tcp_input.c revision 5b08e47caf1f2034a3a5b566bbccc8b0be3961ca
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 *		Pedro Roque	:	Fast Retransmit/Recovery.
24 *					Two receive queues.
25 *					Retransmit queue handled by TCP.
26 *					Better retransmit timer handling.
27 *					New congestion avoidance.
28 *					Header prediction.
29 *					Variable renaming.
30 *
31 *		Eric		:	Fast Retransmit.
32 *		Randy Scott	:	MSS option defines.
33 *		Eric Schenk	:	Fixes to slow start algorithm.
34 *		Eric Schenk	:	Yet another double ACK bug.
35 *		Eric Schenk	:	Delayed ACK bug fixes.
36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37 *		David S. Miller	:	Don't allow zero congestion window.
38 *		Eric Schenk	:	Fix retransmitter so that it sends
39 *					next packet on ack of previous packet.
40 *		Andi Kleen	:	Moved open_request checking here
41 *					and process RSTs for open_requests.
42 *		Andi Kleen	:	Better prune_queue, and other fixes.
43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
44 *					timestamps.
45 *		Andrey Savochkin:	Check sequence numbers correctly when
46 *					removing SACKs due to in sequence incoming
47 *					data segments.
48 *		Andi Kleen:		Make sure we never ack data there is not
49 *					enough room for. Also make this condition
50 *					a fatal error if it might still happen.
51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52 *					connections with MSS<min(MTU,ann. MSS)
53 *					work without delayed acks.
54 *		Andi Kleen:		Process packets with PSH set in the
55 *					fast path.
56 *		J Hadi Salim:		ECN support
57 *	 	Andrei Gurtov,
58 *		Pasi Sarolahti,
59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60 *					engine. Lots of bugs are found.
61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62 */
63
64#define pr_fmt(fmt) "TCP: " fmt
65
66#include <linux/mm.h>
67#include <linux/slab.h>
68#include <linux/module.h>
69#include <linux/sysctl.h>
70#include <linux/kernel.h>
71#include <net/dst.h>
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
76#include <net/netdma.h>
77
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83EXPORT_SYMBOL(sysctl_tcp_reordering);
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
86int sysctl_tcp_adv_win_scale __read_mostly = 1;
87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89/* rfc5961 challenge ack rate limiting */
90int sysctl_tcp_challenge_ack_limit = 100;
91
92int sysctl_tcp_stdurg __read_mostly;
93int sysctl_tcp_rfc1337 __read_mostly;
94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95int sysctl_tcp_frto __read_mostly = 2;
96
97int sysctl_tcp_thin_dupack __read_mostly;
98
99int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100int sysctl_tcp_early_retrans __read_mostly = 3;
101
102#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
103#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
104#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
105#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
106#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
107#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
108#define FLAG_ECE		0x40 /* ECE in this ACK				*/
109#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
111#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
114#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
115
116#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120
121#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124/* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
126 */
127static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128{
129	struct inet_connection_sock *icsk = inet_csk(sk);
130	const unsigned int lss = icsk->icsk_ack.last_seg_size;
131	unsigned int len;
132
133	icsk->icsk_ack.last_seg_size = 0;
134
135	/* skb->len may jitter because of SACKs, even if peer
136	 * sends good full-sized frames.
137	 */
138	len = skb_shinfo(skb)->gso_size ? : skb->len;
139	if (len >= icsk->icsk_ack.rcv_mss) {
140		icsk->icsk_ack.rcv_mss = len;
141	} else {
142		/* Otherwise, we make more careful check taking into account,
143		 * that SACKs block is variable.
144		 *
145		 * "len" is invariant segment length, including TCP header.
146		 */
147		len += skb->data - skb_transport_header(skb);
148		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149		    /* If PSH is not set, packet should be
150		     * full sized, provided peer TCP is not badly broken.
151		     * This observation (if it is correct 8)) allows
152		     * to handle super-low mtu links fairly.
153		     */
154		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156			/* Subtract also invariant (if peer is RFC compliant),
157			 * tcp header plus fixed timestamp option length.
158			 * Resulting "len" is MSS free of SACK jitter.
159			 */
160			len -= tcp_sk(sk)->tcp_header_len;
161			icsk->icsk_ack.last_seg_size = len;
162			if (len == lss) {
163				icsk->icsk_ack.rcv_mss = len;
164				return;
165			}
166		}
167		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170	}
171}
172
173static void tcp_incr_quickack(struct sock *sk)
174{
175	struct inet_connection_sock *icsk = inet_csk(sk);
176	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178	if (quickacks == 0)
179		quickacks = 2;
180	if (quickacks > icsk->icsk_ack.quick)
181		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182}
183
184static void tcp_enter_quickack_mode(struct sock *sk)
185{
186	struct inet_connection_sock *icsk = inet_csk(sk);
187	tcp_incr_quickack(sk);
188	icsk->icsk_ack.pingpong = 0;
189	icsk->icsk_ack.ato = TCP_ATO_MIN;
190}
191
192/* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
196static inline bool tcp_in_quickack_mode(const struct sock *sk)
197{
198	const struct inet_connection_sock *icsk = inet_csk(sk);
199
200	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201}
202
203static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204{
205	if (tp->ecn_flags & TCP_ECN_OK)
206		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207}
208
209static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210{
211	if (tcp_hdr(skb)->cwr)
212		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213}
214
215static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216{
217	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218}
219
220static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221{
222	if (!(tp->ecn_flags & TCP_ECN_OK))
223		return;
224
225	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226	case INET_ECN_NOT_ECT:
227		/* Funny extension: if ECT is not set on a segment,
228		 * and we already seen ECT on a previous segment,
229		 * it is probably a retransmit.
230		 */
231		if (tp->ecn_flags & TCP_ECN_SEEN)
232			tcp_enter_quickack_mode((struct sock *)tp);
233		break;
234	case INET_ECN_CE:
235		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236			/* Better not delay acks, sender can have a very low cwnd */
237			tcp_enter_quickack_mode((struct sock *)tp);
238			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239		}
240		/* fallinto */
241	default:
242		tp->ecn_flags |= TCP_ECN_SEEN;
243	}
244}
245
246static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247{
248	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249		tp->ecn_flags &= ~TCP_ECN_OK;
250}
251
252static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253{
254	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255		tp->ecn_flags &= ~TCP_ECN_OK;
256}
257
258static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259{
260	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261		return true;
262	return false;
263}
264
265/* Buffer size and advertised window tuning.
266 *
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268 */
269
270static void tcp_fixup_sndbuf(struct sock *sk)
271{
272	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
273
274	sndmem *= TCP_INIT_CWND;
275	if (sk->sk_sndbuf < sndmem)
276		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
277}
278
279/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280 *
281 * All tcp_full_space() is split to two parts: "network" buffer, allocated
282 * forward and advertised in receiver window (tp->rcv_wnd) and
283 * "application buffer", required to isolate scheduling/application
284 * latencies from network.
285 * window_clamp is maximal advertised window. It can be less than
286 * tcp_full_space(), in this case tcp_full_space() - window_clamp
287 * is reserved for "application" buffer. The less window_clamp is
288 * the smoother our behaviour from viewpoint of network, but the lower
289 * throughput and the higher sensitivity of the connection to losses. 8)
290 *
291 * rcv_ssthresh is more strict window_clamp used at "slow start"
292 * phase to predict further behaviour of this connection.
293 * It is used for two goals:
294 * - to enforce header prediction at sender, even when application
295 *   requires some significant "application buffer". It is check #1.
296 * - to prevent pruning of receive queue because of misprediction
297 *   of receiver window. Check #2.
298 *
299 * The scheme does not work when sender sends good segments opening
300 * window and then starts to feed us spaghetti. But it should work
301 * in common situations. Otherwise, we have to rely on queue collapsing.
302 */
303
304/* Slow part of check#2. */
305static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
306{
307	struct tcp_sock *tp = tcp_sk(sk);
308	/* Optimize this! */
309	int truesize = tcp_win_from_space(skb->truesize) >> 1;
310	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
311
312	while (tp->rcv_ssthresh <= window) {
313		if (truesize <= skb->len)
314			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
315
316		truesize >>= 1;
317		window >>= 1;
318	}
319	return 0;
320}
321
322static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
323{
324	struct tcp_sock *tp = tcp_sk(sk);
325
326	/* Check #1 */
327	if (tp->rcv_ssthresh < tp->window_clamp &&
328	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
329	    !sk_under_memory_pressure(sk)) {
330		int incr;
331
332		/* Check #2. Increase window, if skb with such overhead
333		 * will fit to rcvbuf in future.
334		 */
335		if (tcp_win_from_space(skb->truesize) <= skb->len)
336			incr = 2 * tp->advmss;
337		else
338			incr = __tcp_grow_window(sk, skb);
339
340		if (incr) {
341			incr = max_t(int, incr, 2 * skb->len);
342			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343					       tp->window_clamp);
344			inet_csk(sk)->icsk_ack.quick |= 1;
345		}
346	}
347}
348
349/* 3. Tuning rcvbuf, when connection enters established state. */
350static void tcp_fixup_rcvbuf(struct sock *sk)
351{
352	u32 mss = tcp_sk(sk)->advmss;
353	int rcvmem;
354
355	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
356		 tcp_default_init_rwnd(mss);
357
358	if (sk->sk_rcvbuf < rcvmem)
359		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
360}
361
362/* 4. Try to fixup all. It is made immediately after connection enters
363 *    established state.
364 */
365void tcp_init_buffer_space(struct sock *sk)
366{
367	struct tcp_sock *tp = tcp_sk(sk);
368	int maxwin;
369
370	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
371		tcp_fixup_rcvbuf(sk);
372	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
373		tcp_fixup_sndbuf(sk);
374
375	tp->rcvq_space.space = tp->rcv_wnd;
376
377	maxwin = tcp_full_space(sk);
378
379	if (tp->window_clamp >= maxwin) {
380		tp->window_clamp = maxwin;
381
382		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
383			tp->window_clamp = max(maxwin -
384					       (maxwin >> sysctl_tcp_app_win),
385					       4 * tp->advmss);
386	}
387
388	/* Force reservation of one segment. */
389	if (sysctl_tcp_app_win &&
390	    tp->window_clamp > 2 * tp->advmss &&
391	    tp->window_clamp + tp->advmss > maxwin)
392		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
393
394	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
395	tp->snd_cwnd_stamp = tcp_time_stamp;
396}
397
398/* 5. Recalculate window clamp after socket hit its memory bounds. */
399static void tcp_clamp_window(struct sock *sk)
400{
401	struct tcp_sock *tp = tcp_sk(sk);
402	struct inet_connection_sock *icsk = inet_csk(sk);
403
404	icsk->icsk_ack.quick = 0;
405
406	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
407	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
408	    !sk_under_memory_pressure(sk) &&
409	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
410		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
411				    sysctl_tcp_rmem[2]);
412	}
413	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
414		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
415}
416
417/* Initialize RCV_MSS value.
418 * RCV_MSS is an our guess about MSS used by the peer.
419 * We haven't any direct information about the MSS.
420 * It's better to underestimate the RCV_MSS rather than overestimate.
421 * Overestimations make us ACKing less frequently than needed.
422 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
423 */
424void tcp_initialize_rcv_mss(struct sock *sk)
425{
426	const struct tcp_sock *tp = tcp_sk(sk);
427	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
428
429	hint = min(hint, tp->rcv_wnd / 2);
430	hint = min(hint, TCP_MSS_DEFAULT);
431	hint = max(hint, TCP_MIN_MSS);
432
433	inet_csk(sk)->icsk_ack.rcv_mss = hint;
434}
435EXPORT_SYMBOL(tcp_initialize_rcv_mss);
436
437/* Receiver "autotuning" code.
438 *
439 * The algorithm for RTT estimation w/o timestamps is based on
440 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
441 * <http://public.lanl.gov/radiant/pubs.html#DRS>
442 *
443 * More detail on this code can be found at
444 * <http://staff.psc.edu/jheffner/>,
445 * though this reference is out of date.  A new paper
446 * is pending.
447 */
448static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
449{
450	u32 new_sample = tp->rcv_rtt_est.rtt;
451	long m = sample;
452
453	if (m == 0)
454		m = 1;
455
456	if (new_sample != 0) {
457		/* If we sample in larger samples in the non-timestamp
458		 * case, we could grossly overestimate the RTT especially
459		 * with chatty applications or bulk transfer apps which
460		 * are stalled on filesystem I/O.
461		 *
462		 * Also, since we are only going for a minimum in the
463		 * non-timestamp case, we do not smooth things out
464		 * else with timestamps disabled convergence takes too
465		 * long.
466		 */
467		if (!win_dep) {
468			m -= (new_sample >> 3);
469			new_sample += m;
470		} else {
471			m <<= 3;
472			if (m < new_sample)
473				new_sample = m;
474		}
475	} else {
476		/* No previous measure. */
477		new_sample = m << 3;
478	}
479
480	if (tp->rcv_rtt_est.rtt != new_sample)
481		tp->rcv_rtt_est.rtt = new_sample;
482}
483
484static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
485{
486	if (tp->rcv_rtt_est.time == 0)
487		goto new_measure;
488	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
489		return;
490	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
491
492new_measure:
493	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
494	tp->rcv_rtt_est.time = tcp_time_stamp;
495}
496
497static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
498					  const struct sk_buff *skb)
499{
500	struct tcp_sock *tp = tcp_sk(sk);
501	if (tp->rx_opt.rcv_tsecr &&
502	    (TCP_SKB_CB(skb)->end_seq -
503	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
504		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
505}
506
507/*
508 * This function should be called every time data is copied to user space.
509 * It calculates the appropriate TCP receive buffer space.
510 */
511void tcp_rcv_space_adjust(struct sock *sk)
512{
513	struct tcp_sock *tp = tcp_sk(sk);
514	int time;
515	int space;
516
517	if (tp->rcvq_space.time == 0)
518		goto new_measure;
519
520	time = tcp_time_stamp - tp->rcvq_space.time;
521	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
522		return;
523
524	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
525
526	space = max(tp->rcvq_space.space, space);
527
528	if (tp->rcvq_space.space != space) {
529		int rcvmem;
530
531		tp->rcvq_space.space = space;
532
533		if (sysctl_tcp_moderate_rcvbuf &&
534		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
535			int new_clamp = space;
536
537			/* Receive space grows, normalize in order to
538			 * take into account packet headers and sk_buff
539			 * structure overhead.
540			 */
541			space /= tp->advmss;
542			if (!space)
543				space = 1;
544			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
545			while (tcp_win_from_space(rcvmem) < tp->advmss)
546				rcvmem += 128;
547			space *= rcvmem;
548			space = min(space, sysctl_tcp_rmem[2]);
549			if (space > sk->sk_rcvbuf) {
550				sk->sk_rcvbuf = space;
551
552				/* Make the window clamp follow along.  */
553				tp->window_clamp = new_clamp;
554			}
555		}
556	}
557
558new_measure:
559	tp->rcvq_space.seq = tp->copied_seq;
560	tp->rcvq_space.time = tcp_time_stamp;
561}
562
563/* There is something which you must keep in mind when you analyze the
564 * behavior of the tp->ato delayed ack timeout interval.  When a
565 * connection starts up, we want to ack as quickly as possible.  The
566 * problem is that "good" TCP's do slow start at the beginning of data
567 * transmission.  The means that until we send the first few ACK's the
568 * sender will sit on his end and only queue most of his data, because
569 * he can only send snd_cwnd unacked packets at any given time.  For
570 * each ACK we send, he increments snd_cwnd and transmits more of his
571 * queue.  -DaveM
572 */
573static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
574{
575	struct tcp_sock *tp = tcp_sk(sk);
576	struct inet_connection_sock *icsk = inet_csk(sk);
577	u32 now;
578
579	inet_csk_schedule_ack(sk);
580
581	tcp_measure_rcv_mss(sk, skb);
582
583	tcp_rcv_rtt_measure(tp);
584
585	now = tcp_time_stamp;
586
587	if (!icsk->icsk_ack.ato) {
588		/* The _first_ data packet received, initialize
589		 * delayed ACK engine.
590		 */
591		tcp_incr_quickack(sk);
592		icsk->icsk_ack.ato = TCP_ATO_MIN;
593	} else {
594		int m = now - icsk->icsk_ack.lrcvtime;
595
596		if (m <= TCP_ATO_MIN / 2) {
597			/* The fastest case is the first. */
598			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
599		} else if (m < icsk->icsk_ack.ato) {
600			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
601			if (icsk->icsk_ack.ato > icsk->icsk_rto)
602				icsk->icsk_ack.ato = icsk->icsk_rto;
603		} else if (m > icsk->icsk_rto) {
604			/* Too long gap. Apparently sender failed to
605			 * restart window, so that we send ACKs quickly.
606			 */
607			tcp_incr_quickack(sk);
608			sk_mem_reclaim(sk);
609		}
610	}
611	icsk->icsk_ack.lrcvtime = now;
612
613	TCP_ECN_check_ce(tp, skb);
614
615	if (skb->len >= 128)
616		tcp_grow_window(sk, skb);
617}
618
619/* Called to compute a smoothed rtt estimate. The data fed to this
620 * routine either comes from timestamps, or from segments that were
621 * known _not_ to have been retransmitted [see Karn/Partridge
622 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
623 * piece by Van Jacobson.
624 * NOTE: the next three routines used to be one big routine.
625 * To save cycles in the RFC 1323 implementation it was better to break
626 * it up into three procedures. -- erics
627 */
628static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
629{
630	struct tcp_sock *tp = tcp_sk(sk);
631	long m = mrtt; /* RTT */
632
633	/*	The following amusing code comes from Jacobson's
634	 *	article in SIGCOMM '88.  Note that rtt and mdev
635	 *	are scaled versions of rtt and mean deviation.
636	 *	This is designed to be as fast as possible
637	 *	m stands for "measurement".
638	 *
639	 *	On a 1990 paper the rto value is changed to:
640	 *	RTO = rtt + 4 * mdev
641	 *
642	 * Funny. This algorithm seems to be very broken.
643	 * These formulae increase RTO, when it should be decreased, increase
644	 * too slowly, when it should be increased quickly, decrease too quickly
645	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
646	 * does not matter how to _calculate_ it. Seems, it was trap
647	 * that VJ failed to avoid. 8)
648	 */
649	if (m == 0)
650		m = 1;
651	if (tp->srtt != 0) {
652		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
653		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
654		if (m < 0) {
655			m = -m;		/* m is now abs(error) */
656			m -= (tp->mdev >> 2);   /* similar update on mdev */
657			/* This is similar to one of Eifel findings.
658			 * Eifel blocks mdev updates when rtt decreases.
659			 * This solution is a bit different: we use finer gain
660			 * for mdev in this case (alpha*beta).
