tcp_input.c revision 3ab224be6d69de912ee21302745ea45a99274dbc
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 *		Pedro Roque	:	Fast Retransmit/Recovery.
26 *					Two receive queues.
27 *					Retransmit queue handled by TCP.
28 *					Better retransmit timer handling.
29 *					New congestion avoidance.
30 *					Header prediction.
31 *					Variable renaming.
32 *
33 *		Eric		:	Fast Retransmit.
34 *		Randy Scott	:	MSS option defines.
35 *		Eric Schenk	:	Fixes to slow start algorithm.
36 *		Eric Schenk	:	Yet another double ACK bug.
37 *		Eric Schenk	:	Delayed ACK bug fixes.
38 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39 *		David S. Miller	:	Don't allow zero congestion window.
40 *		Eric Schenk	:	Fix retransmitter so that it sends
41 *					next packet on ack of previous packet.
42 *		Andi Kleen	:	Moved open_request checking here
43 *					and process RSTs for open_requests.
44 *		Andi Kleen	:	Better prune_queue, and other fixes.
45 *		Andrey Savochkin:	Fix RTT measurements in the presence of
46 *					timestamps.
47 *		Andrey Savochkin:	Check sequence numbers correctly when
48 *					removing SACKs due to in sequence incoming
49 *					data segments.
50 *		Andi Kleen:		Make sure we never ack data there is not
51 *					enough room for. Also make this condition
52 *					a fatal error if it might still happen.
53 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54 *					connections with MSS<min(MTU,ann. MSS)
55 *					work without delayed acks.
56 *		Andi Kleen:		Process packets with PSH set in the
57 *					fast path.
58 *		J Hadi Salim:		ECN support
59 *	 	Andrei Gurtov,
60 *		Pasi Sarolahti,
61 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62 *					engine. Lots of bugs are found.
63 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64 */
65
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
73#include <net/netdma.h>
74
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly = 2;
89int sysctl_tcp_frto_response __read_mostly;
90int sysctl_tcp_nometrics_save __read_mostly;
91
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
94
95#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101#define FLAG_ECE		0x40 /* ECE in this ACK				*/
102#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
107#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
108
109#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
112#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
113#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115#define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120/* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
122 */
123static void tcp_measure_rcv_mss(struct sock *sk,
124				const struct sk_buff *skb)
125{
126	struct inet_connection_sock *icsk = inet_csk(sk);
127	const unsigned int lss = icsk->icsk_ack.last_seg_size;
128	unsigned int len;
129
130	icsk->icsk_ack.last_seg_size = 0;
131
132	/* skb->len may jitter because of SACKs, even if peer
133	 * sends good full-sized frames.
134	 */
135	len = skb_shinfo(skb)->gso_size ?: skb->len;
136	if (len >= icsk->icsk_ack.rcv_mss) {
137		icsk->icsk_ack.rcv_mss = len;
138	} else {
139		/* Otherwise, we make more careful check taking into account,
140		 * that SACKs block is variable.
141		 *
142		 * "len" is invariant segment length, including TCP header.
143		 */
144		len += skb->data - skb_transport_header(skb);
145		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146		    /* If PSH is not set, packet should be
147		     * full sized, provided peer TCP is not badly broken.
148		     * This observation (if it is correct 8)) allows
149		     * to handle super-low mtu links fairly.
150		     */
151		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153			/* Subtract also invariant (if peer is RFC compliant),
154			 * tcp header plus fixed timestamp option length.
155			 * Resulting "len" is MSS free of SACK jitter.
156			 */
157			len -= tcp_sk(sk)->tcp_header_len;
158			icsk->icsk_ack.last_seg_size = len;
159			if (len == lss) {
160				icsk->icsk_ack.rcv_mss = len;
161				return;
162			}
163		}
164		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167	}
168}
169
170static void tcp_incr_quickack(struct sock *sk)
171{
172	struct inet_connection_sock *icsk = inet_csk(sk);
173	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175	if (quickacks==0)
176		quickacks=2;
177	if (quickacks > icsk->icsk_ack.quick)
178		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179}
180
181void tcp_enter_quickack_mode(struct sock *sk)
182{
183	struct inet_connection_sock *icsk = inet_csk(sk);
184	tcp_incr_quickack(sk);
185	icsk->icsk_ack.pingpong = 0;
186	icsk->icsk_ack.ato = TCP_ATO_MIN;
187}
188
189/* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
193static inline int tcp_in_quickack_mode(const struct sock *sk)
194{
195	const struct inet_connection_sock *icsk = inet_csk(sk);
196	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197}
198
199static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200{
201	if (tp->ecn_flags&TCP_ECN_OK)
202		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203}
204
205static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206{
207	if (tcp_hdr(skb)->cwr)
208		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209}
210
211static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212{
213	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217{
218	if (tp->ecn_flags&TCP_ECN_OK) {
219		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221		/* Funny extension: if ECT is not set on a segment,
222		 * it is surely retransmit. It is not in ECN RFC,
223		 * but Linux follows this rule. */
224		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225			tcp_enter_quickack_mode((struct sock *)tp);
226	}
227}
228
229static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230{
231	if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232		tp->ecn_flags &= ~TCP_ECN_OK;
233}
234
235static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236{
237	if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238		tp->ecn_flags &= ~TCP_ECN_OK;
239}
240
241static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242{
243	if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244		return 1;
245	return 0;
246}
247
248/* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253static void tcp_fixup_sndbuf(struct sock *sk)
254{
255	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256		     sizeof(struct sk_buff);
257
258	if (sk->sk_sndbuf < 3 * sndmem)
259		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260}
261
262/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 *   requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 *   of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287/* Slow part of check#2. */
288static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289{
290	struct tcp_sock *tp = tcp_sk(sk);
291	/* Optimize this! */
292	int truesize = tcp_win_from_space(skb->truesize) >> 1;
293	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
294
295	while (tp->rcv_ssthresh <= window) {
296		if (truesize <= skb->len)
297			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299		truesize >>= 1;
300		window >>= 1;
301	}
302	return 0;
303}
304
305static void tcp_grow_window(struct sock *sk,
306			    struct sk_buff *skb)
307{
308	struct tcp_sock *tp = tcp_sk(sk);
309
310	/* Check #1 */
311	if (tp->rcv_ssthresh < tp->window_clamp &&
312	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
313	    !tcp_memory_pressure) {
314		int incr;
315
316		/* Check #2. Increase window, if skb with such overhead
317		 * will fit to rcvbuf in future.
318		 */
319		if (tcp_win_from_space(skb->truesize) <= skb->len)
320			incr = 2*tp->advmss;
321		else
322			incr = __tcp_grow_window(sk, skb);
323
324		if (incr) {
325			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326			inet_csk(sk)->icsk_ack.quick |= 1;
327		}
328	}
329}
330
331/* 3. Tuning rcvbuf, when connection enters established state. */
332
333static void tcp_fixup_rcvbuf(struct sock *sk)
334{
335	struct tcp_sock *tp = tcp_sk(sk);
336	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338	/* Try to select rcvbuf so that 4 mss-sized segments
339	 * will fit to window and corresponding skbs will fit to our rcvbuf.
340	 * (was 3; 4 is minimum to allow fast retransmit to work.)
341	 */
342	while (tcp_win_from_space(rcvmem) < tp->advmss)
343		rcvmem += 128;
344	if (sk->sk_rcvbuf < 4 * rcvmem)
345		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346}
347
348/* 4. Try to fixup all. It is made immediately after connection enters
349 *    established state.
350 */
351static void tcp_init_buffer_space(struct sock *sk)
352{
353	struct tcp_sock *tp = tcp_sk(sk);
354	int maxwin;
355
356	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357		tcp_fixup_rcvbuf(sk);
358	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359		tcp_fixup_sndbuf(sk);
360
361	tp->rcvq_space.space = tp->rcv_wnd;
362
363	maxwin = tcp_full_space(sk);
364
365	if (tp->window_clamp >= maxwin) {
366		tp->window_clamp = maxwin;
367
368		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369			tp->window_clamp = max(maxwin -
370					       (maxwin >> sysctl_tcp_app_win),
371					       4 * tp->advmss);
372	}
373
374	/* Force reservation of one segment. */
375	if (sysctl_tcp_app_win &&
376	    tp->window_clamp > 2 * tp->advmss &&
377	    tp->window_clamp + tp->advmss > maxwin)
378		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381	tp->snd_cwnd_stamp = tcp_time_stamp;
382}
383
384/* 5. Recalculate window clamp after socket hit its memory bounds. */
385static void tcp_clamp_window(struct sock *sk)
386{
387	struct tcp_sock *tp = tcp_sk(sk);
388	struct inet_connection_sock *icsk = inet_csk(sk);
389
390	icsk->icsk_ack.quick = 0;
391
392	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394	    !tcp_memory_pressure &&
395	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397				    sysctl_tcp_rmem[2]);
398	}
399	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401}
402
403
404/* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411void tcp_initialize_rcv_mss(struct sock *sk)
412{
413	struct tcp_sock *tp = tcp_sk(sk);
414	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416	hint = min(hint, tp->rcv_wnd/2);
417	hint = min(hint, TCP_MIN_RCVMSS);
418	hint = max(hint, TCP_MIN_MSS);
419
420	inet_csk(sk)->icsk_ack.rcv_mss = hint;
421}
422
423/* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date.  A new paper
432 * is pending.
433 */
434static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435{
436	u32 new_sample = tp->rcv_rtt_est.rtt;
437	long m = sample;
438
439	if (m == 0)
440		m = 1;
441
442	if (new_sample != 0) {
443		/* If we sample in larger samples in the non-timestamp
444		 * case, we could grossly overestimate the RTT especially
445		 * with chatty applications or bulk transfer apps which
446		 * are stalled on filesystem I/O.
447		 *
448		 * Also, since we are only going for a minimum in the
449		 * non-timestamp case, we do not smooth things out
450		 * else with timestamps disabled convergence takes too
451		 * long.
452		 */
453		if (!win_dep) {
454			m -= (new_sample >> 3);
455			new_sample += m;
456		} else if (m < new_sample)
457			new_sample = m << 3;
458	} else {
459		/* No previous measure. */
460		new_sample = m << 3;
461	}
462
463	if (tp->rcv_rtt_est.rtt != new_sample)
464		tp->rcv_rtt_est.rtt = new_sample;
465}
466
467static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468{
469	if (tp->rcv_rtt_est.time == 0)
470		goto new_measure;
471	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472		return;
473	tcp_rcv_rtt_update(tp,
474			   jiffies - tp->rcv_rtt_est.time,
475			   1);
476
477new_measure:
478	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479	tp->rcv_rtt_est.time = tcp_time_stamp;
480}
481
482static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483{
484	struct tcp_sock *tp = tcp_sk(sk);
485	if (tp->rx_opt.rcv_tsecr &&
486	    (TCP_SKB_CB(skb)->end_seq -
487	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489}
490
491/*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495void tcp_rcv_space_adjust(struct sock *sk)
496{
497	struct tcp_sock *tp = tcp_sk(sk);
498	int time;
499	int space;
500
501	if (tp->rcvq_space.time == 0)
502		goto new_measure;
503
504	time = tcp_time_stamp - tp->rcvq_space.time;
505	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506	    tp->rcv_rtt_est.rtt == 0)
507		return;
508
509	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511	space = max(tp->rcvq_space.space, space);
512
513	if (tp->rcvq_space.space != space) {
514		int rcvmem;
515
516		tp->rcvq_space.space = space;
517
518		if (sysctl_tcp_moderate_rcvbuf &&
519		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520			int new_clamp = space;
521
522			/* Receive space grows, normalize in order to
523			 * take into account packet headers and sk_buff
524			 * structure overhead.
525			 */
526			space /= tp->advmss;
527			if (!space)
528				space = 1;
529			rcvmem = (tp->advmss + MAX_TCP_HEADER +
530				  16 + sizeof(struct sk_buff));
531			while (tcp_win_from_space(rcvmem) < tp->advmss)
532				rcvmem += 128;
533			space *= rcvmem;
534			space = min(space, sysctl_tcp_rmem[2]);
535			if (space > sk->sk_rcvbuf) {
536				sk->sk_rcvbuf = space;
537
538				/* Make the window clamp follow along.  */
539				tp->window_clamp = new_clamp;
540			}
541		}
542	}
543
544new_measure:
545	tp->rcvq_space.seq = tp->copied_seq;
546	tp->rcvq_space.time = tcp_time_stamp;
547}
548
549/* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval.  When a
551 * connection starts up, we want to ack as quickly as possible.  The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission.  The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time.  For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue.  -DaveM
558 */
559static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560{
561	struct tcp_sock *tp = tcp_sk(sk);
562	struct inet_connection_sock *icsk = inet_csk(sk);
563	u32 now;
564
565	inet_csk_schedule_ack(sk);
566
567	tcp_measure_rcv_mss(sk, skb);
568
569	tcp_rcv_rtt_measure(tp);
570
571	now = tcp_time_stamp;
572
573	if (!icsk->icsk_ack.ato) {
574		/* The _first_ data packet received, initialize
575		 * delayed ACK engine.
576		 */
577		tcp_incr_quickack(sk);
578		icsk->icsk_ack.ato = TCP_ATO_MIN;
579	} else {
580		int m = now - icsk->icsk_ack.lrcvtime;
581
582		if (m <= TCP_ATO_MIN/2) {
583			/* The fastest case is the first. */
584			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585		} else if (m < icsk->icsk_ack.ato) {
586			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587			if (icsk->icsk_ack.ato > icsk->icsk_rto)
588				icsk->icsk_ack.ato = icsk->icsk_rto;
589		} else if (m > icsk->icsk_rto) {
590			/* Too long gap. Apparently sender failed to
591			 * restart window, so that we send ACKs quickly.
592			 */
593			tcp_incr_quickack(sk);
594			sk_mem_reclaim(sk);
595		}
596	}
597	icsk->icsk_ack.lrcvtime = now;
598
599	TCP_ECN_check_ce(tp, skb);
600
601	if (skb->len >= 128)
602		tcp_grow_window(sk, skb);
603}
604
605static u32 tcp_rto_min(struct sock *sk)
606{
607	struct dst_entry *dst = __sk_dst_get(sk);
608	u32 rto_min = TCP_RTO_MIN;
609
610	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611		rto_min = dst->metrics[RTAX_RTO_MIN-1];
612	return rto_min;
613}
614
615/* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
624static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625{
626	struct tcp_sock *tp = tcp_sk(sk);
627	long m = mrtt; /* RTT */
628
629	/*	The following amusing code comes from Jacobson's
630	 *	article in SIGCOMM '88.  Note that rtt and mdev
631	 *	are scaled versions of rtt and mean deviation.
632	 *	This is designed to be as fast as possible
633	 *	m stands for "measurement".
634	 *
635	 *	On a 1990 paper the rto value is changed to:
636	 *	RTO = rtt + 4 * mdev
637	 *
638	 * Funny. This algorithm seems to be very broken.
639	 * These formulae increase RTO, when it should be decreased, increase
640	 * too slowly, when it should be increased quickly, decrease too quickly
641	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642	 * does not matter how to _calculate_ it. Seems, it was trap
643	 * that VJ failed to avoid. 8)
644	 */
645	if (m == 0)
646		m = 1;
647	if (tp->srtt != 0) {
648		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
649		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
650		if (m < 0) {
651			m = -m;		/* m is now abs(error) */
652			m -= (tp->mdev >> 2);   /* similar update on mdev */
653			/* This is similar to one of Eifel findings.
654			 * Eifel blocks mdev updates when rtt decreases.
655			 * This solution is a bit different: we use finer gain
656			 * for mdev in this case (alpha*beta).
657			 * Like Eifel it also prevents growth of rto,
658			 * but also it limits too fast rto decreases,
659			 * happening in pure Eifel.
660			 */
661			if (m > 0)
662				m >>= 3;
663		} else {
664			m -= (tp->mdev >> 2);   /* similar update on mdev */
665		}
666		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
667		if (tp->mdev > tp->mdev_max) {
668			tp->mdev_max = tp->mdev;
669			if (tp->mdev_max > tp->rttvar)
670				tp->rttvar = tp->mdev_max;
671		}
672		if (after(tp->snd_una, tp->rtt_seq)) {
673			if (tp->mdev_max < tp->rttvar)
674				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675			tp->rtt_seq = tp->snd_nxt;
676			tp->mdev_max = tcp_rto_min(sk);
677		}
678	} else {
679		/* no previous measure. */
680		tp->srtt = m<<3;	/* take the measured time to be rtt */
681		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
682		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683		tp->rtt_seq = tp->snd_nxt;
684	}
685}
686
687/* Calculate rto without backoff.  This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
690static inline void tcp_set_rto(struct sock *sk)
691{
692	const struct tcp_sock *tp = tcp_sk(sk);
693	/* Old crap is replaced with new one. 8)
694	 *
695	 * More seriously:
696	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697	 *    It cannot be less due to utterly erratic ACK generation made
698	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699	 *    to do with delayed acks, because at cwnd>2 true delack timeout
700	 *    is invisible. Actually, Linux-2.4 also generates erratic
701	 *    ACKs in some circumstances.
702	 */
703	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705	/* 2. Fixups made earlier cannot be right.
706	 *    If we do not estimate RTO correctly without them,
707	 *    all the algo is pure shit and should be replaced
708	 *    with correct one. It is exactly, which we pretend to do.
709	 */
710}
711
712/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
715static inline void tcp_bound_rto(struct sock *sk)
716{
717	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719}
720
721/* Save metrics learned by this TCP session.
722   This function is called only, when TCP finishes successfully
723   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725void tcp_update_metrics(struct sock *sk)
726{
727	struct tcp_sock *tp = tcp_sk(sk);
728	struct dst_entry *dst = __sk_dst_get(sk);
729
730	if (sysctl_tcp_nometrics_save)
731		return;
732
733	dst_confirm(dst);
734
735	if (dst && (dst->flags&DST_HOST)) {
736		const struct inet_connection_sock *icsk = inet_csk(sk);
737		int m;
738
739		if (icsk->icsk_backoff || !tp->srtt) {
740			/* This session failed to estimate rtt. Why?
741			 * Probably, no packets returned in time.
742			 * Reset our results.
743			 */
744			if (!(dst_metric_locked(dst, RTAX_RTT)))
745				dst->metrics[RTAX_RTT-1] = 0;
746			return;
747		}
748
749		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751		/* If newly calculated rtt larger than stored one,
752		 * store new one. Otherwise, use EWMA. Remember,
753		 * rtt overestimation is always better than underestimation.
754		 */
755		if (!(dst_metric_locked(dst, RTAX_RTT))) {
756			if (m <= 0)
757				dst->metrics[RTAX_RTT-1] = tp->srtt;
758			else
759				dst->metrics[RTAX_RTT-1] -= (m>>3);
760		}
761
762		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763			if (m < 0)
764				m = -m;
765
766			/* Scale deviation to rttvar fixed point */
767			m >>= 1;
768			if (m < tp->mdev)
769				m = tp->mdev;
770
771			if (m >= dst_metric(dst, RTAX_RTTVAR))
772				dst->metrics[RTAX_RTTVAR-1] = m;
773			else
774				dst->metrics[RTAX_RTTVAR-1] -=
775					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776		}
777
778		if (tp->snd_ssthresh >= 0xFFFF) {
779			/* Slow start still did not finish. */
780			if (dst_metric(dst, RTAX_SSTHRESH) &&
781			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784			if (!dst_metric_locked(dst, RTAX_CWND) &&
785			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
788			   icsk->icsk_ca_state == TCP_CA_Open) {
789			/* Cong. avoidance phase, cwnd is reliable. */
790			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791				dst->metrics[RTAX_SSTHRESH-1] =
792					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793			if (!dst_metric_locked(dst, RTAX_CWND))
794				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795		} else {
796			/* Else slow start did not finish, cwnd is non-sense,
797			   ssthresh may be also invalid.
