem += 128;
292	if (sk->sk_rcvbuf < 4 * rcvmem)
293		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
294}
295
296/* 4. Try to fixup all. It is made immediately after connection enters
297 *    established state.
298 */
299static void tcp_init_buffer_space(struct sock *sk)
300{
301	struct tcp_sock *tp = tcp_sk(sk);
302	int maxwin;
303
304	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
305		tcp_fixup_rcvbuf(sk);
306	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
307		tcp_fixup_sndbuf(sk);
308
309	tp->rcvq_space.space = tp->rcv_wnd;
310
311	maxwin = tcp_full_space(sk);
312
313	if (tp->window_clamp >= maxwin) {
314		tp->window_clamp = maxwin;
315
316		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
317			tp->window_clamp = max(maxwin -
318					       (maxwin >> sysctl_tcp_app_win),
319					       4 * tp->advmss);
320	}
321
322	/* Force reservation of one segment. */
323	if (sysctl_tcp_app_win &&
324	    tp->window_clamp > 2 * tp->advmss &&
325	    tp->window_clamp + tp->advmss > maxwin)
326		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
327
328	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
329	tp->snd_cwnd_stamp = tcp_time_stamp;
330}
331
332/* 5. Recalculate window clamp after socket hit its memory bounds. */
333static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
334{
335	struct inet_connection_sock *icsk = inet_csk(sk);
336
337	icsk->icsk_ack.quick = 0;
338
339	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
340	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
341	    !tcp_memory_pressure &&
342	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
343		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
344				    sysctl_tcp_rmem[2]);
345	}
346	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
347		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
348}
349
350
351/* Initialize RCV_MSS value.
352 * RCV_MSS is an our guess about MSS used by the peer.
353 * We haven't any direct information about the MSS.
354 * It's better to underestimate the RCV_MSS rather than overestimate.
355 * Overestimations make us ACKing less frequently than needed.
356 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
357 */
358void tcp_initialize_rcv_mss(struct sock *sk)
359{
360	struct tcp_sock *tp = tcp_sk(sk);
361	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
362
363	hint = min(hint, tp->rcv_wnd/2);
364	hint = min(hint, TCP_MIN_RCVMSS);
365	hint = max(hint, TCP_MIN_MSS);
366
367	inet_csk(sk)->icsk_ack.rcv_mss = hint;
368}
369
370/* Receiver "autotuning" code.
371 *
372 * The algorithm for RTT estimation w/o timestamps is based on
373 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
374 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
375 *
376 * More detail on this code can be found at
377 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
378 * though this reference is out of date.  A new paper
379 * is pending.
380 */
381static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
382{
383	u32 new_sample = tp->rcv_rtt_est.rtt;
384	long m = sample;
385
386	if (m == 0)
387		m = 1;
388
389	if (new_sample != 0) {
390		/* If we sample in larger samples in the non-timestamp
391		 * case, we could grossly overestimate the RTT especially
392		 * with chatty applications or bulk transfer apps which
393		 * are stalled on filesystem I/O.
394		 *
395		 * Also, since we are only going for a minimum in the
396		 * non-timestamp case, we do not smooth things out
397		 * else with timestamps disabled convergence takes too
398		 * long.
399		 */
400		if (!win_dep) {
401			m -= (new_sample >> 3);
402			new_sample += m;
403		} else if (m < new_sample)
404			new_sample = m << 3;
405	} else {
406		/* No previous measure. */
407		new_sample = m << 3;
408	}
409
410	if (tp->rcv_rtt_est.rtt != new_sample)
411		tp->rcv_rtt_est.rtt = new_sample;
412}
413
414static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
415{
416	if (tp->rcv_rtt_est.time == 0)
417		goto new_measure;
418	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
419		return;
420	tcp_rcv_rtt_update(tp,
421			   jiffies - tp->rcv_rtt_est.time,
422			   1);
423
424new_measure:
425	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
426	tp->rcv_rtt_est.time = tcp_time_stamp;
427}
428
429static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
430{
431	struct tcp_sock *tp = tcp_sk(sk);
432	if (tp->rx_opt.rcv_tsecr &&
433	    (TCP_SKB_CB(skb)->end_seq -
434	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
435		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
436}
437
438/*
439 * This function should be called every time data is copied to user space.
440 * It calculates the appropriate TCP receive buffer space.
441 */
442void tcp_rcv_space_adjust(struct sock *sk)
443{
444	struct tcp_sock *tp = tcp_sk(sk);
445	int time;
446	int space;
447
448	if (tp->rcvq_space.time == 0)
449		goto new_measure;
450
451	time = tcp_time_stamp - tp->rcvq_space.time;
452	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
453	    tp->rcv_rtt_est.rtt == 0)
454		return;
455
456	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
457
458	space = max(tp->rcvq_space.space, space);
459
460	if (tp->rcvq_space.space != space) {
461		int rcvmem;
462
463		tp->rcvq_space.space = space;
464
465		if (sysctl_tcp_moderate_rcvbuf &&
466		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
467			int new_clamp = space;
468
469			/* Receive space grows, normalize in order to
470			 * take into account packet headers and sk_buff
471			 * structure overhead.
472			 */
473			space /= tp->advmss;
474			if (!space)
475				space = 1;
476			rcvmem = (tp->advmss + MAX_TCP_HEADER +
477				  16 + sizeof(struct sk_buff));
478			while (tcp_win_from_space(rcvmem) < tp->advmss)
479				rcvmem += 128;
480			space *= rcvmem;
481			space = min(space, sysctl_tcp_rmem[2]);
482			if (space > sk->sk_rcvbuf) {
483				sk->sk_rcvbuf = space;
484
485				/* Make the window clamp follow along.  */
486				tp->window_clamp = new_clamp;
487			}
488		}
489	}
490
491new_measure:
492	tp->rcvq_space.seq = tp->copied_seq;
493	tp->rcvq_space.time = tcp_time_stamp;
494}
495
496/* There is something which you must keep in mind when you analyze the
497 * behavior of the tp->ato delayed ack timeout interval.  When a
498 * connection starts up, we want to ack as quickly as possible.  The
499 * problem is that "good" TCP's do slow start at the beginning of data
500 * transmission.  The means that until we send the first few ACK's the
501 * sender will sit on his end and only queue most of his data, because
502 * he can only send snd_cwnd unacked packets at any given time.  For
503 * each ACK we send, he increments snd_cwnd and transmits more of his
504 * queue.  -DaveM
505 */
506static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
507{
508	struct inet_connection_sock *icsk = inet_csk(sk);
509	u32 now;
510
511	inet_csk_schedule_ack(sk);
512
513	tcp_measure_rcv_mss(sk, skb);
514
515	tcp_rcv_rtt_measure(tp);
516
517	now = tcp_time_stamp;
518
519	if (!icsk->icsk_ack.ato) {
520		/* The _first_ data packet received, initialize
521		 * delayed ACK engine.
522		 */
523		tcp_incr_quickack(sk);
524		icsk->icsk_ack.ato = TCP_ATO_MIN;
525	} else {
526		int m = now - icsk->icsk_ack.lrcvtime;
527
528		if (m <= TCP_ATO_MIN/2) {
529			/* The fastest case is the first. */
530			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
531		} else if (m < icsk->icsk_ack.ato) {
532			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
533			if (icsk->icsk_ack.ato > icsk->icsk_rto)
534				icsk->icsk_ack.ato = icsk->icsk_rto;
535		} else if (m > icsk->icsk_rto) {
536			/* Too long gap. Apparently sender failed to
537			 * restart window, so that we send ACKs quickly.
538			 */
539			tcp_incr_quickack(sk);
540			sk_stream_mem_reclaim(sk);
541		}
542	}
543	icsk->icsk_ack.lrcvtime = now;
544
545	TCP_ECN_check_ce(tp, skb);
546
547	if (skb->len >= 128)
548		tcp_grow_window(sk, tp, skb);
549}
550
551/* Called to compute a smoothed rtt estimate. The data fed to this
552 * routine either comes from timestamps, or from segments that were
553 * known _not_ to have been retransmitted [see Karn/Partridge
554 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
555 * piece by Van Jacobson.
556 * NOTE: the next three routines used to be one big routine.
557 * To save cycles in the RFC 1323 implementation it was better to break
558 * it up into three procedures. -- erics
559 */
560static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
561{
562	struct tcp_sock *tp = tcp_sk(sk);
563	long m = mrtt; /* RTT */
564
565	/*	The following amusing code comes from Jacobson's
566	 *	article in SIGCOMM '88.  Note that rtt and mdev
567	 *	are scaled versions of rtt and mean deviation.
568	 *	This is designed to be as fast as possible
569	 *	m stands for "measurement".
570	 *
571	 *	On a 1990 paper the rto value is changed to:
572	 *	RTO = rtt + 4 * mdev
573	 *
574	 * Funny. This algorithm seems to be very broken.
575	 * These formulae increase RTO, when it should be decreased, increase
576	 * too slowly, when it should be increased quickly, decrease too quickly
577	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
578	 * does not matter how to _calculate_ it. Seems, it was trap
579	 * that VJ failed to avoid. 8)
580	 */
581	if (m == 0)
582		m = 1;
583	if (tp->srtt != 0) {
584		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
585		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
586		if (m < 0) {
587			m = -m;		/* m is now abs(error) */
588			m -= (tp->mdev >> 2);   /* similar update on mdev */
589			/* This is similar to one of Eifel findings.
590			 * Eifel blocks mdev updates when rtt decreases.
591			 * This solution is a bit different: we use finer gain
592			 * for mdev in this case (alpha*beta).
593			 * Like Eifel it also prevents growth of rto,
594			 * but also it limits too fast rto decreases,
595			 * happening in pure Eifel.
596			 */
597			if (m > 0)
598				m >>= 3;
599		} else {
600			m -= (tp->mdev >> 2);   /* similar update on mdev */
601		}
602		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
603		if (tp->mdev > tp->mdev_max) {
604			tp->mdev_max = tp->mdev;
605			if (tp->mdev_max > tp->rttvar)
606				tp->rttvar = tp->mdev_max;
607		}
608		if (after(tp->snd_una, tp->rtt_seq)) {
609			if (tp->mdev_max < tp->rttvar)
610				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
611			tp->rtt_seq = tp->snd_nxt;
612			tp->mdev_max = TCP_RTO_MIN;
613		}
614	} else {
615		/* no previous measure. */
616		tp->srtt = m<<3;	/* take the measured time to be rtt */
617		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
618		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
619		tp->rtt_seq = tp->snd_nxt;
620	}
621}
622
623/* Calculate rto without backoff.  This is the second half of Van Jacobson's
624 * routine referred to above.
625 */
626static inline void tcp_set_rto(struct sock *sk)
627{
628	const struct tcp_sock *tp = tcp_sk(sk);
629	/* Old crap is replaced with new one. 8)
630	 *
631	 * More seriously:
632	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
633	 *    It cannot be less due to utterly erratic ACK generation made
634	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
635	 *    to do with delayed acks, because at cwnd>2 true delack timeout
636	 *    is invisible. Actually, Linux-2.4 also generates erratic
637	 *    ACKs in some circumstances.
638	 */
639	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
640
641	/* 2. Fixups made earlier cannot be right.
642	 *    If we do not estimate RTO correctly without them,
643	 *    all the algo is pure shit and should be replaced
644	 *    with correct one. It is exactly, which we pretend to do.
645	 */
646}
647
648/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
649 * guarantees that rto is higher.
650 */
651static inline void tcp_bound_rto(struct sock *sk)
652{
653	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
654		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
655}
656
657/* Save metrics learned by this TCP session.
658   This function is called only, when TCP finishes successfully
659   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
660 */
661void tcp_update_metrics(struct sock *sk)
662{
663	struct tcp_sock *tp = tcp_sk(sk);
664	struct dst_entry *dst = __sk_dst_get(sk);
665
666	if (sysctl_tcp_nometrics_save)
667		return;
668
669	dst_confirm(dst);
670
671	if (dst && (dst->flags&DST_HOST)) {
672		const struct inet_connection_sock *icsk = inet_csk(sk);
673		int m;
674
675		if (icsk->icsk_backoff || !tp->srtt) {
676			/* This session failed to estimate rtt. Why?
677			 * Probably, no packets returned in time.
678			 * Reset our results.
679			 */
680			if (!(dst_metric_locked(dst, RTAX_RTT)))
681				dst->metrics[RTAX_RTT-1] = 0;
682			return;
683		}
684
685		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
686
687		/* If newly calculated rtt larger than stored one,
688		 * store new one. Otherwise, use EWMA. Remember,
689		 * rtt overestimation is always better than underestimation.
690		 */
691		if (!(dst_metric_locked(dst, RTAX_RTT))) {
692			if (m <= 0)
693				dst->metrics[RTAX_RTT-1] = tp->srtt;
694			else
695				dst->metrics[RTAX_RTT-1] -= (m>>3);
696		}
697
698		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
699			if (m < 0)
700				m = -m;
701
702			/* Scale deviation to rttvar fixed point */
703			m >>= 1;
704			if (m < tp->mdev)
705				m = tp->mdev;
706
707			if (m >= dst_metric(dst, RTAX_RTTVAR))
708				dst->metrics[RTAX_RTTVAR-1] = m;
709			else
710				dst->metrics[RTAX_RTTVAR-1] -=
711					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
712		}
713
714		if (tp->snd_ssthresh >= 0xFFFF) {
715			/* Slow start still did not finish. */
716			if (dst_metric(dst, RTAX_SSTHRESH) &&
717			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
718			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
719				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
720			if (!dst_metric_locked(dst, RTAX_CWND) &&
721			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
722				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
723		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
724			   icsk->icsk_ca_state == TCP_CA_Open) {
725			/* Cong. avoidance phase, cwnd is reliable. */
726			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
727				dst->metrics[RTAX_SSTHRESH-1] =
728					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
729			if (!dst_metric_locked(dst, RTAX_CWND))
730				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
731		} else {
732			/* Else slow start did not finish, cwnd is non-sense,
733			   ssthresh may be also invalid.
734			 */
735			if (!dst_metric_locked(dst, RTAX_CWND))
736				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
737			if (dst->metrics[RTAX_SSTHRESH-1] &&
738			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
739			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
740				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
741		}
742
743		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
744			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
745			    tp->reordering != sysctl_tcp_reordering)
746				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
747		}
748	}
749}
750
751/* Numbers are taken from RFC2414.  */
752__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
753{
754	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
755
756	if (!cwnd) {
757		if (tp->mss_cache > 1460)
758			cwnd = 2;
759		else
760			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
761	}
762	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
763}
764
765/* Set slow start threshold and cwnd not falling to slow start */
766void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
767{
768	struct tcp_sock *tp = tcp_sk(sk);
769	const struct inet_connection_sock *icsk = inet_csk(sk);
770
771	tp->prior_ssthresh = 0;
772	tp->bytes_acked = 0;
773	if (icsk->icsk_ca_state < TCP_CA_CWR) {
774		tp->undo_marker = 0;
775		if (set_ssthresh)
776			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
777		tp->snd_cwnd = min(tp->snd_cwnd,
778				   tcp_packets_in_flight(tp) + 1U);
779		tp->snd_cwnd_cnt = 0;
780		tp->high_seq = tp->snd_nxt;
781		tp->snd_cwnd_stamp = tcp_time_stamp;
782		TCP_ECN_queue_cwr(tp);
783
784		tcp_set_ca_state(sk, TCP_CA_CWR);
785	}
786}
787
788/* Initialize metrics on socket. */
789
790static void tcp_init_metrics(struct sock *sk)
791{
792	struct tcp_sock *tp = tcp_sk(sk);
793	struct dst_entry *dst = __sk_dst_get(sk);
794
795	if (dst == NULL)
796		goto reset;
797
798	dst_confirm(dst);
799
800	if (dst_metric_locked(dst, RTAX_CWND))
801		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
802	if (dst_metric(dst, RTAX_SSTHRESH)) {
803		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
804		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
805			tp->snd_ssthresh = tp->snd_cwnd_clamp;
806	}
807	if (dst_metric(dst, RTAX_REORDERING) &&
808	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
809		tp->rx_opt.sack_ok &= ~2;
810		tp->reordering = dst_metric(dst, RTAX_REORDERING);
811	}
812
813	if (dst_metric(dst, RTAX_RTT) == 0)
814		goto reset;
815
816	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
817		goto reset;
818
819	/* Initial rtt is determined from SYN,SYN-ACK.
820	 * The segment is small and rtt may appear much
821	 * less than real one. Use per-dst memory
822	 * to make it more realistic.
823	 *
824	 * A bit of theory. RTT is time passed after "normal" sized packet
825	 * is sent until it is ACKed. In normal circumstances sending small
826	 * packets force peer to delay ACKs and calculation is correct too.
827	 * The algorithm is adaptive and, provided we follow specs, it
828	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
829	 * tricks sort of "quick acks" for time long enough to decrease RTT
830	 * to low value, and then abruptly stops to do it and starts to delay
831	 * ACKs, wait for troubles.
832	 */
833	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
834		tp->srtt = dst_metric(dst, RTAX_RTT);
835		tp->rtt_seq = tp->snd_nxt;
836	}
837	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
838		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
839		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
840	}
841	tcp_set_rto(sk);
842	tcp_bound_rto(sk);
843	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
844		goto reset;
845	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
846	tp->snd_cwnd_stamp = tcp_time_stamp;
847	return;
848
849reset:
850	/* Play conservative. If timestamps are not
851	 * supported, TCP will fail to recalculate correct
852	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
853	 */
854	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
855		tp->srtt = 0;
856		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
857		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
858	}
859}
860
861static void tcp_update_reordering(struct sock *sk, const int metric,
862				  const int ts)
863{
864	struct tcp_sock *tp = tcp_sk(sk);
865	if (metric > tp->reordering) {
866		tp->reordering = min(TCP_MAX_REORDERING, metric);
867
868		/* This exciting event is worth to be remembered. 8) */
869		if (ts)
870			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
871		else if (IsReno(tp))
872			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
873		else if (IsFack(tp))
874			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
875		else
876			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
877#if FASTRETRANS_DEBUG > 1
878		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
879		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
880		       tp->reordering,
881		       tp->fackets_out,
882		       tp->sacked_out,
883		       tp->undo_marker ? tp->undo_retrans : 0);
884#endif
885		/* Disable FACK yet. */
886		tp->rx_opt.sack_ok &= ~2;
887	}
888}
889
890/* This procedure tags the retransmission queue when SACKs arrive.
