tcp_input.c revision 575ee7140dabe9b9c4f66f4f867039b97e548867
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 *		Pedro Roque	:	Fast Retransmit/Recovery.
26 *					Two receive queues.
27 *					Retransmit queue handled by TCP.
28 *					Better retransmit timer handling.
29 *					New congestion avoidance.
30 *					Header prediction.
31 *					Variable renaming.
32 *
33 *		Eric		:	Fast Retransmit.
34 *		Randy Scott	:	MSS option defines.
35 *		Eric Schenk	:	Fixes to slow start algorithm.
36 *		Eric Schenk	:	Yet another double ACK bug.
37 *		Eric Schenk	:	Delayed ACK bug fixes.
38 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39 *		David S. Miller	:	Don't allow zero congestion window.
40 *		Eric Schenk	:	Fix retransmitter so that it sends
41 *					next packet on ack of previous packet.
42 *		Andi Kleen	:	Moved open_request checking here
43 *					and process RSTs for open_requests.
44 *		Andi Kleen	:	Better prune_queue, and other fixes.
45 *		Andrey Savochkin:	Fix RTT measurements in the presence of
46 *					timestamps.
47 *		Andrey Savochkin:	Check sequence numbers correctly when
48 *					removing SACKs due to in sequence incoming
49 *					data segments.
50 *		Andi Kleen:		Make sure we never ack data there is not
51 *					enough room for. Also make this condition
52 *					a fatal error if it might still happen.
53 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54 *					connections with MSS<min(MTU,ann. MSS)
55 *					work without delayed acks.
56 *		Andi Kleen:		Process packets with PSH set in the
57 *					fast path.
58 *		J Hadi Salim:		ECN support
59 *	 	Andrei Gurtov,
60 *		Pasi Sarolahti,
61 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62 *					engine. Lots of bugs are found.
63 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64 */
65
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
73#include <net/netdma.h>
74
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly;
89int sysctl_tcp_frto_response __read_mostly;
90int sysctl_tcp_nometrics_save __read_mostly;
91
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
94
95#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101#define FLAG_ECE		0x40 /* ECE in this ACK				*/
102#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105
106#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
109#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
110
111#define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
112#define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
113#define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
114
115#define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118
119/* Adapt the MSS value used to make delayed ack decision to the
120 * real world.
121 */
122static void tcp_measure_rcv_mss(struct sock *sk,
123				const struct sk_buff *skb)
124{
125	struct inet_connection_sock *icsk = inet_csk(sk);
126	const unsigned int lss = icsk->icsk_ack.last_seg_size;
127	unsigned int len;
128
129	icsk->icsk_ack.last_seg_size = 0;
130
131	/* skb->len may jitter because of SACKs, even if peer
132	 * sends good full-sized frames.
133	 */
134	len = skb_shinfo(skb)->gso_size ?: skb->len;
135	if (len >= icsk->icsk_ack.rcv_mss) {
136		icsk->icsk_ack.rcv_mss = len;
137	} else {
138		/* Otherwise, we make more careful check taking into account,
139		 * that SACKs block is variable.
140		 *
141		 * "len" is invariant segment length, including TCP header.
142		 */
143		len += skb->data - skb_transport_header(skb);
144		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145		    /* If PSH is not set, packet should be
146		     * full sized, provided peer TCP is not badly broken.
147		     * This observation (if it is correct 8)) allows
148		     * to handle super-low mtu links fairly.
149		     */
150		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
152			/* Subtract also invariant (if peer is RFC compliant),
153			 * tcp header plus fixed timestamp option length.
154			 * Resulting "len" is MSS free of SACK jitter.
155			 */
156			len -= tcp_sk(sk)->tcp_header_len;
157			icsk->icsk_ack.last_seg_size = len;
158			if (len == lss) {
159				icsk->icsk_ack.rcv_mss = len;
160				return;
161			}
162		}
163		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
166	}
167}
168
169static void tcp_incr_quickack(struct sock *sk)
170{
171	struct inet_connection_sock *icsk = inet_csk(sk);
172	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173
174	if (quickacks==0)
175		quickacks=2;
176	if (quickacks > icsk->icsk_ack.quick)
177		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178}
179
180void tcp_enter_quickack_mode(struct sock *sk)
181{
182	struct inet_connection_sock *icsk = inet_csk(sk);
183	tcp_incr_quickack(sk);
184	icsk->icsk_ack.pingpong = 0;
185	icsk->icsk_ack.ato = TCP_ATO_MIN;
186}
187
188/* Send ACKs quickly, if "quick" count is not exhausted
189 * and the session is not interactive.
190 */
191
192static inline int tcp_in_quickack_mode(const struct sock *sk)
193{
194	const struct inet_connection_sock *icsk = inet_csk(sk);
195	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196}
197
198/* Buffer size and advertised window tuning.
199 *
200 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
201 */
202
203static void tcp_fixup_sndbuf(struct sock *sk)
204{
205	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
206		     sizeof(struct sk_buff);
207
208	if (sk->sk_sndbuf < 3 * sndmem)
209		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
210}
211
212/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
213 *
214 * All tcp_full_space() is split to two parts: "network" buffer, allocated
215 * forward and advertised in receiver window (tp->rcv_wnd) and
216 * "application buffer", required to isolate scheduling/application
217 * latencies from network.
218 * window_clamp is maximal advertised window. It can be less than
219 * tcp_full_space(), in this case tcp_full_space() - window_clamp
220 * is reserved for "application" buffer. The less window_clamp is
221 * the smoother our behaviour from viewpoint of network, but the lower
222 * throughput and the higher sensitivity of the connection to losses. 8)
223 *
224 * rcv_ssthresh is more strict window_clamp used at "slow start"
225 * phase to predict further behaviour of this connection.
226 * It is used for two goals:
227 * - to enforce header prediction at sender, even when application
228 *   requires some significant "application buffer". It is check #1.
229 * - to prevent pruning of receive queue because of misprediction
230 *   of receiver window. Check #2.
231 *
232 * The scheme does not work when sender sends good segments opening
233 * window and then starts to feed us spaghetti. But it should work
234 * in common situations. Otherwise, we have to rely on queue collapsing.
235 */
236
237/* Slow part of check#2. */
238static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
239{
240	struct tcp_sock *tp = tcp_sk(sk);
241	/* Optimize this! */
242	int truesize = tcp_win_from_space(skb->truesize)/2;
243	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
244
245	while (tp->rcv_ssthresh <= window) {
246		if (truesize <= skb->len)
247			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
248
249		truesize >>= 1;
250		window >>= 1;
251	}
252	return 0;
253}
254
255static void tcp_grow_window(struct sock *sk,
256			    struct sk_buff *skb)
257{
258	struct tcp_sock *tp = tcp_sk(sk);
259
260	/* Check #1 */
261	if (tp->rcv_ssthresh < tp->window_clamp &&
262	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
263	    !tcp_memory_pressure) {
264		int incr;
265
266		/* Check #2. Increase window, if skb with such overhead
267		 * will fit to rcvbuf in future.
268		 */
269		if (tcp_win_from_space(skb->truesize) <= skb->len)
270			incr = 2*tp->advmss;
271		else
272			incr = __tcp_grow_window(sk, skb);
273
274		if (incr) {
275			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
276			inet_csk(sk)->icsk_ack.quick |= 1;
277		}
278	}
279}
280
281/* 3. Tuning rcvbuf, when connection enters established state. */
282
283static void tcp_fixup_rcvbuf(struct sock *sk)
284{
285	struct tcp_sock *tp = tcp_sk(sk);
286	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
287
288	/* Try to select rcvbuf so that 4 mss-sized segments
289	 * will fit to window and corresponding skbs will fit to our rcvbuf.
290	 * (was 3; 4 is minimum to allow fast retransmit to work.)
291	 */
292	while (tcp_win_from_space(rcvmem) < tp->advmss)
293		rcvmem += 128;
294	if (sk->sk_rcvbuf < 4 * rcvmem)
295		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
296}
297
298/* 4. Try to fixup all. It is made immediately after connection enters
299 *    established state.
300 */
301static void tcp_init_buffer_space(struct sock *sk)
302{
303	struct tcp_sock *tp = tcp_sk(sk);
304	int maxwin;
305
306	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
307		tcp_fixup_rcvbuf(sk);
308	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
309		tcp_fixup_sndbuf(sk);
310
311	tp->rcvq_space.space = tp->rcv_wnd;
312
313	maxwin = tcp_full_space(sk);
314
315	if (tp->window_clamp >= maxwin) {
316		tp->window_clamp = maxwin;
317
318		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
319			tp->window_clamp = max(maxwin -
320					       (maxwin >> sysctl_tcp_app_win),
321					       4 * tp->advmss);
322	}
323
324	/* Force reservation of one segment. */
325	if (sysctl_tcp_app_win &&
326	    tp->window_clamp > 2 * tp->advmss &&
327	    tp->window_clamp + tp->advmss > maxwin)
328		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
329
330	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
331	tp->snd_cwnd_stamp = tcp_time_stamp;
332}
333
334/* 5. Recalculate window clamp after socket hit its memory bounds. */
335static void tcp_clamp_window(struct sock *sk)
336{
337	struct tcp_sock *tp = tcp_sk(sk);
338	struct inet_connection_sock *icsk = inet_csk(sk);
339
340	icsk->icsk_ack.quick = 0;
341
342	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
343	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
344	    !tcp_memory_pressure &&
345	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
346		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
347				    sysctl_tcp_rmem[2]);
348	}
349	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
350		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
351}
352
353
354/* Initialize RCV_MSS value.
355 * RCV_MSS is an our guess about MSS used by the peer.
356 * We haven't any direct information about the MSS.
357 * It's better to underestimate the RCV_MSS rather than overestimate.
358 * Overestimations make us ACKing less frequently than needed.
359 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
360 */
361void tcp_initialize_rcv_mss(struct sock *sk)
362{
363	struct tcp_sock *tp = tcp_sk(sk);
364	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
365
366	hint = min(hint, tp->rcv_wnd/2);
367	hint = min(hint, TCP_MIN_RCVMSS);
368	hint = max(hint, TCP_MIN_MSS);
369
370	inet_csk(sk)->icsk_ack.rcv_mss = hint;
371}
372
373/* Receiver "autotuning" code.
374 *
375 * The algorithm for RTT estimation w/o timestamps is based on
376 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
377 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
378 *
379 * More detail on this code can be found at
380 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
381 * though this reference is out of date.  A new paper
382 * is pending.
383 */
384static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
385{
386	u32 new_sample = tp->rcv_rtt_est.rtt;
387	long m = sample;
388
389	if (m == 0)
390		m = 1;
391
392	if (new_sample != 0) {
393		/* If we sample in larger samples in the non-timestamp
394		 * case, we could grossly overestimate the RTT especially
395		 * with chatty applications or bulk transfer apps which
396		 * are stalled on filesystem I/O.
397		 *
398		 * Also, since we are only going for a minimum in the
399		 * non-timestamp case, we do not smooth things out
400		 * else with timestamps disabled convergence takes too
401		 * long.
402		 */
403		if (!win_dep) {
404			m -= (new_sample >> 3);
405			new_sample += m;
406		} else if (m < new_sample)
407			new_sample = m << 3;
408	} else {
409		/* No previous measure. */
410		new_sample = m << 3;
411	}
412
413	if (tp->rcv_rtt_est.rtt != new_sample)
414		tp->rcv_rtt_est.rtt = new_sample;
415}
416
417static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
418{
419	if (tp->rcv_rtt_est.time == 0)
420		goto new_measure;
421	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
422		return;
423	tcp_rcv_rtt_update(tp,
424			   jiffies - tp->rcv_rtt_est.time,
425			   1);
426
427new_measure:
428	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
429	tp->rcv_rtt_est.time = tcp_time_stamp;
430}
431
432static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
433{
434	struct tcp_sock *tp = tcp_sk(sk);
435	if (tp->rx_opt.rcv_tsecr &&
436	    (TCP_SKB_CB(skb)->end_seq -
437	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
438		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
439}
440
441/*
442 * This function should be called every time data is copied to user space.
443 * It calculates the appropriate TCP receive buffer space.
444 */
445void tcp_rcv_space_adjust(struct sock *sk)
446{
447	struct tcp_sock *tp = tcp_sk(sk);
448	int time;
449	int space;
450
451	if (tp->rcvq_space.time == 0)
452		goto new_measure;
453
454	time = tcp_time_stamp - tp->rcvq_space.time;
455	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
456	    tp->rcv_rtt_est.rtt == 0)
457		return;
458
459	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
460
461	space = max(tp->rcvq_space.space, space);
462
463	if (tp->rcvq_space.space != space) {
464		int rcvmem;
465
466		tp->rcvq_space.space = space;
467
468		if (sysctl_tcp_moderate_rcvbuf &&
469		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
470			int new_clamp = space;
471
472			/* Receive space grows, normalize in order to
473			 * take into account packet headers and sk_buff
474			 * structure overhead.
475			 */
476			space /= tp->advmss;
477			if (!space)
478				space = 1;
479			rcvmem = (tp->advmss + MAX_TCP_HEADER +
480				  16 + sizeof(struct sk_buff));
481			while (tcp_win_from_space(rcvmem) < tp->advmss)
482				rcvmem += 128;
483			space *= rcvmem;
484			space = min(space, sysctl_tcp_rmem[2]);
485			if (space > sk->sk_rcvbuf) {
486				sk->sk_rcvbuf = space;
487
488				/* Make the window clamp follow along.  */
489				tp->window_clamp = new_clamp;
490			}
491		}
492	}
493
494new_measure:
495	tp->rcvq_space.seq = tp->copied_seq;
496	tp->rcvq_space.time = tcp_time_stamp;
497}
498
499/* There is something which you must keep in mind when you analyze the
500 * behavior of the tp->ato delayed ack timeout interval.  When a
501 * connection starts up, we want to ack as quickly as possible.  The
502 * problem is that "good" TCP's do slow start at the beginning of data
503 * transmission.  The means that until we send the first few ACK's the
504 * sender will sit on his end and only queue most of his data, because
505 * he can only send snd_cwnd unacked packets at any given time.  For
506 * each ACK we send, he increments snd_cwnd and transmits more of his
507 * queue.  -DaveM
508 */
509static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
510{
511	struct tcp_sock *tp = tcp_sk(sk);
512	struct inet_connection_sock *icsk = inet_csk(sk);
513	u32 now;
514
515	inet_csk_schedule_ack(sk);
516
517	tcp_measure_rcv_mss(sk, skb);
518
519	tcp_rcv_rtt_measure(tp);
520
521	now = tcp_time_stamp;
522
523	if (!icsk->icsk_ack.ato) {
524		/* The _first_ data packet received, initialize
525		 * delayed ACK engine.
526		 */
527		tcp_incr_quickack(sk);
528		icsk->icsk_ack.ato = TCP_ATO_MIN;
529	} else {
530		int m = now - icsk->icsk_ack.lrcvtime;
531
532		if (m <= TCP_ATO_MIN/2) {
533			/* The fastest case is the first. */
534			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
535		} else if (m < icsk->icsk_ack.ato) {
536			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
537			if (icsk->icsk_ack.ato > icsk->icsk_rto)
538				icsk->icsk_ack.ato = icsk->icsk_rto;
539		} else if (m > icsk->icsk_rto) {
540			/* Too long gap. Apparently sender failed to
541			 * restart window, so that we send ACKs quickly.
542			 */
543			tcp_incr_quickack(sk);
544			sk_stream_mem_reclaim(sk);
545		}
546	}
547	icsk->icsk_ack.lrcvtime = now;
548
549	TCP_ECN_check_ce(tp, skb);
550
551	if (skb->len >= 128)
552		tcp_grow_window(sk, skb);
553}
554
555/* Called to compute a smoothed rtt estimate. The data fed to this
556 * routine either comes from timestamps, or from segments that were
557 * known _not_ to have been retransmitted [see Karn/Partridge
558 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
559 * piece by Van Jacobson.
560 * NOTE: the next three routines used to be one big routine.
561 * To save cycles in the RFC 1323 implementation it was better to break
562 * it up into three procedures. -- erics
563 */
564static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
565{
566	struct tcp_sock *tp = tcp_sk(sk);
567	long m = mrtt; /* RTT */
568
569	/*	The following amusing code comes from Jacobson's
570	 *	article in SIGCOMM '88.  Note that rtt and mdev
571	 *	are scaled versions of rtt and mean deviation.
572	 *	This is designed to be as fast as possible
573	 *	m stands for "measurement".
574	 *
575	 *	On a 1990 paper the rto value is changed to:
576	 *	RTO = rtt + 4 * mdev
577	 *
578	 * Funny. This algorithm seems to be very broken.
579	 * These formulae increase RTO, when it should be decreased, increase
580	 * too slowly, when it should be increased quickly, decrease too quickly
581	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
582	 * does not matter how to _calculate_ it. Seems, it was trap
583	 * that VJ failed to avoid. 8)
584	 */
585	if (m == 0)
586		m = 1;
587	if (tp->srtt != 0) {
588		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
589		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
590		if (m < 0) {
591			m = -m;		/* m is now abs(error) */
592			m -= (tp->mdev >> 2);   /* similar update on mdev */
593			/* This is similar to one of Eifel findings.
594			 * Eifel blocks mdev updates when rtt decreases.
595			 * This solution is a bit different: we use finer gain
596			 * for mdev in this case (alpha*beta).
597			 * Like Eifel it also prevents growth of rto,
598			 * but also it limits too fast rto decreases,
599			 * happening in pure Eifel.
600			 */
601			if (m > 0)
602				m >>= 3;
603		} else {
604			m -= (tp->mdev >> 2);   /* similar update on mdev */
605		}
606		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
607		if (tp->mdev > tp->mdev_max) {
608			tp->mdev_max = tp->mdev;
609			if (tp->mdev_max > tp->rttvar)
610				tp->rttvar = tp->mdev_max;
611		}
612		if (after(tp->snd_una, tp->rtt_seq)) {
613			if (tp->mdev_max < tp->rttvar)
614				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
615			tp->rtt_seq = tp->snd_nxt;
616			tp->mdev_max = TCP_RTO_MIN;
617		}
618	} else {
619		/* no previous measure. */
620		tp->srtt = m<<3;	/* take the measured time to be rtt */
621		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
622		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
623		tp->rtt_seq = tp->snd_nxt;
624	}
625}
626
627/* Calculate rto without backoff.  This is the second half of Van Jacobson's
628 * routine referred to above.
629 */
630static inline void tcp_set_rto(struct sock *sk)
631{
632	const struct tcp_sock *tp = tcp_sk(sk);
633	/* Old crap is replaced with new one. 8)
634	 *
635	 * More seriously:
636	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
637	 *    It cannot be less due to utterly erratic ACK generation made
638	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
639	 *    to do with delayed acks, because at cwnd>2 true delack timeout
640	 *    is invisible. Actually, Linux-2.4 also generates erratic
641	 *    ACKs in some circumstances.
642	 */
643	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
644
645	/* 2. Fixups made earlier cannot be right.
646	 *    If we do not estimate RTO correctly without them,
647	 *    all the algo is pure shit and should be replaced
648	 *    with correct one. It is exactly, which we pretend to do.