661			 * Like Eifel it also prevents growth of rto,
662			 * but also it limits too fast rto decreases,
663			 * happening in pure Eifel.
664			 */
665			if (m > 0)
666				m >>= 3;
667		} else {
668			m -= (tp->mdev >> 2);   /* similar update on mdev */
669		}
670		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
671		if (tp->mdev > tp->mdev_max) {
672			tp->mdev_max = tp->mdev;
673			if (tp->mdev_max > tp->rttvar)
674				tp->rttvar = tp->mdev_max;
675		}
676		if (after(tp->snd_una, tp->rtt_seq)) {
677			if (tp->mdev_max < tp->rttvar)
678				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
679			tp->rtt_seq = tp->snd_nxt;
680			tp->mdev_max = tcp_rto_min(sk);
681		}
682	} else {
683		/* no previous measure. */
684		tp->srtt = m << 3;	/* take the measured time to be rtt */
685		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
686		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
687		tp->rtt_seq = tp->snd_nxt;
688	}
689}
690
691/* Calculate rto without backoff.  This is the second half of Van Jacobson's
692 * routine referred to above.
693 */
694void tcp_set_rto(struct sock *sk)
695{
696	const struct tcp_sock *tp = tcp_sk(sk);
697	/* Old crap is replaced with new one. 8)
698	 *
699	 * More seriously:
700	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
701	 *    It cannot be less due to utterly erratic ACK generation made
702	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
703	 *    to do with delayed acks, because at cwnd>2 true delack timeout
704	 *    is invisible. Actually, Linux-2.4 also generates erratic
705	 *    ACKs in some circumstances.
706	 */
707	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
708
709	/* 2. Fixups made earlier cannot be right.
710	 *    If we do not estimate RTO correctly without them,
711	 *    all the algo is pure shit and should be replaced
712	 *    with correct one. It is exactly, which we pretend to do.
713	 */
714
715	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
716	 * guarantees that rto is higher.
717	 */
718	tcp_bound_rto(sk);
719}
720
721__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
722{
723	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
724
725	if (!cwnd)
726		cwnd = TCP_INIT_CWND;
727	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
728}
729
730/*
731 * Packet counting of FACK is based on in-order assumptions, therefore TCP
732 * disables it when reordering is detected
733 */
734void tcp_disable_fack(struct tcp_sock *tp)
735{
736	/* RFC3517 uses different metric in lost marker => reset on change */
737	if (tcp_is_fack(tp))
738		tp->lost_skb_hint = NULL;
739	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
740}
741
742/* Take a notice that peer is sending D-SACKs */
743static void tcp_dsack_seen(struct tcp_sock *tp)
744{
745	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
746}
747
748static void tcp_update_reordering(struct sock *sk, const int metric,
749				  const int ts)
750{
751	struct tcp_sock *tp = tcp_sk(sk);
752	if (metric > tp->reordering) {
753		int mib_idx;
754
755		tp->reordering = min(TCP_MAX_REORDERING, metric);
756
757		/* This exciting event is worth to be remembered. 8) */
758		if (ts)
759			mib_idx = LINUX_MIB_TCPTSREORDER;
760		else if (tcp_is_reno(tp))
761			mib_idx = LINUX_MIB_TCPRENOREORDER;
762		else if (tcp_is_fack(tp))
763			mib_idx = LINUX_MIB_TCPFACKREORDER;
764		else
765			mib_idx = LINUX_MIB_TCPSACKREORDER;
766
767		NET_INC_STATS_BH(sock_net(sk), mib_idx);
768#if FASTRETRANS_DEBUG > 1
769		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
770			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
771			 tp->reordering,
772			 tp->fackets_out,
773			 tp->sacked_out,
774			 tp->undo_marker ? tp->undo_retrans : 0);
775#endif
776		tcp_disable_fack(tp);
777	}
778
779	if (metric > 0)
780		tcp_disable_early_retrans(tp);
781}
782
783/* This must be called before lost_out is incremented */
784static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
785{
786	if ((tp->retransmit_skb_hint == NULL) ||
787	    before(TCP_SKB_CB(skb)->seq,
788		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
789		tp->retransmit_skb_hint = skb;
790
791	if (!tp->lost_out ||
792	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
793		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
794}
795
796static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
797{
798	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
799		tcp_verify_retransmit_hint(tp, skb);
800
801		tp->lost_out += tcp_skb_pcount(skb);
802		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
803	}
804}
805
806static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
807					    struct sk_buff *skb)
808{
809	tcp_verify_retransmit_hint(tp, skb);
810
811	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
812		tp->lost_out += tcp_skb_pcount(skb);
813		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
814	}
815}
816
817/* This procedure tags the retransmission queue when SACKs arrive.
818 *
819 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
820 * Packets in queue with these bits set are counted in variables
821 * sacked_out, retrans_out and lost_out, correspondingly.
822 *
823 * Valid combinations are:
824 * Tag  InFlight	Description
825 * 0	1		- orig segment is in flight.
826 * S	0		- nothing flies, orig reached receiver.
827 * L	0		- nothing flies, orig lost by net.
828 * R	2		- both orig and retransmit are in flight.
829 * L|R	1		- orig is lost, retransmit is in flight.
830 * S|R  1		- orig reached receiver, retrans is still in flight.
831 * (L|S|R is logically valid, it could occur when L|R is sacked,
832 *  but it is equivalent to plain S and code short-curcuits it to S.
833 *  L|S is logically invalid, it would mean -1 packet in flight 8))
834 *
835 * These 6 states form finite state machine, controlled by the following events:
836 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
837 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
838 * 3. Loss detection event of two flavors:
839 *	A. Scoreboard estimator decided the packet is lost.
840 *	   A'. Reno "three dupacks" marks head of queue lost.
841 *	   A''. Its FACK modification, head until snd.fack is lost.
842 *	B. SACK arrives sacking SND.NXT at the moment, when the
843 *	   segment was retransmitted.
844 * 4. D-SACK added new rule: D-SACK changes any tag to S.
845 *
846 * It is pleasant to note, that state diagram turns out to be commutative,
847 * so that we are allowed not to be bothered by order of our actions,
848 * when multiple events arrive simultaneously. (see the function below).
849 *
850 * Reordering detection.
851 * --------------------
852 * Reordering metric is maximal distance, which a packet can be displaced
853 * in packet stream. With SACKs we can estimate it:
854 *
855 * 1. SACK fills old hole and the corresponding segment was not
856 *    ever retransmitted -> reordering. Alas, we cannot use it
857 *    when segment was retransmitted.
858 * 2. The last flaw is solved with D-SACK. D-SACK arrives
859 *    for retransmitted and already SACKed segment -> reordering..
860 * Both of these heuristics are not used in Loss state, when we cannot
861 * account for retransmits accurately.
862 *
863 * SACK block validation.
864 * ----------------------
865 *
866 * SACK block range validation checks that the received SACK block fits to
867 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
868 * Note that SND.UNA is not included to the range though being valid because
869 * it means that the receiver is rather inconsistent with itself reporting
870 * SACK reneging when it should advance SND.UNA. Such SACK block this is
871 * perfectly valid, however, in light of RFC2018 which explicitly states
872 * that "SACK block MUST reflect the newest segment.  Even if the newest
873 * segment is going to be discarded ...", not that it looks very clever
874 * in case of head skb. Due to potentional receiver driven attacks, we
875 * choose to avoid immediate execution of a walk in write queue due to
876 * reneging and defer head skb's loss recovery to standard loss recovery
877 * procedure that will eventually trigger (nothing forbids us doing this).
878 *
879 * Implements also blockage to start_seq wrap-around. Problem lies in the
880 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
881 * there's no guarantee that it will be before snd_nxt (n). The problem
882 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
883 * wrap (s_w):
884 *
885 *         <- outs wnd ->                          <- wrapzone ->
886 *         u     e      n                         u_w   e_w  s n_w
887 *         |     |      |                          |     |   |  |
888 * |<------------+------+----- TCP seqno space --------------+---------->|
889 * ...-- <2^31 ->|                                           |<--------...
890 * ...---- >2^31 ------>|                                    |<--------...
891 *
892 * Current code wouldn't be vulnerable but it's better still to discard such
893 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
894 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
895 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
896 * equal to the ideal case (infinite seqno space without wrap caused issues).
897 *
898 * With D-SACK the lower bound is extended to cover sequence space below
899 * SND.UNA down to undo_marker, which is the last point of interest. Yet
900 * again, D-SACK block must not to go across snd_una (for the same reason as
901 * for the normal SACK blocks, explained above). But there all simplicity
902 * ends, TCP might receive valid D-SACKs below that. As long as they reside
903 * fully below undo_marker they do not affect behavior in anyway and can
904 * therefore be safely ignored. In rare cases (which are more or less
905 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
906 * fragmentation and packet reordering past skb's retransmission. To consider
907 * them correctly, the acceptable range must be extended even more though
908 * the exact amount is rather hard to quantify. However, tp->max_window can
909 * be used as an exaggerated estimate.
910 */
911static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
912				   u32 start_seq, u32 end_seq)
913{
914	/* Too far in future, or reversed (interpretation is ambiguous) */
915	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
916		return false;
917
918	/* Nasty start_seq wrap-around check (see comments above) */
919	if (!before(start_seq, tp->snd_nxt))
920		return false;
921
922	/* In outstanding window? ...This is valid exit for D-SACKs too.
923	 * start_seq == snd_una is non-sensical (see comments above)
924	 */
925	if (after(start_seq, tp->snd_una))
926		return true;
927
928	if (!is_dsack || !tp->undo_marker)
929		return false;
930
931	/* ...Then it's D-SACK, and must reside below snd_una completely */
932	if (after(end_seq, tp->snd_una))
933		return false;
934
935	if (!before(start_seq, tp->undo_marker))
936		return true;
937
938	/* Too old */
939	if (!after(end_seq, tp->undo_marker))
940		return false;
941
942	/* Undo_marker boundary crossing (overestimates a lot). Known already:
943	 *   start_seq < undo_marker and end_seq >= undo_marker.
944	 */
945	return !before(start_seq, end_seq - tp->max_window);
946}
947
948/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
949 * Event "B". Later note: FACK people cheated me again 8), we have to account
950 * for reordering! Ugly, but should help.
951 *
952 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
953 * less than what is now known to be received by the other end (derived from
954 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
955 * retransmitted skbs to avoid some costly processing per ACKs.
956 */
957static void tcp_mark_lost_retrans(struct sock *sk)
958{
959	const struct inet_connection_sock *icsk = inet_csk(sk);
960	struct tcp_sock *tp = tcp_sk(sk);
961	struct sk_buff *skb;
962	int cnt = 0;
963	u32 new_low_seq = tp->snd_nxt;
964	u32 received_upto = tcp_highest_sack_seq(tp);
965
966	if (!tcp_is_fack(tp) || !tp->retrans_out ||
967	    !after(received_upto, tp->lost_retrans_low) ||
968	    icsk->icsk_ca_state != TCP_CA_Recovery)
969		return;
970
971	tcp_for_write_queue(skb, sk) {
972		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
973
974		if (skb == tcp_send_head(sk))
975			break;
976		if (cnt == tp->retrans_out)
977			break;
978		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
979			continue;
980
981		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
982			continue;
983
984		/* TODO: We would like to get rid of tcp_is_fack(tp) only
985		 * constraint here (see above) but figuring out that at
986		 * least tp->reordering SACK blocks reside between ack_seq
987		 * and received_upto is not easy task to do cheaply with
988		 * the available datastructures.
989		 *
990		 * Whether FACK should check here for tp->reordering segs
991		 * in-between one could argue for either way (it would be
992		 * rather simple to implement as we could count fack_count
993		 * during the walk and do tp->fackets_out - fack_count).
994		 */
995		if (after(received_upto, ack_seq)) {
996			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
997			tp->retrans_out -= tcp_skb_pcount(skb);
998
999			tcp_skb_mark_lost_uncond_verify(tp, skb);
1000			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1001		} else {
1002			if (before(ack_seq, new_low_seq))
1003				new_low_seq = ack_seq;
1004			cnt += tcp_skb_pcount(skb);
1005		}
1006	}
1007
1008	if (tp->retrans_out)
1009		tp->lost_retrans_low = new_low_seq;
1010}
1011
1012static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1013			    struct tcp_sack_block_wire *sp, int num_sacks,
1014			    u32 prior_snd_una)
1015{
1016	struct tcp_sock *tp = tcp_sk(sk);
1017	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1018	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1019	bool dup_sack = false;
1020
1021	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1022		dup_sack = true;
1023		tcp_dsack_seen(tp);
1024		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1025	} else if (num_sacks > 1) {
1026		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1027		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1028
1029		if (!after(end_seq_0, end_seq_1) &&
1030		    !before(start_seq_0, start_seq_1)) {
1031			dup_sack = true;
1032			tcp_dsack_seen(tp);
1033			NET_INC_STATS_BH(sock_net(sk),
1034					LINUX_MIB_TCPDSACKOFORECV);
1035		}
1036	}
1037
1038	/* D-SACK for already forgotten data... Do dumb counting. */
1039	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1040	    !after(end_seq_0, prior_snd_una) &&
1041	    after(end_seq_0, tp->undo_marker))
1042		tp->undo_retrans--;
1043
1044	return dup_sack;
1045}
1046
1047struct tcp_sacktag_state {
1048	int reord;
1049	int fack_count;
1050	int flag;
1051};
1052
1053/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1054 * the incoming SACK may not exactly match but we can find smaller MSS
1055 * aligned portion of it that matches. Therefore we might need to fragment
1056 * which may fail and creates some hassle (caller must handle error case
1057 * returns).
1058 *
1059 * FIXME: this could be merged to shift decision code
1060 */
1061static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1062				  u32 start_seq, u32 end_seq)
1063{
1064	int err;
1065	bool in_sack;
1066	unsigned int pkt_len;
1067	unsigned int mss;
1068
1069	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1070		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1071
1072	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1073	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1074		mss = tcp_skb_mss(skb);
1075		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1076
1077		if (!in_sack) {
1078			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1079			if (pkt_len < mss)
1080				pkt_len = mss;
1081		} else {
1082			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1083			if (pkt_len < mss)
1084				return -EINVAL;
1085		}
1086
1087		/* Round if necessary so that SACKs cover only full MSSes
1088		 * and/or the remaining small portion (if present)
1089		 */
1090		if (pkt_len > mss) {
1091			unsigned int new_len = (pkt_len / mss) * mss;
1092			if (!in_sack && new_len < pkt_len) {
1093				new_len += mss;
1094				if (new_len > skb->len)
1095					return 0;
1096			}
1097			pkt_len = new_len;
1098		}
1099		err = tcp_fragment(sk, skb, pkt_len, mss);
1100		if (err < 0)
1101			return err;
1102	}
1103
1104	return in_sack;
1105}
1106
1107/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1108static u8 tcp_sacktag_one(struct sock *sk,
1109			  struct tcp_sacktag_state *state, u8 sacked,
1110			  u32 start_seq, u32 end_seq,
1111			  bool dup_sack, int pcount)
1112{
1113	struct tcp_sock *tp = tcp_sk(sk);
1114	int fack_count = state->fack_count;
1115
1116	/* Account D-SACK for retransmitted packet. */
1117	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1118		if (tp->undo_marker && tp->undo_retrans &&
1119		    after(end_seq, tp->undo_marker))
1120			tp->undo_retrans--;
1121		if (sacked & TCPCB_SACKED_ACKED)
1122			state->reord = min(fack_count, state->reord);
1123	}
1124
1125	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1126	if (!after(end_seq, tp->snd_una))
1127		return sacked;
1128
1129	if (!(sacked & TCPCB_SACKED_ACKED)) {
1130		if (sacked & TCPCB_SACKED_RETRANS) {
1131			/* If the segment is not tagged as lost,
1132			 * we do not clear RETRANS, believing
1133			 * that retransmission is still in flight.
1134			 */
1135			if (sacked & TCPCB_LOST) {
1136				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1137				tp->lost_out -= pcount;
1138				tp->retrans_out -= pcount;
1139			}
1140		} else {
1141			if (!(sacked & TCPCB_RETRANS)) {
1142				/* New sack for not retransmitted frame,
1143				 * which was in hole. It is reordering.
1144				 */
1145				if (before(start_seq,
1146					   tcp_highest_sack_seq(tp)))
1147					state->reord = min(fack_count,
1148							   state->reord);
1149				if (!after(end_seq, tp->high_seq))
1150					state->flag |= FLAG_ORIG_SACK_ACKED;
1151			}
1152
1153			if (sacked & TCPCB_LOST) {
1154				sacked &= ~TCPCB_LOST;
1155				tp->lost_out -= pcount;
1156			}
1157		}
1158
1159		sacked |= TCPCB_SACKED_ACKED;
1160		state->flag |= FLAG_DATA_SACKED;
1161		tp->sacked_out += pcount;
1162
1163		fack_count += pcount;
1164
1165		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1166		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1167		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1168			tp->lost_cnt_hint += pcount;
1169
1170		if (fack_count > tp->fackets_out)
1171			tp->fackets_out = fack_count;
1172	}
1173
1174	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1175	 * frames and clear it. undo_retrans is decreased above, L|R frames
1176	 * are accounted above as well.
1177	 */
1178	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1179		sacked &= ~TCPCB_SACKED_RETRANS;
1180		tp->retrans_out -= pcount;
1181	}
1182
1183	return sacked;
1184}
1185
1186/* Shift newly-SACKed bytes from this skb to the immediately previous
1187 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1188 */
1189static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1190			    struct tcp_sacktag_state *state,
1191			    unsigned int pcount, int shifted, int mss,
1192			    bool dup_sack)
1193{
1194	struct tcp_sock *tp = tcp_sk(sk);
1195	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1196	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1197	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1198
1199	BUG_ON(!pcount);
1200
1201	/* Adjust counters and hints for the newly sacked sequence
1202	 * range but discard the return value since prev is already
1203	 * marked. We must tag the range first because the seq
1204	 * advancement below implicitly advances
1205	 * tcp_highest_sack_seq() when skb is highest_sack.
1206	 */
1207	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1208			start_seq, end_seq, dup_sack, pcount);
1209
1210	if (skb == tp->lost_skb_hint)
1211		tp->lost_cnt_hint += pcount;
1212
1213	TCP_SKB_CB(prev)->end_seq += shifted;
1214	TCP_SKB_CB(skb)->seq += shifted;
1215
1216	skb_shinfo(prev)->gso_segs += pcount;
1217	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1218	skb_shinfo(skb)->gso_segs -= pcount;
1219
1220	/* When we're adding to gso_segs == 1, gso_size will be zero,
1221	 * in theory this shouldn't be necessary but as long as DSACK
1222	 * code can come after this skb later on it's better to keep
1223	 * setting gso_size to something.