891 *
892 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
893 * Packets in queue with these bits set are counted in variables
894 * sacked_out, retrans_out and lost_out, correspondingly.
895 *
896 * Valid combinations are:
897 * Tag  InFlight	Description
898 * 0	1		- orig segment is in flight.
899 * S	0		- nothing flies, orig reached receiver.
900 * L	0		- nothing flies, orig lost by net.
901 * R	2		- both orig and retransmit are in flight.
902 * L|R	1		- orig is lost, retransmit is in flight.
903 * S|R  1		- orig reached receiver, retrans is still in flight.
904 * (L|S|R is logically valid, it could occur when L|R is sacked,
905 *  but it is equivalent to plain S and code short-curcuits it to S.
906 *  L|S is logically invalid, it would mean -1 packet in flight 8))
907 *
908 * These 6 states form finite state machine, controlled by the following events:
909 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
910 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
911 * 3. Loss detection event of one of three flavors:
912 *	A. Scoreboard estimator decided the packet is lost.
913 *	   A'. Reno "three dupacks" marks head of queue lost.
914 *	   A''. Its FACK modfication, head until snd.fack is lost.
915 *	B. SACK arrives sacking data transmitted after never retransmitted
916 *	   hole was sent out.
917 *	C. SACK arrives sacking SND.NXT at the moment, when the
918 *	   segment was retransmitted.
919 * 4. D-SACK added new rule: D-SACK changes any tag to S.
920 *
921 * It is pleasant to note, that state diagram turns out to be commutative,
922 * so that we are allowed not to be bothered by order of our actions,
923 * when multiple events arrive simultaneously. (see the function below).
924 *
925 * Reordering detection.
926 * --------------------
927 * Reordering metric is maximal distance, which a packet can be displaced
928 * in packet stream. With SACKs we can estimate it:
929 *
930 * 1. SACK fills old hole and the corresponding segment was not
931 *    ever retransmitted -> reordering. Alas, we cannot use it
932 *    when segment was retransmitted.
933 * 2. The last flaw is solved with D-SACK. D-SACK arrives
934 *    for retransmitted and already SACKed segment -> reordering..
935 * Both of these heuristics are not used in Loss state, when we cannot
936 * account for retransmits accurately.
937 */
938static int
939tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
940{
941	const struct inet_connection_sock *icsk = inet_csk(sk);
942	struct tcp_sock *tp = tcp_sk(sk);
943	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
944	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
945	struct sk_buff *cached_skb;
946	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
947	int reord = tp->packets_out;
948	int prior_fackets;
949	u32 lost_retrans = 0;
950	int flag = 0;
951	int dup_sack = 0;
952	int cached_fack_count;
953	int i;
954	int first_sack_index;
955
956	if (!tp->sacked_out)
957		tp->fackets_out = 0;
958	prior_fackets = tp->fackets_out;
959
960	/* Check for D-SACK. */
961	if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
962		dup_sack = 1;
963		tp->rx_opt.sack_ok |= 4;
964		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
965	} else if (num_sacks > 1 &&
966			!after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
967			!before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
968		dup_sack = 1;
969		tp->rx_opt.sack_ok |= 4;
970		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
971	}
972
973	/* D-SACK for already forgotten data...
974	 * Do dumb counting. */
975	if (dup_sack &&
976			!after(ntohl(sp[0].end_seq), prior_snd_una) &&
977			after(ntohl(sp[0].end_seq), tp->undo_marker))
978		tp->undo_retrans--;
979
980	/* Eliminate too old ACKs, but take into
981	 * account more or less fresh ones, they can
982	 * contain valid SACK info.
983	 */
984	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
985		return 0;
986
987	/* SACK fastpath:
988	 * if the only SACK change is the increase of the end_seq of
989	 * the first block then only apply that SACK block
990	 * and use retrans queue hinting otherwise slowpath */
991	flag = 1;
992	for (i = 0; i < num_sacks; i++) {
993		__be32 start_seq = sp[i].start_seq;
994		__be32 end_seq = sp[i].end_seq;
995
996		if (i == 0) {
997			if (tp->recv_sack_cache[i].start_seq != start_seq)
998				flag = 0;
999		} else {
1000			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1001			    (tp->recv_sack_cache[i].end_seq != end_seq))
1002				flag = 0;
1003		}
1004		tp->recv_sack_cache[i].start_seq = start_seq;
1005		tp->recv_sack_cache[i].end_seq = end_seq;
1006	}
1007	/* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1008	for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1009		tp->recv_sack_cache[i].start_seq = 0;
1010		tp->recv_sack_cache[i].end_seq = 0;
1011	}
1012
1013	first_sack_index = 0;
1014	if (flag)
1015		num_sacks = 1;
1016	else {
1017		int j;
1018		tp->fastpath_skb_hint = NULL;
1019
1020		/* order SACK blocks to allow in order walk of the retrans queue */
1021		for (i = num_sacks-1; i > 0; i--) {
1022			for (j = 0; j < i; j++){
1023				if (after(ntohl(sp[j].start_seq),
1024					  ntohl(sp[j+1].start_seq))){
1025					struct tcp_sack_block_wire tmp;
1026
1027					tmp = sp[j];
1028					sp[j] = sp[j+1];
1029					sp[j+1] = tmp;
1030
1031					/* Track where the first SACK block goes to */
1032					if (j == first_sack_index)
1033						first_sack_index = j+1;
1034				}
1035
1036			}
1037		}
1038	}
1039
1040	/* clear flag as used for different purpose in following code */
1041	flag = 0;
1042
1043	/* Use SACK fastpath hint if valid */
1044	cached_skb = tp->fastpath_skb_hint;
1045	cached_fack_count = tp->fastpath_cnt_hint;
1046	if (!cached_skb) {
1047		cached_skb = tcp_write_queue_head(sk);
1048		cached_fack_count = 0;
1049	}
1050
1051	for (i=0; i<num_sacks; i++, sp++) {
1052		struct sk_buff *skb;
1053		__u32 start_seq = ntohl(sp->start_seq);
1054		__u32 end_seq = ntohl(sp->end_seq);
1055		int fack_count;
1056
1057		skb = cached_skb;
1058		fack_count = cached_fack_count;
1059
1060		/* Event "B" in the comment above. */
1061		if (after(end_seq, tp->high_seq))
1062			flag |= FLAG_DATA_LOST;
1063
1064		tcp_for_write_queue_from(skb, sk) {
1065			int in_sack, pcount;
1066			u8 sacked;
1067
1068			if (skb == tcp_send_head(sk))
1069				break;
1070
1071			cached_skb = skb;
1072			cached_fack_count = fack_count;
1073			if (i == first_sack_index) {
1074				tp->fastpath_skb_hint = skb;
1075				tp->fastpath_cnt_hint = fack_count;
1076			}
1077
1078			/* The retransmission queue is always in order, so
1079			 * we can short-circuit the walk early.
1080			 */
1081			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1082				break;
1083
1084			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1085				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1086
1087			pcount = tcp_skb_pcount(skb);
1088
1089			if (pcount > 1 && !in_sack &&
1090			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1091				unsigned int pkt_len;
1092
1093				in_sack = !after(start_seq,
1094						 TCP_SKB_CB(skb)->seq);
1095
1096				if (!in_sack)
1097					pkt_len = (start_seq -
1098						   TCP_SKB_CB(skb)->seq);
1099				else
1100					pkt_len = (end_seq -
1101						   TCP_SKB_CB(skb)->seq);
1102				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1103					break;
1104				pcount = tcp_skb_pcount(skb);
1105			}
1106
1107			fack_count += pcount;
1108
1109			sacked = TCP_SKB_CB(skb)->sacked;
1110
1111			/* Account D-SACK for retransmitted packet. */
1112			if ((dup_sack && in_sack) &&
1113			    (sacked & TCPCB_RETRANS) &&
1114			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1115				tp->undo_retrans--;
1116
1117			/* The frame is ACKed. */
1118			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1119				if (sacked&TCPCB_RETRANS) {
1120					if ((dup_sack && in_sack) &&
1121					    (sacked&TCPCB_SACKED_ACKED))
1122						reord = min(fack_count, reord);
1123				} else {
1124					/* If it was in a hole, we detected reordering. */
1125					if (fack_count < prior_fackets &&
1126					    !(sacked&TCPCB_SACKED_ACKED))
1127						reord = min(fack_count, reord);
1128				}
1129
1130				/* Nothing to do; acked frame is about to be dropped. */
1131				continue;
1132			}
1133
1134			if ((sacked&TCPCB_SACKED_RETRANS) &&
1135			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1136			    (!lost_retrans || after(end_seq, lost_retrans)))
1137				lost_retrans = end_seq;
1138
1139			if (!in_sack)
1140				continue;
1141
1142			if (!(sacked&TCPCB_SACKED_ACKED)) {
1143				if (sacked & TCPCB_SACKED_RETRANS) {
1144					/* If the segment is not tagged as lost,
1145					 * we do not clear RETRANS, believing
1146					 * that retransmission is still in flight.
1147					 */
1148					if (sacked & TCPCB_LOST) {
1149						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1150						tp->lost_out -= tcp_skb_pcount(skb);
1151						tp->retrans_out -= tcp_skb_pcount(skb);
1152
1153						/* clear lost hint */
1154						tp->retransmit_skb_hint = NULL;
1155					}
1156				} else {
1157					/* New sack for not retransmitted frame,
1158					 * which was in hole. It is reordering.
1159					 */
1160					if (!(sacked & TCPCB_RETRANS) &&
1161					    fack_count < prior_fackets)
1162						reord = min(fack_count, reord);
1163
1164					if (sacked & TCPCB_LOST) {
1165						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1166						tp->lost_out -= tcp_skb_pcount(skb);
1167
1168						/* clear lost hint */
1169						tp->retransmit_skb_hint = NULL;
1170					}
1171					/* SACK enhanced F-RTO detection.
1172					 * Set flag if and only if non-rexmitted
1173					 * segments below frto_highmark are
1174					 * SACKed (RFC4138; Appendix B).
1175					 * Clearing correct due to in-order walk
1176					 */
1177					if (after(end_seq, tp->frto_highmark)) {
1178						flag &= ~FLAG_ONLY_ORIG_SACKED;
1179					} else {
1180						if (!(sacked & TCPCB_RETRANS))
1181							flag |= FLAG_ONLY_ORIG_SACKED;
1182					}
1183				}
1184
1185				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1186				flag |= FLAG_DATA_SACKED;
1187				tp->sacked_out += tcp_skb_pcount(skb);
1188
1189				if (fack_count > tp->fackets_out)
1190					tp->fackets_out = fack_count;
1191			} else {
1192				if (dup_sack && (sacked&TCPCB_RETRANS))
1193					reord = min(fack_count, reord);
1194			}
1195
1196			/* D-SACK. We can detect redundant retransmission
1197			 * in S|R and plain R frames and clear it.
1198			 * undo_retrans is decreased above, L|R frames
1199			 * are accounted above as well.
1200			 */
1201			if (dup_sack &&
1202			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1203				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1204				tp->retrans_out -= tcp_skb_pcount(skb);
1205				tp->retransmit_skb_hint = NULL;
1206			}
1207		}
1208	}
1209
1210	/* Check for lost retransmit. This superb idea is
1211	 * borrowed from "ratehalving". Event "C".
1212	 * Later note: FACK people cheated me again 8),
1213	 * we have to account for reordering! Ugly,
1214	 * but should help.
1215	 */
1216	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1217		struct sk_buff *skb;
1218
1219		tcp_for_write_queue(skb, sk) {
1220			if (skb == tcp_send_head(sk))
1221				break;
1222			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1223				break;
1224			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1225				continue;
1226			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1227			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1228			    (IsFack(tp) ||
1229			     !before(lost_retrans,
1230				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1231				     tp->mss_cache))) {
1232				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1233				tp->retrans_out -= tcp_skb_pcount(skb);
1234
1235				/* clear lost hint */
1236				tp->retransmit_skb_hint = NULL;
1237
1238				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1239					tp->lost_out += tcp_skb_pcount(skb);
1240					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1241					flag |= FLAG_DATA_SACKED;
1242					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1243				}
1244			}
1245		}
1246	}
1247
1248	tp->left_out = tp->sacked_out + tp->lost_out;
1249
1250	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1251	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1252		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1253
1254#if FASTRETRANS_DEBUG > 0
1255	BUG_TRAP((int)tp->sacked_out >= 0);
1256	BUG_TRAP((int)tp->lost_out >= 0);
1257	BUG_TRAP((int)tp->retrans_out >= 0);
1258	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1259#endif
1260	return flag;
1261}
1262
1263/* F-RTO can only be used if these conditions are satisfied:
1264 *  - there must be some unsent new data
1265 *  - the advertised window should allow sending it
1266 *  - TCP has never retransmitted anything other than head (SACK enhanced
1267 *    variant from Appendix B of RFC4138 is more robust here)
1268 */
1269int tcp_use_frto(struct sock *sk)
1270{
1271	const struct tcp_sock *tp = tcp_sk(sk);
1272	struct sk_buff *skb;
1273
1274	if (!sysctl_tcp_frto || !tcp_send_head(sk) ||
1275		after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
1276		      tp->snd_una + tp->snd_wnd))
1277		return 0;
1278
1279	if (IsSackFrto())
1280		return 1;
1281
1282	/* Avoid expensive walking of rexmit queue if possible */
1283	if (tp->retrans_out > 1)
1284		return 0;
1285
1286	skb = tcp_write_queue_head(sk);
1287	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1288	tcp_for_write_queue_from(skb, sk) {
1289		if (skb == tcp_send_head(sk))
1290			break;
1291		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1292			return 0;
1293		/* Short-circuit when first non-SACKed skb has been checked */
1294		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1295			break;
1296	}
1297	return 1;
1298}
1299
1300/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1301 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1302 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1303 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1304 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1305 * bits are handled if the Loss state is really to be entered (in
1306 * tcp_enter_frto_loss).
1307 *
1308 * Do like tcp_enter_loss() would; when RTO expires the second time it
1309 * does:
1310 *  "Reduce ssthresh if it has not yet been made inside this window."
1311 */
1312void tcp_enter_frto(struct sock *sk)
1313{
1314	const struct inet_connection_sock *icsk = inet_csk(sk);
1315	struct tcp_sock *tp = tcp_sk(sk);
1316	struct sk_buff *skb;
1317
1318	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1319	    tp->snd_una == tp->high_seq ||
1320	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1321	     !icsk->icsk_retransmits)) {
1322		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1323		/* Our state is too optimistic in ssthresh() call because cwnd
1324		 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1325		 * recovery has not yet completed. Pattern would be this: RTO,
1326		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1327		 * up here twice).
1328		 * RFC4138 should be more specific on what to do, even though
1329		 * RTO is quite unlikely to occur after the first Cumulative ACK
1330		 * due to back-off and complexity of triggering events ...
1331		 */
1332		if (tp->frto_counter) {
1333			u32 stored_cwnd;
1334			stored_cwnd = tp->snd_cwnd;
1335			tp->snd_cwnd = 2;
1336			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1337			tp->snd_cwnd = stored_cwnd;
1338		} else {
1339			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1340		}
1341		/* ... in theory, cong.control module could do "any tricks" in
1342		 * ssthresh(), which means that ca_state, lost bits and lost_out
1343		 * counter would have to be faked before the call occurs. We
1344		 * consider that too expensive, unlikely and hacky, so modules
1345		 * using these in ssthresh() must deal these incompatibility
1346		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1347		 */
1348		tcp_ca_event(sk, CA_EVENT_FRTO);
1349	}
1350
1351	tp->undo_marker = tp->snd_una;
1352	tp->undo_retrans = 0;
1353
1354	skb = tcp_write_queue_head(sk);
1355	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1356		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1357		tp->retrans_out -= tcp_skb_pcount(skb);
1358	}
1359	tcp_sync_left_out(tp);
1360
1361	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1362	 * The last condition is necessary at least in tp->frto_counter case.
1363	 */
1364	if (IsSackFrto() && (tp->frto_counter ||
1365	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1366	    after(tp->high_seq, tp->snd_una)) {
1367		tp->frto_highmark = tp->high_seq;
1368	} else {
1369		tp->frto_highmark = tp->snd_nxt;
1370	}
1371	tcp_set_ca_state(sk, TCP_CA_Disorder);
1372	tp->high_seq = tp->snd_nxt;
1373	tp->frto_counter = 1;
1374}
1375
1376/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1377 * which indicates that we should follow the traditional RTO recovery,
1378 * i.e. mark everything lost and do go-back-N retransmission.
1379 */
1380static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1381{
1382	struct tcp_sock *tp = tcp_sk(sk);
1383	struct sk_buff *skb;
1384	int cnt = 0;
1385
1386	tp->sacked_out = 0;
1387	tp->lost_out = 0;
1388	tp->fackets_out = 0;
1389	tp->retrans_out = 0;
1390
1391	tcp_for_write_queue(skb, sk) {
1392		if (skb == tcp_send_head(sk))
1393			break;
1394		cnt += tcp_skb_pcount(skb);
1395		/*
1396		 * Count the retransmission made on RTO correctly (only when
1397		 * waiting for the first ACK and did not get it)...