649	 */
650}
651
652/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
653 * guarantees that rto is higher.
654 */
655static inline void tcp_bound_rto(struct sock *sk)
656{
657	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
658		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
659}
660
661/* Save metrics learned by this TCP session.
662   This function is called only, when TCP finishes successfully
663   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
664 */
665void tcp_update_metrics(struct sock *sk)
666{
667	struct tcp_sock *tp = tcp_sk(sk);
668	struct dst_entry *dst = __sk_dst_get(sk);
669
670	if (sysctl_tcp_nometrics_save)
671		return;
672
673	dst_confirm(dst);
674
675	if (dst && (dst->flags&DST_HOST)) {
676		const struct inet_connection_sock *icsk = inet_csk(sk);
677		int m;
678
679		if (icsk->icsk_backoff || !tp->srtt) {
680			/* This session failed to estimate rtt. Why?
681			 * Probably, no packets returned in time.
682			 * Reset our results.
683			 */
684			if (!(dst_metric_locked(dst, RTAX_RTT)))
685				dst->metrics[RTAX_RTT-1] = 0;
686			return;
687		}
688
689		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
690
691		/* If newly calculated rtt larger than stored one,
692		 * store new one. Otherwise, use EWMA. Remember,
693		 * rtt overestimation is always better than underestimation.
694		 */
695		if (!(dst_metric_locked(dst, RTAX_RTT))) {
696			if (m <= 0)
697				dst->metrics[RTAX_RTT-1] = tp->srtt;
698			else
699				dst->metrics[RTAX_RTT-1] -= (m>>3);
700		}
701
702		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
703			if (m < 0)
704				m = -m;
705
706			/* Scale deviation to rttvar fixed point */
707			m >>= 1;
708			if (m < tp->mdev)
709				m = tp->mdev;
710
711			if (m >= dst_metric(dst, RTAX_RTTVAR))
712				dst->metrics[RTAX_RTTVAR-1] = m;
713			else
714				dst->metrics[RTAX_RTTVAR-1] -=
715					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
716		}
717
718		if (tp->snd_ssthresh >= 0xFFFF) {
719			/* Slow start still did not finish. */
720			if (dst_metric(dst, RTAX_SSTHRESH) &&
721			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
722			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
723				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
724			if (!dst_metric_locked(dst, RTAX_CWND) &&
725			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
726				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
727		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
728			   icsk->icsk_ca_state == TCP_CA_Open) {
729			/* Cong. avoidance phase, cwnd is reliable. */
730			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
731				dst->metrics[RTAX_SSTHRESH-1] =
732					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
733			if (!dst_metric_locked(dst, RTAX_CWND))
734				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
735		} else {
736			/* Else slow start did not finish, cwnd is non-sense,
737			   ssthresh may be also invalid.
738			 */
739			if (!dst_metric_locked(dst, RTAX_CWND))
740				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
741			if (dst->metrics[RTAX_SSTHRESH-1] &&
742			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
743			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
744				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
745		}
746
747		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
748			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
749			    tp->reordering != sysctl_tcp_reordering)
750				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
751		}
752	}
753}
754
755/* Numbers are taken from RFC2414.  */
756__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
757{
758	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
759
760	if (!cwnd) {
761		if (tp->mss_cache > 1460)
762			cwnd = 2;
763		else
764			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
765	}
766	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
767}
768
769/* Set slow start threshold and cwnd not falling to slow start */
770void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
771{
772	struct tcp_sock *tp = tcp_sk(sk);
773	const struct inet_connection_sock *icsk = inet_csk(sk);
774
775	tp->prior_ssthresh = 0;
776	tp->bytes_acked = 0;
777	if (icsk->icsk_ca_state < TCP_CA_CWR) {
778		tp->undo_marker = 0;
779		if (set_ssthresh)
780			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
781		tp->snd_cwnd = min(tp->snd_cwnd,
782				   tcp_packets_in_flight(tp) + 1U);
783		tp->snd_cwnd_cnt = 0;
784		tp->high_seq = tp->snd_nxt;
785		tp->snd_cwnd_stamp = tcp_time_stamp;
786		TCP_ECN_queue_cwr(tp);
787
788		tcp_set_ca_state(sk, TCP_CA_CWR);
789	}
790}
791
792/* Initialize metrics on socket. */
793
794static void tcp_init_metrics(struct sock *sk)
795{
796	struct tcp_sock *tp = tcp_sk(sk);
797	struct dst_entry *dst = __sk_dst_get(sk);
798
799	if (dst == NULL)
800		goto reset;
801
802	dst_confirm(dst);
803
804	if (dst_metric_locked(dst, RTAX_CWND))
805		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
806	if (dst_metric(dst, RTAX_SSTHRESH)) {
807		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
808		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
809			tp->snd_ssthresh = tp->snd_cwnd_clamp;
810	}
811	if (dst_metric(dst, RTAX_REORDERING) &&
812	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
813		tp->rx_opt.sack_ok &= ~2;
814		tp->reordering = dst_metric(dst, RTAX_REORDERING);
815	}
816
817	if (dst_metric(dst, RTAX_RTT) == 0)
818		goto reset;
819
820	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
821		goto reset;
822
823	/* Initial rtt is determined from SYN,SYN-ACK.
824	 * The segment is small and rtt may appear much
825	 * less than real one. Use per-dst memory
826	 * to make it more realistic.
827	 *
828	 * A bit of theory. RTT is time passed after "normal" sized packet
829	 * is sent until it is ACKed. In normal circumstances sending small
830	 * packets force peer to delay ACKs and calculation is correct too.
831	 * The algorithm is adaptive and, provided we follow specs, it
832	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
833	 * tricks sort of "quick acks" for time long enough to decrease RTT
834	 * to low value, and then abruptly stops to do it and starts to delay
835	 * ACKs, wait for troubles.
836	 */
837	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
838		tp->srtt = dst_metric(dst, RTAX_RTT);
839		tp->rtt_seq = tp->snd_nxt;
840	}
841	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
842		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
843		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
844	}
845	tcp_set_rto(sk);
846	tcp_bound_rto(sk);
847	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
848		goto reset;
849	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
850	tp->snd_cwnd_stamp = tcp_time_stamp;
851	return;
852
853reset:
854	/* Play conservative. If timestamps are not
855	 * supported, TCP will fail to recalculate correct
856	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
857	 */
858	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
859		tp->srtt = 0;
860		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
861		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
862	}
863}
864
865static void tcp_update_reordering(struct sock *sk, const int metric,
866				  const int ts)
867{
868	struct tcp_sock *tp = tcp_sk(sk);
869	if (metric > tp->reordering) {
870		tp->reordering = min(TCP_MAX_REORDERING, metric);
871
872		/* This exciting event is worth to be remembered. 8) */
873		if (ts)
874			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
875		else if (IsReno(tp))
876			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
877		else if (IsFack(tp))
878			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
879		else
880			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
881#if FASTRETRANS_DEBUG > 1
882		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
883		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
884		       tp->reordering,
885		       tp->fackets_out,
886		       tp->sacked_out,
887		       tp->undo_marker ? tp->undo_retrans : 0);
888#endif
889		/* Disable FACK yet. */
890		tp->rx_opt.sack_ok &= ~2;
891	}
892}
893
894/* This procedure tags the retransmission queue when SACKs arrive.
895 *
896 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
897 * Packets in queue with these bits set are counted in variables
898 * sacked_out, retrans_out and lost_out, correspondingly.
899 *
900 * Valid combinations are:
901 * Tag  InFlight	Description
902 * 0	1		- orig segment is in flight.
903 * S	0		- nothing flies, orig reached receiver.
904 * L	0		- nothing flies, orig lost by net.
905 * R	2		- both orig and retransmit are in flight.
906 * L|R	1		- orig is lost, retransmit is in flight.
907 * S|R  1		- orig reached receiver, retrans is still in flight.
908 * (L|S|R is logically valid, it could occur when L|R is sacked,
909 *  but it is equivalent to plain S and code short-curcuits it to S.
910 *  L|S is logically invalid, it would mean -1 packet in flight 8))
911 *
912 * These 6 states form finite state machine, controlled by the following events:
913 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
914 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
915 * 3. Loss detection event of one of three flavors:
916 *	A. Scoreboard estimator decided the packet is lost.
917 *	   A'. Reno "three dupacks" marks head of queue lost.
918 *	   A''. Its FACK modfication, head until snd.fack is lost.
919 *	B. SACK arrives sacking data transmitted after never retransmitted
920 *	   hole was sent out.
921 *	C. SACK arrives sacking SND.NXT at the moment, when the
922 *	   segment was retransmitted.
923 * 4. D-SACK added new rule: D-SACK changes any tag to S.
924 *
925 * It is pleasant to note, that state diagram turns out to be commutative,
926 * so that we are allowed not to be bothered by order of our actions,
927 * when multiple events arrive simultaneously. (see the function below).
928 *
929 * Reordering detection.
930 * --------------------
931 * Reordering metric is maximal distance, which a packet can be displaced
932 * in packet stream. With SACKs we can estimate it:
933 *
934 * 1. SACK fills old hole and the corresponding segment was not
935 *    ever retransmitted -> reordering. Alas, we cannot use it
936 *    when segment was retransmitted.
937 * 2. The last flaw is solved with D-SACK. D-SACK arrives
938 *    for retransmitted and already SACKed segment -> reordering..
939 * Both of these heuristics are not used in Loss state, when we cannot
940 * account for retransmits accurately.
941 */
942static int
943tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
944{
945	const struct inet_connection_sock *icsk = inet_csk(sk);
946	struct tcp_sock *tp = tcp_sk(sk);
947	unsigned char *ptr = (skb_transport_header(ack_skb) +
948			      TCP_SKB_CB(ack_skb)->sacked);
949	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
950	struct sk_buff *cached_skb;
951	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
952	int reord = tp->packets_out;
953	int prior_fackets;
954	u32 lost_retrans = 0;
955	int flag = 0;
956	int dup_sack = 0;
957	int cached_fack_count;
958	int i;
959	int first_sack_index;
960
961	if (!tp->sacked_out)
962		tp->fackets_out = 0;
963	prior_fackets = tp->fackets_out;
964
965	/* Check for D-SACK. */
966	if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
967		dup_sack = 1;
968		tp->rx_opt.sack_ok |= 4;
969		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
970	} else if (num_sacks > 1 &&
971			!after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
972			!before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
973		dup_sack = 1;
974		tp->rx_opt.sack_ok |= 4;
975		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
976	}
977
978	/* D-SACK for already forgotten data...
979	 * Do dumb counting. */
980	if (dup_sack &&
981			!after(ntohl(sp[0].end_seq), prior_snd_una) &&
982			after(ntohl(sp[0].end_seq), tp->undo_marker))
983		tp->undo_retrans--;
984
985	/* Eliminate too old ACKs, but take into
986	 * account more or less fresh ones, they can
987	 * contain valid SACK info.
988	 */
989	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
990		return 0;
991
992	/* SACK fastpath:
993	 * if the only SACK change is the increase of the end_seq of
994	 * the first block then only apply that SACK block
995	 * and use retrans queue hinting otherwise slowpath */
996	flag = 1;
997	for (i = 0; i < num_sacks; i++) {
998		__be32 start_seq = sp[i].start_seq;
999		__be32 end_seq = sp[i].end_seq;
1000
1001		if (i == 0) {
1002			if (tp->recv_sack_cache[i].start_seq != start_seq)
1003				flag = 0;
1004		} else {
1005			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1006			    (tp->recv_sack_cache[i].end_seq != end_seq))
1007				flag = 0;
1008		}
1009		tp->recv_sack_cache[i].start_seq = start_seq;
1010		tp->recv_sack_cache[i].end_seq = end_seq;
1011	}
1012	/* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1013	for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1014		tp->recv_sack_cache[i].start_seq = 0;
1015		tp->recv_sack_cache[i].end_seq = 0;
1016	}
1017
1018	first_sack_index = 0;
1019	if (flag)
1020		num_sacks = 1;
1021	else {
1022		int j;
1023		tp->fastpath_skb_hint = NULL;
1024
1025		/* order SACK blocks to allow in order walk of the retrans queue */
1026		for (i = num_sacks-1; i > 0; i--) {
1027			for (j = 0; j < i; j++){
1028				if (after(ntohl(sp[j].start_seq),
1029					  ntohl(sp[j+1].start_seq))){
1030					struct tcp_sack_block_wire tmp;
1031
1032					tmp = sp[j];
1033					sp[j] = sp[j+1];
1034					sp[j+1] = tmp;
1035
1036					/* Track where the first SACK block goes to */
1037					if (j == first_sack_index)
1038						first_sack_index = j+1;
1039				}
1040
1041			}
1042		}
1043	}
1044
1045	/* clear flag as used for different purpose in following code */
1046	flag = 0;
1047
1048	/* Use SACK fastpath hint if valid */
1049	cached_skb = tp->fastpath_skb_hint;
1050	cached_fack_count = tp->fastpath_cnt_hint;
1051	if (!cached_skb) {
1052		cached_skb = tcp_write_queue_head(sk);
1053		cached_fack_count = 0;
1054	}
1055
1056	for (i=0; i<num_sacks; i++, sp++) {
1057		struct sk_buff *skb;
1058		__u32 start_seq = ntohl(sp->start_seq);
1059		__u32 end_seq = ntohl(sp->end_seq);
1060		int fack_count;
1061
1062		skb = cached_skb;
1063		fack_count = cached_fack_count;
1064
1065		/* Event "B" in the comment above. */
1066		if (after(end_seq, tp->high_seq))
1067			flag |= FLAG_DATA_LOST;
1068
1069		tcp_for_write_queue_from(skb, sk) {
1070			int in_sack, pcount;
1071			u8 sacked;
1072
1073			if (skb == tcp_send_head(sk))
1074				break;
1075
1076			cached_skb = skb;
1077			cached_fack_count = fack_count;
1078			if (i == first_sack_index) {
1079				tp->fastpath_skb_hint = skb;
1080				tp->fastpath_cnt_hint = fack_count;
1081			}
1082
1083			/* The retransmission queue is always in order, so
1084			 * we can short-circuit the walk early.
1085			 */
1086			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1087				break;
1088
1089			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1090				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1091
1092			pcount = tcp_skb_pcount(skb);
1093
1094			if (pcount > 1 && !in_sack &&
1095			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1096				unsigned int pkt_len;
1097
1098				in_sack = !after(start_seq,
1099						 TCP_SKB_CB(skb)->seq);
1100
1101				if (!in_sack)
1102					pkt_len = (start_seq -
1103						   TCP_SKB_CB(skb)->seq);
1104				else
1105					pkt_len = (end_seq -
1106						   TCP_SKB_CB(skb)->seq);
1107				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1108					break;
1109				pcount = tcp_skb_pcount(skb);
1110			}
1111
1112			fack_count += pcount;
1113
1114			sacked = TCP_SKB_CB(skb)->sacked;
1115
1116			/* Account D-SACK for retransmitted packet. */
1117			if ((dup_sack && in_sack) &&
1118			    (sacked & TCPCB_RETRANS) &&
1119			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1120				tp->undo_retrans--;
1121
1122			/* The frame is ACKed. */
1123			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1124				if (sacked&TCPCB_RETRANS) {
1125					if ((dup_sack && in_sack) &&
1126					    (sacked&TCPCB_SACKED_ACKED))
1127						reord = min(fack_count, reord);
1128				} else {
1129					/* If it was in a hole, we detected reordering. */
1130					if (fack_count < prior_fackets &&
1131					    !(sacked&TCPCB_SACKED_ACKED))
1132						reord = min(fack_count, reord);
1133				}
1134
1135				/* Nothing to do; acked frame is about to be dropped. */
1136				continue;
1137			}
1138
1139			if ((sacked&TCPCB_SACKED_RETRANS) &&
1140			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1141			    (!lost_retrans || after(end_seq, lost_retrans)))
1142				lost_retrans = end_seq;
1143
1144			if (!in_sack)
1145				continue;
1146
1147			if (!(sacked&TCPCB_SACKED_ACKED)) {
1148				if (sacked & TCPCB_SACKED_RETRANS) {
1149					/* If the segment is not tagged as lost,
1150					 * we do not clear RETRANS, believing
1151					 * that retransmission is still in flight.
1152					 */
1153					if (sacked & TCPCB_LOST) {
1154						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1155						tp->lost_out -= tcp_skb_pcount(skb);
1156						tp->retrans_out -= tcp_skb_pcount(skb);
1157
1158						/* clear lost hint */
1159						tp->retransmit_skb_hint = NULL;
1160					}
1161				} else {
1162					/* New sack for not retransmitted frame,
1163					 * which was in hole. It is reordering.
1164					 */
1165					if (!(sacked & TCPCB_RETRANS) &&
1166					    fack_count < prior_fackets)
1167						reord = min(fack_count, reord);
1168
1169					if (sacked & TCPCB_LOST) {
1170						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1171						tp->lost_out -= tcp_skb_pcount(skb);
1172
1173						/* clear lost hint */
1174						tp->retransmit_skb_hint = NULL;
1175					}
1176					/* SACK enhanced F-RTO detection.
1177					 * Set flag if and only if non-rexmitted
1178					 * segments below frto_highmark are
1179					 * SACKed (RFC4138; Appendix B).
1180					 * Clearing correct due to in-order walk
1181					 */
1182					if (after(end_seq, tp->frto_highmark)) {
1183						flag &= ~FLAG_ONLY_ORIG_SACKED;
1184					} else {
1185						if (!(sacked & TCPCB_RETRANS))
1186							flag |= FLAG_ONLY_ORIG_SACKED;
1187					}
1188				}
1189
1190				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1191				flag |= FLAG_DATA_SACKED;
1192				tp->sacked_out += tcp_skb_pcount(skb);
1193
1194				if (fack_count > tp->fackets_out)
1195					tp->fackets_out = fack_count;
1196			} else {
1197				if (dup_sack && (sacked&TCPCB_RETRANS))
1198					reord = min(fack_count, reord);
1199			}
1200
1201			/* D-SACK. We can detect redundant retransmission
1202			 * in S|R and plain R frames and clear it.
1203			 * undo_retrans is decreased above, L|R frames
1204			 * are accounted above as well.
1205			 */
1206			if (dup_sack &&
1207			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1208				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1209				tp->retrans_out -= tcp_skb_pcount(skb);
1210				tp->retransmit_skb_hint = NULL;
1211			}
1212		}
1213	}
1214
1215	/* Check for lost retransmit. This superb idea is
1216	 * borrowed from "ratehalving". Event "C".
1217	 * Later note: FACK people cheated me again 8),
1218	 * we have to account for reordering! Ugly,
1219	 * but should help.