1224	 */
1225	if (!skb_shinfo(prev)->gso_size) {
1226		skb_shinfo(prev)->gso_size = mss;
1227		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1228	}
1229
1230	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1231	if (skb_shinfo(skb)->gso_segs <= 1) {
1232		skb_shinfo(skb)->gso_size = 0;
1233		skb_shinfo(skb)->gso_type = 0;
1234	}
1235
1236	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1237	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1238
1239	if (skb->len > 0) {
1240		BUG_ON(!tcp_skb_pcount(skb));
1241		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1242		return false;
1243	}
1244
1245	/* Whole SKB was eaten :-) */
1246
1247	if (skb == tp->retransmit_skb_hint)
1248		tp->retransmit_skb_hint = prev;
1249	if (skb == tp->lost_skb_hint) {
1250		tp->lost_skb_hint = prev;
1251		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1252	}
1253
1254	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1255	if (skb == tcp_highest_sack(sk))
1256		tcp_advance_highest_sack(sk, skb);
1257
1258	tcp_unlink_write_queue(skb, sk);
1259	sk_wmem_free_skb(sk, skb);
1260
1261	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1262
1263	return true;
1264}
1265
1266/* I wish gso_size would have a bit more sane initialization than
1267 * something-or-zero which complicates things
1268 */
1269static int tcp_skb_seglen(const struct sk_buff *skb)
1270{
1271	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1272}
1273
1274/* Shifting pages past head area doesn't work */
1275static int skb_can_shift(const struct sk_buff *skb)
1276{
1277	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1278}
1279
1280/* Try collapsing SACK blocks spanning across multiple skbs to a single
1281 * skb.
1282 */
1283static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1284					  struct tcp_sacktag_state *state,
1285					  u32 start_seq, u32 end_seq,
1286					  bool dup_sack)
1287{
1288	struct tcp_sock *tp = tcp_sk(sk);
1289	struct sk_buff *prev;
1290	int mss;
1291	int pcount = 0;
1292	int len;
1293	int in_sack;
1294
1295	if (!sk_can_gso(sk))
1296		goto fallback;
1297
1298	/* Normally R but no L won't result in plain S */
1299	if (!dup_sack &&
1300	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1301		goto fallback;
1302	if (!skb_can_shift(skb))
1303		goto fallback;
1304	/* This frame is about to be dropped (was ACKed). */
1305	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1306		goto fallback;
1307
1308	/* Can only happen with delayed DSACK + discard craziness */
1309	if (unlikely(skb == tcp_write_queue_head(sk)))
1310		goto fallback;
1311	prev = tcp_write_queue_prev(sk, skb);
1312
1313	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1314		goto fallback;
1315
1316	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1317		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1318
1319	if (in_sack) {
1320		len = skb->len;
1321		pcount = tcp_skb_pcount(skb);
1322		mss = tcp_skb_seglen(skb);
1323
1324		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1325		 * drop this restriction as unnecessary
1326		 */
1327		if (mss != tcp_skb_seglen(prev))
1328			goto fallback;
1329	} else {
1330		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1331			goto noop;
1332		/* CHECKME: This is non-MSS split case only?, this will
1333		 * cause skipped skbs due to advancing loop btw, original
1334		 * has that feature too
1335		 */
1336		if (tcp_skb_pcount(skb) <= 1)
1337			goto noop;
1338
1339		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1340		if (!in_sack) {
1341			/* TODO: head merge to next could be attempted here
1342			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1343			 * though it might not be worth of the additional hassle
1344			 *
1345			 * ...we can probably just fallback to what was done
1346			 * previously. We could try merging non-SACKed ones
1347			 * as well but it probably isn't going to buy off
1348			 * because later SACKs might again split them, and
1349			 * it would make skb timestamp tracking considerably
1350			 * harder problem.
1351			 */
1352			goto fallback;
1353		}
1354
1355		len = end_seq - TCP_SKB_CB(skb)->seq;
1356		BUG_ON(len < 0);
1357		BUG_ON(len > skb->len);
1358
1359		/* MSS boundaries should be honoured or else pcount will
1360		 * severely break even though it makes things bit trickier.
1361		 * Optimize common case to avoid most of the divides
1362		 */
1363		mss = tcp_skb_mss(skb);
1364
1365		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1366		 * drop this restriction as unnecessary
1367		 */
1368		if (mss != tcp_skb_seglen(prev))
1369			goto fallback;
1370
1371		if (len == mss) {
1372			pcount = 1;
1373		} else if (len < mss) {
1374			goto noop;
1375		} else {
1376			pcount = len / mss;
1377			len = pcount * mss;
1378		}
1379	}
1380
1381	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1382	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1383		goto fallback;
1384
1385	if (!skb_shift(prev, skb, len))
1386		goto fallback;
1387	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1388		goto out;
1389
1390	/* Hole filled allows collapsing with the next as well, this is very
1391	 * useful when hole on every nth skb pattern happens
1392	 */
1393	if (prev == tcp_write_queue_tail(sk))
1394		goto out;
1395	skb = tcp_write_queue_next(sk, prev);
1396
1397	if (!skb_can_shift(skb) ||
1398	    (skb == tcp_send_head(sk)) ||
1399	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1400	    (mss != tcp_skb_seglen(skb)))
1401		goto out;
1402
1403	len = skb->len;
1404	if (skb_shift(prev, skb, len)) {
1405		pcount += tcp_skb_pcount(skb);
1406		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1407	}
1408
1409out:
1410	state->fack_count += pcount;
1411	return prev;
1412
1413noop:
1414	return skb;
1415
1416fallback:
1417	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1418	return NULL;
1419}
1420
1421static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1422					struct tcp_sack_block *next_dup,
1423					struct tcp_sacktag_state *state,
1424					u32 start_seq, u32 end_seq,
1425					bool dup_sack_in)
1426{
1427	struct tcp_sock *tp = tcp_sk(sk);
1428	struct sk_buff *tmp;
1429
1430	tcp_for_write_queue_from(skb, sk) {
1431		int in_sack = 0;
1432		bool dup_sack = dup_sack_in;
1433
1434		if (skb == tcp_send_head(sk))
1435			break;
1436
1437		/* queue is in-order => we can short-circuit the walk early */
1438		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1439			break;
1440
1441		if ((next_dup != NULL) &&
1442		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1443			in_sack = tcp_match_skb_to_sack(sk, skb,
1444							next_dup->start_seq,
1445							next_dup->end_seq);
1446			if (in_sack > 0)
1447				dup_sack = true;
1448		}
1449
1450		/* skb reference here is a bit tricky to get right, since
1451		 * shifting can eat and free both this skb and the next,
1452		 * so not even _safe variant of the loop is enough.
1453		 */
1454		if (in_sack <= 0) {
1455			tmp = tcp_shift_skb_data(sk, skb, state,
1456						 start_seq, end_seq, dup_sack);
1457			if (tmp != NULL) {
1458				if (tmp != skb) {
1459					skb = tmp;
1460					continue;
1461				}
1462
1463				in_sack = 0;
1464			} else {
1465				in_sack = tcp_match_skb_to_sack(sk, skb,
1466								start_seq,
1467								end_seq);
1468			}
1469		}
1470
1471		if (unlikely(in_sack < 0))
1472			break;
1473
1474		if (in_sack) {
1475			TCP_SKB_CB(skb)->sacked =
1476				tcp_sacktag_one(sk,
1477						state,
1478						TCP_SKB_CB(skb)->sacked,
1479						TCP_SKB_CB(skb)->seq,
1480						TCP_SKB_CB(skb)->end_seq,
1481						dup_sack,
1482						tcp_skb_pcount(skb));
1483
1484			if (!before(TCP_SKB_CB(skb)->seq,
1485				    tcp_highest_sack_seq(tp)))
1486				tcp_advance_highest_sack(sk, skb);
1487		}
1488
1489		state->fack_count += tcp_skb_pcount(skb);
1490	}
1491	return skb;
1492}
1493
1494/* Avoid all extra work that is being done by sacktag while walking in
1495 * a normal way
1496 */
1497static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1498					struct tcp_sacktag_state *state,
1499					u32 skip_to_seq)
1500{
1501	tcp_for_write_queue_from(skb, sk) {
1502		if (skb == tcp_send_head(sk))
1503			break;
1504
1505		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1506			break;
1507
1508		state->fack_count += tcp_skb_pcount(skb);
1509	}
1510	return skb;
1511}
1512
1513static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1514						struct sock *sk,
1515						struct tcp_sack_block *next_dup,
1516						struct tcp_sacktag_state *state,
1517						u32 skip_to_seq)
1518{
1519	if (next_dup == NULL)
1520		return skb;
1521
1522	if (before(next_dup->start_seq, skip_to_seq)) {
1523		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1524		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1525				       next_dup->start_seq, next_dup->end_seq,
1526				       1);
1527	}
1528
1529	return skb;
1530}
1531
1532static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1533{
1534	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1535}
1536
1537static int
1538tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1539			u32 prior_snd_una)
1540{
1541	struct tcp_sock *tp = tcp_sk(sk);
1542	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1543				    TCP_SKB_CB(ack_skb)->sacked);
1544	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1545	struct tcp_sack_block sp[TCP_NUM_SACKS];
1546	struct tcp_sack_block *cache;
1547	struct tcp_sacktag_state state;
1548	struct sk_buff *skb;
1549	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1550	int used_sacks;
1551	bool found_dup_sack = false;
1552	int i, j;
1553	int first_sack_index;
1554
1555	state.flag = 0;
1556	state.reord = tp->packets_out;
1557
1558	if (!tp->sacked_out) {
1559		if (WARN_ON(tp->fackets_out))
1560			tp->fackets_out = 0;
1561		tcp_highest_sack_reset(sk);
1562	}
1563
1564	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1565					 num_sacks, prior_snd_una);
1566	if (found_dup_sack)
1567		state.flag |= FLAG_DSACKING_ACK;
1568
1569	/* Eliminate too old ACKs, but take into
1570	 * account more or less fresh ones, they can
1571	 * contain valid SACK info.
1572	 */
1573	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1574		return 0;
1575
1576	if (!tp->packets_out)
1577		goto out;
1578
1579	used_sacks = 0;
1580	first_sack_index = 0;
1581	for (i = 0; i < num_sacks; i++) {
1582		bool dup_sack = !i && found_dup_sack;
1583
1584		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1585		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1586
1587		if (!tcp_is_sackblock_valid(tp, dup_sack,
1588					    sp[used_sacks].start_seq,
1589					    sp[used_sacks].end_seq)) {
1590			int mib_idx;
1591
1592			if (dup_sack) {
1593				if (!tp->undo_marker)
1594					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1595				else
1596					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1597			} else {
1598				/* Don't count olds caused by ACK reordering */
1599				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1600				    !after(sp[used_sacks].end_seq, tp->snd_una))
1601					continue;
1602				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1603			}
1604
1605			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1606			if (i == 0)
1607				first_sack_index = -1;
1608			continue;
1609		}
1610
1611		/* Ignore very old stuff early */
1612		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1613			continue;
1614
1615		used_sacks++;
1616	}
1617
1618	/* order SACK blocks to allow in order walk of the retrans queue */
1619	for (i = used_sacks - 1; i > 0; i--) {
1620		for (j = 0; j < i; j++) {
1621			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1622				swap(sp[j], sp[j + 1]);
1623
1624				/* Track where the first SACK block goes to */
1625				if (j == first_sack_index)
1626					first_sack_index = j + 1;
1627			}
1628		}
1629	}
1630
1631	skb = tcp_write_queue_head(sk);
1632	state.fack_count = 0;
1633	i = 0;
1634
1635	if (!tp->sacked_out) {
1636		/* It's already past, so skip checking against it */
1637		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1638	} else {
1639		cache = tp->recv_sack_cache;
1640		/* Skip empty blocks in at head of the cache */
1641		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1642		       !cache->end_seq)
1643			cache++;
1644	}
1645
1646	while (i < used_sacks) {
1647		u32 start_seq = sp[i].start_seq;
1648		u32 end_seq = sp[i].end_seq;
1649		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1650		struct tcp_sack_block *next_dup = NULL;
1651
1652		if (found_dup_sack && ((i + 1) == first_sack_index))
1653			next_dup = &sp[i + 1];
1654
1655		/* Skip too early cached blocks */
1656		while (tcp_sack_cache_ok(tp, cache) &&
1657		       !before(start_seq, cache->end_seq))
1658			cache++;
1659
1660		/* Can skip some work by looking recv_sack_cache? */
1661		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1662		    after(end_seq, cache->start_seq)) {
1663
1664			/* Head todo? */
1665			if (before(start_seq, cache->start_seq)) {
1666				skb = tcp_sacktag_skip(skb, sk, &state,
1667						       start_seq);
1668				skb = tcp_sacktag_walk(skb, sk, next_dup,
1669						       &state,
1670						       start_seq,
1671						       cache->start_seq,
1672						       dup_sack);
1673			}
1674
1675			/* Rest of the block already fully processed? */
1676			if (!after(end_seq, cache->end_seq))
1677				goto advance_sp;
1678
1679			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1680						       &state,
1681						       cache->end_seq);
1682
1683			/* ...tail remains todo... */
1684			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1685				/* ...but better entrypoint exists! */
1686				skb = tcp_highest_sack(sk);
1687				if (skb == NULL)
1688					break;
1689				state.fack_count = tp->fackets_out;
1690				cache++;
1691				goto walk;
1692			}
1693
1694			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1695			/* Check overlap against next cached too (past this one already) */
1696			cache++;
1697			continue;
1698		}
1699
1700		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1701			skb = tcp_highest_sack(sk);
1702			if (skb == NULL)
1703				break;
1704			state.fack_count = tp->fackets_out;
1705		}
1706		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1707
1708walk:
1709		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1710				       start_seq, end_seq, dup_sack);
1711
1712advance_sp:
1713		i++;
1714	}
1715
1716	/* Clear the head of the cache sack blocks so we can skip it next time */
1717	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1718		tp->recv_sack_cache[i].start_seq = 0;
1719		tp->recv_sack_cache[i].end_seq = 0;
1720	}
1721	for (j = 0; j < used_sacks; j++)
1722		tp->recv_sack_cache[i++] = sp[j];
1723
1724	tcp_mark_lost_retrans(sk);
1725
1726	tcp_verify_left_out(tp);
1727
1728	if ((state.reord < tp->fackets_out) &&
1729	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1730		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1731
1732out:
1733
1734#if FASTRETRANS_DEBUG > 0
1735	WARN_ON((int)tp->sacked_out < 0);
1736	WARN_ON((int)tp->lost_out < 0);
1737	WARN_ON((int)tp->retrans_out < 0);
1738	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1739#endif
1740	return state.flag;
1741}
1742
1743/* Limits sacked_out so that sum with lost_out isn't ever larger than
1744 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1745 */
1746static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1747{
1748	u32 holes;
1749
1750	holes = max(tp->lost_out, 1U);
1751	holes = min(holes, tp->packets_out);
1752
1753	if ((tp->sacked_out + holes) > tp->packets_out) {
1754		tp->sacked_out = tp->packets_out - holes;
1755		return true;
1756	}
1757	return false;
1758}
1759
1760/* If we receive more dupacks than we expected counting segments
1761 * in assumption of absent reordering, interpret this as reordering.
1762 * The only another reason could be bug in receiver TCP.
1763 */
1764static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1765{
1766	struct tcp_sock *tp = tcp_sk(sk);
1767	if (tcp_limit_reno_sacked(tp))
1768		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1769}
1770
1771/* Emulate SACKs for SACKless connection: account for a new dupack. */
1772
1773static void tcp_add_reno_sack(struct sock *sk)
1774{
1775	struct tcp_sock *tp = tcp_sk(sk);
1776	tp->sacked_out++;
1777	tcp_check_reno_reordering(sk, 0);
1778	tcp_verify_left_out(tp);
1779}
1780
1781/* Account for ACK, ACKing some data in Reno Recovery phase. */
1782
1783static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1784{
1785	struct tcp_sock *tp = tcp_sk(sk);
1786
1787	if (acked > 0) {
1788		/* One ACK acked hole. The rest eat duplicate ACKs. */
1789		if (acked - 1 >= tp->sacked_out)
1790			tp->sacked_out = 0;
1791		else
1792			tp->sacked_out -= acked - 1;
1793	}
1794	tcp_check_reno_reordering(sk, acked);
1795	tcp_verify_left_out(tp);
1796}
1797
1798static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1799{
1800	tp->sacked_out = 0;
1801}
1802
1803static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1804{
1805	tp->retrans_out = 0;
1806	tp->lost_out = 0;
1807
1808	tp->undo_marker = 0;
1809	tp->undo_retrans = 0;
1810}
1811
1812void tcp_clear_retrans(struct tcp_sock *tp)
1813{
1814	tcp_clear_retrans_partial(tp);
1815
1816	tp->fackets_out = 0;
1817	tp->sacked_out = 0;
1818}
1819
1820/* Enter Loss state. If "how" is not zero, forget all SACK information
1821 * and reset tags completely, otherwise preserve SACKs. If receiver
1822 * dropped its ofo queue, we will know this due to reneging detection.
1823 */
1824void tcp_enter_loss(struct sock *sk, int how)
1825{
1826	const struct inet_connection_sock *icsk = inet_csk(sk);
1827	struct tcp_sock *tp = tcp_sk(sk);
1828	struct sk_buff *skb;
1829	bool new_recovery = false;
1830
1831	/* Reduce ssthresh if it has not yet been made inside this window. */
1832	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1833	    !after(tp->high_seq, tp->snd_una) ||
1834	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1835		new_recovery = true;
1836		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1837		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1838		tcp_ca_event(sk, CA_EVENT_LOSS);
1839	}
1840	tp->snd_cwnd	   = 1;
1841	tp->snd_cwnd_cnt   = 0;
1842	tp->snd_cwnd_stamp = tcp_time_stamp;
1843
1844	tcp_clear_retrans_partial(tp);
1845
1846	if (tcp_is_reno(tp))
1847		tcp_reset_reno_sack(tp);
1848
1849	tp->undo_marker = tp->snd_una;
1850	if (how) {
1851		tp->sacked_out = 0;
1852		tp->fackets_out = 0;
1853	}
1854	tcp_clear_all_retrans_hints(tp);
1855
1856	tcp_for_write_queue(skb, sk) {
1857		if (skb == tcp_send_head(sk))
1858			break;
1859
1860		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1861			tp->undo_marker = 0;
1862		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1863		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1864			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1865			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1866			tp->lost_out += tcp_skb_pcount(skb);
1867			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1868		}
1869	}
1870	tcp_verify_left_out(tp);
1871
1872	tp->reordering = min_t(unsigned int, tp->reordering,
1873			       sysctl_tcp_reordering);
1874	tcp_set_ca_state(sk, TCP_CA_Loss);
1875	tp->high_seq = tp->snd_nxt;
1876	TCP_ECN_queue_cwr(tp);
1877
1878	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1879	 * loss recovery is underway except recurring timeout(s) on
1880	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1881	 */
1882	tp->frto = sysctl_tcp_frto &&
1883		   (new_recovery || icsk->icsk_retransmits) &&
1884		   !inet_csk(sk)->icsk_mtup.probe_size;
1885}
1886
1887/* If ACK arrived pointing to a remembered SACK, it means that our
1888 * remembered SACKs do not reflect real state of receiver i.e.