1398		 */
1399		if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1400			tp->retrans_out += tcp_skb_pcount(skb);
1401			/* ...enter this if branch just for the first segment */
1402			flag |= FLAG_DATA_ACKED;
1403		} else {
1404			TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1405		}
1406		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1407
1408			/* Do not mark those segments lost that were
1409			 * forward transmitted after RTO
1410			 */
1411			if (!after(TCP_SKB_CB(skb)->end_seq,
1412				   tp->frto_highmark)) {
1413				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1414				tp->lost_out += tcp_skb_pcount(skb);
1415			}
1416		} else {
1417			tp->sacked_out += tcp_skb_pcount(skb);
1418			tp->fackets_out = cnt;
1419		}
1420	}
1421	tcp_sync_left_out(tp);
1422
1423	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1424	tp->snd_cwnd_cnt = 0;
1425	tp->snd_cwnd_stamp = tcp_time_stamp;
1426	tp->undo_marker = 0;
1427	tp->frto_counter = 0;
1428
1429	tp->reordering = min_t(unsigned int, tp->reordering,
1430					     sysctl_tcp_reordering);
1431	tcp_set_ca_state(sk, TCP_CA_Loss);
1432	tp->high_seq = tp->frto_highmark;
1433	TCP_ECN_queue_cwr(tp);
1434
1435	clear_all_retrans_hints(tp);
1436}
1437
1438void tcp_clear_retrans(struct tcp_sock *tp)
1439{
1440	tp->left_out = 0;
1441	tp->retrans_out = 0;
1442
1443	tp->fackets_out = 0;
1444	tp->sacked_out = 0;
1445	tp->lost_out = 0;
1446
1447	tp->undo_marker = 0;
1448	tp->undo_retrans = 0;
1449}
1450
1451/* Enter Loss state. If "how" is not zero, forget all SACK information
1452 * and reset tags completely, otherwise preserve SACKs. If receiver
1453 * dropped its ofo queue, we will know this due to reneging detection.
1454 */
1455void tcp_enter_loss(struct sock *sk, int how)
1456{
1457	const struct inet_connection_sock *icsk = inet_csk(sk);
1458	struct tcp_sock *tp = tcp_sk(sk);
1459	struct sk_buff *skb;
1460	int cnt = 0;
1461
1462	/* Reduce ssthresh if it has not yet been made inside this window. */
1463	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1464	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1465		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1466		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1467		tcp_ca_event(sk, CA_EVENT_LOSS);
1468	}
1469	tp->snd_cwnd	   = 1;
1470	tp->snd_cwnd_cnt   = 0;
1471	tp->snd_cwnd_stamp = tcp_time_stamp;
1472
1473	tp->bytes_acked = 0;
1474	tcp_clear_retrans(tp);
1475
1476	/* Push undo marker, if it was plain RTO and nothing
1477	 * was retransmitted. */
1478	if (!how)
1479		tp->undo_marker = tp->snd_una;
1480
1481	tcp_for_write_queue(skb, sk) {
1482		if (skb == tcp_send_head(sk))
1483			break;
1484		cnt += tcp_skb_pcount(skb);
1485		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1486			tp->undo_marker = 0;
1487		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1488		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1489			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1490			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1491			tp->lost_out += tcp_skb_pcount(skb);
1492		} else {
1493			tp->sacked_out += tcp_skb_pcount(skb);
1494			tp->fackets_out = cnt;
1495		}
1496	}
1497	tcp_sync_left_out(tp);
1498
1499	tp->reordering = min_t(unsigned int, tp->reordering,
1500					     sysctl_tcp_reordering);
1501	tcp_set_ca_state(sk, TCP_CA_Loss);
1502	tp->high_seq = tp->snd_nxt;
1503	TCP_ECN_queue_cwr(tp);
1504
1505	clear_all_retrans_hints(tp);
1506}
1507
1508static int tcp_check_sack_reneging(struct sock *sk)
1509{
1510	struct sk_buff *skb;
1511
1512	/* If ACK arrived pointing to a remembered SACK,
1513	 * it means that our remembered SACKs do not reflect
1514	 * real state of receiver i.e.
1515	 * receiver _host_ is heavily congested (or buggy).
1516	 * Do processing similar to RTO timeout.
1517	 */
1518	if ((skb = tcp_write_queue_head(sk)) != NULL &&
1519	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1520		struct inet_connection_sock *icsk = inet_csk(sk);
1521		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1522
1523		tcp_enter_loss(sk, 1);
1524		icsk->icsk_retransmits++;
1525		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1526		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1527					  icsk->icsk_rto, TCP_RTO_MAX);
1528		return 1;
1529	}
1530	return 0;
1531}
1532
1533static inline int tcp_fackets_out(struct tcp_sock *tp)
1534{
1535	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1536}
1537
1538static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1539{
1540	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1541}
1542
1543static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1544{
1545	return tp->packets_out &&
1546	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1547}
1548
1549/* Linux NewReno/SACK/FACK/ECN state machine.
1550 * --------------------------------------
1551 *
1552 * "Open"	Normal state, no dubious events, fast path.
1553 * "Disorder"   In all the respects it is "Open",
1554 *		but requires a bit more attention. It is entered when
1555 *		we see some SACKs or dupacks. It is split of "Open"
1556 *		mainly to move some processing from fast path to slow one.
1557 * "CWR"	CWND was reduced due to some Congestion Notification event.
1558 *		It can be ECN, ICMP source quench, local device congestion.
1559 * "Recovery"	CWND was reduced, we are fast-retransmitting.
1560 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1561 *
1562 * tcp_fastretrans_alert() is entered:
1563 * - each incoming ACK, if state is not "Open"
1564 * - when arrived ACK is unusual, namely:
1565 *	* SACK
1566 *	* Duplicate ACK.
1567 *	* ECN ECE.
1568 *
1569 * Counting packets in flight is pretty simple.
1570 *
1571 *	in_flight = packets_out - left_out + retrans_out
1572 *
1573 *	packets_out is SND.NXT-SND.UNA counted in packets.
1574 *
1575 *	retrans_out is number of retransmitted segments.
1576 *
1577 *	left_out is number of segments left network, but not ACKed yet.
1578 *
1579 *		left_out = sacked_out + lost_out
1580 *
1581 *     sacked_out: Packets, which arrived to receiver out of order
1582 *		   and hence not ACKed. With SACKs this number is simply
1583 *		   amount of SACKed data. Even without SACKs
1584 *		   it is easy to give pretty reliable estimate of this number,
1585 *		   counting duplicate ACKs.
1586 *
1587 *       lost_out: Packets lost by network. TCP has no explicit
1588 *		   "loss notification" feedback from network (for now).
1589 *		   It means that this number can be only _guessed_.
1590 *		   Actually, it is the heuristics to predict lossage that
1591 *		   distinguishes different algorithms.
1592 *
1593 *	F.e. after RTO, when all the queue is considered as lost,
1594 *	lost_out = packets_out and in_flight = retrans_out.
1595 *
1596 *		Essentially, we have now two algorithms counting
1597 *		lost packets.
1598 *
1599 *		FACK: It is the simplest heuristics. As soon as we decided
1600 *		that something is lost, we decide that _all_ not SACKed
1601 *		packets until the most forward SACK are lost. I.e.
1602 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1603 *		It is absolutely correct estimate, if network does not reorder
1604 *		packets. And it loses any connection to reality when reordering
1605 *		takes place. We use FACK by default until reordering
1606 *		is suspected on the path to this destination.
1607 *
1608 *		NewReno: when Recovery is entered, we assume that one segment
1609 *		is lost (classic Reno). While we are in Recovery and
1610 *		a partial ACK arrives, we assume that one more packet
1611 *		is lost (NewReno). This heuristics are the same in NewReno
1612 *		and SACK.
1613 *
1614 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1615 *  deflation etc. CWND is real congestion window, never inflated, changes
1616 *  only according to classic VJ rules.
1617 *
1618 * Really tricky (and requiring careful tuning) part of algorithm
1619 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1620 * The first determines the moment _when_ we should reduce CWND and,
1621 * hence, slow down forward transmission. In fact, it determines the moment
1622 * when we decide that hole is caused by loss, rather than by a reorder.
1623 *
1624 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1625 * holes, caused by lost packets.
1626 *
1627 * And the most logically complicated part of algorithm is undo
1628 * heuristics. We detect false retransmits due to both too early
1629 * fast retransmit (reordering) and underestimated RTO, analyzing
1630 * timestamps and D-SACKs. When we detect that some segments were
1631 * retransmitted by mistake and CWND reduction was wrong, we undo
1632 * window reduction and abort recovery phase. This logic is hidden
1633 * inside several functions named tcp_try_undo_<something>.
1634 */
1635
1636/* This function decides, when we should leave Disordered state
1637 * and enter Recovery phase, reducing congestion window.
1638 *
1639 * Main question: may we further continue forward transmission
1640 * with the same cwnd?
1641 */
1642static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1643{
1644	__u32 packets_out;
1645
1646	/* Do not perform any recovery during FRTO algorithm */
1647	if (tp->frto_counter)
1648		return 0;
1649
1650	/* Trick#1: The loss is proven. */
1651	if (tp->lost_out)
1652		return 1;
1653
1654	/* Not-A-Trick#2 : Classic rule... */
1655	if (tcp_fackets_out(tp) > tp->reordering)
1656		return 1;
1657
1658	/* Trick#3 : when we use RFC2988 timer restart, fast
1659	 * retransmit can be triggered by timeout of queue head.
1660	 */
1661	if (tcp_head_timedout(sk, tp))
1662		return 1;
1663
1664	/* Trick#4: It is still not OK... But will it be useful to delay
1665	 * recovery more?
1666	 */
1667	packets_out = tp->packets_out;
1668	if (packets_out <= tp->reordering &&
1669	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1670	    !tcp_may_send_now(sk, tp)) {
1671		/* We have nothing to send. This connection is limited
1672		 * either by receiver window or by application.
1673		 */
1674		return 1;
1675	}
1676
1677	return 0;
1678}
1679
1680/* If we receive more dupacks than we expected counting segments
1681 * in assumption of absent reordering, interpret this as reordering.
1682 * The only another reason could be bug in receiver TCP.
1683 */
1684static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1685{
1686	struct tcp_sock *tp = tcp_sk(sk);
1687	u32 holes;
1688
1689	holes = max(tp->lost_out, 1U);
1690	holes = min(holes, tp->packets_out);
1691
1692	if ((tp->sacked_out + holes) > tp->packets_out) {
1693		tp->sacked_out = tp->packets_out - holes;
1694		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1695	}
1696}
1697
1698/* Emulate SACKs for SACKless connection: account for a new dupack. */
1699
1700static void tcp_add_reno_sack(struct sock *sk)
1701{
1702	struct tcp_sock *tp = tcp_sk(sk);
1703	tp->sacked_out++;
1704	tcp_check_reno_reordering(sk, 0);
1705	tcp_sync_left_out(tp);
1706}
1707
1708/* Account for ACK, ACKing some data in Reno Recovery phase. */
1709
1710static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1711{
1712	if (acked > 0) {
1713		/* One ACK acked hole. The rest eat duplicate ACKs. */
1714		if (acked-1 >= tp->sacked_out)
1715			tp->sacked_out = 0;
1716		else
1717			tp->sacked_out -= acked-1;
1718	}
1719	tcp_check_reno_reordering(sk, acked);
1720	tcp_sync_left_out(tp);
1721}
1722
1723static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1724{
1725	tp->sacked_out = 0;
1726	tp->left_out = tp->lost_out;
1727}
1728
1729/* Mark head of queue up as lost. */
1730static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1731			       int packets, u32 high_seq)
1732{
1733	struct sk_buff *skb;
1734	int cnt;
1735
1736	BUG_TRAP(packets <= tp->packets_out);
1737	if (tp->lost_skb_hint) {
1738		skb = tp->lost_skb_hint;
1739		cnt = tp->lost_cnt_hint;
1740	} else {
1741		skb = tcp_write_queue_head(sk);
1742		cnt = 0;
1743	}
1744
1745	tcp_for_write_queue_from(skb, sk) {
1746		if (skb == tcp_send_head(sk))
1747			break;
1748		/* TODO: do this better */
1749		/* this is not the most efficient way to do this... */
1750		tp->lost_skb_hint = skb;
1751		tp->lost_cnt_hint = cnt;
1752		cnt += tcp_skb_pcount(skb);
1753		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1754			break;
1755		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1756			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1757			tp->lost_out += tcp_skb_pcount(skb);
1758
1759			/* clear xmit_retransmit_queue hints
1760			 *  if this is beyond hint */
1761			if (tp->retransmit_skb_hint != NULL &&
1762			    before(TCP_SKB_CB(skb)->seq,
1763				   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1764				tp->retransmit_skb_hint = NULL;
1765
1766		}
1767	}
1768	tcp_sync_left_out(tp);
1769}
1770
1771/* Account newly detected lost packet(s) */
1772
1773static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1774{
1775	if (IsFack(tp)) {
1776		int lost = tp->fackets_out - tp->reordering;
1777		if (lost <= 0)
1778			lost = 1;
1779		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1780	} else {
1781		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1782	}
1783
1784	/* New heuristics: it is possible only after we switched
1785	 * to restart timer each time when something is ACKed.
1786	 * Hence, we can detect timed out packets during fast
1787	 * retransmit without falling to slow start.
1788	 */
1789	if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1790		struct sk_buff *skb;
1791
1792		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1793			: tcp_write_queue_head(sk);
1794
1795		tcp_for_write_queue_from(skb, sk) {
1796			if (skb == tcp_send_head(sk))
1797				break;
1798			if (!tcp_skb_timedout(sk, skb))
1799				break;
1800
1801			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1802				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1803				tp->lost_out += tcp_skb_pcount(skb);
1804
1805				/* clear xmit_retrans hint */
1806				if (tp->retransmit_skb_hint &&
1807				    before(TCP_SKB_CB(skb)->seq,
1808					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1809
1810					tp->retransmit_skb_hint = NULL;
1811			}
1812		}
1813
1814		tp->scoreboard_skb_hint = skb;
1815
1816		tcp_sync_left_out(tp);
1817	}
1818}
1819
1820/* CWND moderation, preventing bursts due to too big ACKs
1821 * in dubious situations.
1822 */
1823static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1824{
1825	tp->snd_cwnd = min(tp->snd_cwnd,
1826			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1827	tp->snd_cwnd_stamp = tcp_time_stamp;
1828}
1829
1830/* Lower bound on congestion window is slow start threshold
1831 * unless congestion avoidance choice decides to overide it.
1832 */
1833static inline u32 tcp_cwnd_min(const struct sock *sk)
1834{
1835	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1836
1837	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1838}
1839
1840/* Decrease cwnd each second ack. */
1841static void tcp_cwnd_down(struct sock *sk)
1842{
1843	struct tcp_sock *tp = tcp_sk(sk);
1844	int decr = tp->snd_cwnd_cnt + 1;
1845
1846	tp->snd_cwnd_cnt = decr&1;
1847	decr >>= 1;
1848
1849	if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1850		tp->snd_cwnd -= decr;
1851
1852	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1853	tp->snd_cwnd_stamp = tcp_time_stamp;
1854}
1855
1856/* Nothing was retransmitted or returned timestamp is less
1857 * than timestamp of the first retransmission.
1858 */
1859static inline int tcp_packet_delayed(struct tcp_sock *tp)
1860{
1861	return !tp->retrans_stamp ||
1862		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1863		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1864}
1865
1866/* Undo procedures. */
1867
1868#if FASTRETRANS_DEBUG > 1
1869static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1870{
1871	struct inet_sock *inet = inet_sk(sk);
1872	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1873	       msg,
1874	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1875	       tp->snd_cwnd, tp->left_out,
1876	       tp->snd_ssthresh, tp->prior_ssthresh,
1877	       tp->packets_out);
1878}
1879#else
1880#define DBGUNDO(x...) do { } while (0)
1881#endif
1882
1883static void tcp_undo_cwr(struct sock *sk, const int undo)
1884{
1885	struct tcp_sock *tp = tcp_sk(sk);
1886
1887	if (tp->prior_ssthresh) {
1888		const struct inet_connection_sock *icsk = inet_csk(sk);
1889
1890		if (icsk->icsk_ca_ops->undo_cwnd)
1891			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1892		else
1893			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1894
1895		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1896			tp->snd_ssthresh = tp->prior_ssthresh;
1897			TCP_ECN_withdraw_cwr(tp);
1898		}
1899	} else {
1900		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1901	}
1902	tcp_moderate_cwnd(tp);
1903	tp->snd_cwnd_stamp = tcp_time_stamp;
1904
1905	/* There is something screwy going on with the retrans hints after
1906	   an undo */
1907	clear_all_retrans_hints(tp);
1908}
1909
1910static inline int tcp_may_undo(struct tcp_sock *tp)
1911{
1912	return tp->undo_marker &&
1913		(!tp->undo_retrans || tcp_packet_delayed(tp));
1914}
1915
1916/* People celebrate: "We love our President!" */
1917static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1918{
1919	if (tcp_may_undo(tp)) {
1920		/* Happy end! We did not retransmit anything
1921		 * or our original transmission succeeded.
1922		 */
1923		DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1924		tcp_undo_cwr(sk, 1);
1925		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1926			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1927		else
1928			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1929		tp->undo_marker = 0;
1930	}
1931	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1932		/* Hold old state until something *above* high_seq
1933		 * is ACKed. For Reno it is MUST to prevent false
1934		 * fast retransmits (RFC2582). SACK TCP is safe. */
1935		tcp_moderate_cwnd(tp);
1936		return 1;
1937	}
1938	tcp_set_ca_state(sk, TCP_CA_Open);
1939	return 0;
1940}
1941
1942/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1943static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1944{
1945	if (tp->undo_marker && !tp->undo_retrans) {
1946		DBGUNDO(sk, tp, "D-SACK");
1947		tcp_undo_cwr(sk, 1);
1948		tp->undo_marker = 0;
1949		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1950	}
1951}
1952
1953/* Undo during fast recovery after partial ACK. */
1954
1955static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1956				int acked)
1957{
1958	/* Partial ACK arrived. Force Hoe's retransmit. */
1959	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1960
1961	if (tcp_may_undo(tp)) {
1962		/* Plain luck! Hole if filled with delayed
1963		 * packet, rather than with a retransmit.