1220	 */
1221	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1222		struct sk_buff *skb;
1223
1224		tcp_for_write_queue(skb, sk) {
1225			if (skb == tcp_send_head(sk))
1226				break;
1227			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1228				break;
1229			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1230				continue;
1231			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1232			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1233			    (IsFack(tp) ||
1234			     !before(lost_retrans,
1235				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1236				     tp->mss_cache))) {
1237				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1238				tp->retrans_out -= tcp_skb_pcount(skb);
1239
1240				/* clear lost hint */
1241				tp->retransmit_skb_hint = NULL;
1242
1243				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1244					tp->lost_out += tcp_skb_pcount(skb);
1245					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1246					flag |= FLAG_DATA_SACKED;
1247					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1248				}
1249			}
1250		}
1251	}
1252
1253	tp->left_out = tp->sacked_out + tp->lost_out;
1254
1255	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1256	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1257		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1258
1259#if FASTRETRANS_DEBUG > 0
1260	BUG_TRAP((int)tp->sacked_out >= 0);
1261	BUG_TRAP((int)tp->lost_out >= 0);
1262	BUG_TRAP((int)tp->retrans_out >= 0);
1263	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1264#endif
1265	return flag;
1266}
1267
1268/* F-RTO can only be used if TCP has never retransmitted anything other than
1269 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1270 */
1271int tcp_use_frto(struct sock *sk)
1272{
1273	const struct tcp_sock *tp = tcp_sk(sk);
1274	struct sk_buff *skb;
1275
1276	if (!sysctl_tcp_frto)
1277		return 0;
1278
1279	if (IsSackFrto())
1280		return 1;
1281
1282	/* Avoid expensive walking of rexmit queue if possible */
1283	if (tp->retrans_out > 1)
1284		return 0;
1285
1286	skb = tcp_write_queue_head(sk);
1287	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1288	tcp_for_write_queue_from(skb, sk) {
1289		if (skb == tcp_send_head(sk))
1290			break;
1291		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1292			return 0;
1293		/* Short-circuit when first non-SACKed skb has been checked */
1294		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1295			break;
1296	}
1297	return 1;
1298}
1299
1300/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1301 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1302 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1303 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1304 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1305 * bits are handled if the Loss state is really to be entered (in
1306 * tcp_enter_frto_loss).
1307 *
1308 * Do like tcp_enter_loss() would; when RTO expires the second time it
1309 * does:
1310 *  "Reduce ssthresh if it has not yet been made inside this window."
1311 */
1312void tcp_enter_frto(struct sock *sk)
1313{
1314	const struct inet_connection_sock *icsk = inet_csk(sk);
1315	struct tcp_sock *tp = tcp_sk(sk);
1316	struct sk_buff *skb;
1317
1318	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1319	    tp->snd_una == tp->high_seq ||
1320	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1321	     !icsk->icsk_retransmits)) {
1322		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1323		/* Our state is too optimistic in ssthresh() call because cwnd
1324		 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1325		 * recovery has not yet completed. Pattern would be this: RTO,
1326		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1327		 * up here twice).
1328		 * RFC4138 should be more specific on what to do, even though
1329		 * RTO is quite unlikely to occur after the first Cumulative ACK
1330		 * due to back-off and complexity of triggering events ...
1331		 */
1332		if (tp->frto_counter) {
1333			u32 stored_cwnd;
1334			stored_cwnd = tp->snd_cwnd;
1335			tp->snd_cwnd = 2;
1336			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1337			tp->snd_cwnd = stored_cwnd;
1338		} else {
1339			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1340		}
1341		/* ... in theory, cong.control module could do "any tricks" in
1342		 * ssthresh(), which means that ca_state, lost bits and lost_out
1343		 * counter would have to be faked before the call occurs. We
1344		 * consider that too expensive, unlikely and hacky, so modules
1345		 * using these in ssthresh() must deal these incompatibility
1346		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1347		 */
1348		tcp_ca_event(sk, CA_EVENT_FRTO);
1349	}
1350
1351	tp->undo_marker = tp->snd_una;
1352	tp->undo_retrans = 0;
1353
1354	skb = tcp_write_queue_head(sk);
1355	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1356		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1357		tp->retrans_out -= tcp_skb_pcount(skb);
1358	}
1359	tcp_sync_left_out(tp);
1360
1361	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1362	 * The last condition is necessary at least in tp->frto_counter case.
1363	 */
1364	if (IsSackFrto() && (tp->frto_counter ||
1365	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1366	    after(tp->high_seq, tp->snd_una)) {
1367		tp->frto_highmark = tp->high_seq;
1368	} else {
1369		tp->frto_highmark = tp->snd_nxt;
1370	}
1371	tcp_set_ca_state(sk, TCP_CA_Disorder);
1372	tp->high_seq = tp->snd_nxt;
1373	tp->frto_counter = 1;
1374}
1375
1376/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1377 * which indicates that we should follow the traditional RTO recovery,
1378 * i.e. mark everything lost and do go-back-N retransmission.
1379 */
1380static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1381{
1382	struct tcp_sock *tp = tcp_sk(sk);
1383	struct sk_buff *skb;
1384	int cnt = 0;
1385
1386	tp->sacked_out = 0;
1387	tp->lost_out = 0;
1388	tp->fackets_out = 0;
1389	tp->retrans_out = 0;
1390
1391	tcp_for_write_queue(skb, sk) {
1392		if (skb == tcp_send_head(sk))
1393			break;
1394		cnt += tcp_skb_pcount(skb);
1395		/*
1396		 * Count the retransmission made on RTO correctly (only when
1397		 * waiting for the first ACK and did not get it)...
1398		 */
1399		if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1400			tp->retrans_out += tcp_skb_pcount(skb);
1401			/* ...enter this if branch just for the first segment */
1402			flag |= FLAG_DATA_ACKED;
1403		} else {
1404			TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1405		}
1406		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1407
1408			/* Do not mark those segments lost that were
1409			 * forward transmitted after RTO
1410			 */
1411			if (!after(TCP_SKB_CB(skb)->end_seq,
1412				   tp->frto_highmark)) {
1413				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1414				tp->lost_out += tcp_skb_pcount(skb);
1415			}
1416		} else {
1417			tp->sacked_out += tcp_skb_pcount(skb);
1418			tp->fackets_out = cnt;
1419		}
1420	}
1421	tcp_sync_left_out(tp);
1422
1423	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1424	tp->snd_cwnd_cnt = 0;
1425	tp->snd_cwnd_stamp = tcp_time_stamp;
1426	tp->undo_marker = 0;
1427	tp->frto_counter = 0;
1428
1429	tp->reordering = min_t(unsigned int, tp->reordering,
1430					     sysctl_tcp_reordering);
1431	tcp_set_ca_state(sk, TCP_CA_Loss);
1432	tp->high_seq = tp->frto_highmark;
1433	TCP_ECN_queue_cwr(tp);
1434
1435	clear_all_retrans_hints(tp);
1436}
1437
1438void tcp_clear_retrans(struct tcp_sock *tp)
1439{
1440	tp->left_out = 0;
1441	tp->retrans_out = 0;
1442
1443	tp->fackets_out = 0;
1444	tp->sacked_out = 0;
1445	tp->lost_out = 0;
1446
1447	tp->undo_marker = 0;
1448	tp->undo_retrans = 0;
1449}
1450
1451/* Enter Loss state. If "how" is not zero, forget all SACK information
1452 * and reset tags completely, otherwise preserve SACKs. If receiver
1453 * dropped its ofo queue, we will know this due to reneging detection.
1454 */
1455void tcp_enter_loss(struct sock *sk, int how)
1456{
1457	const struct inet_connection_sock *icsk = inet_csk(sk);
1458	struct tcp_sock *tp = tcp_sk(sk);
1459	struct sk_buff *skb;
1460	int cnt = 0;
1461
1462	/* Reduce ssthresh if it has not yet been made inside this window. */
1463	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1464	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1465		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1466		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1467		tcp_ca_event(sk, CA_EVENT_LOSS);
1468	}
1469	tp->snd_cwnd	   = 1;
1470	tp->snd_cwnd_cnt   = 0;
1471	tp->snd_cwnd_stamp = tcp_time_stamp;
1472
1473	tp->bytes_acked = 0;
1474	tcp_clear_retrans(tp);
1475
1476	/* Push undo marker, if it was plain RTO and nothing
1477	 * was retransmitted. */
1478	if (!how)
1479		tp->undo_marker = tp->snd_una;
1480
1481	tcp_for_write_queue(skb, sk) {
1482		if (skb == tcp_send_head(sk))
1483			break;
1484		cnt += tcp_skb_pcount(skb);
1485		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1486			tp->undo_marker = 0;
1487		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1488		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1489			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1490			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1491			tp->lost_out += tcp_skb_pcount(skb);
1492		} else {
1493			tp->sacked_out += tcp_skb_pcount(skb);
1494			tp->fackets_out = cnt;
1495		}
1496	}
1497	tcp_sync_left_out(tp);
1498
1499	tp->reordering = min_t(unsigned int, tp->reordering,
1500					     sysctl_tcp_reordering);
1501	tcp_set_ca_state(sk, TCP_CA_Loss);
1502	tp->high_seq = tp->snd_nxt;
1503	TCP_ECN_queue_cwr(tp);
1504
1505	clear_all_retrans_hints(tp);
1506}
1507
1508static int tcp_check_sack_reneging(struct sock *sk)
1509{
1510	struct sk_buff *skb;
1511
1512	/* If ACK arrived pointing to a remembered SACK,
1513	 * it means that our remembered SACKs do not reflect
1514	 * real state of receiver i.e.
1515	 * receiver _host_ is heavily congested (or buggy).
1516	 * Do processing similar to RTO timeout.
1517	 */
1518	if ((skb = tcp_write_queue_head(sk)) != NULL &&
1519	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1520		struct inet_connection_sock *icsk = inet_csk(sk);
1521		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1522
1523		tcp_enter_loss(sk, 1);
1524		icsk->icsk_retransmits++;
1525		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1526		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1527					  icsk->icsk_rto, TCP_RTO_MAX);
1528		return 1;
1529	}
1530	return 0;
1531}
1532
1533static inline int tcp_fackets_out(struct tcp_sock *tp)
1534{
1535	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1536}
1537
1538static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1539{
1540	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1541}
1542
1543static inline int tcp_head_timedout(struct sock *sk)
1544{
1545	struct tcp_sock *tp = tcp_sk(sk);
1546
1547	return tp->packets_out &&
1548	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1549}
1550
1551/* Linux NewReno/SACK/FACK/ECN state machine.
1552 * --------------------------------------
1553 *
1554 * "Open"	Normal state, no dubious events, fast path.
1555 * "Disorder"   In all the respects it is "Open",
1556 *		but requires a bit more attention. It is entered when
1557 *		we see some SACKs or dupacks. It is split of "Open"
1558 *		mainly to move some processing from fast path to slow one.
1559 * "CWR"	CWND was reduced due to some Congestion Notification event.
1560 *		It can be ECN, ICMP source quench, local device congestion.
1561 * "Recovery"	CWND was reduced, we are fast-retransmitting.
1562 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1563 *
1564 * tcp_fastretrans_alert() is entered:
1565 * - each incoming ACK, if state is not "Open"
1566 * - when arrived ACK is unusual, namely:
1567 *	* SACK
1568 *	* Duplicate ACK.
1569 *	* ECN ECE.
1570 *
1571 * Counting packets in flight is pretty simple.
1572 *
1573 *	in_flight = packets_out - left_out + retrans_out
1574 *
1575 *	packets_out is SND.NXT-SND.UNA counted in packets.
1576 *
1577 *	retrans_out is number of retransmitted segments.
1578 *
1579 *	left_out is number of segments left network, but not ACKed yet.
1580 *
1581 *		left_out = sacked_out + lost_out
1582 *
1583 *     sacked_out: Packets, which arrived to receiver out of order
1584 *		   and hence not ACKed. With SACKs this number is simply
1585 *		   amount of SACKed data. Even without SACKs
1586 *		   it is easy to give pretty reliable estimate of this number,
1587 *		   counting duplicate ACKs.
1588 *
1589 *       lost_out: Packets lost by network. TCP has no explicit
1590 *		   "loss notification" feedback from network (for now).
1591 *		   It means that this number can be only _guessed_.
1592 *		   Actually, it is the heuristics to predict lossage that
1593 *		   distinguishes different algorithms.
1594 *
1595 *	F.e. after RTO, when all the queue is considered as lost,
1596 *	lost_out = packets_out and in_flight = retrans_out.
1597 *
1598 *		Essentially, we have now two algorithms counting
1599 *		lost packets.
1600 *
1601 *		FACK: It is the simplest heuristics. As soon as we decided
1602 *		that something is lost, we decide that _all_ not SACKed
1603 *		packets until the most forward SACK are lost. I.e.
1604 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1605 *		It is absolutely correct estimate, if network does not reorder
1606 *		packets. And it loses any connection to reality when reordering
1607 *		takes place. We use FACK by default until reordering
1608 *		is suspected on the path to this destination.
1609 *
1610 *		NewReno: when Recovery is entered, we assume that one segment
1611 *		is lost (classic Reno). While we are in Recovery and
1612 *		a partial ACK arrives, we assume that one more packet
1613 *		is lost (NewReno). This heuristics are the same in NewReno
1614 *		and SACK.
1615 *
1616 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1617 *  deflation etc. CWND is real congestion window, never inflated, changes
1618 *  only according to classic VJ rules.
1619 *
1620 * Really tricky (and requiring careful tuning) part of algorithm
1621 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1622 * The first determines the moment _when_ we should reduce CWND and,
1623 * hence, slow down forward transmission. In fact, it determines the moment
1624 * when we decide that hole is caused by loss, rather than by a reorder.
1625 *
1626 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1627 * holes, caused by lost packets.
1628 *
1629 * And the most logically complicated part of algorithm is undo
1630 * heuristics. We detect false retransmits due to both too early
1631 * fast retransmit (reordering) and underestimated RTO, analyzing
1632 * timestamps and D-SACKs. When we detect that some segments were
1633 * retransmitted by mistake and CWND reduction was wrong, we undo
1634 * window reduction and abort recovery phase. This logic is hidden
1635 * inside several functions named tcp_try_undo_<something>.
1636 */
1637
1638/* This function decides, when we should leave Disordered state
1639 * and enter Recovery phase, reducing congestion window.
1640 *
1641 * Main question: may we further continue forward transmission
1642 * with the same cwnd?
1643 */
1644static int tcp_time_to_recover(struct sock *sk)
1645{
1646	struct tcp_sock *tp = tcp_sk(sk);
1647	__u32 packets_out;
1648
1649	/* Do not perform any recovery during FRTO algorithm */
1650	if (tp->frto_counter)
1651		return 0;
1652
1653	/* Trick#1: The loss is proven. */
1654	if (tp->lost_out)
1655		return 1;
1656
1657	/* Not-A-Trick#2 : Classic rule... */
1658	if (tcp_fackets_out(tp) > tp->reordering)
1659		return 1;
1660
1661	/* Trick#3 : when we use RFC2988 timer restart, fast
1662	 * retransmit can be triggered by timeout of queue head.
1663	 */
1664	if (tcp_head_timedout(sk))
1665		return 1;
1666
1667	/* Trick#4: It is still not OK... But will it be useful to delay
1668	 * recovery more?
1669	 */
1670	packets_out = tp->packets_out;
1671	if (packets_out <= tp->reordering &&
1672	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1673	    !tcp_may_send_now(sk)) {
1674		/* We have nothing to send. This connection is limited
1675		 * either by receiver window or by application.
1676		 */
1677		return 1;
1678	}
1679
1680	return 0;
1681}
1682
1683/* If we receive more dupacks than we expected counting segments
1684 * in assumption of absent reordering, interpret this as reordering.
1685 * The only another reason could be bug in receiver TCP.
1686 */
1687static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1688{
1689	struct tcp_sock *tp = tcp_sk(sk);
1690	u32 holes;
1691
1692	holes = max(tp->lost_out, 1U);
1693	holes = min(holes, tp->packets_out);
1694
1695	if ((tp->sacked_out + holes) > tp->packets_out) {
1696		tp->sacked_out = tp->packets_out - holes;
1697		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1698	}
1699}
1700
1701/* Emulate SACKs for SACKless connection: account for a new dupack. */
1702
1703static void tcp_add_reno_sack(struct sock *sk)
1704{
1705	struct tcp_sock *tp = tcp_sk(sk);
1706	tp->sacked_out++;
1707	tcp_check_reno_reordering(sk, 0);
1708	tcp_sync_left_out(tp);
1709}
1710
1711/* Account for ACK, ACKing some data in Reno Recovery phase. */
1712
1713static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1714{
1715	struct tcp_sock *tp = tcp_sk(sk);
1716
1717	if (acked > 0) {
1718		/* One ACK acked hole. The rest eat duplicate ACKs. */
1719		if (acked-1 >= tp->sacked_out)
1720			tp->sacked_out = 0;
1721		else
1722			tp->sacked_out -= acked-1;
1723	}
1724	tcp_check_reno_reordering(sk, acked);
1725	tcp_sync_left_out(tp);
1726}
1727
1728static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1729{
1730	tp->sacked_out = 0;
1731	tp->left_out = tp->lost_out;
1732}
1733
1734/* Mark head of queue up as lost. */
1735static void tcp_mark_head_lost(struct sock *sk,
1736			       int packets, u32 high_seq)
1737{
1738	struct tcp_sock *tp = tcp_sk(sk);
1739	struct sk_buff *skb;
1740	int cnt;
1741
1742	BUG_TRAP(packets <= tp->packets_out);
1743	if (tp->lost_skb_hint) {
1744		skb = tp->lost_skb_hint;
1745		cnt = tp->lost_cnt_hint;
1746	} else {
1747		skb = tcp_write_queue_head(sk);
1748		cnt = 0;
1749	}
1750
1751	tcp_for_write_queue_from(skb, sk) {
1752		if (skb == tcp_send_head(sk))
1753			break;
1754		/* TODO: do this better */
1755		/* this is not the most efficient way to do this... */
1756		tp->lost_skb_hint = skb;
1757		tp->lost_cnt_hint = cnt;
1758		cnt += tcp_skb_pcount(skb);
1759		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1760			break;
1761		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1762			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1763			tp->lost_out += tcp_skb_pcount(skb);
1764
1765			/* clear xmit_retransmit_queue hints
1766			 *  if this is beyond hint */
1767			if (tp->retransmit_skb_hint != NULL &&
1768			    before(TCP_SKB_CB(skb)->seq,
1769				   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1770				tp->retransmit_skb_hint = NULL;
1771
1772		}
1773	}
1774	tcp_sync_left_out(tp);
1775}
1776
1777/* Account newly detected lost packet(s) */
1778
1779static void tcp_update_scoreboard(struct sock *sk)
1780{
1781	struct tcp_sock *tp = tcp_sk(sk);
1782
1783	if (IsFack(tp)) {
1784		int lost = tp->fackets_out - tp->reordering;
1785		if (lost <= 0)
1786			lost = 1;
1787		tcp_mark_head_lost(sk, lost, tp->high_seq);
1788	} else {
1789		tcp_mark_head_lost(sk, 1, tp->high_seq);
1790	}
1791
1792	/* New heuristics: it is possible only after we switched
1793	 * to restart timer each time when something is ACKed.
1794	 * Hence, we can detect timed out packets during fast
1795	 * retransmit without falling to slow start.