1889 * receiver _host_ is heavily congested (or buggy).
1890 *
1891 * Do processing similar to RTO timeout.
1892 */
1893static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1894{
1895	if (flag & FLAG_SACK_RENEGING) {
1896		struct inet_connection_sock *icsk = inet_csk(sk);
1897		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1898
1899		tcp_enter_loss(sk, 1);
1900		icsk->icsk_retransmits++;
1901		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1902		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1903					  icsk->icsk_rto, TCP_RTO_MAX);
1904		return true;
1905	}
1906	return false;
1907}
1908
1909static inline int tcp_fackets_out(const struct tcp_sock *tp)
1910{
1911	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1912}
1913
1914/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1915 * counter when SACK is enabled (without SACK, sacked_out is used for
1916 * that purpose).
1917 *
1918 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1919 * segments up to the highest received SACK block so far and holes in
1920 * between them.
1921 *
1922 * With reordering, holes may still be in flight, so RFC3517 recovery
1923 * uses pure sacked_out (total number of SACKed segments) even though
1924 * it violates the RFC that uses duplicate ACKs, often these are equal
1925 * but when e.g. out-of-window ACKs or packet duplication occurs,
1926 * they differ. Since neither occurs due to loss, TCP should really
1927 * ignore them.
1928 */
1929static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1930{
1931	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1932}
1933
1934static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1935{
1936	struct tcp_sock *tp = tcp_sk(sk);
1937	unsigned long delay;
1938
1939	/* Delay early retransmit and entering fast recovery for
1940	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1941	 * available, or RTO is scheduled to fire first.
1942	 */
1943	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1944	    (flag & FLAG_ECE) || !tp->srtt)
1945		return false;
1946
1947	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1948	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1949		return false;
1950
1951	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1952				  TCP_RTO_MAX);
1953	return true;
1954}
1955
1956/* Linux NewReno/SACK/FACK/ECN state machine.
1957 * --------------------------------------
1958 *
1959 * "Open"	Normal state, no dubious events, fast path.
1960 * "Disorder"   In all the respects it is "Open",
1961 *		but requires a bit more attention. It is entered when
1962 *		we see some SACKs or dupacks. It is split of "Open"
1963 *		mainly to move some processing from fast path to slow one.
1964 * "CWR"	CWND was reduced due to some Congestion Notification event.
1965 *		It can be ECN, ICMP source quench, local device congestion.
1966 * "Recovery"	CWND was reduced, we are fast-retransmitting.
1967 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1968 *
1969 * tcp_fastretrans_alert() is entered:
1970 * - each incoming ACK, if state is not "Open"
1971 * - when arrived ACK is unusual, namely:
1972 *	* SACK
1973 *	* Duplicate ACK.
1974 *	* ECN ECE.
1975 *
1976 * Counting packets in flight is pretty simple.
1977 *
1978 *	in_flight = packets_out - left_out + retrans_out
1979 *
1980 *	packets_out is SND.NXT-SND.UNA counted in packets.
1981 *
1982 *	retrans_out is number of retransmitted segments.
1983 *
1984 *	left_out is number of segments left network, but not ACKed yet.
1985 *
1986 *		left_out = sacked_out + lost_out
1987 *
1988 *     sacked_out: Packets, which arrived to receiver out of order
1989 *		   and hence not ACKed. With SACKs this number is simply
1990 *		   amount of SACKed data. Even without SACKs
1991 *		   it is easy to give pretty reliable estimate of this number,
1992 *		   counting duplicate ACKs.
1993 *
1994 *       lost_out: Packets lost by network. TCP has no explicit
1995 *		   "loss notification" feedback from network (for now).
1996 *		   It means that this number can be only _guessed_.
1997 *		   Actually, it is the heuristics to predict lossage that
1998 *		   distinguishes different algorithms.
1999 *
2000 *	F.e. after RTO, when all the queue is considered as lost,
2001 *	lost_out = packets_out and in_flight = retrans_out.
2002 *
2003 *		Essentially, we have now two algorithms counting
2004 *		lost packets.
2005 *
2006 *		FACK: It is the simplest heuristics. As soon as we decided
2007 *		that something is lost, we decide that _all_ not SACKed
2008 *		packets until the most forward SACK are lost. I.e.
2009 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2010 *		It is absolutely correct estimate, if network does not reorder
2011 *		packets. And it loses any connection to reality when reordering
2012 *		takes place. We use FACK by default until reordering
2013 *		is suspected on the path to this destination.
2014 *
2015 *		NewReno: when Recovery is entered, we assume that one segment
2016 *		is lost (classic Reno). While we are in Recovery and
2017 *		a partial ACK arrives, we assume that one more packet
2018 *		is lost (NewReno). This heuristics are the same in NewReno
2019 *		and SACK.
2020 *
2021 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2022 *  deflation etc. CWND is real congestion window, never inflated, changes
2023 *  only according to classic VJ rules.
2024 *
2025 * Really tricky (and requiring careful tuning) part of algorithm
2026 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2027 * The first determines the moment _when_ we should reduce CWND and,
2028 * hence, slow down forward transmission. In fact, it determines the moment
2029 * when we decide that hole is caused by loss, rather than by a reorder.
2030 *
2031 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2032 * holes, caused by lost packets.
2033 *
2034 * And the most logically complicated part of algorithm is undo
2035 * heuristics. We detect false retransmits due to both too early
2036 * fast retransmit (reordering) and underestimated RTO, analyzing
2037 * timestamps and D-SACKs. When we detect that some segments were
2038 * retransmitted by mistake and CWND reduction was wrong, we undo
2039 * window reduction and abort recovery phase. This logic is hidden
2040 * inside several functions named tcp_try_undo_<something>.
2041 */
2042
2043/* This function decides, when we should leave Disordered state
2044 * and enter Recovery phase, reducing congestion window.
2045 *
2046 * Main question: may we further continue forward transmission
2047 * with the same cwnd?
2048 */
2049static bool tcp_time_to_recover(struct sock *sk, int flag)
2050{
2051	struct tcp_sock *tp = tcp_sk(sk);
2052	__u32 packets_out;
2053
2054	/* Trick#1: The loss is proven. */
2055	if (tp->lost_out)
2056		return true;
2057
2058	/* Not-A-Trick#2 : Classic rule... */
2059	if (tcp_dupack_heuristics(tp) > tp->reordering)
2060		return true;
2061
2062	/* Trick#4: It is still not OK... But will it be useful to delay
2063	 * recovery more?
2064	 */
2065	packets_out = tp->packets_out;
2066	if (packets_out <= tp->reordering &&
2067	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2068	    !tcp_may_send_now(sk)) {
2069		/* We have nothing to send. This connection is limited
2070		 * either by receiver window or by application.
2071		 */
2072		return true;
2073	}
2074
2075	/* If a thin stream is detected, retransmit after first
2076	 * received dupack. Employ only if SACK is supported in order
2077	 * to avoid possible corner-case series of spurious retransmissions
2078	 * Use only if there are no unsent data.
2079	 */
2080	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2081	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2082	    tcp_is_sack(tp) && !tcp_send_head(sk))
2083		return true;
2084
2085	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2086	 * retransmissions due to small network reorderings, we implement
2087	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2088	 * interval if appropriate.
2089	 */
2090	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2091	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2092	    !tcp_may_send_now(sk))
2093		return !tcp_pause_early_retransmit(sk, flag);
2094
2095	return false;
2096}
2097
2098/* Detect loss in event "A" above by marking head of queue up as lost.
2099 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2100 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2101 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2102 * the maximum SACKed segments to pass before reaching this limit.
2103 */
2104static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2105{
2106	struct tcp_sock *tp = tcp_sk(sk);
2107	struct sk_buff *skb;
2108	int cnt, oldcnt;
2109	int err;
2110	unsigned int mss;
2111	/* Use SACK to deduce losses of new sequences sent during recovery */
2112	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2113
2114	WARN_ON(packets > tp->packets_out);
2115	if (tp->lost_skb_hint) {
2116		skb = tp->lost_skb_hint;
2117		cnt = tp->lost_cnt_hint;
2118		/* Head already handled? */
2119		if (mark_head && skb != tcp_write_queue_head(sk))
2120			return;
2121	} else {
2122		skb = tcp_write_queue_head(sk);
2123		cnt = 0;
2124	}
2125
2126	tcp_for_write_queue_from(skb, sk) {
2127		if (skb == tcp_send_head(sk))
2128			break;
2129		/* TODO: do this better */
2130		/* this is not the most efficient way to do this... */
2131		tp->lost_skb_hint = skb;
2132		tp->lost_cnt_hint = cnt;
2133
2134		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2135			break;
2136
2137		oldcnt = cnt;
2138		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2139		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2140			cnt += tcp_skb_pcount(skb);
2141
2142		if (cnt > packets) {
2143			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2144			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2145			    (oldcnt >= packets))
2146				break;
2147
2148			mss = skb_shinfo(skb)->gso_size;
2149			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2150			if (err < 0)
2151				break;
2152			cnt = packets;
2153		}
2154
2155		tcp_skb_mark_lost(tp, skb);
2156
2157		if (mark_head)
2158			break;
2159	}
2160	tcp_verify_left_out(tp);
2161}
2162
2163/* Account newly detected lost packet(s) */
2164
2165static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2166{
2167	struct tcp_sock *tp = tcp_sk(sk);
2168
2169	if (tcp_is_reno(tp)) {
2170		tcp_mark_head_lost(sk, 1, 1);
2171	} else if (tcp_is_fack(tp)) {
2172		int lost = tp->fackets_out - tp->reordering;
2173		if (lost <= 0)
2174			lost = 1;
2175		tcp_mark_head_lost(sk, lost, 0);
2176	} else {
2177		int sacked_upto = tp->sacked_out - tp->reordering;
2178		if (sacked_upto >= 0)
2179			tcp_mark_head_lost(sk, sacked_upto, 0);
2180		else if (fast_rexmit)
2181			tcp_mark_head_lost(sk, 1, 1);
2182	}
2183}
2184
2185/* CWND moderation, preventing bursts due to too big ACKs
2186 * in dubious situations.
2187 */
2188static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2189{
2190	tp->snd_cwnd = min(tp->snd_cwnd,
2191			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2192	tp->snd_cwnd_stamp = tcp_time_stamp;
2193}
2194
2195/* Nothing was retransmitted or returned timestamp is less
2196 * than timestamp of the first retransmission.
2197 */
2198static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2199{
2200	return !tp->retrans_stamp ||
2201		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2202		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2203}
2204
2205/* Undo procedures. */
2206
2207#if FASTRETRANS_DEBUG > 1
2208static void DBGUNDO(struct sock *sk, const char *msg)
2209{
2210	struct tcp_sock *tp = tcp_sk(sk);
2211	struct inet_sock *inet = inet_sk(sk);
2212
2213	if (sk->sk_family == AF_INET) {
2214		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2215			 msg,
2216			 &inet->inet_daddr, ntohs(inet->inet_dport),
2217			 tp->snd_cwnd, tcp_left_out(tp),
2218			 tp->snd_ssthresh, tp->prior_ssthresh,
2219			 tp->packets_out);
2220	}
2221#if IS_ENABLED(CONFIG_IPV6)
2222	else if (sk->sk_family == AF_INET6) {
2223		struct ipv6_pinfo *np = inet6_sk(sk);
2224		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2225			 msg,
2226			 &np->daddr, ntohs(inet->inet_dport),
2227			 tp->snd_cwnd, tcp_left_out(tp),
2228			 tp->snd_ssthresh, tp->prior_ssthresh,
2229			 tp->packets_out);
2230	}
2231#endif
2232}
2233#else
2234#define DBGUNDO(x...) do { } while (0)
2235#endif
2236
2237static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2238{
2239	struct tcp_sock *tp = tcp_sk(sk);
2240
2241	if (unmark_loss) {
2242		struct sk_buff *skb;
2243
2244		tcp_for_write_queue(skb, sk) {
2245			if (skb == tcp_send_head(sk))
2246				break;
2247			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2248		}
2249		tp->lost_out = 0;
2250		tcp_clear_all_retrans_hints(tp);
2251	}
2252
2253	if (tp->prior_ssthresh) {
2254		const struct inet_connection_sock *icsk = inet_csk(sk);
2255
2256		if (icsk->icsk_ca_ops->undo_cwnd)
2257			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2258		else
2259			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2260
2261		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2262			tp->snd_ssthresh = tp->prior_ssthresh;
2263			TCP_ECN_withdraw_cwr(tp);
2264		}
2265	} else {
2266		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2267	}
2268	tp->snd_cwnd_stamp = tcp_time_stamp;
2269	tp->undo_marker = 0;
2270}
2271
2272static inline bool tcp_may_undo(const struct tcp_sock *tp)
2273{
2274	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2275}
2276
2277/* People celebrate: "We love our President!" */
2278static bool tcp_try_undo_recovery(struct sock *sk)
2279{
2280	struct tcp_sock *tp = tcp_sk(sk);
2281
2282	if (tcp_may_undo(tp)) {
2283		int mib_idx;
2284
2285		/* Happy end! We did not retransmit anything
2286		 * or our original transmission succeeded.
2287		 */
2288		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2289		tcp_undo_cwnd_reduction(sk, false);
2290		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2291			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2292		else
2293			mib_idx = LINUX_MIB_TCPFULLUNDO;
2294
2295		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2296	}
2297	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2298		/* Hold old state until something *above* high_seq
2299		 * is ACKed. For Reno it is MUST to prevent false
2300		 * fast retransmits (RFC2582). SACK TCP is safe. */
2301		tcp_moderate_cwnd(tp);
2302		return true;
2303	}
2304	tcp_set_ca_state(sk, TCP_CA_Open);
2305	return false;
2306}
2307
2308/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2309static bool tcp_try_undo_dsack(struct sock *sk)
2310{
2311	struct tcp_sock *tp = tcp_sk(sk);
2312
2313	if (tp->undo_marker && !tp->undo_retrans) {
2314		DBGUNDO(sk, "D-SACK");
2315		tcp_undo_cwnd_reduction(sk, false);
2316		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2317		return true;
2318	}
2319	return false;
2320}
2321
2322/* We can clear retrans_stamp when there are no retransmissions in the
2323 * window. It would seem that it is trivially available for us in
2324 * tp->retrans_out, however, that kind of assumptions doesn't consider
2325 * what will happen if errors occur when sending retransmission for the
2326 * second time. ...It could the that such segment has only
2327 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2328 * the head skb is enough except for some reneging corner cases that
2329 * are not worth the effort.
2330 *
2331 * Main reason for all this complexity is the fact that connection dying
2332 * time now depends on the validity of the retrans_stamp, in particular,
2333 * that successive retransmissions of a segment must not advance
2334 * retrans_stamp under any conditions.
2335 */
2336static bool tcp_any_retrans_done(const struct sock *sk)
2337{
2338	const struct tcp_sock *tp = tcp_sk(sk);
2339	struct sk_buff *skb;
2340
2341	if (tp->retrans_out)
2342		return true;
2343
2344	skb = tcp_write_queue_head(sk);
2345	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2346		return true;
2347
2348	return false;
2349}
2350
2351/* Undo during loss recovery after partial ACK or using F-RTO. */
2352static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2353{
2354	struct tcp_sock *tp = tcp_sk(sk);
2355
2356	if (frto_undo || tcp_may_undo(tp)) {
2357		tcp_undo_cwnd_reduction(sk, true);
2358
2359		DBGUNDO(sk, "partial loss");
2360		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2361		if (frto_undo)
2362			NET_INC_STATS_BH(sock_net(sk),
2363					 LINUX_MIB_TCPSPURIOUSRTOS);
2364		inet_csk(sk)->icsk_retransmits = 0;
2365		if (frto_undo || tcp_is_sack(tp))
2366			tcp_set_ca_state(sk, TCP_CA_Open);
2367		return true;
2368	}
2369	return false;
2370}
2371
2372/* The cwnd reduction in CWR and Recovery use the PRR algorithm
2373 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2374 * It computes the number of packets to send (sndcnt) based on packets newly
2375 * delivered:
2376 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2377 *	cwnd reductions across a full RTT.
2378 *   2) If packets in flight is lower than ssthresh (such as due to excess
2379 *	losses and/or application stalls), do not perform any further cwnd
2380 *	reductions, but instead slow start up to ssthresh.
2381 */
2382static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2383{
2384	struct tcp_sock *tp = tcp_sk(sk);
2385
2386	tp->high_seq = tp->snd_nxt;
2387	tp->tlp_high_seq = 0;
2388	tp->snd_cwnd_cnt = 0;
2389	tp->prior_cwnd = tp->snd_cwnd;
2390	tp->prr_delivered = 0;
2391	tp->prr_out = 0;
2392	if (set_ssthresh)
2393		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2394	TCP_ECN_queue_cwr(tp);
2395}
2396
2397static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2398			       int fast_rexmit)
2399{
2400	struct tcp_sock *tp = tcp_sk(sk);
2401	int sndcnt = 0;
2402	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2403	int newly_acked_sacked = prior_unsacked -
2404				 (tp->packets_out - tp->sacked_out);
2405
2406	tp->prr_delivered += newly_acked_sacked;
2407	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2408		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2409			       tp->prior_cwnd - 1;
2410		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2411	} else {
2412		sndcnt = min_t(int, delta,
2413			       max_t(int, tp->prr_delivered - tp->prr_out,
2414				     newly_acked_sacked) + 1);
2415	}
2416
2417	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2418	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2419}
2420
2421static inline void tcp_end_cwnd_reduction(struct sock *sk)
2422{
2423	struct tcp_sock *tp = tcp_sk(sk);
2424
2425	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2426	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2427	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2428		tp->snd_cwnd = tp->snd_ssthresh;
2429		tp->snd_cwnd_stamp = tcp_time_stamp;
2430	}
2431	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2432}
2433
2434/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2435void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2436{
2437	struct tcp_sock *tp = tcp_sk(sk);
2438
2439	tp->prior_ssthresh = 0;
2440	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2441		tp->undo_marker = 0;
2442		tcp_init_cwnd_reduction(sk, set_ssthresh);
2443		tcp_set_ca_state(sk, TCP_CA_CWR);
2444	}
2445}
2446
2447static void tcp_try_keep_open(struct sock *sk)
2448{
2449	struct tcp_sock *tp = tcp_sk(sk);
2450	int state = TCP_CA_Open;
2451
2452	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2453		state = TCP_CA_Disorder;
2454
2455	if (inet_csk(sk)->icsk_ca_state != state) {
2456		tcp_set_ca_state(sk, state);
2457		tp->high_seq = tp->snd_nxt;
2458	}
2459}
2460
2461static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2462{
2463	struct tcp_sock *tp = tcp_sk(sk);
2464
2465	tcp_verify_left_out(tp);
2466
2467	if (!tcp_any_retrans_done(sk))
2468		tp->retrans_stamp = 0;
2469
2470	if (flag & FLAG_ECE)
2471		tcp_enter_cwr(sk, 1);
2472
2473	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2474		tcp_try_keep_open(sk);
2475		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2476			tcp_moderate_cwnd(tp);
2477	} else {
2478		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2479	}
2480}
2481
2482static void tcp_mtup_probe_failed(struct sock *sk)
2483{
2484	struct inet_connection_sock *icsk = inet_csk(sk);
2485
2486	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2487	icsk->icsk_mtup.probe_size = 0;
2488}
2489
2490static void tcp_mtup_probe_success(struct sock *sk)
2491{
2492	struct tcp_sock *tp = tcp_sk(sk);
2493	struct inet_connection_sock *icsk = inet_csk(sk);
2494
2495	/* FIXME: breaks with very large cwnd */
2496	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2497	tp->snd_cwnd = tp->snd_cwnd *
2498		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2499		       icsk->icsk_mtup.probe_size;
2500	tp->snd_cwnd_cnt = 0;
2501	tp->snd_cwnd_stamp = tcp_time_stamp;
2502	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2503
2504	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2505	icsk->icsk_mtup.probe_size = 0;
2506	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2507}
2508
2509/* Do a simple retransmit without using the backoff mechanisms in
2510 * tcp_timer. This is used for path mtu discovery.