1964		 */
1965		if (tp->retrans_out == 0)
1966			tp->retrans_stamp = 0;
1967
1968		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1969
1970		DBGUNDO(sk, tp, "Hoe");
1971		tcp_undo_cwr(sk, 0);
1972		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1973
1974		/* So... Do not make Hoe's retransmit yet.
1975		 * If the first packet was delayed, the rest
1976		 * ones are most probably delayed as well.
1977		 */
1978		failed = 0;
1979	}
1980	return failed;
1981}
1982
1983/* Undo during loss recovery after partial ACK. */
1984static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1985{
1986	if (tcp_may_undo(tp)) {
1987		struct sk_buff *skb;
1988		tcp_for_write_queue(skb, sk) {
1989			if (skb == tcp_send_head(sk))
1990				break;
1991			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1992		}
1993
1994		clear_all_retrans_hints(tp);
1995
1996		DBGUNDO(sk, tp, "partial loss");
1997		tp->lost_out = 0;
1998		tp->left_out = tp->sacked_out;
1999		tcp_undo_cwr(sk, 1);
2000		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2001		inet_csk(sk)->icsk_retransmits = 0;
2002		tp->undo_marker = 0;
2003		if (!IsReno(tp))
2004			tcp_set_ca_state(sk, TCP_CA_Open);
2005		return 1;
2006	}
2007	return 0;
2008}
2009
2010static inline void tcp_complete_cwr(struct sock *sk)
2011{
2012	struct tcp_sock *tp = tcp_sk(sk);
2013	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2014	tp->snd_cwnd_stamp = tcp_time_stamp;
2015	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2016}
2017
2018static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
2019{
2020	tp->left_out = tp->sacked_out;
2021
2022	if (tp->retrans_out == 0)
2023		tp->retrans_stamp = 0;
2024
2025	if (flag&FLAG_ECE)
2026		tcp_enter_cwr(sk, 1);
2027
2028	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2029		int state = TCP_CA_Open;
2030
2031		if (tp->left_out || tp->retrans_out || tp->undo_marker)
2032			state = TCP_CA_Disorder;
2033
2034		if (inet_csk(sk)->icsk_ca_state != state) {
2035			tcp_set_ca_state(sk, state);
2036			tp->high_seq = tp->snd_nxt;
2037		}
2038		tcp_moderate_cwnd(tp);
2039	} else {
2040		tcp_cwnd_down(sk);
2041	}
2042}
2043
2044static void tcp_mtup_probe_failed(struct sock *sk)
2045{
2046	struct inet_connection_sock *icsk = inet_csk(sk);
2047
2048	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2049	icsk->icsk_mtup.probe_size = 0;
2050}
2051
2052static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2053{
2054	struct tcp_sock *tp = tcp_sk(sk);
2055	struct inet_connection_sock *icsk = inet_csk(sk);
2056
2057	/* FIXME: breaks with very large cwnd */
2058	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2059	tp->snd_cwnd = tp->snd_cwnd *
2060		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2061		       icsk->icsk_mtup.probe_size;
2062	tp->snd_cwnd_cnt = 0;
2063	tp->snd_cwnd_stamp = tcp_time_stamp;
2064	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2065
2066	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2067	icsk->icsk_mtup.probe_size = 0;
2068	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2069}
2070
2071
2072/* Process an event, which can update packets-in-flight not trivially.
2073 * Main goal of this function is to calculate new estimate for left_out,
2074 * taking into account both packets sitting in receiver's buffer and
2075 * packets lost by network.
2076 *
2077 * Besides that it does CWND reduction, when packet loss is detected
2078 * and changes state of machine.
2079 *
2080 * It does _not_ decide what to send, it is made in function
2081 * tcp_xmit_retransmit_queue().
2082 */
2083static void
2084tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2085		      int prior_packets, int flag)
2086{
2087	struct inet_connection_sock *icsk = inet_csk(sk);
2088	struct tcp_sock *tp = tcp_sk(sk);
2089	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2090
2091	/* Some technical things:
2092	 * 1. Reno does not count dupacks (sacked_out) automatically. */
2093	if (!tp->packets_out)
2094		tp->sacked_out = 0;
2095	/* 2. SACK counts snd_fack in packets inaccurately. */
2096	if (tp->sacked_out == 0)
2097		tp->fackets_out = 0;
2098
2099	/* Now state machine starts.
2100	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2101	if (flag&FLAG_ECE)
2102		tp->prior_ssthresh = 0;
2103
2104	/* B. In all the states check for reneging SACKs. */
2105	if (tp->sacked_out && tcp_check_sack_reneging(sk))
2106		return;
2107
2108	/* C. Process data loss notification, provided it is valid. */
2109	if ((flag&FLAG_DATA_LOST) &&
2110	    before(tp->snd_una, tp->high_seq) &&
2111	    icsk->icsk_ca_state != TCP_CA_Open &&
2112	    tp->fackets_out > tp->reordering) {
2113		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
2114		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2115	}
2116
2117	/* D. Synchronize left_out to current state. */
2118	tcp_sync_left_out(tp);
2119
2120	/* E. Check state exit conditions. State can be terminated
2121	 *    when high_seq is ACKed. */
2122	if (icsk->icsk_ca_state == TCP_CA_Open) {
2123		BUG_TRAP(tp->retrans_out == 0);
2124		tp->retrans_stamp = 0;
2125	} else if (!before(tp->snd_una, tp->high_seq)) {
2126		switch (icsk->icsk_ca_state) {
2127		case TCP_CA_Loss:
2128			icsk->icsk_retransmits = 0;
2129			if (tcp_try_undo_recovery(sk, tp))
2130				return;
2131			break;
2132
2133		case TCP_CA_CWR:
2134			/* CWR is to be held something *above* high_seq
2135			 * is ACKed for CWR bit to reach receiver. */
2136			if (tp->snd_una != tp->high_seq) {
2137				tcp_complete_cwr(sk);
2138				tcp_set_ca_state(sk, TCP_CA_Open);
2139			}
2140			break;
2141
2142		case TCP_CA_Disorder:
2143			tcp_try_undo_dsack(sk, tp);
2144			if (!tp->undo_marker ||
2145			    /* For SACK case do not Open to allow to undo
2146			     * catching for all duplicate ACKs. */
2147			    IsReno(tp) || tp->snd_una != tp->high_seq) {
2148				tp->undo_marker = 0;
2149				tcp_set_ca_state(sk, TCP_CA_Open);
2150			}
2151			break;
2152
2153		case TCP_CA_Recovery:
2154			if (IsReno(tp))
2155				tcp_reset_reno_sack(tp);
2156			if (tcp_try_undo_recovery(sk, tp))
2157				return;
2158			tcp_complete_cwr(sk);
2159			break;
2160		}
2161	}
2162
2163	/* F. Process state. */
2164	switch (icsk->icsk_ca_state) {
2165	case TCP_CA_Recovery:
2166		if (prior_snd_una == tp->snd_una) {
2167			if (IsReno(tp) && is_dupack)
2168				tcp_add_reno_sack(sk);
2169		} else {
2170			int acked = prior_packets - tp->packets_out;
2171			if (IsReno(tp))
2172				tcp_remove_reno_sacks(sk, tp, acked);
2173			is_dupack = tcp_try_undo_partial(sk, tp, acked);
2174		}
2175		break;
2176	case TCP_CA_Loss:
2177		if (flag&FLAG_DATA_ACKED)
2178			icsk->icsk_retransmits = 0;
2179		if (!tcp_try_undo_loss(sk, tp)) {
2180			tcp_moderate_cwnd(tp);
2181			tcp_xmit_retransmit_queue(sk);
2182			return;
2183		}
2184		if (icsk->icsk_ca_state != TCP_CA_Open)
2185			return;
2186		/* Loss is undone; fall through to processing in Open state. */
2187	default:
2188		if (IsReno(tp)) {
2189			if (tp->snd_una != prior_snd_una)
2190				tcp_reset_reno_sack(tp);
2191			if (is_dupack)
2192				tcp_add_reno_sack(sk);
2193		}
2194
2195		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2196			tcp_try_undo_dsack(sk, tp);
2197
2198		if (!tcp_time_to_recover(sk, tp)) {
2199			tcp_try_to_open(sk, tp, flag);
2200			return;
2201		}
2202
2203		/* MTU probe failure: don't reduce cwnd */
2204		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2205		    icsk->icsk_mtup.probe_size &&
2206		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2207			tcp_mtup_probe_failed(sk);
2208			/* Restores the reduction we did in tcp_mtup_probe() */
2209			tp->snd_cwnd++;
2210			tcp_simple_retransmit(sk);
2211			return;
2212		}
2213
2214		/* Otherwise enter Recovery state */
2215
2216		if (IsReno(tp))
2217			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2218		else
2219			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2220
2221		tp->high_seq = tp->snd_nxt;
2222		tp->prior_ssthresh = 0;
2223		tp->undo_marker = tp->snd_una;
2224		tp->undo_retrans = tp->retrans_out;
2225
2226		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2227			if (!(flag&FLAG_ECE))
2228				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2229			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2230			TCP_ECN_queue_cwr(tp);
2231		}
2232
2233		tp->bytes_acked = 0;
2234		tp->snd_cwnd_cnt = 0;
2235		tcp_set_ca_state(sk, TCP_CA_Recovery);
2236	}
2237
2238	if (is_dupack || tcp_head_timedout(sk, tp))
2239		tcp_update_scoreboard(sk, tp);
2240	tcp_cwnd_down(sk);
2241	tcp_xmit_retransmit_queue(sk);
2242}
2243
2244/* Read draft-ietf-tcplw-high-performance before mucking
2245 * with this code. (Supersedes RFC1323)
2246 */
2247static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2248{
2249	/* RTTM Rule: A TSecr value received in a segment is used to
2250	 * update the averaged RTT measurement only if the segment
2251	 * acknowledges some new data, i.e., only if it advances the
2252	 * left edge of the send window.
2253	 *
2254	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2255	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2256	 *
2257	 * Changed: reset backoff as soon as we see the first valid sample.
2258	 * If we do not, we get strongly overestimated rto. With timestamps
2259	 * samples are accepted even from very old segments: f.e., when rtt=1
2260	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2261	 * answer arrives rto becomes 120 seconds! If at least one of segments
2262	 * in window is lost... Voila.	 			--ANK (010210)
2263	 */
2264	struct tcp_sock *tp = tcp_sk(sk);
2265	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2266	tcp_rtt_estimator(sk, seq_rtt);
2267	tcp_set_rto(sk);
2268	inet_csk(sk)->icsk_backoff = 0;
2269	tcp_bound_rto(sk);
2270}
2271
2272static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2273{
2274	/* We don't have a timestamp. Can only use
2275	 * packets that are not retransmitted to determine
2276	 * rtt estimates. Also, we must not reset the
2277	 * backoff for rto until we get a non-retransmitted
2278	 * packet. This allows us to deal with a situation
2279	 * where the network delay has increased suddenly.
2280	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2281	 */
2282
2283	if (flag & FLAG_RETRANS_DATA_ACKED)
2284		return;
2285
2286	tcp_rtt_estimator(sk, seq_rtt);
2287	tcp_set_rto(sk);
2288	inet_csk(sk)->icsk_backoff = 0;
2289	tcp_bound_rto(sk);
2290}
2291
2292static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2293				      const s32 seq_rtt)
2294{
2295	const struct tcp_sock *tp = tcp_sk(sk);
2296	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2297	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2298		tcp_ack_saw_tstamp(sk, flag);
2299	else if (seq_rtt >= 0)
2300		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2301}
2302
2303static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2304			   u32 in_flight, int good)
2305{
2306	const struct inet_connection_sock *icsk = inet_csk(sk);
2307	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2308	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2309}
2310
2311/* Restart timer after forward progress on connection.
2312 * RFC2988 recommends to restart timer to now+rto.
2313 */
2314
2315static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2316{
2317	if (!tp->packets_out) {
2318		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2319	} else {
2320		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2321	}
2322}
2323
2324static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2325			 __u32 now, __s32 *seq_rtt)
2326{
2327	struct tcp_sock *tp = tcp_sk(sk);
2328	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2329	__u32 seq = tp->snd_una;
2330	__u32 packets_acked;
2331	int acked = 0;
2332
2333	/* If we get here, the whole TSO packet has not been
2334	 * acked.
2335	 */
2336	BUG_ON(!after(scb->end_seq, seq));
2337
2338	packets_acked = tcp_skb_pcount(skb);
2339	if (tcp_trim_head(sk, skb, seq - scb->seq))
2340		return 0;
2341	packets_acked -= tcp_skb_pcount(skb);
2342
2343	if (packets_acked) {
2344		__u8 sacked = scb->sacked;
2345
2346		acked |= FLAG_DATA_ACKED;
2347		if (sacked) {
2348			if (sacked & TCPCB_RETRANS) {
2349				if (sacked & TCPCB_SACKED_RETRANS)
2350					tp->retrans_out -= packets_acked;
2351				acked |= FLAG_RETRANS_DATA_ACKED;
2352				*seq_rtt = -1;
2353			} else if (*seq_rtt < 0)
2354				*seq_rtt = now - scb->when;
2355			if (sacked & TCPCB_SACKED_ACKED)
2356				tp->sacked_out -= packets_acked;
2357			if (sacked & TCPCB_LOST)
2358				tp->lost_out -= packets_acked;
2359			if (sacked & TCPCB_URG) {
2360				if (tp->urg_mode &&
2361				    !before(seq, tp->snd_up))
2362					tp->urg_mode = 0;
2363			}
2364		} else if (*seq_rtt < 0)
2365			*seq_rtt = now - scb->when;
2366
2367		if (tp->fackets_out) {
2368			__u32 dval = min(tp->fackets_out, packets_acked);
2369			tp->fackets_out -= dval;
2370		}
2371		tp->packets_out -= packets_acked;
2372
2373		BUG_ON(tcp_skb_pcount(skb) == 0);
2374		BUG_ON(!before(scb->seq, scb->end_seq));
2375	}
2376
2377	return acked;
2378}
2379
2380static u32 tcp_usrtt(struct timeval *tv)
2381{
2382	struct timeval now;
2383
2384	do_gettimeofday(&now);
2385	return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2386}
2387
2388/* Remove acknowledged frames from the retransmission queue. */
2389static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2390{
2391	struct tcp_sock *tp = tcp_sk(sk);
2392	const struct inet_connection_sock *icsk = inet_csk(sk);
2393	struct sk_buff *skb;
2394	__u32 now = tcp_time_stamp;
2395	int acked = 0;
2396	__s32 seq_rtt = -1;
2397	u32 pkts_acked = 0;
2398	void (*rtt_sample)(struct sock *sk, u32 usrtt)
2399		= icsk->icsk_ca_ops->rtt_sample;
2400	struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2401
2402	while ((skb = tcp_write_queue_head(sk)) &&
2403	       skb != tcp_send_head(sk)) {
2404		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2405		__u8 sacked = scb->sacked;
2406
2407		/* If our packet is before the ack sequence we can
2408		 * discard it as it's confirmed to have arrived at
2409		 * the other end.
2410		 */
2411		if (after(scb->end_seq, tp->snd_una)) {
2412			if (tcp_skb_pcount(skb) > 1 &&
2413			    after(tp->snd_una, scb->seq))
2414				acked |= tcp_tso_acked(sk, skb,
2415						       now, &seq_rtt);
2416			break;
2417		}
2418
2419		/* Initial outgoing SYN's get put onto the write_queue
2420		 * just like anything else we transmit.  It is not
2421		 * true data, and if we misinform our callers that
2422		 * this ACK acks real data, we will erroneously exit
2423		 * connection startup slow start one packet too
2424		 * quickly.  This is severely frowned upon behavior.
2425		 */
2426		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2427			acked |= FLAG_DATA_ACKED;
2428			++pkts_acked;
2429		} else {
2430			acked |= FLAG_SYN_ACKED;
2431			tp->retrans_stamp = 0;
2432		}
2433
2434		/* MTU probing checks */
2435		if (icsk->icsk_mtup.probe_size) {
2436			if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2437				tcp_mtup_probe_success(sk, skb);
2438			}
2439		}
2440
2441		if (sacked) {
2442			if (sacked & TCPCB_RETRANS) {
2443				if (sacked & TCPCB_SACKED_RETRANS)
2444					tp->retrans_out -= tcp_skb_pcount(skb);
2445				acked |= FLAG_RETRANS_DATA_ACKED;
2446				seq_rtt = -1;
2447			} else if (seq_rtt < 0) {
2448				seq_rtt = now - scb->when;
2449				skb_get_timestamp(skb, &tv);
2450			}
2451			if (sacked & TCPCB_SACKED_ACKED)
2452				tp->sacked_out -= tcp_skb_pcount(skb);
2453			if (sacked & TCPCB_LOST)
2454				tp->lost_out -= tcp_skb_pcount(skb);
2455			if (sacked & TCPCB_URG) {
2456				if (tp->urg_mode &&
2457				    !before(scb->end_seq, tp->snd_up))
2458					tp->urg_mode = 0;
2459			}
2460		} else if (seq_rtt < 0) {
2461			seq_rtt = now - scb->when;
2462			skb_get_timestamp(skb, &tv);
2463		}
2464		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2465		tcp_packets_out_dec(tp, skb);
2466		tcp_unlink_write_queue(skb, sk);
2467		sk_stream_free_skb(sk, skb);
2468		clear_all_retrans_hints(tp);
2469	}
2470
2471	if (acked&FLAG_ACKED) {
2472		tcp_ack_update_rtt(sk, acked, seq_rtt);
2473		tcp_ack_packets_out(sk, tp);
2474		if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2475			(*rtt_sample)(sk, tcp_usrtt(&tv));
2476
2477		if (icsk->icsk_ca_ops->pkts_acked)
2478			icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2479	}
2480
2481#if FASTRETRANS_DEBUG > 0
2482	BUG_TRAP((int)tp->sacked_out >= 0);
2483	BUG_TRAP((int)tp->lost_out >= 0);
2484	BUG_TRAP((int)tp->retrans_out >= 0);
2485	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2486		const struct inet_connection_sock *icsk = inet_csk(sk);
2487		if (tp->lost_out) {
2488			printk(KERN_DEBUG "Leak l=%u %d\n",
2489			       tp->lost_out, icsk->icsk_ca_state);
2490			tp->lost_out = 0;
2491		}
2492		if (tp->sacked_out) {
2493			printk(KERN_DEBUG "Leak s=%u %d\n",
2494			       tp->sacked_out, icsk->icsk_ca_state);
2495			tp->sacked_out = 0;
2496		}
2497		if (tp->retrans_out) {
2498			printk(KERN_DEBUG "Leak r=%u %d\n",
2499			       tp->retrans_out, icsk->icsk_ca_state);
2500			tp->retrans_out = 0;
2501		}
2502	}
2503#endif
2504	*seq_rtt_p = seq_rtt;
2505	return acked;
2506}
2507
2508static void tcp_ack_probe(struct sock *sk)
2509{
2510	const struct tcp_sock *tp = tcp_sk(sk);
2511	struct inet_connection_sock *icsk = inet_csk(sk);
2512
2513	/* Was it a usable window open? */
2514
2515	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2516		   tp->snd_una + tp->snd_wnd)) {
2517		icsk->icsk_backoff = 0;
2518		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2519		/* Socket must be waked up by subsequent tcp_data_snd_check().