1796	 */
1797	if (!IsReno(tp) && tcp_head_timedout(sk)) {
1798		struct sk_buff *skb;
1799
1800		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1801			: tcp_write_queue_head(sk);
1802
1803		tcp_for_write_queue_from(skb, sk) {
1804			if (skb == tcp_send_head(sk))
1805				break;
1806			if (!tcp_skb_timedout(sk, skb))
1807				break;
1808
1809			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1810				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1811				tp->lost_out += tcp_skb_pcount(skb);
1812
1813				/* clear xmit_retrans hint */
1814				if (tp->retransmit_skb_hint &&
1815				    before(TCP_SKB_CB(skb)->seq,
1816					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1817
1818					tp->retransmit_skb_hint = NULL;
1819			}
1820		}
1821
1822		tp->scoreboard_skb_hint = skb;
1823
1824		tcp_sync_left_out(tp);
1825	}
1826}
1827
1828/* CWND moderation, preventing bursts due to too big ACKs
1829 * in dubious situations.
1830 */
1831static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1832{
1833	tp->snd_cwnd = min(tp->snd_cwnd,
1834			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1835	tp->snd_cwnd_stamp = tcp_time_stamp;
1836}
1837
1838/* Lower bound on congestion window is slow start threshold
1839 * unless congestion avoidance choice decides to overide it.
1840 */
1841static inline u32 tcp_cwnd_min(const struct sock *sk)
1842{
1843	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1844
1845	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1846}
1847
1848/* Decrease cwnd each second ack. */
1849static void tcp_cwnd_down(struct sock *sk)
1850{
1851	struct tcp_sock *tp = tcp_sk(sk);
1852	int decr = tp->snd_cwnd_cnt + 1;
1853
1854	tp->snd_cwnd_cnt = decr&1;
1855	decr >>= 1;
1856
1857	if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1858		tp->snd_cwnd -= decr;
1859
1860	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1861	tp->snd_cwnd_stamp = tcp_time_stamp;
1862}
1863
1864/* Nothing was retransmitted or returned timestamp is less
1865 * than timestamp of the first retransmission.
1866 */
1867static inline int tcp_packet_delayed(struct tcp_sock *tp)
1868{
1869	return !tp->retrans_stamp ||
1870		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1871		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1872}
1873
1874/* Undo procedures. */
1875
1876#if FASTRETRANS_DEBUG > 1
1877static void DBGUNDO(struct sock *sk, const char *msg)
1878{
1879	struct tcp_sock *tp = tcp_sk(sk);
1880	struct inet_sock *inet = inet_sk(sk);
1881
1882	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1883	       msg,
1884	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1885	       tp->snd_cwnd, tp->left_out,
1886	       tp->snd_ssthresh, tp->prior_ssthresh,
1887	       tp->packets_out);
1888}
1889#else
1890#define DBGUNDO(x...) do { } while (0)
1891#endif
1892
1893static void tcp_undo_cwr(struct sock *sk, const int undo)
1894{
1895	struct tcp_sock *tp = tcp_sk(sk);
1896
1897	if (tp->prior_ssthresh) {
1898		const struct inet_connection_sock *icsk = inet_csk(sk);
1899
1900		if (icsk->icsk_ca_ops->undo_cwnd)
1901			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1902		else
1903			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1904
1905		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1906			tp->snd_ssthresh = tp->prior_ssthresh;
1907			TCP_ECN_withdraw_cwr(tp);
1908		}
1909	} else {
1910		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1911	}
1912	tcp_moderate_cwnd(tp);
1913	tp->snd_cwnd_stamp = tcp_time_stamp;
1914
1915	/* There is something screwy going on with the retrans hints after
1916	   an undo */
1917	clear_all_retrans_hints(tp);
1918}
1919
1920static inline int tcp_may_undo(struct tcp_sock *tp)
1921{
1922	return tp->undo_marker &&
1923		(!tp->undo_retrans || tcp_packet_delayed(tp));
1924}
1925
1926/* People celebrate: "We love our President!" */
1927static int tcp_try_undo_recovery(struct sock *sk)
1928{
1929	struct tcp_sock *tp = tcp_sk(sk);
1930
1931	if (tcp_may_undo(tp)) {
1932		/* Happy end! We did not retransmit anything
1933		 * or our original transmission succeeded.
1934		 */
1935		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1936		tcp_undo_cwr(sk, 1);
1937		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1938			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1939		else
1940			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1941		tp->undo_marker = 0;
1942	}
1943	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1944		/* Hold old state until something *above* high_seq
1945		 * is ACKed. For Reno it is MUST to prevent false
1946		 * fast retransmits (RFC2582). SACK TCP is safe. */
1947		tcp_moderate_cwnd(tp);
1948		return 1;
1949	}
1950	tcp_set_ca_state(sk, TCP_CA_Open);
1951	return 0;
1952}
1953
1954/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1955static void tcp_try_undo_dsack(struct sock *sk)
1956{
1957	struct tcp_sock *tp = tcp_sk(sk);
1958
1959	if (tp->undo_marker && !tp->undo_retrans) {
1960		DBGUNDO(sk, "D-SACK");
1961		tcp_undo_cwr(sk, 1);
1962		tp->undo_marker = 0;
1963		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1964	}
1965}
1966
1967/* Undo during fast recovery after partial ACK. */
1968
1969static int tcp_try_undo_partial(struct sock *sk, int acked)
1970{
1971	struct tcp_sock *tp = tcp_sk(sk);
1972	/* Partial ACK arrived. Force Hoe's retransmit. */
1973	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1974
1975	if (tcp_may_undo(tp)) {
1976		/* Plain luck! Hole if filled with delayed
1977		 * packet, rather than with a retransmit.
1978		 */
1979		if (tp->retrans_out == 0)
1980			tp->retrans_stamp = 0;
1981
1982		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1983
1984		DBGUNDO(sk, "Hoe");
1985		tcp_undo_cwr(sk, 0);
1986		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1987
1988		/* So... Do not make Hoe's retransmit yet.
1989		 * If the first packet was delayed, the rest
1990		 * ones are most probably delayed as well.
1991		 */
1992		failed = 0;
1993	}
1994	return failed;
1995}
1996
1997/* Undo during loss recovery after partial ACK. */
1998static int tcp_try_undo_loss(struct sock *sk)
1999{
2000	struct tcp_sock *tp = tcp_sk(sk);
2001
2002	if (tcp_may_undo(tp)) {
2003		struct sk_buff *skb;
2004		tcp_for_write_queue(skb, sk) {
2005			if (skb == tcp_send_head(sk))
2006				break;
2007			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2008		}
2009
2010		clear_all_retrans_hints(tp);
2011
2012		DBGUNDO(sk, "partial loss");
2013		tp->lost_out = 0;
2014		tp->left_out = tp->sacked_out;
2015		tcp_undo_cwr(sk, 1);
2016		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2017		inet_csk(sk)->icsk_retransmits = 0;
2018		tp->undo_marker = 0;
2019		if (!IsReno(tp))
2020			tcp_set_ca_state(sk, TCP_CA_Open);
2021		return 1;
2022	}
2023	return 0;
2024}
2025
2026static inline void tcp_complete_cwr(struct sock *sk)
2027{
2028	struct tcp_sock *tp = tcp_sk(sk);
2029	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2030	tp->snd_cwnd_stamp = tcp_time_stamp;
2031	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2032}
2033
2034static void tcp_try_to_open(struct sock *sk, int flag)
2035{
2036	struct tcp_sock *tp = tcp_sk(sk);
2037
2038	tp->left_out = tp->sacked_out;
2039
2040	if (tp->retrans_out == 0)
2041		tp->retrans_stamp = 0;
2042
2043	if (flag&FLAG_ECE)
2044		tcp_enter_cwr(sk, 1);
2045
2046	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2047		int state = TCP_CA_Open;
2048
2049		if (tp->left_out || tp->retrans_out || tp->undo_marker)
2050			state = TCP_CA_Disorder;
2051
2052		if (inet_csk(sk)->icsk_ca_state != state) {
2053			tcp_set_ca_state(sk, state);
2054			tp->high_seq = tp->snd_nxt;
2055		}
2056		tcp_moderate_cwnd(tp);
2057	} else {
2058		tcp_cwnd_down(sk);
2059	}
2060}
2061
2062static void tcp_mtup_probe_failed(struct sock *sk)
2063{
2064	struct inet_connection_sock *icsk = inet_csk(sk);
2065
2066	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2067	icsk->icsk_mtup.probe_size = 0;
2068}
2069
2070static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2071{
2072	struct tcp_sock *tp = tcp_sk(sk);
2073	struct inet_connection_sock *icsk = inet_csk(sk);
2074
2075	/* FIXME: breaks with very large cwnd */
2076	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2077	tp->snd_cwnd = tp->snd_cwnd *
2078		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2079		       icsk->icsk_mtup.probe_size;
2080	tp->snd_cwnd_cnt = 0;
2081	tp->snd_cwnd_stamp = tcp_time_stamp;
2082	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2083
2084	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2085	icsk->icsk_mtup.probe_size = 0;
2086	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2087}
2088
2089
2090/* Process an event, which can update packets-in-flight not trivially.
2091 * Main goal of this function is to calculate new estimate for left_out,
2092 * taking into account both packets sitting in receiver's buffer and
2093 * packets lost by network.
2094 *
2095 * Besides that it does CWND reduction, when packet loss is detected
2096 * and changes state of machine.
2097 *
2098 * It does _not_ decide what to send, it is made in function
2099 * tcp_xmit_retransmit_queue().
2100 */
2101static void
2102tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2103		      int prior_packets, int flag)
2104{
2105	struct inet_connection_sock *icsk = inet_csk(sk);
2106	struct tcp_sock *tp = tcp_sk(sk);
2107	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2108
2109	/* Some technical things:
2110	 * 1. Reno does not count dupacks (sacked_out) automatically. */
2111	if (!tp->packets_out)
2112		tp->sacked_out = 0;
2113	/* 2. SACK counts snd_fack in packets inaccurately. */
2114	if (tp->sacked_out == 0)
2115		tp->fackets_out = 0;
2116
2117	/* Now state machine starts.
2118	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2119	if (flag&FLAG_ECE)
2120		tp->prior_ssthresh = 0;
2121
2122	/* B. In all the states check for reneging SACKs. */
2123	if (tp->sacked_out && tcp_check_sack_reneging(sk))
2124		return;
2125
2126	/* C. Process data loss notification, provided it is valid. */
2127	if ((flag&FLAG_DATA_LOST) &&
2128	    before(tp->snd_una, tp->high_seq) &&
2129	    icsk->icsk_ca_state != TCP_CA_Open &&
2130	    tp->fackets_out > tp->reordering) {
2131		tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2132		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2133	}
2134
2135	/* D. Synchronize left_out to current state. */
2136	tcp_sync_left_out(tp);
2137
2138	/* E. Check state exit conditions. State can be terminated
2139	 *    when high_seq is ACKed. */
2140	if (icsk->icsk_ca_state == TCP_CA_Open) {
2141		BUG_TRAP(tp->retrans_out == 0);
2142		tp->retrans_stamp = 0;
2143	} else if (!before(tp->snd_una, tp->high_seq)) {
2144		switch (icsk->icsk_ca_state) {
2145		case TCP_CA_Loss:
2146			icsk->icsk_retransmits = 0;
2147			if (tcp_try_undo_recovery(sk))
2148				return;
2149			break;
2150
2151		case TCP_CA_CWR:
2152			/* CWR is to be held something *above* high_seq
2153			 * is ACKed for CWR bit to reach receiver. */
2154			if (tp->snd_una != tp->high_seq) {
2155				tcp_complete_cwr(sk);
2156				tcp_set_ca_state(sk, TCP_CA_Open);
2157			}
2158			break;
2159
2160		case TCP_CA_Disorder:
2161			tcp_try_undo_dsack(sk);
2162			if (!tp->undo_marker ||
2163			    /* For SACK case do not Open to allow to undo
2164			     * catching for all duplicate ACKs. */
2165			    IsReno(tp) || tp->snd_una != tp->high_seq) {
2166				tp->undo_marker = 0;
2167				tcp_set_ca_state(sk, TCP_CA_Open);
2168			}
2169			break;
2170
2171		case TCP_CA_Recovery:
2172			if (IsReno(tp))
2173				tcp_reset_reno_sack(tp);
2174			if (tcp_try_undo_recovery(sk))
2175				return;
2176			tcp_complete_cwr(sk);
2177			break;
2178		}
2179	}
2180
2181	/* F. Process state. */
2182	switch (icsk->icsk_ca_state) {
2183	case TCP_CA_Recovery:
2184		if (prior_snd_una == tp->snd_una) {
2185			if (IsReno(tp) && is_dupack)
2186				tcp_add_reno_sack(sk);
2187		} else {
2188			int acked = prior_packets - tp->packets_out;
2189			if (IsReno(tp))
2190				tcp_remove_reno_sacks(sk, acked);
2191			is_dupack = tcp_try_undo_partial(sk, acked);
2192		}
2193		break;
2194	case TCP_CA_Loss:
2195		if (flag&FLAG_DATA_ACKED)
2196			icsk->icsk_retransmits = 0;
2197		if (!tcp_try_undo_loss(sk)) {
2198			tcp_moderate_cwnd(tp);
2199			tcp_xmit_retransmit_queue(sk);
2200			return;
2201		}
2202		if (icsk->icsk_ca_state != TCP_CA_Open)
2203			return;
2204		/* Loss is undone; fall through to processing in Open state. */
2205	default:
2206		if (IsReno(tp)) {
2207			if (tp->snd_una != prior_snd_una)
2208				tcp_reset_reno_sack(tp);
2209			if (is_dupack)
2210				tcp_add_reno_sack(sk);
2211		}
2212
2213		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2214			tcp_try_undo_dsack(sk);
2215
2216		if (!tcp_time_to_recover(sk)) {
2217			tcp_try_to_open(sk, flag);
2218			return;
2219		}
2220
2221		/* MTU probe failure: don't reduce cwnd */
2222		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2223		    icsk->icsk_mtup.probe_size &&
2224		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2225			tcp_mtup_probe_failed(sk);
2226			/* Restores the reduction we did in tcp_mtup_probe() */
2227			tp->snd_cwnd++;
2228			tcp_simple_retransmit(sk);
2229			return;
2230		}
2231
2232		/* Otherwise enter Recovery state */
2233
2234		if (IsReno(tp))
2235			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2236		else
2237			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2238
2239		tp->high_seq = tp->snd_nxt;
2240		tp->prior_ssthresh = 0;
2241		tp->undo_marker = tp->snd_una;
2242		tp->undo_retrans = tp->retrans_out;
2243
2244		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2245			if (!(flag&FLAG_ECE))
2246				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2247			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2248			TCP_ECN_queue_cwr(tp);
2249		}
2250
2251		tp->bytes_acked = 0;
2252		tp->snd_cwnd_cnt = 0;
2253		tcp_set_ca_state(sk, TCP_CA_Recovery);
2254	}
2255
2256	if (is_dupack || tcp_head_timedout(sk))
2257		tcp_update_scoreboard(sk);
2258	tcp_cwnd_down(sk);
2259	tcp_xmit_retransmit_queue(sk);
2260}
2261
2262/* Read draft-ietf-tcplw-high-performance before mucking
2263 * with this code. (Supersedes RFC1323)
2264 */
2265static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2266{
2267	/* RTTM Rule: A TSecr value received in a segment is used to
2268	 * update the averaged RTT measurement only if the segment
2269	 * acknowledges some new data, i.e., only if it advances the
2270	 * left edge of the send window.
2271	 *
2272	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2273	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2274	 *
2275	 * Changed: reset backoff as soon as we see the first valid sample.
2276	 * If we do not, we get strongly overestimated rto. With timestamps
2277	 * samples are accepted even from very old segments: f.e., when rtt=1
2278	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2279	 * answer arrives rto becomes 120 seconds! If at least one of segments
2280	 * in window is lost... Voila.	 			--ANK (010210)
2281	 */
2282	struct tcp_sock *tp = tcp_sk(sk);
2283	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2284	tcp_rtt_estimator(sk, seq_rtt);
2285	tcp_set_rto(sk);
2286	inet_csk(sk)->icsk_backoff = 0;
2287	tcp_bound_rto(sk);
2288}
2289
2290static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2291{
2292	/* We don't have a timestamp. Can only use
2293	 * packets that are not retransmitted to determine
2294	 * rtt estimates. Also, we must not reset the
2295	 * backoff for rto until we get a non-retransmitted
2296	 * packet. This allows us to deal with a situation
2297	 * where the network delay has increased suddenly.
2298	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2299	 */
2300
2301	if (flag & FLAG_RETRANS_DATA_ACKED)
2302		return;
2303
2304	tcp_rtt_estimator(sk, seq_rtt);
2305	tcp_set_rto(sk);
2306	inet_csk(sk)->icsk_backoff = 0;
2307	tcp_bound_rto(sk);
2308}
2309
2310static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2311				      const s32 seq_rtt)
2312{
2313	const struct tcp_sock *tp = tcp_sk(sk);
2314	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2315	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2316		tcp_ack_saw_tstamp(sk, flag);
2317	else if (seq_rtt >= 0)
2318		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2319}
2320
2321static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2322			   u32 in_flight, int good)
2323{
2324	const struct inet_connection_sock *icsk = inet_csk(sk);
2325	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2326	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2327}
2328
2329/* Restart timer after forward progress on connection.
2330 * RFC2988 recommends to restart timer to now+rto.
2331 */
2332
2333static void tcp_ack_packets_out(struct sock *sk)
2334{
2335	struct tcp_sock *tp = tcp_sk(sk);
2336
2337	if (!tp->packets_out) {
2338		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2339	} else {
2340		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2341	}
2342}
2343
2344static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2345			 __u32 now, __s32 *seq_rtt)
2346{
2347	struct tcp_sock *tp = tcp_sk(sk);
2348	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2349	__u32 seq = tp->snd_una;
2350	__u32 packets_acked;
2351	int acked = 0;
2352
2353	/* If we get here, the whole TSO packet has not been
2354	 * acked.
2355	 */
2356	BUG_ON(!after(scb->end_seq, seq));
2357
2358	packets_acked = tcp_skb_pcount(skb);
2359	if (tcp_trim_head(sk, skb, seq - scb->seq))
2360		return 0;
2361	packets_acked -= tcp_skb_pcount(skb);
2362
2363	if (packets_acked) {
2364		__u8 sacked = scb->sacked;
2365
2366		acked |= FLAG_DATA_ACKED;
2367		if (sacked) {
2368			if (sacked & TCPCB_RETRANS) {
2369				if (sacked & TCPCB_SACKED_RETRANS)
2370					tp->retrans_out -= packets_acked;
2371				acked |= FLAG_RETRANS_DATA_ACKED;
2372				*seq_rtt = -1;
2373			} else if (*seq_rtt < 0)
2374				*seq_rtt = now - scb->when;
2375			if (sacked & TCPCB_SACKED_ACKED)
2376				tp->sacked_out -= packets_acked;
2377			if (sacked & TCPCB_LOST)
2378				tp->lost_out -= packets_acked;
2379			if (sacked & TCPCB_URG) {
2380				if (tp->urg_mode &&
2381				    !before(seq, tp->snd_up))
2382					tp->urg_mode = 0;
2383			}
2384		} else if (*seq_rtt < 0)
2385			*seq_rtt = now - scb->when;
2386
2387		if (tp->fackets_out) {
2388			__u32 dval = min(tp->fackets_out, packets_acked);
2389			tp->fackets_out -= dval;
2390		}
2391		tp->packets_out -= packets_acked;
2392
2393		BUG_ON(tcp_skb_pcount(skb) == 0);
2394		BUG_ON(!before(scb->seq, scb->end_seq));
2395	}
2396
2397	return acked;
2398}
2399
2400/* Remove acknowledged frames from the retransmission queue. */
2401static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2402{
2403	struct tcp_sock *tp = tcp_sk(sk);
2404	const struct inet_connection_sock *icsk = inet_csk(sk);
2405	struct sk_buff *skb;
2406	__u32 now = tcp_time_stamp;
2407	int acked = 0;
2408	__s32 seq_rtt = -1;
2409	u32 pkts_acked = 0;
2410	ktime_t last_ackt = ktime_set(0,0);
2411
2412	while ((skb = tcp_write_queue_head(sk)) &&
2413	       skb != tcp_send_head(sk)) {
2414		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2415		__u8 sacked = scb->sacked;
2416
2417		/* If our packet is before the ack sequence we can
2418		 * discard it as it's confirmed to have arrived at
2419		 * the other end.