2511 * The socket is already locked here.
2512 */
2513void tcp_simple_retransmit(struct sock *sk)
2514{
2515	const struct inet_connection_sock *icsk = inet_csk(sk);
2516	struct tcp_sock *tp = tcp_sk(sk);
2517	struct sk_buff *skb;
2518	unsigned int mss = tcp_current_mss(sk);
2519	u32 prior_lost = tp->lost_out;
2520
2521	tcp_for_write_queue(skb, sk) {
2522		if (skb == tcp_send_head(sk))
2523			break;
2524		if (tcp_skb_seglen(skb) > mss &&
2525		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2526			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2527				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2528				tp->retrans_out -= tcp_skb_pcount(skb);
2529			}
2530			tcp_skb_mark_lost_uncond_verify(tp, skb);
2531		}
2532	}
2533
2534	tcp_clear_retrans_hints_partial(tp);
2535
2536	if (prior_lost == tp->lost_out)
2537		return;
2538
2539	if (tcp_is_reno(tp))
2540		tcp_limit_reno_sacked(tp);
2541
2542	tcp_verify_left_out(tp);
2543
2544	/* Don't muck with the congestion window here.
2545	 * Reason is that we do not increase amount of _data_
2546	 * in network, but units changed and effective
2547	 * cwnd/ssthresh really reduced now.
2548	 */
2549	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2550		tp->high_seq = tp->snd_nxt;
2551		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2552		tp->prior_ssthresh = 0;
2553		tp->undo_marker = 0;
2554		tcp_set_ca_state(sk, TCP_CA_Loss);
2555	}
2556	tcp_xmit_retransmit_queue(sk);
2557}
2558EXPORT_SYMBOL(tcp_simple_retransmit);
2559
2560static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2561{
2562	struct tcp_sock *tp = tcp_sk(sk);
2563	int mib_idx;
2564
2565	if (tcp_is_reno(tp))
2566		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2567	else
2568		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2569
2570	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2571
2572	tp->prior_ssthresh = 0;
2573	tp->undo_marker = tp->snd_una;
2574	tp->undo_retrans = tp->retrans_out;
2575
2576	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2577		if (!ece_ack)
2578			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2579		tcp_init_cwnd_reduction(sk, true);
2580	}
2581	tcp_set_ca_state(sk, TCP_CA_Recovery);
2582}
2583
2584/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2585 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2586 */
2587static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2588{
2589	struct inet_connection_sock *icsk = inet_csk(sk);
2590	struct tcp_sock *tp = tcp_sk(sk);
2591	bool recovered = !before(tp->snd_una, tp->high_seq);
2592
2593	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2594		if (flag & FLAG_ORIG_SACK_ACKED) {
2595			/* Step 3.b. A timeout is spurious if not all data are
2596			 * lost, i.e., never-retransmitted data are (s)acked.
2597			 */
2598			tcp_try_undo_loss(sk, true);
2599			return;
2600		}
2601		if (after(tp->snd_nxt, tp->high_seq) &&
2602		    (flag & FLAG_DATA_SACKED || is_dupack)) {
2603			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2604		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2605			tp->high_seq = tp->snd_nxt;
2606			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2607						  TCP_NAGLE_OFF);
2608			if (after(tp->snd_nxt, tp->high_seq))
2609				return; /* Step 2.b */
2610			tp->frto = 0;
2611		}
2612	}
2613
2614	if (recovered) {
2615		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2616		icsk->icsk_retransmits = 0;
2617		tcp_try_undo_recovery(sk);
2618		return;
2619	}
2620	if (flag & FLAG_DATA_ACKED)
2621		icsk->icsk_retransmits = 0;
2622	if (tcp_is_reno(tp)) {
2623		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2624		 * delivered. Lower inflight to clock out (re)tranmissions.
2625		 */
2626		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2627			tcp_add_reno_sack(sk);
2628		else if (flag & FLAG_SND_UNA_ADVANCED)
2629			tcp_reset_reno_sack(tp);
2630	}
2631	if (tcp_try_undo_loss(sk, false))
2632		return;
2633	tcp_xmit_retransmit_queue(sk);
2634}
2635
2636/* Undo during fast recovery after partial ACK. */
2637static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2638				 const int prior_unsacked)
2639{
2640	struct tcp_sock *tp = tcp_sk(sk);
2641
2642	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2643		/* Plain luck! Hole if filled with delayed
2644		 * packet, rather than with a retransmit.
2645		 */
2646		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2647
2648		/* We are getting evidence that the reordering degree is higher
2649		 * than we realized. If there are no retransmits out then we
2650		 * can undo. Otherwise we clock out new packets but do not
2651		 * mark more packets lost or retransmit more.
2652		 */
2653		if (tp->retrans_out) {
2654			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2655			return true;
2656		}
2657
2658		if (!tcp_any_retrans_done(sk))
2659			tp->retrans_stamp = 0;
2660
2661		DBGUNDO(sk, "partial recovery");
2662		tcp_undo_cwnd_reduction(sk, true);
2663		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2664		tcp_try_keep_open(sk);
2665		return true;
2666	}
2667	return false;
2668}
2669
2670/* Process an event, which can update packets-in-flight not trivially.
2671 * Main goal of this function is to calculate new estimate for left_out,
2672 * taking into account both packets sitting in receiver's buffer and
2673 * packets lost by network.
2674 *
2675 * Besides that it does CWND reduction, when packet loss is detected
2676 * and changes state of machine.
2677 *
2678 * It does _not_ decide what to send, it is made in function
2679 * tcp_xmit_retransmit_queue().
2680 */
2681static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2682				  const int prior_unsacked,
2683				  bool is_dupack, int flag)
2684{
2685	struct inet_connection_sock *icsk = inet_csk(sk);
2686	struct tcp_sock *tp = tcp_sk(sk);
2687	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2688				    (tcp_fackets_out(tp) > tp->reordering));
2689	int fast_rexmit = 0;
2690
2691	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2692		tp->sacked_out = 0;
2693	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2694		tp->fackets_out = 0;
2695
2696	/* Now state machine starts.
2697	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2698	if (flag & FLAG_ECE)
2699		tp->prior_ssthresh = 0;
2700
2701	/* B. In all the states check for reneging SACKs. */
2702	if (tcp_check_sack_reneging(sk, flag))
2703		return;
2704
2705	/* C. Check consistency of the current state. */
2706	tcp_verify_left_out(tp);
2707
2708	/* D. Check state exit conditions. State can be terminated
2709	 *    when high_seq is ACKed. */
2710	if (icsk->icsk_ca_state == TCP_CA_Open) {
2711		WARN_ON(tp->retrans_out != 0);
2712		tp->retrans_stamp = 0;
2713	} else if (!before(tp->snd_una, tp->high_seq)) {
2714		switch (icsk->icsk_ca_state) {
2715		case TCP_CA_CWR:
2716			/* CWR is to be held something *above* high_seq
2717			 * is ACKed for CWR bit to reach receiver. */
2718			if (tp->snd_una != tp->high_seq) {
2719				tcp_end_cwnd_reduction(sk);
2720				tcp_set_ca_state(sk, TCP_CA_Open);
2721			}
2722			break;
2723
2724		case TCP_CA_Recovery:
2725			if (tcp_is_reno(tp))
2726				tcp_reset_reno_sack(tp);
2727			if (tcp_try_undo_recovery(sk))
2728				return;
2729			tcp_end_cwnd_reduction(sk);
2730			break;
2731		}
2732	}
2733
2734	/* E. Process state. */
2735	switch (icsk->icsk_ca_state) {
2736	case TCP_CA_Recovery:
2737		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2738			if (tcp_is_reno(tp) && is_dupack)
2739				tcp_add_reno_sack(sk);
2740		} else {
2741			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2742				return;
2743			/* Partial ACK arrived. Force fast retransmit. */
2744			do_lost = tcp_is_reno(tp) ||
2745				  tcp_fackets_out(tp) > tp->reordering;
2746		}
2747		if (tcp_try_undo_dsack(sk)) {
2748			tcp_try_keep_open(sk);
2749			return;
2750		}
2751		break;
2752	case TCP_CA_Loss:
2753		tcp_process_loss(sk, flag, is_dupack);
2754		if (icsk->icsk_ca_state != TCP_CA_Open)
2755			return;
2756		/* Fall through to processing in Open state. */
2757	default:
2758		if (tcp_is_reno(tp)) {
2759			if (flag & FLAG_SND_UNA_ADVANCED)
2760				tcp_reset_reno_sack(tp);
2761			if (is_dupack)
2762				tcp_add_reno_sack(sk);
2763		}
2764
2765		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2766			tcp_try_undo_dsack(sk);
2767
2768		if (!tcp_time_to_recover(sk, flag)) {
2769			tcp_try_to_open(sk, flag, prior_unsacked);
2770			return;
2771		}
2772
2773		/* MTU probe failure: don't reduce cwnd */
2774		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2775		    icsk->icsk_mtup.probe_size &&
2776		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2777			tcp_mtup_probe_failed(sk);
2778			/* Restores the reduction we did in tcp_mtup_probe() */
2779			tp->snd_cwnd++;
2780			tcp_simple_retransmit(sk);
2781			return;
2782		}
2783
2784		/* Otherwise enter Recovery state */
2785		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2786		fast_rexmit = 1;
2787	}
2788
2789	if (do_lost)
2790		tcp_update_scoreboard(sk, fast_rexmit);
2791	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2792	tcp_xmit_retransmit_queue(sk);
2793}
2794
2795static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2796				      s32 seq_rtt)
2797{
2798	const struct tcp_sock *tp = tcp_sk(sk);
2799
2800	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2801	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2802	 * Karn's algorithm forbids taking RTT if some retransmitted data
2803	 * is acked (RFC6298).
2804	 */
2805	if (flag & FLAG_RETRANS_DATA_ACKED)
2806		seq_rtt = -1;
2807
2808	/* RTTM Rule: A TSecr value received in a segment is used to
2809	 * update the averaged RTT measurement only if the segment
2810	 * acknowledges some new data, i.e., only if it advances the
2811	 * left edge of the send window.
2812	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2813	 */
2814	if (seq_rtt < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2815		seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2816
2817	if (seq_rtt < 0)
2818		return;
2819
2820	tcp_rtt_estimator(sk, seq_rtt);
2821	tcp_set_rto(sk);
2822
2823	/* RFC6298: only reset backoff on valid RTT measurement. */
2824	inet_csk(sk)->icsk_backoff = 0;
2825}
2826
2827/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2828static void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2829{
2830	struct tcp_sock *tp = tcp_sk(sk);
2831	s32 seq_rtt = -1;
2832
2833	if (tp->lsndtime && !tp->total_retrans)
2834		seq_rtt = tcp_time_stamp - tp->lsndtime;
2835	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt);
2836}
2837
2838static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2839{
2840	const struct inet_connection_sock *icsk = inet_csk(sk);
2841	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2842	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2843}
2844
2845/* Restart timer after forward progress on connection.
2846 * RFC2988 recommends to restart timer to now+rto.
2847 */
2848void tcp_rearm_rto(struct sock *sk)
2849{
2850	const struct inet_connection_sock *icsk = inet_csk(sk);
2851	struct tcp_sock *tp = tcp_sk(sk);
2852
2853	/* If the retrans timer is currently being used by Fast Open
2854	 * for SYN-ACK retrans purpose, stay put.
2855	 */
2856	if (tp->fastopen_rsk)
2857		return;
2858
2859	if (!tp->packets_out) {
2860		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2861	} else {
2862		u32 rto = inet_csk(sk)->icsk_rto;
2863		/* Offset the time elapsed after installing regular RTO */
2864		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2865		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2866			struct sk_buff *skb = tcp_write_queue_head(sk);
2867			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2868			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2869			/* delta may not be positive if the socket is locked
2870			 * when the retrans timer fires and is rescheduled.
2871			 */
2872			if (delta > 0)
2873				rto = delta;
2874		}
2875		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2876					  TCP_RTO_MAX);
2877	}
2878}
2879
2880/* This function is called when the delayed ER timer fires. TCP enters
2881 * fast recovery and performs fast-retransmit.
2882 */
2883void tcp_resume_early_retransmit(struct sock *sk)
2884{
2885	struct tcp_sock *tp = tcp_sk(sk);
2886
2887	tcp_rearm_rto(sk);
2888
2889	/* Stop if ER is disabled after the delayed ER timer is scheduled */
2890	if (!tp->do_early_retrans)
2891		return;
2892
2893	tcp_enter_recovery(sk, false);
2894	tcp_update_scoreboard(sk, 1);
2895	tcp_xmit_retransmit_queue(sk);
2896}
2897
2898/* If we get here, the whole TSO packet has not been acked. */
2899static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2900{
2901	struct tcp_sock *tp = tcp_sk(sk);
2902	u32 packets_acked;
2903
2904	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2905
2906	packets_acked = tcp_skb_pcount(skb);
2907	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2908		return 0;
2909	packets_acked -= tcp_skb_pcount(skb);
2910
2911	if (packets_acked) {
2912		BUG_ON(tcp_skb_pcount(skb) == 0);
2913		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2914	}
2915
2916	return packets_acked;
2917}
2918
2919/* Remove acknowledged frames from the retransmission queue. If our packet
2920 * is before the ack sequence we can discard it as it's confirmed to have
2921 * arrived at the other end.
2922 */
2923static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2924			       u32 prior_snd_una)
2925{
2926	struct tcp_sock *tp = tcp_sk(sk);
2927	const struct inet_connection_sock *icsk = inet_csk(sk);
2928	struct sk_buff *skb;
2929	u32 now = tcp_time_stamp;
2930	int fully_acked = true;
2931	int flag = 0;
2932	u32 pkts_acked = 0;
2933	u32 reord = tp->packets_out;
2934	u32 prior_sacked = tp->sacked_out;
2935	s32 seq_rtt = -1;
2936	s32 ca_seq_rtt = -1;
2937	ktime_t last_ackt = net_invalid_timestamp();
2938
2939	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2940		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2941		u32 acked_pcount;
2942		u8 sacked = scb->sacked;
2943
2944		/* Determine how many packets and what bytes were acked, tso and else */
2945		if (after(scb->end_seq, tp->snd_una)) {
2946			if (tcp_skb_pcount(skb) == 1 ||
2947			    !after(tp->snd_una, scb->seq))
2948				break;
2949
2950			acked_pcount = tcp_tso_acked(sk, skb);
2951			if (!acked_pcount)
2952				break;
2953
2954			fully_acked = false;
2955		} else {
2956			acked_pcount = tcp_skb_pcount(skb);
2957		}
2958
2959		if (sacked & TCPCB_RETRANS) {
2960			if (sacked & TCPCB_SACKED_RETRANS)
2961				tp->retrans_out -= acked_pcount;
2962			flag |= FLAG_RETRANS_DATA_ACKED;
2963		} else {
2964			ca_seq_rtt = now - scb->when;
2965			last_ackt = skb->tstamp;
2966			if (seq_rtt < 0) {
2967				seq_rtt = ca_seq_rtt;
2968			}
2969			if (!(sacked & TCPCB_SACKED_ACKED))
2970				reord = min(pkts_acked, reord);
2971			if (!after(scb->end_seq, tp->high_seq))
2972				flag |= FLAG_ORIG_SACK_ACKED;
2973		}
2974
2975		if (sacked & TCPCB_SACKED_ACKED)
2976			tp->sacked_out -= acked_pcount;
2977		if (sacked & TCPCB_LOST)
2978			tp->lost_out -= acked_pcount;
2979
2980		tp->packets_out -= acked_pcount;
2981		pkts_acked += acked_pcount;
2982
2983		/* Initial outgoing SYN's get put onto the write_queue
2984		 * just like anything else we transmit.  It is not
2985		 * true data, and if we misinform our callers that
2986		 * this ACK acks real data, we will erroneously exit
2987		 * connection startup slow start one packet too
2988		 * quickly.  This is severely frowned upon behavior.