2520		 * This function is not for random using!
2521		 */
2522	} else {
2523		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2524					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2525					  TCP_RTO_MAX);
2526	}
2527}
2528
2529static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2530{
2531	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2532		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2533}
2534
2535static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2536{
2537	const struct tcp_sock *tp = tcp_sk(sk);
2538	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2539		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2540}
2541
2542/* Check that window update is acceptable.
2543 * The function assumes that snd_una<=ack<=snd_next.
2544 */
2545static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2546					const u32 ack_seq, const u32 nwin)
2547{
2548	return (after(ack, tp->snd_una) ||
2549		after(ack_seq, tp->snd_wl1) ||
2550		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2551}
2552
2553/* Update our send window.
2554 *
2555 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2556 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2557 */
2558static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2559				 struct sk_buff *skb, u32 ack, u32 ack_seq)
2560{
2561	int flag = 0;
2562	u32 nwin = ntohs(skb->h.th->window);
2563
2564	if (likely(!skb->h.th->syn))
2565		nwin <<= tp->rx_opt.snd_wscale;
2566
2567	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2568		flag |= FLAG_WIN_UPDATE;
2569		tcp_update_wl(tp, ack, ack_seq);
2570
2571		if (tp->snd_wnd != nwin) {
2572			tp->snd_wnd = nwin;
2573
2574			/* Note, it is the only place, where
2575			 * fast path is recovered for sending TCP.
2576			 */
2577			tp->pred_flags = 0;
2578			tcp_fast_path_check(sk, tp);
2579
2580			if (nwin > tp->max_window) {
2581				tp->max_window = nwin;
2582				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2583			}
2584		}
2585	}
2586
2587	tp->snd_una = ack;
2588
2589	return flag;
2590}
2591
2592/* A very conservative spurious RTO response algorithm: reduce cwnd and
2593 * continue in congestion avoidance.
2594 */
2595static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2596{
2597	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2598	tp->snd_cwnd_cnt = 0;
2599	tcp_moderate_cwnd(tp);
2600}
2601
2602/* A conservative spurious RTO response algorithm: reduce cwnd using
2603 * rate halving and continue in congestion avoidance.
2604 */
2605static void tcp_ratehalving_spur_to_response(struct sock *sk)
2606{
2607	tcp_enter_cwr(sk, 0);
2608}
2609
2610static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2611{
2612	if (flag&FLAG_ECE)
2613		tcp_ratehalving_spur_to_response(sk);
2614	else
2615		tcp_undo_cwr(sk, 1);
2616}
2617
2618/* F-RTO spurious RTO detection algorithm (RFC4138)
2619 *
2620 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2621 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2622 * window (but not to or beyond highest sequence sent before RTO):
2623 *   On First ACK,  send two new segments out.
2624 *   On Second ACK, RTO was likely spurious. Do spurious response (response
2625 *                  algorithm is not part of the F-RTO detection algorithm
2626 *                  given in RFC4138 but can be selected separately).
2627 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2628 * and TCP falls back to conventional RTO recovery.
2629 *
2630 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2631 * original window even after we transmit two new data segments.
2632 *
2633 * SACK version:
2634 *   on first step, wait until first cumulative ACK arrives, then move to
2635 *   the second step. In second step, the next ACK decides.
2636 *
2637 * F-RTO is implemented (mainly) in four functions:
2638 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
2639 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2640 *     called when tcp_use_frto() showed green light
2641 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2642 *   - tcp_enter_frto_loss() is called if there is not enough evidence
2643 *     to prove that the RTO is indeed spurious. It transfers the control
2644 *     from F-RTO to the conventional RTO recovery
2645 */
2646static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2647{
2648	struct tcp_sock *tp = tcp_sk(sk);
2649
2650	tcp_sync_left_out(tp);
2651
2652	/* Duplicate the behavior from Loss state (fastretrans_alert) */
2653	if (flag&FLAG_DATA_ACKED)
2654		inet_csk(sk)->icsk_retransmits = 0;
2655
2656	if (!before(tp->snd_una, tp->frto_highmark)) {
2657		tcp_enter_frto_loss(sk, tp->frto_counter + 1, flag);
2658		return 1;
2659	}
2660
2661	if (!IsSackFrto() || IsReno(tp)) {
2662		/* RFC4138 shortcoming in step 2; should also have case c):
2663		 * ACK isn't duplicate nor advances window, e.g., opposite dir
2664		 * data, winupdate
2665		 */
2666		if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2667		    !(flag&FLAG_FORWARD_PROGRESS))
2668			return 1;
2669
2670		if (!(flag&FLAG_DATA_ACKED)) {
2671			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2672					    flag);
2673			return 1;
2674		}
2675	} else {
2676		if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2677			/* Prevent sending of new data. */
2678			tp->snd_cwnd = min(tp->snd_cwnd,
2679					   tcp_packets_in_flight(tp));
2680			return 1;
2681		}
2682
2683		if ((tp->frto_counter == 2) &&
2684		    (!(flag&FLAG_FORWARD_PROGRESS) ||
2685		     ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2686			/* RFC4138 shortcoming (see comment above) */
2687			if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2688				return 1;
2689
2690			tcp_enter_frto_loss(sk, 3, flag);
2691			return 1;
2692		}
2693	}
2694
2695	if (tp->frto_counter == 1) {
2696		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2697		tp->frto_counter = 2;
2698		return 1;
2699	} else /* frto_counter == 2 */ {
2700		switch (sysctl_tcp_frto_response) {
2701		case 2:
2702			tcp_undo_spur_to_response(sk, flag);
2703			break;
2704		case 1:
2705			tcp_conservative_spur_to_response(tp);
2706			break;
2707		default:
2708			tcp_ratehalving_spur_to_response(sk);
2709			break;
2710		};
2711		tp->frto_counter = 0;
2712	}
2713	return 0;
2714}
2715
2716/* This routine deals with incoming acks, but not outgoing ones. */
2717static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2718{
2719	struct inet_connection_sock *icsk = inet_csk(sk);
2720	struct tcp_sock *tp = tcp_sk(sk);
2721	u32 prior_snd_una = tp->snd_una;
2722	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2723	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2724	u32 prior_in_flight;
2725	s32 seq_rtt;
2726	int prior_packets;
2727	int frto_cwnd = 0;
2728
2729	/* If the ack is newer than sent or older than previous acks
2730	 * then we can probably ignore it.
2731	 */
2732	if (after(ack, tp->snd_nxt))
2733		goto uninteresting_ack;
2734
2735	if (before(ack, prior_snd_una))
2736		goto old_ack;
2737
2738	if (sysctl_tcp_abc) {
2739		if (icsk->icsk_ca_state < TCP_CA_CWR)
2740			tp->bytes_acked += ack - prior_snd_una;
2741		else if (icsk->icsk_ca_state == TCP_CA_Loss)
2742			/* we assume just one segment left network */
2743			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2744	}
2745
2746	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2747		/* Window is constant, pure forward advance.
2748		 * No more checks are required.
2749		 * Note, we use the fact that SND.UNA>=SND.WL2.
2750		 */
2751		tcp_update_wl(tp, ack, ack_seq);
2752		tp->snd_una = ack;
2753		flag |= FLAG_WIN_UPDATE;
2754
2755		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2756
2757		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2758	} else {
2759		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2760			flag |= FLAG_DATA;
2761		else
2762			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2763
2764		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2765
2766		if (TCP_SKB_CB(skb)->sacked)
2767			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2768
2769		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2770			flag |= FLAG_ECE;
2771
2772		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2773	}
2774
2775	/* We passed data and got it acked, remove any soft error
2776	 * log. Something worked...
2777	 */
2778	sk->sk_err_soft = 0;
2779	tp->rcv_tstamp = tcp_time_stamp;
2780	prior_packets = tp->packets_out;
2781	if (!prior_packets)
2782		goto no_queue;
2783
2784	prior_in_flight = tcp_packets_in_flight(tp);
2785
2786	/* See if we can take anything off of the retransmit queue. */
2787	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2788
2789	if (tp->frto_counter)
2790		frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
2791
2792	if (tcp_ack_is_dubious(sk, flag)) {
2793		/* Advance CWND, if state allows this. */
2794		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2795		    tcp_may_raise_cwnd(sk, flag))
2796			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2797		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2798	} else {
2799		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2800			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2801	}
2802
2803	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2804		dst_confirm(sk->sk_dst_cache);
2805
2806	return 1;
2807
2808no_queue:
2809	icsk->icsk_probes_out = 0;
2810
2811	/* If this ack opens up a zero window, clear backoff.  It was
2812	 * being used to time the probes, and is probably far higher than
2813	 * it needs to be for normal retransmission.
2814	 */
2815	if (tcp_send_head(sk))
2816		tcp_ack_probe(sk);
2817	return 1;
2818
2819old_ack:
2820	if (TCP_SKB_CB(skb)->sacked)
2821		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2822
2823uninteresting_ack:
2824	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2825	return 0;
2826}
2827
2828
2829/* Look for tcp options. Normally only called on SYN and SYNACK packets.
2830 * But, this can also be called on packets in the established flow when
2831 * the fast version below fails.
2832 */
2833void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2834{
2835	unsigned char *ptr;
2836	struct tcphdr *th = skb->h.th;
2837	int length=(th->doff*4)-sizeof(struct tcphdr);
2838
2839	ptr = (unsigned char *)(th + 1);
2840	opt_rx->saw_tstamp = 0;
2841
2842	while (length > 0) {
2843		int opcode=*ptr++;
2844		int opsize;
2845
2846		switch (opcode) {
2847			case TCPOPT_EOL:
2848				return;
2849			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2850				length--;
2851				continue;
2852			default:
2853				opsize=*ptr++;
2854				if (opsize < 2) /* "silly options" */
2855					return;
2856				if (opsize > length)
2857					return;	/* don't parse partial options */
2858				switch (opcode) {
2859				case TCPOPT_MSS:
2860					if (opsize==TCPOLEN_MSS && th->syn && !estab) {
2861						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2862						if (in_mss) {
2863							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2864								in_mss = opt_rx->user_mss;
2865							opt_rx->mss_clamp = in_mss;
2866						}
2867					}
2868					break;
2869				case TCPOPT_WINDOW:
2870					if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
2871						if (sysctl_tcp_window_scaling) {
2872							__u8 snd_wscale = *(__u8 *) ptr;
2873							opt_rx->wscale_ok = 1;
2874							if (snd_wscale > 14) {
2875								if (net_ratelimit())
2876									printk(KERN_INFO "tcp_parse_options: Illegal window "
2877									       "scaling value %d >14 received.\n",
2878									       snd_wscale);
2879								snd_wscale = 14;
2880							}
2881							opt_rx->snd_wscale = snd_wscale;
2882						}
2883					break;
2884				case TCPOPT_TIMESTAMP:
2885					if (opsize==TCPOLEN_TIMESTAMP) {
2886						if ((estab && opt_rx->tstamp_ok) ||
2887						    (!estab && sysctl_tcp_timestamps)) {
2888							opt_rx->saw_tstamp = 1;
2889							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2890							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2891						}
2892					}
2893					break;
2894				case TCPOPT_SACK_PERM:
2895					if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2896						if (sysctl_tcp_sack) {
2897							opt_rx->sack_ok = 1;
2898							tcp_sack_reset(opt_rx);
2899						}
2900					}
2901					break;
2902
2903				case TCPOPT_SACK:
2904					if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2905					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2906					   opt_rx->sack_ok) {
2907						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2908					}
2909#ifdef CONFIG_TCP_MD5SIG
2910				case TCPOPT_MD5SIG:
2911					/*
2912					 * The MD5 Hash has already been
2913					 * checked (see tcp_v{4,6}_do_rcv()).
2914					 */
2915					break;
2916#endif
2917				};
2918				ptr+=opsize-2;
2919				length-=opsize;
2920		};
2921	}
2922}
2923
2924/* Fast parse options. This hopes to only see timestamps.
2925 * If it is wrong it falls back on tcp_parse_options().
2926 */
2927static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2928				  struct tcp_sock *tp)
2929{
2930	if (th->doff == sizeof(struct tcphdr)>>2) {
2931		tp->rx_opt.saw_tstamp = 0;
2932		return 0;
2933	} else if (tp->rx_opt.tstamp_ok &&
2934		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2935		__be32 *ptr = (__be32 *)(th + 1);
2936		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2937				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2938			tp->rx_opt.saw_tstamp = 1;
2939			++ptr;
2940			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2941			++ptr;
2942			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2943			return 1;
2944		}
2945	}
2946	tcp_parse_options(skb, &tp->rx_opt, 1);
2947	return 1;
2948}
2949
2950static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2951{
2952	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2953	tp->rx_opt.ts_recent_stamp = get_seconds();
2954}
2955
2956static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2957{
2958	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2959		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2960		 * extra check below makes sure this can only happen
2961		 * for pure ACK frames.  -DaveM
2962		 *
2963		 * Not only, also it occurs for expired timestamps.
2964		 */
2965
2966		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2967		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2968			tcp_store_ts_recent(tp);
2969	}
2970}
2971
2972/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2973 *
2974 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2975 * it can pass through stack. So, the following predicate verifies that
2976 * this segment is not used for anything but congestion avoidance or
2977 * fast retransmit. Moreover, we even are able to eliminate most of such
2978 * second order effects, if we apply some small "replay" window (~RTO)
2979 * to timestamp space.
2980 *
2981 * All these measures still do not guarantee that we reject wrapped ACKs
2982 * on networks with high bandwidth, when sequence space is recycled fastly,
2983 * but it guarantees that such events will be very rare and do not affect
2984 * connection seriously. This doesn't look nice, but alas, PAWS is really
2985 * buggy extension.
2986 *
2987 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2988 * states that events when retransmit arrives after original data are rare.
2989 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2990 * the biggest problem on large power networks even with minor reordering.
2991 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2992 * up to bandwidth of 18Gigabit/sec. 8) ]
2993 */
2994
2995static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2996{
2997	struct tcp_sock *tp = tcp_sk(sk);
2998	struct tcphdr *th = skb->h.th;
2999	u32 seq = TCP_SKB_CB(skb)->seq;
3000	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3001
3002	return (/* 1. Pure ACK with correct sequence number. */
3003		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3004
3005		/* 2. ... and duplicate ACK. */
3006		ack == tp->snd_una &&
3007
3008		/* 3. ... and does not update window. */
3009		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3010
3011		/* 4. ... and sits in replay window. */
3012		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3013}
3014
3015static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3016{
3017	const struct tcp_sock *tp = tcp_sk(sk);
3018	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3019		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3020		!tcp_disordered_ack(sk, skb));
3021}
3022
3023/* Check segment sequence number for validity.
3024 *
3025 * Segment controls are considered valid, if the segment
3026 * fits to the window after truncation to the window. Acceptability
3027 * of data (and SYN, FIN, of course) is checked separately.
3028 * See tcp_data_queue(), for example.
3029 *
3030 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3031 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3032 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3033 * (borrowed from freebsd)
3034 */
3035
3036static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3037{
3038	return	!before(end_seq, tp->rcv_wup) &&
3039		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3040}
3041
3042/* When we get a reset we do this. */
3043static void tcp_reset(struct sock *sk)
3044{
3045	/* We want the right error as BSD sees it (and indeed as we do). */
3046	switch (sk->sk_state) {
3047		case TCP_SYN_SENT:
3048			sk->sk_err = ECONNREFUSED;
3049			break;
3050		case TCP_CLOSE_WAIT:
3051			sk->sk_err = EPIPE;
3052			break;
3053		case TCP_CLOSE:
3054			return;
3055		default:
3056			sk->sk_err = ECONNRESET;
3057	}
3058
3059	if (!sock_flag(sk, SOCK_DEAD))
3060		sk->sk_error_report(sk);
3061
3062	tcp_done(sk);
3063}
3064
3065/*
3066 * 	Process the FIN bit. This now behaves as it is supposed to work
3067 *	and the FIN takes effect when it is validly part of sequence
3068 *	space. Not before when we get holes.
3069 *
3070 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3071 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3072 *	TIME-WAIT)
3073 *
3074 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3075 *	close and we go into CLOSING (and later onto TIME-WAIT)
3076 *
3077 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3078 */
3079static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3080{
3081	struct tcp_sock *tp = tcp_sk(sk);
3082
3083	inet_csk_schedule_ack(sk);
3084
3085	sk->sk_shutdown |= RCV_SHUTDOWN;
3086	sock_set_flag(sk, SOCK_DONE);
3087
3088	switch (sk->sk_state) {
3089		case TCP_SYN_RECV:
3090		case TCP_ESTABLISHED:
3091			/* Move to CLOSE_WAIT */
3092			tcp_set_state(sk, TCP_CLOSE_WAIT);
3093			inet_csk(sk)->icsk_ack.pingpong = 1;
3094			break;
3095
3096		case TCP_CLOSE_WAIT:
3097		case TCP_CLOSING:
3098			/* Received a retransmission of the FIN, do
3099			 * nothing.