2420		 */
2421		if (after(scb->end_seq, tp->snd_una)) {
2422			if (tcp_skb_pcount(skb) > 1 &&
2423			    after(tp->snd_una, scb->seq))
2424				acked |= tcp_tso_acked(sk, skb,
2425						       now, &seq_rtt);
2426			break;
2427		}
2428
2429		/* Initial outgoing SYN's get put onto the write_queue
2430		 * just like anything else we transmit.  It is not
2431		 * true data, and if we misinform our callers that
2432		 * this ACK acks real data, we will erroneously exit
2433		 * connection startup slow start one packet too
2434		 * quickly.  This is severely frowned upon behavior.
2435		 */
2436		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2437			acked |= FLAG_DATA_ACKED;
2438			++pkts_acked;
2439		} else {
2440			acked |= FLAG_SYN_ACKED;
2441			tp->retrans_stamp = 0;
2442		}
2443
2444		/* MTU probing checks */
2445		if (icsk->icsk_mtup.probe_size) {
2446			if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2447				tcp_mtup_probe_success(sk, skb);
2448			}
2449		}
2450
2451		if (sacked) {
2452			if (sacked & TCPCB_RETRANS) {
2453				if (sacked & TCPCB_SACKED_RETRANS)
2454					tp->retrans_out -= tcp_skb_pcount(skb);
2455				acked |= FLAG_RETRANS_DATA_ACKED;
2456				seq_rtt = -1;
2457			} else if (seq_rtt < 0) {
2458				seq_rtt = now - scb->when;
2459				last_ackt = skb->tstamp;
2460			}
2461			if (sacked & TCPCB_SACKED_ACKED)
2462				tp->sacked_out -= tcp_skb_pcount(skb);
2463			if (sacked & TCPCB_LOST)
2464				tp->lost_out -= tcp_skb_pcount(skb);
2465			if (sacked & TCPCB_URG) {
2466				if (tp->urg_mode &&
2467				    !before(scb->end_seq, tp->snd_up))
2468					tp->urg_mode = 0;
2469			}
2470		} else if (seq_rtt < 0) {
2471			seq_rtt = now - scb->when;
2472			last_ackt = skb->tstamp;
2473		}
2474		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2475		tcp_packets_out_dec(tp, skb);
2476		tcp_unlink_write_queue(skb, sk);
2477		sk_stream_free_skb(sk, skb);
2478		clear_all_retrans_hints(tp);
2479	}
2480
2481	if (acked&FLAG_ACKED) {
2482		const struct tcp_congestion_ops *ca_ops
2483			= inet_csk(sk)->icsk_ca_ops;
2484
2485		tcp_ack_update_rtt(sk, acked, seq_rtt);
2486		tcp_ack_packets_out(sk);
2487
2488		if (ca_ops->pkts_acked)
2489			ca_ops->pkts_acked(sk, pkts_acked, last_ackt);
2490	}
2491
2492#if FASTRETRANS_DEBUG > 0
2493	BUG_TRAP((int)tp->sacked_out >= 0);
2494	BUG_TRAP((int)tp->lost_out >= 0);
2495	BUG_TRAP((int)tp->retrans_out >= 0);
2496	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2497		const struct inet_connection_sock *icsk = inet_csk(sk);
2498		if (tp->lost_out) {
2499			printk(KERN_DEBUG "Leak l=%u %d\n",
2500			       tp->lost_out, icsk->icsk_ca_state);
2501			tp->lost_out = 0;
2502		}
2503		if (tp->sacked_out) {
2504			printk(KERN_DEBUG "Leak s=%u %d\n",
2505			       tp->sacked_out, icsk->icsk_ca_state);
2506			tp->sacked_out = 0;
2507		}
2508		if (tp->retrans_out) {
2509			printk(KERN_DEBUG "Leak r=%u %d\n",
2510			       tp->retrans_out, icsk->icsk_ca_state);
2511			tp->retrans_out = 0;
2512		}
2513	}
2514#endif
2515	*seq_rtt_p = seq_rtt;
2516	return acked;
2517}
2518
2519static void tcp_ack_probe(struct sock *sk)
2520{
2521	const struct tcp_sock *tp = tcp_sk(sk);
2522	struct inet_connection_sock *icsk = inet_csk(sk);
2523
2524	/* Was it a usable window open? */
2525
2526	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2527		   tp->snd_una + tp->snd_wnd)) {
2528		icsk->icsk_backoff = 0;
2529		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2530		/* Socket must be waked up by subsequent tcp_data_snd_check().
2531		 * This function is not for random using!
2532		 */
2533	} else {
2534		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2535					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2536					  TCP_RTO_MAX);
2537	}
2538}
2539
2540static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2541{
2542	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2543		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2544}
2545
2546static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2547{
2548	const struct tcp_sock *tp = tcp_sk(sk);
2549	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2550		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2551}
2552
2553/* Check that window update is acceptable.
2554 * The function assumes that snd_una<=ack<=snd_next.
2555 */
2556static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2557					const u32 ack_seq, const u32 nwin)
2558{
2559	return (after(ack, tp->snd_una) ||
2560		after(ack_seq, tp->snd_wl1) ||
2561		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2562}
2563
2564/* Update our send window.
2565 *
2566 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2567 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2568 */
2569static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2570				 u32 ack_seq)
2571{
2572	struct tcp_sock *tp = tcp_sk(sk);
2573	int flag = 0;
2574	u32 nwin = ntohs(tcp_hdr(skb)->window);
2575
2576	if (likely(!tcp_hdr(skb)->syn))
2577		nwin <<= tp->rx_opt.snd_wscale;
2578
2579	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2580		flag |= FLAG_WIN_UPDATE;
2581		tcp_update_wl(tp, ack, ack_seq);
2582
2583		if (tp->snd_wnd != nwin) {
2584			tp->snd_wnd = nwin;
2585
2586			/* Note, it is the only place, where
2587			 * fast path is recovered for sending TCP.
2588			 */
2589			tp->pred_flags = 0;
2590			tcp_fast_path_check(sk);
2591
2592			if (nwin > tp->max_window) {
2593				tp->max_window = nwin;
2594				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2595			}
2596		}
2597	}
2598
2599	tp->snd_una = ack;
2600
2601	return flag;
2602}
2603
2604/* A very conservative spurious RTO response algorithm: reduce cwnd and
2605 * continue in congestion avoidance.
2606 */
2607static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2608{
2609	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2610	tp->snd_cwnd_cnt = 0;
2611	tcp_moderate_cwnd(tp);
2612}
2613
2614/* A conservative spurious RTO response algorithm: reduce cwnd using
2615 * rate halving and continue in congestion avoidance.
2616 */
2617static void tcp_ratehalving_spur_to_response(struct sock *sk)
2618{
2619	tcp_enter_cwr(sk, 0);
2620}
2621
2622static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2623{
2624	if (flag&FLAG_ECE)
2625		tcp_ratehalving_spur_to_response(sk);
2626	else
2627		tcp_undo_cwr(sk, 1);
2628}
2629
2630/* F-RTO spurious RTO detection algorithm (RFC4138)
2631 *
2632 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2633 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2634 * window (but not to or beyond highest sequence sent before RTO):
2635 *   On First ACK,  send two new segments out.
2636 *   On Second ACK, RTO was likely spurious. Do spurious response (response
2637 *                  algorithm is not part of the F-RTO detection algorithm
2638 *                  given in RFC4138 but can be selected separately).
2639 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2640 * and TCP falls back to conventional RTO recovery.
2641 *
2642 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2643 * original window even after we transmit two new data segments.
2644 *
2645 * SACK version:
2646 *   on first step, wait until first cumulative ACK arrives, then move to
2647 *   the second step. In second step, the next ACK decides.
2648 *
2649 * F-RTO is implemented (mainly) in four functions:
2650 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
2651 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2652 *     called when tcp_use_frto() showed green light
2653 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2654 *   - tcp_enter_frto_loss() is called if there is not enough evidence
2655 *     to prove that the RTO is indeed spurious. It transfers the control
2656 *     from F-RTO to the conventional RTO recovery
2657 */
2658static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2659{
2660	struct tcp_sock *tp = tcp_sk(sk);
2661
2662	tcp_sync_left_out(tp);
2663
2664	/* Duplicate the behavior from Loss state (fastretrans_alert) */
2665	if (flag&FLAG_DATA_ACKED)
2666		inet_csk(sk)->icsk_retransmits = 0;
2667
2668	if (!before(tp->snd_una, tp->frto_highmark)) {
2669		tcp_enter_frto_loss(sk, tp->frto_counter + 1, flag);
2670		return 1;
2671	}
2672
2673	if (!IsSackFrto() || IsReno(tp)) {
2674		/* RFC4138 shortcoming in step 2; should also have case c):
2675		 * ACK isn't duplicate nor advances window, e.g., opposite dir
2676		 * data, winupdate
2677		 */
2678		if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2679		    !(flag&FLAG_FORWARD_PROGRESS))
2680			return 1;
2681
2682		if (!(flag&FLAG_DATA_ACKED)) {
2683			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2684					    flag);
2685			return 1;
2686		}
2687	} else {
2688		if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2689			/* Prevent sending of new data. */
2690			tp->snd_cwnd = min(tp->snd_cwnd,
2691					   tcp_packets_in_flight(tp));
2692			return 1;
2693		}
2694
2695		if ((tp->frto_counter == 2) &&
2696		    (!(flag&FLAG_FORWARD_PROGRESS) ||
2697		     ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2698			/* RFC4138 shortcoming (see comment above) */
2699			if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2700				return 1;
2701
2702			tcp_enter_frto_loss(sk, 3, flag);
2703			return 1;
2704		}
2705	}
2706
2707	if (tp->frto_counter == 1) {
2708		/* Sending of the next skb must be allowed or no FRTO */
2709		if (!tcp_send_head(sk) ||
2710		    after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2711				     tp->snd_una + tp->snd_wnd)) {
2712			tcp_enter_frto_loss(sk, tp->frto_counter + 1, flag);
2713			return 1;
2714		}
2715
2716		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2717		tp->frto_counter = 2;
2718		return 1;
2719	} else /* frto_counter == 2 */ {
2720		switch (sysctl_tcp_frto_response) {
2721		case 2:
2722			tcp_undo_spur_to_response(sk, flag);
2723			break;
2724		case 1:
2725			tcp_conservative_spur_to_response(tp);
2726			break;
2727		default:
2728			tcp_ratehalving_spur_to_response(sk);
2729			break;
2730		}
2731		tp->frto_counter = 0;
2732	}
2733	return 0;
2734}
2735
2736/* This routine deals with incoming acks, but not outgoing ones. */
2737static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2738{
2739	struct inet_connection_sock *icsk = inet_csk(sk);
2740	struct tcp_sock *tp = tcp_sk(sk);
2741	u32 prior_snd_una = tp->snd_una;
2742	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2743	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2744	u32 prior_in_flight;
2745	s32 seq_rtt;
2746	int prior_packets;
2747	int frto_cwnd = 0;
2748
2749	/* If the ack is newer than sent or older than previous acks
2750	 * then we can probably ignore it.
2751	 */
2752	if (after(ack, tp->snd_nxt))
2753		goto uninteresting_ack;
2754
2755	if (before(ack, prior_snd_una))
2756		goto old_ack;
2757
2758	if (sysctl_tcp_abc) {
2759		if (icsk->icsk_ca_state < TCP_CA_CWR)
2760			tp->bytes_acked += ack - prior_snd_una;
2761		else if (icsk->icsk_ca_state == TCP_CA_Loss)
2762			/* we assume just one segment left network */
2763			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2764	}
2765
2766	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2767		/* Window is constant, pure forward advance.
2768		 * No more checks are required.
2769		 * Note, we use the fact that SND.UNA>=SND.WL2.
2770		 */
2771		tcp_update_wl(tp, ack, ack_seq);
2772		tp->snd_una = ack;
2773		flag |= FLAG_WIN_UPDATE;
2774
2775		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2776
2777		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2778	} else {
2779		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2780			flag |= FLAG_DATA;
2781		else
2782			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2783
2784		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
2785
2786		if (TCP_SKB_CB(skb)->sacked)
2787			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2788
2789		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2790			flag |= FLAG_ECE;
2791
2792		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2793	}
2794
2795	/* We passed data and got it acked, remove any soft error
2796	 * log. Something worked...
2797	 */
2798	sk->sk_err_soft = 0;
2799	tp->rcv_tstamp = tcp_time_stamp;
2800	prior_packets = tp->packets_out;
2801	if (!prior_packets)
2802		goto no_queue;
2803
2804	prior_in_flight = tcp_packets_in_flight(tp);
2805
2806	/* See if we can take anything off of the retransmit queue. */
2807	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2808
2809	if (tp->frto_counter)
2810		frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
2811
2812	if (tcp_ack_is_dubious(sk, flag)) {
2813		/* Advance CWND, if state allows this. */
2814		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2815		    tcp_may_raise_cwnd(sk, flag))
2816			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2817		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2818	} else {
2819		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2820			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2821	}
2822
2823	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2824		dst_confirm(sk->sk_dst_cache);
2825
2826	return 1;
2827
2828no_queue:
2829	icsk->icsk_probes_out = 0;
2830
2831	/* If this ack opens up a zero window, clear backoff.  It was
2832	 * being used to time the probes, and is probably far higher than
2833	 * it needs to be for normal retransmission.
2834	 */
2835	if (tcp_send_head(sk))
2836		tcp_ack_probe(sk);
2837	return 1;
2838
2839old_ack:
2840	if (TCP_SKB_CB(skb)->sacked)
2841		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2842
2843uninteresting_ack:
2844	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2845	return 0;
2846}
2847
2848
2849/* Look for tcp options. Normally only called on SYN and SYNACK packets.
2850 * But, this can also be called on packets in the established flow when
2851 * the fast version below fails.
2852 */
2853void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2854{
2855	unsigned char *ptr;
2856	struct tcphdr *th = tcp_hdr(skb);
2857	int length=(th->doff*4)-sizeof(struct tcphdr);
2858
2859	ptr = (unsigned char *)(th + 1);
2860	opt_rx->saw_tstamp = 0;
2861
2862	while (length > 0) {
2863		int opcode=*ptr++;
2864		int opsize;
2865
2866		switch (opcode) {
2867			case TCPOPT_EOL:
2868				return;
2869			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2870				length--;
2871				continue;
2872			default:
2873				opsize=*ptr++;
2874				if (opsize < 2) /* "silly options" */
2875					return;
2876				if (opsize > length)
2877					return;	/* don't parse partial options */
2878				switch (opcode) {
2879				case TCPOPT_MSS:
2880					if (opsize==TCPOLEN_MSS && th->syn && !estab) {
2881						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2882						if (in_mss) {
2883							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2884								in_mss = opt_rx->user_mss;
2885							opt_rx->mss_clamp = in_mss;
2886						}
2887					}
2888					break;
2889				case TCPOPT_WINDOW:
2890					if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
2891						if (sysctl_tcp_window_scaling) {
2892							__u8 snd_wscale = *(__u8 *) ptr;
2893							opt_rx->wscale_ok = 1;
2894							if (snd_wscale > 14) {
2895								if (net_ratelimit())
2896									printk(KERN_INFO "tcp_parse_options: Illegal window "
2897									       "scaling value %d >14 received.\n",
2898									       snd_wscale);
2899								snd_wscale = 14;
2900							}
2901							opt_rx->snd_wscale = snd_wscale;
2902						}
2903					break;
2904				case TCPOPT_TIMESTAMP:
2905					if (opsize==TCPOLEN_TIMESTAMP) {
2906						if ((estab && opt_rx->tstamp_ok) ||
2907						    (!estab && sysctl_tcp_timestamps)) {
2908							opt_rx->saw_tstamp = 1;
2909							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2910							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2911						}
2912					}
2913					break;
2914				case TCPOPT_SACK_PERM:
2915					if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2916						if (sysctl_tcp_sack) {
2917							opt_rx->sack_ok = 1;
2918							tcp_sack_reset(opt_rx);
2919						}
2920					}
2921					break;
2922
2923				case TCPOPT_SACK:
2924					if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2925					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2926					   opt_rx->sack_ok) {
2927						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2928					}
2929#ifdef CONFIG_TCP_MD5SIG
2930				case TCPOPT_MD5SIG:
2931					/*
2932					 * The MD5 Hash has already been
2933					 * checked (see tcp_v{4,6}_do_rcv()).
2934					 */
2935					break;
2936#endif
2937				}
2938
2939				ptr+=opsize-2;
2940				length-=opsize;
2941		}
2942	}
2943}
2944
2945/* Fast parse options. This hopes to only see timestamps.
2946 * If it is wrong it falls back on tcp_parse_options().
2947 */
2948static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2949				  struct tcp_sock *tp)
2950{
2951	if (th->doff == sizeof(struct tcphdr)>>2) {
2952		tp->rx_opt.saw_tstamp = 0;
2953		return 0;
2954	} else if (tp->rx_opt.tstamp_ok &&
2955		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2956		__be32 *ptr = (__be32 *)(th + 1);
2957		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2958				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2959			tp->rx_opt.saw_tstamp = 1;
2960			++ptr;
2961			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2962			++ptr;
2963			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2964			return 1;
2965		}
2966	}
2967	tcp_parse_options(skb, &tp->rx_opt, 1);
2968	return 1;
2969}
2970
2971static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2972{
2973	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2974	tp->rx_opt.ts_recent_stamp = get_seconds();
2975}
2976
2977static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2978{
2979	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2980		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2981		 * extra check below makes sure this can only happen
2982		 * for pure ACK frames.  -DaveM
2983		 *
2984		 * Not only, also it occurs for expired timestamps.
2985		 */
2986
2987		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2988		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2989			tcp_store_ts_recent(tp);
2990	}
2991}
2992
2993/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2994 *
2995 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2996 * it can pass through stack. So, the following predicate verifies that
2997 * this segment is not used for anything but congestion avoidance or
2998 * fast retransmit. Moreover, we even are able to eliminate most of such
2999 * second order effects, if we apply some small "replay" window (~RTO)
3000 * to timestamp space.
