tcp_input.c revision 442b9635c569fef038d5367a7acd906db4677ae1
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 *		Pedro Roque	:	Fast Retransmit/Recovery.
24 *					Two receive queues.
25 *					Retransmit queue handled by TCP.
26 *					Better retransmit timer handling.
27 *					New congestion avoidance.
28 *					Header prediction.
29 *					Variable renaming.
30 *
31 *		Eric		:	Fast Retransmit.
32 *		Randy Scott	:	MSS option defines.
33 *		Eric Schenk	:	Fixes to slow start algorithm.
34 *		Eric Schenk	:	Yet another double ACK bug.
35 *		Eric Schenk	:	Delayed ACK bug fixes.
36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37 *		David S. Miller	:	Don't allow zero congestion window.
38 *		Eric Schenk	:	Fix retransmitter so that it sends
39 *					next packet on ack of previous packet.
40 *		Andi Kleen	:	Moved open_request checking here
41 *					and process RSTs for open_requests.
42 *		Andi Kleen	:	Better prune_queue, and other fixes.
43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
44 *					timestamps.
45 *		Andrey Savochkin:	Check sequence numbers correctly when
46 *					removing SACKs due to in sequence incoming
47 *					data segments.
48 *		Andi Kleen:		Make sure we never ack data there is not
49 *					enough room for. Also make this condition
50 *					a fatal error if it might still happen.
51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52 *					connections with MSS<min(MTU,ann. MSS)
53 *					work without delayed acks.
54 *		Andi Kleen:		Process packets with PSH set in the
55 *					fast path.
56 *		J Hadi Salim:		ECN support
57 *	 	Andrei Gurtov,
58 *		Pasi Sarolahti,
59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60 *					engine. Lots of bugs are found.
61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62 */
63
64#include <linux/mm.h>
65#include <linux/slab.h>
66#include <linux/module.h>
67#include <linux/sysctl.h>
68#include <linux/kernel.h>
69#include <net/dst.h>
70#include <net/tcp.h>
71#include <net/inet_common.h>
72#include <linux/ipsec.h>
73#include <asm/unaligned.h>
74#include <net/netdma.h>
75
76int sysctl_tcp_timestamps __read_mostly = 1;
77int sysctl_tcp_window_scaling __read_mostly = 1;
78int sysctl_tcp_sack __read_mostly = 1;
79int sysctl_tcp_fack __read_mostly = 1;
80int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81EXPORT_SYMBOL(sysctl_tcp_reordering);
82int sysctl_tcp_ecn __read_mostly = 2;
83EXPORT_SYMBOL(sysctl_tcp_ecn);
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
86int sysctl_tcp_adv_win_scale __read_mostly = 2;
87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89int sysctl_tcp_stdurg __read_mostly;
90int sysctl_tcp_rfc1337 __read_mostly;
91int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92int sysctl_tcp_frto __read_mostly = 2;
93int sysctl_tcp_frto_response __read_mostly;
94int sysctl_tcp_nometrics_save __read_mostly;
95
96int sysctl_tcp_thin_dupack __read_mostly;
97
98int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99int sysctl_tcp_abc __read_mostly;
100
101#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
102#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
103#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
104#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
105#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
106#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
107#define FLAG_ECE		0x40 /* ECE in this ACK				*/
108#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
109#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
111#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
114#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
115
116#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121
122#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125/* Adapt the MSS value used to make delayed ack decision to the
126 * real world.
127 */
128static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129{
130	struct inet_connection_sock *icsk = inet_csk(sk);
131	const unsigned int lss = icsk->icsk_ack.last_seg_size;
132	unsigned int len;
133
134	icsk->icsk_ack.last_seg_size = 0;
135
136	/* skb->len may jitter because of SACKs, even if peer
137	 * sends good full-sized frames.
138	 */
139	len = skb_shinfo(skb)->gso_size ? : skb->len;
140	if (len >= icsk->icsk_ack.rcv_mss) {
141		icsk->icsk_ack.rcv_mss = len;
142	} else {
143		/* Otherwise, we make more careful check taking into account,
144		 * that SACKs block is variable.
145		 *
146		 * "len" is invariant segment length, including TCP header.
147		 */
148		len += skb->data - skb_transport_header(skb);
149		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150		    /* If PSH is not set, packet should be
151		     * full sized, provided peer TCP is not badly broken.
152		     * This observation (if it is correct 8)) allows
153		     * to handle super-low mtu links fairly.
154		     */
155		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157			/* Subtract also invariant (if peer is RFC compliant),
158			 * tcp header plus fixed timestamp option length.
159			 * Resulting "len" is MSS free of SACK jitter.
160			 */
161			len -= tcp_sk(sk)->tcp_header_len;
162			icsk->icsk_ack.last_seg_size = len;
163			if (len == lss) {
164				icsk->icsk_ack.rcv_mss = len;
165				return;
166			}
167		}
168		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171	}
172}
173
174static void tcp_incr_quickack(struct sock *sk)
175{
176	struct inet_connection_sock *icsk = inet_csk(sk);
177	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179	if (quickacks == 0)
180		quickacks = 2;
181	if (quickacks > icsk->icsk_ack.quick)
182		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183}
184
185static void tcp_enter_quickack_mode(struct sock *sk)
186{
187	struct inet_connection_sock *icsk = inet_csk(sk);
188	tcp_incr_quickack(sk);
189	icsk->icsk_ack.pingpong = 0;
190	icsk->icsk_ack.ato = TCP_ATO_MIN;
191}
192
193/* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
195 */
196
197static inline int tcp_in_quickack_mode(const struct sock *sk)
198{
199	const struct inet_connection_sock *icsk = inet_csk(sk);
200	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201}
202
203static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204{
205	if (tp->ecn_flags & TCP_ECN_OK)
206		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207}
208
209static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210{
211	if (tcp_hdr(skb)->cwr)
212		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213}
214
215static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216{
217	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218}
219
220static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221{
222	if (tp->ecn_flags & TCP_ECN_OK) {
223		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225		/* Funny extension: if ECT is not set on a segment,
226		 * it is surely retransmit. It is not in ECN RFC,
227		 * but Linux follows this rule. */
228		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229			tcp_enter_quickack_mode((struct sock *)tp);
230	}
231}
232
233static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234{
235	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236		tp->ecn_flags &= ~TCP_ECN_OK;
237}
238
239static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240{
241	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242		tp->ecn_flags &= ~TCP_ECN_OK;
243}
244
245static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246{
247	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248		return 1;
249	return 0;
250}
251
252/* Buffer size and advertised window tuning.
253 *
254 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255 */
256
257static void tcp_fixup_sndbuf(struct sock *sk)
258{
259	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260		     sizeof(struct sk_buff);
261
262	if (sk->sk_sndbuf < 3 * sndmem) {
263		sk->sk_sndbuf = 3 * sndmem;
264		if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
265			sk->sk_sndbuf = sysctl_tcp_wmem[2];
266	}
267}
268
269/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
270 *
271 * All tcp_full_space() is split to two parts: "network" buffer, allocated
272 * forward and advertised in receiver window (tp->rcv_wnd) and
273 * "application buffer", required to isolate scheduling/application
274 * latencies from network.
275 * window_clamp is maximal advertised window. It can be less than
276 * tcp_full_space(), in this case tcp_full_space() - window_clamp
277 * is reserved for "application" buffer. The less window_clamp is
278 * the smoother our behaviour from viewpoint of network, but the lower
279 * throughput and the higher sensitivity of the connection to losses. 8)
280 *
281 * rcv_ssthresh is more strict window_clamp used at "slow start"
282 * phase to predict further behaviour of this connection.
283 * It is used for two goals:
284 * - to enforce header prediction at sender, even when application
285 *   requires some significant "application buffer". It is check #1.
286 * - to prevent pruning of receive queue because of misprediction
287 *   of receiver window. Check #2.
288 *
289 * The scheme does not work when sender sends good segments opening
290 * window and then starts to feed us spaghetti. But it should work
291 * in common situations. Otherwise, we have to rely on queue collapsing.
292 */
293
294/* Slow part of check#2. */
295static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
296{
297	struct tcp_sock *tp = tcp_sk(sk);
298	/* Optimize this! */
299	int truesize = tcp_win_from_space(skb->truesize) >> 1;
300	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
301
302	while (tp->rcv_ssthresh <= window) {
303		if (truesize <= skb->len)
304			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
305
306		truesize >>= 1;
307		window >>= 1;
308	}
309	return 0;
310}
311
312static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
313{
314	struct tcp_sock *tp = tcp_sk(sk);
315
316	/* Check #1 */
317	if (tp->rcv_ssthresh < tp->window_clamp &&
318	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
319	    !tcp_memory_pressure) {
320		int incr;
321
322		/* Check #2. Increase window, if skb with such overhead
323		 * will fit to rcvbuf in future.
324		 */
325		if (tcp_win_from_space(skb->truesize) <= skb->len)
326			incr = 2 * tp->advmss;
327		else
328			incr = __tcp_grow_window(sk, skb);
329
330		if (incr) {
331			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
332					       tp->window_clamp);
333			inet_csk(sk)->icsk_ack.quick |= 1;
334		}
335	}
336}
337
338/* 3. Tuning rcvbuf, when connection enters established state. */
339
340static void tcp_fixup_rcvbuf(struct sock *sk)
341{
342	struct tcp_sock *tp = tcp_sk(sk);
343	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
344
345	/* Try to select rcvbuf so that 4 mss-sized segments
346	 * will fit to window and corresponding skbs will fit to our rcvbuf.
347	 * (was 3; 4 is minimum to allow fast retransmit to work.)
348	 */
349	while (tcp_win_from_space(rcvmem) < tp->advmss)
350		rcvmem += 128;
351	if (sk->sk_rcvbuf < 4 * rcvmem)
352		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
353}
354
355/* 4. Try to fixup all. It is made immediately after connection enters
356 *    established state.
357 */
358static void tcp_init_buffer_space(struct sock *sk)
359{
360	struct tcp_sock *tp = tcp_sk(sk);
361	int maxwin;
362
363	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
364		tcp_fixup_rcvbuf(sk);
365	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
366		tcp_fixup_sndbuf(sk);
367
368	tp->rcvq_space.space = tp->rcv_wnd;
369
370	maxwin = tcp_full_space(sk);
371
372	if (tp->window_clamp >= maxwin) {
373		tp->window_clamp = maxwin;
374
375		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
376			tp->window_clamp = max(maxwin -
377					       (maxwin >> sysctl_tcp_app_win),
378					       4 * tp->advmss);
379	}
380
381	/* Force reservation of one segment. */
382	if (sysctl_tcp_app_win &&
383	    tp->window_clamp > 2 * tp->advmss &&
384	    tp->window_clamp + tp->advmss > maxwin)
385		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
386
387	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
388	tp->snd_cwnd_stamp = tcp_time_stamp;
389}
390
391/* 5. Recalculate window clamp after socket hit its memory bounds. */
392static void tcp_clamp_window(struct sock *sk)
393{
394	struct tcp_sock *tp = tcp_sk(sk);
395	struct inet_connection_sock *icsk = inet_csk(sk);
396
397	icsk->icsk_ack.quick = 0;
398
399	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
400	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
401	    !tcp_memory_pressure &&
402	    atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
403		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
404				    sysctl_tcp_rmem[2]);
405	}
406	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
407		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
408}
409
410/* Initialize RCV_MSS value.
411 * RCV_MSS is an our guess about MSS used by the peer.
412 * We haven't any direct information about the MSS.
413 * It's better to underestimate the RCV_MSS rather than overestimate.
414 * Overestimations make us ACKing less frequently than needed.
415 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
416 */
417void tcp_initialize_rcv_mss(struct sock *sk)
418{
419	struct tcp_sock *tp = tcp_sk(sk);
420	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
421
422	hint = min(hint, tp->rcv_wnd / 2);
423	hint = min(hint, TCP_MSS_DEFAULT);
424	hint = max(hint, TCP_MIN_MSS);
425
426	inet_csk(sk)->icsk_ack.rcv_mss = hint;
427}
428EXPORT_SYMBOL(tcp_initialize_rcv_mss);
429
430/* Receiver "autotuning" code.
431 *
432 * The algorithm for RTT estimation w/o timestamps is based on
433 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
434 * <http://public.lanl.gov/radiant/pubs.html#DRS>
435 *
436 * More detail on this code can be found at
437 * <http://staff.psc.edu/jheffner/>,
438 * though this reference is out of date.  A new paper
439 * is pending.
440 */
441static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
442{
443	u32 new_sample = tp->rcv_rtt_est.rtt;
444	long m = sample;
445
446	if (m == 0)
447		m = 1;
448
449	if (new_sample != 0) {
450		/* If we sample in larger samples in the non-timestamp
451		 * case, we could grossly overestimate the RTT especially
452		 * with chatty applications or bulk transfer apps which
453		 * are stalled on filesystem I/O.
454		 *
455		 * Also, since we are only going for a minimum in the
456		 * non-timestamp case, we do not smooth things out
457		 * else with timestamps disabled convergence takes too
458		 * long.
459		 */
460		if (!win_dep) {
461			m -= (new_sample >> 3);
462			new_sample += m;
463		} else if (m < new_sample)
464			new_sample = m << 3;
465	} else {
466		/* No previous measure. */
467		new_sample = m << 3;
468	}
469
470	if (tp->rcv_rtt_est.rtt != new_sample)
471		tp->rcv_rtt_est.rtt = new_sample;
472}
473
474static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
475{
476	if (tp->rcv_rtt_est.time == 0)
477		goto new_measure;
478	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
479		return;
480	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
481
482new_measure:
483	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
484	tp->rcv_rtt_est.time = tcp_time_stamp;
485}
486
487static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
488					  const struct sk_buff *skb)
489{
490	struct tcp_sock *tp = tcp_sk(sk);
491	if (tp->rx_opt.rcv_tsecr &&
492	    (TCP_SKB_CB(skb)->end_seq -
493	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
494		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
495}
496
497/*
498 * This function should be called every time data is copied to user space.
499 * It calculates the appropriate TCP receive buffer space.
500 */
501void tcp_rcv_space_adjust(struct sock *sk)
502{
503	struct tcp_sock *tp = tcp_sk(sk);
504	int time;
505	int space;
506
507	if (tp->rcvq_space.time == 0)
508		goto new_measure;
509
510	time = tcp_time_stamp - tp->rcvq_space.time;
511	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
512		return;
513
514	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
515
516	space = max(tp->rcvq_space.space, space);
517
518	if (tp->rcvq_space.space != space) {
519		int rcvmem;
520
521		tp->rcvq_space.space = space;
522
523		if (sysctl_tcp_moderate_rcvbuf &&
524		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
525			int new_clamp = space;
526
527			/* Receive space grows, normalize in order to
528			 * take into account packet headers and sk_buff
529			 * structure overhead.
530			 */
531			space /= tp->advmss;
532			if (!space)
533				space = 1;
534			rcvmem = (tp->advmss + MAX_TCP_HEADER +
535				  16 + sizeof(struct sk_buff));
536			while (tcp_win_from_space(rcvmem) < tp->advmss)
537				rcvmem += 128;
538			space *= rcvmem;
539			space = min(space, sysctl_tcp_rmem[2]);
540			if (space > sk->sk_rcvbuf) {
541				sk->sk_rcvbuf = space;
542
543				/* Make the window clamp follow along.  */
544				tp->window_clamp = new_clamp;
545			}
546		}
547	}
548
549new_measure:
550	tp->rcvq_space.seq = tp->copied_seq;
551	tp->rcvq_space.time = tcp_time_stamp;
552}
553
554/* There is something which you must keep in mind when you analyze the
555 * behavior of the tp->ato delayed ack timeout interval.  When a
556 * connection starts up, we want to ack as quickly as possible.  The
557 * problem is that "good" TCP's do slow start at the beginning of data
558 * transmission.  The means that until we send the first few ACK's the
559 * sender will sit on his end and only queue most of his data, because
560 * he can only send snd_cwnd unacked packets at any given time.  For
561 * each ACK we send, he increments snd_cwnd and transmits more of his
562 * queue.  -DaveM
563 */
564static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
565{
566	struct tcp_sock *tp = tcp_sk(sk);
567	struct inet_connection_sock *icsk = inet_csk(sk);
568	u32 now;
569
570	inet_csk_schedule_ack(sk);
571
572	tcp_measure_rcv_mss(sk, skb);
573
574	tcp_rcv_rtt_measure(tp);
575
576	now = tcp_time_stamp;
577
578	if (!icsk->icsk_ack.ato) {
579		/* The _first_ data packet received, initialize
580		 * delayed ACK engine.
581		 */
582		tcp_incr_quickack(sk);
583		icsk->icsk_ack.ato = TCP_ATO_MIN;
584	} else {
585		int m = now - icsk->icsk_ack.lrcvtime;
586
587		if (m <= TCP_ATO_MIN / 2) {
588			/* The fastest case is the first. */
589			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
590		} else if (m < icsk->icsk_ack.ato) {
591			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
592			if (icsk->icsk_ack.ato > icsk->icsk_rto)
593				icsk->icsk_ack.ato = icsk->icsk_rto;
594		} else if (m > icsk->icsk_rto) {
595			/* Too long gap. Apparently sender failed to
596			 * restart window, so that we send ACKs quickly.
597			 */
598			tcp_incr_quickack(sk);
599			sk_mem_reclaim(sk);
600		}
601	}
602	icsk->icsk_ack.lrcvtime = now;
603
604	TCP_ECN_check_ce(tp, skb);
605
606	if (skb->len >= 128)
607		tcp_grow_window(sk, skb);
608}
609
610/* Called to compute a smoothed rtt estimate. The data fed to this
611 * routine either comes from timestamps, or from segments that were
612 * known _not_ to have been retransmitted [see Karn/Partridge
613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614 * piece by Van Jacobson.
615 * NOTE: the next three routines used to be one big routine.
616 * To save cycles in the RFC 1323 implementation it was better to break
617 * it up into three procedures. -- erics
618 */
619static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620{
621	struct tcp_sock *tp = tcp_sk(sk);
622	long m = mrtt; /* RTT */
623
624	/*	The following amusing code comes from Jacobson's
625	 *	article in SIGCOMM '88.  Note that rtt and mdev
626	 *	are scaled versions of rtt and mean deviation.
627	 *	This is designed to be as fast as possible
628	 *	m stands for "measurement".
629	 *
630	 *	On a 1990 paper the rto value is changed to:
631	 *	RTO = rtt + 4 * mdev
632	 *
633	 * Funny. This algorithm seems to be very broken.
634	 * These formulae increase RTO, when it should be decreased, increase
635	 * too slowly, when it should be increased quickly, decrease too quickly
636	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637	 * does not matter how to _calculate_ it. Seems, it was trap
638	 * that VJ failed to avoid. 8)
639	 */
640	if (m == 0)
641		m = 1;
642	if (tp->srtt != 0) {
643		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
644		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
645		if (m < 0) {
646			m = -m;		/* m is now abs(error) */
647			m -= (tp->mdev >> 2);   /* similar update on mdev */
648			/* This is similar to one of Eifel findings.
649			 * Eifel blocks mdev updates when rtt decreases.
650			 * This solution is a bit different: we use finer gain
651			 * for mdev in this case (alpha*beta).
652			 * Like Eifel it also prevents growth of rto,
653			 * but also it limits too fast rto decreases,
654			 * happening in pure Eifel.
655			 */
656			if (m > 0)
657				m >>= 3;
658		} else {
659			m -= (tp->mdev >> 2);   /* similar update on mdev */
660		}
661		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
662		if (tp->mdev > tp->mdev_max) {
663			tp->mdev_max = tp->mdev;
664			if (tp->mdev_max > tp->rttvar)
665				tp->rttvar = tp->mdev_max;
666		}
667		if (after(tp->snd_una, tp->rtt_seq)) {
668			if (tp->mdev_max < tp->rttvar)
669				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
670			tp->rtt_seq = tp->snd_nxt;
671			tp->mdev_max = tcp_rto_min(sk);
672		}
673	} else {
674		/* no previous measure. */
675		tp->srtt = m << 3;	/* take the measured time to be rtt */
676		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
677		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
678		tp->rtt_seq = tp->snd_nxt;
679	}
680}
681
682/* Calculate rto without backoff.  This is the second half of Van Jacobson's
683 * routine referred to above.
684 */
685static inline void tcp_set_rto(struct sock *sk)
686{
687	const struct tcp_sock *tp = tcp_sk(sk);
688	/* Old crap is replaced with new one. 8)
689	 *
690	 * More seriously:
691	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692	 *    It cannot be less due to utterly erratic ACK generation made
693	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694	 *    to do with delayed acks, because at cwnd>2 true delack timeout
695	 *    is invisible. Actually, Linux-2.4 also generates erratic
696	 *    ACKs in some circumstances.
697	 */
698	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
699
700	/* 2. Fixups made earlier cannot be right.
701	 *    If we do not estimate RTO correctly without them,
702	 *    all the algo is pure shit and should be replaced
703	 *    with correct one. It is exactly, which we pretend to do.
704	 */
705
706	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707	 * guarantees that rto is higher.
708	 */
709	tcp_bound_rto(sk);
710}
711
712/* Save metrics learned by this TCP session.
713   This function is called only, when TCP finishes successfully
714   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715 */
716void tcp_update_metrics(struct sock *sk)
717{
718	struct tcp_sock *tp = tcp_sk(sk);
719	struct dst_entry *dst = __sk_dst_get(sk);
720
721	if (sysctl_tcp_nometrics_save)
722		return;
723
724	dst_confirm(dst);
725
726	if (dst && (dst->flags & DST_HOST)) {
727		const struct inet_connection_sock *icsk = inet_csk(sk);
728		int m;
729		unsigned long rtt;
730
731		if (icsk->icsk_backoff || !tp->srtt) {
732			/* This session failed to estimate rtt. Why?
733			 * Probably, no packets returned in time.
734			 * Reset our results.
735			 */
736			if (!(dst_metric_locked(dst, RTAX_RTT)))
737				dst_metric_set(dst, RTAX_RTT, 0);
738			return;
739		}
740
741		rtt = dst_metric_rtt(dst, RTAX_RTT);
742		m = rtt - tp->srtt;
743
744		/* If newly calculated rtt larger than stored one,
745		 * store new one. Otherwise, use EWMA. Remember,
746		 * rtt overestimation is always better than underestimation.