3100			 */
3101			break;
3102		case TCP_LAST_ACK:
3103			/* RFC793: Remain in the LAST-ACK state. */
3104			break;
3105
3106		case TCP_FIN_WAIT1:
3107			/* This case occurs when a simultaneous close
3108			 * happens, we must ack the received FIN and
3109			 * enter the CLOSING state.
3110			 */
3111			tcp_send_ack(sk);
3112			tcp_set_state(sk, TCP_CLOSING);
3113			break;
3114		case TCP_FIN_WAIT2:
3115			/* Received a FIN -- send ACK and enter TIME_WAIT. */
3116			tcp_send_ack(sk);
3117			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3118			break;
3119		default:
3120			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3121			 * cases we should never reach this piece of code.
3122			 */
3123			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3124			       __FUNCTION__, sk->sk_state);
3125			break;
3126	};
3127
3128	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3129	 * Probably, we should reset in this case. For now drop them.
3130	 */
3131	__skb_queue_purge(&tp->out_of_order_queue);
3132	if (tp->rx_opt.sack_ok)
3133		tcp_sack_reset(&tp->rx_opt);
3134	sk_stream_mem_reclaim(sk);
3135
3136	if (!sock_flag(sk, SOCK_DEAD)) {
3137		sk->sk_state_change(sk);
3138
3139		/* Do not send POLL_HUP for half duplex close. */
3140		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3141		    sk->sk_state == TCP_CLOSE)
3142			sk_wake_async(sk, 1, POLL_HUP);
3143		else
3144			sk_wake_async(sk, 1, POLL_IN);
3145	}
3146}
3147
3148static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3149{
3150	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3151		if (before(seq, sp->start_seq))
3152			sp->start_seq = seq;
3153		if (after(end_seq, sp->end_seq))
3154			sp->end_seq = end_seq;
3155		return 1;
3156	}
3157	return 0;
3158}
3159
3160static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3161{
3162	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3163		if (before(seq, tp->rcv_nxt))
3164			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3165		else
3166			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3167
3168		tp->rx_opt.dsack = 1;
3169		tp->duplicate_sack[0].start_seq = seq;
3170		tp->duplicate_sack[0].end_seq = end_seq;
3171		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3172	}
3173}
3174
3175static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3176{
3177	if (!tp->rx_opt.dsack)
3178		tcp_dsack_set(tp, seq, end_seq);
3179	else
3180		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3181}
3182
3183static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3184{
3185	struct tcp_sock *tp = tcp_sk(sk);
3186
3187	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3188	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3189		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3190		tcp_enter_quickack_mode(sk);
3191
3192		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3193			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3194
3195			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3196				end_seq = tp->rcv_nxt;
3197			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3198		}
3199	}
3200
3201	tcp_send_ack(sk);
3202}
3203
3204/* These routines update the SACK block as out-of-order packets arrive or
3205 * in-order packets close up the sequence space.
3206 */
3207static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3208{
3209	int this_sack;
3210	struct tcp_sack_block *sp = &tp->selective_acks[0];
3211	struct tcp_sack_block *swalk = sp+1;
3212
3213	/* See if the recent change to the first SACK eats into
3214	 * or hits the sequence space of other SACK blocks, if so coalesce.
3215	 */
3216	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3217		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3218			int i;
3219
3220			/* Zap SWALK, by moving every further SACK up by one slot.
3221			 * Decrease num_sacks.
3222			 */
3223			tp->rx_opt.num_sacks--;
3224			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3225			for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3226				sp[i] = sp[i+1];
3227			continue;
3228		}
3229		this_sack++, swalk++;
3230	}
3231}
3232
3233static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3234{
3235	__u32 tmp;
3236
3237	tmp = sack1->start_seq;
3238	sack1->start_seq = sack2->start_seq;
3239	sack2->start_seq = tmp;
3240
3241	tmp = sack1->end_seq;
3242	sack1->end_seq = sack2->end_seq;
3243	sack2->end_seq = tmp;
3244}
3245
3246static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3247{
3248	struct tcp_sock *tp = tcp_sk(sk);
3249	struct tcp_sack_block *sp = &tp->selective_acks[0];
3250	int cur_sacks = tp->rx_opt.num_sacks;
3251	int this_sack;
3252
3253	if (!cur_sacks)
3254		goto new_sack;
3255
3256	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3257		if (tcp_sack_extend(sp, seq, end_seq)) {
3258			/* Rotate this_sack to the first one. */
3259			for (; this_sack>0; this_sack--, sp--)
3260				tcp_sack_swap(sp, sp-1);
3261			if (cur_sacks > 1)
3262				tcp_sack_maybe_coalesce(tp);
3263			return;
3264		}
3265	}
3266
3267	/* Could not find an adjacent existing SACK, build a new one,
3268	 * put it at the front, and shift everyone else down.  We
3269	 * always know there is at least one SACK present already here.
3270	 *
3271	 * If the sack array is full, forget about the last one.
3272	 */
3273	if (this_sack >= 4) {
3274		this_sack--;
3275		tp->rx_opt.num_sacks--;
3276		sp--;
3277	}
3278	for (; this_sack > 0; this_sack--, sp--)
3279		*sp = *(sp-1);
3280
3281new_sack:
3282	/* Build the new head SACK, and we're done. */
3283	sp->start_seq = seq;
3284	sp->end_seq = end_seq;
3285	tp->rx_opt.num_sacks++;
3286	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3287}
3288
3289/* RCV.NXT advances, some SACKs should be eaten. */
3290
3291static void tcp_sack_remove(struct tcp_sock *tp)
3292{
3293	struct tcp_sack_block *sp = &tp->selective_acks[0];
3294	int num_sacks = tp->rx_opt.num_sacks;
3295	int this_sack;
3296
3297	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3298	if (skb_queue_empty(&tp->out_of_order_queue)) {
3299		tp->rx_opt.num_sacks = 0;
3300		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3301		return;
3302	}
3303
3304	for (this_sack = 0; this_sack < num_sacks; ) {
3305		/* Check if the start of the sack is covered by RCV.NXT. */
3306		if (!before(tp->rcv_nxt, sp->start_seq)) {
3307			int i;
3308
3309			/* RCV.NXT must cover all the block! */
3310			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3311
3312			/* Zap this SACK, by moving forward any other SACKS. */
3313			for (i=this_sack+1; i < num_sacks; i++)
3314				tp->selective_acks[i-1] = tp->selective_acks[i];
3315			num_sacks--;
3316			continue;
3317		}
3318		this_sack++;
3319		sp++;
3320	}
3321	if (num_sacks != tp->rx_opt.num_sacks) {
3322		tp->rx_opt.num_sacks = num_sacks;
3323		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3324	}
3325}
3326
3327/* This one checks to see if we can put data from the
3328 * out_of_order queue into the receive_queue.
3329 */
3330static void tcp_ofo_queue(struct sock *sk)
3331{
3332	struct tcp_sock *tp = tcp_sk(sk);
3333	__u32 dsack_high = tp->rcv_nxt;
3334	struct sk_buff *skb;
3335
3336	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3337		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3338			break;
3339
3340		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3341			__u32 dsack = dsack_high;
3342			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3343				dsack_high = TCP_SKB_CB(skb)->end_seq;
3344			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3345		}
3346
3347		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3348			SOCK_DEBUG(sk, "ofo packet was already received \n");
3349			__skb_unlink(skb, &tp->out_of_order_queue);
3350			__kfree_skb(skb);
3351			continue;
3352		}
3353		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3354			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3355			   TCP_SKB_CB(skb)->end_seq);
3356
3357		__skb_unlink(skb, &tp->out_of_order_queue);
3358		__skb_queue_tail(&sk->sk_receive_queue, skb);
3359		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3360		if (skb->h.th->fin)
3361			tcp_fin(skb, sk, skb->h.th);
3362	}
3363}
3364
3365static int tcp_prune_queue(struct sock *sk);
3366
3367static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3368{
3369	struct tcphdr *th = skb->h.th;
3370	struct tcp_sock *tp = tcp_sk(sk);
3371	int eaten = -1;
3372
3373	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3374		goto drop;
3375
3376	__skb_pull(skb, th->doff*4);
3377
3378	TCP_ECN_accept_cwr(tp, skb);
3379
3380	if (tp->rx_opt.dsack) {
3381		tp->rx_opt.dsack = 0;
3382		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3383						    4 - tp->rx_opt.tstamp_ok);
3384	}
3385
3386	/*  Queue data for delivery to the user.
3387	 *  Packets in sequence go to the receive queue.
3388	 *  Out of sequence packets to the out_of_order_queue.
3389	 */
3390	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3391		if (tcp_receive_window(tp) == 0)
3392			goto out_of_window;
3393
3394		/* Ok. In sequence. In window. */
3395		if (tp->ucopy.task == current &&
3396		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3397		    sock_owned_by_user(sk) && !tp->urg_data) {
3398			int chunk = min_t(unsigned int, skb->len,
3399							tp->ucopy.len);
3400
3401			__set_current_state(TASK_RUNNING);
3402
3403			local_bh_enable();
3404			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3405				tp->ucopy.len -= chunk;
3406				tp->copied_seq += chunk;
3407				eaten = (chunk == skb->len && !th->fin);
3408				tcp_rcv_space_adjust(sk);
3409			}
3410			local_bh_disable();
3411		}
3412
3413		if (eaten <= 0) {
3414queue_and_out:
3415			if (eaten < 0 &&
3416			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3417			     !sk_stream_rmem_schedule(sk, skb))) {
3418				if (tcp_prune_queue(sk) < 0 ||
3419				    !sk_stream_rmem_schedule(sk, skb))
3420					goto drop;
3421			}
3422			sk_stream_set_owner_r(skb, sk);
3423			__skb_queue_tail(&sk->sk_receive_queue, skb);
3424		}
3425		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3426		if (skb->len)
3427			tcp_event_data_recv(sk, tp, skb);
3428		if (th->fin)
3429			tcp_fin(skb, sk, th);
3430
3431		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3432			tcp_ofo_queue(sk);
3433
3434			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3435			 * gap in queue is filled.
3436			 */
3437			if (skb_queue_empty(&tp->out_of_order_queue))
3438				inet_csk(sk)->icsk_ack.pingpong = 0;
3439		}
3440
3441		if (tp->rx_opt.num_sacks)
3442			tcp_sack_remove(tp);
3443
3444		tcp_fast_path_check(sk, tp);
3445
3446		if (eaten > 0)
3447			__kfree_skb(skb);
3448		else if (!sock_flag(sk, SOCK_DEAD))
3449			sk->sk_data_ready(sk, 0);
3450		return;
3451	}
3452
3453	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3454		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3455		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3456		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3457
3458out_of_window:
3459		tcp_enter_quickack_mode(sk);
3460		inet_csk_schedule_ack(sk);
3461drop:
3462		__kfree_skb(skb);
3463		return;
3464	}
3465
3466	/* Out of window. F.e. zero window probe. */
3467	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3468		goto out_of_window;
3469
3470	tcp_enter_quickack_mode(sk);
3471
3472	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3473		/* Partial packet, seq < rcv_next < end_seq */
3474		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3475			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3476			   TCP_SKB_CB(skb)->end_seq);
3477
3478		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3479
3480		/* If window is closed, drop tail of packet. But after
3481		 * remembering D-SACK for its head made in previous line.
3482		 */
3483		if (!tcp_receive_window(tp))
3484			goto out_of_window;
3485		goto queue_and_out;
3486	}
3487
3488	TCP_ECN_check_ce(tp, skb);
3489
3490	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3491	    !sk_stream_rmem_schedule(sk, skb)) {
3492		if (tcp_prune_queue(sk) < 0 ||
3493		    !sk_stream_rmem_schedule(sk, skb))
3494			goto drop;
3495	}
3496
3497	/* Disable header prediction. */
3498	tp->pred_flags = 0;
3499	inet_csk_schedule_ack(sk);
3500
3501	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3502		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3503
3504	sk_stream_set_owner_r(skb, sk);
3505
3506	if (!skb_peek(&tp->out_of_order_queue)) {
3507		/* Initial out of order segment, build 1 SACK. */
3508		if (tp->rx_opt.sack_ok) {
3509			tp->rx_opt.num_sacks = 1;
3510			tp->rx_opt.dsack     = 0;
3511			tp->rx_opt.eff_sacks = 1;
3512			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3513			tp->selective_acks[0].end_seq =
3514						TCP_SKB_CB(skb)->end_seq;
3515		}
3516		__skb_queue_head(&tp->out_of_order_queue,skb);
3517	} else {
3518		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3519		u32 seq = TCP_SKB_CB(skb)->seq;
3520		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3521
3522		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3523			__skb_append(skb1, skb, &tp->out_of_order_queue);
3524
3525			if (!tp->rx_opt.num_sacks ||
3526			    tp->selective_acks[0].end_seq != seq)
3527				goto add_sack;
3528
3529			/* Common case: data arrive in order after hole. */
3530			tp->selective_acks[0].end_seq = end_seq;
3531			return;
3532		}
3533
3534		/* Find place to insert this segment. */
3535		do {
3536			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3537				break;
3538		} while ((skb1 = skb1->prev) !=
3539			 (struct sk_buff*)&tp->out_of_order_queue);
3540
3541		/* Do skb overlap to previous one? */
3542		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3543		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3544			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3545				/* All the bits are present. Drop. */
3546				__kfree_skb(skb);
3547				tcp_dsack_set(tp, seq, end_seq);
3548				goto add_sack;
3549			}
3550			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3551				/* Partial overlap. */
3552				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3553			} else {
3554				skb1 = skb1->prev;
3555			}
3556		}
3557		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3558
3559		/* And clean segments covered by new one as whole. */
3560		while ((skb1 = skb->next) !=
3561		       (struct sk_buff*)&tp->out_of_order_queue &&
3562		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3563		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3564			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3565			       break;
3566		       }
3567		       __skb_unlink(skb1, &tp->out_of_order_queue);
3568		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3569		       __kfree_skb(skb1);
3570		}
3571
3572add_sack:
3573		if (tp->rx_opt.sack_ok)
3574			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3575	}
3576}
3577
3578/* Collapse contiguous sequence of skbs head..tail with
3579 * sequence numbers start..end.
3580 * Segments with FIN/SYN are not collapsed (only because this
3581 * simplifies code)
3582 */
3583static void
3584tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3585	     struct sk_buff *head, struct sk_buff *tail,
3586	     u32 start, u32 end)
3587{
3588	struct sk_buff *skb;
3589
3590	/* First, check that queue is collapsible and find
3591	 * the point where collapsing can be useful. */
3592	for (skb = head; skb != tail; ) {
3593		/* No new bits? It is possible on ofo queue. */
3594		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3595			struct sk_buff *next = skb->next;
3596			__skb_unlink(skb, list);
3597			__kfree_skb(skb);
3598			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3599			skb = next;
3600			continue;
3601		}
3602
3603		/* The first skb to collapse is:
3604		 * - not SYN/FIN and
3605		 * - bloated or contains data before "start" or
3606		 *   overlaps to the next one.
3607		 */
3608		if (!skb->h.th->syn && !skb->h.th->fin &&
3609		    (tcp_win_from_space(skb->truesize) > skb->len ||
3610		     before(TCP_SKB_CB(skb)->seq, start) ||
3611		     (skb->next != tail &&
3612		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3613			break;
3614
3615		/* Decided to skip this, advance start seq. */
3616		start = TCP_SKB_CB(skb)->end_seq;
3617		skb = skb->next;
3618	}
3619	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3620		return;
3621
3622	while (before(start, end)) {
3623		struct sk_buff *nskb;
3624		int header = skb_headroom(skb);
3625		int copy = SKB_MAX_ORDER(header, 0);
3626
3627		/* Too big header? This can happen with IPv6. */
3628		if (copy < 0)
3629			return;
3630		if (end-start < copy)
3631			copy = end-start;
3632		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3633		if (!nskb)
3634			return;
3635
3636		skb_set_mac_header(nskb, skb->mac.raw - skb->head);
3637		nskb->nh.raw = nskb->data + (skb->nh.raw - skb->head);
3638		nskb->h.raw = nskb->data + (skb->h.raw - skb->head);
3639
3640		skb_reserve(nskb, header);
3641		memcpy(nskb->head, skb->head, header);
3642		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3643		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3644		__skb_insert(nskb, skb->prev, skb, list);
3645		sk_stream_set_owner_r(nskb, sk);
3646
3647		/* Copy data, releasing collapsed skbs. */
3648		while (copy > 0) {
3649			int offset = start - TCP_SKB_CB(skb)->seq;
3650			int size = TCP_SKB_CB(skb)->end_seq - start;
3651
3652			BUG_ON(offset < 0);
3653			if (size > 0) {
3654				size = min(copy, size);
3655				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3656					BUG();
3657				TCP_SKB_CB(nskb)->end_seq += size;
3658				copy -= size;
3659				start += size;
3660			}
3661			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3662				struct sk_buff *next = skb->next;
3663				__skb_unlink(skb, list);
3664				__kfree_skb(skb);
3665				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3666				skb = next;
3667				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3668					return;
3669			}
3670		}
3671	}
3672}
3673
3674/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3675 * and tcp_collapse() them until all the queue is collapsed.