798			 */
799			if (!dst_metric_locked(dst, RTAX_CWND))
800				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801			if (dst->metrics[RTAX_SSTHRESH-1] &&
802			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805		}
806
807		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809			    tp->reordering != sysctl_tcp_reordering)
810				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811		}
812	}
813}
814
815/* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 *	The RFC specifies a window of no more than 4380 bytes
820 *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
821 *	is a bit misleading because they use a clamp at 4380 bytes
822 *	rather than use a multiplier in the relevant range.
823 */
824__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825{
826	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828	if (!cwnd) {
829		if (tp->mss_cache > 1460)
830			cwnd = 2;
831		else
832			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833	}
834	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835}
836
837/* Set slow start threshold and cwnd not falling to slow start */
838void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839{
840	struct tcp_sock *tp = tcp_sk(sk);
841	const struct inet_connection_sock *icsk = inet_csk(sk);
842
843	tp->prior_ssthresh = 0;
844	tp->bytes_acked = 0;
845	if (icsk->icsk_ca_state < TCP_CA_CWR) {
846		tp->undo_marker = 0;
847		if (set_ssthresh)
848			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849		tp->snd_cwnd = min(tp->snd_cwnd,
850				   tcp_packets_in_flight(tp) + 1U);
851		tp->snd_cwnd_cnt = 0;
852		tp->high_seq = tp->snd_nxt;
853		tp->snd_cwnd_stamp = tcp_time_stamp;
854		TCP_ECN_queue_cwr(tp);
855
856		tcp_set_ca_state(sk, TCP_CA_CWR);
857	}
858}
859
860/*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864static void tcp_disable_fack(struct tcp_sock *tp)
865{
866	/* RFC3517 uses different metric in lost marker => reset on change */
867	if (tcp_is_fack(tp))
868		tp->lost_skb_hint = NULL;
869	tp->rx_opt.sack_ok &= ~2;
870}
871
872/* Take a notice that peer is sending D-SACKs */
873static void tcp_dsack_seen(struct tcp_sock *tp)
874{
875	tp->rx_opt.sack_ok |= 4;
876}
877
878/* Initialize metrics on socket. */
879
880static void tcp_init_metrics(struct sock *sk)
881{
882	struct tcp_sock *tp = tcp_sk(sk);
883	struct dst_entry *dst = __sk_dst_get(sk);
884
885	if (dst == NULL)
886		goto reset;
887
888	dst_confirm(dst);
889
890	if (dst_metric_locked(dst, RTAX_CWND))
891		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
892	if (dst_metric(dst, RTAX_SSTHRESH)) {
893		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
894		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
895			tp->snd_ssthresh = tp->snd_cwnd_clamp;
896	}
897	if (dst_metric(dst, RTAX_REORDERING) &&
898	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
899		tcp_disable_fack(tp);
900		tp->reordering = dst_metric(dst, RTAX_REORDERING);
901	}
902
903	if (dst_metric(dst, RTAX_RTT) == 0)
904		goto reset;
905
906	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
907		goto reset;
908
909	/* Initial rtt is determined from SYN,SYN-ACK.
910	 * The segment is small and rtt may appear much
911	 * less than real one. Use per-dst memory
912	 * to make it more realistic.
913	 *
914	 * A bit of theory. RTT is time passed after "normal" sized packet
915	 * is sent until it is ACKed. In normal circumstances sending small
916	 * packets force peer to delay ACKs and calculation is correct too.
917	 * The algorithm is adaptive and, provided we follow specs, it
918	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919	 * tricks sort of "quick acks" for time long enough to decrease RTT
920	 * to low value, and then abruptly stops to do it and starts to delay
921	 * ACKs, wait for troubles.
922	 */
923	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
924		tp->srtt = dst_metric(dst, RTAX_RTT);
925		tp->rtt_seq = tp->snd_nxt;
926	}
927	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
928		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
929		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930	}
931	tcp_set_rto(sk);
932	tcp_bound_rto(sk);
933	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
934		goto reset;
935	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
936	tp->snd_cwnd_stamp = tcp_time_stamp;
937	return;
938
939reset:
940	/* Play conservative. If timestamps are not
941	 * supported, TCP will fail to recalculate correct
942	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
943	 */
944	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
945		tp->srtt = 0;
946		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
947		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
948	}
949}
950
951static void tcp_update_reordering(struct sock *sk, const int metric,
952				  const int ts)
953{
954	struct tcp_sock *tp = tcp_sk(sk);
955	if (metric > tp->reordering) {
956		tp->reordering = min(TCP_MAX_REORDERING, metric);
957
958		/* This exciting event is worth to be remembered. 8) */
959		if (ts)
960			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
961		else if (tcp_is_reno(tp))
962			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
963		else if (tcp_is_fack(tp))
964			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
965		else
966			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
967#if FASTRETRANS_DEBUG > 1
968		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
969		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
970		       tp->reordering,
971		       tp->fackets_out,
972		       tp->sacked_out,
973		       tp->undo_marker ? tp->undo_retrans : 0);
974#endif
975		tcp_disable_fack(tp);
976	}
977}
978
979/* This procedure tags the retransmission queue when SACKs arrive.
980 *
981 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
982 * Packets in queue with these bits set are counted in variables
983 * sacked_out, retrans_out and lost_out, correspondingly.
984 *
985 * Valid combinations are:
986 * Tag  InFlight	Description
987 * 0	1		- orig segment is in flight.
988 * S	0		- nothing flies, orig reached receiver.
989 * L	0		- nothing flies, orig lost by net.
990 * R	2		- both orig and retransmit are in flight.
991 * L|R	1		- orig is lost, retransmit is in flight.
992 * S|R  1		- orig reached receiver, retrans is still in flight.
993 * (L|S|R is logically valid, it could occur when L|R is sacked,
994 *  but it is equivalent to plain S and code short-curcuits it to S.
995 *  L|S is logically invalid, it would mean -1 packet in flight 8))
996 *
997 * These 6 states form finite state machine, controlled by the following events:
998 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
999 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1000 * 3. Loss detection event of one of three flavors:
1001 *	A. Scoreboard estimator decided the packet is lost.
1002 *	   A'. Reno "three dupacks" marks head of queue lost.
1003 *	   A''. Its FACK modfication, head until snd.fack is lost.
1004 *	B. SACK arrives sacking data transmitted after never retransmitted
1005 *	   hole was sent out.
1006 *	C. SACK arrives sacking SND.NXT at the moment, when the
1007 *	   segment was retransmitted.
1008 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1009 *
1010 * It is pleasant to note, that state diagram turns out to be commutative,
1011 * so that we are allowed not to be bothered by order of our actions,
1012 * when multiple events arrive simultaneously. (see the function below).
1013 *
1014 * Reordering detection.
1015 * --------------------
1016 * Reordering metric is maximal distance, which a packet can be displaced
1017 * in packet stream. With SACKs we can estimate it:
1018 *
1019 * 1. SACK fills old hole and the corresponding segment was not
1020 *    ever retransmitted -> reordering. Alas, we cannot use it
1021 *    when segment was retransmitted.
1022 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1023 *    for retransmitted and already SACKed segment -> reordering..
1024 * Both of these heuristics are not used in Loss state, when we cannot
1025 * account for retransmits accurately.
1026 *
1027 * SACK block validation.
1028 * ----------------------
1029 *
1030 * SACK block range validation checks that the received SACK block fits to
1031 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1032 * Note that SND.UNA is not included to the range though being valid because
1033 * it means that the receiver is rather inconsistent with itself reporting
1034 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1035 * perfectly valid, however, in light of RFC2018 which explicitly states
1036 * that "SACK block MUST reflect the newest segment.  Even if the newest
1037 * segment is going to be discarded ...", not that it looks very clever
1038 * in case of head skb. Due to potentional receiver driven attacks, we
1039 * choose to avoid immediate execution of a walk in write queue due to
1040 * reneging and defer head skb's loss recovery to standard loss recovery
1041 * procedure that will eventually trigger (nothing forbids us doing this).
1042 *
1043 * Implements also blockage to start_seq wrap-around. Problem lies in the
1044 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1045 * there's no guarantee that it will be before snd_nxt (n). The problem
1046 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1047 * wrap (s_w):
1048 *
1049 *         <- outs wnd ->                          <- wrapzone ->
1050 *         u     e      n                         u_w   e_w  s n_w
1051 *         |     |      |                          |     |   |  |
1052 * |<------------+------+----- TCP seqno space --------------+---------->|
1053 * ...-- <2^31 ->|                                           |<--------...
1054 * ...---- >2^31 ------>|                                    |<--------...
1055 *
1056 * Current code wouldn't be vulnerable but it's better still to discard such
1057 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1058 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1059 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1060 * equal to the ideal case (infinite seqno space without wrap caused issues).
1061 *
1062 * With D-SACK the lower bound is extended to cover sequence space below
1063 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1064 * again, D-SACK block must not to go across snd_una (for the same reason as
1065 * for the normal SACK blocks, explained above). But there all simplicity
1066 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1067 * fully below undo_marker they do not affect behavior in anyway and can
1068 * therefore be safely ignored. In rare cases (which are more or less
1069 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1070 * fragmentation and packet reordering past skb's retransmission. To consider
1071 * them correctly, the acceptable range must be extended even more though
1072 * the exact amount is rather hard to quantify. However, tp->max_window can
1073 * be used as an exaggerated estimate.
1074 */
1075static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1076				  u32 start_seq, u32 end_seq)
1077{
1078	/* Too far in future, or reversed (interpretation is ambiguous) */
1079	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1080		return 0;
1081
1082	/* Nasty start_seq wrap-around check (see comments above) */
1083	if (!before(start_seq, tp->snd_nxt))
1084		return 0;
1085
1086	/* In outstanding window? ...This is valid exit for D-SACKs too.
1087	 * start_seq == snd_una is non-sensical (see comments above)
1088	 */
1089	if (after(start_seq, tp->snd_una))
1090		return 1;
1091
1092	if (!is_dsack || !tp->undo_marker)
1093		return 0;
1094
1095	/* ...Then it's D-SACK, and must reside below snd_una completely */
1096	if (!after(end_seq, tp->snd_una))
1097		return 0;
1098
1099	if (!before(start_seq, tp->undo_marker))
1100		return 1;
1101
1102	/* Too old */
1103	if (!after(end_seq, tp->undo_marker))
1104		return 0;
1105
1106	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1107	 *   start_seq < undo_marker and end_seq >= undo_marker.
1108	 */
1109	return !before(start_seq, end_seq - tp->max_window);
1110}
1111
1112/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1113 * Event "C". Later note: FACK people cheated me again 8), we have to account
1114 * for reordering! Ugly, but should help.
1115 *
1116 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1117 * less than what is now known to be received by the other end (derived from
1118 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1119 * retransmitted skbs to avoid some costly processing per ACKs.
1120 */
1121static void tcp_mark_lost_retrans(struct sock *sk)
1122{
1123	const struct inet_connection_sock *icsk = inet_csk(sk);
1124	struct tcp_sock *tp = tcp_sk(sk);
1125	struct sk_buff *skb;
1126	int cnt = 0;
1127	u32 new_low_seq = tp->snd_nxt;
1128	u32 received_upto = tcp_highest_sack_seq(tp);
1129
1130	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1131	    !after(received_upto, tp->lost_retrans_low) ||
1132	    icsk->icsk_ca_state != TCP_CA_Recovery)
1133		return;
1134
1135	tcp_for_write_queue(skb, sk) {
1136		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1137
1138		if (skb == tcp_send_head(sk))
1139			break;
1140		if (cnt == tp->retrans_out)
1141			break;
1142		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1143			continue;
1144
1145		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1146			continue;
1147
1148		if (after(received_upto, ack_seq) &&
1149		    (tcp_is_fack(tp) ||
1150		     !before(received_upto,
1151			     ack_seq + tp->reordering * tp->mss_cache))) {
1152			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1153			tp->retrans_out -= tcp_skb_pcount(skb);
1154
1155			/* clear lost hint */
1156			tp->retransmit_skb_hint = NULL;
1157
1158			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1159				tp->lost_out += tcp_skb_pcount(skb);
1160				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1161			}
1162			NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1163		} else {
1164			if (before(ack_seq, new_low_seq))
1165				new_low_seq = ack_seq;
1166			cnt += tcp_skb_pcount(skb);
1167		}
1168	}
1169
1170	if (tp->retrans_out)
1171		tp->lost_retrans_low = new_low_seq;
1172}
1173
1174static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1175			   struct tcp_sack_block_wire *sp, int num_sacks,
1176			   u32 prior_snd_una)
1177{
1178	u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1179	u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1180	int dup_sack = 0;
1181
1182	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1183		dup_sack = 1;
1184		tcp_dsack_seen(tp);
1185		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1186	} else if (num_sacks > 1) {
1187		u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1188		u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1189
1190		if (!after(end_seq_0, end_seq_1) &&
1191		    !before(start_seq_0, start_seq_1)) {
1192			dup_sack = 1;
1193			tcp_dsack_seen(tp);
1194			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1195		}
1196	}
1197
1198	/* D-SACK for already forgotten data... Do dumb counting. */
1199	if (dup_sack &&
1200	    !after(end_seq_0, prior_snd_una) &&
1201	    after(end_seq_0, tp->undo_marker))
1202		tp->undo_retrans--;
1203
1204	return dup_sack;
1205}
1206
1207/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1208 * the incoming SACK may not exactly match but we can find smaller MSS
1209 * aligned portion of it that matches. Therefore we might need to fragment
1210 * which may fail and creates some hassle (caller must handle error case
1211 * returns).
1212 */
1213static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1214				 u32 start_seq, u32 end_seq)
1215{
1216	int in_sack, err;
1217	unsigned int pkt_len;
1218
1219	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1220		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1221
1222	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1223	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1224
1225		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1226
1227		if (!in_sack)
1228			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1229		else
1230			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1231		err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1232		if (err < 0)
1233			return err;
1234	}
1235
1236	return in_sack;
1237}
1238
1239static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1240			   int *reord, int dup_sack, int fack_count)
1241{
1242	struct tcp_sock *tp = tcp_sk(sk);
1243	u8 sacked = TCP_SKB_CB(skb)->sacked;
1244	int flag = 0;
1245
1246	/* Account D-SACK for retransmitted packet. */
1247	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1248		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1249			tp->undo_retrans--;
1250		if (sacked & TCPCB_SACKED_ACKED)
1251			*reord = min(fack_count, *reord);
1252	}
1253
1254	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1255	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1256		return flag;
1257
1258	if (!(sacked & TCPCB_SACKED_ACKED)) {
1259		if (sacked & TCPCB_SACKED_RETRANS) {
1260			/* If the segment is not tagged as lost,
1261			 * we do not clear RETRANS, believing
1262			 * that retransmission is still in flight.
1263			 */
1264			if (sacked & TCPCB_LOST) {
1265				TCP_SKB_CB(skb)->sacked &=
1266					~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1267				tp->lost_out -= tcp_skb_pcount(skb);
1268				tp->retrans_out -= tcp_skb_pcount(skb);
1269
1270				/* clear lost hint */
1271				tp->retransmit_skb_hint = NULL;
1272			}
1273		} else {
1274			if (!(sacked & TCPCB_RETRANS)) {
1275				/* New sack for not retransmitted frame,
1276				 * which was in hole. It is reordering.
1277				 */
1278				if (before(TCP_SKB_CB(skb)->seq,
1279					   tcp_highest_sack_seq(tp)))
1280					*reord = min(fack_count, *reord);
1281
1282				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1283				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1284					flag |= FLAG_ONLY_ORIG_SACKED;
1285			}
1286
1287			if (sacked & TCPCB_LOST) {
1288				TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1289				tp->lost_out -= tcp_skb_pcount(skb);
1290
1291				/* clear lost hint */
1292				tp->retransmit_skb_hint = NULL;
1293			}
1294		}
1295
1296		TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1297		flag |= FLAG_DATA_SACKED;
1298		tp->sacked_out += tcp_skb_pcount(skb);
1299
1300		fack_count += tcp_skb_pcount(skb);
1301
1302		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1303		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1304		    before(TCP_SKB_CB(skb)->seq,
1305			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1306			tp->lost_cnt_hint += tcp_skb_pcount(skb);
1307
1308		if (fack_count > tp->fackets_out)
1309			tp->fackets_out = fack_count;
1310
1311		if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1312			tcp_advance_highest_sack(sk, skb);
1313	}
1314
1315	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1316	 * frames and clear it. undo_retrans is decreased above, L|R frames
1317	 * are accounted above as well.
1318	 */
1319	if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1320		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1321		tp->retrans_out -= tcp_skb_pcount(skb);
1322		tp->retransmit_skb_hint = NULL;
1323	}
1324
1325	return flag;
1326}
1327
1328static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1329					struct tcp_sack_block *next_dup,
1330					u32 start_seq, u32 end_seq,
1331					int dup_sack_in, int *fack_count,
1332					int *reord, int *flag)
1333{
1334	tcp_for_write_queue_from(skb, sk) {
1335		int in_sack = 0;
1336		int dup_sack = dup_sack_in;
1337
1338		if (skb == tcp_send_head(sk))
1339			break;
1340
1341		/* queue is in-order => we can short-circuit the walk early */
1342		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1343			break;
1344
1345		if ((next_dup != NULL) &&
1346		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1347			in_sack = tcp_match_skb_to_sack(sk, skb,
1348							next_dup->start_seq,
1349							next_dup->end_seq);
1350			if (in_sack > 0)
1351				dup_sack = 1;
1352		}
1353
1354		if (in_sack <= 0)
1355			in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1356		if (unlikely(in_sack < 0))
1357			break;
1358
1359		if (in_sack)
1360			*flag |= tcp_sacktag_one(skb, sk, reord, dup_sack, *fack_count);
1361
1362		*fack_count += tcp_skb_pcount(skb);
1363	}
1364	return skb;
1365}
1366
1367/* Avoid all extra work that is being done by sacktag while walking in
1368 * a normal way
1369 */
1370static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1371					u32 skip_to_seq)
1372{
1373	tcp_for_write_queue_from(skb, sk) {
1374		if (skb == tcp_send_head(sk))
1375			break;
1376
1377		if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1378			break;
1379	}
1380	return skb;
1381}
1382
1383static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1384						struct sock *sk,
1385						struct tcp_sack_block *next_dup,
1386						u32 skip_to_seq,
1387						int *fack_count, int *reord,
1388						int *flag)
1389{
1390	if (next_dup == NULL)
1391		return skb;
1392
1393	if (before(next_dup->start_seq, skip_to_seq)) {
1394		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1395		tcp_sacktag_walk(skb, sk, NULL,
1396				 next_dup->start_seq, next_dup->end_seq,
1397				 1, fack_count, reord, flag);
1398	}
1399
1400	return skb;
1401}
1402
1403static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1404{
1405	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1406}
1407
1408static int
1409tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1410{
1411	const struct inet_connection_sock *icsk = inet_csk(sk);
1412	struct tcp_sock *tp = tcp_sk(sk);
1413	unsigned char *ptr = (skb_transport_header(ack_skb) +
1414			      TCP_SKB_CB(ack_skb)->sacked);
1415	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1416	struct tcp_sack_block sp[4];
1417	struct tcp_sack_block *cache;
1418	struct sk_buff *skb;
1419	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1420	int used_sacks;
1421	int reord = tp->packets_out;
1422	int flag = 0;
1423	int found_dup_sack = 0;
1424	int fack_count;
1425	int i, j;
1426	int first_sack_index;
1427
1428	if (!tp->sacked_out) {
1429		if (WARN_ON(tp->fackets_out))
1430			tp->fackets_out = 0;
1431		tcp_highest_sack_reset(sk);
1432	}
1433
1434	found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1435					 num_sacks, prior_snd_una);
1436	if (found_dup_sack)
1437		flag |= FLAG_DSACKING_ACK;
1438
1439	/* Eliminate too old ACKs, but take into
1440	 * account more or less fresh ones, they can
1441	 * contain valid SACK info.
