tcp_input.c revision 37561f68bd527ec39076e32effdc7b1dcdfb17ea
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 *		Pedro Roque	:	Fast Retransmit/Recovery.
24 *					Two receive queues.
25 *					Retransmit queue handled by TCP.
26 *					Better retransmit timer handling.
27 *					New congestion avoidance.
28 *					Header prediction.
29 *					Variable renaming.
30 *
31 *		Eric		:	Fast Retransmit.
32 *		Randy Scott	:	MSS option defines.
33 *		Eric Schenk	:	Fixes to slow start algorithm.
34 *		Eric Schenk	:	Yet another double ACK bug.
35 *		Eric Schenk	:	Delayed ACK bug fixes.
36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37 *		David S. Miller	:	Don't allow zero congestion window.
38 *		Eric Schenk	:	Fix retransmitter so that it sends
39 *					next packet on ack of previous packet.
40 *		Andi Kleen	:	Moved open_request checking here
41 *					and process RSTs for open_requests.
42 *		Andi Kleen	:	Better prune_queue, and other fixes.
43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
44 *					timestamps.
45 *		Andrey Savochkin:	Check sequence numbers correctly when
46 *					removing SACKs due to in sequence incoming
47 *					data segments.
48 *		Andi Kleen:		Make sure we never ack data there is not
49 *					enough room for. Also make this condition
50 *					a fatal error if it might still happen.
51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52 *					connections with MSS<min(MTU,ann. MSS)
53 *					work without delayed acks.
54 *		Andi Kleen:		Process packets with PSH set in the
55 *					fast path.
56 *		J Hadi Salim:		ECN support
57 *	 	Andrei Gurtov,
58 *		Pasi Sarolahti,
59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60 *					engine. Lots of bugs are found.
61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62 */
63
64#define pr_fmt(fmt) "TCP: " fmt
65
66#include <linux/mm.h>
67#include <linux/slab.h>
68#include <linux/module.h>
69#include <linux/sysctl.h>
70#include <linux/kernel.h>
71#include <net/dst.h>
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
76#include <net/netdma.h>
77
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83EXPORT_SYMBOL(sysctl_tcp_reordering);
84int sysctl_tcp_ecn __read_mostly = 2;
85EXPORT_SYMBOL(sysctl_tcp_ecn);
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
88int sysctl_tcp_adv_win_scale __read_mostly = 1;
89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91/* rfc5961 challenge ack rate limiting */
92int sysctl_tcp_challenge_ack_limit = 100;
93
94int sysctl_tcp_stdurg __read_mostly;
95int sysctl_tcp_rfc1337 __read_mostly;
96int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97int sysctl_tcp_frto __read_mostly = 2;
98int sysctl_tcp_frto_response __read_mostly;
99
100int sysctl_tcp_thin_dupack __read_mostly;
101
102int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
103int sysctl_tcp_abc __read_mostly;
104int sysctl_tcp_early_retrans __read_mostly = 2;
105
106#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
107#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
108#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
109#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
110#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
111#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
112#define FLAG_ECE		0x40 /* ECE in this ACK				*/
113#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
114#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
115#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
117#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
118#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
119
120#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
123#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
124#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
125
126#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128
129/* Adapt the MSS value used to make delayed ack decision to the
130 * real world.
131 */
132static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
133{
134	struct inet_connection_sock *icsk = inet_csk(sk);
135	const unsigned int lss = icsk->icsk_ack.last_seg_size;
136	unsigned int len;
137
138	icsk->icsk_ack.last_seg_size = 0;
139
140	/* skb->len may jitter because of SACKs, even if peer
141	 * sends good full-sized frames.
142	 */
143	len = skb_shinfo(skb)->gso_size ? : skb->len;
144	if (len >= icsk->icsk_ack.rcv_mss) {
145		icsk->icsk_ack.rcv_mss = len;
146	} else {
147		/* Otherwise, we make more careful check taking into account,
148		 * that SACKs block is variable.
149		 *
150		 * "len" is invariant segment length, including TCP header.
151		 */
152		len += skb->data - skb_transport_header(skb);
153		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
154		    /* If PSH is not set, packet should be
155		     * full sized, provided peer TCP is not badly broken.
156		     * This observation (if it is correct 8)) allows
157		     * to handle super-low mtu links fairly.
158		     */
159		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
161			/* Subtract also invariant (if peer is RFC compliant),
162			 * tcp header plus fixed timestamp option length.
163			 * Resulting "len" is MSS free of SACK jitter.
164			 */
165			len -= tcp_sk(sk)->tcp_header_len;
166			icsk->icsk_ack.last_seg_size = len;
167			if (len == lss) {
168				icsk->icsk_ack.rcv_mss = len;
169				return;
170			}
171		}
172		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
174		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
175	}
176}
177
178static void tcp_incr_quickack(struct sock *sk)
179{
180	struct inet_connection_sock *icsk = inet_csk(sk);
181	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
182
183	if (quickacks == 0)
184		quickacks = 2;
185	if (quickacks > icsk->icsk_ack.quick)
186		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
187}
188
189static void tcp_enter_quickack_mode(struct sock *sk)
190{
191	struct inet_connection_sock *icsk = inet_csk(sk);
192	tcp_incr_quickack(sk);
193	icsk->icsk_ack.pingpong = 0;
194	icsk->icsk_ack.ato = TCP_ATO_MIN;
195}
196
197/* Send ACKs quickly, if "quick" count is not exhausted
198 * and the session is not interactive.
199 */
200
201static inline bool tcp_in_quickack_mode(const struct sock *sk)
202{
203	const struct inet_connection_sock *icsk = inet_csk(sk);
204
205	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
206}
207
208static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
209{
210	if (tp->ecn_flags & TCP_ECN_OK)
211		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
212}
213
214static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
215{
216	if (tcp_hdr(skb)->cwr)
217		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218}
219
220static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
221{
222	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
223}
224
225static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
226{
227	if (!(tp->ecn_flags & TCP_ECN_OK))
228		return;
229
230	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
231	case INET_ECN_NOT_ECT:
232		/* Funny extension: if ECT is not set on a segment,
233		 * and we already seen ECT on a previous segment,
234		 * it is probably a retransmit.
235		 */
236		if (tp->ecn_flags & TCP_ECN_SEEN)
237			tcp_enter_quickack_mode((struct sock *)tp);
238		break;
239	case INET_ECN_CE:
240		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
241			/* Better not delay acks, sender can have a very low cwnd */
242			tcp_enter_quickack_mode((struct sock *)tp);
243			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
244		}
245		/* fallinto */
246	default:
247		tp->ecn_flags |= TCP_ECN_SEEN;
248	}
249}
250
251static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
252{
253	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
254		tp->ecn_flags &= ~TCP_ECN_OK;
255}
256
257static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
258{
259	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
260		tp->ecn_flags &= ~TCP_ECN_OK;
261}
262
263static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
264{
265	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
266		return true;
267	return false;
268}
269
270/* Buffer size and advertised window tuning.
271 *
272 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
273 */
274
275static void tcp_fixup_sndbuf(struct sock *sk)
276{
277	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
278
279	sndmem *= TCP_INIT_CWND;
280	if (sk->sk_sndbuf < sndmem)
281		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
282}
283
284/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
285 *
286 * All tcp_full_space() is split to two parts: "network" buffer, allocated
287 * forward and advertised in receiver window (tp->rcv_wnd) and
288 * "application buffer", required to isolate scheduling/application
289 * latencies from network.
290 * window_clamp is maximal advertised window. It can be less than
291 * tcp_full_space(), in this case tcp_full_space() - window_clamp
292 * is reserved for "application" buffer. The less window_clamp is
293 * the smoother our behaviour from viewpoint of network, but the lower
294 * throughput and the higher sensitivity of the connection to losses. 8)
295 *
296 * rcv_ssthresh is more strict window_clamp used at "slow start"
297 * phase to predict further behaviour of this connection.
298 * It is used for two goals:
299 * - to enforce header prediction at sender, even when application
300 *   requires some significant "application buffer". It is check #1.
301 * - to prevent pruning of receive queue because of misprediction
302 *   of receiver window. Check #2.
303 *
304 * The scheme does not work when sender sends good segments opening
305 * window and then starts to feed us spaghetti. But it should work
306 * in common situations. Otherwise, we have to rely on queue collapsing.
307 */
308
309/* Slow part of check#2. */
310static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
311{
312	struct tcp_sock *tp = tcp_sk(sk);
313	/* Optimize this! */
314	int truesize = tcp_win_from_space(skb->truesize) >> 1;
315	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
316
317	while (tp->rcv_ssthresh <= window) {
318		if (truesize <= skb->len)
319			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
320
321		truesize >>= 1;
322		window >>= 1;
323	}
324	return 0;
325}
326
327static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
328{
329	struct tcp_sock *tp = tcp_sk(sk);
330
331	/* Check #1 */
332	if (tp->rcv_ssthresh < tp->window_clamp &&
333	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
334	    !sk_under_memory_pressure(sk)) {
335		int incr;
336
337		/* Check #2. Increase window, if skb with such overhead
338		 * will fit to rcvbuf in future.
339		 */
340		if (tcp_win_from_space(skb->truesize) <= skb->len)
341			incr = 2 * tp->advmss;
342		else
343			incr = __tcp_grow_window(sk, skb);
344
345		if (incr) {
346			incr = max_t(int, incr, 2 * skb->len);
347			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
348					       tp->window_clamp);
349			inet_csk(sk)->icsk_ack.quick |= 1;
350		}
351	}
352}
353
354/* 3. Tuning rcvbuf, when connection enters established state. */
355
356static void tcp_fixup_rcvbuf(struct sock *sk)
357{
358	u32 mss = tcp_sk(sk)->advmss;
359	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
360	int rcvmem;
361
362	/* Limit to 10 segments if mss <= 1460,
363	 * or 14600/mss segments, with a minimum of two segments.
364	 */
365	if (mss > 1460)
366		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
367
368	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
369	while (tcp_win_from_space(rcvmem) < mss)
370		rcvmem += 128;
371
372	rcvmem *= icwnd;
373
374	if (sk->sk_rcvbuf < rcvmem)
375		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
376}
377
378/* 4. Try to fixup all. It is made immediately after connection enters
379 *    established state.
380 */
381void tcp_init_buffer_space(struct sock *sk)
382{
383	struct tcp_sock *tp = tcp_sk(sk);
384	int maxwin;
385
386	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
387		tcp_fixup_rcvbuf(sk);
388	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
389		tcp_fixup_sndbuf(sk);
390
391	tp->rcvq_space.space = tp->rcv_wnd;
392
393	maxwin = tcp_full_space(sk);
394
395	if (tp->window_clamp >= maxwin) {
396		tp->window_clamp = maxwin;
397
398		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
399			tp->window_clamp = max(maxwin -
400					       (maxwin >> sysctl_tcp_app_win),
401					       4 * tp->advmss);
402	}
403
404	/* Force reservation of one segment. */
405	if (sysctl_tcp_app_win &&
406	    tp->window_clamp > 2 * tp->advmss &&
407	    tp->window_clamp + tp->advmss > maxwin)
408		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
409
410	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
411	tp->snd_cwnd_stamp = tcp_time_stamp;
412}
413
414/* 5. Recalculate window clamp after socket hit its memory bounds. */
415static void tcp_clamp_window(struct sock *sk)
416{
417	struct tcp_sock *tp = tcp_sk(sk);
418	struct inet_connection_sock *icsk = inet_csk(sk);
419
420	icsk->icsk_ack.quick = 0;
421
422	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
423	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
424	    !sk_under_memory_pressure(sk) &&
425	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
426		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
427				    sysctl_tcp_rmem[2]);
428	}
429	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
430		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
431}
432
433/* Initialize RCV_MSS value.
434 * RCV_MSS is an our guess about MSS used by the peer.
435 * We haven't any direct information about the MSS.
436 * It's better to underestimate the RCV_MSS rather than overestimate.
437 * Overestimations make us ACKing less frequently than needed.
438 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
439 */
440void tcp_initialize_rcv_mss(struct sock *sk)
441{
442	const struct tcp_sock *tp = tcp_sk(sk);
443	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
444
445	hint = min(hint, tp->rcv_wnd / 2);
446	hint = min(hint, TCP_MSS_DEFAULT);
447	hint = max(hint, TCP_MIN_MSS);
448
449	inet_csk(sk)->icsk_ack.rcv_mss = hint;
450}
451EXPORT_SYMBOL(tcp_initialize_rcv_mss);
452
453/* Receiver "autotuning" code.
454 *
455 * The algorithm for RTT estimation w/o timestamps is based on
456 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
457 * <http://public.lanl.gov/radiant/pubs.html#DRS>
458 *
459 * More detail on this code can be found at
460 * <http://staff.psc.edu/jheffner/>,
461 * though this reference is out of date.  A new paper
462 * is pending.
463 */
464static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
465{
466	u32 new_sample = tp->rcv_rtt_est.rtt;
467	long m = sample;
468
469	if (m == 0)
470		m = 1;
471
472	if (new_sample != 0) {
473		/* If we sample in larger samples in the non-timestamp
474		 * case, we could grossly overestimate the RTT especially
475		 * with chatty applications or bulk transfer apps which
476		 * are stalled on filesystem I/O.
477		 *
478		 * Also, since we are only going for a minimum in the
479		 * non-timestamp case, we do not smooth things out
480		 * else with timestamps disabled convergence takes too
481		 * long.
482		 */
483		if (!win_dep) {
484			m -= (new_sample >> 3);
485			new_sample += m;
486		} else {
487			m <<= 3;
488			if (m < new_sample)
489				new_sample = m;
490		}
491	} else {
492		/* No previous measure. */
493		new_sample = m << 3;
494	}
495
496	if (tp->rcv_rtt_est.rtt != new_sample)
497		tp->rcv_rtt_est.rtt = new_sample;
498}
499
500static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
501{
502	if (tp->rcv_rtt_est.time == 0)
503		goto new_measure;
504	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
505		return;
506	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
507
508new_measure:
509	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
510	tp->rcv_rtt_est.time = tcp_time_stamp;
511}
512
513static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
514					  const struct sk_buff *skb)
515{
516	struct tcp_sock *tp = tcp_sk(sk);
517	if (tp->rx_opt.rcv_tsecr &&
518	    (TCP_SKB_CB(skb)->end_seq -
519	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
520		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
521}
522
523/*
524 * This function should be called every time data is copied to user space.
525 * It calculates the appropriate TCP receive buffer space.
526 */
527void tcp_rcv_space_adjust(struct sock *sk)
528{
529	struct tcp_sock *tp = tcp_sk(sk);
530	int time;
531	int space;
532
533	if (tp->rcvq_space.time == 0)
534		goto new_measure;
535
536	time = tcp_time_stamp - tp->rcvq_space.time;
537	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
538		return;
539
540	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
541
542	space = max(tp->rcvq_space.space, space);
543
544	if (tp->rcvq_space.space != space) {
545		int rcvmem;
546
547		tp->rcvq_space.space = space;
548
549		if (sysctl_tcp_moderate_rcvbuf &&
550		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
551			int new_clamp = space;
552
553			/* Receive space grows, normalize in order to
554			 * take into account packet headers and sk_buff
555			 * structure overhead.
556			 */
557			space /= tp->advmss;
558			if (!space)
559				space = 1;
560			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
561			while (tcp_win_from_space(rcvmem) < tp->advmss)
562				rcvmem += 128;
563			space *= rcvmem;
564			space = min(space, sysctl_tcp_rmem[2]);
565			if (space > sk->sk_rcvbuf) {
566				sk->sk_rcvbuf = space;
567
568				/* Make the window clamp follow along.  */
569				tp->window_clamp = new_clamp;
570			}
571		}
572	}
573
574new_measure:
575	tp->rcvq_space.seq = tp->copied_seq;
576	tp->rcvq_space.time = tcp_time_stamp;
577}
578
579/* There is something which you must keep in mind when you analyze the
580 * behavior of the tp->ato delayed ack timeout interval.  When a
581 * connection starts up, we want to ack as quickly as possible.  The
582 * problem is that "good" TCP's do slow start at the beginning of data
583 * transmission.  The means that until we send the first few ACK's the
584 * sender will sit on his end and only queue most of his data, because
585 * he can only send snd_cwnd unacked packets at any given time.  For
586 * each ACK we send, he increments snd_cwnd and transmits more of his
587 * queue.  -DaveM
588 */
589static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
590{
591	struct tcp_sock *tp = tcp_sk(sk);
592	struct inet_connection_sock *icsk = inet_csk(sk);
593	u32 now;
594
595	inet_csk_schedule_ack(sk);
596
597	tcp_measure_rcv_mss(sk, skb);
598
599	tcp_rcv_rtt_measure(tp);
600
601	now = tcp_time_stamp;
602
603	if (!icsk->icsk_ack.ato) {
604		/* The _first_ data packet received, initialize
605		 * delayed ACK engine.
606		 */
607		tcp_incr_quickack(sk);
608		icsk->icsk_ack.ato = TCP_ATO_MIN;
609	} else {
610		int m = now - icsk->icsk_ack.lrcvtime;
611
612		if (m <= TCP_ATO_MIN / 2) {
613			/* The fastest case is the first. */
614			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
615		} else if (m < icsk->icsk_ack.ato) {
616			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
617			if (icsk->icsk_ack.ato > icsk->icsk_rto)
618				icsk->icsk_ack.ato = icsk->icsk_rto;
619		} else if (m > icsk->icsk_rto) {
620			/* Too long gap. Apparently sender failed to
621			 * restart window, so that we send ACKs quickly.
622			 */
623			tcp_incr_quickack(sk);
624			sk_mem_reclaim(sk);
625		}
626	}
627	icsk->icsk_ack.lrcvtime = now;
628
629	TCP_ECN_check_ce(tp, skb);
630
631	if (skb->len >= 128)
632		tcp_grow_window(sk, skb);
633}
634
635/* Called to compute a smoothed rtt estimate. The data fed to this
636 * routine either comes from timestamps, or from segments that were
637 * known _not_ to have been retransmitted [see Karn/Partridge
638 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
639 * piece by Van Jacobson.
640 * NOTE: the next three routines used to be one big routine.
641 * To save cycles in the RFC 1323 implementation it was better to break
642 * it up into three procedures. -- erics
643 */
644static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
645{
646	struct tcp_sock *tp = tcp_sk(sk);
647	long m = mrtt; /* RTT */
648
649	/*	The following amusing code comes from Jacobson's
650	 *	article in SIGCOMM '88.  Note that rtt and mdev
651	 *	are scaled versions of rtt and mean deviation.
652	 *	This is designed to be as fast as possible
653	 *	m stands for "measurement".
654	 *
655	 *	On a 1990 paper the rto value is changed to:
656	 *	RTO = rtt + 4 * mdev
657	 *
658	 * Funny. This algorithm seems to be very broken.
659	 * These formulae increase RTO, when it should be decreased, increase
660	 * too slowly, when it should be increased quickly, decrease too quickly
661	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
662	 * does not matter how to _calculate_ it. Seems, it was trap
663	 * that VJ failed to avoid. 8)
664	 */
665	if (m == 0)
666		m = 1;
667	if (tp->srtt != 0) {
668		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
669		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
670		if (m < 0) {
671			m = -m;		/* m is now abs(error) */
672			m -= (tp->mdev >> 2);   /* similar update on mdev */
673			/* This is similar to one of Eifel findings.
674			 * Eifel blocks mdev updates when rtt decreases.
675			 * This solution is a bit different: we use finer gain
676			 * for mdev in this case (alpha*beta).
677			 * Like Eifel it also prevents growth of rto,
678			 * but also it limits too fast rto decreases,
679			 * happening in pure Eifel.
680			 */
681			if (m > 0)
682				m >>= 3;
683		} else {
684			m -= (tp->mdev >> 2);   /* similar update on mdev */
685		}
686		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
687		if (tp->mdev > tp->mdev_max) {
688			tp->mdev_max = tp->mdev;
689			if (tp->mdev_max > tp->rttvar)
690				tp->rttvar = tp->mdev_max;
691		}
692		if (after(tp->snd_una, tp->rtt_seq)) {
693			if (tp->mdev_max < tp->rttvar)
694				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
695			tp->rtt_seq = tp->snd_nxt;
696			tp->mdev_max = tcp_rto_min(sk);
697		}
698	} else {
699		/* no previous measure. */
700		tp->srtt = m << 3;	/* take the measured time to be rtt */
701		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
702		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
703		tp->rtt_seq = tp->snd_nxt;
704	}
705}
706
707/* Calculate rto without backoff.  This is the second half of Van Jacobson's
708 * routine referred to above.
709 */
710void tcp_set_rto(struct sock *sk)
711{
712	const struct tcp_sock *tp = tcp_sk(sk);
713	/* Old crap is replaced with new one. 8)
714	 *
715	 * More seriously:
716	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
717	 *    It cannot be less due to utterly erratic ACK generation made
718	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
719	 *    to do with delayed acks, because at cwnd>2 true delack timeout
720	 *    is invisible. Actually, Linux-2.4 also generates erratic
721	 *    ACKs in some circumstances.
722	 */
723	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
724
725	/* 2. Fixups made earlier cannot be right.
726	 *    If we do not estimate RTO correctly without them,
727	 *    all the algo is pure shit and should be replaced
728	 *    with correct one. It is exactly, which we pretend to do.
729	 */
730
731	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
732	 * guarantees that rto is higher.
733	 */
734	tcp_bound_rto(sk);
735}
736
737__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
738{
739	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
740
741	if (!cwnd)
742		cwnd = TCP_INIT_CWND;
743	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
744}
745
746/*
747 * Packet counting of FACK is based on in-order assumptions, therefore TCP
748 * disables it when reordering is detected
749 */
750void tcp_disable_fack(struct tcp_sock *tp)
751{
752	/* RFC3517 uses different metric in lost marker => reset on change */
753	if (tcp_is_fack(tp))
754		tp->lost_skb_hint = NULL;
755	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
756}
757
758/* Take a notice that peer is sending D-SACKs */
759static void tcp_dsack_seen(struct tcp_sock *tp)
760{
761	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
762}
763
764static void tcp_update_reordering(struct sock *sk, const int metric,
765				  const int ts)
766{
767	struct tcp_sock *tp = tcp_sk(sk);
768	if (metric > tp->reordering) {
769		int mib_idx;
770
771		tp->reordering = min(TCP_MAX_REORDERING, metric);
772
773		/* This exciting event is worth to be remembered. 8) */
774		if (ts)
775			mib_idx = LINUX_MIB_TCPTSREORDER;
776		else if (tcp_is_reno(tp))
777			mib_idx = LINUX_MIB_TCPRENOREORDER;
778		else if (tcp_is_fack(tp))
779			mib_idx = LINUX_MIB_TCPFACKREORDER;
780		else
781			mib_idx = LINUX_MIB_TCPSACKREORDER;
782
783		NET_INC_STATS_BH(sock_net(sk), mib_idx);
784#if FASTRETRANS_DEBUG > 1
785		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
786			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
787			 tp->reordering,
788			 tp->fackets_out,
789			 tp->sacked_out,
790			 tp->undo_marker ? tp->undo_retrans : 0);
791#endif
792		tcp_disable_fack(tp);
793	}
794
795	if (metric > 0)
796		tcp_disable_early_retrans(tp);
797}
798
799/* This must be called before lost_out is incremented */
800static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
801{
802	if ((tp->retransmit_skb_hint == NULL) ||
803	    before(TCP_SKB_CB(skb)->seq,
804		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
805		tp->retransmit_skb_hint = skb;
806
807	if (!tp->lost_out ||
808	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
809		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
810}
811
812static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
813{
814	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
815		tcp_verify_retransmit_hint(tp, skb);
816
817		tp->lost_out += tcp_skb_pcount(skb);
818		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
819	}
820}
821
822static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
823					    struct sk_buff *skb)
824{
825	tcp_verify_retransmit_hint(tp, skb);
826
827	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
828		tp->lost_out += tcp_skb_pcount(skb);
829		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
830	}
831}
832
833/* This procedure tags the retransmission queue when SACKs arrive.