3676 */
3677static void tcp_collapse_ofo_queue(struct sock *sk)
3678{
3679	struct tcp_sock *tp = tcp_sk(sk);
3680	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3681	struct sk_buff *head;
3682	u32 start, end;
3683
3684	if (skb == NULL)
3685		return;
3686
3687	start = TCP_SKB_CB(skb)->seq;
3688	end = TCP_SKB_CB(skb)->end_seq;
3689	head = skb;
3690
3691	for (;;) {
3692		skb = skb->next;
3693
3694		/* Segment is terminated when we see gap or when
3695		 * we are at the end of all the queue. */
3696		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3697		    after(TCP_SKB_CB(skb)->seq, end) ||
3698		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3699			tcp_collapse(sk, &tp->out_of_order_queue,
3700				     head, skb, start, end);
3701			head = skb;
3702			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3703				break;
3704			/* Start new segment */
3705			start = TCP_SKB_CB(skb)->seq;
3706			end = TCP_SKB_CB(skb)->end_seq;
3707		} else {
3708			if (before(TCP_SKB_CB(skb)->seq, start))
3709				start = TCP_SKB_CB(skb)->seq;
3710			if (after(TCP_SKB_CB(skb)->end_seq, end))
3711				end = TCP_SKB_CB(skb)->end_seq;
3712		}
3713	}
3714}
3715
3716/* Reduce allocated memory if we can, trying to get
3717 * the socket within its memory limits again.
3718 *
3719 * Return less than zero if we should start dropping frames
3720 * until the socket owning process reads some of the data
3721 * to stabilize the situation.
3722 */
3723static int tcp_prune_queue(struct sock *sk)
3724{
3725	struct tcp_sock *tp = tcp_sk(sk);
3726
3727	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3728
3729	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3730
3731	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3732		tcp_clamp_window(sk, tp);
3733	else if (tcp_memory_pressure)
3734		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3735
3736	tcp_collapse_ofo_queue(sk);
3737	tcp_collapse(sk, &sk->sk_receive_queue,
3738		     sk->sk_receive_queue.next,
3739		     (struct sk_buff*)&sk->sk_receive_queue,
3740		     tp->copied_seq, tp->rcv_nxt);
3741	sk_stream_mem_reclaim(sk);
3742
3743	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3744		return 0;
3745
3746	/* Collapsing did not help, destructive actions follow.
3747	 * This must not ever occur. */
3748
3749	/* First, purge the out_of_order queue. */
3750	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3751		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3752		__skb_queue_purge(&tp->out_of_order_queue);
3753
3754		/* Reset SACK state.  A conforming SACK implementation will
3755		 * do the same at a timeout based retransmit.  When a connection
3756		 * is in a sad state like this, we care only about integrity
3757		 * of the connection not performance.
3758		 */
3759		if (tp->rx_opt.sack_ok)
3760			tcp_sack_reset(&tp->rx_opt);
3761		sk_stream_mem_reclaim(sk);
3762	}
3763
3764	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3765		return 0;
3766
3767	/* If we are really being abused, tell the caller to silently
3768	 * drop receive data on the floor.  It will get retransmitted
3769	 * and hopefully then we'll have sufficient space.
3770	 */
3771	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3772
3773	/* Massive buffer overcommit. */
3774	tp->pred_flags = 0;
3775	return -1;
3776}
3777
3778
3779/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3780 * As additional protections, we do not touch cwnd in retransmission phases,
3781 * and if application hit its sndbuf limit recently.
3782 */
3783void tcp_cwnd_application_limited(struct sock *sk)
3784{
3785	struct tcp_sock *tp = tcp_sk(sk);
3786
3787	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3788	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3789		/* Limited by application or receiver window. */
3790		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3791		u32 win_used = max(tp->snd_cwnd_used, init_win);
3792		if (win_used < tp->snd_cwnd) {
3793			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3794			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3795		}
3796		tp->snd_cwnd_used = 0;
3797	}
3798	tp->snd_cwnd_stamp = tcp_time_stamp;
3799}
3800
3801static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3802{
3803	/* If the user specified a specific send buffer setting, do
3804	 * not modify it.
3805	 */
3806	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3807		return 0;
3808
3809	/* If we are under global TCP memory pressure, do not expand.  */
3810	if (tcp_memory_pressure)
3811		return 0;
3812
3813	/* If we are under soft global TCP memory pressure, do not expand.  */
3814	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3815		return 0;
3816
3817	/* If we filled the congestion window, do not expand.  */
3818	if (tp->packets_out >= tp->snd_cwnd)
3819		return 0;
3820
3821	return 1;
3822}
3823
3824/* When incoming ACK allowed to free some skb from write_queue,
3825 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3826 * on the exit from tcp input handler.
3827 *
3828 * PROBLEM: sndbuf expansion does not work well with largesend.
3829 */
3830static void tcp_new_space(struct sock *sk)
3831{
3832	struct tcp_sock *tp = tcp_sk(sk);
3833
3834	if (tcp_should_expand_sndbuf(sk, tp)) {
3835		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3836			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3837		    demanded = max_t(unsigned int, tp->snd_cwnd,
3838						   tp->reordering + 1);
3839		sndmem *= 2*demanded;
3840		if (sndmem > sk->sk_sndbuf)
3841			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3842		tp->snd_cwnd_stamp = tcp_time_stamp;
3843	}
3844
3845	sk->sk_write_space(sk);
3846}
3847
3848static void tcp_check_space(struct sock *sk)
3849{
3850	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3851		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3852		if (sk->sk_socket &&
3853		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3854			tcp_new_space(sk);
3855	}
3856}
3857
3858static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3859{
3860	tcp_push_pending_frames(sk, tp);
3861	tcp_check_space(sk);
3862}
3863
3864/*
3865 * Check if sending an ack is needed.
3866 */
3867static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3868{
3869	struct tcp_sock *tp = tcp_sk(sk);
3870
3871	    /* More than one full frame received... */
3872	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3873	     /* ... and right edge of window advances far enough.
3874	      * (tcp_recvmsg() will send ACK otherwise). Or...
3875	      */
3876	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3877	    /* We ACK each frame or... */
3878	    tcp_in_quickack_mode(sk) ||
3879	    /* We have out of order data. */
3880	    (ofo_possible &&
3881	     skb_peek(&tp->out_of_order_queue))) {
3882		/* Then ack it now */
3883		tcp_send_ack(sk);
3884	} else {
3885		/* Else, send delayed ack. */
3886		tcp_send_delayed_ack(sk);
3887	}
3888}
3889
3890static inline void tcp_ack_snd_check(struct sock *sk)
3891{
3892	if (!inet_csk_ack_scheduled(sk)) {
3893		/* We sent a data segment already. */
3894		return;
3895	}
3896	__tcp_ack_snd_check(sk, 1);
3897}
3898
3899/*
3900 *	This routine is only called when we have urgent data
3901 *	signaled. Its the 'slow' part of tcp_urg. It could be
3902 *	moved inline now as tcp_urg is only called from one
3903 *	place. We handle URGent data wrong. We have to - as
3904 *	BSD still doesn't use the correction from RFC961.
3905 *	For 1003.1g we should support a new option TCP_STDURG to permit
3906 *	either form (or just set the sysctl tcp_stdurg).
3907 */
3908
3909static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3910{
3911	struct tcp_sock *tp = tcp_sk(sk);
3912	u32 ptr = ntohs(th->urg_ptr);
3913
3914	if (ptr && !sysctl_tcp_stdurg)
3915		ptr--;
3916	ptr += ntohl(th->seq);
3917
3918	/* Ignore urgent data that we've already seen and read. */
3919	if (after(tp->copied_seq, ptr))
3920		return;
3921
3922	/* Do not replay urg ptr.
3923	 *
3924	 * NOTE: interesting situation not covered by specs.
3925	 * Misbehaving sender may send urg ptr, pointing to segment,
3926	 * which we already have in ofo queue. We are not able to fetch
3927	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3928	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3929	 * situations. But it is worth to think about possibility of some
3930	 * DoSes using some hypothetical application level deadlock.
3931	 */
3932	if (before(ptr, tp->rcv_nxt))
3933		return;
3934
3935	/* Do we already have a newer (or duplicate) urgent pointer? */
3936	if (tp->urg_data && !after(ptr, tp->urg_seq))
3937		return;
3938
3939	/* Tell the world about our new urgent pointer. */
3940	sk_send_sigurg(sk);
3941
3942	/* We may be adding urgent data when the last byte read was
3943	 * urgent. To do this requires some care. We cannot just ignore
3944	 * tp->copied_seq since we would read the last urgent byte again
3945	 * as data, nor can we alter copied_seq until this data arrives
3946	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3947	 *
3948	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3949	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3950	 * and expect that both A and B disappear from stream. This is _wrong_.
3951	 * Though this happens in BSD with high probability, this is occasional.
3952	 * Any application relying on this is buggy. Note also, that fix "works"
3953	 * only in this artificial test. Insert some normal data between A and B and we will
3954	 * decline of BSD again. Verdict: it is better to remove to trap
3955	 * buggy users.
3956	 */
3957	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3958	    !sock_flag(sk, SOCK_URGINLINE) &&
3959	    tp->copied_seq != tp->rcv_nxt) {
3960		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3961		tp->copied_seq++;
3962		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3963			__skb_unlink(skb, &sk->sk_receive_queue);
3964			__kfree_skb(skb);
3965		}
3966	}
3967
3968	tp->urg_data   = TCP_URG_NOTYET;
3969	tp->urg_seq    = ptr;
3970
3971	/* Disable header prediction. */
3972	tp->pred_flags = 0;
3973}
3974
3975/* This is the 'fast' part of urgent handling. */
3976static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3977{
3978	struct tcp_sock *tp = tcp_sk(sk);
3979
3980	/* Check if we get a new urgent pointer - normally not. */
3981	if (th->urg)
3982		tcp_check_urg(sk,th);
3983
3984	/* Do we wait for any urgent data? - normally not... */
3985	if (tp->urg_data == TCP_URG_NOTYET) {
3986		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3987			  th->syn;
3988
3989		/* Is the urgent pointer pointing into this packet? */
3990		if (ptr < skb->len) {
3991			u8 tmp;
3992			if (skb_copy_bits(skb, ptr, &tmp, 1))
3993				BUG();
3994			tp->urg_data = TCP_URG_VALID | tmp;
3995			if (!sock_flag(sk, SOCK_DEAD))
3996				sk->sk_data_ready(sk, 0);
3997		}
3998	}
3999}
4000
4001static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4002{
4003	struct tcp_sock *tp = tcp_sk(sk);
4004	int chunk = skb->len - hlen;
4005	int err;
4006
4007	local_bh_enable();
4008	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
4009		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4010	else
4011		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4012						       tp->ucopy.iov);
4013
4014	if (!err) {
4015		tp->ucopy.len -= chunk;
4016		tp->copied_seq += chunk;
4017		tcp_rcv_space_adjust(sk);
4018	}
4019
4020	local_bh_disable();
4021	return err;
4022}
4023
4024static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4025{
4026	__sum16 result;
4027
4028	if (sock_owned_by_user(sk)) {
4029		local_bh_enable();
4030		result = __tcp_checksum_complete(skb);
4031		local_bh_disable();
4032	} else {
4033		result = __tcp_checksum_complete(skb);
4034	}
4035	return result;
4036}
4037
4038static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4039{
4040	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
4041		__tcp_checksum_complete_user(sk, skb);
4042}
4043
4044#ifdef CONFIG_NET_DMA
4045static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4046{
4047	struct tcp_sock *tp = tcp_sk(sk);
4048	int chunk = skb->len - hlen;
4049	int dma_cookie;
4050	int copied_early = 0;
4051
4052	if (tp->ucopy.wakeup)
4053		return 0;
4054
4055	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4056		tp->ucopy.dma_chan = get_softnet_dma();
4057
4058	if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
4059
4060		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4061			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4062
4063		if (dma_cookie < 0)
4064			goto out;
4065
4066		tp->ucopy.dma_cookie = dma_cookie;
4067		copied_early = 1;
4068
4069		tp->ucopy.len -= chunk;
4070		tp->copied_seq += chunk;
4071		tcp_rcv_space_adjust(sk);
4072
4073		if ((tp->ucopy.len == 0) ||
4074		    (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
4075		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4076			tp->ucopy.wakeup = 1;
4077			sk->sk_data_ready(sk, 0);
4078		}
4079	} else if (chunk > 0) {
4080		tp->ucopy.wakeup = 1;
4081		sk->sk_data_ready(sk, 0);
4082	}
4083out:
4084	return copied_early;
4085}
4086#endif /* CONFIG_NET_DMA */
4087
4088/*
4089 *	TCP receive function for the ESTABLISHED state.
4090 *
4091 *	It is split into a fast path and a slow path. The fast path is
4092 * 	disabled when:
4093 *	- A zero window was announced from us - zero window probing
4094 *        is only handled properly in the slow path.
4095 *	- Out of order segments arrived.
4096 *	- Urgent data is expected.
4097 *	- There is no buffer space left
4098 *	- Unexpected TCP flags/window values/header lengths are received
4099 *	  (detected by checking the TCP header against pred_flags)
4100 *	- Data is sent in both directions. Fast path only supports pure senders
4101 *	  or pure receivers (this means either the sequence number or the ack
4102 *	  value must stay constant)
4103 *	- Unexpected TCP option.
4104 *
4105 *	When these conditions are not satisfied it drops into a standard
4106 *	receive procedure patterned after RFC793 to handle all cases.
4107 *	The first three cases are guaranteed by proper pred_flags setting,
4108 *	the rest is checked inline. Fast processing is turned on in
4109 *	tcp_data_queue when everything is OK.
4110 */
4111int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4112			struct tcphdr *th, unsigned len)
4113{
4114	struct tcp_sock *tp = tcp_sk(sk);
4115
4116	/*
4117	 *	Header prediction.
4118	 *	The code loosely follows the one in the famous
4119	 *	"30 instruction TCP receive" Van Jacobson mail.
4120	 *
4121	 *	Van's trick is to deposit buffers into socket queue
4122	 *	on a device interrupt, to call tcp_recv function
4123	 *	on the receive process context and checksum and copy
4124	 *	the buffer to user space. smart...
4125	 *
4126	 *	Our current scheme is not silly either but we take the
4127	 *	extra cost of the net_bh soft interrupt processing...
4128	 *	We do checksum and copy also but from device to kernel.
4129	 */
4130
4131	tp->rx_opt.saw_tstamp = 0;
4132
4133	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4134	 *	if header_prediction is to be made
4135	 *	'S' will always be tp->tcp_header_len >> 2
4136	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4137	 *  turn it off	(when there are holes in the receive
4138	 *	 space for instance)
4139	 *	PSH flag is ignored.
4140	 */
4141
4142	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4143		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4144		int tcp_header_len = tp->tcp_header_len;
4145
4146		/* Timestamp header prediction: tcp_header_len
4147		 * is automatically equal to th->doff*4 due to pred_flags
4148		 * match.
4149		 */
4150
4151		/* Check timestamp */
4152		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4153			__be32 *ptr = (__be32 *)(th + 1);
4154
4155			/* No? Slow path! */
4156			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4157					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4158				goto slow_path;
4159
4160			tp->rx_opt.saw_tstamp = 1;
4161			++ptr;
4162			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4163			++ptr;
4164			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4165
4166			/* If PAWS failed, check it more carefully in slow path */
4167			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4168				goto slow_path;
4169
4170			/* DO NOT update ts_recent here, if checksum fails
4171			 * and timestamp was corrupted part, it will result
4172			 * in a hung connection since we will drop all
4173			 * future packets due to the PAWS test.
4174			 */
4175		}
4176
4177		if (len <= tcp_header_len) {
4178			/* Bulk data transfer: sender */
4179			if (len == tcp_header_len) {
4180				/* Predicted packet is in window by definition.
4181				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4182				 * Hence, check seq<=rcv_wup reduces to:
4183				 */
4184				if (tcp_header_len ==
4185				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4186				    tp->rcv_nxt == tp->rcv_wup)
4187					tcp_store_ts_recent(tp);
4188
4189				/* We know that such packets are checksummed
4190				 * on entry.
4191				 */
4192				tcp_ack(sk, skb, 0);
4193				__kfree_skb(skb);
4194				tcp_data_snd_check(sk, tp);
4195				return 0;
4196			} else { /* Header too small */
4197				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4198				goto discard;
4199			}
4200		} else {
4201			int eaten = 0;
4202			int copied_early = 0;
4203
4204			if (tp->copied_seq == tp->rcv_nxt &&
4205			    len - tcp_header_len <= tp->ucopy.len) {
4206#ifdef CONFIG_NET_DMA
4207				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4208					copied_early = 1;
4209					eaten = 1;
4210				}
4211#endif
4212				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4213					__set_current_state(TASK_RUNNING);
4214
4215					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4216						eaten = 1;
4217				}
4218				if (eaten) {
4219					/* Predicted packet is in window by definition.
4220					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4221					 * Hence, check seq<=rcv_wup reduces to:
4222					 */
4223					if (tcp_header_len ==
4224					    (sizeof(struct tcphdr) +
4225					     TCPOLEN_TSTAMP_ALIGNED) &&
4226					    tp->rcv_nxt == tp->rcv_wup)
4227						tcp_store_ts_recent(tp);
4228
4229					tcp_rcv_rtt_measure_ts(sk, skb);
4230
4231					__skb_pull(skb, tcp_header_len);
4232					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4233					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4234				}
4235				if (copied_early)
4236					tcp_cleanup_rbuf(sk, skb->len);
4237			}
4238			if (!eaten) {
4239				if (tcp_checksum_complete_user(sk, skb))
4240					goto csum_error;
4241
4242				/* Predicted packet is in window by definition.
4243				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4244				 * Hence, check seq<=rcv_wup reduces to:
4245				 */
4246				if (tcp_header_len ==
4247				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4248				    tp->rcv_nxt == tp->rcv_wup)
4249					tcp_store_ts_recent(tp);
4250
4251				tcp_rcv_rtt_measure_ts(sk, skb);
4252
4253				if ((int)skb->truesize > sk->sk_forward_alloc)
4254					goto step5;
4255
4256				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4257
4258				/* Bulk data transfer: receiver */
4259				__skb_pull(skb,tcp_header_len);
4260				__skb_queue_tail(&sk->sk_receive_queue, skb);
4261				sk_stream_set_owner_r(skb, sk);
4262				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4263			}
4264
4265			tcp_event_data_recv(sk, tp, skb);
4266
4267			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4268				/* Well, only one small jumplet in fast path... */
4269				tcp_ack(sk, skb, FLAG_DATA);
4270				tcp_data_snd_check(sk, tp);
4271				if (!inet_csk_ack_scheduled(sk))
4272					goto no_ack;
4273			}
4274
4275			__tcp_ack_snd_check(sk, 0);
4276no_ack:
4277#ifdef CONFIG_NET_DMA
4278			if (copied_early)
4279				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4280			else
4281#endif
4282			if (eaten)
4283				__kfree_skb(skb);
4284			else
4285				sk->sk_data_ready(sk, 0);
4286			return 0;
4287		}
4288	}
4289
4290slow_path:
4291	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4292		goto csum_error;
4293
4294	/*
4295	 * RFC1323: H1. Apply PAWS check first.