1442	 */
1443	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1444		return 0;
1445
1446	if (!tp->packets_out)
1447		goto out;
1448
1449	used_sacks = 0;
1450	first_sack_index = 0;
1451	for (i = 0; i < num_sacks; i++) {
1452		int dup_sack = !i && found_dup_sack;
1453
1454		sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1455		sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1456
1457		if (!tcp_is_sackblock_valid(tp, dup_sack,
1458					    sp[used_sacks].start_seq,
1459					    sp[used_sacks].end_seq)) {
1460			if (dup_sack) {
1461				if (!tp->undo_marker)
1462					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1463				else
1464					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1465			} else {
1466				/* Don't count olds caused by ACK reordering */
1467				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1468				    !after(sp[used_sacks].end_seq, tp->snd_una))
1469					continue;
1470				NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1471			}
1472			if (i == 0)
1473				first_sack_index = -1;
1474			continue;
1475		}
1476
1477		/* Ignore very old stuff early */
1478		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1479			continue;
1480
1481		used_sacks++;
1482	}
1483
1484	/* order SACK blocks to allow in order walk of the retrans queue */
1485	for (i = used_sacks - 1; i > 0; i--) {
1486		for (j = 0; j < i; j++){
1487			if (after(sp[j].start_seq, sp[j+1].start_seq)) {
1488				struct tcp_sack_block tmp;
1489
1490				tmp = sp[j];
1491				sp[j] = sp[j+1];
1492				sp[j+1] = tmp;
1493
1494				/* Track where the first SACK block goes to */
1495				if (j == first_sack_index)
1496					first_sack_index = j+1;
1497			}
1498		}
1499	}
1500
1501	skb = tcp_write_queue_head(sk);
1502	fack_count = 0;
1503	i = 0;
1504
1505	if (!tp->sacked_out) {
1506		/* It's already past, so skip checking against it */
1507		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1508	} else {
1509		cache = tp->recv_sack_cache;
1510		/* Skip empty blocks in at head of the cache */
1511		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1512		       !cache->end_seq)
1513			cache++;
1514	}
1515
1516	while (i < used_sacks) {
1517		u32 start_seq = sp[i].start_seq;
1518		u32 end_seq = sp[i].end_seq;
1519		int dup_sack = (found_dup_sack && (i == first_sack_index));
1520		struct tcp_sack_block *next_dup = NULL;
1521
1522		if (found_dup_sack && ((i + 1) == first_sack_index))
1523			next_dup = &sp[i + 1];
1524
1525		/* Event "B" in the comment above. */
1526		if (after(end_seq, tp->high_seq))
1527			flag |= FLAG_DATA_LOST;
1528
1529		/* Skip too early cached blocks */
1530		while (tcp_sack_cache_ok(tp, cache) &&
1531		       !before(start_seq, cache->end_seq))
1532			cache++;
1533
1534		/* Can skip some work by looking recv_sack_cache? */
1535		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1536		    after(end_seq, cache->start_seq)) {
1537
1538			/* Head todo? */
1539			if (before(start_seq, cache->start_seq)) {
1540				skb = tcp_sacktag_skip(skb, sk, start_seq);
1541				skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq,
1542						       cache->start_seq, dup_sack,
1543						       &fack_count, &reord, &flag);
1544			}
1545
1546			/* Rest of the block already fully processed? */
1547			if (!after(end_seq, cache->end_seq))
1548				goto advance_sp;
1549
1550			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, cache->end_seq,
1551						       &fack_count, &reord, &flag);
1552
1553			/* ...tail remains todo... */
1554			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1555				/* ...but better entrypoint exists! */
1556				skb = tcp_highest_sack(sk);
1557				if (skb == NULL)
1558					break;
1559				fack_count = tp->fackets_out;
1560				cache++;
1561				goto walk;
1562			}
1563
1564			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1565			/* Check overlap against next cached too (past this one already) */
1566			cache++;
1567			continue;
1568		}
1569
1570		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1571			skb = tcp_highest_sack(sk);
1572			if (skb == NULL)
1573				break;
1574			fack_count = tp->fackets_out;
1575		}
1576		skb = tcp_sacktag_skip(skb, sk, start_seq);
1577
1578walk:
1579		skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1580				       dup_sack, &fack_count, &reord, &flag);
1581
1582advance_sp:
1583		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1584		 * due to in-order walk
1585		 */
1586		if (after(end_seq, tp->frto_highmark))
1587			flag &= ~FLAG_ONLY_ORIG_SACKED;
1588
1589		i++;
1590	}
1591
1592	/* Clear the head of the cache sack blocks so we can skip it next time */
1593	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1594		tp->recv_sack_cache[i].start_seq = 0;
1595		tp->recv_sack_cache[i].end_seq = 0;
1596	}
1597	for (j = 0; j < used_sacks; j++)
1598		tp->recv_sack_cache[i++] = sp[j];
1599
1600	tcp_mark_lost_retrans(sk);
1601
1602	tcp_verify_left_out(tp);
1603
1604	if ((reord < tp->fackets_out) &&
1605	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1606	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1607		tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1608
1609out:
1610
1611#if FASTRETRANS_DEBUG > 0
1612	BUG_TRAP((int)tp->sacked_out >= 0);
1613	BUG_TRAP((int)tp->lost_out >= 0);
1614	BUG_TRAP((int)tp->retrans_out >= 0);
1615	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1616#endif
1617	return flag;
1618}
1619
1620/* If we receive more dupacks than we expected counting segments
1621 * in assumption of absent reordering, interpret this as reordering.
1622 * The only another reason could be bug in receiver TCP.
1623 */
1624static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1625{
1626	struct tcp_sock *tp = tcp_sk(sk);
1627	u32 holes;
1628
1629	holes = max(tp->lost_out, 1U);
1630	holes = min(holes, tp->packets_out);
1631
1632	if ((tp->sacked_out + holes) > tp->packets_out) {
1633		tp->sacked_out = tp->packets_out - holes;
1634		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1635	}
1636}
1637
1638/* Emulate SACKs for SACKless connection: account for a new dupack. */
1639
1640static void tcp_add_reno_sack(struct sock *sk)
1641{
1642	struct tcp_sock *tp = tcp_sk(sk);
1643	tp->sacked_out++;
1644	tcp_check_reno_reordering(sk, 0);
1645	tcp_verify_left_out(tp);
1646}
1647
1648/* Account for ACK, ACKing some data in Reno Recovery phase. */
1649
1650static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1651{
1652	struct tcp_sock *tp = tcp_sk(sk);
1653
1654	if (acked > 0) {
1655		/* One ACK acked hole. The rest eat duplicate ACKs. */
1656		if (acked-1 >= tp->sacked_out)
1657			tp->sacked_out = 0;
1658		else
1659			tp->sacked_out -= acked-1;
1660	}
1661	tcp_check_reno_reordering(sk, acked);
1662	tcp_verify_left_out(tp);
1663}
1664
1665static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1666{
1667	tp->sacked_out = 0;
1668}
1669
1670/* F-RTO can only be used if TCP has never retransmitted anything other than
1671 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1672 */
1673int tcp_use_frto(struct sock *sk)
1674{
1675	const struct tcp_sock *tp = tcp_sk(sk);
1676	struct sk_buff *skb;
1677
1678	if (!sysctl_tcp_frto)
1679		return 0;
1680
1681	if (IsSackFrto())
1682		return 1;
1683
1684	/* Avoid expensive walking of rexmit queue if possible */
1685	if (tp->retrans_out > 1)
1686		return 0;
1687
1688	skb = tcp_write_queue_head(sk);
1689	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1690	tcp_for_write_queue_from(skb, sk) {
1691		if (skb == tcp_send_head(sk))
1692			break;
1693		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1694			return 0;
1695		/* Short-circuit when first non-SACKed skb has been checked */
1696		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1697			break;
1698	}
1699	return 1;
1700}
1701
1702/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1703 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1704 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1705 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1706 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1707 * bits are handled if the Loss state is really to be entered (in
1708 * tcp_enter_frto_loss).
1709 *
1710 * Do like tcp_enter_loss() would; when RTO expires the second time it
1711 * does:
1712 *  "Reduce ssthresh if it has not yet been made inside this window."
1713 */
1714void tcp_enter_frto(struct sock *sk)
1715{
1716	const struct inet_connection_sock *icsk = inet_csk(sk);
1717	struct tcp_sock *tp = tcp_sk(sk);
1718	struct sk_buff *skb;
1719
1720	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1721	    tp->snd_una == tp->high_seq ||
1722	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1723	     !icsk->icsk_retransmits)) {
1724		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1725		/* Our state is too optimistic in ssthresh() call because cwnd
1726		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1727		 * recovery has not yet completed. Pattern would be this: RTO,
1728		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1729		 * up here twice).
1730		 * RFC4138 should be more specific on what to do, even though
1731		 * RTO is quite unlikely to occur after the first Cumulative ACK
1732		 * due to back-off and complexity of triggering events ...
1733		 */
1734		if (tp->frto_counter) {
1735			u32 stored_cwnd;
1736			stored_cwnd = tp->snd_cwnd;
1737			tp->snd_cwnd = 2;
1738			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1739			tp->snd_cwnd = stored_cwnd;
1740		} else {
1741			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1742		}
1743		/* ... in theory, cong.control module could do "any tricks" in
1744		 * ssthresh(), which means that ca_state, lost bits and lost_out
1745		 * counter would have to be faked before the call occurs. We
1746		 * consider that too expensive, unlikely and hacky, so modules
1747		 * using these in ssthresh() must deal these incompatibility
1748		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1749		 */
1750		tcp_ca_event(sk, CA_EVENT_FRTO);
1751	}
1752
1753	tp->undo_marker = tp->snd_una;
1754	tp->undo_retrans = 0;
1755
1756	skb = tcp_write_queue_head(sk);
1757	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1758		tp->undo_marker = 0;
1759	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1760		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1761		tp->retrans_out -= tcp_skb_pcount(skb);
1762	}
1763	tcp_verify_left_out(tp);
1764
1765	/* Too bad if TCP was application limited */
1766	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1767
1768	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1769	 * The last condition is necessary at least in tp->frto_counter case.
1770	 */
1771	if (IsSackFrto() && (tp->frto_counter ||
1772	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1773	    after(tp->high_seq, tp->snd_una)) {
1774		tp->frto_highmark = tp->high_seq;
1775	} else {
1776		tp->frto_highmark = tp->snd_nxt;
1777	}
1778	tcp_set_ca_state(sk, TCP_CA_Disorder);
1779	tp->high_seq = tp->snd_nxt;
1780	tp->frto_counter = 1;
1781}
1782
1783/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1784 * which indicates that we should follow the traditional RTO recovery,
1785 * i.e. mark everything lost and do go-back-N retransmission.
1786 */
1787static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1788{
1789	struct tcp_sock *tp = tcp_sk(sk);
1790	struct sk_buff *skb;
1791
1792	tp->lost_out = 0;
1793	tp->retrans_out = 0;
1794	if (tcp_is_reno(tp))
1795		tcp_reset_reno_sack(tp);
1796
1797	tcp_for_write_queue(skb, sk) {
1798		if (skb == tcp_send_head(sk))
1799			break;
1800
1801		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1802		/*
1803		 * Count the retransmission made on RTO correctly (only when
1804		 * waiting for the first ACK and did not get it)...
1805		 */
1806		if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1807			/* For some reason this R-bit might get cleared? */
1808			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1809				tp->retrans_out += tcp_skb_pcount(skb);
1810			/* ...enter this if branch just for the first segment */
1811			flag |= FLAG_DATA_ACKED;
1812		} else {
1813			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1814				tp->undo_marker = 0;
1815			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1816		}
1817
1818		/* Don't lost mark skbs that were fwd transmitted after RTO */
1819		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1820		    !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1821			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1822			tp->lost_out += tcp_skb_pcount(skb);
1823		}
1824	}
1825	tcp_verify_left_out(tp);
1826
1827	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1828	tp->snd_cwnd_cnt = 0;
1829	tp->snd_cwnd_stamp = tcp_time_stamp;
1830	tp->frto_counter = 0;
1831	tp->bytes_acked = 0;
1832
1833	tp->reordering = min_t(unsigned int, tp->reordering,
1834					     sysctl_tcp_reordering);
1835	tcp_set_ca_state(sk, TCP_CA_Loss);
1836	tp->high_seq = tp->frto_highmark;
1837	TCP_ECN_queue_cwr(tp);
1838
1839	tcp_clear_retrans_hints_partial(tp);
1840}
1841
1842static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1843{
1844	tp->retrans_out = 0;
1845	tp->lost_out = 0;
1846
1847	tp->undo_marker = 0;
1848	tp->undo_retrans = 0;
1849}
1850
1851void tcp_clear_retrans(struct tcp_sock *tp)
1852{
1853	tcp_clear_retrans_partial(tp);
1854
1855	tp->fackets_out = 0;
1856	tp->sacked_out = 0;
1857}
1858
1859/* Enter Loss state. If "how" is not zero, forget all SACK information
1860 * and reset tags completely, otherwise preserve SACKs. If receiver
1861 * dropped its ofo queue, we will know this due to reneging detection.
1862 */
1863void tcp_enter_loss(struct sock *sk, int how)
1864{
1865	const struct inet_connection_sock *icsk = inet_csk(sk);
1866	struct tcp_sock *tp = tcp_sk(sk);
1867	struct sk_buff *skb;
1868
1869	/* Reduce ssthresh if it has not yet been made inside this window. */
1870	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1871	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1872		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1873		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1874		tcp_ca_event(sk, CA_EVENT_LOSS);
1875	}
1876	tp->snd_cwnd	   = 1;
1877	tp->snd_cwnd_cnt   = 0;
1878	tp->snd_cwnd_stamp = tcp_time_stamp;
1879
1880	tp->bytes_acked = 0;
1881	tcp_clear_retrans_partial(tp);
1882
1883	if (tcp_is_reno(tp))
1884		tcp_reset_reno_sack(tp);
1885
1886	if (!how) {
1887		/* Push undo marker, if it was plain RTO and nothing
1888		 * was retransmitted. */
1889		tp->undo_marker = tp->snd_una;
1890		tcp_clear_retrans_hints_partial(tp);
1891	} else {
1892		tp->sacked_out = 0;
1893		tp->fackets_out = 0;
1894		tcp_clear_all_retrans_hints(tp);
1895	}
1896
1897	tcp_for_write_queue(skb, sk) {
1898		if (skb == tcp_send_head(sk))
1899			break;
1900
1901		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1902			tp->undo_marker = 0;
1903		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1904		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1905			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1906			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1907			tp->lost_out += tcp_skb_pcount(skb);
1908		}
1909	}
1910	tcp_verify_left_out(tp);
1911
1912	tp->reordering = min_t(unsigned int, tp->reordering,
1913					     sysctl_tcp_reordering);
1914	tcp_set_ca_state(sk, TCP_CA_Loss);
1915	tp->high_seq = tp->snd_nxt;
1916	TCP_ECN_queue_cwr(tp);
1917	/* Abort F-RTO algorithm if one is in progress */
1918	tp->frto_counter = 0;
1919}
1920
1921static int tcp_check_sack_reneging(struct sock *sk)
1922{
1923	struct sk_buff *skb;
1924
1925	/* If ACK arrived pointing to a remembered SACK,
1926	 * it means that our remembered SACKs do not reflect
1927	 * real state of receiver i.e.
1928	 * receiver _host_ is heavily congested (or buggy).
1929	 * Do processing similar to RTO timeout.
1930	 */
1931	if ((skb = tcp_write_queue_head(sk)) != NULL &&
1932	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1933		struct inet_connection_sock *icsk = inet_csk(sk);
1934		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1935
1936		tcp_enter_loss(sk, 1);
1937		icsk->icsk_retransmits++;
1938		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1939		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1940					  icsk->icsk_rto, TCP_RTO_MAX);
1941		return 1;
1942	}
1943	return 0;
1944}
1945
1946static inline int tcp_fackets_out(struct tcp_sock *tp)
1947{
1948	return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1949}
1950
1951/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1952 * counter when SACK is enabled (without SACK, sacked_out is used for
1953 * that purpose).
1954 *
1955 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1956 * segments up to the highest received SACK block so far and holes in
1957 * between them.
1958 *
1959 * With reordering, holes may still be in flight, so RFC3517 recovery
1960 * uses pure sacked_out (total number of SACKed segments) even though
1961 * it violates the RFC that uses duplicate ACKs, often these are equal
1962 * but when e.g. out-of-window ACKs or packet duplication occurs,
1963 * they differ. Since neither occurs due to loss, TCP should really
1964 * ignore them.
1965 */
1966static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1967{
1968	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1969}
1970
1971static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1972{
1973	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1974}
1975
1976static inline int tcp_head_timedout(struct sock *sk)
1977{
1978	struct tcp_sock *tp = tcp_sk(sk);
1979
1980	return tp->packets_out &&
1981	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1982}
1983
1984/* Linux NewReno/SACK/FACK/ECN state machine.
1985 * --------------------------------------
1986 *
1987 * "Open"	Normal state, no dubious events, fast path.
1988 * "Disorder"   In all the respects it is "Open",
1989 *		but requires a bit more attention. It is entered when
1990 *		we see some SACKs or dupacks. It is split of "Open"
1991 *		mainly to move some processing from fast path to slow one.
1992 * "CWR"	CWND was reduced due to some Congestion Notification event.
1993 *		It can be ECN, ICMP source quench, local device congestion.
1994 * "Recovery"	CWND was reduced, we are fast-retransmitting.
1995 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1996 *
1997 * tcp_fastretrans_alert() is entered:
1998 * - each incoming ACK, if state is not "Open"
1999 * - when arrived ACK is unusual, namely:
2000 *	* SACK
2001 *	* Duplicate ACK.
2002 *	* ECN ECE.
2003 *
2004 * Counting packets in flight is pretty simple.
2005 *
2006 *	in_flight = packets_out - left_out + retrans_out
2007 *
2008 *	packets_out is SND.NXT-SND.UNA counted in packets.
2009 *
2010 *	retrans_out is number of retransmitted segments.
2011 *
2012 *	left_out is number of segments left network, but not ACKed yet.
2013 *
2014 *		left_out = sacked_out + lost_out
2015 *
2016 *     sacked_out: Packets, which arrived to receiver out of order
2017 *		   and hence not ACKed. With SACKs this number is simply
2018 *		   amount of SACKed data. Even without SACKs
2019 *		   it is easy to give pretty reliable estimate of this number,
2020 *		   counting duplicate ACKs.
2021 *
2022 *       lost_out: Packets lost by network. TCP has no explicit
2023 *		   "loss notification" feedback from network (for now).
2024 *		   It means that this number can be only _guessed_.
2025 *		   Actually, it is the heuristics to predict lossage that
2026 *		   distinguishes different algorithms.
2027 *
2028 *	F.e. after RTO, when all the queue is considered as lost,
2029 *	lost_out = packets_out and in_flight = retrans_out.
2030 *
2031 *		Essentially, we have now two algorithms counting
2032 *		lost packets.
2033 *
2034 *		FACK: It is the simplest heuristics. As soon as we decided
2035 *		that something is lost, we decide that _all_ not SACKed
2036 *		packets until the most forward SACK are lost. I.e.
2037 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2038 *		It is absolutely correct estimate, if network does not reorder
2039 *		packets. And it loses any connection to reality when reordering
2040 *		takes place. We use FACK by default until reordering
2041 *		is suspected on the path to this destination.
2042 *
2043 *		NewReno: when Recovery is entered, we assume that one segment
2044 *		is lost (classic Reno). While we are in Recovery and
2045 *		a partial ACK arrives, we assume that one more packet
2046 *		is lost (NewReno). This heuristics are the same in NewReno
2047 *		and SACK.
2048 *
2049 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2050 *  deflation etc. CWND is real congestion window, never inflated, changes
2051 *  only according to classic VJ rules.
2052 *
2053 * Really tricky (and requiring careful tuning) part of algorithm
2054 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2055 * The first determines the moment _when_ we should reduce CWND and,
2056 * hence, slow down forward transmission. In fact, it determines the moment
2057 * when we decide that hole is caused by loss, rather than by a reorder.