834 *
835 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
836 * Packets in queue with these bits set are counted in variables
837 * sacked_out, retrans_out and lost_out, correspondingly.
838 *
839 * Valid combinations are:
840 * Tag  InFlight	Description
841 * 0	1		- orig segment is in flight.
842 * S	0		- nothing flies, orig reached receiver.
843 * L	0		- nothing flies, orig lost by net.
844 * R	2		- both orig and retransmit are in flight.
845 * L|R	1		- orig is lost, retransmit is in flight.
846 * S|R  1		- orig reached receiver, retrans is still in flight.
847 * (L|S|R is logically valid, it could occur when L|R is sacked,
848 *  but it is equivalent to plain S and code short-curcuits it to S.
849 *  L|S is logically invalid, it would mean -1 packet in flight 8))
850 *
851 * These 6 states form finite state machine, controlled by the following events:
852 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
853 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
854 * 3. Loss detection event of two flavors:
855 *	A. Scoreboard estimator decided the packet is lost.
856 *	   A'. Reno "three dupacks" marks head of queue lost.
857 *	   A''. Its FACK modification, head until snd.fack is lost.
858 *	B. SACK arrives sacking SND.NXT at the moment, when the
859 *	   segment was retransmitted.
860 * 4. D-SACK added new rule: D-SACK changes any tag to S.
861 *
862 * It is pleasant to note, that state diagram turns out to be commutative,
863 * so that we are allowed not to be bothered by order of our actions,
864 * when multiple events arrive simultaneously. (see the function below).
865 *
866 * Reordering detection.
867 * --------------------
868 * Reordering metric is maximal distance, which a packet can be displaced
869 * in packet stream. With SACKs we can estimate it:
870 *
871 * 1. SACK fills old hole and the corresponding segment was not
872 *    ever retransmitted -> reordering. Alas, we cannot use it
873 *    when segment was retransmitted.
874 * 2. The last flaw is solved with D-SACK. D-SACK arrives
875 *    for retransmitted and already SACKed segment -> reordering..
876 * Both of these heuristics are not used in Loss state, when we cannot
877 * account for retransmits accurately.
878 *
879 * SACK block validation.
880 * ----------------------
881 *
882 * SACK block range validation checks that the received SACK block fits to
883 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
884 * Note that SND.UNA is not included to the range though being valid because
885 * it means that the receiver is rather inconsistent with itself reporting
886 * SACK reneging when it should advance SND.UNA. Such SACK block this is
887 * perfectly valid, however, in light of RFC2018 which explicitly states
888 * that "SACK block MUST reflect the newest segment.  Even if the newest
889 * segment is going to be discarded ...", not that it looks very clever
890 * in case of head skb. Due to potentional receiver driven attacks, we
891 * choose to avoid immediate execution of a walk in write queue due to
892 * reneging and defer head skb's loss recovery to standard loss recovery
893 * procedure that will eventually trigger (nothing forbids us doing this).
894 *
895 * Implements also blockage to start_seq wrap-around. Problem lies in the
896 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
897 * there's no guarantee that it will be before snd_nxt (n). The problem
898 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
899 * wrap (s_w):
900 *
901 *         <- outs wnd ->                          <- wrapzone ->
902 *         u     e      n                         u_w   e_w  s n_w
903 *         |     |      |                          |     |   |  |
904 * |<------------+------+----- TCP seqno space --------------+---------->|
905 * ...-- <2^31 ->|                                           |<--------...
906 * ...---- >2^31 ------>|                                    |<--------...
907 *
908 * Current code wouldn't be vulnerable but it's better still to discard such
909 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
910 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
911 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
912 * equal to the ideal case (infinite seqno space without wrap caused issues).
913 *
914 * With D-SACK the lower bound is extended to cover sequence space below
915 * SND.UNA down to undo_marker, which is the last point of interest. Yet
916 * again, D-SACK block must not to go across snd_una (for the same reason as
917 * for the normal SACK blocks, explained above). But there all simplicity
918 * ends, TCP might receive valid D-SACKs below that. As long as they reside
919 * fully below undo_marker they do not affect behavior in anyway and can
920 * therefore be safely ignored. In rare cases (which are more or less
921 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
922 * fragmentation and packet reordering past skb's retransmission. To consider
923 * them correctly, the acceptable range must be extended even more though
924 * the exact amount is rather hard to quantify. However, tp->max_window can
925 * be used as an exaggerated estimate.
926 */
927static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
928				   u32 start_seq, u32 end_seq)
929{
930	/* Too far in future, or reversed (interpretation is ambiguous) */
931	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
932		return false;
933
934	/* Nasty start_seq wrap-around check (see comments above) */
935	if (!before(start_seq, tp->snd_nxt))
936		return false;
937
938	/* In outstanding window? ...This is valid exit for D-SACKs too.
939	 * start_seq == snd_una is non-sensical (see comments above)
940	 */
941	if (after(start_seq, tp->snd_una))
942		return true;
943
944	if (!is_dsack || !tp->undo_marker)
945		return false;
946
947	/* ...Then it's D-SACK, and must reside below snd_una completely */
948	if (after(end_seq, tp->snd_una))
949		return false;
950
951	if (!before(start_seq, tp->undo_marker))
952		return true;
953
954	/* Too old */
955	if (!after(end_seq, tp->undo_marker))
956		return false;
957
958	/* Undo_marker boundary crossing (overestimates a lot). Known already:
959	 *   start_seq < undo_marker and end_seq >= undo_marker.
960	 */
961	return !before(start_seq, end_seq - tp->max_window);
962}
963
964/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
965 * Event "B". Later note: FACK people cheated me again 8), we have to account
966 * for reordering! Ugly, but should help.
967 *
968 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
969 * less than what is now known to be received by the other end (derived from
970 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
971 * retransmitted skbs to avoid some costly processing per ACKs.
972 */
973static void tcp_mark_lost_retrans(struct sock *sk)
974{
975	const struct inet_connection_sock *icsk = inet_csk(sk);
976	struct tcp_sock *tp = tcp_sk(sk);
977	struct sk_buff *skb;
978	int cnt = 0;
979	u32 new_low_seq = tp->snd_nxt;
980	u32 received_upto = tcp_highest_sack_seq(tp);
981
982	if (!tcp_is_fack(tp) || !tp->retrans_out ||
983	    !after(received_upto, tp->lost_retrans_low) ||
984	    icsk->icsk_ca_state != TCP_CA_Recovery)
985		return;
986
987	tcp_for_write_queue(skb, sk) {
988		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
989
990		if (skb == tcp_send_head(sk))
991			break;
992		if (cnt == tp->retrans_out)
993			break;
994		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
995			continue;
996
997		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
998			continue;
999
1000		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1001		 * constraint here (see above) but figuring out that at
1002		 * least tp->reordering SACK blocks reside between ack_seq
1003		 * and received_upto is not easy task to do cheaply with
1004		 * the available datastructures.
1005		 *
1006		 * Whether FACK should check here for tp->reordering segs
1007		 * in-between one could argue for either way (it would be
1008		 * rather simple to implement as we could count fack_count
1009		 * during the walk and do tp->fackets_out - fack_count).
1010		 */
1011		if (after(received_upto, ack_seq)) {
1012			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1013			tp->retrans_out -= tcp_skb_pcount(skb);
1014
1015			tcp_skb_mark_lost_uncond_verify(tp, skb);
1016			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1017		} else {
1018			if (before(ack_seq, new_low_seq))
1019				new_low_seq = ack_seq;
1020			cnt += tcp_skb_pcount(skb);
1021		}
1022	}
1023
1024	if (tp->retrans_out)
1025		tp->lost_retrans_low = new_low_seq;
1026}
1027
1028static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1029			    struct tcp_sack_block_wire *sp, int num_sacks,
1030			    u32 prior_snd_una)
1031{
1032	struct tcp_sock *tp = tcp_sk(sk);
1033	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1034	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1035	bool dup_sack = false;
1036
1037	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1038		dup_sack = true;
1039		tcp_dsack_seen(tp);
1040		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1041	} else if (num_sacks > 1) {
1042		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1043		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1044
1045		if (!after(end_seq_0, end_seq_1) &&
1046		    !before(start_seq_0, start_seq_1)) {
1047			dup_sack = true;
1048			tcp_dsack_seen(tp);
1049			NET_INC_STATS_BH(sock_net(sk),
1050					LINUX_MIB_TCPDSACKOFORECV);
1051		}
1052	}
1053
1054	/* D-SACK for already forgotten data... Do dumb counting. */
1055	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1056	    !after(end_seq_0, prior_snd_una) &&
1057	    after(end_seq_0, tp->undo_marker))
1058		tp->undo_retrans--;
1059
1060	return dup_sack;
1061}
1062
1063struct tcp_sacktag_state {
1064	int reord;
1065	int fack_count;
1066	int flag;
1067};
1068
1069/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1070 * the incoming SACK may not exactly match but we can find smaller MSS
1071 * aligned portion of it that matches. Therefore we might need to fragment
1072 * which may fail and creates some hassle (caller must handle error case
1073 * returns).
1074 *
1075 * FIXME: this could be merged to shift decision code
1076 */
1077static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1078				  u32 start_seq, u32 end_seq)
1079{
1080	int err;
1081	bool in_sack;
1082	unsigned int pkt_len;
1083	unsigned int mss;
1084
1085	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1086		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1087
1088	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1089	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1090		mss = tcp_skb_mss(skb);
1091		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1092
1093		if (!in_sack) {
1094			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1095			if (pkt_len < mss)
1096				pkt_len = mss;
1097		} else {
1098			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1099			if (pkt_len < mss)
1100				return -EINVAL;
1101		}
1102
1103		/* Round if necessary so that SACKs cover only full MSSes
1104		 * and/or the remaining small portion (if present)
1105		 */
1106		if (pkt_len > mss) {
1107			unsigned int new_len = (pkt_len / mss) * mss;
1108			if (!in_sack && new_len < pkt_len) {
1109				new_len += mss;
1110				if (new_len > skb->len)
1111					return 0;
1112			}
1113			pkt_len = new_len;
1114		}
1115		err = tcp_fragment(sk, skb, pkt_len, mss);
1116		if (err < 0)
1117			return err;
1118	}
1119
1120	return in_sack;
1121}
1122
1123/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1124static u8 tcp_sacktag_one(struct sock *sk,
1125			  struct tcp_sacktag_state *state, u8 sacked,
1126			  u32 start_seq, u32 end_seq,
1127			  bool dup_sack, int pcount)
1128{
1129	struct tcp_sock *tp = tcp_sk(sk);
1130	int fack_count = state->fack_count;
1131
1132	/* Account D-SACK for retransmitted packet. */
1133	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1134		if (tp->undo_marker && tp->undo_retrans &&
1135		    after(end_seq, tp->undo_marker))
1136			tp->undo_retrans--;
1137		if (sacked & TCPCB_SACKED_ACKED)
1138			state->reord = min(fack_count, state->reord);
1139	}
1140
1141	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1142	if (!after(end_seq, tp->snd_una))
1143		return sacked;
1144
1145	if (!(sacked & TCPCB_SACKED_ACKED)) {
1146		if (sacked & TCPCB_SACKED_RETRANS) {
1147			/* If the segment is not tagged as lost,
1148			 * we do not clear RETRANS, believing
1149			 * that retransmission is still in flight.
1150			 */
1151			if (sacked & TCPCB_LOST) {
1152				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1153				tp->lost_out -= pcount;
1154				tp->retrans_out -= pcount;
1155			}
1156		} else {
1157			if (!(sacked & TCPCB_RETRANS)) {
1158				/* New sack for not retransmitted frame,
1159				 * which was in hole. It is reordering.
1160				 */
1161				if (before(start_seq,
1162					   tcp_highest_sack_seq(tp)))
1163					state->reord = min(fack_count,
1164							   state->reord);
1165
1166				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1167				if (!after(end_seq, tp->frto_highmark))
1168					state->flag |= FLAG_ONLY_ORIG_SACKED;
1169			}
1170
1171			if (sacked & TCPCB_LOST) {
1172				sacked &= ~TCPCB_LOST;
1173				tp->lost_out -= pcount;
1174			}
1175		}
1176
1177		sacked |= TCPCB_SACKED_ACKED;
1178		state->flag |= FLAG_DATA_SACKED;
1179		tp->sacked_out += pcount;
1180
1181		fack_count += pcount;
1182
1183		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1184		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1185		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1186			tp->lost_cnt_hint += pcount;
1187
1188		if (fack_count > tp->fackets_out)
1189			tp->fackets_out = fack_count;
1190	}
1191
1192	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1193	 * frames and clear it. undo_retrans is decreased above, L|R frames
1194	 * are accounted above as well.
1195	 */
1196	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1197		sacked &= ~TCPCB_SACKED_RETRANS;
1198		tp->retrans_out -= pcount;
1199	}
1200
1201	return sacked;
1202}
1203
1204/* Shift newly-SACKed bytes from this skb to the immediately previous
1205 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1206 */
1207static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1208			    struct tcp_sacktag_state *state,
1209			    unsigned int pcount, int shifted, int mss,
1210			    bool dup_sack)
1211{
1212	struct tcp_sock *tp = tcp_sk(sk);
1213	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1214	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1215	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1216
1217	BUG_ON(!pcount);
1218
1219	/* Adjust counters and hints for the newly sacked sequence
1220	 * range but discard the return value since prev is already
1221	 * marked. We must tag the range first because the seq
1222	 * advancement below implicitly advances
1223	 * tcp_highest_sack_seq() when skb is highest_sack.
1224	 */
1225	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1226			start_seq, end_seq, dup_sack, pcount);
1227
1228	if (skb == tp->lost_skb_hint)
1229		tp->lost_cnt_hint += pcount;
1230
1231	TCP_SKB_CB(prev)->end_seq += shifted;
1232	TCP_SKB_CB(skb)->seq += shifted;
1233
1234	skb_shinfo(prev)->gso_segs += pcount;
1235	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1236	skb_shinfo(skb)->gso_segs -= pcount;
1237
1238	/* When we're adding to gso_segs == 1, gso_size will be zero,
1239	 * in theory this shouldn't be necessary but as long as DSACK
1240	 * code can come after this skb later on it's better to keep
1241	 * setting gso_size to something.
1242	 */
1243	if (!skb_shinfo(prev)->gso_size) {
1244		skb_shinfo(prev)->gso_size = mss;
1245		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1246	}
1247
1248	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1249	if (skb_shinfo(skb)->gso_segs <= 1) {
1250		skb_shinfo(skb)->gso_size = 0;
1251		skb_shinfo(skb)->gso_type = 0;
1252	}
1253
1254	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1255	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1256
1257	if (skb->len > 0) {
1258		BUG_ON(!tcp_skb_pcount(skb));
1259		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1260		return false;
1261	}
1262
1263	/* Whole SKB was eaten :-) */
1264
1265	if (skb == tp->retransmit_skb_hint)
1266		tp->retransmit_skb_hint = prev;
1267	if (skb == tp->scoreboard_skb_hint)
1268		tp->scoreboard_skb_hint = prev;
1269	if (skb == tp->lost_skb_hint) {
1270		tp->lost_skb_hint = prev;
1271		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1272	}
1273
1274	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1275	if (skb == tcp_highest_sack(sk))
1276		tcp_advance_highest_sack(sk, skb);
1277
1278	tcp_unlink_write_queue(skb, sk);
1279	sk_wmem_free_skb(sk, skb);
1280
1281	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1282
1283	return true;
1284}
1285
1286/* I wish gso_size would have a bit more sane initialization than
1287 * something-or-zero which complicates things
1288 */
1289static int tcp_skb_seglen(const struct sk_buff *skb)
1290{
1291	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1292}
1293
1294/* Shifting pages past head area doesn't work */
1295static int skb_can_shift(const struct sk_buff *skb)
1296{
1297	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1298}
1299
1300/* Try collapsing SACK blocks spanning across multiple skbs to a single
1301 * skb.
1302 */
1303static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1304					  struct tcp_sacktag_state *state,
1305					  u32 start_seq, u32 end_seq,
1306					  bool dup_sack)
1307{
1308	struct tcp_sock *tp = tcp_sk(sk);
1309	struct sk_buff *prev;
1310	int mss;
1311	int pcount = 0;
1312	int len;
1313	int in_sack;
1314
1315	if (!sk_can_gso(sk))
1316		goto fallback;
1317
1318	/* Normally R but no L won't result in plain S */
1319	if (!dup_sack &&
1320	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1321		goto fallback;
1322	if (!skb_can_shift(skb))
1323		goto fallback;
1324	/* This frame is about to be dropped (was ACKed). */
1325	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1326		goto fallback;
1327
1328	/* Can only happen with delayed DSACK + discard craziness */
1329	if (unlikely(skb == tcp_write_queue_head(sk)))
1330		goto fallback;
1331	prev = tcp_write_queue_prev(sk, skb);
1332
1333	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1334		goto fallback;
1335
1336	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1337		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1338
1339	if (in_sack) {
1340		len = skb->len;
1341		pcount = tcp_skb_pcount(skb);
1342		mss = tcp_skb_seglen(skb);
1343
1344		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1345		 * drop this restriction as unnecessary
1346		 */
1347		if (mss != tcp_skb_seglen(prev))
1348			goto fallback;
1349	} else {
1350		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1351			goto noop;
1352		/* CHECKME: This is non-MSS split case only?, this will
1353		 * cause skipped skbs due to advancing loop btw, original
1354		 * has that feature too
1355		 */
1356		if (tcp_skb_pcount(skb) <= 1)
1357			goto noop;
1358
1359		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1360		if (!in_sack) {
1361			/* TODO: head merge to next could be attempted here
1362			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1363			 * though it might not be worth of the additional hassle
1364			 *
1365			 * ...we can probably just fallback to what was done
1366			 * previously. We could try merging non-SACKed ones
1367			 * as well but it probably isn't going to buy off
1368			 * because later SACKs might again split them, and
1369			 * it would make skb timestamp tracking considerably
1370			 * harder problem.
1371			 */
1372			goto fallback;
1373		}
1374
1375		len = end_seq - TCP_SKB_CB(skb)->seq;
1376		BUG_ON(len < 0);
1377		BUG_ON(len > skb->len);
1378
1379		/* MSS boundaries should be honoured or else pcount will
1380		 * severely break even though it makes things bit trickier.
1381		 * Optimize common case to avoid most of the divides
1382		 */
1383		mss = tcp_skb_mss(skb);
1384
1385		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1386		 * drop this restriction as unnecessary
1387		 */
1388		if (mss != tcp_skb_seglen(prev))
1389			goto fallback;
1390
1391		if (len == mss) {
1392			pcount = 1;
1393		} else if (len < mss) {
1394			goto noop;
1395		} else {
1396			pcount = len / mss;
1397			len = pcount * mss;
1398		}
1399	}
1400
1401	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1402	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1403		goto fallback;
1404
1405	if (!skb_shift(prev, skb, len))
1406		goto fallback;
1407	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1408		goto out;
1409
1410	/* Hole filled allows collapsing with the next as well, this is very
1411	 * useful when hole on every nth skb pattern happens
1412	 */
1413	if (prev == tcp_write_queue_tail(sk))
1414		goto out;
1415	skb = tcp_write_queue_next(sk, prev);
1416
1417	if (!skb_can_shift(skb) ||
1418	    (skb == tcp_send_head(sk)) ||
1419	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1420	    (mss != tcp_skb_seglen(skb)))
1421		goto out;
1422
1423	len = skb->len;
1424	if (skb_shift(prev, skb, len)) {
1425		pcount += tcp_skb_pcount(skb);
1426		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1427	}
1428
1429out:
1430	state->fack_count += pcount;
1431	return prev;
1432
1433noop:
1434	return skb;
1435
1436fallback:
1437	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1438	return NULL;
1439}
1440
1441static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1442					struct tcp_sack_block *next_dup,
1443					struct tcp_sacktag_state *state,
1444					u32 start_seq, u32 end_seq,
1445					bool dup_sack_in)
1446{
1447	struct tcp_sock *tp = tcp_sk(sk);
1448	struct sk_buff *tmp;
1449
1450	tcp_for_write_queue_from(skb, sk) {
1451		int in_sack = 0;
1452		bool dup_sack = dup_sack_in;
1453
1454		if (skb == tcp_send_head(sk))
1455			break;
1456
1457		/* queue is in-order => we can short-circuit the walk early */
1458		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1459			break;
1460
1461		if ((next_dup != NULL) &&
1462		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1463			in_sack = tcp_match_skb_to_sack(sk, skb,
1464							next_dup->start_seq,
1465							next_dup->end_seq);
1466			if (in_sack > 0)
1467				dup_sack = true;
1468		}
1469
1470		/* skb reference here is a bit tricky to get right, since
1471		 * shifting can eat and free both this skb and the next,
1472		 * so not even _safe variant of the loop is enough.
1473		 */
1474		if (in_sack <= 0) {
1475			tmp = tcp_shift_skb_data(sk, skb, state,
1476						 start_seq, end_seq, dup_sack);
1477			if (tmp != NULL) {
1478				if (tmp != skb) {
1479					skb = tmp;
1480					continue;
1481				}
1482
1483				in_sack = 0;
1484			} else {
1485				in_sack = tcp_match_skb_to_sack(sk, skb,
1486								start_seq,
1487								end_seq);
1488			}
1489		}
1490
1491		if (unlikely(in_sack < 0))
1492			break;
1493
1494		if (in_sack) {
1495			TCP_SKB_CB(skb)->sacked =
1496				tcp_sacktag_one(sk,
1497						state,
1498						TCP_SKB_CB(skb)->sacked,
1499						TCP_SKB_CB(skb)->seq,
1500						TCP_SKB_CB(skb)->end_seq,
1501						dup_sack,
1502						tcp_skb_pcount(skb));
1503
1504			if (!before(TCP_SKB_CB(skb)->seq,
1505				    tcp_highest_sack_seq(tp)))
1506				tcp_advance_highest_sack(sk, skb);
1507		}
1508
1509		state->fack_count += tcp_skb_pcount(skb);
1510	}
1511	return skb;
1512}
1513
1514/* Avoid all extra work that is being done by sacktag while walking in
1515 * a normal way
1516 */
1517static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1518					struct tcp_sacktag_state *state,
1519					u32 skip_to_seq)
1520{
1521	tcp_for_write_queue_from(skb, sk) {
1522		if (skb == tcp_send_head(sk))
1523			break;
1524
1525		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1526			break;
1527
1528		state->fack_count += tcp_skb_pcount(skb);
1529	}
1530	return skb;
1531}
1532
1533static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1534						struct sock *sk,
1535						struct tcp_sack_block *next_dup,
1536						struct tcp_sacktag_state *state,
1537						u32 skip_to_seq)
1538{
1539	if (next_dup == NULL)
1540		return skb;
1541
1542	if (before(next_dup->start_seq, skip_to_seq)) {
1543		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1544		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1545				       next_dup->start_seq, next_dup->end_seq,
1546				       1);
1547	}
1548
1549	return skb;
1550}
1551
1552static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1553{
1554	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1555}
1556
1557static int
1558tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1559			u32 prior_snd_una)
1560{
1561	const struct inet_connection_sock *icsk = inet_csk(sk);
1562	struct tcp_sock *tp = tcp_sk(sk);
1563	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1564				    TCP_SKB_CB(ack_skb)->sacked);
1565	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1566	struct tcp_sack_block sp[TCP_NUM_SACKS];
1567	struct tcp_sack_block *cache;
1568	struct tcp_sacktag_state state;
1569	struct sk_buff *skb;
1570	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1571	int used_sacks;
1572	bool found_dup_sack = false;
1573	int i, j;
1574	int first_sack_index;
1575
1576	state.flag = 0;
1577	state.reord = tp->packets_out;
1578
1579	if (!tp->sacked_out) {
1580		if (WARN_ON(tp->fackets_out))
1581			tp->fackets_out = 0;
1582		tcp_highest_sack_reset(sk);
1583	}
1584
1585	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1586					 num_sacks, prior_snd_una);
1587	if (found_dup_sack)
1588		state.flag |= FLAG_DSACKING_ACK;
1589
1590	/* Eliminate too old ACKs, but take into
1591	 * account more or less fresh ones, they can
1592	 * contain valid SACK info.