747		 */
748		if (!(dst_metric_locked(dst, RTAX_RTT))) {
749			if (m <= 0)
750				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
751			else
752				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
753		}
754
755		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
756			unsigned long var;
757			if (m < 0)
758				m = -m;
759
760			/* Scale deviation to rttvar fixed point */
761			m >>= 1;
762			if (m < tp->mdev)
763				m = tp->mdev;
764
765			var = dst_metric_rtt(dst, RTAX_RTTVAR);
766			if (m >= var)
767				var = m;
768			else
769				var -= (var - m) >> 2;
770
771			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
772		}
773
774		if (tcp_in_initial_slowstart(tp)) {
775			/* Slow start still did not finish. */
776			if (dst_metric(dst, RTAX_SSTHRESH) &&
777			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
780			if (!dst_metric_locked(dst, RTAX_CWND) &&
781			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
783		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
784			   icsk->icsk_ca_state == TCP_CA_Open) {
785			/* Cong. avoidance phase, cwnd is reliable. */
786			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787				dst_metric_set(dst, RTAX_SSTHRESH,
788					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
789			if (!dst_metric_locked(dst, RTAX_CWND))
790				dst_metric_set(dst, RTAX_CWND,
791					       (dst_metric(dst, RTAX_CWND) +
792						tp->snd_cwnd) >> 1);
793		} else {
794			/* Else slow start did not finish, cwnd is non-sense,
795			   ssthresh may be also invalid.
796			 */
797			if (!dst_metric_locked(dst, RTAX_CWND))
798				dst_metric_set(dst, RTAX_CWND,
799					       (dst_metric(dst, RTAX_CWND) +
800						tp->snd_ssthresh) >> 1);
801			if (dst_metric(dst, RTAX_SSTHRESH) &&
802			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
804				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
805		}
806
807		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
809			    tp->reordering != sysctl_tcp_reordering)
810				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
811		}
812	}
813}
814
815__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
816{
817	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
818
819	if (!cwnd)
820		cwnd = TCP_INIT_CWND;
821	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
822}
823
824/* Set slow start threshold and cwnd not falling to slow start */
825void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
826{
827	struct tcp_sock *tp = tcp_sk(sk);
828	const struct inet_connection_sock *icsk = inet_csk(sk);
829
830	tp->prior_ssthresh = 0;
831	tp->bytes_acked = 0;
832	if (icsk->icsk_ca_state < TCP_CA_CWR) {
833		tp->undo_marker = 0;
834		if (set_ssthresh)
835			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
836		tp->snd_cwnd = min(tp->snd_cwnd,
837				   tcp_packets_in_flight(tp) + 1U);
838		tp->snd_cwnd_cnt = 0;
839		tp->high_seq = tp->snd_nxt;
840		tp->snd_cwnd_stamp = tcp_time_stamp;
841		TCP_ECN_queue_cwr(tp);
842
843		tcp_set_ca_state(sk, TCP_CA_CWR);
844	}
845}
846
847/*
848 * Packet counting of FACK is based on in-order assumptions, therefore TCP
849 * disables it when reordering is detected
850 */
851static void tcp_disable_fack(struct tcp_sock *tp)
852{
853	/* RFC3517 uses different metric in lost marker => reset on change */
854	if (tcp_is_fack(tp))
855		tp->lost_skb_hint = NULL;
856	tp->rx_opt.sack_ok &= ~2;
857}
858
859/* Take a notice that peer is sending D-SACKs */
860static void tcp_dsack_seen(struct tcp_sock *tp)
861{
862	tp->rx_opt.sack_ok |= 4;
863}
864
865/* Initialize metrics on socket. */
866
867static void tcp_init_metrics(struct sock *sk)
868{
869	struct tcp_sock *tp = tcp_sk(sk);
870	struct dst_entry *dst = __sk_dst_get(sk);
871
872	if (dst == NULL)
873		goto reset;
874
875	dst_confirm(dst);
876
877	if (dst_metric_locked(dst, RTAX_CWND))
878		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
879	if (dst_metric(dst, RTAX_SSTHRESH)) {
880		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
881		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
882			tp->snd_ssthresh = tp->snd_cwnd_clamp;
883	}
884	if (dst_metric(dst, RTAX_REORDERING) &&
885	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
886		tcp_disable_fack(tp);
887		tp->reordering = dst_metric(dst, RTAX_REORDERING);
888	}
889
890	if (dst_metric(dst, RTAX_RTT) == 0)
891		goto reset;
892
893	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
894		goto reset;
895
896	/* Initial rtt is determined from SYN,SYN-ACK.
897	 * The segment is small and rtt may appear much
898	 * less than real one. Use per-dst memory
899	 * to make it more realistic.
900	 *
901	 * A bit of theory. RTT is time passed after "normal" sized packet
902	 * is sent until it is ACKed. In normal circumstances sending small
903	 * packets force peer to delay ACKs and calculation is correct too.
904	 * The algorithm is adaptive and, provided we follow specs, it
905	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
906	 * tricks sort of "quick acks" for time long enough to decrease RTT
907	 * to low value, and then abruptly stops to do it and starts to delay
908	 * ACKs, wait for troubles.
909	 */
910	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
911		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
912		tp->rtt_seq = tp->snd_nxt;
913	}
914	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
915		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
916		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
917	}
918	tcp_set_rto(sk);
919	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) {
920reset:
921		/* Play conservative. If timestamps are not
922		 * supported, TCP will fail to recalculate correct
923		 * rtt, if initial rto is too small. FORGET ALL AND RESET!
924		 */
925		if (!tp->rx_opt.saw_tstamp && tp->srtt) {
926			tp->srtt = 0;
927			tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
928			inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
929		}
930	}
931	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932	tp->snd_cwnd_stamp = tcp_time_stamp;
933}
934
935static void tcp_update_reordering(struct sock *sk, const int metric,
936				  const int ts)
937{
938	struct tcp_sock *tp = tcp_sk(sk);
939	if (metric > tp->reordering) {
940		int mib_idx;
941
942		tp->reordering = min(TCP_MAX_REORDERING, metric);
943
944		/* This exciting event is worth to be remembered. 8) */
945		if (ts)
946			mib_idx = LINUX_MIB_TCPTSREORDER;
947		else if (tcp_is_reno(tp))
948			mib_idx = LINUX_MIB_TCPRENOREORDER;
949		else if (tcp_is_fack(tp))
950			mib_idx = LINUX_MIB_TCPFACKREORDER;
951		else
952			mib_idx = LINUX_MIB_TCPSACKREORDER;
953
954		NET_INC_STATS_BH(sock_net(sk), mib_idx);
955#if FASTRETRANS_DEBUG > 1
956		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
957		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
958		       tp->reordering,
959		       tp->fackets_out,
960		       tp->sacked_out,
961		       tp->undo_marker ? tp->undo_retrans : 0);
962#endif
963		tcp_disable_fack(tp);
964	}
965}
966
967/* This must be called before lost_out is incremented */
968static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
969{
970	if ((tp->retransmit_skb_hint == NULL) ||
971	    before(TCP_SKB_CB(skb)->seq,
972		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
973		tp->retransmit_skb_hint = skb;
974
975	if (!tp->lost_out ||
976	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
977		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
978}
979
980static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
981{
982	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
983		tcp_verify_retransmit_hint(tp, skb);
984
985		tp->lost_out += tcp_skb_pcount(skb);
986		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
987	}
988}
989
990static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
991					    struct sk_buff *skb)
992{
993	tcp_verify_retransmit_hint(tp, skb);
994
995	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
996		tp->lost_out += tcp_skb_pcount(skb);
997		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
998	}
999}
1000
1001/* This procedure tags the retransmission queue when SACKs arrive.
1002 *
1003 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1004 * Packets in queue with these bits set are counted in variables
1005 * sacked_out, retrans_out and lost_out, correspondingly.
1006 *
1007 * Valid combinations are:
1008 * Tag  InFlight	Description
1009 * 0	1		- orig segment is in flight.
1010 * S	0		- nothing flies, orig reached receiver.
1011 * L	0		- nothing flies, orig lost by net.
1012 * R	2		- both orig and retransmit are in flight.
1013 * L|R	1		- orig is lost, retransmit is in flight.
1014 * S|R  1		- orig reached receiver, retrans is still in flight.
1015 * (L|S|R is logically valid, it could occur when L|R is sacked,
1016 *  but it is equivalent to plain S and code short-curcuits it to S.
1017 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1018 *
1019 * These 6 states form finite state machine, controlled by the following events:
1020 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1021 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1022 * 3. Loss detection event of one of three flavors:
1023 *	A. Scoreboard estimator decided the packet is lost.
1024 *	   A'. Reno "three dupacks" marks head of queue lost.
1025 *	   A''. Its FACK modfication, head until snd.fack is lost.
1026 *	B. SACK arrives sacking data transmitted after never retransmitted
1027 *	   hole was sent out.
1028 *	C. SACK arrives sacking SND.NXT at the moment, when the
1029 *	   segment was retransmitted.
1030 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1031 *
1032 * It is pleasant to note, that state diagram turns out to be commutative,
1033 * so that we are allowed not to be bothered by order of our actions,
1034 * when multiple events arrive simultaneously. (see the function below).
1035 *
1036 * Reordering detection.
1037 * --------------------
1038 * Reordering metric is maximal distance, which a packet can be displaced
1039 * in packet stream. With SACKs we can estimate it:
1040 *
1041 * 1. SACK fills old hole and the corresponding segment was not
1042 *    ever retransmitted -> reordering. Alas, we cannot use it
1043 *    when segment was retransmitted.
1044 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1045 *    for retransmitted and already SACKed segment -> reordering..
1046 * Both of these heuristics are not used in Loss state, when we cannot
1047 * account for retransmits accurately.
1048 *
1049 * SACK block validation.
1050 * ----------------------
1051 *
1052 * SACK block range validation checks that the received SACK block fits to
1053 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1054 * Note that SND.UNA is not included to the range though being valid because
1055 * it means that the receiver is rather inconsistent with itself reporting
1056 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1057 * perfectly valid, however, in light of RFC2018 which explicitly states
1058 * that "SACK block MUST reflect the newest segment.  Even if the newest
1059 * segment is going to be discarded ...", not that it looks very clever
1060 * in case of head skb. Due to potentional receiver driven attacks, we
1061 * choose to avoid immediate execution of a walk in write queue due to
1062 * reneging and defer head skb's loss recovery to standard loss recovery
1063 * procedure that will eventually trigger (nothing forbids us doing this).
1064 *
1065 * Implements also blockage to start_seq wrap-around. Problem lies in the
1066 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1067 * there's no guarantee that it will be before snd_nxt (n). The problem
1068 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1069 * wrap (s_w):
1070 *
1071 *         <- outs wnd ->                          <- wrapzone ->
1072 *         u     e      n                         u_w   e_w  s n_w
1073 *         |     |      |                          |     |   |  |
1074 * |<------------+------+----- TCP seqno space --------------+---------->|
1075 * ...-- <2^31 ->|                                           |<--------...
1076 * ...---- >2^31 ------>|                                    |<--------...
1077 *
1078 * Current code wouldn't be vulnerable but it's better still to discard such
1079 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1080 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1081 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1082 * equal to the ideal case (infinite seqno space without wrap caused issues).
1083 *
1084 * With D-SACK the lower bound is extended to cover sequence space below
1085 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1086 * again, D-SACK block must not to go across snd_una (for the same reason as
1087 * for the normal SACK blocks, explained above). But there all simplicity
1088 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1089 * fully below undo_marker they do not affect behavior in anyway and can
1090 * therefore be safely ignored. In rare cases (which are more or less
1091 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1092 * fragmentation and packet reordering past skb's retransmission. To consider
1093 * them correctly, the acceptable range must be extended even more though
1094 * the exact amount is rather hard to quantify. However, tp->max_window can
1095 * be used as an exaggerated estimate.
1096 */
1097static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1098				  u32 start_seq, u32 end_seq)
1099{
1100	/* Too far in future, or reversed (interpretation is ambiguous) */
1101	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1102		return 0;
1103
1104	/* Nasty start_seq wrap-around check (see comments above) */
1105	if (!before(start_seq, tp->snd_nxt))
1106		return 0;
1107
1108	/* In outstanding window? ...This is valid exit for D-SACKs too.
1109	 * start_seq == snd_una is non-sensical (see comments above)
1110	 */
1111	if (after(start_seq, tp->snd_una))
1112		return 1;
1113
1114	if (!is_dsack || !tp->undo_marker)
1115		return 0;
1116
1117	/* ...Then it's D-SACK, and must reside below snd_una completely */
1118	if (!after(end_seq, tp->snd_una))
1119		return 0;
1120
1121	if (!before(start_seq, tp->undo_marker))
1122		return 1;
1123
1124	/* Too old */
1125	if (!after(end_seq, tp->undo_marker))
1126		return 0;
1127
1128	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1129	 *   start_seq < undo_marker and end_seq >= undo_marker.
1130	 */
1131	return !before(start_seq, end_seq - tp->max_window);
1132}
1133
1134/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1135 * Event "C". Later note: FACK people cheated me again 8), we have to account
1136 * for reordering! Ugly, but should help.
1137 *
1138 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1139 * less than what is now known to be received by the other end (derived from
1140 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1141 * retransmitted skbs to avoid some costly processing per ACKs.
1142 */
1143static void tcp_mark_lost_retrans(struct sock *sk)
1144{
1145	const struct inet_connection_sock *icsk = inet_csk(sk);
1146	struct tcp_sock *tp = tcp_sk(sk);
1147	struct sk_buff *skb;
1148	int cnt = 0;
1149	u32 new_low_seq = tp->snd_nxt;
1150	u32 received_upto = tcp_highest_sack_seq(tp);
1151
1152	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1153	    !after(received_upto, tp->lost_retrans_low) ||
1154	    icsk->icsk_ca_state != TCP_CA_Recovery)
1155		return;
1156
1157	tcp_for_write_queue(skb, sk) {
1158		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1159
1160		if (skb == tcp_send_head(sk))
1161			break;
1162		if (cnt == tp->retrans_out)
1163			break;
1164		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1165			continue;
1166
1167		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1168			continue;
1169
1170		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1171		 * constraint here (see above) but figuring out that at
1172		 * least tp->reordering SACK blocks reside between ack_seq
1173		 * and received_upto is not easy task to do cheaply with
1174		 * the available datastructures.
1175		 *
1176		 * Whether FACK should check here for tp->reordering segs
1177		 * in-between one could argue for either way (it would be
1178		 * rather simple to implement as we could count fack_count
1179		 * during the walk and do tp->fackets_out - fack_count).
1180		 */
1181		if (after(received_upto, ack_seq)) {
1182			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1183			tp->retrans_out -= tcp_skb_pcount(skb);
1184
1185			tcp_skb_mark_lost_uncond_verify(tp, skb);
1186			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1187		} else {
1188			if (before(ack_seq, new_low_seq))
1189				new_low_seq = ack_seq;
1190			cnt += tcp_skb_pcount(skb);
1191		}
1192	}
1193
1194	if (tp->retrans_out)
1195		tp->lost_retrans_low = new_low_seq;
1196}
1197
1198static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1199			   struct tcp_sack_block_wire *sp, int num_sacks,
1200			   u32 prior_snd_una)
1201{
1202	struct tcp_sock *tp = tcp_sk(sk);
1203	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1204	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1205	int dup_sack = 0;
1206
1207	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1208		dup_sack = 1;
1209		tcp_dsack_seen(tp);
1210		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1211	} else if (num_sacks > 1) {
1212		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1213		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1214
1215		if (!after(end_seq_0, end_seq_1) &&
1216		    !before(start_seq_0, start_seq_1)) {
1217			dup_sack = 1;
1218			tcp_dsack_seen(tp);
1219			NET_INC_STATS_BH(sock_net(sk),
1220					LINUX_MIB_TCPDSACKOFORECV);
1221		}
1222	}
1223
1224	/* D-SACK for already forgotten data... Do dumb counting. */
1225	if (dup_sack &&
1226	    !after(end_seq_0, prior_snd_una) &&
1227	    after(end_seq_0, tp->undo_marker))
1228		tp->undo_retrans--;
1229
1230	return dup_sack;
1231}
1232
1233struct tcp_sacktag_state {
1234	int reord;
1235	int fack_count;
1236	int flag;
1237};
1238
1239/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1240 * the incoming SACK may not exactly match but we can find smaller MSS
1241 * aligned portion of it that matches. Therefore we might need to fragment
1242 * which may fail and creates some hassle (caller must handle error case
1243 * returns).
1244 *
1245 * FIXME: this could be merged to shift decision code
1246 */
1247static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1248				 u32 start_seq, u32 end_seq)
1249{
1250	int in_sack, err;
1251	unsigned int pkt_len;
1252	unsigned int mss;
1253
1254	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1255		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1256
1257	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1258	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1259		mss = tcp_skb_mss(skb);
1260		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1261
1262		if (!in_sack) {
1263			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1264			if (pkt_len < mss)
1265				pkt_len = mss;
1266		} else {
1267			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1268			if (pkt_len < mss)
1269				return -EINVAL;
1270		}
1271
1272		/* Round if necessary so that SACKs cover only full MSSes
1273		 * and/or the remaining small portion (if present)
1274		 */
1275		if (pkt_len > mss) {
1276			unsigned int new_len = (pkt_len / mss) * mss;
1277			if (!in_sack && new_len < pkt_len) {
1278				new_len += mss;
1279				if (new_len > skb->len)
1280					return 0;
1281			}
1282			pkt_len = new_len;
1283		}
1284		err = tcp_fragment(sk, skb, pkt_len, mss);
1285		if (err < 0)
1286			return err;
1287	}
1288
1289	return in_sack;
1290}
1291
1292static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1293			  struct tcp_sacktag_state *state,
1294			  int dup_sack, int pcount)
1295{
1296	struct tcp_sock *tp = tcp_sk(sk);
1297	u8 sacked = TCP_SKB_CB(skb)->sacked;
1298	int fack_count = state->fack_count;
1299
1300	/* Account D-SACK for retransmitted packet. */
1301	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1302		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1303			tp->undo_retrans--;
1304		if (sacked & TCPCB_SACKED_ACKED)
1305			state->reord = min(fack_count, state->reord);
1306	}
1307
1308	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1309	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1310		return sacked;
1311
1312	if (!(sacked & TCPCB_SACKED_ACKED)) {
1313		if (sacked & TCPCB_SACKED_RETRANS) {
1314			/* If the segment is not tagged as lost,
1315			 * we do not clear RETRANS, believing
1316			 * that retransmission is still in flight.
1317			 */
1318			if (sacked & TCPCB_LOST) {
1319				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1320				tp->lost_out -= pcount;
1321				tp->retrans_out -= pcount;
1322			}
1323		} else {
1324			if (!(sacked & TCPCB_RETRANS)) {
1325				/* New sack for not retransmitted frame,
1326				 * which was in hole. It is reordering.
1327				 */
1328				if (before(TCP_SKB_CB(skb)->seq,
1329					   tcp_highest_sack_seq(tp)))
1330					state->reord = min(fack_count,
1331							   state->reord);
1332
1333				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1334				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1335					state->flag |= FLAG_ONLY_ORIG_SACKED;
1336			}
1337
1338			if (sacked & TCPCB_LOST) {
1339				sacked &= ~TCPCB_LOST;
1340				tp->lost_out -= pcount;
1341			}
1342		}
1343
1344		sacked |= TCPCB_SACKED_ACKED;
1345		state->flag |= FLAG_DATA_SACKED;
1346		tp->sacked_out += pcount;
1347
1348		fack_count += pcount;
1349
1350		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1351		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1352		    before(TCP_SKB_CB(skb)->seq,
1353			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1354			tp->lost_cnt_hint += pcount;
1355
1356		if (fack_count > tp->fackets_out)
1357			tp->fackets_out = fack_count;
1358	}
1359
1360	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1361	 * frames and clear it. undo_retrans is decreased above, L|R frames
1362	 * are accounted above as well.
1363	 */
1364	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1365		sacked &= ~TCPCB_SACKED_RETRANS;
1366		tp->retrans_out -= pcount;
1367	}
1368
1369	return sacked;
1370}
1371
1372static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1373			   struct tcp_sacktag_state *state,
1374			   unsigned int pcount, int shifted, int mss,
1375			   int dup_sack)
1376{
1377	struct tcp_sock *tp = tcp_sk(sk);
1378	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1379
1380	BUG_ON(!pcount);
1381
1382	/* Tweak before seqno plays */
1383	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1384	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1385		tp->lost_cnt_hint += pcount;
1386
1387	TCP_SKB_CB(prev)->end_seq += shifted;
1388	TCP_SKB_CB(skb)->seq += shifted;
1389
1390	skb_shinfo(prev)->gso_segs += pcount;
1391	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1392	skb_shinfo(skb)->gso_segs -= pcount;
1393
1394	/* When we're adding to gso_segs == 1, gso_size will be zero,
1395	 * in theory this shouldn't be necessary but as long as DSACK
1396	 * code can come after this skb later on it's better to keep
1397	 * setting gso_size to something.
1398	 */
1399	if (!skb_shinfo(prev)->gso_size) {
1400		skb_shinfo(prev)->gso_size = mss;
1401		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1402	}
1403
1404	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1405	if (skb_shinfo(skb)->gso_segs <= 1) {
1406		skb_shinfo(skb)->gso_size = 0;
1407		skb_shinfo(skb)->gso_type = 0;
1408	}
1409
1410	/* We discard results */
1411	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1412
1413	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1414	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1415
1416	if (skb->len > 0) {
1417		BUG_ON(!tcp_skb_pcount(skb));
1418		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1419		return 0;
1420	}
1421
1422	/* Whole SKB was eaten :-) */
1423
1424	if (skb == tp->retransmit_skb_hint)
1425		tp->retransmit_skb_hint = prev;
1426	if (skb == tp->scoreboard_skb_hint)
1427		tp->scoreboard_skb_hint = prev;
1428	if (skb == tp->lost_skb_hint) {
1429		tp->lost_skb_hint = prev;
1430		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1431	}
1432
1433	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1434	if (skb == tcp_highest_sack(sk))
1435		tcp_advance_highest_sack(sk, skb);
1436
1437	tcp_unlink_write_queue(skb, sk);
1438	sk_wmem_free_skb(sk, skb);
1439
1440	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1441
1442	return 1;
1443}
1444
1445/* I wish gso_size would have a bit more sane initialization than
1446 * something-or-zero which complicates things
1447 */
1448static int tcp_skb_seglen(struct sk_buff *skb)
1449{
1450	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1451}
1452
1453/* Shifting pages past head area doesn't work */
1454static int skb_can_shift(struct sk_buff *skb)
1455{
1456	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1457}
1458
1459/* Try collapsing SACK blocks spanning across multiple skbs to a single
1460 * skb.