2058 *
2059 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2060 * holes, caused by lost packets.
2061 *
2062 * And the most logically complicated part of algorithm is undo
2063 * heuristics. We detect false retransmits due to both too early
2064 * fast retransmit (reordering) and underestimated RTO, analyzing
2065 * timestamps and D-SACKs. When we detect that some segments were
2066 * retransmitted by mistake and CWND reduction was wrong, we undo
2067 * window reduction and abort recovery phase. This logic is hidden
2068 * inside several functions named tcp_try_undo_<something>.
2069 */
2070
2071/* This function decides, when we should leave Disordered state
2072 * and enter Recovery phase, reducing congestion window.
2073 *
2074 * Main question: may we further continue forward transmission
2075 * with the same cwnd?
2076 */
2077static int tcp_time_to_recover(struct sock *sk)
2078{
2079	struct tcp_sock *tp = tcp_sk(sk);
2080	__u32 packets_out;
2081
2082	/* Do not perform any recovery during F-RTO algorithm */
2083	if (tp->frto_counter)
2084		return 0;
2085
2086	/* Trick#1: The loss is proven. */
2087	if (tp->lost_out)
2088		return 1;
2089
2090	/* Not-A-Trick#2 : Classic rule... */
2091	if (tcp_dupack_heurestics(tp) > tp->reordering)
2092		return 1;
2093
2094	/* Trick#3 : when we use RFC2988 timer restart, fast
2095	 * retransmit can be triggered by timeout of queue head.
2096	 */
2097	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2098		return 1;
2099
2100	/* Trick#4: It is still not OK... But will it be useful to delay
2101	 * recovery more?
2102	 */
2103	packets_out = tp->packets_out;
2104	if (packets_out <= tp->reordering &&
2105	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2106	    !tcp_may_send_now(sk)) {
2107		/* We have nothing to send. This connection is limited
2108		 * either by receiver window or by application.
2109		 */
2110		return 1;
2111	}
2112
2113	return 0;
2114}
2115
2116/* RFC: This is from the original, I doubt that this is necessary at all:
2117 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2118 * retransmitted past LOST markings in the first place? I'm not fully sure
2119 * about undo and end of connection cases, which can cause R without L?
2120 */
2121static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2122				       struct sk_buff *skb)
2123{
2124	if ((tp->retransmit_skb_hint != NULL) &&
2125	    before(TCP_SKB_CB(skb)->seq,
2126	    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2127		tp->retransmit_skb_hint = NULL;
2128}
2129
2130/* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2131 * is against sacked "cnt", otherwise it's against facked "cnt"
2132 */
2133static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit)
2134{
2135	struct tcp_sock *tp = tcp_sk(sk);
2136	struct sk_buff *skb;
2137	int cnt;
2138
2139	BUG_TRAP(packets <= tp->packets_out);
2140	if (tp->lost_skb_hint) {
2141		skb = tp->lost_skb_hint;
2142		cnt = tp->lost_cnt_hint;
2143	} else {
2144		skb = tcp_write_queue_head(sk);
2145		cnt = 0;
2146	}
2147
2148	tcp_for_write_queue_from(skb, sk) {
2149		if (skb == tcp_send_head(sk))
2150			break;
2151		/* TODO: do this better */
2152		/* this is not the most efficient way to do this... */
2153		tp->lost_skb_hint = skb;
2154		tp->lost_cnt_hint = cnt;
2155
2156		if (tcp_is_fack(tp) ||
2157		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2158			cnt += tcp_skb_pcount(skb);
2159
2160		if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) ||
2161		     after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2162			break;
2163		if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2164			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2165			tp->lost_out += tcp_skb_pcount(skb);
2166			tcp_verify_retransmit_hint(tp, skb);
2167		}
2168	}
2169	tcp_verify_left_out(tp);
2170}
2171
2172/* Account newly detected lost packet(s) */
2173
2174static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2175{
2176	struct tcp_sock *tp = tcp_sk(sk);
2177
2178	if (tcp_is_reno(tp)) {
2179		tcp_mark_head_lost(sk, 1, fast_rexmit);
2180	} else if (tcp_is_fack(tp)) {
2181		int lost = tp->fackets_out - tp->reordering;
2182		if (lost <= 0)
2183			lost = 1;
2184		tcp_mark_head_lost(sk, lost, fast_rexmit);
2185	} else {
2186		int sacked_upto = tp->sacked_out - tp->reordering;
2187		if (sacked_upto < 0)
2188			sacked_upto = 0;
2189		tcp_mark_head_lost(sk, sacked_upto, fast_rexmit);
2190	}
2191
2192	/* New heuristics: it is possible only after we switched
2193	 * to restart timer each time when something is ACKed.
2194	 * Hence, we can detect timed out packets during fast
2195	 * retransmit without falling to slow start.
2196	 */
2197	if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2198		struct sk_buff *skb;
2199
2200		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2201			: tcp_write_queue_head(sk);
2202
2203		tcp_for_write_queue_from(skb, sk) {
2204			if (skb == tcp_send_head(sk))
2205				break;
2206			if (!tcp_skb_timedout(sk, skb))
2207				break;
2208
2209			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2210				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2211				tp->lost_out += tcp_skb_pcount(skb);
2212				tcp_verify_retransmit_hint(tp, skb);
2213			}
2214		}
2215
2216		tp->scoreboard_skb_hint = skb;
2217
2218		tcp_verify_left_out(tp);
2219	}
2220}
2221
2222/* CWND moderation, preventing bursts due to too big ACKs
2223 * in dubious situations.
2224 */
2225static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2226{
2227	tp->snd_cwnd = min(tp->snd_cwnd,
2228			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2229	tp->snd_cwnd_stamp = tcp_time_stamp;
2230}
2231
2232/* Lower bound on congestion window is slow start threshold
2233 * unless congestion avoidance choice decides to overide it.
2234 */
2235static inline u32 tcp_cwnd_min(const struct sock *sk)
2236{
2237	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2238
2239	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2240}
2241
2242/* Decrease cwnd each second ack. */
2243static void tcp_cwnd_down(struct sock *sk, int flag)
2244{
2245	struct tcp_sock *tp = tcp_sk(sk);
2246	int decr = tp->snd_cwnd_cnt + 1;
2247
2248	if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2249	    (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2250		tp->snd_cwnd_cnt = decr&1;
2251		decr >>= 1;
2252
2253		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2254			tp->snd_cwnd -= decr;
2255
2256		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2257		tp->snd_cwnd_stamp = tcp_time_stamp;
2258	}
2259}
2260
2261/* Nothing was retransmitted or returned timestamp is less
2262 * than timestamp of the first retransmission.
2263 */
2264static inline int tcp_packet_delayed(struct tcp_sock *tp)
2265{
2266	return !tp->retrans_stamp ||
2267		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2268		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2269}
2270
2271/* Undo procedures. */
2272
2273#if FASTRETRANS_DEBUG > 1
2274static void DBGUNDO(struct sock *sk, const char *msg)
2275{
2276	struct tcp_sock *tp = tcp_sk(sk);
2277	struct inet_sock *inet = inet_sk(sk);
2278
2279	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2280	       msg,
2281	       NIPQUAD(inet->daddr), ntohs(inet->dport),
2282	       tp->snd_cwnd, tcp_left_out(tp),
2283	       tp->snd_ssthresh, tp->prior_ssthresh,
2284	       tp->packets_out);
2285}
2286#else
2287#define DBGUNDO(x...) do { } while (0)
2288#endif
2289
2290static void tcp_undo_cwr(struct sock *sk, const int undo)
2291{
2292	struct tcp_sock *tp = tcp_sk(sk);
2293
2294	if (tp->prior_ssthresh) {
2295		const struct inet_connection_sock *icsk = inet_csk(sk);
2296
2297		if (icsk->icsk_ca_ops->undo_cwnd)
2298			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2299		else
2300			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2301
2302		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2303			tp->snd_ssthresh = tp->prior_ssthresh;
2304			TCP_ECN_withdraw_cwr(tp);
2305		}
2306	} else {
2307		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2308	}
2309	tcp_moderate_cwnd(tp);
2310	tp->snd_cwnd_stamp = tcp_time_stamp;
2311
2312	/* There is something screwy going on with the retrans hints after
2313	   an undo */
2314	tcp_clear_all_retrans_hints(tp);
2315}
2316
2317static inline int tcp_may_undo(struct tcp_sock *tp)
2318{
2319	return tp->undo_marker &&
2320		(!tp->undo_retrans || tcp_packet_delayed(tp));
2321}
2322
2323/* People celebrate: "We love our President!" */
2324static int tcp_try_undo_recovery(struct sock *sk)
2325{
2326	struct tcp_sock *tp = tcp_sk(sk);
2327
2328	if (tcp_may_undo(tp)) {
2329		/* Happy end! We did not retransmit anything
2330		 * or our original transmission succeeded.
2331		 */
2332		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2333		tcp_undo_cwr(sk, 1);
2334		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2335			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2336		else
2337			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2338		tp->undo_marker = 0;
2339	}
2340	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2341		/* Hold old state until something *above* high_seq
2342		 * is ACKed. For Reno it is MUST to prevent false
2343		 * fast retransmits (RFC2582). SACK TCP is safe. */
2344		tcp_moderate_cwnd(tp);
2345		return 1;
2346	}
2347	tcp_set_ca_state(sk, TCP_CA_Open);
2348	return 0;
2349}
2350
2351/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2352static void tcp_try_undo_dsack(struct sock *sk)
2353{
2354	struct tcp_sock *tp = tcp_sk(sk);
2355
2356	if (tp->undo_marker && !tp->undo_retrans) {
2357		DBGUNDO(sk, "D-SACK");
2358		tcp_undo_cwr(sk, 1);
2359		tp->undo_marker = 0;
2360		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2361	}
2362}
2363
2364/* Undo during fast recovery after partial ACK. */
2365
2366static int tcp_try_undo_partial(struct sock *sk, int acked)
2367{
2368	struct tcp_sock *tp = tcp_sk(sk);
2369	/* Partial ACK arrived. Force Hoe's retransmit. */
2370	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2371
2372	if (tcp_may_undo(tp)) {
2373		/* Plain luck! Hole if filled with delayed
2374		 * packet, rather than with a retransmit.
2375		 */
2376		if (tp->retrans_out == 0)
2377			tp->retrans_stamp = 0;
2378
2379		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2380
2381		DBGUNDO(sk, "Hoe");
2382		tcp_undo_cwr(sk, 0);
2383		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2384
2385		/* So... Do not make Hoe's retransmit yet.
2386		 * If the first packet was delayed, the rest
2387		 * ones are most probably delayed as well.
2388		 */
2389		failed = 0;
2390	}
2391	return failed;
2392}
2393
2394/* Undo during loss recovery after partial ACK. */
2395static int tcp_try_undo_loss(struct sock *sk)
2396{
2397	struct tcp_sock *tp = tcp_sk(sk);
2398
2399	if (tcp_may_undo(tp)) {
2400		struct sk_buff *skb;
2401		tcp_for_write_queue(skb, sk) {
2402			if (skb == tcp_send_head(sk))
2403				break;
2404			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2405		}
2406
2407		tcp_clear_all_retrans_hints(tp);
2408
2409		DBGUNDO(sk, "partial loss");
2410		tp->lost_out = 0;
2411		tcp_undo_cwr(sk, 1);
2412		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2413		inet_csk(sk)->icsk_retransmits = 0;
2414		tp->undo_marker = 0;
2415		if (tcp_is_sack(tp))
2416			tcp_set_ca_state(sk, TCP_CA_Open);
2417		return 1;
2418	}
2419	return 0;
2420}
2421
2422static inline void tcp_complete_cwr(struct sock *sk)
2423{
2424	struct tcp_sock *tp = tcp_sk(sk);
2425	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2426	tp->snd_cwnd_stamp = tcp_time_stamp;
2427	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2428}
2429
2430static void tcp_try_to_open(struct sock *sk, int flag)
2431{
2432	struct tcp_sock *tp = tcp_sk(sk);
2433
2434	tcp_verify_left_out(tp);
2435
2436	if (tp->retrans_out == 0)
2437		tp->retrans_stamp = 0;
2438
2439	if (flag&FLAG_ECE)
2440		tcp_enter_cwr(sk, 1);
2441
2442	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2443		int state = TCP_CA_Open;
2444
2445		if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2446			state = TCP_CA_Disorder;
2447
2448		if (inet_csk(sk)->icsk_ca_state != state) {
2449			tcp_set_ca_state(sk, state);
2450			tp->high_seq = tp->snd_nxt;
2451		}
2452		tcp_moderate_cwnd(tp);
2453	} else {
2454		tcp_cwnd_down(sk, flag);
2455	}
2456}
2457
2458static void tcp_mtup_probe_failed(struct sock *sk)
2459{
2460	struct inet_connection_sock *icsk = inet_csk(sk);
2461
2462	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2463	icsk->icsk_mtup.probe_size = 0;
2464}
2465
2466static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2467{
2468	struct tcp_sock *tp = tcp_sk(sk);
2469	struct inet_connection_sock *icsk = inet_csk(sk);
2470
2471	/* FIXME: breaks with very large cwnd */
2472	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2473	tp->snd_cwnd = tp->snd_cwnd *
2474		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2475		       icsk->icsk_mtup.probe_size;
2476	tp->snd_cwnd_cnt = 0;
2477	tp->snd_cwnd_stamp = tcp_time_stamp;
2478	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2479
2480	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2481	icsk->icsk_mtup.probe_size = 0;
2482	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2483}
2484
2485
2486/* Process an event, which can update packets-in-flight not trivially.
2487 * Main goal of this function is to calculate new estimate for left_out,
2488 * taking into account both packets sitting in receiver's buffer and
2489 * packets lost by network.
2490 *
2491 * Besides that it does CWND reduction, when packet loss is detected
2492 * and changes state of machine.
2493 *
2494 * It does _not_ decide what to send, it is made in function
2495 * tcp_xmit_retransmit_queue().
2496 */
2497static void
2498tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2499{
2500	struct inet_connection_sock *icsk = inet_csk(sk);
2501	struct tcp_sock *tp = tcp_sk(sk);
2502	int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2503	int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2504				    (tcp_fackets_out(tp) > tp->reordering));
2505	int fast_rexmit = 0;
2506
2507	/* Some technical things:
2508	 * 1. Reno does not count dupacks (sacked_out) automatically. */
2509	if (!tp->packets_out)
2510		tp->sacked_out = 0;
2511
2512	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2513		tp->fackets_out = 0;
2514
2515	/* Now state machine starts.
2516	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2517	if (flag&FLAG_ECE)
2518		tp->prior_ssthresh = 0;
2519
2520	/* B. In all the states check for reneging SACKs. */
2521	if (tp->sacked_out && tcp_check_sack_reneging(sk))
2522		return;
2523
2524	/* C. Process data loss notification, provided it is valid. */
2525	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2526	    before(tp->snd_una, tp->high_seq) &&
2527	    icsk->icsk_ca_state != TCP_CA_Open &&
2528	    tp->fackets_out > tp->reordering) {
2529		tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, 0);
2530		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2531	}
2532
2533	/* D. Check consistency of the current state. */
2534	tcp_verify_left_out(tp);
2535
2536	/* E. Check state exit conditions. State can be terminated
2537	 *    when high_seq is ACKed. */
2538	if (icsk->icsk_ca_state == TCP_CA_Open) {
2539		BUG_TRAP(tp->retrans_out == 0);
2540		tp->retrans_stamp = 0;
2541	} else if (!before(tp->snd_una, tp->high_seq)) {
2542		switch (icsk->icsk_ca_state) {
2543		case TCP_CA_Loss:
2544			icsk->icsk_retransmits = 0;
2545			if (tcp_try_undo_recovery(sk))
2546				return;
2547			break;
2548
2549		case TCP_CA_CWR:
2550			/* CWR is to be held something *above* high_seq
2551			 * is ACKed for CWR bit to reach receiver. */
2552			if (tp->snd_una != tp->high_seq) {
2553				tcp_complete_cwr(sk);
2554				tcp_set_ca_state(sk, TCP_CA_Open);
2555			}
2556			break;
2557
2558		case TCP_CA_Disorder:
2559			tcp_try_undo_dsack(sk);
2560			if (!tp->undo_marker ||
2561			    /* For SACK case do not Open to allow to undo
2562			     * catching for all duplicate ACKs. */
2563			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2564				tp->undo_marker = 0;
2565				tcp_set_ca_state(sk, TCP_CA_Open);
2566			}
2567			break;
2568
2569		case TCP_CA_Recovery:
2570			if (tcp_is_reno(tp))
2571				tcp_reset_reno_sack(tp);
2572			if (tcp_try_undo_recovery(sk))
2573				return;
2574			tcp_complete_cwr(sk);
2575			break;
2576		}
2577	}
2578
2579	/* F. Process state. */
2580	switch (icsk->icsk_ca_state) {
2581	case TCP_CA_Recovery:
2582		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2583			if (tcp_is_reno(tp) && is_dupack)
2584				tcp_add_reno_sack(sk);
2585		} else
2586			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2587		break;
2588	case TCP_CA_Loss:
2589		if (flag&FLAG_DATA_ACKED)
2590			icsk->icsk_retransmits = 0;
2591		if (!tcp_try_undo_loss(sk)) {
2592			tcp_moderate_cwnd(tp);
2593			tcp_xmit_retransmit_queue(sk);
2594			return;
2595		}
2596		if (icsk->icsk_ca_state != TCP_CA_Open)
2597			return;
2598		/* Loss is undone; fall through to processing in Open state. */
2599	default:
2600		if (tcp_is_reno(tp)) {
2601			if (flag & FLAG_SND_UNA_ADVANCED)
2602				tcp_reset_reno_sack(tp);
2603			if (is_dupack)
2604				tcp_add_reno_sack(sk);
2605		}
2606
2607		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2608			tcp_try_undo_dsack(sk);
2609
2610		if (!tcp_time_to_recover(sk)) {
2611			tcp_try_to_open(sk, flag);
2612			return;
2613		}
2614
2615		/* MTU probe failure: don't reduce cwnd */
2616		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2617		    icsk->icsk_mtup.probe_size &&
2618		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2619			tcp_mtup_probe_failed(sk);
2620			/* Restores the reduction we did in tcp_mtup_probe() */
2621			tp->snd_cwnd++;
2622			tcp_simple_retransmit(sk);
2623			return;
2624		}
2625
2626		/* Otherwise enter Recovery state */
2627
2628		if (tcp_is_reno(tp))
2629			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2630		else
2631			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2632
2633		tp->high_seq = tp->snd_nxt;
2634		tp->prior_ssthresh = 0;
2635		tp->undo_marker = tp->snd_una;
2636		tp->undo_retrans = tp->retrans_out;
2637
2638		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2639			if (!(flag&FLAG_ECE))
2640				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2641			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2642			TCP_ECN_queue_cwr(tp);
2643		}
2644
2645		tp->bytes_acked = 0;
2646		tp->snd_cwnd_cnt = 0;
2647		tcp_set_ca_state(sk, TCP_CA_Recovery);
2648		fast_rexmit = 1;
2649	}
2650
2651	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2652		tcp_update_scoreboard(sk, fast_rexmit);
2653	tcp_cwnd_down(sk, flag);
2654	tcp_xmit_retransmit_queue(sk);
2655}
2656
2657/* Read draft-ietf-tcplw-high-performance before mucking
2658 * with this code. (Supersedes RFC1323)
2659 */
2660static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2661{
2662	/* RTTM Rule: A TSecr value received in a segment is used to
2663	 * update the averaged RTT measurement only if the segment
2664	 * acknowledges some new data, i.e., only if it advances the
2665	 * left edge of the send window.
2666	 *
2667	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2668	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2669	 *
2670	 * Changed: reset backoff as soon as we see the first valid sample.