2989		 */
2990		if (!(scb->tcp_flags & TCPHDR_SYN)) {
2991			flag |= FLAG_DATA_ACKED;
2992		} else {
2993			flag |= FLAG_SYN_ACKED;
2994			tp->retrans_stamp = 0;
2995		}
2996
2997		if (!fully_acked)
2998			break;
2999
3000		tcp_unlink_write_queue(skb, sk);
3001		sk_wmem_free_skb(sk, skb);
3002		if (skb == tp->retransmit_skb_hint)
3003			tp->retransmit_skb_hint = NULL;
3004		if (skb == tp->lost_skb_hint)
3005			tp->lost_skb_hint = NULL;
3006	}
3007
3008	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3009		tp->snd_up = tp->snd_una;
3010
3011	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3012		flag |= FLAG_SACK_RENEGING;
3013
3014	if (flag & FLAG_ACKED) {
3015		const struct tcp_congestion_ops *ca_ops
3016			= inet_csk(sk)->icsk_ca_ops;
3017
3018		if (unlikely(icsk->icsk_mtup.probe_size &&
3019			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3020			tcp_mtup_probe_success(sk);
3021		}
3022
3023		tcp_ack_update_rtt(sk, flag, seq_rtt);
3024		tcp_rearm_rto(sk);
3025
3026		if (tcp_is_reno(tp)) {
3027			tcp_remove_reno_sacks(sk, pkts_acked);
3028		} else {
3029			int delta;
3030
3031			/* Non-retransmitted hole got filled? That's reordering */
3032			if (reord < prior_fackets)
3033				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3034
3035			delta = tcp_is_fack(tp) ? pkts_acked :
3036						  prior_sacked - tp->sacked_out;
3037			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3038		}
3039
3040		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3041
3042		if (ca_ops->pkts_acked) {
3043			s32 rtt_us = -1;
3044
3045			/* Is the ACK triggering packet unambiguous? */
3046			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3047				/* High resolution needed and available? */
3048				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3049				    !ktime_equal(last_ackt,
3050						 net_invalid_timestamp()))
3051					rtt_us = ktime_us_delta(ktime_get_real(),
3052								last_ackt);
3053				else if (ca_seq_rtt >= 0)
3054					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3055			}
3056
3057			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3058		}
3059	}
3060
3061#if FASTRETRANS_DEBUG > 0
3062	WARN_ON((int)tp->sacked_out < 0);
3063	WARN_ON((int)tp->lost_out < 0);
3064	WARN_ON((int)tp->retrans_out < 0);
3065	if (!tp->packets_out && tcp_is_sack(tp)) {
3066		icsk = inet_csk(sk);
3067		if (tp->lost_out) {
3068			pr_debug("Leak l=%u %d\n",
3069				 tp->lost_out, icsk->icsk_ca_state);
3070			tp->lost_out = 0;
3071		}
3072		if (tp->sacked_out) {
3073			pr_debug("Leak s=%u %d\n",
3074				 tp->sacked_out, icsk->icsk_ca_state);
3075			tp->sacked_out = 0;
3076		}
3077		if (tp->retrans_out) {
3078			pr_debug("Leak r=%u %d\n",
3079				 tp->retrans_out, icsk->icsk_ca_state);
3080			tp->retrans_out = 0;
3081		}
3082	}
3083#endif
3084	return flag;
3085}
3086
3087static void tcp_ack_probe(struct sock *sk)
3088{
3089	const struct tcp_sock *tp = tcp_sk(sk);
3090	struct inet_connection_sock *icsk = inet_csk(sk);
3091
3092	/* Was it a usable window open? */
3093
3094	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3095		icsk->icsk_backoff = 0;
3096		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3097		/* Socket must be waked up by subsequent tcp_data_snd_check().
3098		 * This function is not for random using!
3099		 */
3100	} else {
3101		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3102					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3103					  TCP_RTO_MAX);
3104	}
3105}
3106
3107static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3108{
3109	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3110		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3111}
3112
3113static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3114{
3115	const struct tcp_sock *tp = tcp_sk(sk);
3116	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3117		!tcp_in_cwnd_reduction(sk);
3118}
3119
3120/* Check that window update is acceptable.
3121 * The function assumes that snd_una<=ack<=snd_next.
3122 */
3123static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3124					const u32 ack, const u32 ack_seq,
3125					const u32 nwin)
3126{
3127	return	after(ack, tp->snd_una) ||
3128		after(ack_seq, tp->snd_wl1) ||
3129		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3130}
3131
3132/* Update our send window.
3133 *
3134 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3135 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3136 */
3137static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3138				 u32 ack_seq)
3139{
3140	struct tcp_sock *tp = tcp_sk(sk);
3141	int flag = 0;
3142	u32 nwin = ntohs(tcp_hdr(skb)->window);
3143
3144	if (likely(!tcp_hdr(skb)->syn))
3145		nwin <<= tp->rx_opt.snd_wscale;
3146
3147	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3148		flag |= FLAG_WIN_UPDATE;
3149		tcp_update_wl(tp, ack_seq);
3150
3151		if (tp->snd_wnd != nwin) {
3152			tp->snd_wnd = nwin;
3153
3154			/* Note, it is the only place, where
3155			 * fast path is recovered for sending TCP.
3156			 */
3157			tp->pred_flags = 0;
3158			tcp_fast_path_check(sk);
3159
3160			if (nwin > tp->max_window) {
3161				tp->max_window = nwin;
3162				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3163			}
3164		}
3165	}
3166
3167	tp->snd_una = ack;
3168
3169	return flag;
3170}
3171
3172/* RFC 5961 7 [ACK Throttling] */
3173static void tcp_send_challenge_ack(struct sock *sk)
3174{
3175	/* unprotected vars, we dont care of overwrites */
3176	static u32 challenge_timestamp;
3177	static unsigned int challenge_count;
3178	u32 now = jiffies / HZ;
3179
3180	if (now != challenge_timestamp) {
3181		challenge_timestamp = now;
3182		challenge_count = 0;
3183	}
3184	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3185		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3186		tcp_send_ack(sk);
3187	}
3188}
3189
3190static void tcp_store_ts_recent(struct tcp_sock *tp)
3191{
3192	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3193	tp->rx_opt.ts_recent_stamp = get_seconds();
3194}
3195
3196static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3197{
3198	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3199		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3200		 * extra check below makes sure this can only happen
3201		 * for pure ACK frames.  -DaveM
3202		 *
3203		 * Not only, also it occurs for expired timestamps.
3204		 */
3205
3206		if (tcp_paws_check(&tp->rx_opt, 0))
3207			tcp_store_ts_recent(tp);
3208	}
3209}
3210
3211/* This routine deals with acks during a TLP episode.
3212 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3213 */
3214static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3215{
3216	struct tcp_sock *tp = tcp_sk(sk);
3217	bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3218			     !(flag & (FLAG_SND_UNA_ADVANCED |
3219				       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3220
3221	/* Mark the end of TLP episode on receiving TLP dupack or when
3222	 * ack is after tlp_high_seq.
3223	 */
3224	if (is_tlp_dupack) {
3225		tp->tlp_high_seq = 0;
3226		return;
3227	}
3228
3229	if (after(ack, tp->tlp_high_seq)) {
3230		tp->tlp_high_seq = 0;
3231		/* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3232		if (!(flag & FLAG_DSACKING_ACK)) {
3233			tcp_init_cwnd_reduction(sk, true);
3234			tcp_set_ca_state(sk, TCP_CA_CWR);
3235			tcp_end_cwnd_reduction(sk);
3236			tcp_set_ca_state(sk, TCP_CA_Open);
3237			NET_INC_STATS_BH(sock_net(sk),
3238					 LINUX_MIB_TCPLOSSPROBERECOVERY);
3239		}
3240	}
3241}
3242
3243/* This routine deals with incoming acks, but not outgoing ones. */
3244static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3245{
3246	struct inet_connection_sock *icsk = inet_csk(sk);
3247	struct tcp_sock *tp = tcp_sk(sk);
3248	u32 prior_snd_una = tp->snd_una;
3249	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3250	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3251	bool is_dupack = false;
3252	u32 prior_in_flight;
3253	u32 prior_fackets;
3254	int prior_packets = tp->packets_out;
3255	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3256	int acked = 0; /* Number of packets newly acked */
3257
3258	/* If the ack is older than previous acks
3259	 * then we can probably ignore it.
3260	 */
3261	if (before(ack, prior_snd_una)) {
3262		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3263		if (before(ack, prior_snd_una - tp->max_window)) {
3264			tcp_send_challenge_ack(sk);
3265			return -1;
3266		}
3267		goto old_ack;
3268	}
3269
3270	/* If the ack includes data we haven't sent yet, discard
3271	 * this segment (RFC793 Section 3.9).
3272	 */
3273	if (after(ack, tp->snd_nxt))
3274		goto invalid_ack;
3275
3276	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3277	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3278		tcp_rearm_rto(sk);
3279
3280	if (after(ack, prior_snd_una))
3281		flag |= FLAG_SND_UNA_ADVANCED;
3282
3283	prior_fackets = tp->fackets_out;
3284	prior_in_flight = tcp_packets_in_flight(tp);
3285
3286	/* ts_recent update must be made after we are sure that the packet
3287	 * is in window.
3288	 */
3289	if (flag & FLAG_UPDATE_TS_RECENT)
3290		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3291
3292	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3293		/* Window is constant, pure forward advance.
3294		 * No more checks are required.
3295		 * Note, we use the fact that SND.UNA>=SND.WL2.
3296		 */
3297		tcp_update_wl(tp, ack_seq);
3298		tp->snd_una = ack;
3299		flag |= FLAG_WIN_UPDATE;
3300
3301		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3302
3303		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3304	} else {
3305		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3306			flag |= FLAG_DATA;
3307		else
3308			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3309
3310		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3311
3312		if (TCP_SKB_CB(skb)->sacked)
3313			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3314
3315		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3316			flag |= FLAG_ECE;
3317
3318		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3319	}
3320
3321	/* We passed data and got it acked, remove any soft error
3322	 * log. Something worked...
3323	 */
3324	sk->sk_err_soft = 0;
3325	icsk->icsk_probes_out = 0;
3326	tp->rcv_tstamp = tcp_time_stamp;
3327	if (!prior_packets)
3328		goto no_queue;
3329
3330	/* See if we can take anything off of the retransmit queue. */
3331	acked = tp->packets_out;
3332	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3333	acked -= tp->packets_out;
3334
3335	if (tcp_ack_is_dubious(sk, flag)) {
3336		/* Advance CWND, if state allows this. */
3337		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
3338			tcp_cong_avoid(sk, ack, prior_in_flight);
3339		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3340		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3341				      is_dupack, flag);
3342	} else {
3343		if (flag & FLAG_DATA_ACKED)
3344			tcp_cong_avoid(sk, ack, prior_in_flight);
3345	}
3346
3347	if (tp->tlp_high_seq)
3348		tcp_process_tlp_ack(sk, ack, flag);
3349
3350	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3351		struct dst_entry *dst = __sk_dst_get(sk);
3352		if (dst)
3353			dst_confirm(dst);
3354	}
3355
3356	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3357		tcp_schedule_loss_probe(sk);
3358	return 1;
3359
3360no_queue:
3361	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3362	if (flag & FLAG_DSACKING_ACK)
3363		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3364				      is_dupack, flag);
3365	/* If this ack opens up a zero window, clear backoff.  It was
3366	 * being used to time the probes, and is probably far higher than
3367	 * it needs to be for normal retransmission.
3368	 */
3369	if (tcp_send_head(sk))
3370		tcp_ack_probe(sk);
3371
3372	if (tp->tlp_high_seq)
3373		tcp_process_tlp_ack(sk, ack, flag);
3374	return 1;
3375
3376invalid_ack:
3377	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3378	return -1;
3379
3380old_ack:
3381	/* If data was SACKed, tag it and see if we should send more data.
3382	 * If data was DSACKed, see if we can undo a cwnd reduction.
3383	 */
3384	if (TCP_SKB_CB(skb)->sacked) {
3385		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3386		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3387				      is_dupack, flag);
3388	}
3389
3390	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3391	return 0;
3392}
3393
3394/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3395 * But, this can also be called on packets in the established flow when
3396 * the fast version below fails.
3397 */
3398void tcp_parse_options(const struct sk_buff *skb,
3399		       struct tcp_options_received *opt_rx, int estab,
3400		       struct tcp_fastopen_cookie *foc)
3401{
3402	const unsigned char *ptr;
3403	const struct tcphdr *th = tcp_hdr(skb);
3404	int length = (th->doff * 4) - sizeof(struct tcphdr);
3405
3406	ptr = (const unsigned char *)(th + 1);
3407	opt_rx->saw_tstamp = 0;
3408
3409	while (length > 0) {
3410		int opcode = *ptr++;
3411		int opsize;
3412
3413		switch (opcode) {
3414		case TCPOPT_EOL:
3415			return;
3416		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3417			length--;
3418			continue;
3419		default:
3420			opsize = *ptr++;
3421			if (opsize < 2) /* "silly options" */
3422				return;
3423			if (opsize > length)
3424				return;	/* don't parse partial options */
3425			switch (opcode) {
3426			case TCPOPT_MSS:
3427				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3428					u16 in_mss = get_unaligned_be16(ptr);
3429					if (in_mss) {
3430						if (opt_rx->user_mss &&
3431						    opt_rx->user_mss < in_mss)
3432							in_mss = opt_rx->user_mss;
3433						opt_rx->mss_clamp = in_mss;
3434					}
3435				}
3436				break;
3437			case TCPOPT_WINDOW:
3438				if (opsize == TCPOLEN_WINDOW && th->syn &&
3439				    !estab && sysctl_tcp_window_scaling) {
3440					__u8 snd_wscale = *(__u8 *)ptr;
3441					opt_rx->wscale_ok = 1;
3442					if (snd_wscale > 14) {
3443						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3444								     __func__,
3445								     snd_wscale);
3446						snd_wscale = 14;
3447					}
3448					opt_rx->snd_wscale = snd_wscale;
3449				}
3450				break;
3451			case TCPOPT_TIMESTAMP:
3452				if ((opsize == TCPOLEN_TIMESTAMP) &&
3453				    ((estab && opt_rx->tstamp_ok) ||
3454				     (!estab && sysctl_tcp_timestamps))) {
3455					opt_rx->saw_tstamp = 1;
3456					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3457					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3458				}
3459				break;
3460			case TCPOPT_SACK_PERM:
3461				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3462				    !estab && sysctl_tcp_sack) {
3463					opt_rx->sack_ok = TCP_SACK_SEEN;
3464					tcp_sack_reset(opt_rx);
3465				}
3466				break;
3467
3468			case TCPOPT_SACK:
3469				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3470				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3471				   opt_rx->sack_ok) {
3472					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3473				}
3474				break;
3475#ifdef CONFIG_TCP_MD5SIG
3476			case TCPOPT_MD5SIG:
3477				/*
3478				 * The MD5 Hash has already been
3479				 * checked (see tcp_v{4,6}_do_rcv()).
3480				 */
3481				break;
3482#endif
3483			case TCPOPT_EXP:
3484				/* Fast Open option shares code 254 using a
3485				 * 16 bits magic number. It's valid only in
3486				 * SYN or SYN-ACK with an even size.
3487				 */
3488				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3489				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3490				    foc == NULL || !th->syn || (opsize & 1))
3491					break;
3492				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3493				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3494				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3495					memcpy(foc->val, ptr + 2, foc->len);
3496				else if (foc->len != 0)
3497					foc->len = -1;
3498				break;
3499
3500			}
3501			ptr += opsize-2;
3502			length -= opsize;
3503		}
3504	}
3505}
3506EXPORT_SYMBOL(tcp_parse_options);
3507
3508static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3509{
3510	const __be32 *ptr = (const __be32 *)(th + 1);
3511
3512	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3513			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3514		tp->rx_opt.saw_tstamp = 1;
3515		++ptr;
3516		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3517		++ptr;
3518		tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3519		return true;
3520	}
3521	return false;
3522}
3523
3524/* Fast parse options. This hopes to only see timestamps.
3525 * If it is wrong it falls back on tcp_parse_options().
3526 */
3527static bool tcp_fast_parse_options(const struct sk_buff *skb,
3528				   const struct tcphdr *th, struct tcp_sock *tp)
3529{
3530	/* In the spirit of fast parsing, compare doff directly to constant
3531	 * values.  Because equality is used, short doff can be ignored here.
3532	 */
3533	if (th->doff == (sizeof(*th) / 4)) {
3534		tp->rx_opt.saw_tstamp = 0;
3535		return false;
3536	} else if (tp->rx_opt.tstamp_ok &&
3537		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3538		if (tcp_parse_aligned_timestamp(tp, th))
3539			return true;
3540	}
3541
3542	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3543	if (tp->rx_opt.saw_tstamp)
3544		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3545
3546	return true;
3547}
3548
3549#ifdef CONFIG_TCP_MD5SIG
3550/*
3551 * Parse MD5 Signature option
3552 */
3553const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3554{
3555	int length = (th->doff << 2) - sizeof(*th);
3556	const u8 *ptr = (const u8 *)(th + 1);
3557
3558	/* If the TCP option is too short, we can short cut */
3559	if (length < TCPOLEN_MD5SIG)
3560		return NULL;
3561
3562	while (length > 0) {
3563		int opcode = *ptr++;
3564		int opsize;
3565
3566		switch(opcode) {
3567		case TCPOPT_EOL:
3568			return NULL;
3569		case TCPOPT_NOP:
3570			length--;
3571			continue;
3572		default:
3573			opsize = *ptr++;
3574			if (opsize < 2 || opsize > length)
3575				return NULL;
3576			if (opcode == TCPOPT_MD5SIG)
3577				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3578		}
3579		ptr += opsize - 2;
3580		length -= opsize;
3581	}
3582	return NULL;
3583}
3584EXPORT_SYMBOL(tcp_parse_md5sig_option);
3585#endif
3586
3587/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3588 *
3589 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3590 * it can pass through stack. So, the following predicate verifies that
3591 * this segment is not used for anything but congestion avoidance or
3592 * fast retransmit. Moreover, we even are able to eliminate most of such
3593 * second order effects, if we apply some small "replay" window (~RTO)
3594 * to timestamp space.
3595 *
3596 * All these measures still do not guarantee that we reject wrapped ACKs
3597 * on networks with high bandwidth, when sequence space is recycled fastly,
3598 * but it guarantees that such events will be very rare and do not affect
3599 * connection seriously. This doesn't look nice, but alas, PAWS is really
3600 * buggy extension.
3601 *
3602 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3603 * states that events when retransmit arrives after original data are rare.
3604 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3605 * the biggest problem on large power networks even with minor reordering.
3606 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3607 * up to bandwidth of 18Gigabit/sec. 8) ]
3608 */
3609
3610static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3611{
3612	const struct tcp_sock *tp = tcp_sk(sk);
3613	const struct tcphdr *th = tcp_hdr(skb);
3614	u32 seq = TCP_SKB_CB(skb)->seq;
3615	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3616
3617	return (/* 1. Pure ACK with correct sequence number. */
3618		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3619
3620		/* 2. ... and duplicate ACK. */
3621		ack == tp->snd_una &&
3622
3623		/* 3. ... and does not update window. */
3624		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3625
3626		/* 4. ... and sits in replay window. */
3627		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3628}
3629
3630static inline bool tcp_paws_discard(const struct sock *sk,
3631				   const struct sk_buff *skb)
3632{
3633	const struct tcp_sock *tp = tcp_sk(sk);
3634
3635	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3636	       !tcp_disordered_ack(sk, skb);
3637}
3638
3639/* Check segment sequence number for validity.
3640 *
3641 * Segment controls are considered valid, if the segment
3642 * fits to the window after truncation to the window. Acceptability
3643 * of data (and SYN, FIN, of course) is checked separately.
3644 * See tcp_data_queue(), for example.