1461 */
1462static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1463					  struct tcp_sacktag_state *state,
1464					  u32 start_seq, u32 end_seq,
1465					  int dup_sack)
1466{
1467	struct tcp_sock *tp = tcp_sk(sk);
1468	struct sk_buff *prev;
1469	int mss;
1470	int pcount = 0;
1471	int len;
1472	int in_sack;
1473
1474	if (!sk_can_gso(sk))
1475		goto fallback;
1476
1477	/* Normally R but no L won't result in plain S */
1478	if (!dup_sack &&
1479	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1480		goto fallback;
1481	if (!skb_can_shift(skb))
1482		goto fallback;
1483	/* This frame is about to be dropped (was ACKed). */
1484	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1485		goto fallback;
1486
1487	/* Can only happen with delayed DSACK + discard craziness */
1488	if (unlikely(skb == tcp_write_queue_head(sk)))
1489		goto fallback;
1490	prev = tcp_write_queue_prev(sk, skb);
1491
1492	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1493		goto fallback;
1494
1495	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1496		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1497
1498	if (in_sack) {
1499		len = skb->len;
1500		pcount = tcp_skb_pcount(skb);
1501		mss = tcp_skb_seglen(skb);
1502
1503		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1504		 * drop this restriction as unnecessary
1505		 */
1506		if (mss != tcp_skb_seglen(prev))
1507			goto fallback;
1508	} else {
1509		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1510			goto noop;
1511		/* CHECKME: This is non-MSS split case only?, this will
1512		 * cause skipped skbs due to advancing loop btw, original
1513		 * has that feature too
1514		 */
1515		if (tcp_skb_pcount(skb) <= 1)
1516			goto noop;
1517
1518		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1519		if (!in_sack) {
1520			/* TODO: head merge to next could be attempted here
1521			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1522			 * though it might not be worth of the additional hassle
1523			 *
1524			 * ...we can probably just fallback to what was done
1525			 * previously. We could try merging non-SACKed ones
1526			 * as well but it probably isn't going to buy off
1527			 * because later SACKs might again split them, and
1528			 * it would make skb timestamp tracking considerably
1529			 * harder problem.
1530			 */
1531			goto fallback;
1532		}
1533
1534		len = end_seq - TCP_SKB_CB(skb)->seq;
1535		BUG_ON(len < 0);
1536		BUG_ON(len > skb->len);
1537
1538		/* MSS boundaries should be honoured or else pcount will
1539		 * severely break even though it makes things bit trickier.
1540		 * Optimize common case to avoid most of the divides
1541		 */
1542		mss = tcp_skb_mss(skb);
1543
1544		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1545		 * drop this restriction as unnecessary
1546		 */
1547		if (mss != tcp_skb_seglen(prev))
1548			goto fallback;
1549
1550		if (len == mss) {
1551			pcount = 1;
1552		} else if (len < mss) {
1553			goto noop;
1554		} else {
1555			pcount = len / mss;
1556			len = pcount * mss;
1557		}
1558	}
1559
1560	if (!skb_shift(prev, skb, len))
1561		goto fallback;
1562	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1563		goto out;
1564
1565	/* Hole filled allows collapsing with the next as well, this is very
1566	 * useful when hole on every nth skb pattern happens
1567	 */
1568	if (prev == tcp_write_queue_tail(sk))
1569		goto out;
1570	skb = tcp_write_queue_next(sk, prev);
1571
1572	if (!skb_can_shift(skb) ||
1573	    (skb == tcp_send_head(sk)) ||
1574	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1575	    (mss != tcp_skb_seglen(skb)))
1576		goto out;
1577
1578	len = skb->len;
1579	if (skb_shift(prev, skb, len)) {
1580		pcount += tcp_skb_pcount(skb);
1581		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1582	}
1583
1584out:
1585	state->fack_count += pcount;
1586	return prev;
1587
1588noop:
1589	return skb;
1590
1591fallback:
1592	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1593	return NULL;
1594}
1595
1596static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1597					struct tcp_sack_block *next_dup,
1598					struct tcp_sacktag_state *state,
1599					u32 start_seq, u32 end_seq,
1600					int dup_sack_in)
1601{
1602	struct tcp_sock *tp = tcp_sk(sk);
1603	struct sk_buff *tmp;
1604
1605	tcp_for_write_queue_from(skb, sk) {
1606		int in_sack = 0;
1607		int dup_sack = dup_sack_in;
1608
1609		if (skb == tcp_send_head(sk))
1610			break;
1611
1612		/* queue is in-order => we can short-circuit the walk early */
1613		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1614			break;
1615
1616		if ((next_dup != NULL) &&
1617		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1618			in_sack = tcp_match_skb_to_sack(sk, skb,
1619							next_dup->start_seq,
1620							next_dup->end_seq);
1621			if (in_sack > 0)
1622				dup_sack = 1;
1623		}
1624
1625		/* skb reference here is a bit tricky to get right, since
1626		 * shifting can eat and free both this skb and the next,
1627		 * so not even _safe variant of the loop is enough.
1628		 */
1629		if (in_sack <= 0) {
1630			tmp = tcp_shift_skb_data(sk, skb, state,
1631						 start_seq, end_seq, dup_sack);
1632			if (tmp != NULL) {
1633				if (tmp != skb) {
1634					skb = tmp;
1635					continue;
1636				}
1637
1638				in_sack = 0;
1639			} else {
1640				in_sack = tcp_match_skb_to_sack(sk, skb,
1641								start_seq,
1642								end_seq);
1643			}
1644		}
1645
1646		if (unlikely(in_sack < 0))
1647			break;
1648
1649		if (in_sack) {
1650			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1651								  state,
1652								  dup_sack,
1653								  tcp_skb_pcount(skb));
1654
1655			if (!before(TCP_SKB_CB(skb)->seq,
1656				    tcp_highest_sack_seq(tp)))
1657				tcp_advance_highest_sack(sk, skb);
1658		}
1659
1660		state->fack_count += tcp_skb_pcount(skb);
1661	}
1662	return skb;
1663}
1664
1665/* Avoid all extra work that is being done by sacktag while walking in
1666 * a normal way
1667 */
1668static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1669					struct tcp_sacktag_state *state,
1670					u32 skip_to_seq)
1671{
1672	tcp_for_write_queue_from(skb, sk) {
1673		if (skb == tcp_send_head(sk))
1674			break;
1675
1676		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1677			break;
1678
1679		state->fack_count += tcp_skb_pcount(skb);
1680	}
1681	return skb;
1682}
1683
1684static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1685						struct sock *sk,
1686						struct tcp_sack_block *next_dup,
1687						struct tcp_sacktag_state *state,
1688						u32 skip_to_seq)
1689{
1690	if (next_dup == NULL)
1691		return skb;
1692
1693	if (before(next_dup->start_seq, skip_to_seq)) {
1694		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1695		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1696				       next_dup->start_seq, next_dup->end_seq,
1697				       1);
1698	}
1699
1700	return skb;
1701}
1702
1703static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1704{
1705	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1706}
1707
1708static int
1709tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1710			u32 prior_snd_una)
1711{
1712	const struct inet_connection_sock *icsk = inet_csk(sk);
1713	struct tcp_sock *tp = tcp_sk(sk);
1714	unsigned char *ptr = (skb_transport_header(ack_skb) +
1715			      TCP_SKB_CB(ack_skb)->sacked);
1716	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1717	struct tcp_sack_block sp[TCP_NUM_SACKS];
1718	struct tcp_sack_block *cache;
1719	struct tcp_sacktag_state state;
1720	struct sk_buff *skb;
1721	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1722	int used_sacks;
1723	int found_dup_sack = 0;
1724	int i, j;
1725	int first_sack_index;
1726
1727	state.flag = 0;
1728	state.reord = tp->packets_out;
1729
1730	if (!tp->sacked_out) {
1731		if (WARN_ON(tp->fackets_out))
1732			tp->fackets_out = 0;
1733		tcp_highest_sack_reset(sk);
1734	}
1735
1736	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1737					 num_sacks, prior_snd_una);
1738	if (found_dup_sack)
1739		state.flag |= FLAG_DSACKING_ACK;
1740
1741	/* Eliminate too old ACKs, but take into
1742	 * account more or less fresh ones, they can
1743	 * contain valid SACK info.
1744	 */
1745	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1746		return 0;
1747
1748	if (!tp->packets_out)
1749		goto out;
1750
1751	used_sacks = 0;
1752	first_sack_index = 0;
1753	for (i = 0; i < num_sacks; i++) {
1754		int dup_sack = !i && found_dup_sack;
1755
1756		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1757		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1758
1759		if (!tcp_is_sackblock_valid(tp, dup_sack,
1760					    sp[used_sacks].start_seq,
1761					    sp[used_sacks].end_seq)) {
1762			int mib_idx;
1763
1764			if (dup_sack) {
1765				if (!tp->undo_marker)
1766					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1767				else
1768					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1769			} else {
1770				/* Don't count olds caused by ACK reordering */
1771				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1772				    !after(sp[used_sacks].end_seq, tp->snd_una))
1773					continue;
1774				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1775			}
1776
1777			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1778			if (i == 0)
1779				first_sack_index = -1;
1780			continue;
1781		}
1782
1783		/* Ignore very old stuff early */
1784		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1785			continue;
1786
1787		used_sacks++;
1788	}
1789
1790	/* order SACK blocks to allow in order walk of the retrans queue */
1791	for (i = used_sacks - 1; i > 0; i--) {
1792		for (j = 0; j < i; j++) {
1793			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1794				swap(sp[j], sp[j + 1]);
1795
1796				/* Track where the first SACK block goes to */
1797				if (j == first_sack_index)
1798					first_sack_index = j + 1;
1799			}
1800		}
1801	}
1802
1803	skb = tcp_write_queue_head(sk);
1804	state.fack_count = 0;
1805	i = 0;
1806
1807	if (!tp->sacked_out) {
1808		/* It's already past, so skip checking against it */
1809		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1810	} else {
1811		cache = tp->recv_sack_cache;
1812		/* Skip empty blocks in at head of the cache */
1813		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1814		       !cache->end_seq)
1815			cache++;
1816	}
1817
1818	while (i < used_sacks) {
1819		u32 start_seq = sp[i].start_seq;
1820		u32 end_seq = sp[i].end_seq;
1821		int dup_sack = (found_dup_sack && (i == first_sack_index));
1822		struct tcp_sack_block *next_dup = NULL;
1823
1824		if (found_dup_sack && ((i + 1) == first_sack_index))
1825			next_dup = &sp[i + 1];
1826
1827		/* Event "B" in the comment above. */
1828		if (after(end_seq, tp->high_seq))
1829			state.flag |= FLAG_DATA_LOST;
1830
1831		/* Skip too early cached blocks */
1832		while (tcp_sack_cache_ok(tp, cache) &&
1833		       !before(start_seq, cache->end_seq))
1834			cache++;
1835
1836		/* Can skip some work by looking recv_sack_cache? */
1837		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1838		    after(end_seq, cache->start_seq)) {
1839
1840			/* Head todo? */
1841			if (before(start_seq, cache->start_seq)) {
1842				skb = tcp_sacktag_skip(skb, sk, &state,
1843						       start_seq);
1844				skb = tcp_sacktag_walk(skb, sk, next_dup,
1845						       &state,
1846						       start_seq,
1847						       cache->start_seq,
1848						       dup_sack);
1849			}
1850
1851			/* Rest of the block already fully processed? */
1852			if (!after(end_seq, cache->end_seq))
1853				goto advance_sp;
1854
1855			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1856						       &state,
1857						       cache->end_seq);
1858
1859			/* ...tail remains todo... */
1860			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1861				/* ...but better entrypoint exists! */
1862				skb = tcp_highest_sack(sk);
1863				if (skb == NULL)
1864					break;
1865				state.fack_count = tp->fackets_out;
1866				cache++;
1867				goto walk;
1868			}
1869
1870			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1871			/* Check overlap against next cached too (past this one already) */
1872			cache++;
1873			continue;
1874		}
1875
1876		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1877			skb = tcp_highest_sack(sk);
1878			if (skb == NULL)
1879				break;
1880			state.fack_count = tp->fackets_out;
1881		}
1882		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1883
1884walk:
1885		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1886				       start_seq, end_seq, dup_sack);
1887
1888advance_sp:
1889		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1890		 * due to in-order walk
1891		 */
1892		if (after(end_seq, tp->frto_highmark))
1893			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1894
1895		i++;
1896	}
1897
1898	/* Clear the head of the cache sack blocks so we can skip it next time */
1899	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1900		tp->recv_sack_cache[i].start_seq = 0;
1901		tp->recv_sack_cache[i].end_seq = 0;
1902	}
1903	for (j = 0; j < used_sacks; j++)
1904		tp->recv_sack_cache[i++] = sp[j];
1905
1906	tcp_mark_lost_retrans(sk);
1907
1908	tcp_verify_left_out(tp);
1909
1910	if ((state.reord < tp->fackets_out) &&
1911	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1912	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1913		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1914
1915out:
1916
1917#if FASTRETRANS_DEBUG > 0
1918	WARN_ON((int)tp->sacked_out < 0);
1919	WARN_ON((int)tp->lost_out < 0);
1920	WARN_ON((int)tp->retrans_out < 0);
1921	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1922#endif
1923	return state.flag;
1924}
1925
1926/* Limits sacked_out so that sum with lost_out isn't ever larger than
1927 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1928 */
1929static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1930{
1931	u32 holes;
1932
1933	holes = max(tp->lost_out, 1U);
1934	holes = min(holes, tp->packets_out);
1935
1936	if ((tp->sacked_out + holes) > tp->packets_out) {
1937		tp->sacked_out = tp->packets_out - holes;
1938		return 1;
1939	}
1940	return 0;
1941}
1942
1943/* If we receive more dupacks than we expected counting segments
1944 * in assumption of absent reordering, interpret this as reordering.
1945 * The only another reason could be bug in receiver TCP.
1946 */
1947static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1948{
1949	struct tcp_sock *tp = tcp_sk(sk);
1950	if (tcp_limit_reno_sacked(tp))
1951		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1952}
1953
1954/* Emulate SACKs for SACKless connection: account for a new dupack. */
1955
1956static void tcp_add_reno_sack(struct sock *sk)
1957{
1958	struct tcp_sock *tp = tcp_sk(sk);
1959	tp->sacked_out++;
1960	tcp_check_reno_reordering(sk, 0);
1961	tcp_verify_left_out(tp);
1962}
1963
1964/* Account for ACK, ACKing some data in Reno Recovery phase. */
1965
1966static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1967{
1968	struct tcp_sock *tp = tcp_sk(sk);
1969
1970	if (acked > 0) {
1971		/* One ACK acked hole. The rest eat duplicate ACKs. */
1972		if (acked - 1 >= tp->sacked_out)
1973			tp->sacked_out = 0;
1974		else
1975			tp->sacked_out -= acked - 1;
1976	}
1977	tcp_check_reno_reordering(sk, acked);
1978	tcp_verify_left_out(tp);
1979}
1980
1981static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1982{
1983	tp->sacked_out = 0;
1984}
1985
1986static int tcp_is_sackfrto(const struct tcp_sock *tp)
1987{
1988	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1989}
1990
1991/* F-RTO can only be used if TCP has never retransmitted anything other than
1992 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1993 */
1994int tcp_use_frto(struct sock *sk)
1995{
1996	const struct tcp_sock *tp = tcp_sk(sk);
1997	const struct inet_connection_sock *icsk = inet_csk(sk);
1998	struct sk_buff *skb;
1999
2000	if (!sysctl_tcp_frto)
2001		return 0;
2002
2003	/* MTU probe and F-RTO won't really play nicely along currently */
2004	if (icsk->icsk_mtup.probe_size)
2005		return 0;
2006
2007	if (tcp_is_sackfrto(tp))
2008		return 1;
2009
2010	/* Avoid expensive walking of rexmit queue if possible */
2011	if (tp->retrans_out > 1)
2012		return 0;
2013
2014	skb = tcp_write_queue_head(sk);
2015	if (tcp_skb_is_last(sk, skb))
2016		return 1;
2017	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2018	tcp_for_write_queue_from(skb, sk) {
2019		if (skb == tcp_send_head(sk))
2020			break;
2021		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2022			return 0;
2023		/* Short-circuit when first non-SACKed skb has been checked */
2024		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2025			break;
2026	}
2027	return 1;
2028}
2029
2030/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2031 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2032 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2033 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2034 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2035 * bits are handled if the Loss state is really to be entered (in
2036 * tcp_enter_frto_loss).
2037 *
2038 * Do like tcp_enter_loss() would; when RTO expires the second time it
2039 * does:
2040 *  "Reduce ssthresh if it has not yet been made inside this window."
2041 */
2042void tcp_enter_frto(struct sock *sk)
2043{
2044	const struct inet_connection_sock *icsk = inet_csk(sk);
2045	struct tcp_sock *tp = tcp_sk(sk);
2046	struct sk_buff *skb;
2047
2048	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2049	    tp->snd_una == tp->high_seq ||
2050	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2051	     !icsk->icsk_retransmits)) {
2052		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2053		/* Our state is too optimistic in ssthresh() call because cwnd
2054		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2055		 * recovery has not yet completed. Pattern would be this: RTO,
2056		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2057		 * up here twice).
2058		 * RFC4138 should be more specific on what to do, even though
2059		 * RTO is quite unlikely to occur after the first Cumulative ACK
2060		 * due to back-off and complexity of triggering events ...
2061		 */
2062		if (tp->frto_counter) {
2063			u32 stored_cwnd;
2064			stored_cwnd = tp->snd_cwnd;
2065			tp->snd_cwnd = 2;
2066			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2067			tp->snd_cwnd = stored_cwnd;
2068		} else {
2069			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2070		}
2071		/* ... in theory, cong.control module could do "any tricks" in
2072		 * ssthresh(), which means that ca_state, lost bits and lost_out
2073		 * counter would have to be faked before the call occurs. We
2074		 * consider that too expensive, unlikely and hacky, so modules
2075		 * using these in ssthresh() must deal these incompatibility
2076		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2077		 */
2078		tcp_ca_event(sk, CA_EVENT_FRTO);
2079	}
2080
2081	tp->undo_marker = tp->snd_una;
2082	tp->undo_retrans = 0;
2083
2084	skb = tcp_write_queue_head(sk);
2085	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2086		tp->undo_marker = 0;
2087	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2088		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2089		tp->retrans_out -= tcp_skb_pcount(skb);
2090	}
2091	tcp_verify_left_out(tp);
2092
2093	/* Too bad if TCP was application limited */
2094	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2095
2096	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2097	 * The last condition is necessary at least in tp->frto_counter case.
2098	 */
2099	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2100	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2101	    after(tp->high_seq, tp->snd_una)) {
2102		tp->frto_highmark = tp->high_seq;
2103	} else {
2104		tp->frto_highmark = tp->snd_nxt;
2105	}
2106	tcp_set_ca_state(sk, TCP_CA_Disorder);
2107	tp->high_seq = tp->snd_nxt;
2108	tp->frto_counter = 1;
2109}
2110
2111/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2112 * which indicates that we should follow the traditional RTO recovery,
2113 * i.e. mark everything lost and do go-back-N retransmission.
2114 */
2115static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2116{
2117	struct tcp_sock *tp = tcp_sk(sk);
2118	struct sk_buff *skb;
2119
2120	tp->lost_out = 0;
2121	tp->retrans_out = 0;
2122	if (tcp_is_reno(tp))
2123		tcp_reset_reno_sack(tp);
2124
2125	tcp_for_write_queue(skb, sk) {
2126		if (skb == tcp_send_head(sk))
2127			break;
2128
2129		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2130		/*
2131		 * Count the retransmission made on RTO correctly (only when
2132		 * waiting for the first ACK and did not get it)...
2133		 */
2134		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2135			/* For some reason this R-bit might get cleared? */
2136			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2137				tp->retrans_out += tcp_skb_pcount(skb);
2138			/* ...enter this if branch just for the first segment */
2139			flag |= FLAG_DATA_ACKED;
2140		} else {
2141			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2142				tp->undo_marker = 0;
2143			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2144		}
2145
2146		/* Marking forward transmissions that were made after RTO lost
2147		 * can cause unnecessary retransmissions in some scenarios,
2148		 * SACK blocks will mitigate that in some but not in all cases.
2149		 * We used to not mark them but it was causing break-ups with
2150		 * receivers that do only in-order receival.
2151		 *
2152		 * TODO: we could detect presence of such receiver and select
2153		 * different behavior per flow.
2154		 */
2155		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2156			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2157			tp->lost_out += tcp_skb_pcount(skb);
2158			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2159		}
2160	}
2161	tcp_verify_left_out(tp);
2162
2163	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2164	tp->snd_cwnd_cnt = 0;
2165	tp->snd_cwnd_stamp = tcp_time_stamp;
2166	tp->frto_counter = 0;
2167	tp->bytes_acked = 0;
2168
2169	tp->reordering = min_t(unsigned int, tp->reordering,
2170			       sysctl_tcp_reordering);
2171	tcp_set_ca_state(sk, TCP_CA_Loss);
2172	tp->high_seq = tp->snd_nxt;
2173	TCP_ECN_queue_cwr(tp);
2174
2175	tcp_clear_all_retrans_hints(tp);
2176}
2177
2178static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2179{
2180	tp->retrans_out = 0;
2181	tp->lost_out = 0;
2182
2183	tp->undo_marker = 0;
2184	tp->undo_retrans = 0;
2185}
2186
2187void tcp_clear_retrans(struct tcp_sock *tp)
2188{
2189	tcp_clear_retrans_partial(tp);
2190
2191	tp->fackets_out = 0;
2192	tp->sacked_out = 0;
2193}
2194
2195/* Enter Loss state. If "how" is not zero, forget all SACK information
2196 * and reset tags completely, otherwise preserve SACKs. If receiver
2197 * dropped its ofo queue, we will know this due to reneging detection.
2198 */
2199void tcp_enter_loss(struct sock *sk, int how)
2200{
2201	const struct inet_connection_sock *icsk = inet_csk(sk);
2202	struct tcp_sock *tp = tcp_sk(sk);
2203	struct sk_buff *skb;
2204
2205	/* Reduce ssthresh if it has not yet been made inside this window. */
2206	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2207	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2208		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2209		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2210		tcp_ca_event(sk, CA_EVENT_LOSS);
2211	}
2212	tp->snd_cwnd	   = 1;
2213	tp->snd_cwnd_cnt   = 0;
2214	tp->snd_cwnd_stamp = tcp_time_stamp;
2215
2216	tp->bytes_acked = 0;
2217	tcp_clear_retrans_partial(tp);
2218
2219	if (tcp_is_reno(tp))
2220		tcp_reset_reno_sack(tp);
2221
2222	if (!how) {
2223		/* Push undo marker, if it was plain RTO and nothing
2224		 * was retransmitted. */
2225		tp->undo_marker = tp->snd_una;
2226	} else {
2227		tp->sacked_out = 0;
2228		tp->fackets_out = 0;
2229	}
2230	tcp_clear_all_retrans_hints(tp);
2231
2232	tcp_for_write_queue(skb, sk) {
2233		if (skb == tcp_send_head(sk))
2234			break;
2235
2236		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2237			tp->undo_marker = 0;
2238		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2239		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2240			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2241			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2242			tp->lost_out += tcp_skb_pcount(skb);
2243			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2244		}
2245	}
2246	tcp_verify_left_out(tp);
2247
2248	tp->reordering = min_t(unsigned int, tp->reordering,
2249			       sysctl_tcp_reordering);
2250	tcp_set_ca_state(sk, TCP_CA_Loss);
2251	tp->high_seq = tp->snd_nxt;
2252	TCP_ECN_queue_cwr(tp);
2253	/* Abort F-RTO algorithm if one is in progress */
2254	tp->frto_counter = 0;
2255}
2256
2257/* If ACK arrived pointing to a remembered SACK, it means that our
2258 * remembered SACKs do not reflect real state of receiver i.e.