2671	 * If we do not, we get strongly overestimated rto. With timestamps
2672	 * samples are accepted even from very old segments: f.e., when rtt=1
2673	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2674	 * answer arrives rto becomes 120 seconds! If at least one of segments
2675	 * in window is lost... Voila.	 			--ANK (010210)
2676	 */
2677	struct tcp_sock *tp = tcp_sk(sk);
2678	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2679	tcp_rtt_estimator(sk, seq_rtt);
2680	tcp_set_rto(sk);
2681	inet_csk(sk)->icsk_backoff = 0;
2682	tcp_bound_rto(sk);
2683}
2684
2685static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2686{
2687	/* We don't have a timestamp. Can only use
2688	 * packets that are not retransmitted to determine
2689	 * rtt estimates. Also, we must not reset the
2690	 * backoff for rto until we get a non-retransmitted
2691	 * packet. This allows us to deal with a situation
2692	 * where the network delay has increased suddenly.
2693	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2694	 */
2695
2696	if (flag & FLAG_RETRANS_DATA_ACKED)
2697		return;
2698
2699	tcp_rtt_estimator(sk, seq_rtt);
2700	tcp_set_rto(sk);
2701	inet_csk(sk)->icsk_backoff = 0;
2702	tcp_bound_rto(sk);
2703}
2704
2705static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2706				      const s32 seq_rtt)
2707{
2708	const struct tcp_sock *tp = tcp_sk(sk);
2709	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2710	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2711		tcp_ack_saw_tstamp(sk, flag);
2712	else if (seq_rtt >= 0)
2713		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2714}
2715
2716static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2717{
2718	const struct inet_connection_sock *icsk = inet_csk(sk);
2719	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2720	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2721}
2722
2723/* Restart timer after forward progress on connection.
2724 * RFC2988 recommends to restart timer to now+rto.
2725 */
2726static void tcp_rearm_rto(struct sock *sk)
2727{
2728	struct tcp_sock *tp = tcp_sk(sk);
2729
2730	if (!tp->packets_out) {
2731		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2732	} else {
2733		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2734	}
2735}
2736
2737/* If we get here, the whole TSO packet has not been acked. */
2738static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2739{
2740	struct tcp_sock *tp = tcp_sk(sk);
2741	u32 packets_acked;
2742
2743	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2744
2745	packets_acked = tcp_skb_pcount(skb);
2746	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2747		return 0;
2748	packets_acked -= tcp_skb_pcount(skb);
2749
2750	if (packets_acked) {
2751		BUG_ON(tcp_skb_pcount(skb) == 0);
2752		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2753	}
2754
2755	return packets_acked;
2756}
2757
2758/* Remove acknowledged frames from the retransmission queue. If our packet
2759 * is before the ack sequence we can discard it as it's confirmed to have
2760 * arrived at the other end.
2761 */
2762static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2763{
2764	struct tcp_sock *tp = tcp_sk(sk);
2765	const struct inet_connection_sock *icsk = inet_csk(sk);
2766	struct sk_buff *skb;
2767	u32 now = tcp_time_stamp;
2768	int fully_acked = 1;
2769	int flag = 0;
2770	u32 pkts_acked = 0;
2771	u32 reord = tp->packets_out;
2772	s32 seq_rtt = -1;
2773	s32 ca_seq_rtt = -1;
2774	ktime_t last_ackt = net_invalid_timestamp();
2775
2776	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2777		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2778		u32 end_seq;
2779		u32 acked_pcount;
2780		u8 sacked = scb->sacked;
2781
2782		/* Determine how many packets and what bytes were acked, tso and else */
2783		if (after(scb->end_seq, tp->snd_una)) {
2784			if (tcp_skb_pcount(skb) == 1 ||
2785			    !after(tp->snd_una, scb->seq))
2786				break;
2787
2788			acked_pcount = tcp_tso_acked(sk, skb);
2789			if (!acked_pcount)
2790				break;
2791
2792			fully_acked = 0;
2793			end_seq = tp->snd_una;
2794		} else {
2795			acked_pcount = tcp_skb_pcount(skb);
2796			end_seq = scb->end_seq;
2797		}
2798
2799		/* MTU probing checks */
2800		if (fully_acked && icsk->icsk_mtup.probe_size &&
2801		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2802			tcp_mtup_probe_success(sk, skb);
2803		}
2804
2805		if (sacked & TCPCB_RETRANS) {
2806			if (sacked & TCPCB_SACKED_RETRANS)
2807				tp->retrans_out -= acked_pcount;
2808			flag |= FLAG_RETRANS_DATA_ACKED;
2809			ca_seq_rtt = -1;
2810			seq_rtt = -1;
2811			if ((flag & FLAG_DATA_ACKED) ||
2812			    (acked_pcount > 1))
2813				flag |= FLAG_NONHEAD_RETRANS_ACKED;
2814		} else {
2815			ca_seq_rtt = now - scb->when;
2816			last_ackt = skb->tstamp;
2817			if (seq_rtt < 0) {
2818				seq_rtt = ca_seq_rtt;
2819			}
2820			if (!(sacked & TCPCB_SACKED_ACKED))
2821				reord = min(pkts_acked, reord);
2822		}
2823
2824		if (sacked & TCPCB_SACKED_ACKED)
2825			tp->sacked_out -= acked_pcount;
2826		if (sacked & TCPCB_LOST)
2827			tp->lost_out -= acked_pcount;
2828
2829		if (unlikely((sacked & TCPCB_URG) && tp->urg_mode &&
2830			     !before(end_seq, tp->snd_up)))
2831			tp->urg_mode = 0;
2832
2833		tp->packets_out -= acked_pcount;
2834		pkts_acked += acked_pcount;
2835
2836		/* Initial outgoing SYN's get put onto the write_queue
2837		 * just like anything else we transmit.  It is not
2838		 * true data, and if we misinform our callers that
2839		 * this ACK acks real data, we will erroneously exit
2840		 * connection startup slow start one packet too
2841		 * quickly.  This is severely frowned upon behavior.
2842		 */
2843		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2844			flag |= FLAG_DATA_ACKED;
2845		} else {
2846			flag |= FLAG_SYN_ACKED;
2847			tp->retrans_stamp = 0;
2848		}
2849
2850		if (!fully_acked)
2851			break;
2852
2853		tcp_unlink_write_queue(skb, sk);
2854		sk_wmem_free_skb(sk, skb);
2855		tcp_clear_all_retrans_hints(tp);
2856	}
2857
2858	if (flag & FLAG_ACKED) {
2859		const struct tcp_congestion_ops *ca_ops
2860			= inet_csk(sk)->icsk_ca_ops;
2861
2862		tcp_ack_update_rtt(sk, flag, seq_rtt);
2863		tcp_rearm_rto(sk);
2864
2865		if (tcp_is_reno(tp)) {
2866			tcp_remove_reno_sacks(sk, pkts_acked);
2867		} else {
2868			/* Non-retransmitted hole got filled? That's reordering */
2869			if (reord < prior_fackets)
2870				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2871		}
2872
2873		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2874
2875		if (ca_ops->pkts_acked) {
2876			s32 rtt_us = -1;
2877
2878			/* Is the ACK triggering packet unambiguous? */
2879			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2880				/* High resolution needed and available? */
2881				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2882				    !ktime_equal(last_ackt,
2883						 net_invalid_timestamp()))
2884					rtt_us = ktime_us_delta(ktime_get_real(),
2885								last_ackt);
2886				else if (ca_seq_rtt > 0)
2887					rtt_us = jiffies_to_usecs(ca_seq_rtt);
2888			}
2889
2890			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2891		}
2892	}
2893
2894#if FASTRETRANS_DEBUG > 0
2895	BUG_TRAP((int)tp->sacked_out >= 0);
2896	BUG_TRAP((int)tp->lost_out >= 0);
2897	BUG_TRAP((int)tp->retrans_out >= 0);
2898	if (!tp->packets_out && tcp_is_sack(tp)) {
2899		icsk = inet_csk(sk);
2900		if (tp->lost_out) {
2901			printk(KERN_DEBUG "Leak l=%u %d\n",
2902			       tp->lost_out, icsk->icsk_ca_state);
2903			tp->lost_out = 0;
2904		}
2905		if (tp->sacked_out) {
2906			printk(KERN_DEBUG "Leak s=%u %d\n",
2907			       tp->sacked_out, icsk->icsk_ca_state);
2908			tp->sacked_out = 0;
2909		}
2910		if (tp->retrans_out) {
2911			printk(KERN_DEBUG "Leak r=%u %d\n",
2912			       tp->retrans_out, icsk->icsk_ca_state);
2913			tp->retrans_out = 0;
2914		}
2915	}
2916#endif
2917	return flag;
2918}
2919
2920static void tcp_ack_probe(struct sock *sk)
2921{
2922	const struct tcp_sock *tp = tcp_sk(sk);
2923	struct inet_connection_sock *icsk = inet_csk(sk);
2924
2925	/* Was it a usable window open? */
2926
2927	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2928		   tp->snd_una + tp->snd_wnd)) {
2929		icsk->icsk_backoff = 0;
2930		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2931		/* Socket must be waked up by subsequent tcp_data_snd_check().
2932		 * This function is not for random using!
2933		 */
2934	} else {
2935		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2936					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2937					  TCP_RTO_MAX);
2938	}
2939}
2940
2941static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2942{
2943	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2944		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2945}
2946
2947static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2948{
2949	const struct tcp_sock *tp = tcp_sk(sk);
2950	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2951		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2952}
2953
2954/* Check that window update is acceptable.
2955 * The function assumes that snd_una<=ack<=snd_next.
2956 */
2957static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2958					const u32 ack_seq, const u32 nwin)
2959{
2960	return (after(ack, tp->snd_una) ||
2961		after(ack_seq, tp->snd_wl1) ||
2962		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2963}
2964
2965/* Update our send window.
2966 *
2967 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2968 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2969 */
2970static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2971				 u32 ack_seq)
2972{
2973	struct tcp_sock *tp = tcp_sk(sk);
2974	int flag = 0;
2975	u32 nwin = ntohs(tcp_hdr(skb)->window);
2976
2977	if (likely(!tcp_hdr(skb)->syn))
2978		nwin <<= tp->rx_opt.snd_wscale;
2979
2980	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2981		flag |= FLAG_WIN_UPDATE;
2982		tcp_update_wl(tp, ack, ack_seq);
2983
2984		if (tp->snd_wnd != nwin) {
2985			tp->snd_wnd = nwin;
2986
2987			/* Note, it is the only place, where
2988			 * fast path is recovered for sending TCP.
2989			 */
2990			tp->pred_flags = 0;
2991			tcp_fast_path_check(sk);
2992
2993			if (nwin > tp->max_window) {
2994				tp->max_window = nwin;
2995				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2996			}
2997		}
2998	}
2999
3000	tp->snd_una = ack;
3001
3002	return flag;
3003}
3004
3005/* A very conservative spurious RTO response algorithm: reduce cwnd and
3006 * continue in congestion avoidance.
3007 */
3008static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3009{
3010	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3011	tp->snd_cwnd_cnt = 0;
3012	tp->bytes_acked = 0;
3013	TCP_ECN_queue_cwr(tp);
3014	tcp_moderate_cwnd(tp);
3015}
3016
3017/* A conservative spurious RTO response algorithm: reduce cwnd using
3018 * rate halving and continue in congestion avoidance.
3019 */
3020static void tcp_ratehalving_spur_to_response(struct sock *sk)
3021{
3022	tcp_enter_cwr(sk, 0);
3023}
3024
3025static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3026{
3027	if (flag&FLAG_ECE)
3028		tcp_ratehalving_spur_to_response(sk);
3029	else
3030		tcp_undo_cwr(sk, 1);
3031}
3032
3033/* F-RTO spurious RTO detection algorithm (RFC4138)
3034 *
3035 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3036 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3037 * window (but not to or beyond highest sequence sent before RTO):
3038 *   On First ACK,  send two new segments out.
3039 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3040 *                  algorithm is not part of the F-RTO detection algorithm
3041 *                  given in RFC4138 but can be selected separately).
3042 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3043 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3044 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3045 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3046 *
3047 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3048 * original window even after we transmit two new data segments.
3049 *
3050 * SACK version:
3051 *   on first step, wait until first cumulative ACK arrives, then move to
3052 *   the second step. In second step, the next ACK decides.
3053 *
3054 * F-RTO is implemented (mainly) in four functions:
3055 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3056 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3057 *     called when tcp_use_frto() showed green light
3058 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3059 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3060 *     to prove that the RTO is indeed spurious. It transfers the control
3061 *     from F-RTO to the conventional RTO recovery
3062 */
3063static int tcp_process_frto(struct sock *sk, int flag)
3064{
3065	struct tcp_sock *tp = tcp_sk(sk);
3066
3067	tcp_verify_left_out(tp);
3068
3069	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3070	if (flag&FLAG_DATA_ACKED)
3071		inet_csk(sk)->icsk_retransmits = 0;
3072
3073	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3074	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3075		tp->undo_marker = 0;
3076
3077	if (!before(tp->snd_una, tp->frto_highmark)) {
3078		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3079		return 1;
3080	}
3081
3082	if (!IsSackFrto() || tcp_is_reno(tp)) {
3083		/* RFC4138 shortcoming in step 2; should also have case c):
3084		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3085		 * data, winupdate
3086		 */
3087		if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
3088			return 1;
3089
3090		if (!(flag&FLAG_DATA_ACKED)) {
3091			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3092					    flag);
3093			return 1;
3094		}
3095	} else {
3096		if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3097			/* Prevent sending of new data. */
3098			tp->snd_cwnd = min(tp->snd_cwnd,
3099					   tcp_packets_in_flight(tp));
3100			return 1;
3101		}
3102
3103		if ((tp->frto_counter >= 2) &&
3104		    (!(flag&FLAG_FORWARD_PROGRESS) ||
3105		     ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
3106			/* RFC4138 shortcoming (see comment above) */
3107			if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
3108				return 1;
3109
3110			tcp_enter_frto_loss(sk, 3, flag);
3111			return 1;
3112		}
3113	}
3114
3115	if (tp->frto_counter == 1) {
3116		/* tcp_may_send_now needs to see updated state */
3117		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3118		tp->frto_counter = 2;
3119
3120		if (!tcp_may_send_now(sk))
3121			tcp_enter_frto_loss(sk, 2, flag);
3122
3123		return 1;
3124	} else {
3125		switch (sysctl_tcp_frto_response) {
3126		case 2:
3127			tcp_undo_spur_to_response(sk, flag);
3128			break;
3129		case 1:
3130			tcp_conservative_spur_to_response(tp);
3131			break;
3132		default:
3133			tcp_ratehalving_spur_to_response(sk);
3134			break;
3135		}
3136		tp->frto_counter = 0;
3137		tp->undo_marker = 0;
3138		NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3139	}
3140	return 0;
3141}
3142
3143/* This routine deals with incoming acks, but not outgoing ones. */
3144static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3145{
3146	struct inet_connection_sock *icsk = inet_csk(sk);
3147	struct tcp_sock *tp = tcp_sk(sk);
3148	u32 prior_snd_una = tp->snd_una;
3149	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3150	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3151	u32 prior_in_flight;
3152	u32 prior_fackets;
3153	int prior_packets;
3154	int frto_cwnd = 0;
3155
3156	/* If the ack is newer than sent or older than previous acks
3157	 * then we can probably ignore it.
3158	 */
3159	if (after(ack, tp->snd_nxt))
3160		goto uninteresting_ack;
3161
3162	if (before(ack, prior_snd_una))
3163		goto old_ack;
3164
3165	if (after(ack, prior_snd_una))
3166		flag |= FLAG_SND_UNA_ADVANCED;
3167
3168	if (sysctl_tcp_abc) {
3169		if (icsk->icsk_ca_state < TCP_CA_CWR)
3170			tp->bytes_acked += ack - prior_snd_una;
3171		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3172			/* we assume just one segment left network */
3173			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3174	}
3175
3176	prior_fackets = tp->fackets_out;
3177	prior_in_flight = tcp_packets_in_flight(tp);
3178
3179	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3180		/* Window is constant, pure forward advance.
3181		 * No more checks are required.
3182		 * Note, we use the fact that SND.UNA>=SND.WL2.
3183		 */
3184		tcp_update_wl(tp, ack, ack_seq);
3185		tp->snd_una = ack;
3186		flag |= FLAG_WIN_UPDATE;
3187
3188		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3189
3190		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3191	} else {
3192		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3193			flag |= FLAG_DATA;
3194		else
3195			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3196
3197		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3198
3199		if (TCP_SKB_CB(skb)->sacked)
3200			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3201
3202		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3203			flag |= FLAG_ECE;
3204
3205		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3206	}
3207
3208	/* We passed data and got it acked, remove any soft error
3209	 * log. Something worked...
3210	 */
3211	sk->sk_err_soft = 0;
3212	tp->rcv_tstamp = tcp_time_stamp;
3213	prior_packets = tp->packets_out;
3214	if (!prior_packets)
3215		goto no_queue;
3216
3217	/* See if we can take anything off of the retransmit queue. */
3218	flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3219
3220	if (tp->frto_counter)
3221		frto_cwnd = tcp_process_frto(sk, flag);
3222	/* Guarantee sacktag reordering detection against wrap-arounds */
3223	if (before(tp->frto_highmark, tp->snd_una))
3224		tp->frto_highmark = 0;
3225
3226	if (tcp_ack_is_dubious(sk, flag)) {
3227		/* Advance CWND, if state allows this. */
3228		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3229		    tcp_may_raise_cwnd(sk, flag))
3230			tcp_cong_avoid(sk, ack, prior_in_flight);
3231		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3232	} else {
3233		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3234			tcp_cong_avoid(sk, ack, prior_in_flight);
3235	}
3236
3237	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3238		dst_confirm(sk->sk_dst_cache);
3239
3240	return 1;
3241
3242no_queue:
3243	icsk->icsk_probes_out = 0;
3244
3245	/* If this ack opens up a zero window, clear backoff.  It was
3246	 * being used to time the probes, and is probably far higher than
3247	 * it needs to be for normal retransmission.
3248	 */
3249	if (tcp_send_head(sk))
3250		tcp_ack_probe(sk);
3251	return 1;
3252
3253old_ack:
3254	if (TCP_SKB_CB(skb)->sacked)
3255		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3256
3257uninteresting_ack:
3258	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3259	return 0;
3260}
3261
3262
3263/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3264 * But, this can also be called on packets in the established flow when
3265 * the fast version below fails.
3266 */
3267void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3268{
3269	unsigned char *ptr;
3270	struct tcphdr *th = tcp_hdr(skb);
3271	int length=(th->doff*4)-sizeof(struct tcphdr);
3272
3273	ptr = (unsigned char *)(th + 1);
3274	opt_rx->saw_tstamp = 0;
3275
3276	while (length > 0) {
3277		int opcode=*ptr++;
3278		int opsize;
3279
3280		switch (opcode) {
3281			case TCPOPT_EOL:
3282				return;
3283			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3284				length--;
3285				continue;
3286			default:
3287				opsize=*ptr++;
3288				if (opsize < 2) /* "silly options" */
3289					return;
3290				if (opsize > length)
3291					return;	/* don't parse partial options */
3292				switch (opcode) {
3293				case TCPOPT_MSS:
3294					if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3295						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3296						if (in_mss) {
3297							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3298								in_mss = opt_rx->user_mss;
3299							opt_rx->mss_clamp = in_mss;
3300						}
3301					}
3302					break;
3303				case TCPOPT_WINDOW:
3304					if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3305						if (sysctl_tcp_window_scaling) {
3306							__u8 snd_wscale = *(__u8 *) ptr;
3307							opt_rx->wscale_ok = 1;
3308							if (snd_wscale > 14) {
3309								if (net_ratelimit())
3310									printk(KERN_INFO "tcp_parse_options: Illegal window "
3311									       "scaling value %d >14 received.\n",
3312									       snd_wscale);
3313								snd_wscale = 14;
3314							}
3315							opt_rx->snd_wscale = snd_wscale;
3316						}
3317					break;
3318				case TCPOPT_TIMESTAMP:
3319					if (opsize==TCPOLEN_TIMESTAMP) {
3320						if ((estab && opt_rx->tstamp_ok) ||
3321						    (!estab && sysctl_tcp_timestamps)) {
3322							opt_rx->saw_tstamp = 1;
3323							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3324							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3325						}
3326					}
3327					break;
3328				case TCPOPT_SACK_PERM:
3329					if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3330						if (sysctl_tcp_sack) {
3331							opt_rx->sack_ok = 1;
3332							tcp_sack_reset(opt_rx);
3333						}
3334					}
3335					break;
3336
3337				case TCPOPT_SACK:
3338					if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3339					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3340					   opt_rx->sack_ok) {
3341						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3342					}
3343					break;
3344#ifdef CONFIG_TCP_MD5SIG
3345				case TCPOPT_MD5SIG:
3346					/*
3347					 * The MD5 Hash has already been
3348					 * checked (see tcp_v{4,6}_do_rcv()).