1593	 */
1594	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1595		return 0;
1596
1597	if (!tp->packets_out)
1598		goto out;
1599
1600	used_sacks = 0;
1601	first_sack_index = 0;
1602	for (i = 0; i < num_sacks; i++) {
1603		bool dup_sack = !i && found_dup_sack;
1604
1605		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1606		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1607
1608		if (!tcp_is_sackblock_valid(tp, dup_sack,
1609					    sp[used_sacks].start_seq,
1610					    sp[used_sacks].end_seq)) {
1611			int mib_idx;
1612
1613			if (dup_sack) {
1614				if (!tp->undo_marker)
1615					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1616				else
1617					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1618			} else {
1619				/* Don't count olds caused by ACK reordering */
1620				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1621				    !after(sp[used_sacks].end_seq, tp->snd_una))
1622					continue;
1623				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1624			}
1625
1626			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1627			if (i == 0)
1628				first_sack_index = -1;
1629			continue;
1630		}
1631
1632		/* Ignore very old stuff early */
1633		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1634			continue;
1635
1636		used_sacks++;
1637	}
1638
1639	/* order SACK blocks to allow in order walk of the retrans queue */
1640	for (i = used_sacks - 1; i > 0; i--) {
1641		for (j = 0; j < i; j++) {
1642			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1643				swap(sp[j], sp[j + 1]);
1644
1645				/* Track where the first SACK block goes to */
1646				if (j == first_sack_index)
1647					first_sack_index = j + 1;
1648			}
1649		}
1650	}
1651
1652	skb = tcp_write_queue_head(sk);
1653	state.fack_count = 0;
1654	i = 0;
1655
1656	if (!tp->sacked_out) {
1657		/* It's already past, so skip checking against it */
1658		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1659	} else {
1660		cache = tp->recv_sack_cache;
1661		/* Skip empty blocks in at head of the cache */
1662		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1663		       !cache->end_seq)
1664			cache++;
1665	}
1666
1667	while (i < used_sacks) {
1668		u32 start_seq = sp[i].start_seq;
1669		u32 end_seq = sp[i].end_seq;
1670		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1671		struct tcp_sack_block *next_dup = NULL;
1672
1673		if (found_dup_sack && ((i + 1) == first_sack_index))
1674			next_dup = &sp[i + 1];
1675
1676		/* Skip too early cached blocks */
1677		while (tcp_sack_cache_ok(tp, cache) &&
1678		       !before(start_seq, cache->end_seq))
1679			cache++;
1680
1681		/* Can skip some work by looking recv_sack_cache? */
1682		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1683		    after(end_seq, cache->start_seq)) {
1684
1685			/* Head todo? */
1686			if (before(start_seq, cache->start_seq)) {
1687				skb = tcp_sacktag_skip(skb, sk, &state,
1688						       start_seq);
1689				skb = tcp_sacktag_walk(skb, sk, next_dup,
1690						       &state,
1691						       start_seq,
1692						       cache->start_seq,
1693						       dup_sack);
1694			}
1695
1696			/* Rest of the block already fully processed? */
1697			if (!after(end_seq, cache->end_seq))
1698				goto advance_sp;
1699
1700			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1701						       &state,
1702						       cache->end_seq);
1703
1704			/* ...tail remains todo... */
1705			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1706				/* ...but better entrypoint exists! */
1707				skb = tcp_highest_sack(sk);
1708				if (skb == NULL)
1709					break;
1710				state.fack_count = tp->fackets_out;
1711				cache++;
1712				goto walk;
1713			}
1714
1715			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1716			/* Check overlap against next cached too (past this one already) */
1717			cache++;
1718			continue;
1719		}
1720
1721		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1722			skb = tcp_highest_sack(sk);
1723			if (skb == NULL)
1724				break;
1725			state.fack_count = tp->fackets_out;
1726		}
1727		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1728
1729walk:
1730		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1731				       start_seq, end_seq, dup_sack);
1732
1733advance_sp:
1734		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1735		 * due to in-order walk
1736		 */
1737		if (after(end_seq, tp->frto_highmark))
1738			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1739
1740		i++;
1741	}
1742
1743	/* Clear the head of the cache sack blocks so we can skip it next time */
1744	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1745		tp->recv_sack_cache[i].start_seq = 0;
1746		tp->recv_sack_cache[i].end_seq = 0;
1747	}
1748	for (j = 0; j < used_sacks; j++)
1749		tp->recv_sack_cache[i++] = sp[j];
1750
1751	tcp_mark_lost_retrans(sk);
1752
1753	tcp_verify_left_out(tp);
1754
1755	if ((state.reord < tp->fackets_out) &&
1756	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1757	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1758		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1759
1760out:
1761
1762#if FASTRETRANS_DEBUG > 0
1763	WARN_ON((int)tp->sacked_out < 0);
1764	WARN_ON((int)tp->lost_out < 0);
1765	WARN_ON((int)tp->retrans_out < 0);
1766	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1767#endif
1768	return state.flag;
1769}
1770
1771/* Limits sacked_out so that sum with lost_out isn't ever larger than
1772 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1773 */
1774static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1775{
1776	u32 holes;
1777
1778	holes = max(tp->lost_out, 1U);
1779	holes = min(holes, tp->packets_out);
1780
1781	if ((tp->sacked_out + holes) > tp->packets_out) {
1782		tp->sacked_out = tp->packets_out - holes;
1783		return true;
1784	}
1785	return false;
1786}
1787
1788/* If we receive more dupacks than we expected counting segments
1789 * in assumption of absent reordering, interpret this as reordering.
1790 * The only another reason could be bug in receiver TCP.
1791 */
1792static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1793{
1794	struct tcp_sock *tp = tcp_sk(sk);
1795	if (tcp_limit_reno_sacked(tp))
1796		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1797}
1798
1799/* Emulate SACKs for SACKless connection: account for a new dupack. */
1800
1801static void tcp_add_reno_sack(struct sock *sk)
1802{
1803	struct tcp_sock *tp = tcp_sk(sk);
1804	tp->sacked_out++;
1805	tcp_check_reno_reordering(sk, 0);
1806	tcp_verify_left_out(tp);
1807}
1808
1809/* Account for ACK, ACKing some data in Reno Recovery phase. */
1810
1811static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1812{
1813	struct tcp_sock *tp = tcp_sk(sk);
1814
1815	if (acked > 0) {
1816		/* One ACK acked hole. The rest eat duplicate ACKs. */
1817		if (acked - 1 >= tp->sacked_out)
1818			tp->sacked_out = 0;
1819		else
1820			tp->sacked_out -= acked - 1;
1821	}
1822	tcp_check_reno_reordering(sk, acked);
1823	tcp_verify_left_out(tp);
1824}
1825
1826static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1827{
1828	tp->sacked_out = 0;
1829}
1830
1831static int tcp_is_sackfrto(const struct tcp_sock *tp)
1832{
1833	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1834}
1835
1836/* F-RTO can only be used if TCP has never retransmitted anything other than
1837 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1838 */
1839bool tcp_use_frto(struct sock *sk)
1840{
1841	const struct tcp_sock *tp = tcp_sk(sk);
1842	const struct inet_connection_sock *icsk = inet_csk(sk);
1843	struct sk_buff *skb;
1844
1845	if (!sysctl_tcp_frto)
1846		return false;
1847
1848	/* MTU probe and F-RTO won't really play nicely along currently */
1849	if (icsk->icsk_mtup.probe_size)
1850		return false;
1851
1852	if (tcp_is_sackfrto(tp))
1853		return true;
1854
1855	/* Avoid expensive walking of rexmit queue if possible */
1856	if (tp->retrans_out > 1)
1857		return false;
1858
1859	skb = tcp_write_queue_head(sk);
1860	if (tcp_skb_is_last(sk, skb))
1861		return true;
1862	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1863	tcp_for_write_queue_from(skb, sk) {
1864		if (skb == tcp_send_head(sk))
1865			break;
1866		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1867			return false;
1868		/* Short-circuit when first non-SACKed skb has been checked */
1869		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1870			break;
1871	}
1872	return true;
1873}
1874
1875/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1876 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1877 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1878 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1879 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1880 * bits are handled if the Loss state is really to be entered (in
1881 * tcp_enter_frto_loss).
1882 *
1883 * Do like tcp_enter_loss() would; when RTO expires the second time it
1884 * does:
1885 *  "Reduce ssthresh if it has not yet been made inside this window."
1886 */
1887void tcp_enter_frto(struct sock *sk)
1888{
1889	const struct inet_connection_sock *icsk = inet_csk(sk);
1890	struct tcp_sock *tp = tcp_sk(sk);
1891	struct sk_buff *skb;
1892
1893	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1894	    tp->snd_una == tp->high_seq ||
1895	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1896	     !icsk->icsk_retransmits)) {
1897		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1898		/* Our state is too optimistic in ssthresh() call because cwnd
1899		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1900		 * recovery has not yet completed. Pattern would be this: RTO,
1901		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1902		 * up here twice).
1903		 * RFC4138 should be more specific on what to do, even though
1904		 * RTO is quite unlikely to occur after the first Cumulative ACK
1905		 * due to back-off and complexity of triggering events ...
1906		 */
1907		if (tp->frto_counter) {
1908			u32 stored_cwnd;
1909			stored_cwnd = tp->snd_cwnd;
1910			tp->snd_cwnd = 2;
1911			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1912			tp->snd_cwnd = stored_cwnd;
1913		} else {
1914			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1915		}
1916		/* ... in theory, cong.control module could do "any tricks" in
1917		 * ssthresh(), which means that ca_state, lost bits and lost_out
1918		 * counter would have to be faked before the call occurs. We
1919		 * consider that too expensive, unlikely and hacky, so modules
1920		 * using these in ssthresh() must deal these incompatibility
1921		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1922		 */
1923		tcp_ca_event(sk, CA_EVENT_FRTO);
1924	}
1925
1926	tp->undo_marker = tp->snd_una;
1927	tp->undo_retrans = 0;
1928
1929	skb = tcp_write_queue_head(sk);
1930	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1931		tp->undo_marker = 0;
1932	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1933		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1934		tp->retrans_out -= tcp_skb_pcount(skb);
1935	}
1936	tcp_verify_left_out(tp);
1937
1938	/* Too bad if TCP was application limited */
1939	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1940
1941	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1942	 * The last condition is necessary at least in tp->frto_counter case.
1943	 */
1944	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1945	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1946	    after(tp->high_seq, tp->snd_una)) {
1947		tp->frto_highmark = tp->high_seq;
1948	} else {
1949		tp->frto_highmark = tp->snd_nxt;
1950	}
1951	tcp_set_ca_state(sk, TCP_CA_Disorder);
1952	tp->high_seq = tp->snd_nxt;
1953	tp->frto_counter = 1;
1954}
1955
1956/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1957 * which indicates that we should follow the traditional RTO recovery,
1958 * i.e. mark everything lost and do go-back-N retransmission.
1959 */
1960static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1961{
1962	struct tcp_sock *tp = tcp_sk(sk);
1963	struct sk_buff *skb;
1964
1965	tp->lost_out = 0;
1966	tp->retrans_out = 0;
1967	if (tcp_is_reno(tp))
1968		tcp_reset_reno_sack(tp);
1969
1970	tcp_for_write_queue(skb, sk) {
1971		if (skb == tcp_send_head(sk))
1972			break;
1973
1974		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1975		/*
1976		 * Count the retransmission made on RTO correctly (only when
1977		 * waiting for the first ACK and did not get it)...
1978		 */
1979		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1980			/* For some reason this R-bit might get cleared? */
1981			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1982				tp->retrans_out += tcp_skb_pcount(skb);
1983			/* ...enter this if branch just for the first segment */
1984			flag |= FLAG_DATA_ACKED;
1985		} else {
1986			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1987				tp->undo_marker = 0;
1988			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1989		}
1990
1991		/* Marking forward transmissions that were made after RTO lost
1992		 * can cause unnecessary retransmissions in some scenarios,
1993		 * SACK blocks will mitigate that in some but not in all cases.
1994		 * We used to not mark them but it was causing break-ups with
1995		 * receivers that do only in-order receival.
1996		 *
1997		 * TODO: we could detect presence of such receiver and select
1998		 * different behavior per flow.
1999		 */
2000		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2001			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2002			tp->lost_out += tcp_skb_pcount(skb);
2003			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2004		}
2005	}
2006	tcp_verify_left_out(tp);
2007
2008	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2009	tp->snd_cwnd_cnt = 0;
2010	tp->snd_cwnd_stamp = tcp_time_stamp;
2011	tp->frto_counter = 0;
2012	tp->bytes_acked = 0;
2013
2014	tp->reordering = min_t(unsigned int, tp->reordering,
2015			       sysctl_tcp_reordering);
2016	tcp_set_ca_state(sk, TCP_CA_Loss);
2017	tp->high_seq = tp->snd_nxt;
2018	TCP_ECN_queue_cwr(tp);
2019
2020	tcp_clear_all_retrans_hints(tp);
2021}
2022
2023static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2024{
2025	tp->retrans_out = 0;
2026	tp->lost_out = 0;
2027
2028	tp->undo_marker = 0;
2029	tp->undo_retrans = 0;
2030}
2031
2032void tcp_clear_retrans(struct tcp_sock *tp)
2033{
2034	tcp_clear_retrans_partial(tp);
2035
2036	tp->fackets_out = 0;
2037	tp->sacked_out = 0;
2038}
2039
2040/* Enter Loss state. If "how" is not zero, forget all SACK information
2041 * and reset tags completely, otherwise preserve SACKs. If receiver
2042 * dropped its ofo queue, we will know this due to reneging detection.
2043 */
2044void tcp_enter_loss(struct sock *sk, int how)
2045{
2046	const struct inet_connection_sock *icsk = inet_csk(sk);
2047	struct tcp_sock *tp = tcp_sk(sk);
2048	struct sk_buff *skb;
2049
2050	/* Reduce ssthresh if it has not yet been made inside this window. */
2051	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2052	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2053		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2054		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2055		tcp_ca_event(sk, CA_EVENT_LOSS);
2056	}
2057	tp->snd_cwnd	   = 1;
2058	tp->snd_cwnd_cnt   = 0;
2059	tp->snd_cwnd_stamp = tcp_time_stamp;
2060
2061	tp->bytes_acked = 0;
2062	tcp_clear_retrans_partial(tp);
2063
2064	if (tcp_is_reno(tp))
2065		tcp_reset_reno_sack(tp);
2066
2067	if (!how) {
2068		/* Push undo marker, if it was plain RTO and nothing
2069		 * was retransmitted. */
2070		tp->undo_marker = tp->snd_una;
2071	} else {
2072		tp->sacked_out = 0;
2073		tp->fackets_out = 0;
2074	}
2075	tcp_clear_all_retrans_hints(tp);
2076
2077	tcp_for_write_queue(skb, sk) {
2078		if (skb == tcp_send_head(sk))
2079			break;
2080
2081		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2082			tp->undo_marker = 0;
2083		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2084		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2085			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2086			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2087			tp->lost_out += tcp_skb_pcount(skb);
2088			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2089		}
2090	}
2091	tcp_verify_left_out(tp);
2092
2093	tp->reordering = min_t(unsigned int, tp->reordering,
2094			       sysctl_tcp_reordering);
2095	tcp_set_ca_state(sk, TCP_CA_Loss);
2096	tp->high_seq = tp->snd_nxt;
2097	TCP_ECN_queue_cwr(tp);
2098	/* Abort F-RTO algorithm if one is in progress */
2099	tp->frto_counter = 0;
2100}
2101
2102/* If ACK arrived pointing to a remembered SACK, it means that our
2103 * remembered SACKs do not reflect real state of receiver i.e.
2104 * receiver _host_ is heavily congested (or buggy).
2105 *
2106 * Do processing similar to RTO timeout.
2107 */
2108static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2109{
2110	if (flag & FLAG_SACK_RENEGING) {
2111		struct inet_connection_sock *icsk = inet_csk(sk);
2112		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2113
2114		tcp_enter_loss(sk, 1);
2115		icsk->icsk_retransmits++;
2116		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2117		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2118					  icsk->icsk_rto, TCP_RTO_MAX);
2119		return true;
2120	}
2121	return false;
2122}
2123
2124static inline int tcp_fackets_out(const struct tcp_sock *tp)
2125{
2126	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2127}
2128
2129/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2130 * counter when SACK is enabled (without SACK, sacked_out is used for
2131 * that purpose).
2132 *
2133 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2134 * segments up to the highest received SACK block so far and holes in
2135 * between them.
2136 *
2137 * With reordering, holes may still be in flight, so RFC3517 recovery
2138 * uses pure sacked_out (total number of SACKed segments) even though
2139 * it violates the RFC that uses duplicate ACKs, often these are equal
2140 * but when e.g. out-of-window ACKs or packet duplication occurs,
2141 * they differ. Since neither occurs due to loss, TCP should really
2142 * ignore them.
2143 */
2144static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2145{
2146	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2147}
2148
2149static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2150{
2151	struct tcp_sock *tp = tcp_sk(sk);
2152	unsigned long delay;
2153
2154	/* Delay early retransmit and entering fast recovery for
2155	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2156	 * available, or RTO is scheduled to fire first.
2157	 */
2158	if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2159		return false;
2160
2161	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2162	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2163		return false;
2164
2165	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2166	tp->early_retrans_delayed = 1;
2167	return true;
2168}
2169
2170static inline int tcp_skb_timedout(const struct sock *sk,
2171				   const struct sk_buff *skb)
2172{
2173	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2174}
2175
2176static inline int tcp_head_timedout(const struct sock *sk)
2177{
2178	const struct tcp_sock *tp = tcp_sk(sk);
2179
2180	return tp->packets_out &&
2181	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2182}
2183
2184/* Linux NewReno/SACK/FACK/ECN state machine.
2185 * --------------------------------------
2186 *
2187 * "Open"	Normal state, no dubious events, fast path.
2188 * "Disorder"   In all the respects it is "Open",
2189 *		but requires a bit more attention. It is entered when
2190 *		we see some SACKs or dupacks. It is split of "Open"
2191 *		mainly to move some processing from fast path to slow one.
2192 * "CWR"	CWND was reduced due to some Congestion Notification event.
2193 *		It can be ECN, ICMP source quench, local device congestion.
2194 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2195 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2196 *
2197 * tcp_fastretrans_alert() is entered:
2198 * - each incoming ACK, if state is not "Open"
2199 * - when arrived ACK is unusual, namely:
2200 *	* SACK
2201 *	* Duplicate ACK.
2202 *	* ECN ECE.
2203 *
2204 * Counting packets in flight is pretty simple.
2205 *
2206 *	in_flight = packets_out - left_out + retrans_out
2207 *
2208 *	packets_out is SND.NXT-SND.UNA counted in packets.
2209 *
2210 *	retrans_out is number of retransmitted segments.
2211 *
2212 *	left_out is number of segments left network, but not ACKed yet.
2213 *
2214 *		left_out = sacked_out + lost_out
2215 *
2216 *     sacked_out: Packets, which arrived to receiver out of order
2217 *		   and hence not ACKed. With SACKs this number is simply
2218 *		   amount of SACKed data. Even without SACKs
2219 *		   it is easy to give pretty reliable estimate of this number,
2220 *		   counting duplicate ACKs.
2221 *
2222 *       lost_out: Packets lost by network. TCP has no explicit
2223 *		   "loss notification" feedback from network (for now).
2224 *		   It means that this number can be only _guessed_.
2225 *		   Actually, it is the heuristics to predict lossage that
2226 *		   distinguishes different algorithms.
2227 *
2228 *	F.e. after RTO, when all the queue is considered as lost,
2229 *	lost_out = packets_out and in_flight = retrans_out.
2230 *
2231 *		Essentially, we have now two algorithms counting
2232 *		lost packets.
2233 *
2234 *		FACK: It is the simplest heuristics. As soon as we decided
2235 *		that something is lost, we decide that _all_ not SACKed
2236 *		packets until the most forward SACK are lost. I.e.
2237 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2238 *		It is absolutely correct estimate, if network does not reorder
2239 *		packets. And it loses any connection to reality when reordering
2240 *		takes place. We use FACK by default until reordering
2241 *		is suspected on the path to this destination.
2242 *
2243 *		NewReno: when Recovery is entered, we assume that one segment
2244 *		is lost (classic Reno). While we are in Recovery and
2245 *		a partial ACK arrives, we assume that one more packet
2246 *		is lost (NewReno). This heuristics are the same in NewReno
2247 *		and SACK.
2248 *
2249 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2250 *  deflation etc. CWND is real congestion window, never inflated, changes
2251 *  only according to classic VJ rules.
2252 *
2253 * Really tricky (and requiring careful tuning) part of algorithm
2254 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2255 * The first determines the moment _when_ we should reduce CWND and,
2256 * hence, slow down forward transmission. In fact, it determines the moment
2257 * when we decide that hole is caused by loss, rather than by a reorder.
2258 *
2259 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2260 * holes, caused by lost packets.
2261 *
2262 * And the most logically complicated part of algorithm is undo
2263 * heuristics. We detect false retransmits due to both too early
2264 * fast retransmit (reordering) and underestimated RTO, analyzing
2265 * timestamps and D-SACKs. When we detect that some segments were
2266 * retransmitted by mistake and CWND reduction was wrong, we undo
2267 * window reduction and abort recovery phase. This logic is hidden
2268 * inside several functions named tcp_try_undo_<something>.
2269 */
2270
2271/* This function decides, when we should leave Disordered state
2272 * and enter Recovery phase, reducing congestion window.
2273 *
2274 * Main question: may we further continue forward transmission
2275 * with the same cwnd?
2276 */
2277static bool tcp_time_to_recover(struct sock *sk, int flag)
2278{
2279	struct tcp_sock *tp = tcp_sk(sk);
2280	__u32 packets_out;
2281
2282	/* Do not perform any recovery during F-RTO algorithm */
2283	if (tp->frto_counter)
2284		return false;
2285
2286	/* Trick#1: The loss is proven. */
2287	if (tp->lost_out)
2288		return true;
2289
2290	/* Not-A-Trick#2 : Classic rule... */
2291	if (tcp_dupack_heuristics(tp) > tp->reordering)
2292		return true;
2293
2294	/* Trick#3 : when we use RFC2988 timer restart, fast
2295	 * retransmit can be triggered by timeout of queue head.