2259 * receiver _host_ is heavily congested (or buggy).
2260 *
2261 * Do processing similar to RTO timeout.
2262 */
2263static int tcp_check_sack_reneging(struct sock *sk, int flag)
2264{
2265	if (flag & FLAG_SACK_RENEGING) {
2266		struct inet_connection_sock *icsk = inet_csk(sk);
2267		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2268
2269		tcp_enter_loss(sk, 1);
2270		icsk->icsk_retransmits++;
2271		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2272		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2273					  icsk->icsk_rto, TCP_RTO_MAX);
2274		return 1;
2275	}
2276	return 0;
2277}
2278
2279static inline int tcp_fackets_out(struct tcp_sock *tp)
2280{
2281	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2282}
2283
2284/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2285 * counter when SACK is enabled (without SACK, sacked_out is used for
2286 * that purpose).
2287 *
2288 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2289 * segments up to the highest received SACK block so far and holes in
2290 * between them.
2291 *
2292 * With reordering, holes may still be in flight, so RFC3517 recovery
2293 * uses pure sacked_out (total number of SACKed segments) even though
2294 * it violates the RFC that uses duplicate ACKs, often these are equal
2295 * but when e.g. out-of-window ACKs or packet duplication occurs,
2296 * they differ. Since neither occurs due to loss, TCP should really
2297 * ignore them.
2298 */
2299static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2300{
2301	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2302}
2303
2304static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2305{
2306	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2307}
2308
2309static inline int tcp_head_timedout(struct sock *sk)
2310{
2311	struct tcp_sock *tp = tcp_sk(sk);
2312
2313	return tp->packets_out &&
2314	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2315}
2316
2317/* Linux NewReno/SACK/FACK/ECN state machine.
2318 * --------------------------------------
2319 *
2320 * "Open"	Normal state, no dubious events, fast path.
2321 * "Disorder"   In all the respects it is "Open",
2322 *		but requires a bit more attention. It is entered when
2323 *		we see some SACKs or dupacks. It is split of "Open"
2324 *		mainly to move some processing from fast path to slow one.
2325 * "CWR"	CWND was reduced due to some Congestion Notification event.
2326 *		It can be ECN, ICMP source quench, local device congestion.
2327 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2328 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2329 *
2330 * tcp_fastretrans_alert() is entered:
2331 * - each incoming ACK, if state is not "Open"
2332 * - when arrived ACK is unusual, namely:
2333 *	* SACK
2334 *	* Duplicate ACK.
2335 *	* ECN ECE.
2336 *
2337 * Counting packets in flight is pretty simple.
2338 *
2339 *	in_flight = packets_out - left_out + retrans_out
2340 *
2341 *	packets_out is SND.NXT-SND.UNA counted in packets.
2342 *
2343 *	retrans_out is number of retransmitted segments.
2344 *
2345 *	left_out is number of segments left network, but not ACKed yet.
2346 *
2347 *		left_out = sacked_out + lost_out
2348 *
2349 *     sacked_out: Packets, which arrived to receiver out of order
2350 *		   and hence not ACKed. With SACKs this number is simply
2351 *		   amount of SACKed data. Even without SACKs
2352 *		   it is easy to give pretty reliable estimate of this number,
2353 *		   counting duplicate ACKs.
2354 *
2355 *       lost_out: Packets lost by network. TCP has no explicit
2356 *		   "loss notification" feedback from network (for now).
2357 *		   It means that this number can be only _guessed_.
2358 *		   Actually, it is the heuristics to predict lossage that
2359 *		   distinguishes different algorithms.
2360 *
2361 *	F.e. after RTO, when all the queue is considered as lost,
2362 *	lost_out = packets_out and in_flight = retrans_out.
2363 *
2364 *		Essentially, we have now two algorithms counting
2365 *		lost packets.
2366 *
2367 *		FACK: It is the simplest heuristics. As soon as we decided
2368 *		that something is lost, we decide that _all_ not SACKed
2369 *		packets until the most forward SACK are lost. I.e.
2370 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2371 *		It is absolutely correct estimate, if network does not reorder
2372 *		packets. And it loses any connection to reality when reordering
2373 *		takes place. We use FACK by default until reordering
2374 *		is suspected on the path to this destination.
2375 *
2376 *		NewReno: when Recovery is entered, we assume that one segment
2377 *		is lost (classic Reno). While we are in Recovery and
2378 *		a partial ACK arrives, we assume that one more packet
2379 *		is lost (NewReno). This heuristics are the same in NewReno
2380 *		and SACK.
2381 *
2382 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2383 *  deflation etc. CWND is real congestion window, never inflated, changes
2384 *  only according to classic VJ rules.
2385 *
2386 * Really tricky (and requiring careful tuning) part of algorithm
2387 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2388 * The first determines the moment _when_ we should reduce CWND and,
2389 * hence, slow down forward transmission. In fact, it determines the moment
2390 * when we decide that hole is caused by loss, rather than by a reorder.
2391 *
2392 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2393 * holes, caused by lost packets.
2394 *
2395 * And the most logically complicated part of algorithm is undo
2396 * heuristics. We detect false retransmits due to both too early
2397 * fast retransmit (reordering) and underestimated RTO, analyzing
2398 * timestamps and D-SACKs. When we detect that some segments were
2399 * retransmitted by mistake and CWND reduction was wrong, we undo
2400 * window reduction and abort recovery phase. This logic is hidden
2401 * inside several functions named tcp_try_undo_<something>.
2402 */
2403
2404/* This function decides, when we should leave Disordered state
2405 * and enter Recovery phase, reducing congestion window.
2406 *
2407 * Main question: may we further continue forward transmission
2408 * with the same cwnd?
2409 */
2410static int tcp_time_to_recover(struct sock *sk)
2411{
2412	struct tcp_sock *tp = tcp_sk(sk);
2413	__u32 packets_out;
2414
2415	/* Do not perform any recovery during F-RTO algorithm */
2416	if (tp->frto_counter)
2417		return 0;
2418
2419	/* Trick#1: The loss is proven. */
2420	if (tp->lost_out)
2421		return 1;
2422
2423	/* Not-A-Trick#2 : Classic rule... */
2424	if (tcp_dupack_heuristics(tp) > tp->reordering)
2425		return 1;
2426
2427	/* Trick#3 : when we use RFC2988 timer restart, fast
2428	 * retransmit can be triggered by timeout of queue head.
2429	 */
2430	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2431		return 1;
2432
2433	/* Trick#4: It is still not OK... But will it be useful to delay
2434	 * recovery more?
2435	 */
2436	packets_out = tp->packets_out;
2437	if (packets_out <= tp->reordering &&
2438	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2439	    !tcp_may_send_now(sk)) {
2440		/* We have nothing to send. This connection is limited
2441		 * either by receiver window or by application.
2442		 */
2443		return 1;
2444	}
2445
2446	/* If a thin stream is detected, retransmit after first
2447	 * received dupack. Employ only if SACK is supported in order
2448	 * to avoid possible corner-case series of spurious retransmissions
2449	 * Use only if there are no unsent data.
2450	 */
2451	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2452	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2453	    tcp_is_sack(tp) && !tcp_send_head(sk))
2454		return 1;
2455
2456	return 0;
2457}
2458
2459/* New heuristics: it is possible only after we switched to restart timer
2460 * each time when something is ACKed. Hence, we can detect timed out packets
2461 * during fast retransmit without falling to slow start.
2462 *
2463 * Usefulness of this as is very questionable, since we should know which of
2464 * the segments is the next to timeout which is relatively expensive to find
2465 * in general case unless we add some data structure just for that. The
2466 * current approach certainly won't find the right one too often and when it
2467 * finally does find _something_ it usually marks large part of the window
2468 * right away (because a retransmission with a larger timestamp blocks the
2469 * loop from advancing). -ij
2470 */
2471static void tcp_timeout_skbs(struct sock *sk)
2472{
2473	struct tcp_sock *tp = tcp_sk(sk);
2474	struct sk_buff *skb;
2475
2476	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2477		return;
2478
2479	skb = tp->scoreboard_skb_hint;
2480	if (tp->scoreboard_skb_hint == NULL)
2481		skb = tcp_write_queue_head(sk);
2482
2483	tcp_for_write_queue_from(skb, sk) {
2484		if (skb == tcp_send_head(sk))
2485			break;
2486		if (!tcp_skb_timedout(sk, skb))
2487			break;
2488
2489		tcp_skb_mark_lost(tp, skb);
2490	}
2491
2492	tp->scoreboard_skb_hint = skb;
2493
2494	tcp_verify_left_out(tp);
2495}
2496
2497/* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2498 * is against sacked "cnt", otherwise it's against facked "cnt"
2499 */
2500static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2501{
2502	struct tcp_sock *tp = tcp_sk(sk);
2503	struct sk_buff *skb;
2504	int cnt, oldcnt;
2505	int err;
2506	unsigned int mss;
2507
2508	WARN_ON(packets > tp->packets_out);
2509	if (tp->lost_skb_hint) {
2510		skb = tp->lost_skb_hint;
2511		cnt = tp->lost_cnt_hint;
2512		/* Head already handled? */
2513		if (mark_head && skb != tcp_write_queue_head(sk))
2514			return;
2515	} else {
2516		skb = tcp_write_queue_head(sk);
2517		cnt = 0;
2518	}
2519
2520	tcp_for_write_queue_from(skb, sk) {
2521		if (skb == tcp_send_head(sk))
2522			break;
2523		/* TODO: do this better */
2524		/* this is not the most efficient way to do this... */
2525		tp->lost_skb_hint = skb;
2526		tp->lost_cnt_hint = cnt;
2527
2528		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2529			break;
2530
2531		oldcnt = cnt;
2532		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2533		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2534			cnt += tcp_skb_pcount(skb);
2535
2536		if (cnt > packets) {
2537			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2538			    (oldcnt >= packets))
2539				break;
2540
2541			mss = skb_shinfo(skb)->gso_size;
2542			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2543			if (err < 0)
2544				break;
2545			cnt = packets;
2546		}
2547
2548		tcp_skb_mark_lost(tp, skb);
2549
2550		if (mark_head)
2551			break;
2552	}
2553	tcp_verify_left_out(tp);
2554}
2555
2556/* Account newly detected lost packet(s) */
2557
2558static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2559{
2560	struct tcp_sock *tp = tcp_sk(sk);
2561
2562	if (tcp_is_reno(tp)) {
2563		tcp_mark_head_lost(sk, 1, 1);
2564	} else if (tcp_is_fack(tp)) {
2565		int lost = tp->fackets_out - tp->reordering;
2566		if (lost <= 0)
2567			lost = 1;
2568		tcp_mark_head_lost(sk, lost, 0);
2569	} else {
2570		int sacked_upto = tp->sacked_out - tp->reordering;
2571		if (sacked_upto >= 0)
2572			tcp_mark_head_lost(sk, sacked_upto, 0);
2573		else if (fast_rexmit)
2574			tcp_mark_head_lost(sk, 1, 1);
2575	}
2576
2577	tcp_timeout_skbs(sk);
2578}
2579
2580/* CWND moderation, preventing bursts due to too big ACKs
2581 * in dubious situations.
2582 */
2583static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2584{
2585	tp->snd_cwnd = min(tp->snd_cwnd,
2586			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2587	tp->snd_cwnd_stamp = tcp_time_stamp;
2588}
2589
2590/* Lower bound on congestion window is slow start threshold
2591 * unless congestion avoidance choice decides to overide it.
2592 */
2593static inline u32 tcp_cwnd_min(const struct sock *sk)
2594{
2595	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2596
2597	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2598}
2599
2600/* Decrease cwnd each second ack. */
2601static void tcp_cwnd_down(struct sock *sk, int flag)
2602{
2603	struct tcp_sock *tp = tcp_sk(sk);
2604	int decr = tp->snd_cwnd_cnt + 1;
2605
2606	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2607	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2608		tp->snd_cwnd_cnt = decr & 1;
2609		decr >>= 1;
2610
2611		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2612			tp->snd_cwnd -= decr;
2613
2614		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2615		tp->snd_cwnd_stamp = tcp_time_stamp;
2616	}
2617}
2618
2619/* Nothing was retransmitted or returned timestamp is less
2620 * than timestamp of the first retransmission.
2621 */
2622static inline int tcp_packet_delayed(struct tcp_sock *tp)
2623{
2624	return !tp->retrans_stamp ||
2625		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2626		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2627}
2628
2629/* Undo procedures. */
2630
2631#if FASTRETRANS_DEBUG > 1
2632static void DBGUNDO(struct sock *sk, const char *msg)
2633{
2634	struct tcp_sock *tp = tcp_sk(sk);
2635	struct inet_sock *inet = inet_sk(sk);
2636
2637	if (sk->sk_family == AF_INET) {
2638		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2639		       msg,
2640		       &inet->inet_daddr, ntohs(inet->inet_dport),
2641		       tp->snd_cwnd, tcp_left_out(tp),
2642		       tp->snd_ssthresh, tp->prior_ssthresh,
2643		       tp->packets_out);
2644	}
2645#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2646	else if (sk->sk_family == AF_INET6) {
2647		struct ipv6_pinfo *np = inet6_sk(sk);
2648		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2649		       msg,
2650		       &np->daddr, ntohs(inet->inet_dport),
2651		       tp->snd_cwnd, tcp_left_out(tp),
2652		       tp->snd_ssthresh, tp->prior_ssthresh,
2653		       tp->packets_out);
2654	}
2655#endif
2656}
2657#else
2658#define DBGUNDO(x...) do { } while (0)
2659#endif
2660
2661static void tcp_undo_cwr(struct sock *sk, const int undo)
2662{
2663	struct tcp_sock *tp = tcp_sk(sk);
2664
2665	if (tp->prior_ssthresh) {
2666		const struct inet_connection_sock *icsk = inet_csk(sk);
2667
2668		if (icsk->icsk_ca_ops->undo_cwnd)
2669			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2670		else
2671			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2672
2673		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2674			tp->snd_ssthresh = tp->prior_ssthresh;
2675			TCP_ECN_withdraw_cwr(tp);
2676		}
2677	} else {
2678		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2679	}
2680	tcp_moderate_cwnd(tp);
2681	tp->snd_cwnd_stamp = tcp_time_stamp;
2682}
2683
2684static inline int tcp_may_undo(struct tcp_sock *tp)
2685{
2686	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2687}
2688
2689/* People celebrate: "We love our President!" */
2690static int tcp_try_undo_recovery(struct sock *sk)
2691{
2692	struct tcp_sock *tp = tcp_sk(sk);
2693
2694	if (tcp_may_undo(tp)) {
2695		int mib_idx;
2696
2697		/* Happy end! We did not retransmit anything
2698		 * or our original transmission succeeded.
2699		 */
2700		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2701		tcp_undo_cwr(sk, 1);
2702		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2703			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2704		else
2705			mib_idx = LINUX_MIB_TCPFULLUNDO;
2706
2707		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2708		tp->undo_marker = 0;
2709	}
2710	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2711		/* Hold old state until something *above* high_seq
2712		 * is ACKed. For Reno it is MUST to prevent false
2713		 * fast retransmits (RFC2582). SACK TCP is safe. */
2714		tcp_moderate_cwnd(tp);
2715		return 1;
2716	}
2717	tcp_set_ca_state(sk, TCP_CA_Open);
2718	return 0;
2719}
2720
2721/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2722static void tcp_try_undo_dsack(struct sock *sk)
2723{
2724	struct tcp_sock *tp = tcp_sk(sk);
2725
2726	if (tp->undo_marker && !tp->undo_retrans) {
2727		DBGUNDO(sk, "D-SACK");
2728		tcp_undo_cwr(sk, 1);
2729		tp->undo_marker = 0;
2730		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2731	}
2732}
2733
2734/* We can clear retrans_stamp when there are no retransmissions in the
2735 * window. It would seem that it is trivially available for us in
2736 * tp->retrans_out, however, that kind of assumptions doesn't consider
2737 * what will happen if errors occur when sending retransmission for the
2738 * second time. ...It could the that such segment has only
2739 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2740 * the head skb is enough except for some reneging corner cases that
2741 * are not worth the effort.
2742 *
2743 * Main reason for all this complexity is the fact that connection dying
2744 * time now depends on the validity of the retrans_stamp, in particular,
2745 * that successive retransmissions of a segment must not advance
2746 * retrans_stamp under any conditions.
2747 */
2748static int tcp_any_retrans_done(struct sock *sk)
2749{
2750	struct tcp_sock *tp = tcp_sk(sk);
2751	struct sk_buff *skb;
2752
2753	if (tp->retrans_out)
2754		return 1;
2755
2756	skb = tcp_write_queue_head(sk);
2757	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2758		return 1;
2759
2760	return 0;
2761}
2762
2763/* Undo during fast recovery after partial ACK. */
2764
2765static int tcp_try_undo_partial(struct sock *sk, int acked)
2766{
2767	struct tcp_sock *tp = tcp_sk(sk);
2768	/* Partial ACK arrived. Force Hoe's retransmit. */
2769	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2770
2771	if (tcp_may_undo(tp)) {
2772		/* Plain luck! Hole if filled with delayed
2773		 * packet, rather than with a retransmit.
2774		 */
2775		if (!tcp_any_retrans_done(sk))
2776			tp->retrans_stamp = 0;
2777
2778		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2779
2780		DBGUNDO(sk, "Hoe");
2781		tcp_undo_cwr(sk, 0);
2782		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2783
2784		/* So... Do not make Hoe's retransmit yet.
2785		 * If the first packet was delayed, the rest
2786		 * ones are most probably delayed as well.
2787		 */
2788		failed = 0;
2789	}
2790	return failed;
2791}
2792
2793/* Undo during loss recovery after partial ACK. */
2794static int tcp_try_undo_loss(struct sock *sk)
2795{
2796	struct tcp_sock *tp = tcp_sk(sk);
2797
2798	if (tcp_may_undo(tp)) {
2799		struct sk_buff *skb;
2800		tcp_for_write_queue(skb, sk) {
2801			if (skb == tcp_send_head(sk))
2802				break;
2803			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2804		}
2805
2806		tcp_clear_all_retrans_hints(tp);
2807
2808		DBGUNDO(sk, "partial loss");
2809		tp->lost_out = 0;
2810		tcp_undo_cwr(sk, 1);
2811		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2812		inet_csk(sk)->icsk_retransmits = 0;
2813		tp->undo_marker = 0;
2814		if (tcp_is_sack(tp))
2815			tcp_set_ca_state(sk, TCP_CA_Open);
2816		return 1;
2817	}
2818	return 0;
2819}
2820
2821static inline void tcp_complete_cwr(struct sock *sk)
2822{
2823	struct tcp_sock *tp = tcp_sk(sk);
2824	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2825	tp->snd_cwnd_stamp = tcp_time_stamp;
2826	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2827}
2828
2829static void tcp_try_keep_open(struct sock *sk)
2830{
2831	struct tcp_sock *tp = tcp_sk(sk);
2832	int state = TCP_CA_Open;
2833
2834	if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2835		state = TCP_CA_Disorder;
2836
2837	if (inet_csk(sk)->icsk_ca_state != state) {
2838		tcp_set_ca_state(sk, state);
2839		tp->high_seq = tp->snd_nxt;
2840	}
2841}
2842
2843static void tcp_try_to_open(struct sock *sk, int flag)
2844{
2845	struct tcp_sock *tp = tcp_sk(sk);
2846
2847	tcp_verify_left_out(tp);
2848
2849	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2850		tp->retrans_stamp = 0;
2851
2852	if (flag & FLAG_ECE)
2853		tcp_enter_cwr(sk, 1);
2854
2855	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2856		tcp_try_keep_open(sk);
2857		tcp_moderate_cwnd(tp);
2858	} else {
2859		tcp_cwnd_down(sk, flag);
2860	}
2861}
2862
2863static void tcp_mtup_probe_failed(struct sock *sk)
2864{
2865	struct inet_connection_sock *icsk = inet_csk(sk);
2866
2867	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2868	icsk->icsk_mtup.probe_size = 0;
2869}
2870
2871static void tcp_mtup_probe_success(struct sock *sk)
2872{
2873	struct tcp_sock *tp = tcp_sk(sk);
2874	struct inet_connection_sock *icsk = inet_csk(sk);
2875
2876	/* FIXME: breaks with very large cwnd */
2877	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2878	tp->snd_cwnd = tp->snd_cwnd *
2879		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2880		       icsk->icsk_mtup.probe_size;
2881	tp->snd_cwnd_cnt = 0;
2882	tp->snd_cwnd_stamp = tcp_time_stamp;
2883	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2884
2885	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2886	icsk->icsk_mtup.probe_size = 0;
2887	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2888}
2889
2890/* Do a simple retransmit without using the backoff mechanisms in
2891 * tcp_timer. This is used for path mtu discovery.
2892 * The socket is already locked here.
2893 */
2894void tcp_simple_retransmit(struct sock *sk)
2895{
2896	const struct inet_connection_sock *icsk = inet_csk(sk);
2897	struct tcp_sock *tp = tcp_sk(sk);
2898	struct sk_buff *skb;
2899	unsigned int mss = tcp_current_mss(sk);
2900	u32 prior_lost = tp->lost_out;
2901
2902	tcp_for_write_queue(skb, sk) {
2903		if (skb == tcp_send_head(sk))
2904			break;
2905		if (tcp_skb_seglen(skb) > mss &&
2906		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2907			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2908				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2909				tp->retrans_out -= tcp_skb_pcount(skb);
2910			}
2911			tcp_skb_mark_lost_uncond_verify(tp, skb);
2912		}
2913	}
2914
2915	tcp_clear_retrans_hints_partial(tp);
2916
2917	if (prior_lost == tp->lost_out)
2918		return;
2919
2920	if (tcp_is_reno(tp))
2921		tcp_limit_reno_sacked(tp);
2922
2923	tcp_verify_left_out(tp);
2924
2925	/* Don't muck with the congestion window here.
2926	 * Reason is that we do not increase amount of _data_
2927	 * in network, but units changed and effective
2928	 * cwnd/ssthresh really reduced now.