3349					 */
3350					break;
3351#endif
3352				}
3353
3354				ptr+=opsize-2;
3355				length-=opsize;
3356		}
3357	}
3358}
3359
3360/* Fast parse options. This hopes to only see timestamps.
3361 * If it is wrong it falls back on tcp_parse_options().
3362 */
3363static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3364				  struct tcp_sock *tp)
3365{
3366	if (th->doff == sizeof(struct tcphdr)>>2) {
3367		tp->rx_opt.saw_tstamp = 0;
3368		return 0;
3369	} else if (tp->rx_opt.tstamp_ok &&
3370		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3371		__be32 *ptr = (__be32 *)(th + 1);
3372		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3373				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3374			tp->rx_opt.saw_tstamp = 1;
3375			++ptr;
3376			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3377			++ptr;
3378			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3379			return 1;
3380		}
3381	}
3382	tcp_parse_options(skb, &tp->rx_opt, 1);
3383	return 1;
3384}
3385
3386static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3387{
3388	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3389	tp->rx_opt.ts_recent_stamp = get_seconds();
3390}
3391
3392static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3393{
3394	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3395		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3396		 * extra check below makes sure this can only happen
3397		 * for pure ACK frames.  -DaveM
3398		 *
3399		 * Not only, also it occurs for expired timestamps.
3400		 */
3401
3402		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3403		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3404			tcp_store_ts_recent(tp);
3405	}
3406}
3407
3408/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3409 *
3410 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3411 * it can pass through stack. So, the following predicate verifies that
3412 * this segment is not used for anything but congestion avoidance or
3413 * fast retransmit. Moreover, we even are able to eliminate most of such
3414 * second order effects, if we apply some small "replay" window (~RTO)
3415 * to timestamp space.
3416 *
3417 * All these measures still do not guarantee that we reject wrapped ACKs
3418 * on networks with high bandwidth, when sequence space is recycled fastly,
3419 * but it guarantees that such events will be very rare and do not affect
3420 * connection seriously. This doesn't look nice, but alas, PAWS is really
3421 * buggy extension.
3422 *
3423 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3424 * states that events when retransmit arrives after original data are rare.
3425 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3426 * the biggest problem on large power networks even with minor reordering.
3427 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3428 * up to bandwidth of 18Gigabit/sec. 8) ]
3429 */
3430
3431static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3432{
3433	struct tcp_sock *tp = tcp_sk(sk);
3434	struct tcphdr *th = tcp_hdr(skb);
3435	u32 seq = TCP_SKB_CB(skb)->seq;
3436	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3437
3438	return (/* 1. Pure ACK with correct sequence number. */
3439		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3440
3441		/* 2. ... and duplicate ACK. */
3442		ack == tp->snd_una &&
3443
3444		/* 3. ... and does not update window. */
3445		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3446
3447		/* 4. ... and sits in replay window. */
3448		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3449}
3450
3451static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3452{
3453	const struct tcp_sock *tp = tcp_sk(sk);
3454	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3455		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3456		!tcp_disordered_ack(sk, skb));
3457}
3458
3459/* Check segment sequence number for validity.
3460 *
3461 * Segment controls are considered valid, if the segment
3462 * fits to the window after truncation to the window. Acceptability
3463 * of data (and SYN, FIN, of course) is checked separately.
3464 * See tcp_data_queue(), for example.
3465 *
3466 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3467 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3468 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3469 * (borrowed from freebsd)
3470 */
3471
3472static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3473{
3474	return	!before(end_seq, tp->rcv_wup) &&
3475		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3476}
3477
3478/* When we get a reset we do this. */
3479static void tcp_reset(struct sock *sk)
3480{
3481	/* We want the right error as BSD sees it (and indeed as we do). */
3482	switch (sk->sk_state) {
3483		case TCP_SYN_SENT:
3484			sk->sk_err = ECONNREFUSED;
3485			break;
3486		case TCP_CLOSE_WAIT:
3487			sk->sk_err = EPIPE;
3488			break;
3489		case TCP_CLOSE:
3490			return;
3491		default:
3492			sk->sk_err = ECONNRESET;
3493	}
3494
3495	if (!sock_flag(sk, SOCK_DEAD))
3496		sk->sk_error_report(sk);
3497
3498	tcp_done(sk);
3499}
3500
3501/*
3502 * 	Process the FIN bit. This now behaves as it is supposed to work
3503 *	and the FIN takes effect when it is validly part of sequence
3504 *	space. Not before when we get holes.
3505 *
3506 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3507 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3508 *	TIME-WAIT)
3509 *
3510 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3511 *	close and we go into CLOSING (and later onto TIME-WAIT)
3512 *
3513 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3514 */
3515static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3516{
3517	struct tcp_sock *tp = tcp_sk(sk);
3518
3519	inet_csk_schedule_ack(sk);
3520
3521	sk->sk_shutdown |= RCV_SHUTDOWN;
3522	sock_set_flag(sk, SOCK_DONE);
3523
3524	switch (sk->sk_state) {
3525		case TCP_SYN_RECV:
3526		case TCP_ESTABLISHED:
3527			/* Move to CLOSE_WAIT */
3528			tcp_set_state(sk, TCP_CLOSE_WAIT);
3529			inet_csk(sk)->icsk_ack.pingpong = 1;
3530			break;
3531
3532		case TCP_CLOSE_WAIT:
3533		case TCP_CLOSING:
3534			/* Received a retransmission of the FIN, do
3535			 * nothing.
3536			 */
3537			break;
3538		case TCP_LAST_ACK:
3539			/* RFC793: Remain in the LAST-ACK state. */
3540			break;
3541
3542		case TCP_FIN_WAIT1:
3543			/* This case occurs when a simultaneous close
3544			 * happens, we must ack the received FIN and
3545			 * enter the CLOSING state.
3546			 */
3547			tcp_send_ack(sk);
3548			tcp_set_state(sk, TCP_CLOSING);
3549			break;
3550		case TCP_FIN_WAIT2:
3551			/* Received a FIN -- send ACK and enter TIME_WAIT. */
3552			tcp_send_ack(sk);
3553			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3554			break;
3555		default:
3556			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3557			 * cases we should never reach this piece of code.
3558			 */
3559			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3560			       __FUNCTION__, sk->sk_state);
3561			break;
3562	}
3563
3564	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3565	 * Probably, we should reset in this case. For now drop them.
3566	 */
3567	__skb_queue_purge(&tp->out_of_order_queue);
3568	if (tcp_is_sack(tp))
3569		tcp_sack_reset(&tp->rx_opt);
3570	sk_mem_reclaim(sk);
3571
3572	if (!sock_flag(sk, SOCK_DEAD)) {
3573		sk->sk_state_change(sk);
3574
3575		/* Do not send POLL_HUP for half duplex close. */
3576		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3577		    sk->sk_state == TCP_CLOSE)
3578			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3579		else
3580			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3581	}
3582}
3583
3584static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3585{
3586	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3587		if (before(seq, sp->start_seq))
3588			sp->start_seq = seq;
3589		if (after(end_seq, sp->end_seq))
3590			sp->end_seq = end_seq;
3591		return 1;
3592	}
3593	return 0;
3594}
3595
3596static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3597{
3598	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3599		if (before(seq, tp->rcv_nxt))
3600			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3601		else
3602			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3603
3604		tp->rx_opt.dsack = 1;
3605		tp->duplicate_sack[0].start_seq = seq;
3606		tp->duplicate_sack[0].end_seq = end_seq;
3607		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3608	}
3609}
3610
3611static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3612{
3613	if (!tp->rx_opt.dsack)
3614		tcp_dsack_set(tp, seq, end_seq);
3615	else
3616		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3617}
3618
3619static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3620{
3621	struct tcp_sock *tp = tcp_sk(sk);
3622
3623	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3624	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3625		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3626		tcp_enter_quickack_mode(sk);
3627
3628		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3629			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3630
3631			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3632				end_seq = tp->rcv_nxt;
3633			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3634		}
3635	}
3636
3637	tcp_send_ack(sk);
3638}
3639
3640/* These routines update the SACK block as out-of-order packets arrive or
3641 * in-order packets close up the sequence space.
3642 */
3643static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3644{
3645	int this_sack;
3646	struct tcp_sack_block *sp = &tp->selective_acks[0];
3647	struct tcp_sack_block *swalk = sp+1;
3648
3649	/* See if the recent change to the first SACK eats into
3650	 * or hits the sequence space of other SACK blocks, if so coalesce.
3651	 */
3652	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3653		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3654			int i;
3655
3656			/* Zap SWALK, by moving every further SACK up by one slot.
3657			 * Decrease num_sacks.
3658			 */
3659			tp->rx_opt.num_sacks--;
3660			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3661			for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3662				sp[i] = sp[i+1];
3663			continue;
3664		}
3665		this_sack++, swalk++;
3666	}
3667}
3668
3669static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3670{
3671	__u32 tmp;
3672
3673	tmp = sack1->start_seq;
3674	sack1->start_seq = sack2->start_seq;
3675	sack2->start_seq = tmp;
3676
3677	tmp = sack1->end_seq;
3678	sack1->end_seq = sack2->end_seq;
3679	sack2->end_seq = tmp;
3680}
3681
3682static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3683{
3684	struct tcp_sock *tp = tcp_sk(sk);
3685	struct tcp_sack_block *sp = &tp->selective_acks[0];
3686	int cur_sacks = tp->rx_opt.num_sacks;
3687	int this_sack;
3688
3689	if (!cur_sacks)
3690		goto new_sack;
3691
3692	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3693		if (tcp_sack_extend(sp, seq, end_seq)) {
3694			/* Rotate this_sack to the first one. */
3695			for (; this_sack>0; this_sack--, sp--)
3696				tcp_sack_swap(sp, sp-1);
3697			if (cur_sacks > 1)
3698				tcp_sack_maybe_coalesce(tp);
3699			return;
3700		}
3701	}
3702
3703	/* Could not find an adjacent existing SACK, build a new one,
3704	 * put it at the front, and shift everyone else down.  We
3705	 * always know there is at least one SACK present already here.
3706	 *
3707	 * If the sack array is full, forget about the last one.
3708	 */
3709	if (this_sack >= 4) {
3710		this_sack--;
3711		tp->rx_opt.num_sacks--;
3712		sp--;
3713	}
3714	for (; this_sack > 0; this_sack--, sp--)
3715		*sp = *(sp-1);
3716
3717new_sack:
3718	/* Build the new head SACK, and we're done. */
3719	sp->start_seq = seq;
3720	sp->end_seq = end_seq;
3721	tp->rx_opt.num_sacks++;
3722	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3723}
3724
3725/* RCV.NXT advances, some SACKs should be eaten. */
3726
3727static void tcp_sack_remove(struct tcp_sock *tp)
3728{
3729	struct tcp_sack_block *sp = &tp->selective_acks[0];
3730	int num_sacks = tp->rx_opt.num_sacks;
3731	int this_sack;
3732
3733	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3734	if (skb_queue_empty(&tp->out_of_order_queue)) {
3735		tp->rx_opt.num_sacks = 0;
3736		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3737		return;
3738	}
3739
3740	for (this_sack = 0; this_sack < num_sacks; ) {
3741		/* Check if the start of the sack is covered by RCV.NXT. */
3742		if (!before(tp->rcv_nxt, sp->start_seq)) {
3743			int i;
3744
3745			/* RCV.NXT must cover all the block! */
3746			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3747
3748			/* Zap this SACK, by moving forward any other SACKS. */
3749			for (i=this_sack+1; i < num_sacks; i++)
3750				tp->selective_acks[i-1] = tp->selective_acks[i];
3751			num_sacks--;
3752			continue;
3753		}
3754		this_sack++;
3755		sp++;
3756	}
3757	if (num_sacks != tp->rx_opt.num_sacks) {
3758		tp->rx_opt.num_sacks = num_sacks;
3759		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3760	}
3761}
3762
3763/* This one checks to see if we can put data from the
3764 * out_of_order queue into the receive_queue.
3765 */
3766static void tcp_ofo_queue(struct sock *sk)
3767{
3768	struct tcp_sock *tp = tcp_sk(sk);
3769	__u32 dsack_high = tp->rcv_nxt;
3770	struct sk_buff *skb;
3771
3772	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3773		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3774			break;
3775
3776		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3777			__u32 dsack = dsack_high;
3778			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3779				dsack_high = TCP_SKB_CB(skb)->end_seq;
3780			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3781		}
3782
3783		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3784			SOCK_DEBUG(sk, "ofo packet was already received \n");
3785			__skb_unlink(skb, &tp->out_of_order_queue);
3786			__kfree_skb(skb);
3787			continue;
3788		}
3789		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3790			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3791			   TCP_SKB_CB(skb)->end_seq);
3792
3793		__skb_unlink(skb, &tp->out_of_order_queue);
3794		__skb_queue_tail(&sk->sk_receive_queue, skb);
3795		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3796		if (tcp_hdr(skb)->fin)
3797			tcp_fin(skb, sk, tcp_hdr(skb));
3798	}
3799}
3800
3801static int tcp_prune_queue(struct sock *sk);
3802
3803static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3804{
3805	struct tcphdr *th = tcp_hdr(skb);
3806	struct tcp_sock *tp = tcp_sk(sk);
3807	int eaten = -1;
3808
3809	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3810		goto drop;
3811
3812	__skb_pull(skb, th->doff*4);
3813
3814	TCP_ECN_accept_cwr(tp, skb);
3815
3816	if (tp->rx_opt.dsack) {
3817		tp->rx_opt.dsack = 0;
3818		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3819						    4 - tp->rx_opt.tstamp_ok);
3820	}
3821
3822	/*  Queue data for delivery to the user.
3823	 *  Packets in sequence go to the receive queue.
3824	 *  Out of sequence packets to the out_of_order_queue.
3825	 */
3826	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3827		if (tcp_receive_window(tp) == 0)
3828			goto out_of_window;
3829
3830		/* Ok. In sequence. In window. */
3831		if (tp->ucopy.task == current &&
3832		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3833		    sock_owned_by_user(sk) && !tp->urg_data) {
3834			int chunk = min_t(unsigned int, skb->len,
3835							tp->ucopy.len);
3836
3837			__set_current_state(TASK_RUNNING);
3838
3839			local_bh_enable();
3840			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3841				tp->ucopy.len -= chunk;
3842				tp->copied_seq += chunk;
3843				eaten = (chunk == skb->len && !th->fin);
3844				tcp_rcv_space_adjust(sk);
3845			}
3846			local_bh_disable();
3847		}
3848
3849		if (eaten <= 0) {
3850queue_and_out:
3851			if (eaten < 0 &&
3852			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3853			     !sk_rmem_schedule(sk, skb->truesize))) {
3854				if (tcp_prune_queue(sk) < 0 ||
3855				    !sk_rmem_schedule(sk, skb->truesize))
3856					goto drop;
3857			}
3858			skb_set_owner_r(skb, sk);
3859			__skb_queue_tail(&sk->sk_receive_queue, skb);
3860		}
3861		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3862		if (skb->len)
3863			tcp_event_data_recv(sk, skb);
3864		if (th->fin)
3865			tcp_fin(skb, sk, th);
3866
3867		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3868			tcp_ofo_queue(sk);
3869
3870			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3871			 * gap in queue is filled.
3872			 */
3873			if (skb_queue_empty(&tp->out_of_order_queue))
3874				inet_csk(sk)->icsk_ack.pingpong = 0;
3875		}
3876
3877		if (tp->rx_opt.num_sacks)
3878			tcp_sack_remove(tp);
3879
3880		tcp_fast_path_check(sk);
3881
3882		if (eaten > 0)
3883			__kfree_skb(skb);
3884		else if (!sock_flag(sk, SOCK_DEAD))
3885			sk->sk_data_ready(sk, 0);
3886		return;
3887	}
3888
3889	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3890		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3891		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3892		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3893
3894out_of_window:
3895		tcp_enter_quickack_mode(sk);
3896		inet_csk_schedule_ack(sk);
3897drop:
3898		__kfree_skb(skb);
3899		return;
3900	}
3901
3902	/* Out of window. F.e. zero window probe. */
3903	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3904		goto out_of_window;
3905
3906	tcp_enter_quickack_mode(sk);
3907
3908	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3909		/* Partial packet, seq < rcv_next < end_seq */
3910		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3911			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3912			   TCP_SKB_CB(skb)->end_seq);
3913
3914		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3915
3916		/* If window is closed, drop tail of packet. But after
3917		 * remembering D-SACK for its head made in previous line.
3918		 */
3919		if (!tcp_receive_window(tp))
3920			goto out_of_window;
3921		goto queue_and_out;
3922	}
3923
3924	TCP_ECN_check_ce(tp, skb);
3925
3926	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3927	    !sk_rmem_schedule(sk, skb->truesize)) {
3928		if (tcp_prune_queue(sk) < 0 ||
3929		    !sk_rmem_schedule(sk, skb->truesize))
3930			goto drop;
3931	}
3932
3933	/* Disable header prediction. */
3934	tp->pred_flags = 0;
3935	inet_csk_schedule_ack(sk);
3936
3937	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3938		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3939
3940	skb_set_owner_r(skb, sk);
3941
3942	if (!skb_peek(&tp->out_of_order_queue)) {
3943		/* Initial out of order segment, build 1 SACK. */
3944		if (tcp_is_sack(tp)) {
3945			tp->rx_opt.num_sacks = 1;
3946			tp->rx_opt.dsack     = 0;
3947			tp->rx_opt.eff_sacks = 1;
3948			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3949			tp->selective_acks[0].end_seq =
3950						TCP_SKB_CB(skb)->end_seq;
3951		}
3952		__skb_queue_head(&tp->out_of_order_queue,skb);
3953	} else {
3954		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3955		u32 seq = TCP_SKB_CB(skb)->seq;
3956		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3957
3958		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3959			__skb_append(skb1, skb, &tp->out_of_order_queue);
3960
3961			if (!tp->rx_opt.num_sacks ||
3962			    tp->selective_acks[0].end_seq != seq)
3963				goto add_sack;
3964
3965			/* Common case: data arrive in order after hole. */
3966			tp->selective_acks[0].end_seq = end_seq;
3967			return;
3968		}
3969
3970		/* Find place to insert this segment. */
3971		do {
3972			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3973				break;
3974		} while ((skb1 = skb1->prev) !=
3975			 (struct sk_buff*)&tp->out_of_order_queue);
3976
3977		/* Do skb overlap to previous one? */
3978		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3979		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3980			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3981				/* All the bits are present. Drop. */
3982				__kfree_skb(skb);
3983				tcp_dsack_set(tp, seq, end_seq);
3984				goto add_sack;
3985			}
3986			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3987				/* Partial overlap. */
3988				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3989			} else {
3990				skb1 = skb1->prev;
3991			}
3992		}
3993		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3994
3995		/* And clean segments covered by new one as whole. */
3996		while ((skb1 = skb->next) !=
3997		       (struct sk_buff*)&tp->out_of_order_queue &&
3998		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3999		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4000			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
4001			       break;
4002		       }
4003		       __skb_unlink(skb1, &tp->out_of_order_queue);
4004		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
4005		       __kfree_skb(skb1);
4006		}
4007
4008add_sack:
4009		if (tcp_is_sack(tp))
4010			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4011	}
4012}
4013
4014/* Collapse contiguous sequence of skbs head..tail with
4015 * sequence numbers start..end.