2296	 */
2297	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2298		return true;
2299
2300	/* Trick#4: It is still not OK... But will it be useful to delay
2301	 * recovery more?
2302	 */
2303	packets_out = tp->packets_out;
2304	if (packets_out <= tp->reordering &&
2305	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2306	    !tcp_may_send_now(sk)) {
2307		/* We have nothing to send. This connection is limited
2308		 * either by receiver window or by application.
2309		 */
2310		return true;
2311	}
2312
2313	/* If a thin stream is detected, retransmit after first
2314	 * received dupack. Employ only if SACK is supported in order
2315	 * to avoid possible corner-case series of spurious retransmissions
2316	 * Use only if there are no unsent data.
2317	 */
2318	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2319	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2320	    tcp_is_sack(tp) && !tcp_send_head(sk))
2321		return true;
2322
2323	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2324	 * retransmissions due to small network reorderings, we implement
2325	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2326	 * interval if appropriate.
2327	 */
2328	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2329	    (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2330	    !tcp_may_send_now(sk))
2331		return !tcp_pause_early_retransmit(sk, flag);
2332
2333	return false;
2334}
2335
2336/* New heuristics: it is possible only after we switched to restart timer
2337 * each time when something is ACKed. Hence, we can detect timed out packets
2338 * during fast retransmit without falling to slow start.
2339 *
2340 * Usefulness of this as is very questionable, since we should know which of
2341 * the segments is the next to timeout which is relatively expensive to find
2342 * in general case unless we add some data structure just for that. The
2343 * current approach certainly won't find the right one too often and when it
2344 * finally does find _something_ it usually marks large part of the window
2345 * right away (because a retransmission with a larger timestamp blocks the
2346 * loop from advancing). -ij
2347 */
2348static void tcp_timeout_skbs(struct sock *sk)
2349{
2350	struct tcp_sock *tp = tcp_sk(sk);
2351	struct sk_buff *skb;
2352
2353	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2354		return;
2355
2356	skb = tp->scoreboard_skb_hint;
2357	if (tp->scoreboard_skb_hint == NULL)
2358		skb = tcp_write_queue_head(sk);
2359
2360	tcp_for_write_queue_from(skb, sk) {
2361		if (skb == tcp_send_head(sk))
2362			break;
2363		if (!tcp_skb_timedout(sk, skb))
2364			break;
2365
2366		tcp_skb_mark_lost(tp, skb);
2367	}
2368
2369	tp->scoreboard_skb_hint = skb;
2370
2371	tcp_verify_left_out(tp);
2372}
2373
2374/* Detect loss in event "A" above by marking head of queue up as lost.
2375 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2376 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2377 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2378 * the maximum SACKed segments to pass before reaching this limit.
2379 */
2380static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2381{
2382	struct tcp_sock *tp = tcp_sk(sk);
2383	struct sk_buff *skb;
2384	int cnt, oldcnt;
2385	int err;
2386	unsigned int mss;
2387	/* Use SACK to deduce losses of new sequences sent during recovery */
2388	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2389
2390	WARN_ON(packets > tp->packets_out);
2391	if (tp->lost_skb_hint) {
2392		skb = tp->lost_skb_hint;
2393		cnt = tp->lost_cnt_hint;
2394		/* Head already handled? */
2395		if (mark_head && skb != tcp_write_queue_head(sk))
2396			return;
2397	} else {
2398		skb = tcp_write_queue_head(sk);
2399		cnt = 0;
2400	}
2401
2402	tcp_for_write_queue_from(skb, sk) {
2403		if (skb == tcp_send_head(sk))
2404			break;
2405		/* TODO: do this better */
2406		/* this is not the most efficient way to do this... */
2407		tp->lost_skb_hint = skb;
2408		tp->lost_cnt_hint = cnt;
2409
2410		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2411			break;
2412
2413		oldcnt = cnt;
2414		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2415		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2416			cnt += tcp_skb_pcount(skb);
2417
2418		if (cnt > packets) {
2419			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2420			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2421			    (oldcnt >= packets))
2422				break;
2423
2424			mss = skb_shinfo(skb)->gso_size;
2425			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2426			if (err < 0)
2427				break;
2428			cnt = packets;
2429		}
2430
2431		tcp_skb_mark_lost(tp, skb);
2432
2433		if (mark_head)
2434			break;
2435	}
2436	tcp_verify_left_out(tp);
2437}
2438
2439/* Account newly detected lost packet(s) */
2440
2441static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2442{
2443	struct tcp_sock *tp = tcp_sk(sk);
2444
2445	if (tcp_is_reno(tp)) {
2446		tcp_mark_head_lost(sk, 1, 1);
2447	} else if (tcp_is_fack(tp)) {
2448		int lost = tp->fackets_out - tp->reordering;
2449		if (lost <= 0)
2450			lost = 1;
2451		tcp_mark_head_lost(sk, lost, 0);
2452	} else {
2453		int sacked_upto = tp->sacked_out - tp->reordering;
2454		if (sacked_upto >= 0)
2455			tcp_mark_head_lost(sk, sacked_upto, 0);
2456		else if (fast_rexmit)
2457			tcp_mark_head_lost(sk, 1, 1);
2458	}
2459
2460	tcp_timeout_skbs(sk);
2461}
2462
2463/* CWND moderation, preventing bursts due to too big ACKs
2464 * in dubious situations.
2465 */
2466static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2467{
2468	tp->snd_cwnd = min(tp->snd_cwnd,
2469			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2470	tp->snd_cwnd_stamp = tcp_time_stamp;
2471}
2472
2473/* Nothing was retransmitted or returned timestamp is less
2474 * than timestamp of the first retransmission.
2475 */
2476static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2477{
2478	return !tp->retrans_stamp ||
2479		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2480		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2481}
2482
2483/* Undo procedures. */
2484
2485#if FASTRETRANS_DEBUG > 1
2486static void DBGUNDO(struct sock *sk, const char *msg)
2487{
2488	struct tcp_sock *tp = tcp_sk(sk);
2489	struct inet_sock *inet = inet_sk(sk);
2490
2491	if (sk->sk_family == AF_INET) {
2492		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2493			 msg,
2494			 &inet->inet_daddr, ntohs(inet->inet_dport),
2495			 tp->snd_cwnd, tcp_left_out(tp),
2496			 tp->snd_ssthresh, tp->prior_ssthresh,
2497			 tp->packets_out);
2498	}
2499#if IS_ENABLED(CONFIG_IPV6)
2500	else if (sk->sk_family == AF_INET6) {
2501		struct ipv6_pinfo *np = inet6_sk(sk);
2502		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2503			 msg,
2504			 &np->daddr, ntohs(inet->inet_dport),
2505			 tp->snd_cwnd, tcp_left_out(tp),
2506			 tp->snd_ssthresh, tp->prior_ssthresh,
2507			 tp->packets_out);
2508	}
2509#endif
2510}
2511#else
2512#define DBGUNDO(x...) do { } while (0)
2513#endif
2514
2515static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2516{
2517	struct tcp_sock *tp = tcp_sk(sk);
2518
2519	if (tp->prior_ssthresh) {
2520		const struct inet_connection_sock *icsk = inet_csk(sk);
2521
2522		if (icsk->icsk_ca_ops->undo_cwnd)
2523			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2524		else
2525			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2526
2527		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2528			tp->snd_ssthresh = tp->prior_ssthresh;
2529			TCP_ECN_withdraw_cwr(tp);
2530		}
2531	} else {
2532		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2533	}
2534	tp->snd_cwnd_stamp = tcp_time_stamp;
2535}
2536
2537static inline bool tcp_may_undo(const struct tcp_sock *tp)
2538{
2539	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2540}
2541
2542/* People celebrate: "We love our President!" */
2543static bool tcp_try_undo_recovery(struct sock *sk)
2544{
2545	struct tcp_sock *tp = tcp_sk(sk);
2546
2547	if (tcp_may_undo(tp)) {
2548		int mib_idx;
2549
2550		/* Happy end! We did not retransmit anything
2551		 * or our original transmission succeeded.
2552		 */
2553		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2554		tcp_undo_cwr(sk, true);
2555		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2556			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2557		else
2558			mib_idx = LINUX_MIB_TCPFULLUNDO;
2559
2560		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2561		tp->undo_marker = 0;
2562	}
2563	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2564		/* Hold old state until something *above* high_seq
2565		 * is ACKed. For Reno it is MUST to prevent false
2566		 * fast retransmits (RFC2582). SACK TCP is safe. */
2567		tcp_moderate_cwnd(tp);
2568		return true;
2569	}
2570	tcp_set_ca_state(sk, TCP_CA_Open);
2571	return false;
2572}
2573
2574/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2575static void tcp_try_undo_dsack(struct sock *sk)
2576{
2577	struct tcp_sock *tp = tcp_sk(sk);
2578
2579	if (tp->undo_marker && !tp->undo_retrans) {
2580		DBGUNDO(sk, "D-SACK");
2581		tcp_undo_cwr(sk, true);
2582		tp->undo_marker = 0;
2583		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2584	}
2585}
2586
2587/* We can clear retrans_stamp when there are no retransmissions in the
2588 * window. It would seem that it is trivially available for us in
2589 * tp->retrans_out, however, that kind of assumptions doesn't consider
2590 * what will happen if errors occur when sending retransmission for the
2591 * second time. ...It could the that such segment has only
2592 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2593 * the head skb is enough except for some reneging corner cases that
2594 * are not worth the effort.
2595 *
2596 * Main reason for all this complexity is the fact that connection dying
2597 * time now depends on the validity of the retrans_stamp, in particular,
2598 * that successive retransmissions of a segment must not advance
2599 * retrans_stamp under any conditions.
2600 */
2601static bool tcp_any_retrans_done(const struct sock *sk)
2602{
2603	const struct tcp_sock *tp = tcp_sk(sk);
2604	struct sk_buff *skb;
2605
2606	if (tp->retrans_out)
2607		return true;
2608
2609	skb = tcp_write_queue_head(sk);
2610	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2611		return true;
2612
2613	return false;
2614}
2615
2616/* Undo during fast recovery after partial ACK. */
2617
2618static int tcp_try_undo_partial(struct sock *sk, int acked)
2619{
2620	struct tcp_sock *tp = tcp_sk(sk);
2621	/* Partial ACK arrived. Force Hoe's retransmit. */
2622	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2623
2624	if (tcp_may_undo(tp)) {
2625		/* Plain luck! Hole if filled with delayed
2626		 * packet, rather than with a retransmit.
2627		 */
2628		if (!tcp_any_retrans_done(sk))
2629			tp->retrans_stamp = 0;
2630
2631		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2632
2633		DBGUNDO(sk, "Hoe");
2634		tcp_undo_cwr(sk, false);
2635		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2636
2637		/* So... Do not make Hoe's retransmit yet.
2638		 * If the first packet was delayed, the rest
2639		 * ones are most probably delayed as well.
2640		 */
2641		failed = 0;
2642	}
2643	return failed;
2644}
2645
2646/* Undo during loss recovery after partial ACK. */
2647static bool tcp_try_undo_loss(struct sock *sk)
2648{
2649	struct tcp_sock *tp = tcp_sk(sk);
2650
2651	if (tcp_may_undo(tp)) {
2652		struct sk_buff *skb;
2653		tcp_for_write_queue(skb, sk) {
2654			if (skb == tcp_send_head(sk))
2655				break;
2656			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2657		}
2658
2659		tcp_clear_all_retrans_hints(tp);
2660
2661		DBGUNDO(sk, "partial loss");
2662		tp->lost_out = 0;
2663		tcp_undo_cwr(sk, true);
2664		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2665		inet_csk(sk)->icsk_retransmits = 0;
2666		tp->undo_marker = 0;
2667		if (tcp_is_sack(tp))
2668			tcp_set_ca_state(sk, TCP_CA_Open);
2669		return true;
2670	}
2671	return false;
2672}
2673
2674/* The cwnd reduction in CWR and Recovery use the PRR algorithm
2675 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2676 * It computes the number of packets to send (sndcnt) based on packets newly
2677 * delivered:
2678 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2679 *	cwnd reductions across a full RTT.
2680 *   2) If packets in flight is lower than ssthresh (such as due to excess
2681 *	losses and/or application stalls), do not perform any further cwnd
2682 *	reductions, but instead slow start up to ssthresh.
2683 */
2684static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2685{
2686	struct tcp_sock *tp = tcp_sk(sk);
2687
2688	tp->high_seq = tp->snd_nxt;
2689	tp->bytes_acked = 0;
2690	tp->snd_cwnd_cnt = 0;
2691	tp->prior_cwnd = tp->snd_cwnd;
2692	tp->prr_delivered = 0;
2693	tp->prr_out = 0;
2694	if (set_ssthresh)
2695		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2696	TCP_ECN_queue_cwr(tp);
2697}
2698
2699static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2700			       int fast_rexmit)
2701{
2702	struct tcp_sock *tp = tcp_sk(sk);
2703	int sndcnt = 0;
2704	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2705
2706	tp->prr_delivered += newly_acked_sacked;
2707	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2708		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2709			       tp->prior_cwnd - 1;
2710		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2711	} else {
2712		sndcnt = min_t(int, delta,
2713			       max_t(int, tp->prr_delivered - tp->prr_out,
2714				     newly_acked_sacked) + 1);
2715	}
2716
2717	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2718	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2719}
2720
2721static inline void tcp_end_cwnd_reduction(struct sock *sk)
2722{
2723	struct tcp_sock *tp = tcp_sk(sk);
2724
2725	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2726	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2727	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2728		tp->snd_cwnd = tp->snd_ssthresh;
2729		tp->snd_cwnd_stamp = tcp_time_stamp;
2730	}
2731	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2732}
2733
2734/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2735void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2736{
2737	struct tcp_sock *tp = tcp_sk(sk);
2738
2739	tp->prior_ssthresh = 0;
2740	tp->bytes_acked = 0;
2741	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2742		tp->undo_marker = 0;
2743		tcp_init_cwnd_reduction(sk, set_ssthresh);
2744		tcp_set_ca_state(sk, TCP_CA_CWR);
2745	}
2746}
2747
2748static void tcp_try_keep_open(struct sock *sk)
2749{
2750	struct tcp_sock *tp = tcp_sk(sk);
2751	int state = TCP_CA_Open;
2752
2753	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2754		state = TCP_CA_Disorder;
2755
2756	if (inet_csk(sk)->icsk_ca_state != state) {
2757		tcp_set_ca_state(sk, state);
2758		tp->high_seq = tp->snd_nxt;
2759	}
2760}
2761
2762static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2763{
2764	struct tcp_sock *tp = tcp_sk(sk);
2765
2766	tcp_verify_left_out(tp);
2767
2768	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2769		tp->retrans_stamp = 0;
2770
2771	if (flag & FLAG_ECE)
2772		tcp_enter_cwr(sk, 1);
2773
2774	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2775		tcp_try_keep_open(sk);
2776		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2777			tcp_moderate_cwnd(tp);
2778	} else {
2779		tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2780	}
2781}
2782
2783static void tcp_mtup_probe_failed(struct sock *sk)
2784{
2785	struct inet_connection_sock *icsk = inet_csk(sk);
2786
2787	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2788	icsk->icsk_mtup.probe_size = 0;
2789}
2790
2791static void tcp_mtup_probe_success(struct sock *sk)
2792{
2793	struct tcp_sock *tp = tcp_sk(sk);
2794	struct inet_connection_sock *icsk = inet_csk(sk);
2795
2796	/* FIXME: breaks with very large cwnd */
2797	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2798	tp->snd_cwnd = tp->snd_cwnd *
2799		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2800		       icsk->icsk_mtup.probe_size;
2801	tp->snd_cwnd_cnt = 0;
2802	tp->snd_cwnd_stamp = tcp_time_stamp;
2803	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2804
2805	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2806	icsk->icsk_mtup.probe_size = 0;
2807	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2808}
2809
2810/* Do a simple retransmit without using the backoff mechanisms in
2811 * tcp_timer. This is used for path mtu discovery.
2812 * The socket is already locked here.
2813 */
2814void tcp_simple_retransmit(struct sock *sk)
2815{
2816	const struct inet_connection_sock *icsk = inet_csk(sk);
2817	struct tcp_sock *tp = tcp_sk(sk);
2818	struct sk_buff *skb;
2819	unsigned int mss = tcp_current_mss(sk);
2820	u32 prior_lost = tp->lost_out;
2821
2822	tcp_for_write_queue(skb, sk) {
2823		if (skb == tcp_send_head(sk))
2824			break;
2825		if (tcp_skb_seglen(skb) > mss &&
2826		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2827			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2828				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2829				tp->retrans_out -= tcp_skb_pcount(skb);
2830			}
2831			tcp_skb_mark_lost_uncond_verify(tp, skb);
2832		}
2833	}
2834
2835	tcp_clear_retrans_hints_partial(tp);
2836
2837	if (prior_lost == tp->lost_out)
2838		return;
2839
2840	if (tcp_is_reno(tp))
2841		tcp_limit_reno_sacked(tp);
2842
2843	tcp_verify_left_out(tp);
2844
2845	/* Don't muck with the congestion window here.
2846	 * Reason is that we do not increase amount of _data_
2847	 * in network, but units changed and effective
2848	 * cwnd/ssthresh really reduced now.
2849	 */
2850	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2851		tp->high_seq = tp->snd_nxt;
2852		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2853		tp->prior_ssthresh = 0;
2854		tp->undo_marker = 0;
2855		tcp_set_ca_state(sk, TCP_CA_Loss);
2856	}
2857	tcp_xmit_retransmit_queue(sk);
2858}
2859EXPORT_SYMBOL(tcp_simple_retransmit);
2860
2861static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2862{
2863	struct tcp_sock *tp = tcp_sk(sk);
2864	int mib_idx;
2865
2866	if (tcp_is_reno(tp))
2867		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2868	else
2869		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2870
2871	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2872
2873	tp->prior_ssthresh = 0;
2874	tp->undo_marker = tp->snd_una;
2875	tp->undo_retrans = tp->retrans_out;
2876
2877	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2878		if (!ece_ack)
2879			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2880		tcp_init_cwnd_reduction(sk, true);
2881	}
2882	tcp_set_ca_state(sk, TCP_CA_Recovery);
2883}
2884
2885/* Process an event, which can update packets-in-flight not trivially.
2886 * Main goal of this function is to calculate new estimate for left_out,
2887 * taking into account both packets sitting in receiver's buffer and
2888 * packets lost by network.
2889 *
2890 * Besides that it does CWND reduction, when packet loss is detected
2891 * and changes state of machine.
2892 *
2893 * It does _not_ decide what to send, it is made in function
2894 * tcp_xmit_retransmit_queue().
2895 */
2896static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2897				  int prior_sacked, bool is_dupack,
2898				  int flag)
2899{
2900	struct inet_connection_sock *icsk = inet_csk(sk);
2901	struct tcp_sock *tp = tcp_sk(sk);
2902	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2903				    (tcp_fackets_out(tp) > tp->reordering));
2904	int newly_acked_sacked = 0;
2905	int fast_rexmit = 0;
2906
2907	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2908		tp->sacked_out = 0;
2909	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2910		tp->fackets_out = 0;
2911
2912	/* Now state machine starts.
2913	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2914	if (flag & FLAG_ECE)
2915		tp->prior_ssthresh = 0;
2916
2917	/* B. In all the states check for reneging SACKs. */
2918	if (tcp_check_sack_reneging(sk, flag))
2919		return;
2920
2921	/* C. Check consistency of the current state. */
2922	tcp_verify_left_out(tp);
2923
2924	/* D. Check state exit conditions. State can be terminated
2925	 *    when high_seq is ACKed. */
2926	if (icsk->icsk_ca_state == TCP_CA_Open) {
2927		WARN_ON(tp->retrans_out != 0);
2928		tp->retrans_stamp = 0;
2929	} else if (!before(tp->snd_una, tp->high_seq)) {
2930		switch (icsk->icsk_ca_state) {
2931		case TCP_CA_Loss:
2932			icsk->icsk_retransmits = 0;
2933			if (tcp_try_undo_recovery(sk))
2934				return;
2935			break;
2936
2937		case TCP_CA_CWR:
2938			/* CWR is to be held something *above* high_seq
2939			 * is ACKed for CWR bit to reach receiver. */
2940			if (tp->snd_una != tp->high_seq) {
2941				tcp_end_cwnd_reduction(sk);
2942				tcp_set_ca_state(sk, TCP_CA_Open);
2943			}
2944			break;
2945
2946		case TCP_CA_Recovery:
2947			if (tcp_is_reno(tp))
2948				tcp_reset_reno_sack(tp);
2949			if (tcp_try_undo_recovery(sk))
2950				return;
2951			tcp_end_cwnd_reduction(sk);
2952			break;
2953		}
2954	}
2955
2956	/* E. Process state. */
2957	switch (icsk->icsk_ca_state) {
2958	case TCP_CA_Recovery:
2959		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2960			if (tcp_is_reno(tp) && is_dupack)
2961				tcp_add_reno_sack(sk);
2962		} else
2963			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2964		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2965		break;
2966	case TCP_CA_Loss:
2967		if (flag & FLAG_DATA_ACKED)
2968			icsk->icsk_retransmits = 0;
2969		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2970			tcp_reset_reno_sack(tp);
2971		if (!tcp_try_undo_loss(sk)) {
2972			tcp_moderate_cwnd(tp);
2973			tcp_xmit_retransmit_queue(sk);
2974			return;
2975		}
2976		if (icsk->icsk_ca_state != TCP_CA_Open)
2977			return;
2978		/* Loss is undone; fall through to processing in Open state. */
2979	default:
2980		if (tcp_is_reno(tp)) {
2981			if (flag & FLAG_SND_UNA_ADVANCED)
2982				tcp_reset_reno_sack(tp);
2983			if (is_dupack)
2984				tcp_add_reno_sack(sk);
2985		}
2986		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2987
2988		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2989			tcp_try_undo_dsack(sk);
2990
2991		if (!tcp_time_to_recover(sk, flag)) {
2992			tcp_try_to_open(sk, flag, newly_acked_sacked);
2993			return;
2994		}
2995
2996		/* MTU probe failure: don't reduce cwnd */
2997		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2998		    icsk->icsk_mtup.probe_size &&
2999		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3000			tcp_mtup_probe_failed(sk);
3001			/* Restores the reduction we did in tcp_mtup_probe() */
3002			tp->snd_cwnd++;
3003			tcp_simple_retransmit(sk);
3004			return;
3005		}
3006
3007		/* Otherwise enter Recovery state */
3008		tcp_enter_recovery(sk, (flag & FLAG_ECE));
3009		fast_rexmit = 1;
3010	}
3011
3012	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3013		tcp_update_scoreboard(sk, fast_rexmit);
3014	tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
3015	tcp_xmit_retransmit_queue(sk);
3016}
3017
3018void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3019{
3020	tcp_rtt_estimator(sk, seq_rtt);
3021	tcp_set_rto(sk);
3022	inet_csk(sk)->icsk_backoff = 0;
3023}
3024EXPORT_SYMBOL(tcp_valid_rtt_meas);
3025
3026/* Read draft-ietf-tcplw-high-performance before mucking
3027 * with this code. (Supersedes RFC1323)
3028 */
3029static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3030{
3031	/* RTTM Rule: A TSecr value received in a segment is used to
3032	 * update the averaged RTT measurement only if the segment
3033	 * acknowledges some new data, i.e., only if it advances the
3034	 * left edge of the send window.
3035	 *
3036	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3037	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3038	 *
3039	 * Changed: reset backoff as soon as we see the first valid sample.