2929	 */
2930	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2931		tp->high_seq = tp->snd_nxt;
2932		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2933		tp->prior_ssthresh = 0;
2934		tp->undo_marker = 0;
2935		tcp_set_ca_state(sk, TCP_CA_Loss);
2936	}
2937	tcp_xmit_retransmit_queue(sk);
2938}
2939EXPORT_SYMBOL(tcp_simple_retransmit);
2940
2941/* Process an event, which can update packets-in-flight not trivially.
2942 * Main goal of this function is to calculate new estimate for left_out,
2943 * taking into account both packets sitting in receiver's buffer and
2944 * packets lost by network.
2945 *
2946 * Besides that it does CWND reduction, when packet loss is detected
2947 * and changes state of machine.
2948 *
2949 * It does _not_ decide what to send, it is made in function
2950 * tcp_xmit_retransmit_queue().
2951 */
2952static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2953{
2954	struct inet_connection_sock *icsk = inet_csk(sk);
2955	struct tcp_sock *tp = tcp_sk(sk);
2956	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2957	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2958				    (tcp_fackets_out(tp) > tp->reordering));
2959	int fast_rexmit = 0, mib_idx;
2960
2961	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2962		tp->sacked_out = 0;
2963	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2964		tp->fackets_out = 0;
2965
2966	/* Now state machine starts.
2967	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2968	if (flag & FLAG_ECE)
2969		tp->prior_ssthresh = 0;
2970
2971	/* B. In all the states check for reneging SACKs. */
2972	if (tcp_check_sack_reneging(sk, flag))
2973		return;
2974
2975	/* C. Process data loss notification, provided it is valid. */
2976	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2977	    before(tp->snd_una, tp->high_seq) &&
2978	    icsk->icsk_ca_state != TCP_CA_Open &&
2979	    tp->fackets_out > tp->reordering) {
2980		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
2981		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2982	}
2983
2984	/* D. Check consistency of the current state. */
2985	tcp_verify_left_out(tp);
2986
2987	/* E. Check state exit conditions. State can be terminated
2988	 *    when high_seq is ACKed. */
2989	if (icsk->icsk_ca_state == TCP_CA_Open) {
2990		WARN_ON(tp->retrans_out != 0);
2991		tp->retrans_stamp = 0;
2992	} else if (!before(tp->snd_una, tp->high_seq)) {
2993		switch (icsk->icsk_ca_state) {
2994		case TCP_CA_Loss:
2995			icsk->icsk_retransmits = 0;
2996			if (tcp_try_undo_recovery(sk))
2997				return;
2998			break;
2999
3000		case TCP_CA_CWR:
3001			/* CWR is to be held something *above* high_seq
3002			 * is ACKed for CWR bit to reach receiver. */
3003			if (tp->snd_una != tp->high_seq) {
3004				tcp_complete_cwr(sk);
3005				tcp_set_ca_state(sk, TCP_CA_Open);
3006			}
3007			break;
3008
3009		case TCP_CA_Disorder:
3010			tcp_try_undo_dsack(sk);
3011			if (!tp->undo_marker ||
3012			    /* For SACK case do not Open to allow to undo
3013			     * catching for all duplicate ACKs. */
3014			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3015				tp->undo_marker = 0;
3016				tcp_set_ca_state(sk, TCP_CA_Open);
3017			}
3018			break;
3019
3020		case TCP_CA_Recovery:
3021			if (tcp_is_reno(tp))
3022				tcp_reset_reno_sack(tp);
3023			if (tcp_try_undo_recovery(sk))
3024				return;
3025			tcp_complete_cwr(sk);
3026			break;
3027		}
3028	}
3029
3030	/* F. Process state. */
3031	switch (icsk->icsk_ca_state) {
3032	case TCP_CA_Recovery:
3033		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3034			if (tcp_is_reno(tp) && is_dupack)
3035				tcp_add_reno_sack(sk);
3036		} else
3037			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3038		break;
3039	case TCP_CA_Loss:
3040		if (flag & FLAG_DATA_ACKED)
3041			icsk->icsk_retransmits = 0;
3042		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3043			tcp_reset_reno_sack(tp);
3044		if (!tcp_try_undo_loss(sk)) {
3045			tcp_moderate_cwnd(tp);
3046			tcp_xmit_retransmit_queue(sk);
3047			return;
3048		}
3049		if (icsk->icsk_ca_state != TCP_CA_Open)
3050			return;
3051		/* Loss is undone; fall through to processing in Open state. */
3052	default:
3053		if (tcp_is_reno(tp)) {
3054			if (flag & FLAG_SND_UNA_ADVANCED)
3055				tcp_reset_reno_sack(tp);
3056			if (is_dupack)
3057				tcp_add_reno_sack(sk);
3058		}
3059
3060		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3061			tcp_try_undo_dsack(sk);
3062
3063		if (!tcp_time_to_recover(sk)) {
3064			tcp_try_to_open(sk, flag);
3065			return;
3066		}
3067
3068		/* MTU probe failure: don't reduce cwnd */
3069		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3070		    icsk->icsk_mtup.probe_size &&
3071		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3072			tcp_mtup_probe_failed(sk);
3073			/* Restores the reduction we did in tcp_mtup_probe() */
3074			tp->snd_cwnd++;
3075			tcp_simple_retransmit(sk);
3076			return;
3077		}
3078
3079		/* Otherwise enter Recovery state */
3080
3081		if (tcp_is_reno(tp))
3082			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3083		else
3084			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3085
3086		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3087
3088		tp->high_seq = tp->snd_nxt;
3089		tp->prior_ssthresh = 0;
3090		tp->undo_marker = tp->snd_una;
3091		tp->undo_retrans = tp->retrans_out;
3092
3093		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3094			if (!(flag & FLAG_ECE))
3095				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3096			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3097			TCP_ECN_queue_cwr(tp);
3098		}
3099
3100		tp->bytes_acked = 0;
3101		tp->snd_cwnd_cnt = 0;
3102		tcp_set_ca_state(sk, TCP_CA_Recovery);
3103		fast_rexmit = 1;
3104	}
3105
3106	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3107		tcp_update_scoreboard(sk, fast_rexmit);
3108	tcp_cwnd_down(sk, flag);
3109	tcp_xmit_retransmit_queue(sk);
3110}
3111
3112static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3113{
3114	tcp_rtt_estimator(sk, seq_rtt);
3115	tcp_set_rto(sk);
3116	inet_csk(sk)->icsk_backoff = 0;
3117}
3118
3119/* Read draft-ietf-tcplw-high-performance before mucking
3120 * with this code. (Supersedes RFC1323)
3121 */
3122static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3123{
3124	/* RTTM Rule: A TSecr value received in a segment is used to
3125	 * update the averaged RTT measurement only if the segment
3126	 * acknowledges some new data, i.e., only if it advances the
3127	 * left edge of the send window.
3128	 *
3129	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3130	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3131	 *
3132	 * Changed: reset backoff as soon as we see the first valid sample.
3133	 * If we do not, we get strongly overestimated rto. With timestamps
3134	 * samples are accepted even from very old segments: f.e., when rtt=1
3135	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3136	 * answer arrives rto becomes 120 seconds! If at least one of segments
3137	 * in window is lost... Voila.	 			--ANK (010210)
3138	 */
3139	struct tcp_sock *tp = tcp_sk(sk);
3140
3141	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3142}
3143
3144static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3145{
3146	/* We don't have a timestamp. Can only use
3147	 * packets that are not retransmitted to determine
3148	 * rtt estimates. Also, we must not reset the
3149	 * backoff for rto until we get a non-retransmitted
3150	 * packet. This allows us to deal with a situation
3151	 * where the network delay has increased suddenly.
3152	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3153	 */
3154
3155	if (flag & FLAG_RETRANS_DATA_ACKED)
3156		return;
3157
3158	tcp_valid_rtt_meas(sk, seq_rtt);
3159}
3160
3161static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3162				      const s32 seq_rtt)
3163{
3164	const struct tcp_sock *tp = tcp_sk(sk);
3165	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3166	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3167		tcp_ack_saw_tstamp(sk, flag);
3168	else if (seq_rtt >= 0)
3169		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3170}
3171
3172static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3173{
3174	const struct inet_connection_sock *icsk = inet_csk(sk);
3175	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3176	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3177}
3178
3179/* Restart timer after forward progress on connection.
3180 * RFC2988 recommends to restart timer to now+rto.
3181 */
3182static void tcp_rearm_rto(struct sock *sk)
3183{
3184	struct tcp_sock *tp = tcp_sk(sk);
3185
3186	if (!tp->packets_out) {
3187		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3188	} else {
3189		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3190					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3191	}
3192}
3193
3194/* If we get here, the whole TSO packet has not been acked. */
3195static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3196{
3197	struct tcp_sock *tp = tcp_sk(sk);
3198	u32 packets_acked;
3199
3200	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3201
3202	packets_acked = tcp_skb_pcount(skb);
3203	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3204		return 0;
3205	packets_acked -= tcp_skb_pcount(skb);
3206
3207	if (packets_acked) {
3208		BUG_ON(tcp_skb_pcount(skb) == 0);
3209		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3210	}
3211
3212	return packets_acked;
3213}
3214
3215/* Remove acknowledged frames from the retransmission queue. If our packet
3216 * is before the ack sequence we can discard it as it's confirmed to have
3217 * arrived at the other end.
3218 */
3219static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3220			       u32 prior_snd_una)
3221{
3222	struct tcp_sock *tp = tcp_sk(sk);
3223	const struct inet_connection_sock *icsk = inet_csk(sk);
3224	struct sk_buff *skb;
3225	u32 now = tcp_time_stamp;
3226	int fully_acked = 1;
3227	int flag = 0;
3228	u32 pkts_acked = 0;
3229	u32 reord = tp->packets_out;
3230	u32 prior_sacked = tp->sacked_out;
3231	s32 seq_rtt = -1;
3232	s32 ca_seq_rtt = -1;
3233	ktime_t last_ackt = net_invalid_timestamp();
3234
3235	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3236		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3237		u32 acked_pcount;
3238		u8 sacked = scb->sacked;
3239
3240		/* Determine how many packets and what bytes were acked, tso and else */
3241		if (after(scb->end_seq, tp->snd_una)) {
3242			if (tcp_skb_pcount(skb) == 1 ||
3243			    !after(tp->snd_una, scb->seq))
3244				break;
3245
3246			acked_pcount = tcp_tso_acked(sk, skb);
3247			if (!acked_pcount)
3248				break;
3249
3250			fully_acked = 0;
3251		} else {
3252			acked_pcount = tcp_skb_pcount(skb);
3253		}
3254
3255		if (sacked & TCPCB_RETRANS) {
3256			if (sacked & TCPCB_SACKED_RETRANS)
3257				tp->retrans_out -= acked_pcount;
3258			flag |= FLAG_RETRANS_DATA_ACKED;
3259			ca_seq_rtt = -1;
3260			seq_rtt = -1;
3261			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3262				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3263		} else {
3264			ca_seq_rtt = now - scb->when;
3265			last_ackt = skb->tstamp;
3266			if (seq_rtt < 0) {
3267				seq_rtt = ca_seq_rtt;
3268			}
3269			if (!(sacked & TCPCB_SACKED_ACKED))
3270				reord = min(pkts_acked, reord);
3271		}
3272
3273		if (sacked & TCPCB_SACKED_ACKED)
3274			tp->sacked_out -= acked_pcount;
3275		if (sacked & TCPCB_LOST)
3276			tp->lost_out -= acked_pcount;
3277
3278		tp->packets_out -= acked_pcount;
3279		pkts_acked += acked_pcount;
3280
3281		/* Initial outgoing SYN's get put onto the write_queue
3282		 * just like anything else we transmit.  It is not
3283		 * true data, and if we misinform our callers that
3284		 * this ACK acks real data, we will erroneously exit
3285		 * connection startup slow start one packet too
3286		 * quickly.  This is severely frowned upon behavior.
3287		 */
3288		if (!(scb->flags & TCPHDR_SYN)) {
3289			flag |= FLAG_DATA_ACKED;
3290		} else {
3291			flag |= FLAG_SYN_ACKED;
3292			tp->retrans_stamp = 0;
3293		}
3294
3295		if (!fully_acked)
3296			break;
3297
3298		tcp_unlink_write_queue(skb, sk);
3299		sk_wmem_free_skb(sk, skb);
3300		tp->scoreboard_skb_hint = NULL;
3301		if (skb == tp->retransmit_skb_hint)
3302			tp->retransmit_skb_hint = NULL;
3303		if (skb == tp->lost_skb_hint)
3304			tp->lost_skb_hint = NULL;
3305	}
3306
3307	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3308		tp->snd_up = tp->snd_una;
3309
3310	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3311		flag |= FLAG_SACK_RENEGING;
3312
3313	if (flag & FLAG_ACKED) {
3314		const struct tcp_congestion_ops *ca_ops
3315			= inet_csk(sk)->icsk_ca_ops;
3316
3317		if (unlikely(icsk->icsk_mtup.probe_size &&
3318			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3319			tcp_mtup_probe_success(sk);
3320		}
3321
3322		tcp_ack_update_rtt(sk, flag, seq_rtt);
3323		tcp_rearm_rto(sk);
3324
3325		if (tcp_is_reno(tp)) {
3326			tcp_remove_reno_sacks(sk, pkts_acked);
3327		} else {
3328			int delta;
3329
3330			/* Non-retransmitted hole got filled? That's reordering */
3331			if (reord < prior_fackets)
3332				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3333
3334			delta = tcp_is_fack(tp) ? pkts_acked :
3335						  prior_sacked - tp->sacked_out;
3336			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3337		}
3338
3339		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3340
3341		if (ca_ops->pkts_acked) {
3342			s32 rtt_us = -1;
3343
3344			/* Is the ACK triggering packet unambiguous? */
3345			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3346				/* High resolution needed and available? */
3347				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3348				    !ktime_equal(last_ackt,
3349						 net_invalid_timestamp()))
3350					rtt_us = ktime_us_delta(ktime_get_real(),
3351								last_ackt);
3352				else if (ca_seq_rtt > 0)
3353					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3354			}
3355
3356			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3357		}
3358	}
3359
3360#if FASTRETRANS_DEBUG > 0
3361	WARN_ON((int)tp->sacked_out < 0);
3362	WARN_ON((int)tp->lost_out < 0);
3363	WARN_ON((int)tp->retrans_out < 0);
3364	if (!tp->packets_out && tcp_is_sack(tp)) {
3365		icsk = inet_csk(sk);
3366		if (tp->lost_out) {
3367			printk(KERN_DEBUG "Leak l=%u %d\n",
3368			       tp->lost_out, icsk->icsk_ca_state);
3369			tp->lost_out = 0;
3370		}
3371		if (tp->sacked_out) {
3372			printk(KERN_DEBUG "Leak s=%u %d\n",
3373			       tp->sacked_out, icsk->icsk_ca_state);
3374			tp->sacked_out = 0;
3375		}
3376		if (tp->retrans_out) {
3377			printk(KERN_DEBUG "Leak r=%u %d\n",
3378			       tp->retrans_out, icsk->icsk_ca_state);
3379			tp->retrans_out = 0;
3380		}
3381	}
3382#endif
3383	return flag;
3384}
3385
3386static void tcp_ack_probe(struct sock *sk)
3387{
3388	const struct tcp_sock *tp = tcp_sk(sk);
3389	struct inet_connection_sock *icsk = inet_csk(sk);
3390
3391	/* Was it a usable window open? */
3392
3393	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3394		icsk->icsk_backoff = 0;
3395		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3396		/* Socket must be waked up by subsequent tcp_data_snd_check().
3397		 * This function is not for random using!
3398		 */
3399	} else {
3400		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3401					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3402					  TCP_RTO_MAX);
3403	}
3404}
3405
3406static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3407{
3408	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3409		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3410}
3411
3412static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3413{
3414	const struct tcp_sock *tp = tcp_sk(sk);
3415	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3416		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3417}
3418
3419/* Check that window update is acceptable.
3420 * The function assumes that snd_una<=ack<=snd_next.
3421 */
3422static inline int tcp_may_update_window(const struct tcp_sock *tp,
3423					const u32 ack, const u32 ack_seq,
3424					const u32 nwin)
3425{
3426	return	after(ack, tp->snd_una) ||
3427		after(ack_seq, tp->snd_wl1) ||
3428		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3429}
3430
3431/* Update our send window.
3432 *
3433 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3434 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3435 */
3436static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3437				 u32 ack_seq)
3438{
3439	struct tcp_sock *tp = tcp_sk(sk);
3440	int flag = 0;
3441	u32 nwin = ntohs(tcp_hdr(skb)->window);
3442
3443	if (likely(!tcp_hdr(skb)->syn))
3444		nwin <<= tp->rx_opt.snd_wscale;
3445
3446	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3447		flag |= FLAG_WIN_UPDATE;
3448		tcp_update_wl(tp, ack_seq);
3449
3450		if (tp->snd_wnd != nwin) {
3451			tp->snd_wnd = nwin;
3452
3453			/* Note, it is the only place, where
3454			 * fast path is recovered for sending TCP.
3455			 */
3456			tp->pred_flags = 0;
3457			tcp_fast_path_check(sk);
3458
3459			if (nwin > tp->max_window) {
3460				tp->max_window = nwin;
3461				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3462			}
3463		}
3464	}
3465
3466	tp->snd_una = ack;
3467
3468	return flag;
3469}
3470
3471/* A very conservative spurious RTO response algorithm: reduce cwnd and
3472 * continue in congestion avoidance.
3473 */
3474static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3475{
3476	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3477	tp->snd_cwnd_cnt = 0;
3478	tp->bytes_acked = 0;
3479	TCP_ECN_queue_cwr(tp);
3480	tcp_moderate_cwnd(tp);
3481}
3482
3483/* A conservative spurious RTO response algorithm: reduce cwnd using
3484 * rate halving and continue in congestion avoidance.
3485 */
3486static void tcp_ratehalving_spur_to_response(struct sock *sk)
3487{
3488	tcp_enter_cwr(sk, 0);
3489}
3490
3491static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3492{
3493	if (flag & FLAG_ECE)
3494		tcp_ratehalving_spur_to_response(sk);
3495	else
3496		tcp_undo_cwr(sk, 1);
3497}
3498
3499/* F-RTO spurious RTO detection algorithm (RFC4138)
3500 *
3501 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3502 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3503 * window (but not to or beyond highest sequence sent before RTO):
3504 *   On First ACK,  send two new segments out.
3505 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3506 *                  algorithm is not part of the F-RTO detection algorithm
3507 *                  given in RFC4138 but can be selected separately).
3508 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3509 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3510 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3511 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3512 *
3513 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3514 * original window even after we transmit two new data segments.
3515 *
3516 * SACK version:
3517 *   on first step, wait until first cumulative ACK arrives, then move to
3518 *   the second step. In second step, the next ACK decides.
3519 *
3520 * F-RTO is implemented (mainly) in four functions:
3521 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3522 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3523 *     called when tcp_use_frto() showed green light
3524 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3525 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3526 *     to prove that the RTO is indeed spurious. It transfers the control
3527 *     from F-RTO to the conventional RTO recovery
3528 */
3529static int tcp_process_frto(struct sock *sk, int flag)
3530{
3531	struct tcp_sock *tp = tcp_sk(sk);
3532
3533	tcp_verify_left_out(tp);
3534
3535	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3536	if (flag & FLAG_DATA_ACKED)
3537		inet_csk(sk)->icsk_retransmits = 0;
3538
3539	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3540	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3541		tp->undo_marker = 0;
3542
3543	if (!before(tp->snd_una, tp->frto_highmark)) {
3544		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3545		return 1;
3546	}
3547
3548	if (!tcp_is_sackfrto(tp)) {
3549		/* RFC4138 shortcoming in step 2; should also have case c):
3550		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3551		 * data, winupdate
3552		 */
3553		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3554			return 1;
3555
3556		if (!(flag & FLAG_DATA_ACKED)) {
3557			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3558					    flag);
3559			return 1;
3560		}
3561	} else {
3562		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3563			/* Prevent sending of new data. */
3564			tp->snd_cwnd = min(tp->snd_cwnd,
3565					   tcp_packets_in_flight(tp));
3566			return 1;
3567		}
3568
3569		if ((tp->frto_counter >= 2) &&
3570		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3571		     ((flag & FLAG_DATA_SACKED) &&
3572		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3573			/* RFC4138 shortcoming (see comment above) */
3574			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3575			    (flag & FLAG_NOT_DUP))
3576				return 1;
3577
3578			tcp_enter_frto_loss(sk, 3, flag);
3579			return 1;
3580		}
3581	}
3582
3583	if (tp->frto_counter == 1) {
3584		/* tcp_may_send_now needs to see updated state */
3585		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3586		tp->frto_counter = 2;
3587
3588		if (!tcp_may_send_now(sk))
3589			tcp_enter_frto_loss(sk, 2, flag);
3590
3591		return 1;
3592	} else {
3593		switch (sysctl_tcp_frto_response) {
3594		case 2:
3595			tcp_undo_spur_to_response(sk, flag);
3596			break;
3597		case 1:
3598			tcp_conservative_spur_to_response(tp);
3599			break;
3600		default:
3601			tcp_ratehalving_spur_to_response(sk);
3602			break;
3603		}
3604		tp->frto_counter = 0;
3605		tp->undo_marker = 0;
3606		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3607	}
3608	return 0;
3609}
3610
3611/* This routine deals with incoming acks, but not outgoing ones. */
3612static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3613{
3614	struct inet_connection_sock *icsk = inet_csk(sk);
3615	struct tcp_sock *tp = tcp_sk(sk);
3616	u32 prior_snd_una = tp->snd_una;
3617	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3618	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3619	u32 prior_in_flight;
3620	u32 prior_fackets;
3621	int prior_packets;
3622	int frto_cwnd = 0;
3623
3624	/* If the ack is older than previous acks
3625	 * then we can probably ignore it.
3626	 */
3627	if (before(ack, prior_snd_una))
3628		goto old_ack;
3629
3630	/* If the ack includes data we haven't sent yet, discard
3631	 * this segment (RFC793 Section 3.9).
3632	 */
3633	if (after(ack, tp->snd_nxt))
3634		goto invalid_ack;
3635
3636	if (after(ack, prior_snd_una))
3637		flag |= FLAG_SND_UNA_ADVANCED;
3638
3639	if (sysctl_tcp_abc) {
3640		if (icsk->icsk_ca_state < TCP_CA_CWR)
3641			tp->bytes_acked += ack - prior_snd_una;
3642		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3643			/* we assume just one segment left network */
3644			tp->bytes_acked += min(ack - prior_snd_una,
3645					       tp->mss_cache);
3646	}
3647
3648	prior_fackets = tp->fackets_out;
3649	prior_in_flight = tcp_packets_in_flight(tp);
3650
3651	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3652		/* Window is constant, pure forward advance.
3653		 * No more checks are required.
3654		 * Note, we use the fact that SND.UNA>=SND.WL2.