3001 *
3002 * All these measures still do not guarantee that we reject wrapped ACKs
3003 * on networks with high bandwidth, when sequence space is recycled fastly,
3004 * but it guarantees that such events will be very rare and do not affect
3005 * connection seriously. This doesn't look nice, but alas, PAWS is really
3006 * buggy extension.
3007 *
3008 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3009 * states that events when retransmit arrives after original data are rare.
3010 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3011 * the biggest problem on large power networks even with minor reordering.
3012 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3013 * up to bandwidth of 18Gigabit/sec. 8) ]
3014 */
3015
3016static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3017{
3018	struct tcp_sock *tp = tcp_sk(sk);
3019	struct tcphdr *th = tcp_hdr(skb);
3020	u32 seq = TCP_SKB_CB(skb)->seq;
3021	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3022
3023	return (/* 1. Pure ACK with correct sequence number. */
3024		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3025
3026		/* 2. ... and duplicate ACK. */
3027		ack == tp->snd_una &&
3028
3029		/* 3. ... and does not update window. */
3030		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3031
3032		/* 4. ... and sits in replay window. */
3033		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3034}
3035
3036static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3037{
3038	const struct tcp_sock *tp = tcp_sk(sk);
3039	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3040		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3041		!tcp_disordered_ack(sk, skb));
3042}
3043
3044/* Check segment sequence number for validity.
3045 *
3046 * Segment controls are considered valid, if the segment
3047 * fits to the window after truncation to the window. Acceptability
3048 * of data (and SYN, FIN, of course) is checked separately.
3049 * See tcp_data_queue(), for example.
3050 *
3051 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3052 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3053 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3054 * (borrowed from freebsd)
3055 */
3056
3057static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3058{
3059	return	!before(end_seq, tp->rcv_wup) &&
3060		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3061}
3062
3063/* When we get a reset we do this. */
3064static void tcp_reset(struct sock *sk)
3065{
3066	/* We want the right error as BSD sees it (and indeed as we do). */
3067	switch (sk->sk_state) {
3068		case TCP_SYN_SENT:
3069			sk->sk_err = ECONNREFUSED;
3070			break;
3071		case TCP_CLOSE_WAIT:
3072			sk->sk_err = EPIPE;
3073			break;
3074		case TCP_CLOSE:
3075			return;
3076		default:
3077			sk->sk_err = ECONNRESET;
3078	}
3079
3080	if (!sock_flag(sk, SOCK_DEAD))
3081		sk->sk_error_report(sk);
3082
3083	tcp_done(sk);
3084}
3085
3086/*
3087 * 	Process the FIN bit. This now behaves as it is supposed to work
3088 *	and the FIN takes effect when it is validly part of sequence
3089 *	space. Not before when we get holes.
3090 *
3091 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3092 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3093 *	TIME-WAIT)
3094 *
3095 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3096 *	close and we go into CLOSING (and later onto TIME-WAIT)
3097 *
3098 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3099 */
3100static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3101{
3102	struct tcp_sock *tp = tcp_sk(sk);
3103
3104	inet_csk_schedule_ack(sk);
3105
3106	sk->sk_shutdown |= RCV_SHUTDOWN;
3107	sock_set_flag(sk, SOCK_DONE);
3108
3109	switch (sk->sk_state) {
3110		case TCP_SYN_RECV:
3111		case TCP_ESTABLISHED:
3112			/* Move to CLOSE_WAIT */
3113			tcp_set_state(sk, TCP_CLOSE_WAIT);
3114			inet_csk(sk)->icsk_ack.pingpong = 1;
3115			break;
3116
3117		case TCP_CLOSE_WAIT:
3118		case TCP_CLOSING:
3119			/* Received a retransmission of the FIN, do
3120			 * nothing.
3121			 */
3122			break;
3123		case TCP_LAST_ACK:
3124			/* RFC793: Remain in the LAST-ACK state. */
3125			break;
3126
3127		case TCP_FIN_WAIT1:
3128			/* This case occurs when a simultaneous close
3129			 * happens, we must ack the received FIN and
3130			 * enter the CLOSING state.
3131			 */
3132			tcp_send_ack(sk);
3133			tcp_set_state(sk, TCP_CLOSING);
3134			break;
3135		case TCP_FIN_WAIT2:
3136			/* Received a FIN -- send ACK and enter TIME_WAIT. */
3137			tcp_send_ack(sk);
3138			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3139			break;
3140		default:
3141			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3142			 * cases we should never reach this piece of code.
3143			 */
3144			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3145			       __FUNCTION__, sk->sk_state);
3146			break;
3147	}
3148
3149	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3150	 * Probably, we should reset in this case. For now drop them.
3151	 */
3152	__skb_queue_purge(&tp->out_of_order_queue);
3153	if (tp->rx_opt.sack_ok)
3154		tcp_sack_reset(&tp->rx_opt);
3155	sk_stream_mem_reclaim(sk);
3156
3157	if (!sock_flag(sk, SOCK_DEAD)) {
3158		sk->sk_state_change(sk);
3159
3160		/* Do not send POLL_HUP for half duplex close. */
3161		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3162		    sk->sk_state == TCP_CLOSE)
3163			sk_wake_async(sk, 1, POLL_HUP);
3164		else
3165			sk_wake_async(sk, 1, POLL_IN);
3166	}
3167}
3168
3169static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3170{
3171	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3172		if (before(seq, sp->start_seq))
3173			sp->start_seq = seq;
3174		if (after(end_seq, sp->end_seq))
3175			sp->end_seq = end_seq;
3176		return 1;
3177	}
3178	return 0;
3179}
3180
3181static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3182{
3183	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3184		if (before(seq, tp->rcv_nxt))
3185			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3186		else
3187			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3188
3189		tp->rx_opt.dsack = 1;
3190		tp->duplicate_sack[0].start_seq = seq;
3191		tp->duplicate_sack[0].end_seq = end_seq;
3192		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3193	}
3194}
3195
3196static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3197{
3198	if (!tp->rx_opt.dsack)
3199		tcp_dsack_set(tp, seq, end_seq);
3200	else
3201		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3202}
3203
3204static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3205{
3206	struct tcp_sock *tp = tcp_sk(sk);
3207
3208	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3209	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3210		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3211		tcp_enter_quickack_mode(sk);
3212
3213		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3214			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3215
3216			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3217				end_seq = tp->rcv_nxt;
3218			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3219		}
3220	}
3221
3222	tcp_send_ack(sk);
3223}
3224
3225/* These routines update the SACK block as out-of-order packets arrive or
3226 * in-order packets close up the sequence space.
3227 */
3228static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3229{
3230	int this_sack;
3231	struct tcp_sack_block *sp = &tp->selective_acks[0];
3232	struct tcp_sack_block *swalk = sp+1;
3233
3234	/* See if the recent change to the first SACK eats into
3235	 * or hits the sequence space of other SACK blocks, if so coalesce.
3236	 */
3237	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3238		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3239			int i;
3240
3241			/* Zap SWALK, by moving every further SACK up by one slot.
3242			 * Decrease num_sacks.
3243			 */
3244			tp->rx_opt.num_sacks--;
3245			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3246			for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3247				sp[i] = sp[i+1];
3248			continue;
3249		}
3250		this_sack++, swalk++;
3251	}
3252}
3253
3254static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3255{
3256	__u32 tmp;
3257
3258	tmp = sack1->start_seq;
3259	sack1->start_seq = sack2->start_seq;
3260	sack2->start_seq = tmp;
3261
3262	tmp = sack1->end_seq;
3263	sack1->end_seq = sack2->end_seq;
3264	sack2->end_seq = tmp;
3265}
3266
3267static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3268{
3269	struct tcp_sock *tp = tcp_sk(sk);
3270	struct tcp_sack_block *sp = &tp->selective_acks[0];
3271	int cur_sacks = tp->rx_opt.num_sacks;
3272	int this_sack;
3273
3274	if (!cur_sacks)
3275		goto new_sack;
3276
3277	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3278		if (tcp_sack_extend(sp, seq, end_seq)) {
3279			/* Rotate this_sack to the first one. */
3280			for (; this_sack>0; this_sack--, sp--)
3281				tcp_sack_swap(sp, sp-1);
3282			if (cur_sacks > 1)
3283				tcp_sack_maybe_coalesce(tp);
3284			return;
3285		}
3286	}
3287
3288	/* Could not find an adjacent existing SACK, build a new one,
3289	 * put it at the front, and shift everyone else down.  We
3290	 * always know there is at least one SACK present already here.
3291	 *
3292	 * If the sack array is full, forget about the last one.
3293	 */
3294	if (this_sack >= 4) {
3295		this_sack--;
3296		tp->rx_opt.num_sacks--;
3297		sp--;
3298	}
3299	for (; this_sack > 0; this_sack--, sp--)
3300		*sp = *(sp-1);
3301
3302new_sack:
3303	/* Build the new head SACK, and we're done. */
3304	sp->start_seq = seq;
3305	sp->end_seq = end_seq;
3306	tp->rx_opt.num_sacks++;
3307	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3308}
3309
3310/* RCV.NXT advances, some SACKs should be eaten. */
3311
3312static void tcp_sack_remove(struct tcp_sock *tp)
3313{
3314	struct tcp_sack_block *sp = &tp->selective_acks[0];
3315	int num_sacks = tp->rx_opt.num_sacks;
3316	int this_sack;
3317
3318	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3319	if (skb_queue_empty(&tp->out_of_order_queue)) {
3320		tp->rx_opt.num_sacks = 0;
3321		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3322		return;
3323	}
3324
3325	for (this_sack = 0; this_sack < num_sacks; ) {
3326		/* Check if the start of the sack is covered by RCV.NXT. */
3327		if (!before(tp->rcv_nxt, sp->start_seq)) {
3328			int i;
3329
3330			/* RCV.NXT must cover all the block! */
3331			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3332
3333			/* Zap this SACK, by moving forward any other SACKS. */
3334			for (i=this_sack+1; i < num_sacks; i++)
3335				tp->selective_acks[i-1] = tp->selective_acks[i];
3336			num_sacks--;
3337			continue;
3338		}
3339		this_sack++;
3340		sp++;
3341	}
3342	if (num_sacks != tp->rx_opt.num_sacks) {
3343		tp->rx_opt.num_sacks = num_sacks;
3344		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3345	}
3346}
3347
3348/* This one checks to see if we can put data from the
3349 * out_of_order queue into the receive_queue.
3350 */
3351static void tcp_ofo_queue(struct sock *sk)
3352{
3353	struct tcp_sock *tp = tcp_sk(sk);
3354	__u32 dsack_high = tp->rcv_nxt;
3355	struct sk_buff *skb;
3356
3357	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3358		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3359			break;
3360
3361		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3362			__u32 dsack = dsack_high;
3363			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3364				dsack_high = TCP_SKB_CB(skb)->end_seq;
3365			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3366		}
3367
3368		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3369			SOCK_DEBUG(sk, "ofo packet was already received \n");
3370			__skb_unlink(skb, &tp->out_of_order_queue);
3371			__kfree_skb(skb);
3372			continue;
3373		}
3374		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3375			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3376			   TCP_SKB_CB(skb)->end_seq);
3377
3378		__skb_unlink(skb, &tp->out_of_order_queue);
3379		__skb_queue_tail(&sk->sk_receive_queue, skb);
3380		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3381		if (tcp_hdr(skb)->fin)
3382			tcp_fin(skb, sk, tcp_hdr(skb));
3383	}
3384}
3385
3386static int tcp_prune_queue(struct sock *sk);
3387
3388static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3389{
3390	struct tcphdr *th = tcp_hdr(skb);
3391	struct tcp_sock *tp = tcp_sk(sk);
3392	int eaten = -1;
3393
3394	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3395		goto drop;
3396
3397	__skb_pull(skb, th->doff*4);
3398
3399	TCP_ECN_accept_cwr(tp, skb);
3400
3401	if (tp->rx_opt.dsack) {
3402		tp->rx_opt.dsack = 0;
3403		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3404						    4 - tp->rx_opt.tstamp_ok);
3405	}
3406
3407	/*  Queue data for delivery to the user.
3408	 *  Packets in sequence go to the receive queue.
3409	 *  Out of sequence packets to the out_of_order_queue.
3410	 */
3411	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3412		if (tcp_receive_window(tp) == 0)
3413			goto out_of_window;
3414
3415		/* Ok. In sequence. In window. */
3416		if (tp->ucopy.task == current &&
3417		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3418		    sock_owned_by_user(sk) && !tp->urg_data) {
3419			int chunk = min_t(unsigned int, skb->len,
3420							tp->ucopy.len);
3421
3422			__set_current_state(TASK_RUNNING);
3423
3424			local_bh_enable();
3425			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3426				tp->ucopy.len -= chunk;
3427				tp->copied_seq += chunk;
3428				eaten = (chunk == skb->len && !th->fin);
3429				tcp_rcv_space_adjust(sk);
3430			}
3431			local_bh_disable();
3432		}
3433
3434		if (eaten <= 0) {
3435queue_and_out:
3436			if (eaten < 0 &&
3437			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3438			     !sk_stream_rmem_schedule(sk, skb))) {
3439				if (tcp_prune_queue(sk) < 0 ||
3440				    !sk_stream_rmem_schedule(sk, skb))
3441					goto drop;
3442			}
3443			sk_stream_set_owner_r(skb, sk);
3444			__skb_queue_tail(&sk->sk_receive_queue, skb);
3445		}
3446		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3447		if (skb->len)
3448			tcp_event_data_recv(sk, skb);
3449		if (th->fin)
3450			tcp_fin(skb, sk, th);
3451
3452		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3453			tcp_ofo_queue(sk);
3454
3455			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3456			 * gap in queue is filled.
3457			 */
3458			if (skb_queue_empty(&tp->out_of_order_queue))
3459				inet_csk(sk)->icsk_ack.pingpong = 0;
3460		}
3461
3462		if (tp->rx_opt.num_sacks)
3463			tcp_sack_remove(tp);
3464
3465		tcp_fast_path_check(sk);
3466
3467		if (eaten > 0)
3468			__kfree_skb(skb);
3469		else if (!sock_flag(sk, SOCK_DEAD))
3470			sk->sk_data_ready(sk, 0);
3471		return;
3472	}
3473
3474	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3475		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3476		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3477		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3478
3479out_of_window:
3480		tcp_enter_quickack_mode(sk);
3481		inet_csk_schedule_ack(sk);
3482drop:
3483		__kfree_skb(skb);
3484		return;
3485	}
3486
3487	/* Out of window. F.e. zero window probe. */
3488	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3489		goto out_of_window;
3490
3491	tcp_enter_quickack_mode(sk);
3492
3493	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3494		/* Partial packet, seq < rcv_next < end_seq */
3495		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3496			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3497			   TCP_SKB_CB(skb)->end_seq);
3498
3499		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3500
3501		/* If window is closed, drop tail of packet. But after
3502		 * remembering D-SACK for its head made in previous line.
3503		 */
3504		if (!tcp_receive_window(tp))
3505			goto out_of_window;
3506		goto queue_and_out;
3507	}
3508
3509	TCP_ECN_check_ce(tp, skb);
3510
3511	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3512	    !sk_stream_rmem_schedule(sk, skb)) {
3513		if (tcp_prune_queue(sk) < 0 ||
3514		    !sk_stream_rmem_schedule(sk, skb))
3515			goto drop;
3516	}
3517
3518	/* Disable header prediction. */
3519	tp->pred_flags = 0;
3520	inet_csk_schedule_ack(sk);
3521
3522	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3523		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3524
3525	sk_stream_set_owner_r(skb, sk);
3526
3527	if (!skb_peek(&tp->out_of_order_queue)) {
3528		/* Initial out of order segment, build 1 SACK. */
3529		if (tp->rx_opt.sack_ok) {
3530			tp->rx_opt.num_sacks = 1;
3531			tp->rx_opt.dsack     = 0;
3532			tp->rx_opt.eff_sacks = 1;
3533			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3534			tp->selective_acks[0].end_seq =
3535						TCP_SKB_CB(skb)->end_seq;
3536		}
3537		__skb_queue_head(&tp->out_of_order_queue,skb);
3538	} else {
3539		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3540		u32 seq = TCP_SKB_CB(skb)->seq;
3541		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3542
3543		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3544			__skb_append(skb1, skb, &tp->out_of_order_queue);
3545
3546			if (!tp->rx_opt.num_sacks ||
3547			    tp->selective_acks[0].end_seq != seq)
3548				goto add_sack;
3549
3550			/* Common case: data arrive in order after hole. */
3551			tp->selective_acks[0].end_seq = end_seq;
3552			return;
3553		}
3554
3555		/* Find place to insert this segment. */
3556		do {
3557			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3558				break;
3559		} while ((skb1 = skb1->prev) !=
3560			 (struct sk_buff*)&tp->out_of_order_queue);
3561
3562		/* Do skb overlap to previous one? */
3563		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3564		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3565			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3566				/* All the bits are present. Drop. */
3567				__kfree_skb(skb);
3568				tcp_dsack_set(tp, seq, end_seq);
3569				goto add_sack;
3570			}
3571			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3572				/* Partial overlap. */
3573				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3574			} else {
3575				skb1 = skb1->prev;
3576			}
3577		}
3578		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3579
3580		/* And clean segments covered by new one as whole. */
3581		while ((skb1 = skb->next) !=
3582		       (struct sk_buff*)&tp->out_of_order_queue &&
3583		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3584		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3585			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3586			       break;
3587		       }
3588		       __skb_unlink(skb1, &tp->out_of_order_queue);
3589		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3590		       __kfree_skb(skb1);
3591		}
3592
3593add_sack:
3594		if (tp->rx_opt.sack_ok)
3595			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3596	}
3597}
3598
3599/* Collapse contiguous sequence of skbs head..tail with
3600 * sequence numbers start..end.
3601 * Segments with FIN/SYN are not collapsed (only because this
3602 * simplifies code)
3603 */
3604static void
3605tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3606	     struct sk_buff *head, struct sk_buff *tail,
3607	     u32 start, u32 end)
3608{
3609	struct sk_buff *skb;
3610
3611	/* First, check that queue is collapsible and find
3612	 * the point where collapsing can be useful. */
3613	for (skb = head; skb != tail; ) {
3614		/* No new bits? It is possible on ofo queue. */
3615		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3616			struct sk_buff *next = skb->next;
3617			__skb_unlink(skb, list);
3618			__kfree_skb(skb);
3619			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3620			skb = next;
3621			continue;
3622		}
3623
3624		/* The first skb to collapse is:
3625		 * - not SYN/FIN and
3626		 * - bloated or contains data before "start" or
3627		 *   overlaps to the next one.