3645 *
3646 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3647 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3648 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3649 * (borrowed from freebsd)
3650 */
3651
3652static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3653{
3654	return	!before(end_seq, tp->rcv_wup) &&
3655		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3656}
3657
3658/* When we get a reset we do this. */
3659void tcp_reset(struct sock *sk)
3660{
3661	/* We want the right error as BSD sees it (and indeed as we do). */
3662	switch (sk->sk_state) {
3663	case TCP_SYN_SENT:
3664		sk->sk_err = ECONNREFUSED;
3665		break;
3666	case TCP_CLOSE_WAIT:
3667		sk->sk_err = EPIPE;
3668		break;
3669	case TCP_CLOSE:
3670		return;
3671	default:
3672		sk->sk_err = ECONNRESET;
3673	}
3674	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3675	smp_wmb();
3676
3677	if (!sock_flag(sk, SOCK_DEAD))
3678		sk->sk_error_report(sk);
3679
3680	tcp_done(sk);
3681}
3682
3683/*
3684 * 	Process the FIN bit. This now behaves as it is supposed to work
3685 *	and the FIN takes effect when it is validly part of sequence
3686 *	space. Not before when we get holes.
3687 *
3688 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3689 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3690 *	TIME-WAIT)
3691 *
3692 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3693 *	close and we go into CLOSING (and later onto TIME-WAIT)
3694 *
3695 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3696 */
3697static void tcp_fin(struct sock *sk)
3698{
3699	struct tcp_sock *tp = tcp_sk(sk);
3700	const struct dst_entry *dst;
3701
3702	inet_csk_schedule_ack(sk);
3703
3704	sk->sk_shutdown |= RCV_SHUTDOWN;
3705	sock_set_flag(sk, SOCK_DONE);
3706
3707	switch (sk->sk_state) {
3708	case TCP_SYN_RECV:
3709	case TCP_ESTABLISHED:
3710		/* Move to CLOSE_WAIT */
3711		tcp_set_state(sk, TCP_CLOSE_WAIT);
3712		dst = __sk_dst_get(sk);
3713		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3714			inet_csk(sk)->icsk_ack.pingpong = 1;
3715		break;
3716
3717	case TCP_CLOSE_WAIT:
3718	case TCP_CLOSING:
3719		/* Received a retransmission of the FIN, do
3720		 * nothing.
3721		 */
3722		break;
3723	case TCP_LAST_ACK:
3724		/* RFC793: Remain in the LAST-ACK state. */
3725		break;
3726
3727	case TCP_FIN_WAIT1:
3728		/* This case occurs when a simultaneous close
3729		 * happens, we must ack the received FIN and
3730		 * enter the CLOSING state.
3731		 */
3732		tcp_send_ack(sk);
3733		tcp_set_state(sk, TCP_CLOSING);
3734		break;
3735	case TCP_FIN_WAIT2:
3736		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3737		tcp_send_ack(sk);
3738		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3739		break;
3740	default:
3741		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3742		 * cases we should never reach this piece of code.
3743		 */
3744		pr_err("%s: Impossible, sk->sk_state=%d\n",
3745		       __func__, sk->sk_state);
3746		break;
3747	}
3748
3749	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3750	 * Probably, we should reset in this case. For now drop them.
3751	 */
3752	__skb_queue_purge(&tp->out_of_order_queue);
3753	if (tcp_is_sack(tp))
3754		tcp_sack_reset(&tp->rx_opt);
3755	sk_mem_reclaim(sk);
3756
3757	if (!sock_flag(sk, SOCK_DEAD)) {
3758		sk->sk_state_change(sk);
3759
3760		/* Do not send POLL_HUP for half duplex close. */
3761		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3762		    sk->sk_state == TCP_CLOSE)
3763			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3764		else
3765			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3766	}
3767}
3768
3769static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3770				  u32 end_seq)
3771{
3772	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3773		if (before(seq, sp->start_seq))
3774			sp->start_seq = seq;
3775		if (after(end_seq, sp->end_seq))
3776			sp->end_seq = end_seq;
3777		return true;
3778	}
3779	return false;
3780}
3781
3782static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3783{
3784	struct tcp_sock *tp = tcp_sk(sk);
3785
3786	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3787		int mib_idx;
3788
3789		if (before(seq, tp->rcv_nxt))
3790			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3791		else
3792			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3793
3794		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3795
3796		tp->rx_opt.dsack = 1;
3797		tp->duplicate_sack[0].start_seq = seq;
3798		tp->duplicate_sack[0].end_seq = end_seq;
3799	}
3800}
3801
3802static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3803{
3804	struct tcp_sock *tp = tcp_sk(sk);
3805
3806	if (!tp->rx_opt.dsack)
3807		tcp_dsack_set(sk, seq, end_seq);
3808	else
3809		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3810}
3811
3812static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3813{
3814	struct tcp_sock *tp = tcp_sk(sk);
3815
3816	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3817	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3818		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3819		tcp_enter_quickack_mode(sk);
3820
3821		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3822			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3823
3824			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3825				end_seq = tp->rcv_nxt;
3826			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3827		}
3828	}
3829
3830	tcp_send_ack(sk);
3831}
3832
3833/* These routines update the SACK block as out-of-order packets arrive or
3834 * in-order packets close up the sequence space.
3835 */
3836static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3837{
3838	int this_sack;
3839	struct tcp_sack_block *sp = &tp->selective_acks[0];
3840	struct tcp_sack_block *swalk = sp + 1;
3841
3842	/* See if the recent change to the first SACK eats into
3843	 * or hits the sequence space of other SACK blocks, if so coalesce.
3844	 */
3845	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3846		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3847			int i;
3848
3849			/* Zap SWALK, by moving every further SACK up by one slot.
3850			 * Decrease num_sacks.
3851			 */
3852			tp->rx_opt.num_sacks--;
3853			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3854				sp[i] = sp[i + 1];
3855			continue;
3856		}
3857		this_sack++, swalk++;
3858	}
3859}
3860
3861static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3862{
3863	struct tcp_sock *tp = tcp_sk(sk);
3864	struct tcp_sack_block *sp = &tp->selective_acks[0];
3865	int cur_sacks = tp->rx_opt.num_sacks;
3866	int this_sack;
3867
3868	if (!cur_sacks)
3869		goto new_sack;
3870
3871	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3872		if (tcp_sack_extend(sp, seq, end_seq)) {
3873			/* Rotate this_sack to the first one. */
3874			for (; this_sack > 0; this_sack--, sp--)
3875				swap(*sp, *(sp - 1));
3876			if (cur_sacks > 1)
3877				tcp_sack_maybe_coalesce(tp);
3878			return;
3879		}
3880	}
3881
3882	/* Could not find an adjacent existing SACK, build a new one,
3883	 * put it at the front, and shift everyone else down.  We
3884	 * always know there is at least one SACK present already here.
3885	 *
3886	 * If the sack array is full, forget about the last one.
3887	 */
3888	if (this_sack >= TCP_NUM_SACKS) {
3889		this_sack--;
3890		tp->rx_opt.num_sacks--;
3891		sp--;
3892	}
3893	for (; this_sack > 0; this_sack--, sp--)
3894		*sp = *(sp - 1);
3895
3896new_sack:
3897	/* Build the new head SACK, and we're done. */
3898	sp->start_seq = seq;
3899	sp->end_seq = end_seq;
3900	tp->rx_opt.num_sacks++;
3901}
3902
3903/* RCV.NXT advances, some SACKs should be eaten. */
3904
3905static void tcp_sack_remove(struct tcp_sock *tp)
3906{
3907	struct tcp_sack_block *sp = &tp->selective_acks[0];
3908	int num_sacks = tp->rx_opt.num_sacks;
3909	int this_sack;
3910
3911	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3912	if (skb_queue_empty(&tp->out_of_order_queue)) {
3913		tp->rx_opt.num_sacks = 0;
3914		return;
3915	}
3916
3917	for (this_sack = 0; this_sack < num_sacks;) {
3918		/* Check if the start of the sack is covered by RCV.NXT. */
3919		if (!before(tp->rcv_nxt, sp->start_seq)) {
3920			int i;
3921
3922			/* RCV.NXT must cover all the block! */
3923			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3924
3925			/* Zap this SACK, by moving forward any other SACKS. */
3926			for (i=this_sack+1; i < num_sacks; i++)
3927				tp->selective_acks[i-1] = tp->selective_acks[i];
3928			num_sacks--;
3929			continue;
3930		}
3931		this_sack++;
3932		sp++;
3933	}
3934	tp->rx_opt.num_sacks = num_sacks;
3935}
3936
3937/* This one checks to see if we can put data from the
3938 * out_of_order queue into the receive_queue.
3939 */
3940static void tcp_ofo_queue(struct sock *sk)
3941{
3942	struct tcp_sock *tp = tcp_sk(sk);
3943	__u32 dsack_high = tp->rcv_nxt;
3944	struct sk_buff *skb;
3945
3946	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3947		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3948			break;
3949
3950		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3951			__u32 dsack = dsack_high;
3952			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3953				dsack_high = TCP_SKB_CB(skb)->end_seq;
3954			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3955		}
3956
3957		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3958			SOCK_DEBUG(sk, "ofo packet was already received\n");
3959			__skb_unlink(skb, &tp->out_of_order_queue);
3960			__kfree_skb(skb);
3961			continue;
3962		}
3963		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3964			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3965			   TCP_SKB_CB(skb)->end_seq);
3966
3967		__skb_unlink(skb, &tp->out_of_order_queue);
3968		__skb_queue_tail(&sk->sk_receive_queue, skb);
3969		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3970		if (tcp_hdr(skb)->fin)
3971			tcp_fin(sk);
3972	}
3973}
3974
3975static bool tcp_prune_ofo_queue(struct sock *sk);
3976static int tcp_prune_queue(struct sock *sk);
3977
3978static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
3979				 unsigned int size)
3980{
3981	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3982	    !sk_rmem_schedule(sk, skb, size)) {
3983
3984		if (tcp_prune_queue(sk) < 0)
3985			return -1;
3986
3987		if (!sk_rmem_schedule(sk, skb, size)) {
3988			if (!tcp_prune_ofo_queue(sk))
3989				return -1;
3990
3991			if (!sk_rmem_schedule(sk, skb, size))
3992				return -1;
3993		}
3994	}
3995	return 0;
3996}
3997
3998/**
3999 * tcp_try_coalesce - try to merge skb to prior one
4000 * @sk: socket
4001 * @to: prior buffer
4002 * @from: buffer to add in queue
4003 * @fragstolen: pointer to boolean
4004 *
4005 * Before queueing skb @from after @to, try to merge them
4006 * to reduce overall memory use and queue lengths, if cost is small.
4007 * Packets in ofo or receive queues can stay a long time.
4008 * Better try to coalesce them right now to avoid future collapses.
4009 * Returns true if caller should free @from instead of queueing it
4010 */
4011static bool tcp_try_coalesce(struct sock *sk,
4012			     struct sk_buff *to,
4013			     struct sk_buff *from,
4014			     bool *fragstolen)
4015{
4016	int delta;
4017
4018	*fragstolen = false;
4019
4020	if (tcp_hdr(from)->fin)
4021		return false;
4022
4023	/* Its possible this segment overlaps with prior segment in queue */
4024	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4025		return false;
4026
4027	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4028		return false;
4029
4030	atomic_add(delta, &sk->sk_rmem_alloc);
4031	sk_mem_charge(sk, delta);
4032	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4033	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4034	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4035	return true;
4036}
4037
4038static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4039{
4040	struct tcp_sock *tp = tcp_sk(sk);
4041	struct sk_buff *skb1;
4042	u32 seq, end_seq;
4043
4044	TCP_ECN_check_ce(tp, skb);
4045
4046	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4047		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4048		__kfree_skb(skb);
4049		return;
4050	}
4051
4052	/* Disable header prediction. */
4053	tp->pred_flags = 0;
4054	inet_csk_schedule_ack(sk);
4055
4056	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4057	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4058		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4059
4060	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4061	if (!skb1) {
4062		/* Initial out of order segment, build 1 SACK. */
4063		if (tcp_is_sack(tp)) {
4064			tp->rx_opt.num_sacks = 1;
4065			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4066			tp->selective_acks[0].end_seq =
4067						TCP_SKB_CB(skb)->end_seq;
4068		}
4069		__skb_queue_head(&tp->out_of_order_queue, skb);
4070		goto end;
4071	}
4072
4073	seq = TCP_SKB_CB(skb)->seq;
4074	end_seq = TCP_SKB_CB(skb)->end_seq;
4075
4076	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4077		bool fragstolen;
4078
4079		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4080			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4081		} else {
4082			kfree_skb_partial(skb, fragstolen);
4083			skb = NULL;
4084		}
4085
4086		if (!tp->rx_opt.num_sacks ||
4087		    tp->selective_acks[0].end_seq != seq)
4088			goto add_sack;
4089
4090		/* Common case: data arrive in order after hole. */
4091		tp->selective_acks[0].end_seq = end_seq;
4092		goto end;
4093	}
4094
4095	/* Find place to insert this segment. */
4096	while (1) {
4097		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4098			break;
4099		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4100			skb1 = NULL;
4101			break;
4102		}
4103		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4104	}
4105
4106	/* Do skb overlap to previous one? */
4107	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4108		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4109			/* All the bits are present. Drop. */
4110			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4111			__kfree_skb(skb);
4112			skb = NULL;
4113			tcp_dsack_set(sk, seq, end_seq);
4114			goto add_sack;
4115		}
4116		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4117			/* Partial overlap. */
4118			tcp_dsack_set(sk, seq,
4119				      TCP_SKB_CB(skb1)->end_seq);
4120		} else {
4121			if (skb_queue_is_first(&tp->out_of_order_queue,
4122					       skb1))
4123				skb1 = NULL;
4124			else
4125				skb1 = skb_queue_prev(
4126					&tp->out_of_order_queue,
4127					skb1);
4128		}
4129	}
4130	if (!skb1)
4131		__skb_queue_head(&tp->out_of_order_queue, skb);
4132	else
4133		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4134
4135	/* And clean segments covered by new one as whole. */
4136	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4137		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4138
4139		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4140			break;
4141		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4142			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4143					 end_seq);
4144			break;
4145		}
4146		__skb_unlink(skb1, &tp->out_of_order_queue);
4147		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4148				 TCP_SKB_CB(skb1)->end_seq);
4149		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4150		__kfree_skb(skb1);
4151	}
4152
4153add_sack:
4154	if (tcp_is_sack(tp))
4155		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4156end:
4157	if (skb)
4158		skb_set_owner_r(skb, sk);
4159}
4160
4161static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4162		  bool *fragstolen)
4163{
4164	int eaten;
4165	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4166
4167	__skb_pull(skb, hdrlen);
4168	eaten = (tail &&
4169		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4170	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4171	if (!eaten) {
4172		__skb_queue_tail(&sk->sk_receive_queue, skb);
4173		skb_set_owner_r(skb, sk);
4174	}
4175	return eaten;
4176}
4177
4178int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4179{
4180	struct sk_buff *skb = NULL;
4181	struct tcphdr *th;
4182	bool fragstolen;
4183
4184	if (size == 0)
4185		return 0;
4186
4187	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4188	if (!skb)
4189		goto err;
4190
4191	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4192		goto err_free;
4193
4194	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4195	skb_reset_transport_header(skb);
4196	memset(th, 0, sizeof(*th));
4197
4198	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4199		goto err_free;
4200
4201	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4202	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4203	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4204
4205	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4206		WARN_ON_ONCE(fragstolen); /* should not happen */
4207		__kfree_skb(skb);
4208	}
4209	return size;
4210
4211err_free:
4212	kfree_skb(skb);
4213err:
4214	return -ENOMEM;
4215}
4216
4217static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4218{
4219	const struct tcphdr *th = tcp_hdr(skb);
4220	struct tcp_sock *tp = tcp_sk(sk);
4221	int eaten = -1;
4222	bool fragstolen = false;
4223
4224	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4225		goto drop;
4226
4227	skb_dst_drop(skb);
4228	__skb_pull(skb, th->doff * 4);
4229
4230	TCP_ECN_accept_cwr(tp, skb);
4231
4232	tp->rx_opt.dsack = 0;
4233
4234	/*  Queue data for delivery to the user.
4235	 *  Packets in sequence go to the receive queue.
4236	 *  Out of sequence packets to the out_of_order_queue.
4237	 */
4238	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4239		if (tcp_receive_window(tp) == 0)
4240			goto out_of_window;
4241
4242		/* Ok. In sequence. In window. */
4243		if (tp->ucopy.task == current &&
4244		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4245		    sock_owned_by_user(sk) && !tp->urg_data) {
4246			int chunk = min_t(unsigned int, skb->len,
4247					  tp->ucopy.len);
4248
4249			__set_current_state(TASK_RUNNING);
4250
4251			local_bh_enable();
4252			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4253				tp->ucopy.len -= chunk;
4254				tp->copied_seq += chunk;
4255				eaten = (chunk == skb->len);
4256				tcp_rcv_space_adjust(sk);
4257			}
4258			local_bh_disable();
4259		}
4260
4261		if (eaten <= 0) {
4262queue_and_out:
4263			if (eaten < 0 &&
4264			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4265				goto drop;
4266
4267			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4268		}
4269		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4270		if (skb->len)
4271			tcp_event_data_recv(sk, skb);
4272		if (th->fin)
4273			tcp_fin(sk);
4274
4275		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4276			tcp_ofo_queue(sk);
4277
4278			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4279			 * gap in queue is filled.
4280			 */
4281			if (skb_queue_empty(&tp->out_of_order_queue))
4282				inet_csk(sk)->icsk_ack.pingpong = 0;
4283		}
4284
4285		if (tp->rx_opt.num_sacks)
4286			tcp_sack_remove(tp);
4287
4288		tcp_fast_path_check(sk);
4289
4290		if (eaten > 0)
4291			kfree_skb_partial(skb, fragstolen);
4292		if (!sock_flag(sk, SOCK_DEAD))
4293			sk->sk_data_ready(sk, 0);
4294		return;
4295	}
4296
4297	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4298		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4299		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4300		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4301
4302out_of_window:
4303		tcp_enter_quickack_mode(sk);
4304		inet_csk_schedule_ack(sk);
4305drop:
4306		__kfree_skb(skb);
4307		return;
4308	}
4309
4310	/* Out of window. F.e. zero window probe. */
4311	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4312		goto out_of_window;
4313
4314	tcp_enter_quickack_mode(sk);
4315
4316	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4317		/* Partial packet, seq < rcv_next < end_seq */
4318		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4319			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4320			   TCP_SKB_CB(skb)->end_seq);
4321
4322		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4323
4324		/* If window is closed, drop tail of packet. But after
4325		 * remembering D-SACK for its head made in previous line.