4016 * Segments with FIN/SYN are not collapsed (only because this
4017 * simplifies code)
4018 */
4019static void
4020tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4021	     struct sk_buff *head, struct sk_buff *tail,
4022	     u32 start, u32 end)
4023{
4024	struct sk_buff *skb;
4025
4026	/* First, check that queue is collapsible and find
4027	 * the point where collapsing can be useful. */
4028	for (skb = head; skb != tail; ) {
4029		/* No new bits? It is possible on ofo queue. */
4030		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4031			struct sk_buff *next = skb->next;
4032			__skb_unlink(skb, list);
4033			__kfree_skb(skb);
4034			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4035			skb = next;
4036			continue;
4037		}
4038
4039		/* The first skb to collapse is:
4040		 * - not SYN/FIN and
4041		 * - bloated or contains data before "start" or
4042		 *   overlaps to the next one.
4043		 */
4044		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4045		    (tcp_win_from_space(skb->truesize) > skb->len ||
4046		     before(TCP_SKB_CB(skb)->seq, start) ||
4047		     (skb->next != tail &&
4048		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4049			break;
4050
4051		/* Decided to skip this, advance start seq. */
4052		start = TCP_SKB_CB(skb)->end_seq;
4053		skb = skb->next;
4054	}
4055	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4056		return;
4057
4058	while (before(start, end)) {
4059		struct sk_buff *nskb;
4060		unsigned int header = skb_headroom(skb);
4061		int copy = SKB_MAX_ORDER(header, 0);
4062
4063		/* Too big header? This can happen with IPv6. */
4064		if (copy < 0)
4065			return;
4066		if (end-start < copy)
4067			copy = end-start;
4068		nskb = alloc_skb(copy+header, GFP_ATOMIC);
4069		if (!nskb)
4070			return;
4071
4072		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4073		skb_set_network_header(nskb, (skb_network_header(skb) -
4074					      skb->head));
4075		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4076						skb->head));
4077		skb_reserve(nskb, header);
4078		memcpy(nskb->head, skb->head, header);
4079		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4080		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4081		__skb_insert(nskb, skb->prev, skb, list);
4082		skb_set_owner_r(nskb, sk);
4083
4084		/* Copy data, releasing collapsed skbs. */
4085		while (copy > 0) {
4086			int offset = start - TCP_SKB_CB(skb)->seq;
4087			int size = TCP_SKB_CB(skb)->end_seq - start;
4088
4089			BUG_ON(offset < 0);
4090			if (size > 0) {
4091				size = min(copy, size);
4092				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4093					BUG();
4094				TCP_SKB_CB(nskb)->end_seq += size;
4095				copy -= size;
4096				start += size;
4097			}
4098			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4099				struct sk_buff *next = skb->next;
4100				__skb_unlink(skb, list);
4101				__kfree_skb(skb);
4102				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4103				skb = next;
4104				if (skb == tail ||
4105				    tcp_hdr(skb)->syn ||
4106				    tcp_hdr(skb)->fin)
4107					return;
4108			}
4109		}
4110	}
4111}
4112
4113/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4114 * and tcp_collapse() them until all the queue is collapsed.
4115 */
4116static void tcp_collapse_ofo_queue(struct sock *sk)
4117{
4118	struct tcp_sock *tp = tcp_sk(sk);
4119	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4120	struct sk_buff *head;
4121	u32 start, end;
4122
4123	if (skb == NULL)
4124		return;
4125
4126	start = TCP_SKB_CB(skb)->seq;
4127	end = TCP_SKB_CB(skb)->end_seq;
4128	head = skb;
4129
4130	for (;;) {
4131		skb = skb->next;
4132
4133		/* Segment is terminated when we see gap or when
4134		 * we are at the end of all the queue. */
4135		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4136		    after(TCP_SKB_CB(skb)->seq, end) ||
4137		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4138			tcp_collapse(sk, &tp->out_of_order_queue,
4139				     head, skb, start, end);
4140			head = skb;
4141			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4142				break;
4143			/* Start new segment */
4144			start = TCP_SKB_CB(skb)->seq;
4145			end = TCP_SKB_CB(skb)->end_seq;
4146		} else {
4147			if (before(TCP_SKB_CB(skb)->seq, start))
4148				start = TCP_SKB_CB(skb)->seq;
4149			if (after(TCP_SKB_CB(skb)->end_seq, end))
4150				end = TCP_SKB_CB(skb)->end_seq;
4151		}
4152	}
4153}
4154
4155/* Reduce allocated memory if we can, trying to get
4156 * the socket within its memory limits again.
4157 *
4158 * Return less than zero if we should start dropping frames
4159 * until the socket owning process reads some of the data
4160 * to stabilize the situation.
4161 */
4162static int tcp_prune_queue(struct sock *sk)
4163{
4164	struct tcp_sock *tp = tcp_sk(sk);
4165
4166	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4167
4168	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4169
4170	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4171		tcp_clamp_window(sk);
4172	else if (tcp_memory_pressure)
4173		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4174
4175	tcp_collapse_ofo_queue(sk);
4176	tcp_collapse(sk, &sk->sk_receive_queue,
4177		     sk->sk_receive_queue.next,
4178		     (struct sk_buff*)&sk->sk_receive_queue,
4179		     tp->copied_seq, tp->rcv_nxt);
4180	sk_mem_reclaim(sk);
4181
4182	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4183		return 0;
4184
4185	/* Collapsing did not help, destructive actions follow.
4186	 * This must not ever occur. */
4187
4188	/* First, purge the out_of_order queue. */
4189	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4190		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4191		__skb_queue_purge(&tp->out_of_order_queue);
4192
4193		/* Reset SACK state.  A conforming SACK implementation will
4194		 * do the same at a timeout based retransmit.  When a connection
4195		 * is in a sad state like this, we care only about integrity
4196		 * of the connection not performance.
4197		 */
4198		if (tcp_is_sack(tp))
4199			tcp_sack_reset(&tp->rx_opt);
4200		sk_mem_reclaim(sk);
4201	}
4202
4203	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4204		return 0;
4205
4206	/* If we are really being abused, tell the caller to silently
4207	 * drop receive data on the floor.  It will get retransmitted
4208	 * and hopefully then we'll have sufficient space.
4209	 */
4210	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4211
4212	/* Massive buffer overcommit. */
4213	tp->pred_flags = 0;
4214	return -1;
4215}
4216
4217
4218/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4219 * As additional protections, we do not touch cwnd in retransmission phases,
4220 * and if application hit its sndbuf limit recently.
4221 */
4222void tcp_cwnd_application_limited(struct sock *sk)
4223{
4224	struct tcp_sock *tp = tcp_sk(sk);
4225
4226	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4227	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4228		/* Limited by application or receiver window. */
4229		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4230		u32 win_used = max(tp->snd_cwnd_used, init_win);
4231		if (win_used < tp->snd_cwnd) {
4232			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4233			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4234		}
4235		tp->snd_cwnd_used = 0;
4236	}
4237	tp->snd_cwnd_stamp = tcp_time_stamp;
4238}
4239
4240static int tcp_should_expand_sndbuf(struct sock *sk)
4241{
4242	struct tcp_sock *tp = tcp_sk(sk);
4243
4244	/* If the user specified a specific send buffer setting, do
4245	 * not modify it.
4246	 */
4247	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4248		return 0;
4249
4250	/* If we are under global TCP memory pressure, do not expand.  */
4251	if (tcp_memory_pressure)
4252		return 0;
4253
4254	/* If we are under soft global TCP memory pressure, do not expand.  */
4255	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4256		return 0;
4257
4258	/* If we filled the congestion window, do not expand.  */
4259	if (tp->packets_out >= tp->snd_cwnd)
4260		return 0;
4261
4262	return 1;
4263}
4264
4265/* When incoming ACK allowed to free some skb from write_queue,
4266 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4267 * on the exit from tcp input handler.
4268 *
4269 * PROBLEM: sndbuf expansion does not work well with largesend.
4270 */
4271static void tcp_new_space(struct sock *sk)
4272{
4273	struct tcp_sock *tp = tcp_sk(sk);
4274
4275	if (tcp_should_expand_sndbuf(sk)) {
4276		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4277			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4278		    demanded = max_t(unsigned int, tp->snd_cwnd,
4279						   tp->reordering + 1);
4280		sndmem *= 2*demanded;
4281		if (sndmem > sk->sk_sndbuf)
4282			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4283		tp->snd_cwnd_stamp = tcp_time_stamp;
4284	}
4285
4286	sk->sk_write_space(sk);
4287}
4288
4289static void tcp_check_space(struct sock *sk)
4290{
4291	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4292		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4293		if (sk->sk_socket &&
4294		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4295			tcp_new_space(sk);
4296	}
4297}
4298
4299static inline void tcp_data_snd_check(struct sock *sk)
4300{
4301	tcp_push_pending_frames(sk);
4302	tcp_check_space(sk);
4303}
4304
4305/*
4306 * Check if sending an ack is needed.
4307 */
4308static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4309{
4310	struct tcp_sock *tp = tcp_sk(sk);
4311
4312	    /* More than one full frame received... */
4313	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4314	     /* ... and right edge of window advances far enough.
4315	      * (tcp_recvmsg() will send ACK otherwise). Or...
4316	      */
4317	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4318	    /* We ACK each frame or... */
4319	    tcp_in_quickack_mode(sk) ||
4320	    /* We have out of order data. */
4321	    (ofo_possible &&
4322	     skb_peek(&tp->out_of_order_queue))) {
4323		/* Then ack it now */
4324		tcp_send_ack(sk);
4325	} else {
4326		/* Else, send delayed ack. */
4327		tcp_send_delayed_ack(sk);
4328	}
4329}
4330
4331static inline void tcp_ack_snd_check(struct sock *sk)
4332{
4333	if (!inet_csk_ack_scheduled(sk)) {
4334		/* We sent a data segment already. */
4335		return;
4336	}
4337	__tcp_ack_snd_check(sk, 1);
4338}
4339
4340/*
4341 *	This routine is only called when we have urgent data
4342 *	signaled. Its the 'slow' part of tcp_urg. It could be
4343 *	moved inline now as tcp_urg is only called from one
4344 *	place. We handle URGent data wrong. We have to - as
4345 *	BSD still doesn't use the correction from RFC961.
4346 *	For 1003.1g we should support a new option TCP_STDURG to permit
4347 *	either form (or just set the sysctl tcp_stdurg).
4348 */
4349
4350static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4351{
4352	struct tcp_sock *tp = tcp_sk(sk);
4353	u32 ptr = ntohs(th->urg_ptr);
4354
4355	if (ptr && !sysctl_tcp_stdurg)
4356		ptr--;
4357	ptr += ntohl(th->seq);
4358
4359	/* Ignore urgent data that we've already seen and read. */
4360	if (after(tp->copied_seq, ptr))
4361		return;
4362
4363	/* Do not replay urg ptr.
4364	 *
4365	 * NOTE: interesting situation not covered by specs.
4366	 * Misbehaving sender may send urg ptr, pointing to segment,
4367	 * which we already have in ofo queue. We are not able to fetch
4368	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4369	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4370	 * situations. But it is worth to think about possibility of some
4371	 * DoSes using some hypothetical application level deadlock.
4372	 */
4373	if (before(ptr, tp->rcv_nxt))
4374		return;
4375
4376	/* Do we already have a newer (or duplicate) urgent pointer? */
4377	if (tp->urg_data && !after(ptr, tp->urg_seq))
4378		return;
4379
4380	/* Tell the world about our new urgent pointer. */
4381	sk_send_sigurg(sk);
4382
4383	/* We may be adding urgent data when the last byte read was
4384	 * urgent. To do this requires some care. We cannot just ignore
4385	 * tp->copied_seq since we would read the last urgent byte again
4386	 * as data, nor can we alter copied_seq until this data arrives
4387	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4388	 *
4389	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4390	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4391	 * and expect that both A and B disappear from stream. This is _wrong_.
4392	 * Though this happens in BSD with high probability, this is occasional.
4393	 * Any application relying on this is buggy. Note also, that fix "works"
4394	 * only in this artificial test. Insert some normal data between A and B and we will
4395	 * decline of BSD again. Verdict: it is better to remove to trap
4396	 * buggy users.
4397	 */
4398	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4399	    !sock_flag(sk, SOCK_URGINLINE) &&
4400	    tp->copied_seq != tp->rcv_nxt) {
4401		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4402		tp->copied_seq++;
4403		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4404			__skb_unlink(skb, &sk->sk_receive_queue);
4405			__kfree_skb(skb);
4406		}
4407	}
4408
4409	tp->urg_data   = TCP_URG_NOTYET;
4410	tp->urg_seq    = ptr;
4411
4412	/* Disable header prediction. */
4413	tp->pred_flags = 0;
4414}
4415
4416/* This is the 'fast' part of urgent handling. */
4417static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4418{
4419	struct tcp_sock *tp = tcp_sk(sk);
4420
4421	/* Check if we get a new urgent pointer - normally not. */
4422	if (th->urg)
4423		tcp_check_urg(sk,th);
4424
4425	/* Do we wait for any urgent data? - normally not... */
4426	if (tp->urg_data == TCP_URG_NOTYET) {
4427		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4428			  th->syn;
4429
4430		/* Is the urgent pointer pointing into this packet? */
4431		if (ptr < skb->len) {
4432			u8 tmp;
4433			if (skb_copy_bits(skb, ptr, &tmp, 1))
4434				BUG();
4435			tp->urg_data = TCP_URG_VALID | tmp;
4436			if (!sock_flag(sk, SOCK_DEAD))
4437				sk->sk_data_ready(sk, 0);
4438		}
4439	}
4440}
4441
4442static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4443{
4444	struct tcp_sock *tp = tcp_sk(sk);
4445	int chunk = skb->len - hlen;
4446	int err;
4447
4448	local_bh_enable();
4449	if (skb_csum_unnecessary(skb))
4450		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4451	else
4452		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4453						       tp->ucopy.iov);
4454
4455	if (!err) {
4456		tp->ucopy.len -= chunk;
4457		tp->copied_seq += chunk;
4458		tcp_rcv_space_adjust(sk);
4459	}
4460
4461	local_bh_disable();
4462	return err;
4463}
4464
4465static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4466{
4467	__sum16 result;
4468
4469	if (sock_owned_by_user(sk)) {
4470		local_bh_enable();
4471		result = __tcp_checksum_complete(skb);
4472		local_bh_disable();
4473	} else {
4474		result = __tcp_checksum_complete(skb);
4475	}
4476	return result;
4477}
4478
4479static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4480{
4481	return !skb_csum_unnecessary(skb) &&
4482		__tcp_checksum_complete_user(sk, skb);
4483}
4484
4485#ifdef CONFIG_NET_DMA
4486static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4487{
4488	struct tcp_sock *tp = tcp_sk(sk);
4489	int chunk = skb->len - hlen;
4490	int dma_cookie;
4491	int copied_early = 0;
4492
4493	if (tp->ucopy.wakeup)
4494		return 0;
4495
4496	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4497		tp->ucopy.dma_chan = get_softnet_dma();
4498
4499	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4500
4501		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4502			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4503
4504		if (dma_cookie < 0)
4505			goto out;
4506
4507		tp->ucopy.dma_cookie = dma_cookie;
4508		copied_early = 1;
4509
4510		tp->ucopy.len -= chunk;
4511		tp->copied_seq += chunk;
4512		tcp_rcv_space_adjust(sk);
4513
4514		if ((tp->ucopy.len == 0) ||
4515		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4516		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4517			tp->ucopy.wakeup = 1;
4518			sk->sk_data_ready(sk, 0);
4519		}
4520	} else if (chunk > 0) {
4521		tp->ucopy.wakeup = 1;
4522		sk->sk_data_ready(sk, 0);
4523	}
4524out:
4525	return copied_early;
4526}
4527#endif /* CONFIG_NET_DMA */
4528
4529/*
4530 *	TCP receive function for the ESTABLISHED state.
4531 *
4532 *	It is split into a fast path and a slow path. The fast path is
4533 * 	disabled when:
4534 *	- A zero window was announced from us - zero window probing
4535 *        is only handled properly in the slow path.
4536 *	- Out of order segments arrived.
4537 *	- Urgent data is expected.
4538 *	- There is no buffer space left
4539 *	- Unexpected TCP flags/window values/header lengths are received
4540 *	  (detected by checking the TCP header against pred_flags)
4541 *	- Data is sent in both directions. Fast path only supports pure senders
4542 *	  or pure receivers (this means either the sequence number or the ack
4543 *	  value must stay constant)
4544 *	- Unexpected TCP option.
4545 *
4546 *	When these conditions are not satisfied it drops into a standard
4547 *	receive procedure patterned after RFC793 to handle all cases.
4548 *	The first three cases are guaranteed by proper pred_flags setting,
4549 *	the rest is checked inline. Fast processing is turned on in
4550 *	tcp_data_queue when everything is OK.
4551 */
4552int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4553			struct tcphdr *th, unsigned len)
4554{
4555	struct tcp_sock *tp = tcp_sk(sk);
4556
4557	/*
4558	 *	Header prediction.
4559	 *	The code loosely follows the one in the famous
4560	 *	"30 instruction TCP receive" Van Jacobson mail.
4561	 *
4562	 *	Van's trick is to deposit buffers into socket queue
4563	 *	on a device interrupt, to call tcp_recv function
4564	 *	on the receive process context and checksum and copy
4565	 *	the buffer to user space. smart...
4566	 *
4567	 *	Our current scheme is not silly either but we take the
4568	 *	extra cost of the net_bh soft interrupt processing...
4569	 *	We do checksum and copy also but from device to kernel.
4570	 */
4571
4572	tp->rx_opt.saw_tstamp = 0;
4573
4574	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4575	 *	if header_prediction is to be made
4576	 *	'S' will always be tp->tcp_header_len >> 2
4577	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4578	 *  turn it off	(when there are holes in the receive
4579	 *	 space for instance)
4580	 *	PSH flag is ignored.
4581	 */
4582
4583	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4584		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4585		int tcp_header_len = tp->tcp_header_len;
4586
4587		/* Timestamp header prediction: tcp_header_len
4588		 * is automatically equal to th->doff*4 due to pred_flags
4589		 * match.
4590		 */
4591
4592		/* Check timestamp */
4593		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4594			__be32 *ptr = (__be32 *)(th + 1);
4595
4596			/* No? Slow path! */
4597			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4598					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4599				goto slow_path;
4600
4601			tp->rx_opt.saw_tstamp = 1;
4602			++ptr;
4603			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4604			++ptr;
4605			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4606
4607			/* If PAWS failed, check it more carefully in slow path */
4608			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4609				goto slow_path;
4610
4611			/* DO NOT update ts_recent here, if checksum fails
4612			 * and timestamp was corrupted part, it will result
4613			 * in a hung connection since we will drop all
4614			 * future packets due to the PAWS test.
4615			 */
4616		}
4617
4618		if (len <= tcp_header_len) {
4619			/* Bulk data transfer: sender */
4620			if (len == tcp_header_len) {
4621				/* Predicted packet is in window by definition.
4622				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4623				 * Hence, check seq<=rcv_wup reduces to:
4624				 */
4625				if (tcp_header_len ==
4626				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4627				    tp->rcv_nxt == tp->rcv_wup)
4628					tcp_store_ts_recent(tp);
4629
4630				/* We know that such packets are checksummed
4631				 * on entry.
4632				 */
4633				tcp_ack(sk, skb, 0);
4634				__kfree_skb(skb);
4635				tcp_data_snd_check(sk);
4636				return 0;
4637			} else { /* Header too small */
4638				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4639				goto discard;
4640			}
4641		} else {
4642			int eaten = 0;
4643			int copied_early = 0;
4644
4645			if (tp->copied_seq == tp->rcv_nxt &&
4646			    len - tcp_header_len <= tp->ucopy.len) {
4647#ifdef CONFIG_NET_DMA
4648				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4649					copied_early = 1;
4650					eaten = 1;
4651				}
4652#endif
4653				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4654					__set_current_state(TASK_RUNNING);
4655
4656					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4657						eaten = 1;
4658				}
4659				if (eaten) {
4660					/* Predicted packet is in window by definition.