3655		 */
3656		tcp_update_wl(tp, ack_seq);
3657		tp->snd_una = ack;
3658		flag |= FLAG_WIN_UPDATE;
3659
3660		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3661
3662		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3663	} else {
3664		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3665			flag |= FLAG_DATA;
3666		else
3667			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3668
3669		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3670
3671		if (TCP_SKB_CB(skb)->sacked)
3672			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3673
3674		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3675			flag |= FLAG_ECE;
3676
3677		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3678	}
3679
3680	/* We passed data and got it acked, remove any soft error
3681	 * log. Something worked...
3682	 */
3683	sk->sk_err_soft = 0;
3684	icsk->icsk_probes_out = 0;
3685	tp->rcv_tstamp = tcp_time_stamp;
3686	prior_packets = tp->packets_out;
3687	if (!prior_packets)
3688		goto no_queue;
3689
3690	/* See if we can take anything off of the retransmit queue. */
3691	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3692
3693	if (tp->frto_counter)
3694		frto_cwnd = tcp_process_frto(sk, flag);
3695	/* Guarantee sacktag reordering detection against wrap-arounds */
3696	if (before(tp->frto_highmark, tp->snd_una))
3697		tp->frto_highmark = 0;
3698
3699	if (tcp_ack_is_dubious(sk, flag)) {
3700		/* Advance CWND, if state allows this. */
3701		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3702		    tcp_may_raise_cwnd(sk, flag))
3703			tcp_cong_avoid(sk, ack, prior_in_flight);
3704		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3705				      flag);
3706	} else {
3707		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3708			tcp_cong_avoid(sk, ack, prior_in_flight);
3709	}
3710
3711	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3712		dst_confirm(__sk_dst_get(sk));
3713
3714	return 1;
3715
3716no_queue:
3717	/* If this ack opens up a zero window, clear backoff.  It was
3718	 * being used to time the probes, and is probably far higher than
3719	 * it needs to be for normal retransmission.
3720	 */
3721	if (tcp_send_head(sk))
3722		tcp_ack_probe(sk);
3723	return 1;
3724
3725invalid_ack:
3726	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3727	return -1;
3728
3729old_ack:
3730	if (TCP_SKB_CB(skb)->sacked) {
3731		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3732		if (icsk->icsk_ca_state == TCP_CA_Open)
3733			tcp_try_keep_open(sk);
3734	}
3735
3736	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3737	return 0;
3738}
3739
3740/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3741 * But, this can also be called on packets in the established flow when
3742 * the fast version below fails.
3743 */
3744void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3745		       u8 **hvpp, int estab)
3746{
3747	unsigned char *ptr;
3748	struct tcphdr *th = tcp_hdr(skb);
3749	int length = (th->doff * 4) - sizeof(struct tcphdr);
3750
3751	ptr = (unsigned char *)(th + 1);
3752	opt_rx->saw_tstamp = 0;
3753
3754	while (length > 0) {
3755		int opcode = *ptr++;
3756		int opsize;
3757
3758		switch (opcode) {
3759		case TCPOPT_EOL:
3760			return;
3761		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3762			length--;
3763			continue;
3764		default:
3765			opsize = *ptr++;
3766			if (opsize < 2) /* "silly options" */
3767				return;
3768			if (opsize > length)
3769				return;	/* don't parse partial options */
3770			switch (opcode) {
3771			case TCPOPT_MSS:
3772				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3773					u16 in_mss = get_unaligned_be16(ptr);
3774					if (in_mss) {
3775						if (opt_rx->user_mss &&
3776						    opt_rx->user_mss < in_mss)
3777							in_mss = opt_rx->user_mss;
3778						opt_rx->mss_clamp = in_mss;
3779					}
3780				}
3781				break;
3782			case TCPOPT_WINDOW:
3783				if (opsize == TCPOLEN_WINDOW && th->syn &&
3784				    !estab && sysctl_tcp_window_scaling) {
3785					__u8 snd_wscale = *(__u8 *)ptr;
3786					opt_rx->wscale_ok = 1;
3787					if (snd_wscale > 14) {
3788						if (net_ratelimit())
3789							printk(KERN_INFO "tcp_parse_options: Illegal window "
3790							       "scaling value %d >14 received.\n",
3791							       snd_wscale);
3792						snd_wscale = 14;
3793					}
3794					opt_rx->snd_wscale = snd_wscale;
3795				}
3796				break;
3797			case TCPOPT_TIMESTAMP:
3798				if ((opsize == TCPOLEN_TIMESTAMP) &&
3799				    ((estab && opt_rx->tstamp_ok) ||
3800				     (!estab && sysctl_tcp_timestamps))) {
3801					opt_rx->saw_tstamp = 1;
3802					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3803					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3804				}
3805				break;
3806			case TCPOPT_SACK_PERM:
3807				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3808				    !estab && sysctl_tcp_sack) {
3809					opt_rx->sack_ok = 1;
3810					tcp_sack_reset(opt_rx);
3811				}
3812				break;
3813
3814			case TCPOPT_SACK:
3815				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3816				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3817				   opt_rx->sack_ok) {
3818					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3819				}
3820				break;
3821#ifdef CONFIG_TCP_MD5SIG
3822			case TCPOPT_MD5SIG:
3823				/*
3824				 * The MD5 Hash has already been
3825				 * checked (see tcp_v{4,6}_do_rcv()).
3826				 */
3827				break;
3828#endif
3829			case TCPOPT_COOKIE:
3830				/* This option is variable length.
3831				 */
3832				switch (opsize) {
3833				case TCPOLEN_COOKIE_BASE:
3834					/* not yet implemented */
3835					break;
3836				case TCPOLEN_COOKIE_PAIR:
3837					/* not yet implemented */
3838					break;
3839				case TCPOLEN_COOKIE_MIN+0:
3840				case TCPOLEN_COOKIE_MIN+2:
3841				case TCPOLEN_COOKIE_MIN+4:
3842				case TCPOLEN_COOKIE_MIN+6:
3843				case TCPOLEN_COOKIE_MAX:
3844					/* 16-bit multiple */
3845					opt_rx->cookie_plus = opsize;
3846					*hvpp = ptr;
3847					break;
3848				default:
3849					/* ignore option */
3850					break;
3851				}
3852				break;
3853			}
3854
3855			ptr += opsize-2;
3856			length -= opsize;
3857		}
3858	}
3859}
3860EXPORT_SYMBOL(tcp_parse_options);
3861
3862static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3863{
3864	__be32 *ptr = (__be32 *)(th + 1);
3865
3866	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3867			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3868		tp->rx_opt.saw_tstamp = 1;
3869		++ptr;
3870		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3871		++ptr;
3872		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3873		return 1;
3874	}
3875	return 0;
3876}
3877
3878/* Fast parse options. This hopes to only see timestamps.
3879 * If it is wrong it falls back on tcp_parse_options().
3880 */
3881static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3882				  struct tcp_sock *tp, u8 **hvpp)
3883{
3884	/* In the spirit of fast parsing, compare doff directly to constant
3885	 * values.  Because equality is used, short doff can be ignored here.
3886	 */
3887	if (th->doff == (sizeof(*th) / 4)) {
3888		tp->rx_opt.saw_tstamp = 0;
3889		return 0;
3890	} else if (tp->rx_opt.tstamp_ok &&
3891		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3892		if (tcp_parse_aligned_timestamp(tp, th))
3893			return 1;
3894	}
3895	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3896	return 1;
3897}
3898
3899#ifdef CONFIG_TCP_MD5SIG
3900/*
3901 * Parse MD5 Signature option
3902 */
3903u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3904{
3905	int length = (th->doff << 2) - sizeof (*th);
3906	u8 *ptr = (u8*)(th + 1);
3907
3908	/* If the TCP option is too short, we can short cut */
3909	if (length < TCPOLEN_MD5SIG)
3910		return NULL;
3911
3912	while (length > 0) {
3913		int opcode = *ptr++;
3914		int opsize;
3915
3916		switch(opcode) {
3917		case TCPOPT_EOL:
3918			return NULL;
3919		case TCPOPT_NOP:
3920			length--;
3921			continue;
3922		default:
3923			opsize = *ptr++;
3924			if (opsize < 2 || opsize > length)
3925				return NULL;
3926			if (opcode == TCPOPT_MD5SIG)
3927				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3928		}
3929		ptr += opsize - 2;
3930		length -= opsize;
3931	}
3932	return NULL;
3933}
3934EXPORT_SYMBOL(tcp_parse_md5sig_option);
3935#endif
3936
3937static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3938{
3939	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3940	tp->rx_opt.ts_recent_stamp = get_seconds();
3941}
3942
3943static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3944{
3945	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3946		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3947		 * extra check below makes sure this can only happen
3948		 * for pure ACK frames.  -DaveM
3949		 *
3950		 * Not only, also it occurs for expired timestamps.
3951		 */
3952
3953		if (tcp_paws_check(&tp->rx_opt, 0))
3954			tcp_store_ts_recent(tp);
3955	}
3956}
3957
3958/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3959 *
3960 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3961 * it can pass through stack. So, the following predicate verifies that
3962 * this segment is not used for anything but congestion avoidance or
3963 * fast retransmit. Moreover, we even are able to eliminate most of such
3964 * second order effects, if we apply some small "replay" window (~RTO)
3965 * to timestamp space.
3966 *
3967 * All these measures still do not guarantee that we reject wrapped ACKs
3968 * on networks with high bandwidth, when sequence space is recycled fastly,
3969 * but it guarantees that such events will be very rare and do not affect
3970 * connection seriously. This doesn't look nice, but alas, PAWS is really
3971 * buggy extension.
3972 *
3973 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3974 * states that events when retransmit arrives after original data are rare.
3975 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3976 * the biggest problem on large power networks even with minor reordering.
3977 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3978 * up to bandwidth of 18Gigabit/sec. 8) ]
3979 */
3980
3981static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3982{
3983	struct tcp_sock *tp = tcp_sk(sk);
3984	struct tcphdr *th = tcp_hdr(skb);
3985	u32 seq = TCP_SKB_CB(skb)->seq;
3986	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3987
3988	return (/* 1. Pure ACK with correct sequence number. */
3989		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3990
3991		/* 2. ... and duplicate ACK. */
3992		ack == tp->snd_una &&
3993
3994		/* 3. ... and does not update window. */
3995		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3996
3997		/* 4. ... and sits in replay window. */
3998		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3999}
4000
4001static inline int tcp_paws_discard(const struct sock *sk,
4002				   const struct sk_buff *skb)
4003{
4004	const struct tcp_sock *tp = tcp_sk(sk);
4005
4006	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4007	       !tcp_disordered_ack(sk, skb);
4008}
4009
4010/* Check segment sequence number for validity.
4011 *
4012 * Segment controls are considered valid, if the segment
4013 * fits to the window after truncation to the window. Acceptability
4014 * of data (and SYN, FIN, of course) is checked separately.
4015 * See tcp_data_queue(), for example.
4016 *
4017 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4018 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4019 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4020 * (borrowed from freebsd)
4021 */
4022
4023static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4024{
4025	return	!before(end_seq, tp->rcv_wup) &&
4026		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4027}
4028
4029/* When we get a reset we do this. */
4030static void tcp_reset(struct sock *sk)
4031{
4032	/* We want the right error as BSD sees it (and indeed as we do). */
4033	switch (sk->sk_state) {
4034	case TCP_SYN_SENT:
4035		sk->sk_err = ECONNREFUSED;
4036		break;
4037	case TCP_CLOSE_WAIT:
4038		sk->sk_err = EPIPE;
4039		break;
4040	case TCP_CLOSE:
4041		return;
4042	default:
4043		sk->sk_err = ECONNRESET;
4044	}
4045	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4046	smp_wmb();
4047
4048	if (!sock_flag(sk, SOCK_DEAD))
4049		sk->sk_error_report(sk);
4050
4051	tcp_done(sk);
4052}
4053
4054/*
4055 * 	Process the FIN bit. This now behaves as it is supposed to work
4056 *	and the FIN takes effect when it is validly part of sequence
4057 *	space. Not before when we get holes.
4058 *
4059 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4060 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4061 *	TIME-WAIT)
4062 *
4063 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4064 *	close and we go into CLOSING (and later onto TIME-WAIT)
4065 *
4066 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4067 */
4068static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4069{
4070	struct tcp_sock *tp = tcp_sk(sk);
4071
4072	inet_csk_schedule_ack(sk);
4073
4074	sk->sk_shutdown |= RCV_SHUTDOWN;
4075	sock_set_flag(sk, SOCK_DONE);
4076
4077	switch (sk->sk_state) {
4078	case TCP_SYN_RECV:
4079	case TCP_ESTABLISHED:
4080		/* Move to CLOSE_WAIT */
4081		tcp_set_state(sk, TCP_CLOSE_WAIT);
4082		inet_csk(sk)->icsk_ack.pingpong = 1;
4083		break;
4084
4085	case TCP_CLOSE_WAIT:
4086	case TCP_CLOSING:
4087		/* Received a retransmission of the FIN, do
4088		 * nothing.
4089		 */
4090		break;
4091	case TCP_LAST_ACK:
4092		/* RFC793: Remain in the LAST-ACK state. */
4093		break;
4094
4095	case TCP_FIN_WAIT1:
4096		/* This case occurs when a simultaneous close
4097		 * happens, we must ack the received FIN and
4098		 * enter the CLOSING state.
4099		 */
4100		tcp_send_ack(sk);
4101		tcp_set_state(sk, TCP_CLOSING);
4102		break;
4103	case TCP_FIN_WAIT2:
4104		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4105		tcp_send_ack(sk);
4106		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4107		break;
4108	default:
4109		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4110		 * cases we should never reach this piece of code.
4111		 */
4112		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4113		       __func__, sk->sk_state);
4114		break;
4115	}
4116
4117	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4118	 * Probably, we should reset in this case. For now drop them.
4119	 */
4120	__skb_queue_purge(&tp->out_of_order_queue);
4121	if (tcp_is_sack(tp))
4122		tcp_sack_reset(&tp->rx_opt);
4123	sk_mem_reclaim(sk);
4124
4125	if (!sock_flag(sk, SOCK_DEAD)) {
4126		sk->sk_state_change(sk);
4127
4128		/* Do not send POLL_HUP for half duplex close. */
4129		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4130		    sk->sk_state == TCP_CLOSE)
4131			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4132		else
4133			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4134	}
4135}
4136
4137static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4138				  u32 end_seq)
4139{
4140	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4141		if (before(seq, sp->start_seq))
4142			sp->start_seq = seq;
4143		if (after(end_seq, sp->end_seq))
4144			sp->end_seq = end_seq;
4145		return 1;
4146	}
4147	return 0;
4148}
4149
4150static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4151{
4152	struct tcp_sock *tp = tcp_sk(sk);
4153
4154	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4155		int mib_idx;
4156
4157		if (before(seq, tp->rcv_nxt))
4158			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4159		else
4160			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4161
4162		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4163
4164		tp->rx_opt.dsack = 1;
4165		tp->duplicate_sack[0].start_seq = seq;
4166		tp->duplicate_sack[0].end_seq = end_seq;
4167	}
4168}
4169
4170static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4171{
4172	struct tcp_sock *tp = tcp_sk(sk);
4173
4174	if (!tp->rx_opt.dsack)
4175		tcp_dsack_set(sk, seq, end_seq);
4176	else
4177		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4178}
4179
4180static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4181{
4182	struct tcp_sock *tp = tcp_sk(sk);
4183
4184	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4185	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4186		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4187		tcp_enter_quickack_mode(sk);
4188
4189		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4190			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4191
4192			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4193				end_seq = tp->rcv_nxt;
4194			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4195		}
4196	}
4197
4198	tcp_send_ack(sk);
4199}
4200
4201/* These routines update the SACK block as out-of-order packets arrive or
4202 * in-order packets close up the sequence space.
4203 */
4204static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4205{
4206	int this_sack;
4207	struct tcp_sack_block *sp = &tp->selective_acks[0];
4208	struct tcp_sack_block *swalk = sp + 1;
4209
4210	/* See if the recent change to the first SACK eats into
4211	 * or hits the sequence space of other SACK blocks, if so coalesce.
4212	 */
4213	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4214		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4215			int i;
4216
4217			/* Zap SWALK, by moving every further SACK up by one slot.
4218			 * Decrease num_sacks.
4219			 */
4220			tp->rx_opt.num_sacks--;
4221			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4222				sp[i] = sp[i + 1];
4223			continue;
4224		}
4225		this_sack++, swalk++;
4226	}
4227}
4228
4229static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4230{
4231	struct tcp_sock *tp = tcp_sk(sk);
4232	struct tcp_sack_block *sp = &tp->selective_acks[0];
4233	int cur_sacks = tp->rx_opt.num_sacks;
4234	int this_sack;
4235
4236	if (!cur_sacks)
4237		goto new_sack;
4238
4239	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4240		if (tcp_sack_extend(sp, seq, end_seq)) {
4241			/* Rotate this_sack to the first one. */
4242			for (; this_sack > 0; this_sack--, sp--)
4243				swap(*sp, *(sp - 1));
4244			if (cur_sacks > 1)
4245				tcp_sack_maybe_coalesce(tp);
4246			return;
4247		}
4248	}
4249
4250	/* Could not find an adjacent existing SACK, build a new one,
4251	 * put it at the front, and shift everyone else down.  We
4252	 * always know there is at least one SACK present already here.
4253	 *
4254	 * If the sack array is full, forget about the last one.
4255	 */
4256	if (this_sack >= TCP_NUM_SACKS) {
4257		this_sack--;
4258		tp->rx_opt.num_sacks--;
4259		sp--;
4260	}
4261	for (; this_sack > 0; this_sack--, sp--)
4262		*sp = *(sp - 1);
4263
4264new_sack:
4265	/* Build the new head SACK, and we're done. */
4266	sp->start_seq = seq;
4267	sp->end_seq = end_seq;
4268	tp->rx_opt.num_sacks++;
4269}
4270
4271/* RCV.NXT advances, some SACKs should be eaten. */
4272
4273static void tcp_sack_remove(struct tcp_sock *tp)
4274{
4275	struct tcp_sack_block *sp = &tp->selective_acks[0];
4276	int num_sacks = tp->rx_opt.num_sacks;
4277	int this_sack;
4278
4279	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4280	if (skb_queue_empty(&tp->out_of_order_queue)) {
4281		tp->rx_opt.num_sacks = 0;
4282		return;
4283	}
4284
4285	for (this_sack = 0; this_sack < num_sacks;) {
4286		/* Check if the start of the sack is covered by RCV.NXT. */
4287		if (!before(tp->rcv_nxt, sp->start_seq)) {
4288			int i;
4289
4290			/* RCV.NXT must cover all the block! */
4291			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4292
4293			/* Zap this SACK, by moving forward any other SACKS. */
4294			for (i=this_sack+1; i < num_sacks; i++)
4295				tp->selective_acks[i-1] = tp->selective_acks[i];
4296			num_sacks--;
4297			continue;
4298		}
4299		this_sack++;
4300		sp++;
4301	}
4302	tp->rx_opt.num_sacks = num_sacks;
4303}
4304
4305/* This one checks to see if we can put data from the
4306 * out_of_order queue into the receive_queue.
4307 */
4308static void tcp_ofo_queue(struct sock *sk)
4309{
4310	struct tcp_sock *tp = tcp_sk(sk);
4311	__u32 dsack_high = tp->rcv_nxt;
4312	struct sk_buff *skb;
4313
4314	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4315		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4316			break;
4317
4318		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4319			__u32 dsack = dsack_high;
4320			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4321				dsack_high = TCP_SKB_CB(skb)->end_seq;
4322			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4323		}
4324
4325		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4326			SOCK_DEBUG(sk, "ofo packet was already received\n");
4327			__skb_unlink(skb, &tp->out_of_order_queue);
4328			__kfree_skb(skb);
4329			continue;
4330		}
4331		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4332			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4333			   TCP_SKB_CB(skb)->end_seq);
4334
4335		__skb_unlink(skb, &tp->out_of_order_queue);
4336		__skb_queue_tail(&sk->sk_receive_queue, skb);
4337		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4338		if (tcp_hdr(skb)->fin)
4339			tcp_fin(skb, sk, tcp_hdr(skb));
4340	}
4341}
4342
4343static int tcp_prune_ofo_queue(struct sock *sk);
4344static int tcp_prune_queue(struct sock *sk);
4345
4346static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4347{
4348	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4349	    !sk_rmem_schedule(sk, size)) {
4350
4351		if (tcp_prune_queue(sk) < 0)
4352			return -1;
4353
4354		if (!sk_rmem_schedule(sk, size)) {
4355			if (!tcp_prune_ofo_queue(sk))
4356				return -1;
4357
4358			if (!sk_rmem_schedule(sk, size))
4359				return -1;
4360		}
4361	}
4362	return 0;
4363}
4364
4365static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4366{
4367	struct tcphdr *th = tcp_hdr(skb);
4368	struct tcp_sock *tp = tcp_sk(sk);
4369	int eaten = -1;
4370
4371	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4372		goto drop;
4373
4374	skb_dst_drop(skb);
4375	__skb_pull(skb, th->doff * 4);
4376
4377	TCP_ECN_accept_cwr(tp, skb);
4378
4379	tp->rx_opt.dsack = 0;
4380
4381	/*  Queue data for delivery to the user.
4382	 *  Packets in sequence go to the receive queue.
4383	 *  Out of sequence packets to the out_of_order_queue.
4384	 */
4385	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4386		if (tcp_receive_window(tp) == 0)
4387			goto out_of_window;
4388
4389		/* Ok. In sequence. In window. */
4390		if (tp->ucopy.task == current &&
4391		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4392		    sock_owned_by_user(sk) && !tp->urg_data) {
4393			int chunk = min_t(unsigned int, skb->len,
4394					  tp->ucopy.len);
4395
4396			__set_current_state(TASK_RUNNING);
4397
4398			local_bh_enable();
4399			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4400				tp->ucopy.len -= chunk;
4401				tp->copied_seq += chunk;
4402				eaten = (chunk == skb->len);
4403				tcp_rcv_space_adjust(sk);
4404			}
4405			local_bh_disable();
4406		}
4407
4408		if (eaten <= 0) {
4409queue_and_out:
4410			if (eaten < 0 &&
4411			    tcp_try_rmem_schedule(sk, skb->truesize))
4412				goto drop;
4413
4414			skb_set_owner_r(skb, sk);
4415			__skb_queue_tail(&sk->sk_receive_queue, skb);
4416		}
4417		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4418		if (skb->len)
4419			tcp_event_data_recv(sk, skb);
4420		if (th->fin)
4421			tcp_fin(skb, sk, th);
4422
4423		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4424			tcp_ofo_queue(sk);
4425
4426			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4427			 * gap in queue is filled.