3040	 * If we do not, we get strongly overestimated rto. With timestamps
3041	 * samples are accepted even from very old segments: f.e., when rtt=1
3042	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3043	 * answer arrives rto becomes 120 seconds! If at least one of segments
3044	 * in window is lost... Voila.	 			--ANK (010210)
3045	 */
3046	struct tcp_sock *tp = tcp_sk(sk);
3047
3048	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3049}
3050
3051static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3052{
3053	/* We don't have a timestamp. Can only use
3054	 * packets that are not retransmitted to determine
3055	 * rtt estimates. Also, we must not reset the
3056	 * backoff for rto until we get a non-retransmitted
3057	 * packet. This allows us to deal with a situation
3058	 * where the network delay has increased suddenly.
3059	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3060	 */
3061
3062	if (flag & FLAG_RETRANS_DATA_ACKED)
3063		return;
3064
3065	tcp_valid_rtt_meas(sk, seq_rtt);
3066}
3067
3068static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3069				      const s32 seq_rtt)
3070{
3071	const struct tcp_sock *tp = tcp_sk(sk);
3072	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3073	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3074		tcp_ack_saw_tstamp(sk, flag);
3075	else if (seq_rtt >= 0)
3076		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3077}
3078
3079static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3080{
3081	const struct inet_connection_sock *icsk = inet_csk(sk);
3082	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3083	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3084}
3085
3086/* Restart timer after forward progress on connection.
3087 * RFC2988 recommends to restart timer to now+rto.
3088 */
3089void tcp_rearm_rto(struct sock *sk)
3090{
3091	struct tcp_sock *tp = tcp_sk(sk);
3092
3093	/* If the retrans timer is currently being used by Fast Open
3094	 * for SYN-ACK retrans purpose, stay put.
3095	 */
3096	if (tp->fastopen_rsk)
3097		return;
3098
3099	if (!tp->packets_out) {
3100		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3101	} else {
3102		u32 rto = inet_csk(sk)->icsk_rto;
3103		/* Offset the time elapsed after installing regular RTO */
3104		if (tp->early_retrans_delayed) {
3105			struct sk_buff *skb = tcp_write_queue_head(sk);
3106			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3107			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3108			/* delta may not be positive if the socket is locked
3109			 * when the delayed ER timer fires and is rescheduled.
3110			 */
3111			if (delta > 0)
3112				rto = delta;
3113		}
3114		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3115					  TCP_RTO_MAX);
3116	}
3117	tp->early_retrans_delayed = 0;
3118}
3119
3120/* This function is called when the delayed ER timer fires. TCP enters
3121 * fast recovery and performs fast-retransmit.
3122 */
3123void tcp_resume_early_retransmit(struct sock *sk)
3124{
3125	struct tcp_sock *tp = tcp_sk(sk);
3126
3127	tcp_rearm_rto(sk);
3128
3129	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3130	if (!tp->do_early_retrans)
3131		return;
3132
3133	tcp_enter_recovery(sk, false);
3134	tcp_update_scoreboard(sk, 1);
3135	tcp_xmit_retransmit_queue(sk);
3136}
3137
3138/* If we get here, the whole TSO packet has not been acked. */
3139static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3140{
3141	struct tcp_sock *tp = tcp_sk(sk);
3142	u32 packets_acked;
3143
3144	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3145
3146	packets_acked = tcp_skb_pcount(skb);
3147	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3148		return 0;
3149	packets_acked -= tcp_skb_pcount(skb);
3150
3151	if (packets_acked) {
3152		BUG_ON(tcp_skb_pcount(skb) == 0);
3153		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3154	}
3155
3156	return packets_acked;
3157}
3158
3159/* Remove acknowledged frames from the retransmission queue. If our packet
3160 * is before the ack sequence we can discard it as it's confirmed to have
3161 * arrived at the other end.
3162 */
3163static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3164			       u32 prior_snd_una)
3165{
3166	struct tcp_sock *tp = tcp_sk(sk);
3167	const struct inet_connection_sock *icsk = inet_csk(sk);
3168	struct sk_buff *skb;
3169	u32 now = tcp_time_stamp;
3170	int fully_acked = true;
3171	int flag = 0;
3172	u32 pkts_acked = 0;
3173	u32 reord = tp->packets_out;
3174	u32 prior_sacked = tp->sacked_out;
3175	s32 seq_rtt = -1;
3176	s32 ca_seq_rtt = -1;
3177	ktime_t last_ackt = net_invalid_timestamp();
3178
3179	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3180		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3181		u32 acked_pcount;
3182		u8 sacked = scb->sacked;
3183
3184		/* Determine how many packets and what bytes were acked, tso and else */
3185		if (after(scb->end_seq, tp->snd_una)) {
3186			if (tcp_skb_pcount(skb) == 1 ||
3187			    !after(tp->snd_una, scb->seq))
3188				break;
3189
3190			acked_pcount = tcp_tso_acked(sk, skb);
3191			if (!acked_pcount)
3192				break;
3193
3194			fully_acked = false;
3195		} else {
3196			acked_pcount = tcp_skb_pcount(skb);
3197		}
3198
3199		if (sacked & TCPCB_RETRANS) {
3200			if (sacked & TCPCB_SACKED_RETRANS)
3201				tp->retrans_out -= acked_pcount;
3202			flag |= FLAG_RETRANS_DATA_ACKED;
3203			ca_seq_rtt = -1;
3204			seq_rtt = -1;
3205			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3206				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3207		} else {
3208			ca_seq_rtt = now - scb->when;
3209			last_ackt = skb->tstamp;
3210			if (seq_rtt < 0) {
3211				seq_rtt = ca_seq_rtt;
3212			}
3213			if (!(sacked & TCPCB_SACKED_ACKED))
3214				reord = min(pkts_acked, reord);
3215		}
3216
3217		if (sacked & TCPCB_SACKED_ACKED)
3218			tp->sacked_out -= acked_pcount;
3219		if (sacked & TCPCB_LOST)
3220			tp->lost_out -= acked_pcount;
3221
3222		tp->packets_out -= acked_pcount;
3223		pkts_acked += acked_pcount;
3224
3225		/* Initial outgoing SYN's get put onto the write_queue
3226		 * just like anything else we transmit.  It is not
3227		 * true data, and if we misinform our callers that
3228		 * this ACK acks real data, we will erroneously exit
3229		 * connection startup slow start one packet too
3230		 * quickly.  This is severely frowned upon behavior.
3231		 */
3232		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3233			flag |= FLAG_DATA_ACKED;
3234		} else {
3235			flag |= FLAG_SYN_ACKED;
3236			tp->retrans_stamp = 0;
3237		}
3238
3239		if (!fully_acked)
3240			break;
3241
3242		tcp_unlink_write_queue(skb, sk);
3243		sk_wmem_free_skb(sk, skb);
3244		tp->scoreboard_skb_hint = NULL;
3245		if (skb == tp->retransmit_skb_hint)
3246			tp->retransmit_skb_hint = NULL;
3247		if (skb == tp->lost_skb_hint)
3248			tp->lost_skb_hint = NULL;
3249	}
3250
3251	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3252		tp->snd_up = tp->snd_una;
3253
3254	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3255		flag |= FLAG_SACK_RENEGING;
3256
3257	if (flag & FLAG_ACKED) {
3258		const struct tcp_congestion_ops *ca_ops
3259			= inet_csk(sk)->icsk_ca_ops;
3260
3261		if (unlikely(icsk->icsk_mtup.probe_size &&
3262			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3263			tcp_mtup_probe_success(sk);
3264		}
3265
3266		tcp_ack_update_rtt(sk, flag, seq_rtt);
3267		tcp_rearm_rto(sk);
3268
3269		if (tcp_is_reno(tp)) {
3270			tcp_remove_reno_sacks(sk, pkts_acked);
3271		} else {
3272			int delta;
3273
3274			/* Non-retransmitted hole got filled? That's reordering */
3275			if (reord < prior_fackets)
3276				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3277
3278			delta = tcp_is_fack(tp) ? pkts_acked :
3279						  prior_sacked - tp->sacked_out;
3280			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3281		}
3282
3283		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3284
3285		if (ca_ops->pkts_acked) {
3286			s32 rtt_us = -1;
3287
3288			/* Is the ACK triggering packet unambiguous? */
3289			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3290				/* High resolution needed and available? */
3291				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3292				    !ktime_equal(last_ackt,
3293						 net_invalid_timestamp()))
3294					rtt_us = ktime_us_delta(ktime_get_real(),
3295								last_ackt);
3296				else if (ca_seq_rtt >= 0)
3297					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3298			}
3299
3300			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3301		}
3302	}
3303
3304#if FASTRETRANS_DEBUG > 0
3305	WARN_ON((int)tp->sacked_out < 0);
3306	WARN_ON((int)tp->lost_out < 0);
3307	WARN_ON((int)tp->retrans_out < 0);
3308	if (!tp->packets_out && tcp_is_sack(tp)) {
3309		icsk = inet_csk(sk);
3310		if (tp->lost_out) {
3311			pr_debug("Leak l=%u %d\n",
3312				 tp->lost_out, icsk->icsk_ca_state);
3313			tp->lost_out = 0;
3314		}
3315		if (tp->sacked_out) {
3316			pr_debug("Leak s=%u %d\n",
3317				 tp->sacked_out, icsk->icsk_ca_state);
3318			tp->sacked_out = 0;
3319		}
3320		if (tp->retrans_out) {
3321			pr_debug("Leak r=%u %d\n",
3322				 tp->retrans_out, icsk->icsk_ca_state);
3323			tp->retrans_out = 0;
3324		}
3325	}
3326#endif
3327	return flag;
3328}
3329
3330static void tcp_ack_probe(struct sock *sk)
3331{
3332	const struct tcp_sock *tp = tcp_sk(sk);
3333	struct inet_connection_sock *icsk = inet_csk(sk);
3334
3335	/* Was it a usable window open? */
3336
3337	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3338		icsk->icsk_backoff = 0;
3339		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3340		/* Socket must be waked up by subsequent tcp_data_snd_check().
3341		 * This function is not for random using!
3342		 */
3343	} else {
3344		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3345					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3346					  TCP_RTO_MAX);
3347	}
3348}
3349
3350static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3351{
3352	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3353		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3354}
3355
3356static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3357{
3358	const struct tcp_sock *tp = tcp_sk(sk);
3359	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3360		!tcp_in_cwnd_reduction(sk);
3361}
3362
3363/* Check that window update is acceptable.
3364 * The function assumes that snd_una<=ack<=snd_next.
3365 */
3366static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3367					const u32 ack, const u32 ack_seq,
3368					const u32 nwin)
3369{
3370	return	after(ack, tp->snd_una) ||
3371		after(ack_seq, tp->snd_wl1) ||
3372		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3373}
3374
3375/* Update our send window.
3376 *
3377 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3378 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3379 */
3380static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3381				 u32 ack_seq)
3382{
3383	struct tcp_sock *tp = tcp_sk(sk);
3384	int flag = 0;
3385	u32 nwin = ntohs(tcp_hdr(skb)->window);
3386
3387	if (likely(!tcp_hdr(skb)->syn))
3388		nwin <<= tp->rx_opt.snd_wscale;
3389
3390	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3391		flag |= FLAG_WIN_UPDATE;
3392		tcp_update_wl(tp, ack_seq);
3393
3394		if (tp->snd_wnd != nwin) {
3395			tp->snd_wnd = nwin;
3396
3397			/* Note, it is the only place, where
3398			 * fast path is recovered for sending TCP.
3399			 */
3400			tp->pred_flags = 0;
3401			tcp_fast_path_check(sk);
3402
3403			if (nwin > tp->max_window) {
3404				tp->max_window = nwin;
3405				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3406			}
3407		}
3408	}
3409
3410	tp->snd_una = ack;
3411
3412	return flag;
3413}
3414
3415/* A very conservative spurious RTO response algorithm: reduce cwnd and
3416 * continue in congestion avoidance.
3417 */
3418static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3419{
3420	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3421	tp->snd_cwnd_cnt = 0;
3422	tp->bytes_acked = 0;
3423	TCP_ECN_queue_cwr(tp);
3424	tcp_moderate_cwnd(tp);
3425}
3426
3427/* A conservative spurious RTO response algorithm: reduce cwnd using
3428 * PRR and continue in congestion avoidance.
3429 */
3430static void tcp_cwr_spur_to_response(struct sock *sk)
3431{
3432	tcp_enter_cwr(sk, 0);
3433}
3434
3435static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3436{
3437	if (flag & FLAG_ECE)
3438		tcp_cwr_spur_to_response(sk);
3439	else
3440		tcp_undo_cwr(sk, true);
3441}
3442
3443/* F-RTO spurious RTO detection algorithm (RFC4138)
3444 *
3445 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3446 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3447 * window (but not to or beyond highest sequence sent before RTO):
3448 *   On First ACK,  send two new segments out.
3449 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3450 *                  algorithm is not part of the F-RTO detection algorithm
3451 *                  given in RFC4138 but can be selected separately).
3452 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3453 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3454 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3455 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3456 *
3457 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3458 * original window even after we transmit two new data segments.
3459 *
3460 * SACK version:
3461 *   on first step, wait until first cumulative ACK arrives, then move to
3462 *   the second step. In second step, the next ACK decides.
3463 *
3464 * F-RTO is implemented (mainly) in four functions:
3465 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3466 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3467 *     called when tcp_use_frto() showed green light
3468 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3469 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3470 *     to prove that the RTO is indeed spurious. It transfers the control
3471 *     from F-RTO to the conventional RTO recovery
3472 */
3473static bool tcp_process_frto(struct sock *sk, int flag)
3474{
3475	struct tcp_sock *tp = tcp_sk(sk);
3476
3477	tcp_verify_left_out(tp);
3478
3479	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3480	if (flag & FLAG_DATA_ACKED)
3481		inet_csk(sk)->icsk_retransmits = 0;
3482
3483	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3484	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3485		tp->undo_marker = 0;
3486
3487	if (!before(tp->snd_una, tp->frto_highmark)) {
3488		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3489		return true;
3490	}
3491
3492	if (!tcp_is_sackfrto(tp)) {
3493		/* RFC4138 shortcoming in step 2; should also have case c):
3494		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3495		 * data, winupdate
3496		 */
3497		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3498			return true;
3499
3500		if (!(flag & FLAG_DATA_ACKED)) {
3501			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3502					    flag);
3503			return true;
3504		}
3505	} else {
3506		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3507			/* Prevent sending of new data. */
3508			tp->snd_cwnd = min(tp->snd_cwnd,
3509					   tcp_packets_in_flight(tp));
3510			return true;
3511		}
3512
3513		if ((tp->frto_counter >= 2) &&
3514		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3515		     ((flag & FLAG_DATA_SACKED) &&
3516		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3517			/* RFC4138 shortcoming (see comment above) */
3518			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3519			    (flag & FLAG_NOT_DUP))
3520				return true;
3521
3522			tcp_enter_frto_loss(sk, 3, flag);
3523			return true;
3524		}
3525	}
3526
3527	if (tp->frto_counter == 1) {
3528		/* tcp_may_send_now needs to see updated state */
3529		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3530		tp->frto_counter = 2;
3531
3532		if (!tcp_may_send_now(sk))
3533			tcp_enter_frto_loss(sk, 2, flag);
3534
3535		return true;
3536	} else {
3537		switch (sysctl_tcp_frto_response) {
3538		case 2:
3539			tcp_undo_spur_to_response(sk, flag);
3540			break;
3541		case 1:
3542			tcp_conservative_spur_to_response(tp);
3543			break;
3544		default:
3545			tcp_cwr_spur_to_response(sk);
3546			break;
3547		}
3548		tp->frto_counter = 0;
3549		tp->undo_marker = 0;
3550		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3551	}
3552	return false;
3553}
3554
3555/* This routine deals with incoming acks, but not outgoing ones. */
3556static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3557{
3558	struct inet_connection_sock *icsk = inet_csk(sk);
3559	struct tcp_sock *tp = tcp_sk(sk);
3560	u32 prior_snd_una = tp->snd_una;
3561	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3562	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3563	bool is_dupack = false;
3564	u32 prior_in_flight;
3565	u32 prior_fackets;
3566	int prior_packets;
3567	int prior_sacked = tp->sacked_out;
3568	int pkts_acked = 0;
3569	bool frto_cwnd = false;
3570
3571	/* If the ack is older than previous acks
3572	 * then we can probably ignore it.
3573	 */
3574	if (before(ack, prior_snd_una))
3575		goto old_ack;
3576
3577	/* If the ack includes data we haven't sent yet, discard
3578	 * this segment (RFC793 Section 3.9).
3579	 */
3580	if (after(ack, tp->snd_nxt))
3581		goto invalid_ack;
3582
3583	if (tp->early_retrans_delayed)
3584		tcp_rearm_rto(sk);
3585
3586	if (after(ack, prior_snd_una))
3587		flag |= FLAG_SND_UNA_ADVANCED;
3588
3589	if (sysctl_tcp_abc) {
3590		if (icsk->icsk_ca_state < TCP_CA_CWR)
3591			tp->bytes_acked += ack - prior_snd_una;
3592		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3593			/* we assume just one segment left network */
3594			tp->bytes_acked += min(ack - prior_snd_una,
3595					       tp->mss_cache);
3596	}
3597
3598	prior_fackets = tp->fackets_out;
3599	prior_in_flight = tcp_packets_in_flight(tp);
3600
3601	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3602		/* Window is constant, pure forward advance.
3603		 * No more checks are required.
3604		 * Note, we use the fact that SND.UNA>=SND.WL2.
3605		 */
3606		tcp_update_wl(tp, ack_seq);
3607		tp->snd_una = ack;
3608		flag |= FLAG_WIN_UPDATE;
3609
3610		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3611
3612		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3613	} else {
3614		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3615			flag |= FLAG_DATA;
3616		else
3617			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3618
3619		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3620
3621		if (TCP_SKB_CB(skb)->sacked)
3622			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3623
3624		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3625			flag |= FLAG_ECE;
3626
3627		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3628	}
3629
3630	/* We passed data and got it acked, remove any soft error
3631	 * log. Something worked...
3632	 */
3633	sk->sk_err_soft = 0;
3634	icsk->icsk_probes_out = 0;
3635	tp->rcv_tstamp = tcp_time_stamp;
3636	prior_packets = tp->packets_out;
3637	if (!prior_packets)
3638		goto no_queue;
3639
3640	/* See if we can take anything off of the retransmit queue. */
3641	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3642
3643	pkts_acked = prior_packets - tp->packets_out;
3644
3645	if (tp->frto_counter)
3646		frto_cwnd = tcp_process_frto(sk, flag);
3647	/* Guarantee sacktag reordering detection against wrap-arounds */
3648	if (before(tp->frto_highmark, tp->snd_una))
3649		tp->frto_highmark = 0;
3650
3651	if (tcp_ack_is_dubious(sk, flag)) {
3652		/* Advance CWND, if state allows this. */
3653		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3654		    tcp_may_raise_cwnd(sk, flag))
3655			tcp_cong_avoid(sk, ack, prior_in_flight);
3656		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3657		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3658				      is_dupack, flag);
3659	} else {
3660		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3661			tcp_cong_avoid(sk, ack, prior_in_flight);
3662	}
3663
3664	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3665		struct dst_entry *dst = __sk_dst_get(sk);
3666		if (dst)
3667			dst_confirm(dst);
3668	}
3669	return 1;
3670
3671no_queue:
3672	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3673	if (flag & FLAG_DSACKING_ACK)
3674		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3675				      is_dupack, flag);
3676	/* If this ack opens up a zero window, clear backoff.  It was
3677	 * being used to time the probes, and is probably far higher than
3678	 * it needs to be for normal retransmission.
3679	 */
3680	if (tcp_send_head(sk))
3681		tcp_ack_probe(sk);
3682	return 1;
3683
3684invalid_ack:
3685	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3686	return -1;
3687
3688old_ack:
3689	/* If data was SACKed, tag it and see if we should send more data.
3690	 * If data was DSACKed, see if we can undo a cwnd reduction.
3691	 */
3692	if (TCP_SKB_CB(skb)->sacked) {
3693		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3694		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3695				      is_dupack, flag);
3696	}
3697
3698	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3699	return 0;
3700}
3701
3702/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3703 * But, this can also be called on packets in the established flow when
3704 * the fast version below fails.
3705 */
3706void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3707		       const u8 **hvpp, int estab,
3708		       struct tcp_fastopen_cookie *foc)
3709{
3710	const unsigned char *ptr;
3711	const struct tcphdr *th = tcp_hdr(skb);
3712	int length = (th->doff * 4) - sizeof(struct tcphdr);
3713
3714	ptr = (const unsigned char *)(th + 1);
3715	opt_rx->saw_tstamp = 0;
3716
3717	while (length > 0) {
3718		int opcode = *ptr++;
3719		int opsize;
3720
3721		switch (opcode) {
3722		case TCPOPT_EOL:
3723			return;
3724		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3725			length--;
3726			continue;
3727		default:
3728			opsize = *ptr++;
3729			if (opsize < 2) /* "silly options" */
3730				return;
3731			if (opsize > length)
3732				return;	/* don't parse partial options */
3733			switch (opcode) {
3734			case TCPOPT_MSS:
3735				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3736					u16 in_mss = get_unaligned_be16(ptr);
3737					if (in_mss) {
3738						if (opt_rx->user_mss &&
3739						    opt_rx->user_mss < in_mss)
3740							in_mss = opt_rx->user_mss;
3741						opt_rx->mss_clamp = in_mss;
3742					}
3743				}
3744				break;
3745			case TCPOPT_WINDOW:
3746				if (opsize == TCPOLEN_WINDOW && th->syn &&
3747				    !estab && sysctl_tcp_window_scaling) {
3748					__u8 snd_wscale = *(__u8 *)ptr;
3749					opt_rx->wscale_ok = 1;
3750					if (snd_wscale > 14) {
3751						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3752								     __func__,
3753								     snd_wscale);
3754						snd_wscale = 14;
3755					}
3756					opt_rx->snd_wscale = snd_wscale;
3757				}
3758				break;
3759			case TCPOPT_TIMESTAMP:
3760				if ((opsize == TCPOLEN_TIMESTAMP) &&
3761				    ((estab && opt_rx->tstamp_ok) ||
3762				     (!estab && sysctl_tcp_timestamps))) {
3763					opt_rx->saw_tstamp = 1;
3764					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3765					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3766				}
3767				break;
3768			case TCPOPT_SACK_PERM:
3769				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3770				    !estab && sysctl_tcp_sack) {
3771					opt_rx->sack_ok = TCP_SACK_SEEN;
3772					tcp_sack_reset(opt_rx);
3773				}
3774				break;
3775
3776			case TCPOPT_SACK:
3777				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3778				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3779				   opt_rx->sack_ok) {
3780					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3781				}
3782				break;
3783#ifdef CONFIG_TCP_MD5SIG
3784			case TCPOPT_MD5SIG:
3785				/*
3786				 * The MD5 Hash has already been
3787				 * checked (see tcp_v{4,6}_do_rcv()).
3788				 */
3789				break;
3790#endif
3791			case TCPOPT_COOKIE:
3792				/* This option is variable length.