4661					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4662					 * Hence, check seq<=rcv_wup reduces to:
4663					 */
4664					if (tcp_header_len ==
4665					    (sizeof(struct tcphdr) +
4666					     TCPOLEN_TSTAMP_ALIGNED) &&
4667					    tp->rcv_nxt == tp->rcv_wup)
4668						tcp_store_ts_recent(tp);
4669
4670					tcp_rcv_rtt_measure_ts(sk, skb);
4671
4672					__skb_pull(skb, tcp_header_len);
4673					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4674					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4675				}
4676				if (copied_early)
4677					tcp_cleanup_rbuf(sk, skb->len);
4678			}
4679			if (!eaten) {
4680				if (tcp_checksum_complete_user(sk, skb))
4681					goto csum_error;
4682
4683				/* Predicted packet is in window by definition.
4684				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4685				 * Hence, check seq<=rcv_wup reduces to:
4686				 */
4687				if (tcp_header_len ==
4688				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4689				    tp->rcv_nxt == tp->rcv_wup)
4690					tcp_store_ts_recent(tp);
4691
4692				tcp_rcv_rtt_measure_ts(sk, skb);
4693
4694				if ((int)skb->truesize > sk->sk_forward_alloc)
4695					goto step5;
4696
4697				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4698
4699				/* Bulk data transfer: receiver */
4700				__skb_pull(skb,tcp_header_len);
4701				__skb_queue_tail(&sk->sk_receive_queue, skb);
4702				skb_set_owner_r(skb, sk);
4703				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4704			}
4705
4706			tcp_event_data_recv(sk, skb);
4707
4708			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4709				/* Well, only one small jumplet in fast path... */
4710				tcp_ack(sk, skb, FLAG_DATA);
4711				tcp_data_snd_check(sk);
4712				if (!inet_csk_ack_scheduled(sk))
4713					goto no_ack;
4714			}
4715
4716			__tcp_ack_snd_check(sk, 0);
4717no_ack:
4718#ifdef CONFIG_NET_DMA
4719			if (copied_early)
4720				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4721			else
4722#endif
4723			if (eaten)
4724				__kfree_skb(skb);
4725			else
4726				sk->sk_data_ready(sk, 0);
4727			return 0;
4728		}
4729	}
4730
4731slow_path:
4732	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4733		goto csum_error;
4734
4735	/*
4736	 * RFC1323: H1. Apply PAWS check first.
4737	 */
4738	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4739	    tcp_paws_discard(sk, skb)) {
4740		if (!th->rst) {
4741			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4742			tcp_send_dupack(sk, skb);
4743			goto discard;
4744		}
4745		/* Resets are accepted even if PAWS failed.
4746
4747		   ts_recent update must be made after we are sure
4748		   that the packet is in window.
4749		 */
4750	}
4751
4752	/*
4753	 *	Standard slow path.
4754	 */
4755
4756	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4757		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4758		 * (RST) segments are validated by checking their SEQ-fields."
4759		 * And page 69: "If an incoming segment is not acceptable,
4760		 * an acknowledgment should be sent in reply (unless the RST bit
4761		 * is set, if so drop the segment and return)".
4762		 */
4763		if (!th->rst)
4764			tcp_send_dupack(sk, skb);
4765		goto discard;
4766	}
4767
4768	if (th->rst) {
4769		tcp_reset(sk);
4770		goto discard;
4771	}
4772
4773	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4774
4775	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4776		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4777		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4778		tcp_reset(sk);
4779		return 1;
4780	}
4781
4782step5:
4783	if (th->ack)
4784		tcp_ack(sk, skb, FLAG_SLOWPATH);
4785
4786	tcp_rcv_rtt_measure_ts(sk, skb);
4787
4788	/* Process urgent data. */
4789	tcp_urg(sk, skb, th);
4790
4791	/* step 7: process the segment text */
4792	tcp_data_queue(sk, skb);
4793
4794	tcp_data_snd_check(sk);
4795	tcp_ack_snd_check(sk);
4796	return 0;
4797
4798csum_error:
4799	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4800
4801discard:
4802	__kfree_skb(skb);
4803	return 0;
4804}
4805
4806static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4807					 struct tcphdr *th, unsigned len)
4808{
4809	struct tcp_sock *tp = tcp_sk(sk);
4810	struct inet_connection_sock *icsk = inet_csk(sk);
4811	int saved_clamp = tp->rx_opt.mss_clamp;
4812
4813	tcp_parse_options(skb, &tp->rx_opt, 0);
4814
4815	if (th->ack) {
4816		/* rfc793:
4817		 * "If the state is SYN-SENT then
4818		 *    first check the ACK bit
4819		 *      If the ACK bit is set
4820		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4821		 *        a reset (unless the RST bit is set, if so drop
4822		 *        the segment and return)"
4823		 *
4824		 *  We do not send data with SYN, so that RFC-correct
4825		 *  test reduces to:
4826		 */
4827		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4828			goto reset_and_undo;
4829
4830		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4831		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4832			     tcp_time_stamp)) {
4833			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4834			goto reset_and_undo;
4835		}
4836
4837		/* Now ACK is acceptable.
4838		 *
4839		 * "If the RST bit is set
4840		 *    If the ACK was acceptable then signal the user "error:
4841		 *    connection reset", drop the segment, enter CLOSED state,
4842		 *    delete TCB, and return."
4843		 */
4844
4845		if (th->rst) {
4846			tcp_reset(sk);
4847			goto discard;
4848		}
4849
4850		/* rfc793:
4851		 *   "fifth, if neither of the SYN or RST bits is set then
4852		 *    drop the segment and return."
4853		 *
4854		 *    See note below!
4855		 *                                        --ANK(990513)
4856		 */
4857		if (!th->syn)
4858			goto discard_and_undo;
4859
4860		/* rfc793:
4861		 *   "If the SYN bit is on ...
4862		 *    are acceptable then ...
4863		 *    (our SYN has been ACKed), change the connection
4864		 *    state to ESTABLISHED..."
4865		 */
4866
4867		TCP_ECN_rcv_synack(tp, th);
4868
4869		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4870		tcp_ack(sk, skb, FLAG_SLOWPATH);
4871
4872		/* Ok.. it's good. Set up sequence numbers and
4873		 * move to established.
4874		 */
4875		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4876		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4877
4878		/* RFC1323: The window in SYN & SYN/ACK segments is
4879		 * never scaled.
4880		 */
4881		tp->snd_wnd = ntohs(th->window);
4882		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4883
4884		if (!tp->rx_opt.wscale_ok) {
4885			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4886			tp->window_clamp = min(tp->window_clamp, 65535U);
4887		}
4888
4889		if (tp->rx_opt.saw_tstamp) {
4890			tp->rx_opt.tstamp_ok	   = 1;
4891			tp->tcp_header_len =
4892				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4893			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4894			tcp_store_ts_recent(tp);
4895		} else {
4896			tp->tcp_header_len = sizeof(struct tcphdr);
4897		}
4898
4899		if (tcp_is_sack(tp) && sysctl_tcp_fack)
4900			tcp_enable_fack(tp);
4901
4902		tcp_mtup_init(sk);
4903		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4904		tcp_initialize_rcv_mss(sk);
4905
4906		/* Remember, tcp_poll() does not lock socket!
4907		 * Change state from SYN-SENT only after copied_seq
4908		 * is initialized. */
4909		tp->copied_seq = tp->rcv_nxt;
4910		smp_mb();
4911		tcp_set_state(sk, TCP_ESTABLISHED);
4912
4913		security_inet_conn_established(sk, skb);
4914
4915		/* Make sure socket is routed, for correct metrics.  */
4916		icsk->icsk_af_ops->rebuild_header(sk);
4917
4918		tcp_init_metrics(sk);
4919
4920		tcp_init_congestion_control(sk);
4921
4922		/* Prevent spurious tcp_cwnd_restart() on first data
4923		 * packet.
4924		 */
4925		tp->lsndtime = tcp_time_stamp;
4926
4927		tcp_init_buffer_space(sk);
4928
4929		if (sock_flag(sk, SOCK_KEEPOPEN))
4930			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4931
4932		if (!tp->rx_opt.snd_wscale)
4933			__tcp_fast_path_on(tp, tp->snd_wnd);
4934		else
4935			tp->pred_flags = 0;
4936
4937		if (!sock_flag(sk, SOCK_DEAD)) {
4938			sk->sk_state_change(sk);
4939			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
4940		}
4941
4942		if (sk->sk_write_pending ||
4943		    icsk->icsk_accept_queue.rskq_defer_accept ||
4944		    icsk->icsk_ack.pingpong) {
4945			/* Save one ACK. Data will be ready after
4946			 * several ticks, if write_pending is set.
4947			 *
4948			 * It may be deleted, but with this feature tcpdumps
4949			 * look so _wonderfully_ clever, that I was not able
4950			 * to stand against the temptation 8)     --ANK
4951			 */
4952			inet_csk_schedule_ack(sk);
4953			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4954			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4955			tcp_incr_quickack(sk);
4956			tcp_enter_quickack_mode(sk);
4957			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4958						  TCP_DELACK_MAX, TCP_RTO_MAX);
4959
4960discard:
4961			__kfree_skb(skb);
4962			return 0;
4963		} else {
4964			tcp_send_ack(sk);
4965		}
4966		return -1;
4967	}
4968
4969	/* No ACK in the segment */
4970
4971	if (th->rst) {
4972		/* rfc793:
4973		 * "If the RST bit is set
4974		 *
4975		 *      Otherwise (no ACK) drop the segment and return."
4976		 */
4977
4978		goto discard_and_undo;
4979	}
4980
4981	/* PAWS check. */
4982	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4983		goto discard_and_undo;
4984
4985	if (th->syn) {
4986		/* We see SYN without ACK. It is attempt of
4987		 * simultaneous connect with crossed SYNs.
4988		 * Particularly, it can be connect to self.
4989		 */
4990		tcp_set_state(sk, TCP_SYN_RECV);
4991
4992		if (tp->rx_opt.saw_tstamp) {
4993			tp->rx_opt.tstamp_ok = 1;
4994			tcp_store_ts_recent(tp);
4995			tp->tcp_header_len =
4996				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4997		} else {
4998			tp->tcp_header_len = sizeof(struct tcphdr);
4999		}
5000
5001		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5002		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5003
5004		/* RFC1323: The window in SYN & SYN/ACK segments is
5005		 * never scaled.
5006		 */
5007		tp->snd_wnd    = ntohs(th->window);
5008		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5009		tp->max_window = tp->snd_wnd;
5010
5011		TCP_ECN_rcv_syn(tp, th);
5012
5013		tcp_mtup_init(sk);
5014		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5015		tcp_initialize_rcv_mss(sk);
5016
5017
5018		tcp_send_synack(sk);
5019#if 0
5020		/* Note, we could accept data and URG from this segment.
5021		 * There are no obstacles to make this.
5022		 *
5023		 * However, if we ignore data in ACKless segments sometimes,
5024		 * we have no reasons to accept it sometimes.
5025		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5026		 * is not flawless. So, discard packet for sanity.
5027		 * Uncomment this return to process the data.
5028		 */
5029		return -1;
5030#else
5031		goto discard;
5032#endif
5033	}
5034	/* "fifth, if neither of the SYN or RST bits is set then
5035	 * drop the segment and return."
5036	 */
5037
5038discard_and_undo:
5039	tcp_clear_options(&tp->rx_opt);
5040	tp->rx_opt.mss_clamp = saved_clamp;
5041	goto discard;
5042
5043reset_and_undo:
5044	tcp_clear_options(&tp->rx_opt);
5045	tp->rx_opt.mss_clamp = saved_clamp;
5046	return 1;
5047}
5048
5049
5050/*
5051 *	This function implements the receiving procedure of RFC 793 for
5052 *	all states except ESTABLISHED and TIME_WAIT.
5053 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5054 *	address independent.
5055 */
5056
5057int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5058			  struct tcphdr *th, unsigned len)
5059{
5060	struct tcp_sock *tp = tcp_sk(sk);
5061	struct inet_connection_sock *icsk = inet_csk(sk);
5062	int queued = 0;
5063
5064	tp->rx_opt.saw_tstamp = 0;
5065
5066	switch (sk->sk_state) {
5067	case TCP_CLOSE:
5068		goto discard;
5069
5070	case TCP_LISTEN:
5071		if (th->ack)
5072			return 1;
5073
5074		if (th->rst)
5075			goto discard;
5076
5077		if (th->syn) {
5078			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5079				return 1;
5080
5081			/* Now we have several options: In theory there is
5082			 * nothing else in the frame. KA9Q has an option to
5083			 * send data with the syn, BSD accepts data with the
5084			 * syn up to the [to be] advertised window and
5085			 * Solaris 2.1 gives you a protocol error. For now
5086			 * we just ignore it, that fits the spec precisely
5087			 * and avoids incompatibilities. It would be nice in
5088			 * future to drop through and process the data.
5089			 *
5090			 * Now that TTCP is starting to be used we ought to
5091			 * queue this data.
5092			 * But, this leaves one open to an easy denial of
5093			 * service attack, and SYN cookies can't defend
5094			 * against this problem. So, we drop the data
5095			 * in the interest of security over speed unless
5096			 * it's still in use.
5097			 */
5098			kfree_skb(skb);
5099			return 0;
5100		}
5101		goto discard;
5102
5103	case TCP_SYN_SENT:
5104		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5105		if (queued >= 0)
5106			return queued;
5107
5108		/* Do step6 onward by hand. */
5109		tcp_urg(sk, skb, th);
5110		__kfree_skb(skb);
5111		tcp_data_snd_check(sk);
5112		return 0;
5113	}
5114
5115	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5116	    tcp_paws_discard(sk, skb)) {
5117		if (!th->rst) {
5118			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5119			tcp_send_dupack(sk, skb);
5120			goto discard;
5121		}
5122		/* Reset is accepted even if it did not pass PAWS. */
5123	}
5124
5125	/* step 1: check sequence number */
5126	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5127		if (!th->rst)
5128			tcp_send_dupack(sk, skb);
5129		goto discard;
5130	}
5131
5132	/* step 2: check RST bit */
5133	if (th->rst) {
5134		tcp_reset(sk);
5135		goto discard;
5136	}
5137
5138	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5139
5140	/* step 3: check security and precedence [ignored] */
5141
5142	/*	step 4:
5143	 *
5144	 *	Check for a SYN in window.
5145	 */
5146	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5147		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5148		tcp_reset(sk);
5149		return 1;
5150	}
5151
5152	/* step 5: check the ACK field */
5153	if (th->ack) {
5154		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5155
5156		switch (sk->sk_state) {
5157		case TCP_SYN_RECV:
5158			if (acceptable) {
5159				tp->copied_seq = tp->rcv_nxt;
5160				smp_mb();
5161				tcp_set_state(sk, TCP_ESTABLISHED);
5162				sk->sk_state_change(sk);
5163
5164				/* Note, that this wakeup is only for marginal
5165				 * crossed SYN case. Passively open sockets
5166				 * are not waked up, because sk->sk_sleep ==
5167				 * NULL and sk->sk_socket == NULL.
5168				 */
5169				if (sk->sk_socket)
5170					sk_wake_async(sk,
5171							SOCK_WAKE_IO, POLL_OUT);
5172
5173				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5174				tp->snd_wnd = ntohs(th->window) <<
5175					      tp->rx_opt.snd_wscale;
5176				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5177					    TCP_SKB_CB(skb)->seq);
5178
5179				/* tcp_ack considers this ACK as duplicate
5180				 * and does not calculate rtt.
5181				 * Fix it at least with timestamps.
5182				 */
5183				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5184				    !tp->srtt)
5185					tcp_ack_saw_tstamp(sk, 0);
5186
5187				if (tp->rx_opt.tstamp_ok)
5188					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5189
5190				/* Make sure socket is routed, for
5191				 * correct metrics.
5192				 */
5193				icsk->icsk_af_ops->rebuild_header(sk);
5194
5195				tcp_init_metrics(sk);
5196
5197				tcp_init_congestion_control(sk);
5198
5199				/* Prevent spurious tcp_cwnd_restart() on
5200				 * first data packet.
5201				 */
5202				tp->lsndtime = tcp_time_stamp;
5203
5204				tcp_mtup_init(sk);
5205				tcp_initialize_rcv_mss(sk);
5206				tcp_init_buffer_space(sk);
5207				tcp_fast_path_on(tp);
5208			} else {
5209				return 1;
5210			}
5211			break;
5212
5213		case TCP_FIN_WAIT1:
5214			if (tp->snd_una == tp->write_seq) {
5215				tcp_set_state(sk, TCP_FIN_WAIT2);
5216				sk->sk_shutdown |= SEND_SHUTDOWN;
5217				dst_confirm(sk->sk_dst_cache);
5218
5219				if (!sock_flag(sk, SOCK_DEAD))
5220					/* Wake up lingering close() */
5221					sk->sk_state_change(sk);
5222				else {
5223					int tmo;
5224
5225					if (tp->linger2 < 0 ||
5226					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5227					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5228						tcp_done(sk);
5229						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5230						return 1;
5231					}
5232
5233					tmo = tcp_fin_time(sk);
5234					if (tmo > TCP_TIMEWAIT_LEN) {
5235						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5236					} else if (th->fin || sock_owned_by_user(sk)) {
5237						/* Bad case. We could lose such FIN otherwise.
5238						 * It is not a big problem, but it looks confusing
5239						 * and not so rare event. We still can lose it now,
5240						 * if it spins in bh_lock_sock(), but it is really
5241						 * marginal case.
5242						 */
5243						inet_csk_reset_keepalive_timer(sk, tmo);
5244					} else {
5245						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5246						goto discard;
5247					}
5248				}
5249			}
5250			break;
5251
5252		case TCP_CLOSING:
5253			if (tp->snd_una == tp->write_seq) {
5254				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5255				goto discard;
5256			}
5257			break;
5258
5259		case TCP_LAST_ACK:
5260			if (tp->snd_una == tp->write_seq) {
5261				tcp_update_metrics(sk);
5262				tcp_done(sk);
5263				goto discard;
5264			}
5265			break;
5266		}
5267	} else
5268		goto discard;
5269
5270	/* step 6: check the URG bit */
5271	tcp_urg(sk, skb, th);
5272
5273	/* step 7: process the segment text */
5274	switch (sk->sk_state) {
5275	case TCP_CLOSE_WAIT:
5276	case TCP_CLOSING:
5277	case TCP_LAST_ACK:
5278		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5279			break;
5280	case TCP_FIN_WAIT1:
5281	case TCP_FIN_WAIT2:
5282		/* RFC 793 says to queue data in these states,
5283		 * RFC 1122 says we MUST send a reset.
5284		 * BSD 4.4 also does reset.
5285		 */
5286		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5287			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5288			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5289				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5290				tcp_reset(sk);
5291				return 1;
5292			}
5293		}
5294		/* Fall through */
5295	case TCP_ESTABLISHED:
5296		tcp_data_queue(sk, skb);
5297		queued = 1;
5298		break;
5299	}
5300
5301	/* tcp_data could move socket to TIME-WAIT */
5302	if (sk->sk_state != TCP_CLOSE) {
5303		tcp_data_snd_check(sk);
5304		tcp_ack_snd_check(sk);
5305	}
5306
5307	if (!queued) {
5308discard:
5309		__kfree_skb(skb);
5310	}
5311	return 0;
5312}
5313
5314EXPORT_SYMBOL(sysctl_tcp_ecn);
5315EXPORT_SYMBOL(sysctl_tcp_reordering);
5316EXPORT_SYMBOL(tcp_parse_options);
5317EXPORT_SYMBOL(tcp_rcv_established);
5318EXPORT_SYMBOL(tcp_rcv_state_process);
5319EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5320