4428			 */
4429			if (skb_queue_empty(&tp->out_of_order_queue))
4430				inet_csk(sk)->icsk_ack.pingpong = 0;
4431		}
4432
4433		if (tp->rx_opt.num_sacks)
4434			tcp_sack_remove(tp);
4435
4436		tcp_fast_path_check(sk);
4437
4438		if (eaten > 0)
4439			__kfree_skb(skb);
4440		else if (!sock_flag(sk, SOCK_DEAD))
4441			sk->sk_data_ready(sk, 0);
4442		return;
4443	}
4444
4445	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4446		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4447		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4448		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4449
4450out_of_window:
4451		tcp_enter_quickack_mode(sk);
4452		inet_csk_schedule_ack(sk);
4453drop:
4454		__kfree_skb(skb);
4455		return;
4456	}
4457
4458	/* Out of window. F.e. zero window probe. */
4459	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4460		goto out_of_window;
4461
4462	tcp_enter_quickack_mode(sk);
4463
4464	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4465		/* Partial packet, seq < rcv_next < end_seq */
4466		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4467			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4468			   TCP_SKB_CB(skb)->end_seq);
4469
4470		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4471
4472		/* If window is closed, drop tail of packet. But after
4473		 * remembering D-SACK for its head made in previous line.
4474		 */
4475		if (!tcp_receive_window(tp))
4476			goto out_of_window;
4477		goto queue_and_out;
4478	}
4479
4480	TCP_ECN_check_ce(tp, skb);
4481
4482	if (tcp_try_rmem_schedule(sk, skb->truesize))
4483		goto drop;
4484
4485	/* Disable header prediction. */
4486	tp->pred_flags = 0;
4487	inet_csk_schedule_ack(sk);
4488
4489	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4490		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4491
4492	skb_set_owner_r(skb, sk);
4493
4494	if (!skb_peek(&tp->out_of_order_queue)) {
4495		/* Initial out of order segment, build 1 SACK. */
4496		if (tcp_is_sack(tp)) {
4497			tp->rx_opt.num_sacks = 1;
4498			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4499			tp->selective_acks[0].end_seq =
4500						TCP_SKB_CB(skb)->end_seq;
4501		}
4502		__skb_queue_head(&tp->out_of_order_queue, skb);
4503	} else {
4504		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4505		u32 seq = TCP_SKB_CB(skb)->seq;
4506		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4507
4508		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4509			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4510
4511			if (!tp->rx_opt.num_sacks ||
4512			    tp->selective_acks[0].end_seq != seq)
4513				goto add_sack;
4514
4515			/* Common case: data arrive in order after hole. */
4516			tp->selective_acks[0].end_seq = end_seq;
4517			return;
4518		}
4519
4520		/* Find place to insert this segment. */
4521		while (1) {
4522			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4523				break;
4524			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4525				skb1 = NULL;
4526				break;
4527			}
4528			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4529		}
4530
4531		/* Do skb overlap to previous one? */
4532		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4533			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4534				/* All the bits are present. Drop. */
4535				__kfree_skb(skb);
4536				tcp_dsack_set(sk, seq, end_seq);
4537				goto add_sack;
4538			}
4539			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4540				/* Partial overlap. */
4541				tcp_dsack_set(sk, seq,
4542					      TCP_SKB_CB(skb1)->end_seq);
4543			} else {
4544				if (skb_queue_is_first(&tp->out_of_order_queue,
4545						       skb1))
4546					skb1 = NULL;
4547				else
4548					skb1 = skb_queue_prev(
4549						&tp->out_of_order_queue,
4550						skb1);
4551			}
4552		}
4553		if (!skb1)
4554			__skb_queue_head(&tp->out_of_order_queue, skb);
4555		else
4556			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4557
4558		/* And clean segments covered by new one as whole. */
4559		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4560			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4561
4562			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4563				break;
4564			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4565				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4566						 end_seq);
4567				break;
4568			}
4569			__skb_unlink(skb1, &tp->out_of_order_queue);
4570			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4571					 TCP_SKB_CB(skb1)->end_seq);
4572			__kfree_skb(skb1);
4573		}
4574
4575add_sack:
4576		if (tcp_is_sack(tp))
4577			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4578	}
4579}
4580
4581static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4582					struct sk_buff_head *list)
4583{
4584	struct sk_buff *next = NULL;
4585
4586	if (!skb_queue_is_last(list, skb))
4587		next = skb_queue_next(list, skb);
4588
4589	__skb_unlink(skb, list);
4590	__kfree_skb(skb);
4591	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4592
4593	return next;
4594}
4595
4596/* Collapse contiguous sequence of skbs head..tail with
4597 * sequence numbers start..end.
4598 *
4599 * If tail is NULL, this means until the end of the list.
4600 *
4601 * Segments with FIN/SYN are not collapsed (only because this
4602 * simplifies code)
4603 */
4604static void
4605tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4606	     struct sk_buff *head, struct sk_buff *tail,
4607	     u32 start, u32 end)
4608{
4609	struct sk_buff *skb, *n;
4610	bool end_of_skbs;
4611
4612	/* First, check that queue is collapsible and find
4613	 * the point where collapsing can be useful. */
4614	skb = head;
4615restart:
4616	end_of_skbs = true;
4617	skb_queue_walk_from_safe(list, skb, n) {
4618		if (skb == tail)
4619			break;
4620		/* No new bits? It is possible on ofo queue. */
4621		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4622			skb = tcp_collapse_one(sk, skb, list);
4623			if (!skb)
4624				break;
4625			goto restart;
4626		}
4627
4628		/* The first skb to collapse is:
4629		 * - not SYN/FIN and
4630		 * - bloated or contains data before "start" or
4631		 *   overlaps to the next one.
4632		 */
4633		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4634		    (tcp_win_from_space(skb->truesize) > skb->len ||
4635		     before(TCP_SKB_CB(skb)->seq, start))) {
4636			end_of_skbs = false;
4637			break;
4638		}
4639
4640		if (!skb_queue_is_last(list, skb)) {
4641			struct sk_buff *next = skb_queue_next(list, skb);
4642			if (next != tail &&
4643			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4644				end_of_skbs = false;
4645				break;
4646			}
4647		}
4648
4649		/* Decided to skip this, advance start seq. */
4650		start = TCP_SKB_CB(skb)->end_seq;
4651	}
4652	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4653		return;
4654
4655	while (before(start, end)) {
4656		struct sk_buff *nskb;
4657		unsigned int header = skb_headroom(skb);
4658		int copy = SKB_MAX_ORDER(header, 0);
4659
4660		/* Too big header? This can happen with IPv6. */
4661		if (copy < 0)
4662			return;
4663		if (end - start < copy)
4664			copy = end - start;
4665		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4666		if (!nskb)
4667			return;
4668
4669		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4670		skb_set_network_header(nskb, (skb_network_header(skb) -
4671					      skb->head));
4672		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4673						skb->head));
4674		skb_reserve(nskb, header);
4675		memcpy(nskb->head, skb->head, header);
4676		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4677		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4678		__skb_queue_before(list, skb, nskb);
4679		skb_set_owner_r(nskb, sk);
4680
4681		/* Copy data, releasing collapsed skbs. */
4682		while (copy > 0) {
4683			int offset = start - TCP_SKB_CB(skb)->seq;
4684			int size = TCP_SKB_CB(skb)->end_seq - start;
4685
4686			BUG_ON(offset < 0);
4687			if (size > 0) {
4688				size = min(copy, size);
4689				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4690					BUG();
4691				TCP_SKB_CB(nskb)->end_seq += size;
4692				copy -= size;
4693				start += size;
4694			}
4695			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4696				skb = tcp_collapse_one(sk, skb, list);
4697				if (!skb ||
4698				    skb == tail ||
4699				    tcp_hdr(skb)->syn ||
4700				    tcp_hdr(skb)->fin)
4701					return;
4702			}
4703		}
4704	}
4705}
4706
4707/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4708 * and tcp_collapse() them until all the queue is collapsed.
4709 */
4710static void tcp_collapse_ofo_queue(struct sock *sk)
4711{
4712	struct tcp_sock *tp = tcp_sk(sk);
4713	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4714	struct sk_buff *head;
4715	u32 start, end;
4716
4717	if (skb == NULL)
4718		return;
4719
4720	start = TCP_SKB_CB(skb)->seq;
4721	end = TCP_SKB_CB(skb)->end_seq;
4722	head = skb;
4723
4724	for (;;) {
4725		struct sk_buff *next = NULL;
4726
4727		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4728			next = skb_queue_next(&tp->out_of_order_queue, skb);
4729		skb = next;
4730
4731		/* Segment is terminated when we see gap or when
4732		 * we are at the end of all the queue. */
4733		if (!skb ||
4734		    after(TCP_SKB_CB(skb)->seq, end) ||
4735		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4736			tcp_collapse(sk, &tp->out_of_order_queue,
4737				     head, skb, start, end);
4738			head = skb;
4739			if (!skb)
4740				break;
4741			/* Start new segment */
4742			start = TCP_SKB_CB(skb)->seq;
4743			end = TCP_SKB_CB(skb)->end_seq;
4744		} else {
4745			if (before(TCP_SKB_CB(skb)->seq, start))
4746				start = TCP_SKB_CB(skb)->seq;
4747			if (after(TCP_SKB_CB(skb)->end_seq, end))
4748				end = TCP_SKB_CB(skb)->end_seq;
4749		}
4750	}
4751}
4752
4753/*
4754 * Purge the out-of-order queue.
4755 * Return true if queue was pruned.
4756 */
4757static int tcp_prune_ofo_queue(struct sock *sk)
4758{
4759	struct tcp_sock *tp = tcp_sk(sk);
4760	int res = 0;
4761
4762	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4763		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4764		__skb_queue_purge(&tp->out_of_order_queue);
4765
4766		/* Reset SACK state.  A conforming SACK implementation will
4767		 * do the same at a timeout based retransmit.  When a connection
4768		 * is in a sad state like this, we care only about integrity
4769		 * of the connection not performance.
4770		 */
4771		if (tp->rx_opt.sack_ok)
4772			tcp_sack_reset(&tp->rx_opt);
4773		sk_mem_reclaim(sk);
4774		res = 1;
4775	}
4776	return res;
4777}
4778
4779/* Reduce allocated memory if we can, trying to get
4780 * the socket within its memory limits again.
4781 *
4782 * Return less than zero if we should start dropping frames
4783 * until the socket owning process reads some of the data
4784 * to stabilize the situation.
4785 */
4786static int tcp_prune_queue(struct sock *sk)
4787{
4788	struct tcp_sock *tp = tcp_sk(sk);
4789
4790	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4791
4792	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4793
4794	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4795		tcp_clamp_window(sk);
4796	else if (tcp_memory_pressure)
4797		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4798
4799	tcp_collapse_ofo_queue(sk);
4800	if (!skb_queue_empty(&sk->sk_receive_queue))
4801		tcp_collapse(sk, &sk->sk_receive_queue,
4802			     skb_peek(&sk->sk_receive_queue),
4803			     NULL,
4804			     tp->copied_seq, tp->rcv_nxt);
4805	sk_mem_reclaim(sk);
4806
4807	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4808		return 0;
4809
4810	/* Collapsing did not help, destructive actions follow.
4811	 * This must not ever occur. */
4812
4813	tcp_prune_ofo_queue(sk);
4814
4815	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4816		return 0;
4817
4818	/* If we are really being abused, tell the caller to silently
4819	 * drop receive data on the floor.  It will get retransmitted
4820	 * and hopefully then we'll have sufficient space.
4821	 */
4822	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4823
4824	/* Massive buffer overcommit. */
4825	tp->pred_flags = 0;
4826	return -1;
4827}
4828
4829/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4830 * As additional protections, we do not touch cwnd in retransmission phases,
4831 * and if application hit its sndbuf limit recently.
4832 */
4833void tcp_cwnd_application_limited(struct sock *sk)
4834{
4835	struct tcp_sock *tp = tcp_sk(sk);
4836
4837	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4838	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4839		/* Limited by application or receiver window. */
4840		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4841		u32 win_used = max(tp->snd_cwnd_used, init_win);
4842		if (win_used < tp->snd_cwnd) {
4843			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4844			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4845		}
4846		tp->snd_cwnd_used = 0;
4847	}
4848	tp->snd_cwnd_stamp = tcp_time_stamp;
4849}
4850
4851static int tcp_should_expand_sndbuf(struct sock *sk)
4852{
4853	struct tcp_sock *tp = tcp_sk(sk);
4854
4855	/* If the user specified a specific send buffer setting, do
4856	 * not modify it.
4857	 */
4858	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4859		return 0;
4860
4861	/* If we are under global TCP memory pressure, do not expand.  */
4862	if (tcp_memory_pressure)
4863		return 0;
4864
4865	/* If we are under soft global TCP memory pressure, do not expand.  */
4866	if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4867		return 0;
4868
4869	/* If we filled the congestion window, do not expand.  */
4870	if (tp->packets_out >= tp->snd_cwnd)
4871		return 0;
4872
4873	return 1;
4874}
4875
4876/* When incoming ACK allowed to free some skb from write_queue,
4877 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4878 * on the exit from tcp input handler.
4879 *
4880 * PROBLEM: sndbuf expansion does not work well with largesend.
4881 */
4882static void tcp_new_space(struct sock *sk)
4883{
4884	struct tcp_sock *tp = tcp_sk(sk);
4885
4886	if (tcp_should_expand_sndbuf(sk)) {
4887		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4888			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4889		int demanded = max_t(unsigned int, tp->snd_cwnd,
4890				     tp->reordering + 1);
4891		sndmem *= 2 * demanded;
4892		if (sndmem > sk->sk_sndbuf)
4893			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4894		tp->snd_cwnd_stamp = tcp_time_stamp;
4895	}
4896
4897	sk->sk_write_space(sk);
4898}
4899
4900static void tcp_check_space(struct sock *sk)
4901{
4902	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4903		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4904		if (sk->sk_socket &&
4905		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4906			tcp_new_space(sk);
4907	}
4908}
4909
4910static inline void tcp_data_snd_check(struct sock *sk)
4911{
4912	tcp_push_pending_frames(sk);
4913	tcp_check_space(sk);
4914}
4915
4916/*
4917 * Check if sending an ack is needed.
4918 */
4919static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4920{
4921	struct tcp_sock *tp = tcp_sk(sk);
4922
4923	    /* More than one full frame received... */
4924	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4925	     /* ... and right edge of window advances far enough.
4926	      * (tcp_recvmsg() will send ACK otherwise). Or...
4927	      */
4928	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4929	    /* We ACK each frame or... */
4930	    tcp_in_quickack_mode(sk) ||
4931	    /* We have out of order data. */
4932	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4933		/* Then ack it now */
4934		tcp_send_ack(sk);
4935	} else {
4936		/* Else, send delayed ack. */
4937		tcp_send_delayed_ack(sk);
4938	}
4939}
4940
4941static inline void tcp_ack_snd_check(struct sock *sk)
4942{
4943	if (!inet_csk_ack_scheduled(sk)) {
4944		/* We sent a data segment already. */
4945		return;
4946	}
4947	__tcp_ack_snd_check(sk, 1);
4948}
4949
4950/*
4951 *	This routine is only called when we have urgent data
4952 *	signaled. Its the 'slow' part of tcp_urg. It could be
4953 *	moved inline now as tcp_urg is only called from one
4954 *	place. We handle URGent data wrong. We have to - as
4955 *	BSD still doesn't use the correction from RFC961.
4956 *	For 1003.1g we should support a new option TCP_STDURG to permit
4957 *	either form (or just set the sysctl tcp_stdurg).
4958 */
4959
4960static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4961{
4962	struct tcp_sock *tp = tcp_sk(sk);
4963	u32 ptr = ntohs(th->urg_ptr);
4964
4965	if (ptr && !sysctl_tcp_stdurg)
4966		ptr--;
4967	ptr += ntohl(th->seq);
4968
4969	/* Ignore urgent data that we've already seen and read. */
4970	if (after(tp->copied_seq, ptr))
4971		return;
4972
4973	/* Do not replay urg ptr.
4974	 *
4975	 * NOTE: interesting situation not covered by specs.
4976	 * Misbehaving sender may send urg ptr, pointing to segment,
4977	 * which we already have in ofo queue. We are not able to fetch
4978	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4979	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4980	 * situations. But it is worth to think about possibility of some
4981	 * DoSes using some hypothetical application level deadlock.
4982	 */
4983	if (before(ptr, tp->rcv_nxt))
4984		return;
4985
4986	/* Do we already have a newer (or duplicate) urgent pointer? */
4987	if (tp->urg_data && !after(ptr, tp->urg_seq))
4988		return;
4989
4990	/* Tell the world about our new urgent pointer. */
4991	sk_send_sigurg(sk);
4992
4993	/* We may be adding urgent data when the last byte read was
4994	 * urgent. To do this requires some care. We cannot just ignore
4995	 * tp->copied_seq since we would read the last urgent byte again
4996	 * as data, nor can we alter copied_seq until this data arrives
4997	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4998	 *
4999	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5000	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5001	 * and expect that both A and B disappear from stream. This is _wrong_.
5002	 * Though this happens in BSD with high probability, this is occasional.
5003	 * Any application relying on this is buggy. Note also, that fix "works"
5004	 * only in this artificial test. Insert some normal data between A and B and we will
5005	 * decline of BSD again. Verdict: it is better to remove to trap
5006	 * buggy users.
5007	 */
5008	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5009	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5010		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5011		tp->copied_seq++;
5012		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5013			__skb_unlink(skb, &sk->sk_receive_queue);
5014			__kfree_skb(skb);
5015		}
5016	}
5017
5018	tp->urg_data = TCP_URG_NOTYET;
5019	tp->urg_seq = ptr;
5020
5021	/* Disable header prediction. */
5022	tp->pred_flags = 0;
5023}
5024
5025/* This is the 'fast' part of urgent handling. */
5026static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5027{
5028	struct tcp_sock *tp = tcp_sk(sk);
5029
5030	/* Check if we get a new urgent pointer - normally not. */
5031	if (th->urg)
5032		tcp_check_urg(sk, th);
5033
5034	/* Do we wait for any urgent data? - normally not... */
5035	if (tp->urg_data == TCP_URG_NOTYET) {
5036		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5037			  th->syn;
5038
5039		/* Is the urgent pointer pointing into this packet? */
5040		if (ptr < skb->len) {
5041			u8 tmp;
5042			if (skb_copy_bits(skb, ptr, &tmp, 1))
5043				BUG();
5044			tp->urg_data = TCP_URG_VALID | tmp;
5045			if (!sock_flag(sk, SOCK_DEAD))
5046				sk->sk_data_ready(sk, 0);
5047		}
5048	}
5049}
5050
5051static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5052{
5053	struct tcp_sock *tp = tcp_sk(sk);
5054	int chunk = skb->len - hlen;
5055	int err;
5056
5057	local_bh_enable();
5058	if (skb_csum_unnecessary(skb))
5059		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5060	else
5061		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5062						       tp->ucopy.iov);
5063
5064	if (!err) {
5065		tp->ucopy.len -= chunk;
5066		tp->copied_seq += chunk;
5067		tcp_rcv_space_adjust(sk);
5068	}
5069
5070	local_bh_disable();
5071	return err;
5072}
5073
5074static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5075					    struct sk_buff *skb)
5076{
5077	__sum16 result;
5078
5079	if (sock_owned_by_user(sk)) {
5080		local_bh_enable();
5081		result = __tcp_checksum_complete(skb);
5082		local_bh_disable();
5083	} else {
5084		result = __tcp_checksum_complete(skb);
5085	}
5086	return result;
5087}
5088
5089static inline int tcp_checksum_complete_user(struct sock *sk,
5090					     struct sk_buff *skb)
5091{
5092	return !skb_csum_unnecessary(skb) &&
5093	       __tcp_checksum_complete_user(sk, skb);
5094}
5095
5096#ifdef CONFIG_NET_DMA
5097static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5098				  int hlen)
5099{
5100	struct tcp_sock *tp = tcp_sk(sk);
5101	int chunk = skb->len - hlen;
5102	int dma_cookie;
5103	int copied_early = 0;
5104
5105	if (tp->ucopy.wakeup)
5106		return 0;
5107
5108	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5109		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5110
5111	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5112
5113		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5114							 skb, hlen,
5115							 tp->ucopy.iov, chunk,
5116							 tp->ucopy.pinned_list);
5117
5118		if (dma_cookie < 0)
5119			goto out;
5120
5121		tp->ucopy.dma_cookie = dma_cookie;
5122		copied_early = 1;
5123
5124		tp->ucopy.len -= chunk;
5125		tp->copied_seq += chunk;
5126		tcp_rcv_space_adjust(sk);
5127
5128		if ((tp->ucopy.len == 0) ||
5129		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5130		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5131			tp->ucopy.wakeup = 1;
5132			sk->sk_data_ready(sk, 0);
5133		}
5134	} else if (chunk > 0) {
5135		tp->ucopy.wakeup = 1;
5136		sk->sk_data_ready(sk, 0);
5137	}
5138out:
5139	return copied_early;
5140}
5141#endif /* CONFIG_NET_DMA */
5142
5143/* Does PAWS and seqno based validation of an incoming segment, flags will
5144 * play significant role here.
5145 */
5146static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5147			      struct tcphdr *th, int syn_inerr)
5148{
5149	u8 *hash_location;
5150	struct tcp_sock *tp = tcp_sk(sk);
5151
5152	/* RFC1323: H1. Apply PAWS check first. */
5153	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5154	    tp->rx_opt.saw_tstamp &&
5155	    tcp_paws_discard(sk, skb)) {
5156		if (!th->rst) {
5157			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5158			tcp_send_dupack(sk, skb);
5159			goto discard;
5160		}
5161		/* Reset is accepted even if it did not pass PAWS. */
5162	}
5163
5164	/* Step 1: check sequence number */
5165	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5166		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5167		 * (RST) segments are validated by checking their SEQ-fields."
5168		 * And page 69: "If an incoming segment is not acceptable,
5169		 * an acknowledgment should be sent in reply (unless the RST
5170		 * bit is set, if so drop the segment and return)".
5171		 */
5172		if (!th->rst)
5173			tcp_send_dupack(sk, skb);
5174		goto discard;
5175	}
5176
5177	/* Step 2: check RST bit */
5178	if (th->rst) {
5179		tcp_reset(sk);
5180		goto discard;
5181	}
5182
5183	/* ts_recent update must be made after we are sure that the packet
5184	 * is in window.
5185	 */
5186	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5187
5188	/* step 3: check security and precedence [ignored] */
5189
5190	/* step 4: Check for a SYN in window. */
5191	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5192		if (syn_inerr)
5193			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5194		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5195		tcp_reset(sk);
5196		return -1;
5197	}
5198
5199	return 1;
5200
5201discard:
5202	__kfree_skb(skb);
5203	return 0;
5204}
5205
5206/*
5207 *	TCP receive function for the ESTABLISHED state.