3793				 */
3794				switch (opsize) {
3795				case TCPOLEN_COOKIE_BASE:
3796					/* not yet implemented */
3797					break;
3798				case TCPOLEN_COOKIE_PAIR:
3799					/* not yet implemented */
3800					break;
3801				case TCPOLEN_COOKIE_MIN+0:
3802				case TCPOLEN_COOKIE_MIN+2:
3803				case TCPOLEN_COOKIE_MIN+4:
3804				case TCPOLEN_COOKIE_MIN+6:
3805				case TCPOLEN_COOKIE_MAX:
3806					/* 16-bit multiple */
3807					opt_rx->cookie_plus = opsize;
3808					*hvpp = ptr;
3809					break;
3810				default:
3811					/* ignore option */
3812					break;
3813				}
3814				break;
3815
3816			case TCPOPT_EXP:
3817				/* Fast Open option shares code 254 using a
3818				 * 16 bits magic number. It's valid only in
3819				 * SYN or SYN-ACK with an even size.
3820				 */
3821				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3822				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3823				    foc == NULL || !th->syn || (opsize & 1))
3824					break;
3825				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3826				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3827				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3828					memcpy(foc->val, ptr + 2, foc->len);
3829				else if (foc->len != 0)
3830					foc->len = -1;
3831				break;
3832
3833			}
3834			ptr += opsize-2;
3835			length -= opsize;
3836		}
3837	}
3838}
3839EXPORT_SYMBOL(tcp_parse_options);
3840
3841static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3842{
3843	const __be32 *ptr = (const __be32 *)(th + 1);
3844
3845	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3846			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3847		tp->rx_opt.saw_tstamp = 1;
3848		++ptr;
3849		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3850		++ptr;
3851		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3852		return true;
3853	}
3854	return false;
3855}
3856
3857/* Fast parse options. This hopes to only see timestamps.
3858 * If it is wrong it falls back on tcp_parse_options().
3859 */
3860static bool tcp_fast_parse_options(const struct sk_buff *skb,
3861				   const struct tcphdr *th,
3862				   struct tcp_sock *tp, const u8 **hvpp)
3863{
3864	/* In the spirit of fast parsing, compare doff directly to constant
3865	 * values.  Because equality is used, short doff can be ignored here.
3866	 */
3867	if (th->doff == (sizeof(*th) / 4)) {
3868		tp->rx_opt.saw_tstamp = 0;
3869		return false;
3870	} else if (tp->rx_opt.tstamp_ok &&
3871		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3872		if (tcp_parse_aligned_timestamp(tp, th))
3873			return true;
3874	}
3875	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
3876	return true;
3877}
3878
3879#ifdef CONFIG_TCP_MD5SIG
3880/*
3881 * Parse MD5 Signature option
3882 */
3883const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3884{
3885	int length = (th->doff << 2) - sizeof(*th);
3886	const u8 *ptr = (const u8 *)(th + 1);
3887
3888	/* If the TCP option is too short, we can short cut */
3889	if (length < TCPOLEN_MD5SIG)
3890		return NULL;
3891
3892	while (length > 0) {
3893		int opcode = *ptr++;
3894		int opsize;
3895
3896		switch(opcode) {
3897		case TCPOPT_EOL:
3898			return NULL;
3899		case TCPOPT_NOP:
3900			length--;
3901			continue;
3902		default:
3903			opsize = *ptr++;
3904			if (opsize < 2 || opsize > length)
3905				return NULL;
3906			if (opcode == TCPOPT_MD5SIG)
3907				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3908		}
3909		ptr += opsize - 2;
3910		length -= opsize;
3911	}
3912	return NULL;
3913}
3914EXPORT_SYMBOL(tcp_parse_md5sig_option);
3915#endif
3916
3917static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3918{
3919	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3920	tp->rx_opt.ts_recent_stamp = get_seconds();
3921}
3922
3923static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3924{
3925	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3926		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3927		 * extra check below makes sure this can only happen
3928		 * for pure ACK frames.  -DaveM
3929		 *
3930		 * Not only, also it occurs for expired timestamps.
3931		 */
3932
3933		if (tcp_paws_check(&tp->rx_opt, 0))
3934			tcp_store_ts_recent(tp);
3935	}
3936}
3937
3938/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3939 *
3940 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3941 * it can pass through stack. So, the following predicate verifies that
3942 * this segment is not used for anything but congestion avoidance or
3943 * fast retransmit. Moreover, we even are able to eliminate most of such
3944 * second order effects, if we apply some small "replay" window (~RTO)
3945 * to timestamp space.
3946 *
3947 * All these measures still do not guarantee that we reject wrapped ACKs
3948 * on networks with high bandwidth, when sequence space is recycled fastly,
3949 * but it guarantees that such events will be very rare and do not affect
3950 * connection seriously. This doesn't look nice, but alas, PAWS is really
3951 * buggy extension.
3952 *
3953 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3954 * states that events when retransmit arrives after original data are rare.
3955 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3956 * the biggest problem on large power networks even with minor reordering.
3957 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3958 * up to bandwidth of 18Gigabit/sec. 8) ]
3959 */
3960
3961static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3962{
3963	const struct tcp_sock *tp = tcp_sk(sk);
3964	const struct tcphdr *th = tcp_hdr(skb);
3965	u32 seq = TCP_SKB_CB(skb)->seq;
3966	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3967
3968	return (/* 1. Pure ACK with correct sequence number. */
3969		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3970
3971		/* 2. ... and duplicate ACK. */
3972		ack == tp->snd_una &&
3973
3974		/* 3. ... and does not update window. */
3975		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3976
3977		/* 4. ... and sits in replay window. */
3978		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3979}
3980
3981static inline bool tcp_paws_discard(const struct sock *sk,
3982				   const struct sk_buff *skb)
3983{
3984	const struct tcp_sock *tp = tcp_sk(sk);
3985
3986	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3987	       !tcp_disordered_ack(sk, skb);
3988}
3989
3990/* Check segment sequence number for validity.
3991 *
3992 * Segment controls are considered valid, if the segment
3993 * fits to the window after truncation to the window. Acceptability
3994 * of data (and SYN, FIN, of course) is checked separately.
3995 * See tcp_data_queue(), for example.
3996 *
3997 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3998 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3999 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4000 * (borrowed from freebsd)
4001 */
4002
4003static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4004{
4005	return	!before(end_seq, tp->rcv_wup) &&
4006		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4007}
4008
4009/* When we get a reset we do this. */
4010void tcp_reset(struct sock *sk)
4011{
4012	/* We want the right error as BSD sees it (and indeed as we do). */
4013	switch (sk->sk_state) {
4014	case TCP_SYN_SENT:
4015		sk->sk_err = ECONNREFUSED;
4016		break;
4017	case TCP_CLOSE_WAIT:
4018		sk->sk_err = EPIPE;
4019		break;
4020	case TCP_CLOSE:
4021		return;
4022	default:
4023		sk->sk_err = ECONNRESET;
4024	}
4025	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4026	smp_wmb();
4027
4028	if (!sock_flag(sk, SOCK_DEAD))
4029		sk->sk_error_report(sk);
4030
4031	tcp_done(sk);
4032}
4033
4034/*
4035 * 	Process the FIN bit. This now behaves as it is supposed to work
4036 *	and the FIN takes effect when it is validly part of sequence
4037 *	space. Not before when we get holes.
4038 *
4039 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4040 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4041 *	TIME-WAIT)
4042 *
4043 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4044 *	close and we go into CLOSING (and later onto TIME-WAIT)
4045 *
4046 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4047 */
4048static void tcp_fin(struct sock *sk)
4049{
4050	struct tcp_sock *tp = tcp_sk(sk);
4051
4052	inet_csk_schedule_ack(sk);
4053
4054	sk->sk_shutdown |= RCV_SHUTDOWN;
4055	sock_set_flag(sk, SOCK_DONE);
4056
4057	switch (sk->sk_state) {
4058	case TCP_SYN_RECV:
4059	case TCP_ESTABLISHED:
4060		/* Move to CLOSE_WAIT */
4061		tcp_set_state(sk, TCP_CLOSE_WAIT);
4062		inet_csk(sk)->icsk_ack.pingpong = 1;
4063		break;
4064
4065	case TCP_CLOSE_WAIT:
4066	case TCP_CLOSING:
4067		/* Received a retransmission of the FIN, do
4068		 * nothing.
4069		 */
4070		break;
4071	case TCP_LAST_ACK:
4072		/* RFC793: Remain in the LAST-ACK state. */
4073		break;
4074
4075	case TCP_FIN_WAIT1:
4076		/* This case occurs when a simultaneous close
4077		 * happens, we must ack the received FIN and
4078		 * enter the CLOSING state.
4079		 */
4080		tcp_send_ack(sk);
4081		tcp_set_state(sk, TCP_CLOSING);
4082		break;
4083	case TCP_FIN_WAIT2:
4084		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4085		tcp_send_ack(sk);
4086		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4087		break;
4088	default:
4089		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4090		 * cases we should never reach this piece of code.
4091		 */
4092		pr_err("%s: Impossible, sk->sk_state=%d\n",
4093		       __func__, sk->sk_state);
4094		break;
4095	}
4096
4097	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4098	 * Probably, we should reset in this case. For now drop them.
4099	 */
4100	__skb_queue_purge(&tp->out_of_order_queue);
4101	if (tcp_is_sack(tp))
4102		tcp_sack_reset(&tp->rx_opt);
4103	sk_mem_reclaim(sk);
4104
4105	if (!sock_flag(sk, SOCK_DEAD)) {
4106		sk->sk_state_change(sk);
4107
4108		/* Do not send POLL_HUP for half duplex close. */
4109		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4110		    sk->sk_state == TCP_CLOSE)
4111			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4112		else
4113			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4114	}
4115}
4116
4117static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4118				  u32 end_seq)
4119{
4120	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4121		if (before(seq, sp->start_seq))
4122			sp->start_seq = seq;
4123		if (after(end_seq, sp->end_seq))
4124			sp->end_seq = end_seq;
4125		return true;
4126	}
4127	return false;
4128}
4129
4130static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4131{
4132	struct tcp_sock *tp = tcp_sk(sk);
4133
4134	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4135		int mib_idx;
4136
4137		if (before(seq, tp->rcv_nxt))
4138			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4139		else
4140			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4141
4142		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4143
4144		tp->rx_opt.dsack = 1;
4145		tp->duplicate_sack[0].start_seq = seq;
4146		tp->duplicate_sack[0].end_seq = end_seq;
4147	}
4148}
4149
4150static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4151{
4152	struct tcp_sock *tp = tcp_sk(sk);
4153
4154	if (!tp->rx_opt.dsack)
4155		tcp_dsack_set(sk, seq, end_seq);
4156	else
4157		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4158}
4159
4160static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4161{
4162	struct tcp_sock *tp = tcp_sk(sk);
4163
4164	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4165	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4166		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4167		tcp_enter_quickack_mode(sk);
4168
4169		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4170			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4171
4172			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4173				end_seq = tp->rcv_nxt;
4174			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4175		}
4176	}
4177
4178	tcp_send_ack(sk);
4179}
4180
4181/* These routines update the SACK block as out-of-order packets arrive or
4182 * in-order packets close up the sequence space.
4183 */
4184static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4185{
4186	int this_sack;
4187	struct tcp_sack_block *sp = &tp->selective_acks[0];
4188	struct tcp_sack_block *swalk = sp + 1;
4189
4190	/* See if the recent change to the first SACK eats into
4191	 * or hits the sequence space of other SACK blocks, if so coalesce.
4192	 */
4193	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4194		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4195			int i;
4196
4197			/* Zap SWALK, by moving every further SACK up by one slot.
4198			 * Decrease num_sacks.
4199			 */
4200			tp->rx_opt.num_sacks--;
4201			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4202				sp[i] = sp[i + 1];
4203			continue;
4204		}
4205		this_sack++, swalk++;
4206	}
4207}
4208
4209static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4210{
4211	struct tcp_sock *tp = tcp_sk(sk);
4212	struct tcp_sack_block *sp = &tp->selective_acks[0];
4213	int cur_sacks = tp->rx_opt.num_sacks;
4214	int this_sack;
4215
4216	if (!cur_sacks)
4217		goto new_sack;
4218
4219	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4220		if (tcp_sack_extend(sp, seq, end_seq)) {
4221			/* Rotate this_sack to the first one. */
4222			for (; this_sack > 0; this_sack--, sp--)
4223				swap(*sp, *(sp - 1));
4224			if (cur_sacks > 1)
4225				tcp_sack_maybe_coalesce(tp);
4226			return;
4227		}
4228	}
4229
4230	/* Could not find an adjacent existing SACK, build a new one,
4231	 * put it at the front, and shift everyone else down.  We
4232	 * always know there is at least one SACK present already here.
4233	 *
4234	 * If the sack array is full, forget about the last one.
4235	 */
4236	if (this_sack >= TCP_NUM_SACKS) {
4237		this_sack--;
4238		tp->rx_opt.num_sacks--;
4239		sp--;
4240	}
4241	for (; this_sack > 0; this_sack--, sp--)
4242		*sp = *(sp - 1);
4243
4244new_sack:
4245	/* Build the new head SACK, and we're done. */
4246	sp->start_seq = seq;
4247	sp->end_seq = end_seq;
4248	tp->rx_opt.num_sacks++;
4249}
4250
4251/* RCV.NXT advances, some SACKs should be eaten. */
4252
4253static void tcp_sack_remove(struct tcp_sock *tp)
4254{
4255	struct tcp_sack_block *sp = &tp->selective_acks[0];
4256	int num_sacks = tp->rx_opt.num_sacks;
4257	int this_sack;
4258
4259	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4260	if (skb_queue_empty(&tp->out_of_order_queue)) {
4261		tp->rx_opt.num_sacks = 0;
4262		return;
4263	}
4264
4265	for (this_sack = 0; this_sack < num_sacks;) {
4266		/* Check if the start of the sack is covered by RCV.NXT. */
4267		if (!before(tp->rcv_nxt, sp->start_seq)) {
4268			int i;
4269
4270			/* RCV.NXT must cover all the block! */
4271			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4272
4273			/* Zap this SACK, by moving forward any other SACKS. */
4274			for (i=this_sack+1; i < num_sacks; i++)
4275				tp->selective_acks[i-1] = tp->selective_acks[i];
4276			num_sacks--;
4277			continue;
4278		}
4279		this_sack++;
4280		sp++;
4281	}
4282	tp->rx_opt.num_sacks = num_sacks;
4283}
4284
4285/* This one checks to see if we can put data from the
4286 * out_of_order queue into the receive_queue.
4287 */
4288static void tcp_ofo_queue(struct sock *sk)
4289{
4290	struct tcp_sock *tp = tcp_sk(sk);
4291	__u32 dsack_high = tp->rcv_nxt;
4292	struct sk_buff *skb;
4293
4294	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4295		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4296			break;
4297
4298		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4299			__u32 dsack = dsack_high;
4300			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4301				dsack_high = TCP_SKB_CB(skb)->end_seq;
4302			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4303		}
4304
4305		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4306			SOCK_DEBUG(sk, "ofo packet was already received\n");
4307			__skb_unlink(skb, &tp->out_of_order_queue);
4308			__kfree_skb(skb);
4309			continue;
4310		}
4311		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4312			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4313			   TCP_SKB_CB(skb)->end_seq);
4314
4315		__skb_unlink(skb, &tp->out_of_order_queue);
4316		__skb_queue_tail(&sk->sk_receive_queue, skb);
4317		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4318		if (tcp_hdr(skb)->fin)
4319			tcp_fin(sk);
4320	}
4321}
4322
4323static bool tcp_prune_ofo_queue(struct sock *sk);
4324static int tcp_prune_queue(struct sock *sk);
4325
4326static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4327				 unsigned int size)
4328{
4329	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4330	    !sk_rmem_schedule(sk, skb, size)) {
4331
4332		if (tcp_prune_queue(sk) < 0)
4333			return -1;
4334
4335		if (!sk_rmem_schedule(sk, skb, size)) {
4336			if (!tcp_prune_ofo_queue(sk))
4337				return -1;
4338
4339			if (!sk_rmem_schedule(sk, skb, size))
4340				return -1;
4341		}
4342	}
4343	return 0;
4344}
4345
4346/**
4347 * tcp_try_coalesce - try to merge skb to prior one
4348 * @sk: socket
4349 * @to: prior buffer
4350 * @from: buffer to add in queue
4351 * @fragstolen: pointer to boolean
4352 *
4353 * Before queueing skb @from after @to, try to merge them
4354 * to reduce overall memory use and queue lengths, if cost is small.
4355 * Packets in ofo or receive queues can stay a long time.
4356 * Better try to coalesce them right now to avoid future collapses.
4357 * Returns true if caller should free @from instead of queueing it
4358 */
4359static bool tcp_try_coalesce(struct sock *sk,
4360			     struct sk_buff *to,
4361			     struct sk_buff *from,
4362			     bool *fragstolen)
4363{
4364	int delta;
4365
4366	*fragstolen = false;
4367
4368	if (tcp_hdr(from)->fin)
4369		return false;
4370
4371	/* Its possible this segment overlaps with prior segment in queue */
4372	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4373		return false;
4374
4375	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4376		return false;
4377
4378	atomic_add(delta, &sk->sk_rmem_alloc);
4379	sk_mem_charge(sk, delta);
4380	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4381	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4382	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4383	return true;
4384}
4385
4386static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4387{
4388	struct tcp_sock *tp = tcp_sk(sk);
4389	struct sk_buff *skb1;
4390	u32 seq, end_seq;
4391
4392	TCP_ECN_check_ce(tp, skb);
4393
4394	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4395		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4396		__kfree_skb(skb);
4397		return;
4398	}
4399
4400	/* Disable header prediction. */
4401	tp->pred_flags = 0;
4402	inet_csk_schedule_ack(sk);
4403
4404	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4405	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4406		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4407
4408	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4409	if (!skb1) {
4410		/* Initial out of order segment, build 1 SACK. */
4411		if (tcp_is_sack(tp)) {
4412			tp->rx_opt.num_sacks = 1;
4413			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4414			tp->selective_acks[0].end_seq =
4415						TCP_SKB_CB(skb)->end_seq;
4416		}
4417		__skb_queue_head(&tp->out_of_order_queue, skb);
4418		goto end;
4419	}
4420
4421	seq = TCP_SKB_CB(skb)->seq;
4422	end_seq = TCP_SKB_CB(skb)->end_seq;
4423
4424	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4425		bool fragstolen;
4426
4427		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4428			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4429		} else {
4430			kfree_skb_partial(skb, fragstolen);
4431			skb = NULL;
4432		}
4433
4434		if (!tp->rx_opt.num_sacks ||
4435		    tp->selective_acks[0].end_seq != seq)
4436			goto add_sack;
4437
4438		/* Common case: data arrive in order after hole. */
4439		tp->selective_acks[0].end_seq = end_seq;
4440		goto end;
4441	}
4442
4443	/* Find place to insert this segment. */
4444	while (1) {
4445		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4446			break;
4447		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4448			skb1 = NULL;
4449			break;
4450		}
4451		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4452	}
4453
4454	/* Do skb overlap to previous one? */
4455	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4456		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4457			/* All the bits are present. Drop. */
4458			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4459			__kfree_skb(skb);
4460			skb = NULL;
4461			tcp_dsack_set(sk, seq, end_seq);
4462			goto add_sack;
4463		}
4464		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4465			/* Partial overlap. */
4466			tcp_dsack_set(sk, seq,
4467				      TCP_SKB_CB(skb1)->end_seq);
4468		} else {
4469			if (skb_queue_is_first(&tp->out_of_order_queue,
4470					       skb1))
4471				skb1 = NULL;
4472			else
4473				skb1 = skb_queue_prev(
4474					&tp->out_of_order_queue,
4475					skb1);
4476		}
4477	}
4478	if (!skb1)
4479		__skb_queue_head(&tp->out_of_order_queue, skb);
4480	else
4481		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4482
4483	/* And clean segments covered by new one as whole. */
4484	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4485		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4486
4487		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4488			break;
4489		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4490			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4491					 end_seq);
4492			break;
4493		}
4494		__skb_unlink(skb1, &tp->out_of_order_queue);
4495		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4496				 TCP_SKB_CB(skb1)->end_seq);
4497		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4498		__kfree_skb(skb1);
4499	}
4500
4501add_sack:
4502	if (tcp_is_sack(tp))
4503		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4504end:
4505	if (skb)
4506		skb_set_owner_r(skb, sk);
4507}
4508
4509static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4510		  bool *fragstolen)
4511{
4512	int eaten;
4513	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4514
4515	__skb_pull(skb, hdrlen);
4516	eaten = (tail &&
4517		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4518	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4519	if (!eaten) {
4520		__skb_queue_tail(&sk->sk_receive_queue, skb);
4521		skb_set_owner_r(skb, sk);
4522	}
4523	return eaten;
4524}
4525
4526int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4527{
4528	struct sk_buff *skb = NULL;
4529	struct tcphdr *th;
4530	bool fragstolen;
4531
4532	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4533	if (!skb)
4534		goto err;
4535
4536	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4537		goto err_free;
4538
4539	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4540	skb_reset_transport_header(skb);
4541	memset(th, 0, sizeof(*th));
4542
4543	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4544		goto err_free;
4545
4546	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4547	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4548	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4549
4550	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4551		WARN_ON_ONCE(fragstolen); /* should not happen */
4552		__kfree_skb(skb);
4553	}
4554	return size;
4555
4556err_free:
4557	kfree_skb(skb);
4558err:
4559	return -ENOMEM;
4560}
4561
4562static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4563{
4564	const struct tcphdr *th = tcp_hdr(skb);
4565	struct tcp_sock *tp = tcp_sk(sk);
4566	int eaten = -1;
4567	bool fragstolen = false;
4568
4569	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4570		goto drop;
4571
4572	skb_dst_drop(skb);
4573	__skb_pull(skb, th->doff * 4);
4574
4575	TCP_ECN_accept_cwr(tp, skb);
4576
4577	tp->rx_opt.dsack = 0;
4578
4579	/*  Queue data for delivery to the user.
4580	 *  Packets in sequence go to the receive queue.
4581	 *  Out of sequence packets to the out_of_order_queue.
4582	 */
4583	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4584		if (tcp_receive_window(tp) == 0)
4585			goto out_of_window;
4586
4587		/* Ok. In sequence. In window. */
4588		if (tp->ucopy.task == current &&
4589		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4590		    sock_owned_by_user(sk) && !tp->urg_data) {
4591			int chunk = min_t(unsigned int, skb->len,
4592					  tp->ucopy.len);
4593
4594			__set_current_state(TASK_RUNNING);
4595
4596			local_bh_enable();
4597			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4598				tp->ucopy.len -= chunk;
4599				tp->copied_seq += chunk;
4600				eaten = (chunk == skb->len);
4601				tcp_rcv_space_adjust(sk);
4602			}
4603			local_bh_disable();
4604		}
4605
4606		if (eaten <= 0) {
4607queue_and_out:
4608			if (eaten < 0 &&
4609			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4610				goto drop;
4611
4612			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4613		}
4614		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4615		if (skb->len)
4616			tcp_event_data_recv(sk, skb);
4617		if (th->fin)
4618			tcp_fin(sk);
4619
4620		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4621			tcp_ofo_queue(sk);
4622
4623			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4624			 * gap in queue is filled.