3628		 */
3629		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3630		    (tcp_win_from_space(skb->truesize) > skb->len ||
3631		     before(TCP_SKB_CB(skb)->seq, start) ||
3632		     (skb->next != tail &&
3633		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3634			break;
3635
3636		/* Decided to skip this, advance start seq. */
3637		start = TCP_SKB_CB(skb)->end_seq;
3638		skb = skb->next;
3639	}
3640	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3641		return;
3642
3643	while (before(start, end)) {
3644		struct sk_buff *nskb;
3645		int header = skb_headroom(skb);
3646		int copy = SKB_MAX_ORDER(header, 0);
3647
3648		/* Too big header? This can happen with IPv6. */
3649		if (copy < 0)
3650			return;
3651		if (end-start < copy)
3652			copy = end-start;
3653		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3654		if (!nskb)
3655			return;
3656
3657		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3658		skb_set_network_header(nskb, (skb_network_header(skb) -
3659					      skb->head));
3660		skb_set_transport_header(nskb, (skb_transport_header(skb) -
3661						skb->head));
3662		skb_reserve(nskb, header);
3663		memcpy(nskb->head, skb->head, header);
3664		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3665		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3666		__skb_insert(nskb, skb->prev, skb, list);
3667		sk_stream_set_owner_r(nskb, sk);
3668
3669		/* Copy data, releasing collapsed skbs. */
3670		while (copy > 0) {
3671			int offset = start - TCP_SKB_CB(skb)->seq;
3672			int size = TCP_SKB_CB(skb)->end_seq - start;
3673
3674			BUG_ON(offset < 0);
3675			if (size > 0) {
3676				size = min(copy, size);
3677				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3678					BUG();
3679				TCP_SKB_CB(nskb)->end_seq += size;
3680				copy -= size;
3681				start += size;
3682			}
3683			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3684				struct sk_buff *next = skb->next;
3685				__skb_unlink(skb, list);
3686				__kfree_skb(skb);
3687				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3688				skb = next;
3689				if (skb == tail ||
3690				    tcp_hdr(skb)->syn ||
3691				    tcp_hdr(skb)->fin)
3692					return;
3693			}
3694		}
3695	}
3696}
3697
3698/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3699 * and tcp_collapse() them until all the queue is collapsed.
3700 */
3701static void tcp_collapse_ofo_queue(struct sock *sk)
3702{
3703	struct tcp_sock *tp = tcp_sk(sk);
3704	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3705	struct sk_buff *head;
3706	u32 start, end;
3707
3708	if (skb == NULL)
3709		return;
3710
3711	start = TCP_SKB_CB(skb)->seq;
3712	end = TCP_SKB_CB(skb)->end_seq;
3713	head = skb;
3714
3715	for (;;) {
3716		skb = skb->next;
3717
3718		/* Segment is terminated when we see gap or when
3719		 * we are at the end of all the queue. */
3720		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3721		    after(TCP_SKB_CB(skb)->seq, end) ||
3722		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3723			tcp_collapse(sk, &tp->out_of_order_queue,
3724				     head, skb, start, end);
3725			head = skb;
3726			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3727				break;
3728			/* Start new segment */
3729			start = TCP_SKB_CB(skb)->seq;
3730			end = TCP_SKB_CB(skb)->end_seq;
3731		} else {
3732			if (before(TCP_SKB_CB(skb)->seq, start))
3733				start = TCP_SKB_CB(skb)->seq;
3734			if (after(TCP_SKB_CB(skb)->end_seq, end))
3735				end = TCP_SKB_CB(skb)->end_seq;
3736		}
3737	}
3738}
3739
3740/* Reduce allocated memory if we can, trying to get
3741 * the socket within its memory limits again.
3742 *
3743 * Return less than zero if we should start dropping frames
3744 * until the socket owning process reads some of the data
3745 * to stabilize the situation.
3746 */
3747static int tcp_prune_queue(struct sock *sk)
3748{
3749	struct tcp_sock *tp = tcp_sk(sk);
3750
3751	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3752
3753	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3754
3755	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3756		tcp_clamp_window(sk);
3757	else if (tcp_memory_pressure)
3758		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3759
3760	tcp_collapse_ofo_queue(sk);
3761	tcp_collapse(sk, &sk->sk_receive_queue,
3762		     sk->sk_receive_queue.next,
3763		     (struct sk_buff*)&sk->sk_receive_queue,
3764		     tp->copied_seq, tp->rcv_nxt);
3765	sk_stream_mem_reclaim(sk);
3766
3767	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3768		return 0;
3769
3770	/* Collapsing did not help, destructive actions follow.
3771	 * This must not ever occur. */
3772
3773	/* First, purge the out_of_order queue. */
3774	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3775		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3776		__skb_queue_purge(&tp->out_of_order_queue);
3777
3778		/* Reset SACK state.  A conforming SACK implementation will
3779		 * do the same at a timeout based retransmit.  When a connection
3780		 * is in a sad state like this, we care only about integrity
3781		 * of the connection not performance.
3782		 */
3783		if (tp->rx_opt.sack_ok)
3784			tcp_sack_reset(&tp->rx_opt);
3785		sk_stream_mem_reclaim(sk);
3786	}
3787
3788	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3789		return 0;
3790
3791	/* If we are really being abused, tell the caller to silently
3792	 * drop receive data on the floor.  It will get retransmitted
3793	 * and hopefully then we'll have sufficient space.
3794	 */
3795	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3796
3797	/* Massive buffer overcommit. */
3798	tp->pred_flags = 0;
3799	return -1;
3800}
3801
3802
3803/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3804 * As additional protections, we do not touch cwnd in retransmission phases,
3805 * and if application hit its sndbuf limit recently.
3806 */
3807void tcp_cwnd_application_limited(struct sock *sk)
3808{
3809	struct tcp_sock *tp = tcp_sk(sk);
3810
3811	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3812	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3813		/* Limited by application or receiver window. */
3814		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3815		u32 win_used = max(tp->snd_cwnd_used, init_win);
3816		if (win_used < tp->snd_cwnd) {
3817			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3818			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3819		}
3820		tp->snd_cwnd_used = 0;
3821	}
3822	tp->snd_cwnd_stamp = tcp_time_stamp;
3823}
3824
3825static int tcp_should_expand_sndbuf(struct sock *sk)
3826{
3827	struct tcp_sock *tp = tcp_sk(sk);
3828
3829	/* If the user specified a specific send buffer setting, do
3830	 * not modify it.
3831	 */
3832	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3833		return 0;
3834
3835	/* If we are under global TCP memory pressure, do not expand.  */
3836	if (tcp_memory_pressure)
3837		return 0;
3838
3839	/* If we are under soft global TCP memory pressure, do not expand.  */
3840	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3841		return 0;
3842
3843	/* If we filled the congestion window, do not expand.  */
3844	if (tp->packets_out >= tp->snd_cwnd)
3845		return 0;
3846
3847	return 1;
3848}
3849
3850/* When incoming ACK allowed to free some skb from write_queue,
3851 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3852 * on the exit from tcp input handler.
3853 *
3854 * PROBLEM: sndbuf expansion does not work well with largesend.
3855 */
3856static void tcp_new_space(struct sock *sk)
3857{
3858	struct tcp_sock *tp = tcp_sk(sk);
3859
3860	if (tcp_should_expand_sndbuf(sk)) {
3861		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3862			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3863		    demanded = max_t(unsigned int, tp->snd_cwnd,
3864						   tp->reordering + 1);
3865		sndmem *= 2*demanded;
3866		if (sndmem > sk->sk_sndbuf)
3867			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3868		tp->snd_cwnd_stamp = tcp_time_stamp;
3869	}
3870
3871	sk->sk_write_space(sk);
3872}
3873
3874static void tcp_check_space(struct sock *sk)
3875{
3876	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3877		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3878		if (sk->sk_socket &&
3879		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3880			tcp_new_space(sk);
3881	}
3882}
3883
3884static inline void tcp_data_snd_check(struct sock *sk)
3885{
3886	tcp_push_pending_frames(sk);
3887	tcp_check_space(sk);
3888}
3889
3890/*
3891 * Check if sending an ack is needed.
3892 */
3893static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3894{
3895	struct tcp_sock *tp = tcp_sk(sk);
3896
3897	    /* More than one full frame received... */
3898	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3899	     /* ... and right edge of window advances far enough.
3900	      * (tcp_recvmsg() will send ACK otherwise). Or...
3901	      */
3902	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3903	    /* We ACK each frame or... */
3904	    tcp_in_quickack_mode(sk) ||
3905	    /* We have out of order data. */
3906	    (ofo_possible &&
3907	     skb_peek(&tp->out_of_order_queue))) {
3908		/* Then ack it now */
3909		tcp_send_ack(sk);
3910	} else {
3911		/* Else, send delayed ack. */
3912		tcp_send_delayed_ack(sk);
3913	}
3914}
3915
3916static inline void tcp_ack_snd_check(struct sock *sk)
3917{
3918	if (!inet_csk_ack_scheduled(sk)) {
3919		/* We sent a data segment already. */
3920		return;
3921	}
3922	__tcp_ack_snd_check(sk, 1);
3923}
3924
3925/*
3926 *	This routine is only called when we have urgent data
3927 *	signaled. Its the 'slow' part of tcp_urg. It could be
3928 *	moved inline now as tcp_urg is only called from one
3929 *	place. We handle URGent data wrong. We have to - as
3930 *	BSD still doesn't use the correction from RFC961.
3931 *	For 1003.1g we should support a new option TCP_STDURG to permit
3932 *	either form (or just set the sysctl tcp_stdurg).
3933 */
3934
3935static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3936{
3937	struct tcp_sock *tp = tcp_sk(sk);
3938	u32 ptr = ntohs(th->urg_ptr);
3939
3940	if (ptr && !sysctl_tcp_stdurg)
3941		ptr--;
3942	ptr += ntohl(th->seq);
3943
3944	/* Ignore urgent data that we've already seen and read. */
3945	if (after(tp->copied_seq, ptr))
3946		return;
3947
3948	/* Do not replay urg ptr.
3949	 *
3950	 * NOTE: interesting situation not covered by specs.
3951	 * Misbehaving sender may send urg ptr, pointing to segment,
3952	 * which we already have in ofo queue. We are not able to fetch
3953	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3954	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3955	 * situations. But it is worth to think about possibility of some
3956	 * DoSes using some hypothetical application level deadlock.
3957	 */
3958	if (before(ptr, tp->rcv_nxt))
3959		return;
3960
3961	/* Do we already have a newer (or duplicate) urgent pointer? */
3962	if (tp->urg_data && !after(ptr, tp->urg_seq))
3963		return;
3964
3965	/* Tell the world about our new urgent pointer. */
3966	sk_send_sigurg(sk);
3967
3968	/* We may be adding urgent data when the last byte read was
3969	 * urgent. To do this requires some care. We cannot just ignore
3970	 * tp->copied_seq since we would read the last urgent byte again
3971	 * as data, nor can we alter copied_seq until this data arrives
3972	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3973	 *
3974	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3975	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3976	 * and expect that both A and B disappear from stream. This is _wrong_.
3977	 * Though this happens in BSD with high probability, this is occasional.
3978	 * Any application relying on this is buggy. Note also, that fix "works"
3979	 * only in this artificial test. Insert some normal data between A and B and we will
3980	 * decline of BSD again. Verdict: it is better to remove to trap
3981	 * buggy users.
3982	 */
3983	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3984	    !sock_flag(sk, SOCK_URGINLINE) &&
3985	    tp->copied_seq != tp->rcv_nxt) {
3986		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3987		tp->copied_seq++;
3988		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3989			__skb_unlink(skb, &sk->sk_receive_queue);
3990			__kfree_skb(skb);
3991		}
3992	}
3993
3994	tp->urg_data   = TCP_URG_NOTYET;
3995	tp->urg_seq    = ptr;
3996
3997	/* Disable header prediction. */
3998	tp->pred_flags = 0;
3999}
4000
4001/* This is the 'fast' part of urgent handling. */
4002static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4003{
4004	struct tcp_sock *tp = tcp_sk(sk);
4005
4006	/* Check if we get a new urgent pointer - normally not. */
4007	if (th->urg)
4008		tcp_check_urg(sk,th);
4009
4010	/* Do we wait for any urgent data? - normally not... */
4011	if (tp->urg_data == TCP_URG_NOTYET) {
4012		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4013			  th->syn;
4014
4015		/* Is the urgent pointer pointing into this packet? */
4016		if (ptr < skb->len) {
4017			u8 tmp;
4018			if (skb_copy_bits(skb, ptr, &tmp, 1))
4019				BUG();
4020			tp->urg_data = TCP_URG_VALID | tmp;
4021			if (!sock_flag(sk, SOCK_DEAD))
4022				sk->sk_data_ready(sk, 0);
4023		}
4024	}
4025}
4026
4027static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4028{
4029	struct tcp_sock *tp = tcp_sk(sk);
4030	int chunk = skb->len - hlen;
4031	int err;
4032
4033	local_bh_enable();
4034	if (skb_csum_unnecessary(skb))
4035		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4036	else
4037		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4038						       tp->ucopy.iov);
4039
4040	if (!err) {
4041		tp->ucopy.len -= chunk;
4042		tp->copied_seq += chunk;
4043		tcp_rcv_space_adjust(sk);
4044	}
4045
4046	local_bh_disable();
4047	return err;
4048}
4049
4050static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4051{
4052	__sum16 result;
4053
4054	if (sock_owned_by_user(sk)) {
4055		local_bh_enable();
4056		result = __tcp_checksum_complete(skb);
4057		local_bh_disable();
4058	} else {
4059		result = __tcp_checksum_complete(skb);
4060	}
4061	return result;
4062}
4063
4064static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4065{
4066	return !skb_csum_unnecessary(skb) &&
4067		__tcp_checksum_complete_user(sk, skb);
4068}
4069
4070#ifdef CONFIG_NET_DMA
4071static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4072{
4073	struct tcp_sock *tp = tcp_sk(sk);
4074	int chunk = skb->len - hlen;
4075	int dma_cookie;
4076	int copied_early = 0;
4077
4078	if (tp->ucopy.wakeup)
4079		return 0;
4080
4081	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4082		tp->ucopy.dma_chan = get_softnet_dma();
4083
4084	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4085
4086		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4087			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4088
4089		if (dma_cookie < 0)
4090			goto out;
4091
4092		tp->ucopy.dma_cookie = dma_cookie;
4093		copied_early = 1;
4094
4095		tp->ucopy.len -= chunk;
4096		tp->copied_seq += chunk;
4097		tcp_rcv_space_adjust(sk);
4098
4099		if ((tp->ucopy.len == 0) ||
4100		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4101		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4102			tp->ucopy.wakeup = 1;
4103			sk->sk_data_ready(sk, 0);
4104		}
4105	} else if (chunk > 0) {
4106		tp->ucopy.wakeup = 1;
4107		sk->sk_data_ready(sk, 0);
4108	}
4109out:
4110	return copied_early;
4111}
4112#endif /* CONFIG_NET_DMA */
4113
4114/*
4115 *	TCP receive function for the ESTABLISHED state.
4116 *
4117 *	It is split into a fast path and a slow path. The fast path is
4118 * 	disabled when:
4119 *	- A zero window was announced from us - zero window probing
4120 *        is only handled properly in the slow path.
4121 *	- Out of order segments arrived.
4122 *	- Urgent data is expected.
4123 *	- There is no buffer space left
4124 *	- Unexpected TCP flags/window values/header lengths are received
4125 *	  (detected by checking the TCP header against pred_flags)
4126 *	- Data is sent in both directions. Fast path only supports pure senders
4127 *	  or pure receivers (this means either the sequence number or the ack
4128 *	  value must stay constant)
4129 *	- Unexpected TCP option.
4130 *
4131 *	When these conditions are not satisfied it drops into a standard
4132 *	receive procedure patterned after RFC793 to handle all cases.
4133 *	The first three cases are guaranteed by proper pred_flags setting,
4134 *	the rest is checked inline. Fast processing is turned on in
4135 *	tcp_data_queue when everything is OK.
4136 */
4137int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4138			struct tcphdr *th, unsigned len)
4139{
4140	struct tcp_sock *tp = tcp_sk(sk);
4141
4142	/*
4143	 *	Header prediction.
4144	 *	The code loosely follows the one in the famous
4145	 *	"30 instruction TCP receive" Van Jacobson mail.
4146	 *
4147	 *	Van's trick is to deposit buffers into socket queue
4148	 *	on a device interrupt, to call tcp_recv function
4149	 *	on the receive process context and checksum and copy
4150	 *	the buffer to user space. smart...
4151	 *
4152	 *	Our current scheme is not silly either but we take the
4153	 *	extra cost of the net_bh soft interrupt processing...
4154	 *	We do checksum and copy also but from device to kernel.
4155	 */
4156
4157	tp->rx_opt.saw_tstamp = 0;
4158
4159	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4160	 *	if header_prediction is to be made
4161	 *	'S' will always be tp->tcp_header_len >> 2
4162	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4163	 *  turn it off	(when there are holes in the receive
4164	 *	 space for instance)
4165	 *	PSH flag is ignored.
4166	 */
4167
4168	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4169		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4170		int tcp_header_len = tp->tcp_header_len;
4171
4172		/* Timestamp header prediction: tcp_header_len
4173		 * is automatically equal to th->doff*4 due to pred_flags
4174		 * match.
4175		 */
4176
4177		/* Check timestamp */
4178		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4179			__be32 *ptr = (__be32 *)(th + 1);
4180
4181			/* No? Slow path! */
4182			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4183					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4184				goto slow_path;
4185
4186			tp->rx_opt.saw_tstamp = 1;
4187			++ptr;
4188			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4189			++ptr;
4190			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4191
4192			/* If PAWS failed, check it more carefully in slow path */
4193			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4194				goto slow_path;
4195
4196			/* DO NOT update ts_recent here, if checksum fails
4197			 * and timestamp was corrupted part, it will result
4198			 * in a hung connection since we will drop all
4199			 * future packets due to the PAWS test.
4200			 */
4201		}
4202
4203		if (len <= tcp_header_len) {
4204			/* Bulk data transfer: sender */
4205			if (len == tcp_header_len) {
4206				/* Predicted packet is in window by definition.
4207				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4208				 * Hence, check seq<=rcv_wup reduces to:
4209				 */
4210				if (tcp_header_len ==
4211				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4212				    tp->rcv_nxt == tp->rcv_wup)
4213					tcp_store_ts_recent(tp);
4214
4215				/* We know that such packets are checksummed
4216				 * on entry.
4217				 */
4218				tcp_ack(sk, skb, 0);
4219				__kfree_skb(skb);
4220				tcp_data_snd_check(sk);
4221				return 0;
4222			} else { /* Header too small */
4223				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4224				goto discard;
4225			}
4226		} else {
4227			int eaten = 0;
4228			int copied_early = 0;
4229
4230			if (tp->copied_seq == tp->rcv_nxt &&
4231			    len - tcp_header_len <= tp->ucopy.len) {
4232#ifdef CONFIG_NET_DMA
4233				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4234					copied_early = 1;
4235					eaten = 1;
4236				}
4237#endif
4238				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4239					__set_current_state(TASK_RUNNING);
4240
4241					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4242						eaten = 1;
4243				}
4244				if (eaten) {
4245					/* Predicted packet is in window by definition.
4246					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4247					 * Hence, check seq<=rcv_wup reduces to:
4248					 */
4249					if (tcp_header_len ==
4250					    (sizeof(struct tcphdr) +
4251					     TCPOLEN_TSTAMP_ALIGNED) &&
4252					    tp->rcv_nxt == tp->rcv_wup)
4253						tcp_store_ts_recent(tp);
4254
4255					tcp_rcv_rtt_measure_ts(sk, skb);
4256
4257					__skb_pull(skb, tcp_header_len);
4258					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4259					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4260				}
4261				if (copied_early)
4262					tcp_cleanup_rbuf(sk, skb->len);
4263			}
4264			if (!eaten) {
4265				if (tcp_checksum_complete_user(sk, skb))
4266					goto csum_error;
4267
4268				/* Predicted packet is in window by definition.