5208 *
5209 *	It is split into a fast path and a slow path. The fast path is
5210 * 	disabled when:
5211 *	- A zero window was announced from us - zero window probing
5212 *        is only handled properly in the slow path.
5213 *	- Out of order segments arrived.
5214 *	- Urgent data is expected.
5215 *	- There is no buffer space left
5216 *	- Unexpected TCP flags/window values/header lengths are received
5217 *	  (detected by checking the TCP header against pred_flags)
5218 *	- Data is sent in both directions. Fast path only supports pure senders
5219 *	  or pure receivers (this means either the sequence number or the ack
5220 *	  value must stay constant)
5221 *	- Unexpected TCP option.
5222 *
5223 *	When these conditions are not satisfied it drops into a standard
5224 *	receive procedure patterned after RFC793 to handle all cases.
5225 *	The first three cases are guaranteed by proper pred_flags setting,
5226 *	the rest is checked inline. Fast processing is turned on in
5227 *	tcp_data_queue when everything is OK.
5228 */
5229int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5230			struct tcphdr *th, unsigned len)
5231{
5232	struct tcp_sock *tp = tcp_sk(sk);
5233	int res;
5234
5235	/*
5236	 *	Header prediction.
5237	 *	The code loosely follows the one in the famous
5238	 *	"30 instruction TCP receive" Van Jacobson mail.
5239	 *
5240	 *	Van's trick is to deposit buffers into socket queue
5241	 *	on a device interrupt, to call tcp_recv function
5242	 *	on the receive process context and checksum and copy
5243	 *	the buffer to user space. smart...
5244	 *
5245	 *	Our current scheme is not silly either but we take the
5246	 *	extra cost of the net_bh soft interrupt processing...
5247	 *	We do checksum and copy also but from device to kernel.
5248	 */
5249
5250	tp->rx_opt.saw_tstamp = 0;
5251
5252	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5253	 *	if header_prediction is to be made
5254	 *	'S' will always be tp->tcp_header_len >> 2
5255	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5256	 *  turn it off	(when there are holes in the receive
5257	 *	 space for instance)
5258	 *	PSH flag is ignored.
5259	 */
5260
5261	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5262	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5263	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5264		int tcp_header_len = tp->tcp_header_len;
5265
5266		/* Timestamp header prediction: tcp_header_len
5267		 * is automatically equal to th->doff*4 due to pred_flags
5268		 * match.
5269		 */
5270
5271		/* Check timestamp */
5272		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5273			/* No? Slow path! */
5274			if (!tcp_parse_aligned_timestamp(tp, th))
5275				goto slow_path;
5276
5277			/* If PAWS failed, check it more carefully in slow path */
5278			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5279				goto slow_path;
5280
5281			/* DO NOT update ts_recent here, if checksum fails
5282			 * and timestamp was corrupted part, it will result
5283			 * in a hung connection since we will drop all
5284			 * future packets due to the PAWS test.
5285			 */
5286		}
5287
5288		if (len <= tcp_header_len) {
5289			/* Bulk data transfer: sender */
5290			if (len == tcp_header_len) {
5291				/* Predicted packet is in window by definition.
5292				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5293				 * Hence, check seq<=rcv_wup reduces to:
5294				 */
5295				if (tcp_header_len ==
5296				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5297				    tp->rcv_nxt == tp->rcv_wup)
5298					tcp_store_ts_recent(tp);
5299
5300				/* We know that such packets are checksummed
5301				 * on entry.
5302				 */
5303				tcp_ack(sk, skb, 0);
5304				__kfree_skb(skb);
5305				tcp_data_snd_check(sk);
5306				return 0;
5307			} else { /* Header too small */
5308				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5309				goto discard;
5310			}
5311		} else {
5312			int eaten = 0;
5313			int copied_early = 0;
5314
5315			if (tp->copied_seq == tp->rcv_nxt &&
5316			    len - tcp_header_len <= tp->ucopy.len) {
5317#ifdef CONFIG_NET_DMA
5318				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5319					copied_early = 1;
5320					eaten = 1;
5321				}
5322#endif
5323				if (tp->ucopy.task == current &&
5324				    sock_owned_by_user(sk) && !copied_early) {
5325					__set_current_state(TASK_RUNNING);
5326
5327					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5328						eaten = 1;
5329				}
5330				if (eaten) {
5331					/* Predicted packet is in window by definition.
5332					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5333					 * Hence, check seq<=rcv_wup reduces to:
5334					 */
5335					if (tcp_header_len ==
5336					    (sizeof(struct tcphdr) +
5337					     TCPOLEN_TSTAMP_ALIGNED) &&
5338					    tp->rcv_nxt == tp->rcv_wup)
5339						tcp_store_ts_recent(tp);
5340
5341					tcp_rcv_rtt_measure_ts(sk, skb);
5342
5343					__skb_pull(skb, tcp_header_len);
5344					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5345					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5346				}
5347				if (copied_early)
5348					tcp_cleanup_rbuf(sk, skb->len);
5349			}
5350			if (!eaten) {
5351				if (tcp_checksum_complete_user(sk, skb))
5352					goto csum_error;
5353
5354				/* Predicted packet is in window by definition.
5355				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5356				 * Hence, check seq<=rcv_wup reduces to:
5357				 */
5358				if (tcp_header_len ==
5359				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5360				    tp->rcv_nxt == tp->rcv_wup)
5361					tcp_store_ts_recent(tp);
5362
5363				tcp_rcv_rtt_measure_ts(sk, skb);
5364
5365				if ((int)skb->truesize > sk->sk_forward_alloc)
5366					goto step5;
5367
5368				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5369
5370				/* Bulk data transfer: receiver */
5371				__skb_pull(skb, tcp_header_len);
5372				__skb_queue_tail(&sk->sk_receive_queue, skb);
5373				skb_set_owner_r(skb, sk);
5374				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5375			}
5376
5377			tcp_event_data_recv(sk, skb);
5378
5379			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5380				/* Well, only one small jumplet in fast path... */
5381				tcp_ack(sk, skb, FLAG_DATA);
5382				tcp_data_snd_check(sk);
5383				if (!inet_csk_ack_scheduled(sk))
5384					goto no_ack;
5385			}
5386
5387			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5388				__tcp_ack_snd_check(sk, 0);
5389no_ack:
5390#ifdef CONFIG_NET_DMA
5391			if (copied_early)
5392				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5393			else
5394#endif
5395			if (eaten)
5396				__kfree_skb(skb);
5397			else
5398				sk->sk_data_ready(sk, 0);
5399			return 0;
5400		}
5401	}
5402
5403slow_path:
5404	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5405		goto csum_error;
5406
5407	/*
5408	 *	Standard slow path.
5409	 */
5410
5411	res = tcp_validate_incoming(sk, skb, th, 1);
5412	if (res <= 0)
5413		return -res;
5414
5415step5:
5416	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5417		goto discard;
5418
5419	tcp_rcv_rtt_measure_ts(sk, skb);
5420
5421	/* Process urgent data. */
5422	tcp_urg(sk, skb, th);
5423
5424	/* step 7: process the segment text */
5425	tcp_data_queue(sk, skb);
5426
5427	tcp_data_snd_check(sk);
5428	tcp_ack_snd_check(sk);
5429	return 0;
5430
5431csum_error:
5432	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5433
5434discard:
5435	__kfree_skb(skb);
5436	return 0;
5437}
5438EXPORT_SYMBOL(tcp_rcv_established);
5439
5440static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5441					 struct tcphdr *th, unsigned len)
5442{
5443	u8 *hash_location;
5444	struct inet_connection_sock *icsk = inet_csk(sk);
5445	struct tcp_sock *tp = tcp_sk(sk);
5446	struct tcp_cookie_values *cvp = tp->cookie_values;
5447	int saved_clamp = tp->rx_opt.mss_clamp;
5448
5449	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5450
5451	if (th->ack) {
5452		/* rfc793:
5453		 * "If the state is SYN-SENT then
5454		 *    first check the ACK bit
5455		 *      If the ACK bit is set
5456		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5457		 *        a reset (unless the RST bit is set, if so drop
5458		 *        the segment and return)"
5459		 *
5460		 *  We do not send data with SYN, so that RFC-correct
5461		 *  test reduces to:
5462		 */
5463		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5464			goto reset_and_undo;
5465
5466		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5467		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5468			     tcp_time_stamp)) {
5469			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5470			goto reset_and_undo;
5471		}
5472
5473		/* Now ACK is acceptable.
5474		 *
5475		 * "If the RST bit is set
5476		 *    If the ACK was acceptable then signal the user "error:
5477		 *    connection reset", drop the segment, enter CLOSED state,
5478		 *    delete TCB, and return."
5479		 */
5480
5481		if (th->rst) {
5482			tcp_reset(sk);
5483			goto discard;
5484		}
5485
5486		/* rfc793:
5487		 *   "fifth, if neither of the SYN or RST bits is set then
5488		 *    drop the segment and return."
5489		 *
5490		 *    See note below!
5491		 *                                        --ANK(990513)
5492		 */
5493		if (!th->syn)
5494			goto discard_and_undo;
5495
5496		/* rfc793:
5497		 *   "If the SYN bit is on ...
5498		 *    are acceptable then ...
5499		 *    (our SYN has been ACKed), change the connection
5500		 *    state to ESTABLISHED..."
5501		 */
5502
5503		TCP_ECN_rcv_synack(tp, th);
5504
5505		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5506		tcp_ack(sk, skb, FLAG_SLOWPATH);
5507
5508		/* Ok.. it's good. Set up sequence numbers and
5509		 * move to established.
5510		 */
5511		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5512		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5513
5514		/* RFC1323: The window in SYN & SYN/ACK segments is
5515		 * never scaled.
5516		 */
5517		tp->snd_wnd = ntohs(th->window);
5518		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5519
5520		if (!tp->rx_opt.wscale_ok) {
5521			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5522			tp->window_clamp = min(tp->window_clamp, 65535U);
5523		}
5524
5525		if (tp->rx_opt.saw_tstamp) {
5526			tp->rx_opt.tstamp_ok	   = 1;
5527			tp->tcp_header_len =
5528				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5529			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5530			tcp_store_ts_recent(tp);
5531		} else {
5532			tp->tcp_header_len = sizeof(struct tcphdr);
5533		}
5534
5535		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5536			tcp_enable_fack(tp);
5537
5538		tcp_mtup_init(sk);
5539		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5540		tcp_initialize_rcv_mss(sk);
5541
5542		/* Remember, tcp_poll() does not lock socket!
5543		 * Change state from SYN-SENT only after copied_seq
5544		 * is initialized. */
5545		tp->copied_seq = tp->rcv_nxt;
5546
5547		if (cvp != NULL &&
5548		    cvp->cookie_pair_size > 0 &&
5549		    tp->rx_opt.cookie_plus > 0) {
5550			int cookie_size = tp->rx_opt.cookie_plus
5551					- TCPOLEN_COOKIE_BASE;
5552			int cookie_pair_size = cookie_size
5553					     + cvp->cookie_desired;
5554
5555			/* A cookie extension option was sent and returned.
5556			 * Note that each incoming SYNACK replaces the
5557			 * Responder cookie.  The initial exchange is most
5558			 * fragile, as protection against spoofing relies
5559			 * entirely upon the sequence and timestamp (above).
5560			 * This replacement strategy allows the correct pair to
5561			 * pass through, while any others will be filtered via
5562			 * Responder verification later.
5563			 */
5564			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5565				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5566				       hash_location, cookie_size);
5567				cvp->cookie_pair_size = cookie_pair_size;
5568			}
5569		}
5570
5571		smp_mb();
5572		tcp_set_state(sk, TCP_ESTABLISHED);
5573
5574		security_inet_conn_established(sk, skb);
5575
5576		/* Make sure socket is routed, for correct metrics.  */
5577		icsk->icsk_af_ops->rebuild_header(sk);
5578
5579		tcp_init_metrics(sk);
5580
5581		tcp_init_congestion_control(sk);
5582
5583		/* Prevent spurious tcp_cwnd_restart() on first data
5584		 * packet.
5585		 */
5586		tp->lsndtime = tcp_time_stamp;
5587
5588		tcp_init_buffer_space(sk);
5589
5590		if (sock_flag(sk, SOCK_KEEPOPEN))
5591			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5592
5593		if (!tp->rx_opt.snd_wscale)
5594			__tcp_fast_path_on(tp, tp->snd_wnd);
5595		else
5596			tp->pred_flags = 0;
5597
5598		if (!sock_flag(sk, SOCK_DEAD)) {
5599			sk->sk_state_change(sk);
5600			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5601		}
5602
5603		if (sk->sk_write_pending ||
5604		    icsk->icsk_accept_queue.rskq_defer_accept ||
5605		    icsk->icsk_ack.pingpong) {
5606			/* Save one ACK. Data will be ready after
5607			 * several ticks, if write_pending is set.
5608			 *
5609			 * It may be deleted, but with this feature tcpdumps
5610			 * look so _wonderfully_ clever, that I was not able
5611			 * to stand against the temptation 8)     --ANK
5612			 */
5613			inet_csk_schedule_ack(sk);
5614			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5615			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5616			tcp_incr_quickack(sk);
5617			tcp_enter_quickack_mode(sk);
5618			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5619						  TCP_DELACK_MAX, TCP_RTO_MAX);
5620
5621discard:
5622			__kfree_skb(skb);
5623			return 0;
5624		} else {
5625			tcp_send_ack(sk);
5626		}
5627		return -1;
5628	}
5629
5630	/* No ACK in the segment */
5631
5632	if (th->rst) {
5633		/* rfc793:
5634		 * "If the RST bit is set
5635		 *
5636		 *      Otherwise (no ACK) drop the segment and return."
5637		 */
5638
5639		goto discard_and_undo;
5640	}
5641
5642	/* PAWS check. */
5643	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5644	    tcp_paws_reject(&tp->rx_opt, 0))
5645		goto discard_and_undo;
5646
5647	if (th->syn) {
5648		/* We see SYN without ACK. It is attempt of
5649		 * simultaneous connect with crossed SYNs.
5650		 * Particularly, it can be connect to self.
5651		 */
5652		tcp_set_state(sk, TCP_SYN_RECV);
5653
5654		if (tp->rx_opt.saw_tstamp) {
5655			tp->rx_opt.tstamp_ok = 1;
5656			tcp_store_ts_recent(tp);
5657			tp->tcp_header_len =
5658				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5659		} else {
5660			tp->tcp_header_len = sizeof(struct tcphdr);
5661		}
5662
5663		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5664		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5665
5666		/* RFC1323: The window in SYN & SYN/ACK segments is
5667		 * never scaled.
5668		 */
5669		tp->snd_wnd    = ntohs(th->window);
5670		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5671		tp->max_window = tp->snd_wnd;
5672
5673		TCP_ECN_rcv_syn(tp, th);
5674
5675		tcp_mtup_init(sk);
5676		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5677		tcp_initialize_rcv_mss(sk);
5678
5679		tcp_send_synack(sk);
5680#if 0
5681		/* Note, we could accept data and URG from this segment.
5682		 * There are no obstacles to make this.
5683		 *
5684		 * However, if we ignore data in ACKless segments sometimes,
5685		 * we have no reasons to accept it sometimes.
5686		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5687		 * is not flawless. So, discard packet for sanity.
5688		 * Uncomment this return to process the data.
5689		 */
5690		return -1;
5691#else
5692		goto discard;
5693#endif
5694	}
5695	/* "fifth, if neither of the SYN or RST bits is set then
5696	 * drop the segment and return."
5697	 */
5698
5699discard_and_undo:
5700	tcp_clear_options(&tp->rx_opt);
5701	tp->rx_opt.mss_clamp = saved_clamp;
5702	goto discard;
5703
5704reset_and_undo:
5705	tcp_clear_options(&tp->rx_opt);
5706	tp->rx_opt.mss_clamp = saved_clamp;
5707	return 1;
5708}
5709
5710/*
5711 *	This function implements the receiving procedure of RFC 793 for
5712 *	all states except ESTABLISHED and TIME_WAIT.
5713 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5714 *	address independent.
5715 */
5716
5717int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5718			  struct tcphdr *th, unsigned len)
5719{
5720	struct tcp_sock *tp = tcp_sk(sk);
5721	struct inet_connection_sock *icsk = inet_csk(sk);
5722	int queued = 0;
5723	int res;
5724
5725	tp->rx_opt.saw_tstamp = 0;
5726
5727	switch (sk->sk_state) {
5728	case TCP_CLOSE:
5729		goto discard;
5730
5731	case TCP_LISTEN:
5732		if (th->ack)
5733			return 1;
5734
5735		if (th->rst)
5736			goto discard;
5737
5738		if (th->syn) {
5739			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5740				return 1;
5741
5742			/* Now we have several options: In theory there is
5743			 * nothing else in the frame. KA9Q has an option to
5744			 * send data with the syn, BSD accepts data with the
5745			 * syn up to the [to be] advertised window and
5746			 * Solaris 2.1 gives you a protocol error. For now
5747			 * we just ignore it, that fits the spec precisely
5748			 * and avoids incompatibilities. It would be nice in
5749			 * future to drop through and process the data.
5750			 *
5751			 * Now that TTCP is starting to be used we ought to
5752			 * queue this data.
5753			 * But, this leaves one open to an easy denial of
5754			 * service attack, and SYN cookies can't defend
5755			 * against this problem. So, we drop the data
5756			 * in the interest of security over speed unless
5757			 * it's still in use.
5758			 */
5759			kfree_skb(skb);
5760			return 0;
5761		}
5762		goto discard;
5763
5764	case TCP_SYN_SENT:
5765		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5766		if (queued >= 0)
5767			return queued;
5768
5769		/* Do step6 onward by hand. */
5770		tcp_urg(sk, skb, th);
5771		__kfree_skb(skb);
5772		tcp_data_snd_check(sk);
5773		return 0;
5774	}
5775
5776	res = tcp_validate_incoming(sk, skb, th, 0);
5777	if (res <= 0)
5778		return -res;
5779
5780	/* step 5: check the ACK field */
5781	if (th->ack) {
5782		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5783
5784		switch (sk->sk_state) {
5785		case TCP_SYN_RECV:
5786			if (acceptable) {
5787				tp->copied_seq = tp->rcv_nxt;
5788				smp_mb();
5789				tcp_set_state(sk, TCP_ESTABLISHED);
5790				sk->sk_state_change(sk);
5791
5792				/* Note, that this wakeup is only for marginal
5793				 * crossed SYN case. Passively open sockets
5794				 * are not waked up, because sk->sk_sleep ==
5795				 * NULL and sk->sk_socket == NULL.
5796				 */
5797				if (sk->sk_socket)
5798					sk_wake_async(sk,
5799						      SOCK_WAKE_IO, POLL_OUT);
5800
5801				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5802				tp->snd_wnd = ntohs(th->window) <<
5803					      tp->rx_opt.snd_wscale;
5804				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5805
5806				/* tcp_ack considers this ACK as duplicate
5807				 * and does not calculate rtt.
5808				 * Force it here.
5809				 */
5810				tcp_ack_update_rtt(sk, 0, 0);
5811
5812				if (tp->rx_opt.tstamp_ok)
5813					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5814
5815				/* Make sure socket is routed, for
5816				 * correct metrics.
5817				 */
5818				icsk->icsk_af_ops->rebuild_header(sk);
5819
5820				tcp_init_metrics(sk);
5821
5822				tcp_init_congestion_control(sk);
5823
5824				/* Prevent spurious tcp_cwnd_restart() on
5825				 * first data packet.
5826				 */
5827				tp->lsndtime = tcp_time_stamp;
5828
5829				tcp_mtup_init(sk);
5830				tcp_initialize_rcv_mss(sk);
5831				tcp_init_buffer_space(sk);
5832				tcp_fast_path_on(tp);
5833			} else {
5834				return 1;
5835			}
5836			break;
5837
5838		case TCP_FIN_WAIT1:
5839			if (tp->snd_una == tp->write_seq) {
5840				tcp_set_state(sk, TCP_FIN_WAIT2);
5841				sk->sk_shutdown |= SEND_SHUTDOWN;
5842				dst_confirm(__sk_dst_get(sk));
5843
5844				if (!sock_flag(sk, SOCK_DEAD))
5845					/* Wake up lingering close() */
5846					sk->sk_state_change(sk);
5847				else {
5848					int tmo;
5849
5850					if (tp->linger2 < 0 ||
5851					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5852					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5853						tcp_done(sk);
5854						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5855						return 1;
5856					}
5857
5858					tmo = tcp_fin_time(sk);
5859					if (tmo > TCP_TIMEWAIT_LEN) {
5860						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5861					} else if (th->fin || sock_owned_by_user(sk)) {
5862						/* Bad case. We could lose such FIN otherwise.
5863						 * It is not a big problem, but it looks confusing
5864						 * and not so rare event. We still can lose it now,
5865						 * if it spins in bh_lock_sock(), but it is really
5866						 * marginal case.
5867						 */
5868						inet_csk_reset_keepalive_timer(sk, tmo);
5869					} else {
5870						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5871						goto discard;
5872					}
5873				}
5874			}
5875			break;
5876
5877		case TCP_CLOSING:
5878			if (tp->snd_una == tp->write_seq) {
5879				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5880				goto discard;
5881			}
5882			break;
5883
5884		case TCP_LAST_ACK:
5885			if (tp->snd_una == tp->write_seq) {
5886				tcp_update_metrics(sk);
5887				tcp_done(sk);
5888				goto discard;
5889			}
5890			break;
5891		}
5892	} else
5893		goto discard;
5894
5895	/* step 6: check the URG bit */
5896	tcp_urg(sk, skb, th);
5897
5898	/* step 7: process the segment text */
5899	switch (sk->sk_state) {
5900	case TCP_CLOSE_WAIT:
5901	case TCP_CLOSING:
5902	case TCP_LAST_ACK:
5903		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5904			break;
5905	case TCP_FIN_WAIT1:
5906	case TCP_FIN_WAIT2:
5907		/* RFC 793 says to queue data in these states,
5908		 * RFC 1122 says we MUST send a reset.
5909		 * BSD 4.4 also does reset.
5910		 */
5911		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5912			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5913			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5914				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5915				tcp_reset(sk);
5916				return 1;
5917			}
5918		}
5919		/* Fall through */
5920	case TCP_ESTABLISHED:
5921		tcp_data_queue(sk, skb);
5922		queued = 1;
5923		break;
5924	}
5925
5926	/* tcp_data could move socket to TIME-WAIT */
5927	if (sk->sk_state != TCP_CLOSE) {
5928		tcp_data_snd_check(sk);
5929		tcp_ack_snd_check(sk);
5930	}
5931
5932	if (!queued) {
5933discard:
5934		__kfree_skb(skb);
5935	}
5936	return 0;
5937}
5938EXPORT_SYMBOL(tcp_rcv_state_process);
5939