4296	 */
4297	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4298	    tcp_paws_discard(sk, skb)) {
4299		if (!th->rst) {
4300			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4301			tcp_send_dupack(sk, skb);
4302			goto discard;
4303		}
4304		/* Resets are accepted even if PAWS failed.
4305
4306		   ts_recent update must be made after we are sure
4307		   that the packet is in window.
4308		 */
4309	}
4310
4311	/*
4312	 *	Standard slow path.
4313	 */
4314
4315	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4316		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4317		 * (RST) segments are validated by checking their SEQ-fields."
4318		 * And page 69: "If an incoming segment is not acceptable,
4319		 * an acknowledgment should be sent in reply (unless the RST bit
4320		 * is set, if so drop the segment and return)".
4321		 */
4322		if (!th->rst)
4323			tcp_send_dupack(sk, skb);
4324		goto discard;
4325	}
4326
4327	if (th->rst) {
4328		tcp_reset(sk);
4329		goto discard;
4330	}
4331
4332	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4333
4334	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4335		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4336		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4337		tcp_reset(sk);
4338		return 1;
4339	}
4340
4341step5:
4342	if (th->ack)
4343		tcp_ack(sk, skb, FLAG_SLOWPATH);
4344
4345	tcp_rcv_rtt_measure_ts(sk, skb);
4346
4347	/* Process urgent data. */
4348	tcp_urg(sk, skb, th);
4349
4350	/* step 7: process the segment text */
4351	tcp_data_queue(sk, skb);
4352
4353	tcp_data_snd_check(sk, tp);
4354	tcp_ack_snd_check(sk);
4355	return 0;
4356
4357csum_error:
4358	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4359
4360discard:
4361	__kfree_skb(skb);
4362	return 0;
4363}
4364
4365static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4366					 struct tcphdr *th, unsigned len)
4367{
4368	struct tcp_sock *tp = tcp_sk(sk);
4369	struct inet_connection_sock *icsk = inet_csk(sk);
4370	int saved_clamp = tp->rx_opt.mss_clamp;
4371
4372	tcp_parse_options(skb, &tp->rx_opt, 0);
4373
4374	if (th->ack) {
4375		/* rfc793:
4376		 * "If the state is SYN-SENT then
4377		 *    first check the ACK bit
4378		 *      If the ACK bit is set
4379		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4380		 *        a reset (unless the RST bit is set, if so drop
4381		 *        the segment and return)"
4382		 *
4383		 *  We do not send data with SYN, so that RFC-correct
4384		 *  test reduces to:
4385		 */
4386		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4387			goto reset_and_undo;
4388
4389		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4390		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4391			     tcp_time_stamp)) {
4392			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4393			goto reset_and_undo;
4394		}
4395
4396		/* Now ACK is acceptable.
4397		 *
4398		 * "If the RST bit is set
4399		 *    If the ACK was acceptable then signal the user "error:
4400		 *    connection reset", drop the segment, enter CLOSED state,
4401		 *    delete TCB, and return."
4402		 */
4403
4404		if (th->rst) {
4405			tcp_reset(sk);
4406			goto discard;
4407		}
4408
4409		/* rfc793:
4410		 *   "fifth, if neither of the SYN or RST bits is set then
4411		 *    drop the segment and return."
4412		 *
4413		 *    See note below!
4414		 *                                        --ANK(990513)
4415		 */
4416		if (!th->syn)
4417			goto discard_and_undo;
4418
4419		/* rfc793:
4420		 *   "If the SYN bit is on ...
4421		 *    are acceptable then ...
4422		 *    (our SYN has been ACKed), change the connection
4423		 *    state to ESTABLISHED..."
4424		 */
4425
4426		TCP_ECN_rcv_synack(tp, th);
4427
4428		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4429		tcp_ack(sk, skb, FLAG_SLOWPATH);
4430
4431		/* Ok.. it's good. Set up sequence numbers and
4432		 * move to established.
4433		 */
4434		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4435		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4436
4437		/* RFC1323: The window in SYN & SYN/ACK segments is
4438		 * never scaled.
4439		 */
4440		tp->snd_wnd = ntohs(th->window);
4441		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4442
4443		if (!tp->rx_opt.wscale_ok) {
4444			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4445			tp->window_clamp = min(tp->window_clamp, 65535U);
4446		}
4447
4448		if (tp->rx_opt.saw_tstamp) {
4449			tp->rx_opt.tstamp_ok	   = 1;
4450			tp->tcp_header_len =
4451				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4452			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4453			tcp_store_ts_recent(tp);
4454		} else {
4455			tp->tcp_header_len = sizeof(struct tcphdr);
4456		}
4457
4458		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4459			tp->rx_opt.sack_ok |= 2;
4460
4461		tcp_mtup_init(sk);
4462		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4463		tcp_initialize_rcv_mss(sk);
4464
4465		/* Remember, tcp_poll() does not lock socket!
4466		 * Change state from SYN-SENT only after copied_seq
4467		 * is initialized. */
4468		tp->copied_seq = tp->rcv_nxt;
4469		smp_mb();
4470		tcp_set_state(sk, TCP_ESTABLISHED);
4471
4472		security_inet_conn_established(sk, skb);
4473
4474		/* Make sure socket is routed, for correct metrics.  */
4475		icsk->icsk_af_ops->rebuild_header(sk);
4476
4477		tcp_init_metrics(sk);
4478
4479		tcp_init_congestion_control(sk);
4480
4481		/* Prevent spurious tcp_cwnd_restart() on first data
4482		 * packet.
4483		 */
4484		tp->lsndtime = tcp_time_stamp;
4485
4486		tcp_init_buffer_space(sk);
4487
4488		if (sock_flag(sk, SOCK_KEEPOPEN))
4489			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4490
4491		if (!tp->rx_opt.snd_wscale)
4492			__tcp_fast_path_on(tp, tp->snd_wnd);
4493		else
4494			tp->pred_flags = 0;
4495
4496		if (!sock_flag(sk, SOCK_DEAD)) {
4497			sk->sk_state_change(sk);
4498			sk_wake_async(sk, 0, POLL_OUT);
4499		}
4500
4501		if (sk->sk_write_pending ||
4502		    icsk->icsk_accept_queue.rskq_defer_accept ||
4503		    icsk->icsk_ack.pingpong) {
4504			/* Save one ACK. Data will be ready after
4505			 * several ticks, if write_pending is set.
4506			 *
4507			 * It may be deleted, but with this feature tcpdumps
4508			 * look so _wonderfully_ clever, that I was not able
4509			 * to stand against the temptation 8)     --ANK
4510			 */
4511			inet_csk_schedule_ack(sk);
4512			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4513			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4514			tcp_incr_quickack(sk);
4515			tcp_enter_quickack_mode(sk);
4516			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4517						  TCP_DELACK_MAX, TCP_RTO_MAX);
4518
4519discard:
4520			__kfree_skb(skb);
4521			return 0;
4522		} else {
4523			tcp_send_ack(sk);
4524		}
4525		return -1;
4526	}
4527
4528	/* No ACK in the segment */
4529
4530	if (th->rst) {
4531		/* rfc793:
4532		 * "If the RST bit is set
4533		 *
4534		 *      Otherwise (no ACK) drop the segment and return."
4535		 */
4536
4537		goto discard_and_undo;
4538	}
4539
4540	/* PAWS check. */
4541	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4542		goto discard_and_undo;
4543
4544	if (th->syn) {
4545		/* We see SYN without ACK. It is attempt of
4546		 * simultaneous connect with crossed SYNs.
4547		 * Particularly, it can be connect to self.
4548		 */
4549		tcp_set_state(sk, TCP_SYN_RECV);
4550
4551		if (tp->rx_opt.saw_tstamp) {
4552			tp->rx_opt.tstamp_ok = 1;
4553			tcp_store_ts_recent(tp);
4554			tp->tcp_header_len =
4555				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4556		} else {
4557			tp->tcp_header_len = sizeof(struct tcphdr);
4558		}
4559
4560		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4561		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4562
4563		/* RFC1323: The window in SYN & SYN/ACK segments is
4564		 * never scaled.
4565		 */
4566		tp->snd_wnd    = ntohs(th->window);
4567		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4568		tp->max_window = tp->snd_wnd;
4569
4570		TCP_ECN_rcv_syn(tp, th);
4571
4572		tcp_mtup_init(sk);
4573		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4574		tcp_initialize_rcv_mss(sk);
4575
4576
4577		tcp_send_synack(sk);
4578#if 0
4579		/* Note, we could accept data and URG from this segment.
4580		 * There are no obstacles to make this.
4581		 *
4582		 * However, if we ignore data in ACKless segments sometimes,
4583		 * we have no reasons to accept it sometimes.
4584		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4585		 * is not flawless. So, discard packet for sanity.
4586		 * Uncomment this return to process the data.
4587		 */
4588		return -1;
4589#else
4590		goto discard;
4591#endif
4592	}
4593	/* "fifth, if neither of the SYN or RST bits is set then
4594	 * drop the segment and return."
4595	 */
4596
4597discard_and_undo:
4598	tcp_clear_options(&tp->rx_opt);
4599	tp->rx_opt.mss_clamp = saved_clamp;
4600	goto discard;
4601
4602reset_and_undo:
4603	tcp_clear_options(&tp->rx_opt);
4604	tp->rx_opt.mss_clamp = saved_clamp;
4605	return 1;
4606}
4607
4608
4609/*
4610 *	This function implements the receiving procedure of RFC 793 for
4611 *	all states except ESTABLISHED and TIME_WAIT.
4612 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4613 *	address independent.
4614 */
4615
4616int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4617			  struct tcphdr *th, unsigned len)
4618{
4619	struct tcp_sock *tp = tcp_sk(sk);
4620	struct inet_connection_sock *icsk = inet_csk(sk);
4621	int queued = 0;
4622
4623	tp->rx_opt.saw_tstamp = 0;
4624
4625	switch (sk->sk_state) {
4626	case TCP_CLOSE:
4627		goto discard;
4628
4629	case TCP_LISTEN:
4630		if (th->ack)
4631			return 1;
4632
4633		if (th->rst)
4634			goto discard;
4635
4636		if (th->syn) {
4637			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4638				return 1;
4639
4640			/* Now we have several options: In theory there is
4641			 * nothing else in the frame. KA9Q has an option to
4642			 * send data with the syn, BSD accepts data with the
4643			 * syn up to the [to be] advertised window and
4644			 * Solaris 2.1 gives you a protocol error. For now
4645			 * we just ignore it, that fits the spec precisely
4646			 * and avoids incompatibilities. It would be nice in
4647			 * future to drop through and process the data.
4648			 *
4649			 * Now that TTCP is starting to be used we ought to
4650			 * queue this data.
4651			 * But, this leaves one open to an easy denial of
4652			 * service attack, and SYN cookies can't defend
4653			 * against this problem. So, we drop the data
4654			 * in the interest of security over speed unless
4655			 * it's still in use.
4656			 */
4657			kfree_skb(skb);
4658			return 0;
4659		}
4660		goto discard;
4661
4662	case TCP_SYN_SENT:
4663		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4664		if (queued >= 0)
4665			return queued;
4666
4667		/* Do step6 onward by hand. */
4668		tcp_urg(sk, skb, th);
4669		__kfree_skb(skb);
4670		tcp_data_snd_check(sk, tp);
4671		return 0;
4672	}
4673
4674	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4675	    tcp_paws_discard(sk, skb)) {
4676		if (!th->rst) {
4677			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4678			tcp_send_dupack(sk, skb);
4679			goto discard;
4680		}
4681		/* Reset is accepted even if it did not pass PAWS. */
4682	}
4683
4684	/* step 1: check sequence number */
4685	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4686		if (!th->rst)
4687			tcp_send_dupack(sk, skb);
4688		goto discard;
4689	}
4690
4691	/* step 2: check RST bit */
4692	if (th->rst) {
4693		tcp_reset(sk);
4694		goto discard;
4695	}
4696
4697	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4698
4699	/* step 3: check security and precedence [ignored] */
4700
4701	/*	step 4:
4702	 *
4703	 *	Check for a SYN in window.
4704	 */
4705	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4706		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4707		tcp_reset(sk);
4708		return 1;
4709	}
4710
4711	/* step 5: check the ACK field */
4712	if (th->ack) {
4713		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4714
4715		switch (sk->sk_state) {
4716		case TCP_SYN_RECV:
4717			if (acceptable) {
4718				tp->copied_seq = tp->rcv_nxt;
4719				smp_mb();
4720				tcp_set_state(sk, TCP_ESTABLISHED);
4721				sk->sk_state_change(sk);
4722
4723				/* Note, that this wakeup is only for marginal
4724				 * crossed SYN case. Passively open sockets
4725				 * are not waked up, because sk->sk_sleep ==
4726				 * NULL and sk->sk_socket == NULL.
4727				 */
4728				if (sk->sk_socket) {
4729					sk_wake_async(sk,0,POLL_OUT);
4730				}
4731
4732				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4733				tp->snd_wnd = ntohs(th->window) <<
4734					      tp->rx_opt.snd_wscale;
4735				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4736					    TCP_SKB_CB(skb)->seq);
4737
4738				/* tcp_ack considers this ACK as duplicate
4739				 * and does not calculate rtt.
4740				 * Fix it at least with timestamps.
4741				 */
4742				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4743				    !tp->srtt)
4744					tcp_ack_saw_tstamp(sk, 0);
4745
4746				if (tp->rx_opt.tstamp_ok)
4747					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4748
4749				/* Make sure socket is routed, for
4750				 * correct metrics.
4751				 */
4752				icsk->icsk_af_ops->rebuild_header(sk);
4753
4754				tcp_init_metrics(sk);
4755
4756				tcp_init_congestion_control(sk);
4757
4758				/* Prevent spurious tcp_cwnd_restart() on
4759				 * first data packet.
4760				 */
4761				tp->lsndtime = tcp_time_stamp;
4762
4763				tcp_mtup_init(sk);
4764				tcp_initialize_rcv_mss(sk);
4765				tcp_init_buffer_space(sk);
4766				tcp_fast_path_on(tp);
4767			} else {
4768				return 1;
4769			}
4770			break;
4771
4772		case TCP_FIN_WAIT1:
4773			if (tp->snd_una == tp->write_seq) {
4774				tcp_set_state(sk, TCP_FIN_WAIT2);
4775				sk->sk_shutdown |= SEND_SHUTDOWN;
4776				dst_confirm(sk->sk_dst_cache);
4777
4778				if (!sock_flag(sk, SOCK_DEAD))
4779					/* Wake up lingering close() */
4780					sk->sk_state_change(sk);
4781				else {
4782					int tmo;
4783
4784					if (tp->linger2 < 0 ||
4785					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4786					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4787						tcp_done(sk);
4788						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4789						return 1;
4790					}
4791
4792					tmo = tcp_fin_time(sk);
4793					if (tmo > TCP_TIMEWAIT_LEN) {
4794						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4795					} else if (th->fin || sock_owned_by_user(sk)) {
4796						/* Bad case. We could lose such FIN otherwise.
4797						 * It is not a big problem, but it looks confusing
4798						 * and not so rare event. We still can lose it now,
4799						 * if it spins in bh_lock_sock(), but it is really
4800						 * marginal case.
4801						 */
4802						inet_csk_reset_keepalive_timer(sk, tmo);
4803					} else {
4804						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4805						goto discard;
4806					}
4807				}
4808			}
4809			break;
4810
4811		case TCP_CLOSING:
4812			if (tp->snd_una == tp->write_seq) {
4813				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4814				goto discard;
4815			}
4816			break;
4817
4818		case TCP_LAST_ACK:
4819			if (tp->snd_una == tp->write_seq) {
4820				tcp_update_metrics(sk);
4821				tcp_done(sk);
4822				goto discard;
4823			}
4824			break;
4825		}
4826	} else
4827		goto discard;
4828
4829	/* step 6: check the URG bit */
4830	tcp_urg(sk, skb, th);
4831
4832	/* step 7: process the segment text */
4833	switch (sk->sk_state) {
4834	case TCP_CLOSE_WAIT:
4835	case TCP_CLOSING:
4836	case TCP_LAST_ACK:
4837		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4838			break;
4839	case TCP_FIN_WAIT1:
4840	case TCP_FIN_WAIT2:
4841		/* RFC 793 says to queue data in these states,
4842		 * RFC 1122 says we MUST send a reset.
4843		 * BSD 4.4 also does reset.
4844		 */
4845		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4846			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4847			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4848				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4849				tcp_reset(sk);
4850				return 1;
4851			}
4852		}
4853		/* Fall through */
4854	case TCP_ESTABLISHED:
4855		tcp_data_queue(sk, skb);
4856		queued = 1;
4857		break;
4858	}
4859
4860	/* tcp_data could move socket to TIME-WAIT */
4861	if (sk->sk_state != TCP_CLOSE) {
4862		tcp_data_snd_check(sk, tp);
4863		tcp_ack_snd_check(sk);
4864	}
4865
4866	if (!queued) {
4867discard:
4868		__kfree_skb(skb);
4869	}
4870	return 0;
4871}
4872
4873EXPORT_SYMBOL(sysctl_tcp_ecn);
4874EXPORT_SYMBOL(sysctl_tcp_reordering);
4875EXPORT_SYMBOL(tcp_parse_options);
4876EXPORT_SYMBOL(tcp_rcv_established);
4877EXPORT_SYMBOL(tcp_rcv_state_process);
4878EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4879