4269				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4270				 * Hence, check seq<=rcv_wup reduces to:
4271				 */
4272				if (tcp_header_len ==
4273				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4274				    tp->rcv_nxt == tp->rcv_wup)
4275					tcp_store_ts_recent(tp);
4276
4277				tcp_rcv_rtt_measure_ts(sk, skb);
4278
4279				if ((int)skb->truesize > sk->sk_forward_alloc)
4280					goto step5;
4281
4282				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4283
4284				/* Bulk data transfer: receiver */
4285				__skb_pull(skb,tcp_header_len);
4286				__skb_queue_tail(&sk->sk_receive_queue, skb);
4287				sk_stream_set_owner_r(skb, sk);
4288				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4289			}
4290
4291			tcp_event_data_recv(sk, skb);
4292
4293			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4294				/* Well, only one small jumplet in fast path... */
4295				tcp_ack(sk, skb, FLAG_DATA);
4296				tcp_data_snd_check(sk);
4297				if (!inet_csk_ack_scheduled(sk))
4298					goto no_ack;
4299			}
4300
4301			__tcp_ack_snd_check(sk, 0);
4302no_ack:
4303#ifdef CONFIG_NET_DMA
4304			if (copied_early)
4305				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4306			else
4307#endif
4308			if (eaten)
4309				__kfree_skb(skb);
4310			else
4311				sk->sk_data_ready(sk, 0);
4312			return 0;
4313		}
4314	}
4315
4316slow_path:
4317	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4318		goto csum_error;
4319
4320	/*
4321	 * RFC1323: H1. Apply PAWS check first.
4322	 */
4323	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4324	    tcp_paws_discard(sk, skb)) {
4325		if (!th->rst) {
4326			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4327			tcp_send_dupack(sk, skb);
4328			goto discard;
4329		}
4330		/* Resets are accepted even if PAWS failed.
4331
4332		   ts_recent update must be made after we are sure
4333		   that the packet is in window.
4334		 */
4335	}
4336
4337	/*
4338	 *	Standard slow path.
4339	 */
4340
4341	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4342		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4343		 * (RST) segments are validated by checking their SEQ-fields."
4344		 * And page 69: "If an incoming segment is not acceptable,
4345		 * an acknowledgment should be sent in reply (unless the RST bit
4346		 * is set, if so drop the segment and return)".
4347		 */
4348		if (!th->rst)
4349			tcp_send_dupack(sk, skb);
4350		goto discard;
4351	}
4352
4353	if (th->rst) {
4354		tcp_reset(sk);
4355		goto discard;
4356	}
4357
4358	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4359
4360	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4361		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4362		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4363		tcp_reset(sk);
4364		return 1;
4365	}
4366
4367step5:
4368	if (th->ack)
4369		tcp_ack(sk, skb, FLAG_SLOWPATH);
4370
4371	tcp_rcv_rtt_measure_ts(sk, skb);
4372
4373	/* Process urgent data. */
4374	tcp_urg(sk, skb, th);
4375
4376	/* step 7: process the segment text */
4377	tcp_data_queue(sk, skb);
4378
4379	tcp_data_snd_check(sk);
4380	tcp_ack_snd_check(sk);
4381	return 0;
4382
4383csum_error:
4384	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4385
4386discard:
4387	__kfree_skb(skb);
4388	return 0;
4389}
4390
4391static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4392					 struct tcphdr *th, unsigned len)
4393{
4394	struct tcp_sock *tp = tcp_sk(sk);
4395	struct inet_connection_sock *icsk = inet_csk(sk);
4396	int saved_clamp = tp->rx_opt.mss_clamp;
4397
4398	tcp_parse_options(skb, &tp->rx_opt, 0);
4399
4400	if (th->ack) {
4401		/* rfc793:
4402		 * "If the state is SYN-SENT then
4403		 *    first check the ACK bit
4404		 *      If the ACK bit is set
4405		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4406		 *        a reset (unless the RST bit is set, if so drop
4407		 *        the segment and return)"
4408		 *
4409		 *  We do not send data with SYN, so that RFC-correct
4410		 *  test reduces to:
4411		 */
4412		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4413			goto reset_and_undo;
4414
4415		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4416		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4417			     tcp_time_stamp)) {
4418			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4419			goto reset_and_undo;
4420		}
4421
4422		/* Now ACK is acceptable.
4423		 *
4424		 * "If the RST bit is set
4425		 *    If the ACK was acceptable then signal the user "error:
4426		 *    connection reset", drop the segment, enter CLOSED state,
4427		 *    delete TCB, and return."
4428		 */
4429
4430		if (th->rst) {
4431			tcp_reset(sk);
4432			goto discard;
4433		}
4434
4435		/* rfc793:
4436		 *   "fifth, if neither of the SYN or RST bits is set then
4437		 *    drop the segment and return."
4438		 *
4439		 *    See note below!
4440		 *                                        --ANK(990513)
4441		 */
4442		if (!th->syn)
4443			goto discard_and_undo;
4444
4445		/* rfc793:
4446		 *   "If the SYN bit is on ...
4447		 *    are acceptable then ...
4448		 *    (our SYN has been ACKed), change the connection
4449		 *    state to ESTABLISHED..."
4450		 */
4451
4452		TCP_ECN_rcv_synack(tp, th);
4453
4454		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4455		tcp_ack(sk, skb, FLAG_SLOWPATH);
4456
4457		/* Ok.. it's good. Set up sequence numbers and
4458		 * move to established.
4459		 */
4460		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4461		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4462
4463		/* RFC1323: The window in SYN & SYN/ACK segments is
4464		 * never scaled.
4465		 */
4466		tp->snd_wnd = ntohs(th->window);
4467		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4468
4469		if (!tp->rx_opt.wscale_ok) {
4470			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4471			tp->window_clamp = min(tp->window_clamp, 65535U);
4472		}
4473
4474		if (tp->rx_opt.saw_tstamp) {
4475			tp->rx_opt.tstamp_ok	   = 1;
4476			tp->tcp_header_len =
4477				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4478			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4479			tcp_store_ts_recent(tp);
4480		} else {
4481			tp->tcp_header_len = sizeof(struct tcphdr);
4482		}
4483
4484		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4485			tp->rx_opt.sack_ok |= 2;
4486
4487		tcp_mtup_init(sk);
4488		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4489		tcp_initialize_rcv_mss(sk);
4490
4491		/* Remember, tcp_poll() does not lock socket!
4492		 * Change state from SYN-SENT only after copied_seq
4493		 * is initialized. */
4494		tp->copied_seq = tp->rcv_nxt;
4495		smp_mb();
4496		tcp_set_state(sk, TCP_ESTABLISHED);
4497
4498		security_inet_conn_established(sk, skb);
4499
4500		/* Make sure socket is routed, for correct metrics.  */
4501		icsk->icsk_af_ops->rebuild_header(sk);
4502
4503		tcp_init_metrics(sk);
4504
4505		tcp_init_congestion_control(sk);
4506
4507		/* Prevent spurious tcp_cwnd_restart() on first data
4508		 * packet.
4509		 */
4510		tp->lsndtime = tcp_time_stamp;
4511
4512		tcp_init_buffer_space(sk);
4513
4514		if (sock_flag(sk, SOCK_KEEPOPEN))
4515			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4516
4517		if (!tp->rx_opt.snd_wscale)
4518			__tcp_fast_path_on(tp, tp->snd_wnd);
4519		else
4520			tp->pred_flags = 0;
4521
4522		if (!sock_flag(sk, SOCK_DEAD)) {
4523			sk->sk_state_change(sk);
4524			sk_wake_async(sk, 0, POLL_OUT);
4525		}
4526
4527		if (sk->sk_write_pending ||
4528		    icsk->icsk_accept_queue.rskq_defer_accept ||
4529		    icsk->icsk_ack.pingpong) {
4530			/* Save one ACK. Data will be ready after
4531			 * several ticks, if write_pending is set.
4532			 *
4533			 * It may be deleted, but with this feature tcpdumps
4534			 * look so _wonderfully_ clever, that I was not able
4535			 * to stand against the temptation 8)     --ANK
4536			 */
4537			inet_csk_schedule_ack(sk);
4538			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4539			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4540			tcp_incr_quickack(sk);
4541			tcp_enter_quickack_mode(sk);
4542			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4543						  TCP_DELACK_MAX, TCP_RTO_MAX);
4544
4545discard:
4546			__kfree_skb(skb);
4547			return 0;
4548		} else {
4549			tcp_send_ack(sk);
4550		}
4551		return -1;
4552	}
4553
4554	/* No ACK in the segment */
4555
4556	if (th->rst) {
4557		/* rfc793:
4558		 * "If the RST bit is set
4559		 *
4560		 *      Otherwise (no ACK) drop the segment and return."
4561		 */
4562
4563		goto discard_and_undo;
4564	}
4565
4566	/* PAWS check. */
4567	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4568		goto discard_and_undo;
4569
4570	if (th->syn) {
4571		/* We see SYN without ACK. It is attempt of
4572		 * simultaneous connect with crossed SYNs.
4573		 * Particularly, it can be connect to self.
4574		 */
4575		tcp_set_state(sk, TCP_SYN_RECV);
4576
4577		if (tp->rx_opt.saw_tstamp) {
4578			tp->rx_opt.tstamp_ok = 1;
4579			tcp_store_ts_recent(tp);
4580			tp->tcp_header_len =
4581				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4582		} else {
4583			tp->tcp_header_len = sizeof(struct tcphdr);
4584		}
4585
4586		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4587		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4588
4589		/* RFC1323: The window in SYN & SYN/ACK segments is
4590		 * never scaled.
4591		 */
4592		tp->snd_wnd    = ntohs(th->window);
4593		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4594		tp->max_window = tp->snd_wnd;
4595
4596		TCP_ECN_rcv_syn(tp, th);
4597
4598		tcp_mtup_init(sk);
4599		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4600		tcp_initialize_rcv_mss(sk);
4601
4602
4603		tcp_send_synack(sk);
4604#if 0
4605		/* Note, we could accept data and URG from this segment.
4606		 * There are no obstacles to make this.
4607		 *
4608		 * However, if we ignore data in ACKless segments sometimes,
4609		 * we have no reasons to accept it sometimes.
4610		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4611		 * is not flawless. So, discard packet for sanity.
4612		 * Uncomment this return to process the data.
4613		 */
4614		return -1;
4615#else
4616		goto discard;
4617#endif
4618	}
4619	/* "fifth, if neither of the SYN or RST bits is set then
4620	 * drop the segment and return."
4621	 */
4622
4623discard_and_undo:
4624	tcp_clear_options(&tp->rx_opt);
4625	tp->rx_opt.mss_clamp = saved_clamp;
4626	goto discard;
4627
4628reset_and_undo:
4629	tcp_clear_options(&tp->rx_opt);
4630	tp->rx_opt.mss_clamp = saved_clamp;
4631	return 1;
4632}
4633
4634
4635/*
4636 *	This function implements the receiving procedure of RFC 793 for
4637 *	all states except ESTABLISHED and TIME_WAIT.
4638 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4639 *	address independent.
4640 */
4641
4642int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4643			  struct tcphdr *th, unsigned len)
4644{
4645	struct tcp_sock *tp = tcp_sk(sk);
4646	struct inet_connection_sock *icsk = inet_csk(sk);
4647	int queued = 0;
4648
4649	tp->rx_opt.saw_tstamp = 0;
4650
4651	switch (sk->sk_state) {
4652	case TCP_CLOSE:
4653		goto discard;
4654
4655	case TCP_LISTEN:
4656		if (th->ack)
4657			return 1;
4658
4659		if (th->rst)
4660			goto discard;
4661
4662		if (th->syn) {
4663			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4664				return 1;
4665
4666			/* Now we have several options: In theory there is
4667			 * nothing else in the frame. KA9Q has an option to
4668			 * send data with the syn, BSD accepts data with the
4669			 * syn up to the [to be] advertised window and
4670			 * Solaris 2.1 gives you a protocol error. For now
4671			 * we just ignore it, that fits the spec precisely
4672			 * and avoids incompatibilities. It would be nice in
4673			 * future to drop through and process the data.
4674			 *
4675			 * Now that TTCP is starting to be used we ought to
4676			 * queue this data.
4677			 * But, this leaves one open to an easy denial of
4678			 * service attack, and SYN cookies can't defend
4679			 * against this problem. So, we drop the data
4680			 * in the interest of security over speed unless
4681			 * it's still in use.
4682			 */
4683			kfree_skb(skb);
4684			return 0;
4685		}
4686		goto discard;
4687
4688	case TCP_SYN_SENT:
4689		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4690		if (queued >= 0)
4691			return queued;
4692
4693		/* Do step6 onward by hand. */
4694		tcp_urg(sk, skb, th);
4695		__kfree_skb(skb);
4696		tcp_data_snd_check(sk);
4697		return 0;
4698	}
4699
4700	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4701	    tcp_paws_discard(sk, skb)) {
4702		if (!th->rst) {
4703			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4704			tcp_send_dupack(sk, skb);
4705			goto discard;
4706		}
4707		/* Reset is accepted even if it did not pass PAWS. */
4708	}
4709
4710	/* step 1: check sequence number */
4711	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4712		if (!th->rst)
4713			tcp_send_dupack(sk, skb);
4714		goto discard;
4715	}
4716
4717	/* step 2: check RST bit */
4718	if (th->rst) {
4719		tcp_reset(sk);
4720		goto discard;
4721	}
4722
4723	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4724
4725	/* step 3: check security and precedence [ignored] */
4726
4727	/*	step 4:
4728	 *
4729	 *	Check for a SYN in window.
4730	 */
4731	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4732		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4733		tcp_reset(sk);
4734		return 1;
4735	}
4736
4737	/* step 5: check the ACK field */
4738	if (th->ack) {
4739		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4740
4741		switch (sk->sk_state) {
4742		case TCP_SYN_RECV:
4743			if (acceptable) {
4744				tp->copied_seq = tp->rcv_nxt;
4745				smp_mb();
4746				tcp_set_state(sk, TCP_ESTABLISHED);
4747				sk->sk_state_change(sk);
4748
4749				/* Note, that this wakeup is only for marginal
4750				 * crossed SYN case. Passively open sockets
4751				 * are not waked up, because sk->sk_sleep ==
4752				 * NULL and sk->sk_socket == NULL.
4753				 */
4754				if (sk->sk_socket) {
4755					sk_wake_async(sk,0,POLL_OUT);
4756				}
4757
4758				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4759				tp->snd_wnd = ntohs(th->window) <<
4760					      tp->rx_opt.snd_wscale;
4761				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4762					    TCP_SKB_CB(skb)->seq);
4763
4764				/* tcp_ack considers this ACK as duplicate
4765				 * and does not calculate rtt.
4766				 * Fix it at least with timestamps.
4767				 */
4768				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4769				    !tp->srtt)
4770					tcp_ack_saw_tstamp(sk, 0);
4771
4772				if (tp->rx_opt.tstamp_ok)
4773					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4774
4775				/* Make sure socket is routed, for
4776				 * correct metrics.
4777				 */
4778				icsk->icsk_af_ops->rebuild_header(sk);
4779
4780				tcp_init_metrics(sk);
4781
4782				tcp_init_congestion_control(sk);
4783
4784				/* Prevent spurious tcp_cwnd_restart() on
4785				 * first data packet.
4786				 */
4787				tp->lsndtime = tcp_time_stamp;
4788
4789				tcp_mtup_init(sk);
4790				tcp_initialize_rcv_mss(sk);
4791				tcp_init_buffer_space(sk);
4792				tcp_fast_path_on(tp);
4793			} else {
4794				return 1;
4795			}
4796			break;
4797
4798		case TCP_FIN_WAIT1:
4799			if (tp->snd_una == tp->write_seq) {
4800				tcp_set_state(sk, TCP_FIN_WAIT2);
4801				sk->sk_shutdown |= SEND_SHUTDOWN;
4802				dst_confirm(sk->sk_dst_cache);
4803
4804				if (!sock_flag(sk, SOCK_DEAD))
4805					/* Wake up lingering close() */
4806					sk->sk_state_change(sk);
4807				else {
4808					int tmo;
4809
4810					if (tp->linger2 < 0 ||
4811					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4812					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4813						tcp_done(sk);
4814						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4815						return 1;
4816					}
4817
4818					tmo = tcp_fin_time(sk);
4819					if (tmo > TCP_TIMEWAIT_LEN) {
4820						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4821					} else if (th->fin || sock_owned_by_user(sk)) {
4822						/* Bad case. We could lose such FIN otherwise.
4823						 * It is not a big problem, but it looks confusing
4824						 * and not so rare event. We still can lose it now,
4825						 * if it spins in bh_lock_sock(), but it is really
4826						 * marginal case.
4827						 */
4828						inet_csk_reset_keepalive_timer(sk, tmo);
4829					} else {
4830						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4831						goto discard;
4832					}
4833				}
4834			}
4835			break;
4836
4837		case TCP_CLOSING:
4838			if (tp->snd_una == tp->write_seq) {
4839				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4840				goto discard;
4841			}
4842			break;
4843
4844		case TCP_LAST_ACK:
4845			if (tp->snd_una == tp->write_seq) {
4846				tcp_update_metrics(sk);
4847				tcp_done(sk);
4848				goto discard;
4849			}
4850			break;
4851		}
4852	} else
4853		goto discard;
4854
4855	/* step 6: check the URG bit */
4856	tcp_urg(sk, skb, th);
4857
4858	/* step 7: process the segment text */
4859	switch (sk->sk_state) {
4860	case TCP_CLOSE_WAIT:
4861	case TCP_CLOSING:
4862	case TCP_LAST_ACK:
4863		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4864			break;
4865	case TCP_FIN_WAIT1:
4866	case TCP_FIN_WAIT2:
4867		/* RFC 793 says to queue data in these states,
4868		 * RFC 1122 says we MUST send a reset.
4869		 * BSD 4.4 also does reset.
4870		 */
4871		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4872			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4873			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4874				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4875				tcp_reset(sk);
4876				return 1;
4877			}
4878		}
4879		/* Fall through */
4880	case TCP_ESTABLISHED:
4881		tcp_data_queue(sk, skb);
4882		queued = 1;
4883		break;
4884	}
4885
4886	/* tcp_data could move socket to TIME-WAIT */
4887	if (sk->sk_state != TCP_CLOSE) {
4888		tcp_data_snd_check(sk);
4889		tcp_ack_snd_check(sk);
4890	}
4891
4892	if (!queued) {
4893discard:
4894		__kfree_skb(skb);
4895	}
4896	return 0;
4897}
4898
4899EXPORT_SYMBOL(sysctl_tcp_ecn);
4900EXPORT_SYMBOL(sysctl_tcp_reordering);
4901EXPORT_SYMBOL(tcp_parse_options);
4902EXPORT_SYMBOL(tcp_rcv_established);
4903EXPORT_SYMBOL(tcp_rcv_state_process);
4904EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4905