4625			 */
4626			if (skb_queue_empty(&tp->out_of_order_queue))
4627				inet_csk(sk)->icsk_ack.pingpong = 0;
4628		}
4629
4630		if (tp->rx_opt.num_sacks)
4631			tcp_sack_remove(tp);
4632
4633		tcp_fast_path_check(sk);
4634
4635		if (eaten > 0)
4636			kfree_skb_partial(skb, fragstolen);
4637		if (!sock_flag(sk, SOCK_DEAD))
4638			sk->sk_data_ready(sk, 0);
4639		return;
4640	}
4641
4642	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4643		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4644		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4645		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4646
4647out_of_window:
4648		tcp_enter_quickack_mode(sk);
4649		inet_csk_schedule_ack(sk);
4650drop:
4651		__kfree_skb(skb);
4652		return;
4653	}
4654
4655	/* Out of window. F.e. zero window probe. */
4656	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4657		goto out_of_window;
4658
4659	tcp_enter_quickack_mode(sk);
4660
4661	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4662		/* Partial packet, seq < rcv_next < end_seq */
4663		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4664			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4665			   TCP_SKB_CB(skb)->end_seq);
4666
4667		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4668
4669		/* If window is closed, drop tail of packet. But after
4670		 * remembering D-SACK for its head made in previous line.
4671		 */
4672		if (!tcp_receive_window(tp))
4673			goto out_of_window;
4674		goto queue_and_out;
4675	}
4676
4677	tcp_data_queue_ofo(sk, skb);
4678}
4679
4680static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4681					struct sk_buff_head *list)
4682{
4683	struct sk_buff *next = NULL;
4684
4685	if (!skb_queue_is_last(list, skb))
4686		next = skb_queue_next(list, skb);
4687
4688	__skb_unlink(skb, list);
4689	__kfree_skb(skb);
4690	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4691
4692	return next;
4693}
4694
4695/* Collapse contiguous sequence of skbs head..tail with
4696 * sequence numbers start..end.
4697 *
4698 * If tail is NULL, this means until the end of the list.
4699 *
4700 * Segments with FIN/SYN are not collapsed (only because this
4701 * simplifies code)
4702 */
4703static void
4704tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4705	     struct sk_buff *head, struct sk_buff *tail,
4706	     u32 start, u32 end)
4707{
4708	struct sk_buff *skb, *n;
4709	bool end_of_skbs;
4710
4711	/* First, check that queue is collapsible and find
4712	 * the point where collapsing can be useful. */
4713	skb = head;
4714restart:
4715	end_of_skbs = true;
4716	skb_queue_walk_from_safe(list, skb, n) {
4717		if (skb == tail)
4718			break;
4719		/* No new bits? It is possible on ofo queue. */
4720		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4721			skb = tcp_collapse_one(sk, skb, list);
4722			if (!skb)
4723				break;
4724			goto restart;
4725		}
4726
4727		/* The first skb to collapse is:
4728		 * - not SYN/FIN and
4729		 * - bloated or contains data before "start" or
4730		 *   overlaps to the next one.
4731		 */
4732		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4733		    (tcp_win_from_space(skb->truesize) > skb->len ||
4734		     before(TCP_SKB_CB(skb)->seq, start))) {
4735			end_of_skbs = false;
4736			break;
4737		}
4738
4739		if (!skb_queue_is_last(list, skb)) {
4740			struct sk_buff *next = skb_queue_next(list, skb);
4741			if (next != tail &&
4742			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4743				end_of_skbs = false;
4744				break;
4745			}
4746		}
4747
4748		/* Decided to skip this, advance start seq. */
4749		start = TCP_SKB_CB(skb)->end_seq;
4750	}
4751	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4752		return;
4753
4754	while (before(start, end)) {
4755		struct sk_buff *nskb;
4756		unsigned int header = skb_headroom(skb);
4757		int copy = SKB_MAX_ORDER(header, 0);
4758
4759		/* Too big header? This can happen with IPv6. */
4760		if (copy < 0)
4761			return;
4762		if (end - start < copy)
4763			copy = end - start;
4764		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4765		if (!nskb)
4766			return;
4767
4768		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4769		skb_set_network_header(nskb, (skb_network_header(skb) -
4770					      skb->head));
4771		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4772						skb->head));
4773		skb_reserve(nskb, header);
4774		memcpy(nskb->head, skb->head, header);
4775		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4776		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4777		__skb_queue_before(list, skb, nskb);
4778		skb_set_owner_r(nskb, sk);
4779
4780		/* Copy data, releasing collapsed skbs. */
4781		while (copy > 0) {
4782			int offset = start - TCP_SKB_CB(skb)->seq;
4783			int size = TCP_SKB_CB(skb)->end_seq - start;
4784
4785			BUG_ON(offset < 0);
4786			if (size > 0) {
4787				size = min(copy, size);
4788				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4789					BUG();
4790				TCP_SKB_CB(nskb)->end_seq += size;
4791				copy -= size;
4792				start += size;
4793			}
4794			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4795				skb = tcp_collapse_one(sk, skb, list);
4796				if (!skb ||
4797				    skb == tail ||
4798				    tcp_hdr(skb)->syn ||
4799				    tcp_hdr(skb)->fin)
4800					return;
4801			}
4802		}
4803	}
4804}
4805
4806/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4807 * and tcp_collapse() them until all the queue is collapsed.
4808 */
4809static void tcp_collapse_ofo_queue(struct sock *sk)
4810{
4811	struct tcp_sock *tp = tcp_sk(sk);
4812	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4813	struct sk_buff *head;
4814	u32 start, end;
4815
4816	if (skb == NULL)
4817		return;
4818
4819	start = TCP_SKB_CB(skb)->seq;
4820	end = TCP_SKB_CB(skb)->end_seq;
4821	head = skb;
4822
4823	for (;;) {
4824		struct sk_buff *next = NULL;
4825
4826		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4827			next = skb_queue_next(&tp->out_of_order_queue, skb);
4828		skb = next;
4829
4830		/* Segment is terminated when we see gap or when
4831		 * we are at the end of all the queue. */
4832		if (!skb ||
4833		    after(TCP_SKB_CB(skb)->seq, end) ||
4834		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4835			tcp_collapse(sk, &tp->out_of_order_queue,
4836				     head, skb, start, end);
4837			head = skb;
4838			if (!skb)
4839				break;
4840			/* Start new segment */
4841			start = TCP_SKB_CB(skb)->seq;
4842			end = TCP_SKB_CB(skb)->end_seq;
4843		} else {
4844			if (before(TCP_SKB_CB(skb)->seq, start))
4845				start = TCP_SKB_CB(skb)->seq;
4846			if (after(TCP_SKB_CB(skb)->end_seq, end))
4847				end = TCP_SKB_CB(skb)->end_seq;
4848		}
4849	}
4850}
4851
4852/*
4853 * Purge the out-of-order queue.
4854 * Return true if queue was pruned.
4855 */
4856static bool tcp_prune_ofo_queue(struct sock *sk)
4857{
4858	struct tcp_sock *tp = tcp_sk(sk);
4859	bool res = false;
4860
4861	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4862		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4863		__skb_queue_purge(&tp->out_of_order_queue);
4864
4865		/* Reset SACK state.  A conforming SACK implementation will
4866		 * do the same at a timeout based retransmit.  When a connection
4867		 * is in a sad state like this, we care only about integrity
4868		 * of the connection not performance.
4869		 */
4870		if (tp->rx_opt.sack_ok)
4871			tcp_sack_reset(&tp->rx_opt);
4872		sk_mem_reclaim(sk);
4873		res = true;
4874	}
4875	return res;
4876}
4877
4878/* Reduce allocated memory if we can, trying to get
4879 * the socket within its memory limits again.
4880 *
4881 * Return less than zero if we should start dropping frames
4882 * until the socket owning process reads some of the data
4883 * to stabilize the situation.
4884 */
4885static int tcp_prune_queue(struct sock *sk)
4886{
4887	struct tcp_sock *tp = tcp_sk(sk);
4888
4889	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4890
4891	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4892
4893	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4894		tcp_clamp_window(sk);
4895	else if (sk_under_memory_pressure(sk))
4896		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4897
4898	tcp_collapse_ofo_queue(sk);
4899	if (!skb_queue_empty(&sk->sk_receive_queue))
4900		tcp_collapse(sk, &sk->sk_receive_queue,
4901			     skb_peek(&sk->sk_receive_queue),
4902			     NULL,
4903			     tp->copied_seq, tp->rcv_nxt);
4904	sk_mem_reclaim(sk);
4905
4906	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4907		return 0;
4908
4909	/* Collapsing did not help, destructive actions follow.
4910	 * This must not ever occur. */
4911
4912	tcp_prune_ofo_queue(sk);
4913
4914	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4915		return 0;
4916
4917	/* If we are really being abused, tell the caller to silently
4918	 * drop receive data on the floor.  It will get retransmitted
4919	 * and hopefully then we'll have sufficient space.
4920	 */
4921	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4922
4923	/* Massive buffer overcommit. */
4924	tp->pred_flags = 0;
4925	return -1;
4926}
4927
4928/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4929 * As additional protections, we do not touch cwnd in retransmission phases,
4930 * and if application hit its sndbuf limit recently.
4931 */
4932void tcp_cwnd_application_limited(struct sock *sk)
4933{
4934	struct tcp_sock *tp = tcp_sk(sk);
4935
4936	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4937	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4938		/* Limited by application or receiver window. */
4939		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4940		u32 win_used = max(tp->snd_cwnd_used, init_win);
4941		if (win_used < tp->snd_cwnd) {
4942			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4943			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4944		}
4945		tp->snd_cwnd_used = 0;
4946	}
4947	tp->snd_cwnd_stamp = tcp_time_stamp;
4948}
4949
4950static bool tcp_should_expand_sndbuf(const struct sock *sk)
4951{
4952	const struct tcp_sock *tp = tcp_sk(sk);
4953
4954	/* If the user specified a specific send buffer setting, do
4955	 * not modify it.
4956	 */
4957	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4958		return false;
4959
4960	/* If we are under global TCP memory pressure, do not expand.  */
4961	if (sk_under_memory_pressure(sk))
4962		return false;
4963
4964	/* If we are under soft global TCP memory pressure, do not expand.  */
4965	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4966		return false;
4967
4968	/* If we filled the congestion window, do not expand.  */
4969	if (tp->packets_out >= tp->snd_cwnd)
4970		return false;
4971
4972	return true;
4973}
4974
4975/* When incoming ACK allowed to free some skb from write_queue,
4976 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4977 * on the exit from tcp input handler.
4978 *
4979 * PROBLEM: sndbuf expansion does not work well with largesend.
4980 */
4981static void tcp_new_space(struct sock *sk)
4982{
4983	struct tcp_sock *tp = tcp_sk(sk);
4984
4985	if (tcp_should_expand_sndbuf(sk)) {
4986		int sndmem = SKB_TRUESIZE(max_t(u32,
4987						tp->rx_opt.mss_clamp,
4988						tp->mss_cache) +
4989					  MAX_TCP_HEADER);
4990		int demanded = max_t(unsigned int, tp->snd_cwnd,
4991				     tp->reordering + 1);
4992		sndmem *= 2 * demanded;
4993		if (sndmem > sk->sk_sndbuf)
4994			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4995		tp->snd_cwnd_stamp = tcp_time_stamp;
4996	}
4997
4998	sk->sk_write_space(sk);
4999}
5000
5001static void tcp_check_space(struct sock *sk)
5002{
5003	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5004		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5005		if (sk->sk_socket &&
5006		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5007			tcp_new_space(sk);
5008	}
5009}
5010
5011static inline void tcp_data_snd_check(struct sock *sk)
5012{
5013	tcp_push_pending_frames(sk);
5014	tcp_check_space(sk);
5015}
5016
5017/*
5018 * Check if sending an ack is needed.
5019 */
5020static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5021{
5022	struct tcp_sock *tp = tcp_sk(sk);
5023
5024	    /* More than one full frame received... */
5025	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5026	     /* ... and right edge of window advances far enough.
5027	      * (tcp_recvmsg() will send ACK otherwise). Or...
5028	      */
5029	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5030	    /* We ACK each frame or... */
5031	    tcp_in_quickack_mode(sk) ||
5032	    /* We have out of order data. */
5033	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5034		/* Then ack it now */
5035		tcp_send_ack(sk);
5036	} else {
5037		/* Else, send delayed ack. */
5038		tcp_send_delayed_ack(sk);
5039	}
5040}
5041
5042static inline void tcp_ack_snd_check(struct sock *sk)
5043{
5044	if (!inet_csk_ack_scheduled(sk)) {
5045		/* We sent a data segment already. */
5046		return;
5047	}
5048	__tcp_ack_snd_check(sk, 1);
5049}
5050
5051/*
5052 *	This routine is only called when we have urgent data
5053 *	signaled. Its the 'slow' part of tcp_urg. It could be
5054 *	moved inline now as tcp_urg is only called from one
5055 *	place. We handle URGent data wrong. We have to - as
5056 *	BSD still doesn't use the correction from RFC961.
5057 *	For 1003.1g we should support a new option TCP_STDURG to permit
5058 *	either form (or just set the sysctl tcp_stdurg).
5059 */
5060
5061static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5062{
5063	struct tcp_sock *tp = tcp_sk(sk);
5064	u32 ptr = ntohs(th->urg_ptr);
5065
5066	if (ptr && !sysctl_tcp_stdurg)
5067		ptr--;
5068	ptr += ntohl(th->seq);
5069
5070	/* Ignore urgent data that we've already seen and read. */
5071	if (after(tp->copied_seq, ptr))
5072		return;
5073
5074	/* Do not replay urg ptr.
5075	 *
5076	 * NOTE: interesting situation not covered by specs.
5077	 * Misbehaving sender may send urg ptr, pointing to segment,
5078	 * which we already have in ofo queue. We are not able to fetch
5079	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5080	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5081	 * situations. But it is worth to think about possibility of some
5082	 * DoSes using some hypothetical application level deadlock.
5083	 */
5084	if (before(ptr, tp->rcv_nxt))
5085		return;
5086
5087	/* Do we already have a newer (or duplicate) urgent pointer? */
5088	if (tp->urg_data && !after(ptr, tp->urg_seq))
5089		return;
5090
5091	/* Tell the world about our new urgent pointer. */
5092	sk_send_sigurg(sk);
5093
5094	/* We may be adding urgent data when the last byte read was
5095	 * urgent. To do this requires some care. We cannot just ignore
5096	 * tp->copied_seq since we would read the last urgent byte again
5097	 * as data, nor can we alter copied_seq until this data arrives
5098	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5099	 *
5100	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5101	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5102	 * and expect that both A and B disappear from stream. This is _wrong_.
5103	 * Though this happens in BSD with high probability, this is occasional.
5104	 * Any application relying on this is buggy. Note also, that fix "works"
5105	 * only in this artificial test. Insert some normal data between A and B and we will
5106	 * decline of BSD again. Verdict: it is better to remove to trap
5107	 * buggy users.
5108	 */
5109	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5110	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5111		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5112		tp->copied_seq++;
5113		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5114			__skb_unlink(skb, &sk->sk_receive_queue);
5115			__kfree_skb(skb);
5116		}
5117	}
5118
5119	tp->urg_data = TCP_URG_NOTYET;
5120	tp->urg_seq = ptr;
5121
5122	/* Disable header prediction. */
5123	tp->pred_flags = 0;
5124}
5125
5126/* This is the 'fast' part of urgent handling. */
5127static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5128{
5129	struct tcp_sock *tp = tcp_sk(sk);
5130
5131	/* Check if we get a new urgent pointer - normally not. */
5132	if (th->urg)
5133		tcp_check_urg(sk, th);
5134
5135	/* Do we wait for any urgent data? - normally not... */
5136	if (tp->urg_data == TCP_URG_NOTYET) {
5137		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5138			  th->syn;
5139
5140		/* Is the urgent pointer pointing into this packet? */
5141		if (ptr < skb->len) {
5142			u8 tmp;
5143			if (skb_copy_bits(skb, ptr, &tmp, 1))
5144				BUG();
5145			tp->urg_data = TCP_URG_VALID | tmp;
5146			if (!sock_flag(sk, SOCK_DEAD))
5147				sk->sk_data_ready(sk, 0);
5148		}
5149	}
5150}
5151
5152static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5153{
5154	struct tcp_sock *tp = tcp_sk(sk);
5155	int chunk = skb->len - hlen;
5156	int err;
5157
5158	local_bh_enable();
5159	if (skb_csum_unnecessary(skb))
5160		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5161	else
5162		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5163						       tp->ucopy.iov);
5164
5165	if (!err) {
5166		tp->ucopy.len -= chunk;
5167		tp->copied_seq += chunk;
5168		tcp_rcv_space_adjust(sk);
5169	}
5170
5171	local_bh_disable();
5172	return err;
5173}
5174
5175static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5176					    struct sk_buff *skb)
5177{
5178	__sum16 result;
5179
5180	if (sock_owned_by_user(sk)) {
5181		local_bh_enable();
5182		result = __tcp_checksum_complete(skb);
5183		local_bh_disable();
5184	} else {
5185		result = __tcp_checksum_complete(skb);
5186	}
5187	return result;
5188}
5189
5190static inline bool tcp_checksum_complete_user(struct sock *sk,
5191					     struct sk_buff *skb)
5192{
5193	return !skb_csum_unnecessary(skb) &&
5194	       __tcp_checksum_complete_user(sk, skb);
5195}
5196
5197#ifdef CONFIG_NET_DMA
5198static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5199				  int hlen)
5200{
5201	struct tcp_sock *tp = tcp_sk(sk);
5202	int chunk = skb->len - hlen;
5203	int dma_cookie;
5204	bool copied_early = false;
5205
5206	if (tp->ucopy.wakeup)
5207		return false;
5208
5209	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5210		tp->ucopy.dma_chan = net_dma_find_channel();
5211
5212	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5213
5214		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5215							 skb, hlen,
5216							 tp->ucopy.iov, chunk,
5217							 tp->ucopy.pinned_list);
5218
5219		if (dma_cookie < 0)
5220			goto out;
5221
5222		tp->ucopy.dma_cookie = dma_cookie;
5223		copied_early = true;
5224
5225		tp->ucopy.len -= chunk;
5226		tp->copied_seq += chunk;
5227		tcp_rcv_space_adjust(sk);
5228
5229		if ((tp->ucopy.len == 0) ||
5230		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5231		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5232			tp->ucopy.wakeup = 1;
5233			sk->sk_data_ready(sk, 0);
5234		}
5235	} else if (chunk > 0) {
5236		tp->ucopy.wakeup = 1;
5237		sk->sk_data_ready(sk, 0);
5238	}
5239out:
5240	return copied_early;
5241}
5242#endif /* CONFIG_NET_DMA */
5243
5244static void tcp_send_challenge_ack(struct sock *sk)
5245{
5246	/* unprotected vars, we dont care of overwrites */
5247	static u32 challenge_timestamp;
5248	static unsigned int challenge_count;
5249	u32 now = jiffies / HZ;
5250
5251	if (now != challenge_timestamp) {
5252		challenge_timestamp = now;
5253		challenge_count = 0;
5254	}
5255	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
5256		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
5257		tcp_send_ack(sk);
5258	}
5259}
5260
5261/* Does PAWS and seqno based validation of an incoming segment, flags will
5262 * play significant role here.
5263 */
5264static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5265				  const struct tcphdr *th, int syn_inerr)
5266{
5267	const u8 *hash_location;
5268	struct tcp_sock *tp = tcp_sk(sk);
5269
5270	/* RFC1323: H1. Apply PAWS check first. */
5271	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5272	    tp->rx_opt.saw_tstamp &&
5273	    tcp_paws_discard(sk, skb)) {
5274		if (!th->rst) {
5275			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5276			tcp_send_dupack(sk, skb);
5277			goto discard;
5278		}
5279		/* Reset is accepted even if it did not pass PAWS. */
5280	}
5281
5282	/* Step 1: check sequence number */
5283	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5284		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5285		 * (RST) segments are validated by checking their SEQ-fields."
5286		 * And page 69: "If an incoming segment is not acceptable,
5287		 * an acknowledgment should be sent in reply (unless the RST
5288		 * bit is set, if so drop the segment and return)".
5289		 */
5290		if (!th->rst) {
5291			if (th->syn)
5292				goto syn_challenge;
5293			tcp_send_dupack(sk, skb);
5294		}
5295		goto discard;
5296	}
5297
5298	/* Step 2: check RST bit */
5299	if (th->rst) {
5300		/* RFC 5961 3.2 :
5301		 * If sequence number exactly matches RCV.NXT, then
5302		 *     RESET the connection
5303		 * else
5304		 *     Send a challenge ACK
5305		 */
5306		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5307			tcp_reset(sk);
5308		else
5309			tcp_send_challenge_ack(sk);
5310		goto discard;
5311	}
5312
5313	/* ts_recent update must be made after we are sure that the packet
5314	 * is in window.
5315	 */
5316	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5317
5318	/* step 3: check security and precedence [ignored] */
5319
5320	/* step 4: Check for a SYN
5321	 * RFC 5691 4.2 : Send a challenge ack
5322	 */
5323	if (th->syn) {
5324syn_challenge:
5325		if (syn_inerr)
5326			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5327		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5328		tcp_send_challenge_ack(sk);
5329		goto discard;
5330	}
5331
5332	return true;
5333
5334discard:
5335	__kfree_skb(skb);
5336	return false;
5337}
5338
5339/*
5340 *	TCP receive function for the ESTABLISHED state.
5341 *
5342 *	It is split into a fast path and a slow path. The fast path is
5343 * 	disabled when:
5344 *	- A zero window was announced from us - zero window probing
5345 *        is only handled properly in the slow path.
5346 *	- Out of order segments arrived.
5347 *	- Urgent data is expected.
5348 *	- There is no buffer space left
5349 *	- Unexpected TCP flags/window values/header lengths are received
5350 *	  (detected by checking the TCP header against pred_flags)
5351 *	- Data is sent in both directions. Fast path only supports pure senders
5352 *	  or pure receivers (this means either the sequence number or the ack
5353 *	  value must stay constant)
5354 *	- Unexpected TCP option.
5355 *
5356 *	When these conditions are not satisfied it drops into a standard
5357 *	receive procedure patterned after RFC793 to handle all cases.
5358 *	The first three cases are guaranteed by proper pred_flags setting,
5359 *	the rest is checked inline. Fast processing is turned on in
5360 *	tcp_data_queue when everything is OK.
5361 */
5362int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5363			const struct tcphdr *th, unsigned int len)
5364{
5365	struct tcp_sock *tp = tcp_sk(sk);
5366
5367	if (unlikely(sk->sk_rx_dst == NULL))
5368		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5369	/*
5370	 *	Header prediction.
5371	 *	The code loosely follows the one in the famous
5372	 *	"30 instruction TCP receive" Van Jacobson mail.
5373	 *
5374	 *	Van's trick is to deposit buffers into socket queue
5375	 *	on a device interrupt, to call tcp_recv function
5376	 *	on the receive process context and checksum and copy
5377	 *	the buffer to user space. smart...
5378	 *
5379	 *	Our current scheme is not silly either but we take the
5380	 *	extra cost of the net_bh soft interrupt processing...
5381	 *	We do checksum and copy also but from device to kernel.
5382	 */
5383
5384	tp->rx_opt.saw_tstamp = 0;
5385
5386	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5387	 *	if header_prediction is to be made
5388	 *	'S' will always be tp->tcp_header_len >> 2
5389	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5390	 *  turn it off	(when there are holes in the receive
5391	 *	 space for instance)
5392	 *	PSH flag is ignored.
5393	 */
5394
5395	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5396	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5397	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5398		int tcp_header_len = tp->tcp_header_len;
5399
5400		/* Timestamp header prediction: tcp_header_len
5401		 * is automatically equal to th->doff*4 due to pred_flags
5402		 * match.
5403		 */
5404
5405		/* Check timestamp */
5406		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5407			/* No? Slow path! */
5408			if (!tcp_parse_aligned_timestamp(tp, th))
5409				goto slow_path;
5410
5411			/* If PAWS failed, check it more carefully in slow path */
5412			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5413				goto slow_path;
5414
5415			/* DO NOT update ts_recent here, if checksum fails
5416			 * and timestamp was corrupted part, it will result
5417			 * in a hung connection since we will drop all
5418			 * future packets due to the PAWS test.
5419			 */
5420		}
5421
5422		if (len <= tcp_header_len) {
5423			/* Bulk data transfer: sender */
5424			if (len == tcp_header_len) {
5425				/* Predicted packet is in window by definition.
5426				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5427				 * Hence, check seq<=rcv_wup reduces to:
5428				 */
5429				if (tcp_header_len ==
5430				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5431				    tp->rcv_nxt == tp->rcv_wup)
5432					tcp_store_ts_recent(tp);
5433
5434				/* We know that such packets are checksummed
5435				 * on entry.
5436				 */
5437				tcp_ack(sk, skb, 0);
5438				__kfree_skb(skb);
5439				tcp_data_snd_check(sk);
5440				return 0;
5441			} else { /* Header too small */
5442				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5443				goto discard;
5444			}
5445		} else {
5446			int eaten = 0;
5447			int copied_early = 0;
5448			bool fragstolen = false;
5449
5450			if (tp->copied_seq == tp->rcv_nxt &&
5451			    len - tcp_header_len <= tp->ucopy.len) {
5452#ifdef CONFIG_NET_DMA
5453				if (tp->ucopy.task == current &&
5454				    sock_owned_by_user(sk) &&
5455				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5456					copied_early = 1;
5457					eaten = 1;
5458				}
5459#endif
5460				if (tp->ucopy.task == current &&
5461				    sock_owned_by_user(sk) && !copied_early) {
5462					__set_current_state(TASK_RUNNING);
5463
5464					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5465						eaten = 1;
5466				}
5467				if (eaten) {
5468					/* Predicted packet is in window by definition.
5469					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5470					 * Hence, check seq<=rcv_wup reduces to:
5471					 */
5472					if (tcp_header_len ==
5473					    (sizeof(struct tcphdr) +
5474					     TCPOLEN_TSTAMP_ALIGNED) &&
5475					    tp->rcv_nxt == tp->rcv_wup)
5476						tcp_store_ts_recent(tp);
5477
5478					tcp_rcv_rtt_measure_ts(sk, skb);
5479
5480					__skb_pull(skb, tcp_header_len);
5481					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5482					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5483				}
5484				if (copied_early)
5485					tcp_cleanup_rbuf(sk, skb->len);
5486			}
5487			if (!eaten) {
5488				if (tcp_checksum_complete_user(sk, skb))
5489					goto csum_error;
5490
5491				/* Predicted packet is in window by definition.
5492				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5493				 * Hence, check seq<=rcv_wup reduces to:
5494				 */
5495				if (tcp_header_len ==
5496				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5497				    tp->rcv_nxt == tp->rcv_wup)
5498					tcp_store_ts_recent(tp);
5499
5500				tcp_rcv_rtt_measure_ts(sk, skb);
5501
5502				if ((int)skb->truesize > sk->sk_forward_alloc)
5503					goto step5;
5504
5505				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5506
5507				/* Bulk data transfer: receiver */
5508				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5509						      &fragstolen);
5510			}
5511
5512			tcp_event_data_recv(sk, skb);
5513
5514			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5515				/* Well, only one small jumplet in fast path... */
5516				tcp_ack(sk, skb, FLAG_DATA);
5517				tcp_data_snd_check(sk);
5518				if (!inet_csk_ack_scheduled(sk))
5519					goto no_ack;
5520			}
5521
5522			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5523				__tcp_ack_snd_check(sk, 0);
5524no_ack:
5525#ifdef CONFIG_NET_DMA
5526			if (copied_early)
5527				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5528			else
5529#endif
5530			if (eaten)
5531				kfree_skb_partial(skb, fragstolen);
5532			sk->sk_data_ready(sk, 0);
5533			return 0;
5534		}
5535	}
5536
5537slow_path:
5538	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5539		goto csum_error;
5540
5541	/*
5542	 *	Standard slow path.
5543	 */
5544
5545	if (!tcp_validate_incoming(sk, skb, th, 1))
5546		return 0;
5547
5548step5:
5549	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5550		goto discard;
5551
5552	tcp_rcv_rtt_measure_ts(sk, skb);
5553
5554	/* Process urgent data. */
5555	tcp_urg(sk, skb, th);
5556
5557	/* step 7: process the segment text */
5558	tcp_data_queue(sk, skb);
5559
5560	tcp_data_snd_check(sk);
5561	tcp_ack_snd_check(sk);
5562	return 0;
5563
5564csum_error:
5565	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5566
5567discard:
5568	__kfree_skb(skb);
5569	return 0;
5570}
5571EXPORT_SYMBOL(tcp_rcv_established);
5572
5573void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5574{
5575	struct tcp_sock *tp = tcp_sk(sk);
5576	struct inet_connection_sock *icsk = inet_csk(sk);
5577
5578	tcp_set_state(sk, TCP_ESTABLISHED);
5579
5580	if (skb != NULL) {
5581		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5582		security_inet_conn_established(sk, skb);
5583	}
5584
5585	/* Make sure socket is routed, for correct metrics.  */
5586	icsk->icsk_af_ops->rebuild_header(sk);
5587
5588	tcp_init_metrics(sk);
5589
5590	tcp_init_congestion_control(sk);
5591
5592	/* Prevent spurious tcp_cwnd_restart() on first data
5593	 * packet.
5594	 */
5595	tp->lsndtime = tcp_time_stamp;
5596
5597	tcp_init_buffer_space(sk);
5598
5599	if (sock_flag(sk, SOCK_KEEPOPEN))
5600		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5601
5602	if (!tp->rx_opt.snd_wscale)
5603		__tcp_fast_path_on(tp, tp->snd_wnd);
5604	else
5605		tp->pred_flags = 0;
5606
5607	if (!sock_flag(sk, SOCK_DEAD)) {
5608		sk->sk_state_change(sk);
5609		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5610	}
5611}
5612
5613static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5614				    struct tcp_fastopen_cookie *cookie)
5615{
5616	struct tcp_sock *tp = tcp_sk(sk);
5617	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5618	u16 mss = tp->rx_opt.mss_clamp;
5619	bool syn_drop;
5620
5621	if (mss == tp->rx_opt.user_mss) {
5622		struct tcp_options_received opt;
5623		const u8 *hash_location;
5624
5625		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5626		tcp_clear_options(&opt);
5627		opt.user_mss = opt.mss_clamp = 0;
5628		tcp_parse_options(synack, &opt, &hash_location, 0, NULL);
5629		mss = opt.mss_clamp;
5630	}
5631
5632	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5633		cookie->len = -1;
5634
5635	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5636	 * the remote receives only the retransmitted (regular) SYNs: either
5637	 * the original SYN-data or the corresponding SYN-ACK is lost.
5638	 */
5639	syn_drop = (cookie->len <= 0 && data &&
5640		    inet_csk(sk)->icsk_retransmits);
5641
5642	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5643
5644	if (data) { /* Retransmit unacked data in SYN */
5645		tcp_retransmit_skb(sk, data);
5646		tcp_rearm_rto(sk);
5647		return true;
5648	}
5649	tp->syn_data_acked = tp->syn_data;
5650	return false;
5651}
5652
5653static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5654					 const struct tcphdr *th, unsigned int len)
5655{
5656	const u8 *hash_location;
5657	struct inet_connection_sock *icsk = inet_csk(sk);
5658	struct tcp_sock *tp = tcp_sk(sk);
5659	struct tcp_cookie_values *cvp = tp->cookie_values;
5660	struct tcp_fastopen_cookie foc = { .len = -1 };
5661	int saved_clamp = tp->rx_opt.mss_clamp;
5662
5663	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc);
5664
5665	if (th->ack) {
5666		/* rfc793:
5667		 * "If the state is SYN-SENT then
5668		 *    first check the ACK bit
5669		 *      If the ACK bit is set
5670		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5671		 *        a reset (unless the RST bit is set, if so drop
5672		 *        the segment and return)"
5673		 */
5674		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5675		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5676			goto reset_and_undo;
5677
5678		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5679		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5680			     tcp_time_stamp)) {
5681			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5682			goto reset_and_undo;
5683		}
5684
5685		/* Now ACK is acceptable.
5686		 *
5687		 * "If the RST bit is set
5688		 *    If the ACK was acceptable then signal the user "error:
5689		 *    connection reset", drop the segment, enter CLOSED state,
5690		 *    delete TCB, and return."
5691		 */
5692
5693		if (th->rst) {
5694			tcp_reset(sk);
5695			goto discard;
5696		}
5697
5698		/* rfc793:
5699		 *   "fifth, if neither of the SYN or RST bits is set then
5700		 *    drop the segment and return."
5701		 *
5702		 *    See note below!
5703		 *                                        --ANK(990513)
5704		 */
5705		if (!th->syn)
5706			goto discard_and_undo;
5707
5708		/* rfc793:
5709		 *   "If the SYN bit is on ...
5710		 *    are acceptable then ...
5711		 *    (our SYN has been ACKed), change the connection
5712		 *    state to ESTABLISHED..."
5713		 */
5714
5715		TCP_ECN_rcv_synack(tp, th);
5716
5717		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5718		tcp_ack(sk, skb, FLAG_SLOWPATH);
5719
5720		/* Ok.. it's good. Set up sequence numbers and
5721		 * move to established.
5722		 */
5723		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5724		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5725
5726		/* RFC1323: The window in SYN & SYN/ACK segments is
5727		 * never scaled.
5728		 */
5729		tp->snd_wnd = ntohs(th->window);
5730
5731		if (!tp->rx_opt.wscale_ok) {
5732			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5733			tp->window_clamp = min(tp->window_clamp, 65535U);
5734		}
5735
5736		if (tp->rx_opt.saw_tstamp) {
5737			tp->rx_opt.tstamp_ok	   = 1;
5738			tp->tcp_header_len =
5739				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5740			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5741			tcp_store_ts_recent(tp);
5742		} else {
5743			tp->tcp_header_len = sizeof(struct tcphdr);
5744		}
5745
5746		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5747			tcp_enable_fack(tp);
5748
5749		tcp_mtup_init(sk);
5750		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5751		tcp_initialize_rcv_mss(sk);
5752
5753		/* Remember, tcp_poll() does not lock socket!
5754		 * Change state from SYN-SENT only after copied_seq
5755		 * is initialized. */
5756		tp->copied_seq = tp->rcv_nxt;
5757
5758		if (cvp != NULL &&
5759		    cvp->cookie_pair_size > 0 &&
5760		    tp->rx_opt.cookie_plus > 0) {
5761			int cookie_size = tp->rx_opt.cookie_plus
5762					- TCPOLEN_COOKIE_BASE;
5763			int cookie_pair_size = cookie_size
5764					     + cvp->cookie_desired;
5765
5766			/* A cookie extension option was sent and returned.
5767			 * Note that each incoming SYNACK replaces the
5768			 * Responder cookie.  The initial exchange is most
5769			 * fragile, as protection against spoofing relies
5770			 * entirely upon the sequence and timestamp (above).
5771			 * This replacement strategy allows the correct pair to
5772			 * pass through, while any others will be filtered via
5773			 * Responder verification later.
5774			 */
5775			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5776				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5777				       hash_location, cookie_size);
5778				cvp->cookie_pair_size = cookie_pair_size;
5779			}
5780		}
5781
5782		smp_mb();
5783
5784		tcp_finish_connect(sk, skb);
5785
5786		if ((tp->syn_fastopen || tp->syn_data) &&
5787		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5788			return -1;
5789
5790		if (sk->sk_write_pending ||
5791		    icsk->icsk_accept_queue.rskq_defer_accept ||
5792		    icsk->icsk_ack.pingpong) {
5793			/* Save one ACK. Data will be ready after
5794			 * several ticks, if write_pending is set.
5795			 *
5796			 * It may be deleted, but with this feature tcpdumps
5797			 * look so _wonderfully_ clever, that I was not able
5798			 * to stand against the temptation 8)     --ANK
5799			 */
5800			inet_csk_schedule_ack(sk);
5801			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5802			tcp_enter_quickack_mode(sk);
5803			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5804						  TCP_DELACK_MAX, TCP_RTO_MAX);
5805
5806discard:
5807			__kfree_skb(skb);
5808			return 0;
5809		} else {
5810			tcp_send_ack(sk);
5811		}
5812		return -1;
5813	}
5814
5815	/* No ACK in the segment */
5816
5817	if (th->rst) {
5818		/* rfc793:
5819		 * "If the RST bit is set
5820		 *
5821		 *      Otherwise (no ACK) drop the segment and return."
5822		 */
5823
5824		goto discard_and_undo;
5825	}
5826
5827	/* PAWS check. */
5828	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5829	    tcp_paws_reject(&tp->rx_opt, 0))
5830		goto discard_and_undo;
5831
5832	if (th->syn) {
5833		/* We see SYN without ACK. It is attempt of
5834		 * simultaneous connect with crossed SYNs.
5835		 * Particularly, it can be connect to self.
5836		 */
5837		tcp_set_state(sk, TCP_SYN_RECV);
5838
5839		if (tp->rx_opt.saw_tstamp) {
5840			tp->rx_opt.tstamp_ok = 1;
5841			tcp_store_ts_recent(tp);
5842			tp->tcp_header_len =
5843				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5844		} else {
5845			tp->tcp_header_len = sizeof(struct tcphdr);
5846		}
5847
5848		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5849		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5850
5851		/* RFC1323: The window in SYN & SYN/ACK segments is
5852		 * never scaled.
5853		 */
5854		tp->snd_wnd    = ntohs(th->window);
5855		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5856		tp->max_window = tp->snd_wnd;
5857
5858		TCP_ECN_rcv_syn(tp, th);
5859
5860		tcp_mtup_init(sk);
5861		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5862		tcp_initialize_rcv_mss(sk);
5863
5864		tcp_send_synack(sk);
5865#if 0
5866		/* Note, we could accept data and URG from this segment.
5867		 * There are no obstacles to make this (except that we must
5868		 * either change tcp_recvmsg() to prevent it from returning data
5869		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5870		 *
5871		 * However, if we ignore data in ACKless segments sometimes,
5872		 * we have no reasons to accept it sometimes.
5873		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5874		 * is not flawless. So, discard packet for sanity.
5875		 * Uncomment this return to process the data.
5876		 */
5877		return -1;
5878#else
5879		goto discard;
5880#endif
5881	}
5882	/* "fifth, if neither of the SYN or RST bits is set then
5883	 * drop the segment and return."
5884	 */
5885
5886discard_and_undo:
5887	tcp_clear_options(&tp->rx_opt);
5888	tp->rx_opt.mss_clamp = saved_clamp;
5889	goto discard;
5890
5891reset_and_undo:
5892	tcp_clear_options(&tp->rx_opt);
5893	tp->rx_opt.mss_clamp = saved_clamp;
5894	return 1;
5895}
5896
5897/*
5898 *	This function implements the receiving procedure of RFC 793 for
5899 *	all states except ESTABLISHED and TIME_WAIT.
5900 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5901 *	address independent.
5902 */
5903
5904int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5905			  const struct tcphdr *th, unsigned int len)
5906{
5907	struct tcp_sock *tp = tcp_sk(sk);
5908	struct inet_connection_sock *icsk = inet_csk(sk);
5909	struct request_sock *req;
5910	int queued = 0;
5911
5912	tp->rx_opt.saw_tstamp = 0;
5913
5914	switch (sk->sk_state) {
5915	case TCP_CLOSE:
5916		goto discard;
5917
5918	case TCP_LISTEN:
5919		if (th->ack)
5920			return 1;
5921
5922		if (th->rst)
5923			goto discard;
5924
5925		if (th->syn) {
5926			if (th->fin)
5927				goto discard;
5928			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5929				return 1;
5930
5931			/* Now we have several options: In theory there is
5932			 * nothing else in the frame. KA9Q has an option to
5933			 * send data with the syn, BSD accepts data with the
5934			 * syn up to the [to be] advertised window and
5935			 * Solaris 2.1 gives you a protocol error. For now
5936			 * we just ignore it, that fits the spec precisely
5937			 * and avoids incompatibilities. It would be nice in
5938			 * future to drop through and process the data.
5939			 *
5940			 * Now that TTCP is starting to be used we ought to
5941			 * queue this data.
5942			 * But, this leaves one open to an easy denial of
5943			 * service attack, and SYN cookies can't defend
5944			 * against this problem. So, we drop the data
5945			 * in the interest of security over speed unless
5946			 * it's still in use.
5947			 */
5948			kfree_skb(skb);
5949			return 0;
5950		}
5951		goto discard;
5952
5953	case TCP_SYN_SENT:
5954		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5955		if (queued >= 0)
5956			return queued;
5957
5958		/* Do step6 onward by hand. */
5959		tcp_urg(sk, skb, th);
5960		__kfree_skb(skb);
5961		tcp_data_snd_check(sk);
5962		return 0;
5963	}
5964
5965	req = tp->fastopen_rsk;
5966	if (req != NULL) {
5967		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5968		    sk->sk_state != TCP_FIN_WAIT1);
5969
5970		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5971			goto discard;
5972	}
5973	if (!tcp_validate_incoming(sk, skb, th, 0))
5974		return 0;
5975
5976	/* step 5: check the ACK field */
5977	if (th->ack) {
5978		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5979
5980		switch (sk->sk_state) {
5981		case TCP_SYN_RECV:
5982			if (acceptable) {
5983				/* Once we leave TCP_SYN_RECV, we no longer
5984				 * need req so release it.
5985				 */
5986				if (req) {
5987					tcp_synack_rtt_meas(sk, req);
5988					tp->total_retrans = req->retrans;
5989
5990					reqsk_fastopen_remove(sk, req, false);
5991				} else {
5992					/* Make sure socket is routed, for
5993					 * correct metrics.
5994					 */
5995					icsk->icsk_af_ops->rebuild_header(sk);
5996					tcp_init_congestion_control(sk);
5997
5998					tcp_mtup_init(sk);
5999					tcp_init_buffer_space(sk);
6000					tp->copied_seq = tp->rcv_nxt;
6001				}
6002				smp_mb();
6003				tcp_set_state(sk, TCP_ESTABLISHED);
6004				sk->sk_state_change(sk);
6005
6006				/* Note, that this wakeup is only for marginal
6007				 * crossed SYN case. Passively open sockets
6008				 * are not waked up, because sk->sk_sleep ==
6009				 * NULL and sk->sk_socket == NULL.
6010				 */
6011				if (sk->sk_socket)
6012					sk_wake_async(sk,
6013						      SOCK_WAKE_IO, POLL_OUT);
6014
6015				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6016				tp->snd_wnd = ntohs(th->window) <<
6017					      tp->rx_opt.snd_wscale;
6018				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6019
6020				if (tp->rx_opt.tstamp_ok)
6021					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6022
6023				if (req) {
6024					/* Re-arm the timer because data may
6025					 * have been sent out. This is similar
6026					 * to the regular data transmission case
6027					 * when new data has just been ack'ed.
6028					 *
6029					 * (TFO) - we could try to be more
6030					 * aggressive and retranmitting any data
6031					 * sooner based on when they were sent
6032					 * out.
6033					 */
6034					tcp_rearm_rto(sk);
6035				} else
6036					tcp_init_metrics(sk);
6037
6038				/* Prevent spurious tcp_cwnd_restart() on
6039				 * first data packet.
6040				 */
6041				tp->lsndtime = tcp_time_stamp;
6042
6043				tcp_initialize_rcv_mss(sk);
6044				tcp_fast_path_on(tp);
6045			} else {
6046				return 1;
6047			}
6048			break;
6049
6050		case TCP_FIN_WAIT1:
6051			/* If we enter the TCP_FIN_WAIT1 state and we are a
6052			 * Fast Open socket and this is the first acceptable
6053			 * ACK we have received, this would have acknowledged
6054			 * our SYNACK so stop the SYNACK timer.
6055			 */
6056			if (req != NULL) {
6057				/* Return RST if ack_seq is invalid.
6058				 * Note that RFC793 only says to generate a
6059				 * DUPACK for it but for TCP Fast Open it seems
6060				 * better to treat this case like TCP_SYN_RECV
6061				 * above.
6062				 */
6063				if (!acceptable)
6064					return 1;
6065				/* We no longer need the request sock. */
6066				reqsk_fastopen_remove(sk, req, false);
6067				tcp_rearm_rto(sk);
6068			}
6069			if (tp->snd_una == tp->write_seq) {
6070				struct dst_entry *dst;
6071
6072				tcp_set_state(sk, TCP_FIN_WAIT2);
6073				sk->sk_shutdown |= SEND_SHUTDOWN;
6074
6075				dst = __sk_dst_get(sk);
6076				if (dst)
6077					dst_confirm(dst);
6078
6079				if (!sock_flag(sk, SOCK_DEAD))
6080					/* Wake up lingering close() */
6081					sk->sk_state_change(sk);
6082				else {
6083					int tmo;
6084
6085					if (tp->linger2 < 0 ||
6086					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6087					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6088						tcp_done(sk);
6089						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6090						return 1;
6091					}
6092
6093					tmo = tcp_fin_time(sk);
6094					if (tmo > TCP_TIMEWAIT_LEN) {
6095						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6096					} else if (th->fin || sock_owned_by_user(sk)) {
6097						/* Bad case. We could lose such FIN otherwise.
6098						 * It is not a big problem, but it looks confusing
6099						 * and not so rare event. We still can lose it now,
6100						 * if it spins in bh_lock_sock(), but it is really
6101						 * marginal case.
6102						 */
6103						inet_csk_reset_keepalive_timer(sk, tmo);
6104					} else {
6105						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6106						goto discard;
6107					}
6108				}
6109			}
6110			break;
6111
6112		case TCP_CLOSING:
6113			if (tp->snd_una == tp->write_seq) {
6114				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6115				goto discard;
6116			}
6117			break;
6118
6119		case TCP_LAST_ACK:
6120			if (tp->snd_una == tp->write_seq) {
6121				tcp_update_metrics(sk);
6122				tcp_done(sk);
6123				goto discard;
6124			}
6125			break;
6126		}
6127	} else
6128		goto discard;
6129
6130	/* step 6: check the URG bit */
6131	tcp_urg(sk, skb, th);
6132
6133	/* step 7: process the segment text */
6134	switch (sk->sk_state) {
6135	case TCP_CLOSE_WAIT:
6136	case TCP_CLOSING:
6137	case TCP_LAST_ACK:
6138		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6139			break;
6140	case TCP_FIN_WAIT1:
6141	case TCP_FIN_WAIT2:
6142		/* RFC 793 says to queue data in these states,
6143		 * RFC 1122 says we MUST send a reset.
6144		 * BSD 4.4 also does reset.
6145		 */
6146		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6147			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6148			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6149				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6150				tcp_reset(sk);
6151				return 1;
6152			}
6153		}
6154		/* Fall through */
6155	case TCP_ESTABLISHED:
6156		tcp_data_queue(sk, skb);
6157		queued = 1;
6158		break;
6159	}
6160
6161	/* tcp_data could move socket to TIME-WAIT */
6162	if (sk->sk_state != TCP_CLOSE) {
6163		tcp_data_snd_check(sk);
6164		tcp_ack_snd_check(sk);
6165	}
6166
6167	if (!queued) {
6168discard:
6169		__kfree_skb(skb);
6170	}
6171	return 0;
6172}
6173EXPORT_SYMBOL(tcp_rcv_state_process);
6174