4326		 */
4327		if (!tcp_receive_window(tp))
4328			goto out_of_window;
4329		goto queue_and_out;
4330	}
4331
4332	tcp_data_queue_ofo(sk, skb);
4333}
4334
4335static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4336					struct sk_buff_head *list)
4337{
4338	struct sk_buff *next = NULL;
4339
4340	if (!skb_queue_is_last(list, skb))
4341		next = skb_queue_next(list, skb);
4342
4343	__skb_unlink(skb, list);
4344	__kfree_skb(skb);
4345	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4346
4347	return next;
4348}
4349
4350/* Collapse contiguous sequence of skbs head..tail with
4351 * sequence numbers start..end.
4352 *
4353 * If tail is NULL, this means until the end of the list.
4354 *
4355 * Segments with FIN/SYN are not collapsed (only because this
4356 * simplifies code)
4357 */
4358static void
4359tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4360	     struct sk_buff *head, struct sk_buff *tail,
4361	     u32 start, u32 end)
4362{
4363	struct sk_buff *skb, *n;
4364	bool end_of_skbs;
4365
4366	/* First, check that queue is collapsible and find
4367	 * the point where collapsing can be useful. */
4368	skb = head;
4369restart:
4370	end_of_skbs = true;
4371	skb_queue_walk_from_safe(list, skb, n) {
4372		if (skb == tail)
4373			break;
4374		/* No new bits? It is possible on ofo queue. */
4375		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4376			skb = tcp_collapse_one(sk, skb, list);
4377			if (!skb)
4378				break;
4379			goto restart;
4380		}
4381
4382		/* The first skb to collapse is:
4383		 * - not SYN/FIN and
4384		 * - bloated or contains data before "start" or
4385		 *   overlaps to the next one.
4386		 */
4387		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4388		    (tcp_win_from_space(skb->truesize) > skb->len ||
4389		     before(TCP_SKB_CB(skb)->seq, start))) {
4390			end_of_skbs = false;
4391			break;
4392		}
4393
4394		if (!skb_queue_is_last(list, skb)) {
4395			struct sk_buff *next = skb_queue_next(list, skb);
4396			if (next != tail &&
4397			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4398				end_of_skbs = false;
4399				break;
4400			}
4401		}
4402
4403		/* Decided to skip this, advance start seq. */
4404		start = TCP_SKB_CB(skb)->end_seq;
4405	}
4406	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4407		return;
4408
4409	while (before(start, end)) {
4410		struct sk_buff *nskb;
4411		unsigned int header = skb_headroom(skb);
4412		int copy = SKB_MAX_ORDER(header, 0);
4413
4414		/* Too big header? This can happen with IPv6. */
4415		if (copy < 0)
4416			return;
4417		if (end - start < copy)
4418			copy = end - start;
4419		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4420		if (!nskb)
4421			return;
4422
4423		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4424		skb_set_network_header(nskb, (skb_network_header(skb) -
4425					      skb->head));
4426		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4427						skb->head));
4428		skb_reserve(nskb, header);
4429		memcpy(nskb->head, skb->head, header);
4430		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4431		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4432		__skb_queue_before(list, skb, nskb);
4433		skb_set_owner_r(nskb, sk);
4434
4435		/* Copy data, releasing collapsed skbs. */
4436		while (copy > 0) {
4437			int offset = start - TCP_SKB_CB(skb)->seq;
4438			int size = TCP_SKB_CB(skb)->end_seq - start;
4439
4440			BUG_ON(offset < 0);
4441			if (size > 0) {
4442				size = min(copy, size);
4443				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4444					BUG();
4445				TCP_SKB_CB(nskb)->end_seq += size;
4446				copy -= size;
4447				start += size;
4448			}
4449			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4450				skb = tcp_collapse_one(sk, skb, list);
4451				if (!skb ||
4452				    skb == tail ||
4453				    tcp_hdr(skb)->syn ||
4454				    tcp_hdr(skb)->fin)
4455					return;
4456			}
4457		}
4458	}
4459}
4460
4461/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4462 * and tcp_collapse() them until all the queue is collapsed.
4463 */
4464static void tcp_collapse_ofo_queue(struct sock *sk)
4465{
4466	struct tcp_sock *tp = tcp_sk(sk);
4467	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4468	struct sk_buff *head;
4469	u32 start, end;
4470
4471	if (skb == NULL)
4472		return;
4473
4474	start = TCP_SKB_CB(skb)->seq;
4475	end = TCP_SKB_CB(skb)->end_seq;
4476	head = skb;
4477
4478	for (;;) {
4479		struct sk_buff *next = NULL;
4480
4481		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4482			next = skb_queue_next(&tp->out_of_order_queue, skb);
4483		skb = next;
4484
4485		/* Segment is terminated when we see gap or when
4486		 * we are at the end of all the queue. */
4487		if (!skb ||
4488		    after(TCP_SKB_CB(skb)->seq, end) ||
4489		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4490			tcp_collapse(sk, &tp->out_of_order_queue,
4491				     head, skb, start, end);
4492			head = skb;
4493			if (!skb)
4494				break;
4495			/* Start new segment */
4496			start = TCP_SKB_CB(skb)->seq;
4497			end = TCP_SKB_CB(skb)->end_seq;
4498		} else {
4499			if (before(TCP_SKB_CB(skb)->seq, start))
4500				start = TCP_SKB_CB(skb)->seq;
4501			if (after(TCP_SKB_CB(skb)->end_seq, end))
4502				end = TCP_SKB_CB(skb)->end_seq;
4503		}
4504	}
4505}
4506
4507/*
4508 * Purge the out-of-order queue.
4509 * Return true if queue was pruned.
4510 */
4511static bool tcp_prune_ofo_queue(struct sock *sk)
4512{
4513	struct tcp_sock *tp = tcp_sk(sk);
4514	bool res = false;
4515
4516	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4517		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4518		__skb_queue_purge(&tp->out_of_order_queue);
4519
4520		/* Reset SACK state.  A conforming SACK implementation will
4521		 * do the same at a timeout based retransmit.  When a connection
4522		 * is in a sad state like this, we care only about integrity
4523		 * of the connection not performance.
4524		 */
4525		if (tp->rx_opt.sack_ok)
4526			tcp_sack_reset(&tp->rx_opt);
4527		sk_mem_reclaim(sk);
4528		res = true;
4529	}
4530	return res;
4531}
4532
4533/* Reduce allocated memory if we can, trying to get
4534 * the socket within its memory limits again.
4535 *
4536 * Return less than zero if we should start dropping frames
4537 * until the socket owning process reads some of the data
4538 * to stabilize the situation.
4539 */
4540static int tcp_prune_queue(struct sock *sk)
4541{
4542	struct tcp_sock *tp = tcp_sk(sk);
4543
4544	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4545
4546	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4547
4548	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4549		tcp_clamp_window(sk);
4550	else if (sk_under_memory_pressure(sk))
4551		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4552
4553	tcp_collapse_ofo_queue(sk);
4554	if (!skb_queue_empty(&sk->sk_receive_queue))
4555		tcp_collapse(sk, &sk->sk_receive_queue,
4556			     skb_peek(&sk->sk_receive_queue),
4557			     NULL,
4558			     tp->copied_seq, tp->rcv_nxt);
4559	sk_mem_reclaim(sk);
4560
4561	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4562		return 0;
4563
4564	/* Collapsing did not help, destructive actions follow.
4565	 * This must not ever occur. */
4566
4567	tcp_prune_ofo_queue(sk);
4568
4569	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4570		return 0;
4571
4572	/* If we are really being abused, tell the caller to silently
4573	 * drop receive data on the floor.  It will get retransmitted
4574	 * and hopefully then we'll have sufficient space.
4575	 */
4576	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4577
4578	/* Massive buffer overcommit. */
4579	tp->pred_flags = 0;
4580	return -1;
4581}
4582
4583/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4584 * As additional protections, we do not touch cwnd in retransmission phases,
4585 * and if application hit its sndbuf limit recently.
4586 */
4587void tcp_cwnd_application_limited(struct sock *sk)
4588{
4589	struct tcp_sock *tp = tcp_sk(sk);
4590
4591	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4592	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4593		/* Limited by application or receiver window. */
4594		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4595		u32 win_used = max(tp->snd_cwnd_used, init_win);
4596		if (win_used < tp->snd_cwnd) {
4597			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4598			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4599		}
4600		tp->snd_cwnd_used = 0;
4601	}
4602	tp->snd_cwnd_stamp = tcp_time_stamp;
4603}
4604
4605static bool tcp_should_expand_sndbuf(const struct sock *sk)
4606{
4607	const struct tcp_sock *tp = tcp_sk(sk);
4608
4609	/* If the user specified a specific send buffer setting, do
4610	 * not modify it.
4611	 */
4612	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4613		return false;
4614
4615	/* If we are under global TCP memory pressure, do not expand.  */
4616	if (sk_under_memory_pressure(sk))
4617		return false;
4618
4619	/* If we are under soft global TCP memory pressure, do not expand.  */
4620	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4621		return false;
4622
4623	/* If we filled the congestion window, do not expand.  */
4624	if (tp->packets_out >= tp->snd_cwnd)
4625		return false;
4626
4627	return true;
4628}
4629
4630/* When incoming ACK allowed to free some skb from write_queue,
4631 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4632 * on the exit from tcp input handler.
4633 *
4634 * PROBLEM: sndbuf expansion does not work well with largesend.
4635 */
4636static void tcp_new_space(struct sock *sk)
4637{
4638	struct tcp_sock *tp = tcp_sk(sk);
4639
4640	if (tcp_should_expand_sndbuf(sk)) {
4641		int sndmem = SKB_TRUESIZE(max_t(u32,
4642						tp->rx_opt.mss_clamp,
4643						tp->mss_cache) +
4644					  MAX_TCP_HEADER);
4645		int demanded = max_t(unsigned int, tp->snd_cwnd,
4646				     tp->reordering + 1);
4647		sndmem *= 2 * demanded;
4648		if (sndmem > sk->sk_sndbuf)
4649			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4650		tp->snd_cwnd_stamp = tcp_time_stamp;
4651	}
4652
4653	sk->sk_write_space(sk);
4654}
4655
4656static void tcp_check_space(struct sock *sk)
4657{
4658	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4659		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4660		if (sk->sk_socket &&
4661		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4662			tcp_new_space(sk);
4663	}
4664}
4665
4666static inline void tcp_data_snd_check(struct sock *sk)
4667{
4668	tcp_push_pending_frames(sk);
4669	tcp_check_space(sk);
4670}
4671
4672/*
4673 * Check if sending an ack is needed.
4674 */
4675static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4676{
4677	struct tcp_sock *tp = tcp_sk(sk);
4678
4679	    /* More than one full frame received... */
4680	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4681	     /* ... and right edge of window advances far enough.
4682	      * (tcp_recvmsg() will send ACK otherwise). Or...
4683	      */
4684	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4685	    /* We ACK each frame or... */
4686	    tcp_in_quickack_mode(sk) ||
4687	    /* We have out of order data. */
4688	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4689		/* Then ack it now */
4690		tcp_send_ack(sk);
4691	} else {
4692		/* Else, send delayed ack. */
4693		tcp_send_delayed_ack(sk);
4694	}
4695}
4696
4697static inline void tcp_ack_snd_check(struct sock *sk)
4698{
4699	if (!inet_csk_ack_scheduled(sk)) {
4700		/* We sent a data segment already. */
4701		return;
4702	}
4703	__tcp_ack_snd_check(sk, 1);
4704}
4705
4706/*
4707 *	This routine is only called when we have urgent data
4708 *	signaled. Its the 'slow' part of tcp_urg. It could be
4709 *	moved inline now as tcp_urg is only called from one
4710 *	place. We handle URGent data wrong. We have to - as
4711 *	BSD still doesn't use the correction from RFC961.
4712 *	For 1003.1g we should support a new option TCP_STDURG to permit
4713 *	either form (or just set the sysctl tcp_stdurg).
4714 */
4715
4716static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4717{
4718	struct tcp_sock *tp = tcp_sk(sk);
4719	u32 ptr = ntohs(th->urg_ptr);
4720
4721	if (ptr && !sysctl_tcp_stdurg)
4722		ptr--;
4723	ptr += ntohl(th->seq);
4724
4725	/* Ignore urgent data that we've already seen and read. */
4726	if (after(tp->copied_seq, ptr))
4727		return;
4728
4729	/* Do not replay urg ptr.
4730	 *
4731	 * NOTE: interesting situation not covered by specs.
4732	 * Misbehaving sender may send urg ptr, pointing to segment,
4733	 * which we already have in ofo queue. We are not able to fetch
4734	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4735	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4736	 * situations. But it is worth to think about possibility of some
4737	 * DoSes using some hypothetical application level deadlock.
4738	 */
4739	if (before(ptr, tp->rcv_nxt))
4740		return;
4741
4742	/* Do we already have a newer (or duplicate) urgent pointer? */
4743	if (tp->urg_data && !after(ptr, tp->urg_seq))
4744		return;
4745
4746	/* Tell the world about our new urgent pointer. */
4747	sk_send_sigurg(sk);
4748
4749	/* We may be adding urgent data when the last byte read was
4750	 * urgent. To do this requires some care. We cannot just ignore
4751	 * tp->copied_seq since we would read the last urgent byte again
4752	 * as data, nor can we alter copied_seq until this data arrives
4753	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4754	 *
4755	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4756	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4757	 * and expect that both A and B disappear from stream. This is _wrong_.
4758	 * Though this happens in BSD with high probability, this is occasional.
4759	 * Any application relying on this is buggy. Note also, that fix "works"
4760	 * only in this artificial test. Insert some normal data between A and B and we will
4761	 * decline of BSD again. Verdict: it is better to remove to trap
4762	 * buggy users.
4763	 */
4764	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4765	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4766		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4767		tp->copied_seq++;
4768		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4769			__skb_unlink(skb, &sk->sk_receive_queue);
4770			__kfree_skb(skb);
4771		}
4772	}
4773
4774	tp->urg_data = TCP_URG_NOTYET;
4775	tp->urg_seq = ptr;
4776
4777	/* Disable header prediction. */
4778	tp->pred_flags = 0;
4779}
4780
4781/* This is the 'fast' part of urgent handling. */
4782static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4783{
4784	struct tcp_sock *tp = tcp_sk(sk);
4785
4786	/* Check if we get a new urgent pointer - normally not. */
4787	if (th->urg)
4788		tcp_check_urg(sk, th);
4789
4790	/* Do we wait for any urgent data? - normally not... */
4791	if (tp->urg_data == TCP_URG_NOTYET) {
4792		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4793			  th->syn;
4794
4795		/* Is the urgent pointer pointing into this packet? */
4796		if (ptr < skb->len) {
4797			u8 tmp;
4798			if (skb_copy_bits(skb, ptr, &tmp, 1))
4799				BUG();
4800			tp->urg_data = TCP_URG_VALID | tmp;
4801			if (!sock_flag(sk, SOCK_DEAD))
4802				sk->sk_data_ready(sk, 0);
4803		}
4804	}
4805}
4806
4807static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4808{
4809	struct tcp_sock *tp = tcp_sk(sk);
4810	int chunk = skb->len - hlen;
4811	int err;
4812
4813	local_bh_enable();
4814	if (skb_csum_unnecessary(skb))
4815		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4816	else
4817		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4818						       tp->ucopy.iov);
4819
4820	if (!err) {
4821		tp->ucopy.len -= chunk;
4822		tp->copied_seq += chunk;
4823		tcp_rcv_space_adjust(sk);
4824	}
4825
4826	local_bh_disable();
4827	return err;
4828}
4829
4830static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4831					    struct sk_buff *skb)
4832{
4833	__sum16 result;
4834
4835	if (sock_owned_by_user(sk)) {
4836		local_bh_enable();
4837		result = __tcp_checksum_complete(skb);
4838		local_bh_disable();
4839	} else {
4840		result = __tcp_checksum_complete(skb);
4841	}
4842	return result;
4843}
4844
4845static inline bool tcp_checksum_complete_user(struct sock *sk,
4846					     struct sk_buff *skb)
4847{
4848	return !skb_csum_unnecessary(skb) &&
4849	       __tcp_checksum_complete_user(sk, skb);
4850}
4851
4852#ifdef CONFIG_NET_DMA
4853static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4854				  int hlen)
4855{
4856	struct tcp_sock *tp = tcp_sk(sk);
4857	int chunk = skb->len - hlen;
4858	int dma_cookie;
4859	bool copied_early = false;
4860
4861	if (tp->ucopy.wakeup)
4862		return false;
4863
4864	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4865		tp->ucopy.dma_chan = net_dma_find_channel();
4866
4867	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4868
4869		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4870							 skb, hlen,
4871							 tp->ucopy.iov, chunk,
4872							 tp->ucopy.pinned_list);
4873
4874		if (dma_cookie < 0)
4875			goto out;
4876
4877		tp->ucopy.dma_cookie = dma_cookie;
4878		copied_early = true;
4879
4880		tp->ucopy.len -= chunk;
4881		tp->copied_seq += chunk;
4882		tcp_rcv_space_adjust(sk);
4883
4884		if ((tp->ucopy.len == 0) ||
4885		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4886		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4887			tp->ucopy.wakeup = 1;
4888			sk->sk_data_ready(sk, 0);
4889		}
4890	} else if (chunk > 0) {
4891		tp->ucopy.wakeup = 1;
4892		sk->sk_data_ready(sk, 0);
4893	}
4894out:
4895	return copied_early;
4896}
4897#endif /* CONFIG_NET_DMA */
4898
4899/* Does PAWS and seqno based validation of an incoming segment, flags will
4900 * play significant role here.
4901 */
4902static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4903				  const struct tcphdr *th, int syn_inerr)
4904{
4905	struct tcp_sock *tp = tcp_sk(sk);
4906
4907	/* RFC1323: H1. Apply PAWS check first. */
4908	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4909	    tcp_paws_discard(sk, skb)) {
4910		if (!th->rst) {
4911			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4912			tcp_send_dupack(sk, skb);
4913			goto discard;
4914		}
4915		/* Reset is accepted even if it did not pass PAWS. */
4916	}
4917
4918	/* Step 1: check sequence number */
4919	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4920		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4921		 * (RST) segments are validated by checking their SEQ-fields."
4922		 * And page 69: "If an incoming segment is not acceptable,
4923		 * an acknowledgment should be sent in reply (unless the RST
4924		 * bit is set, if so drop the segment and return)".
4925		 */
4926		if (!th->rst) {
4927			if (th->syn)
4928				goto syn_challenge;
4929			tcp_send_dupack(sk, skb);
4930		}
4931		goto discard;
4932	}
4933
4934	/* Step 2: check RST bit */
4935	if (th->rst) {
4936		/* RFC 5961 3.2 :
4937		 * If sequence number exactly matches RCV.NXT, then
4938		 *     RESET the connection
4939		 * else
4940		 *     Send a challenge ACK
4941		 */
4942		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
4943			tcp_reset(sk);
4944		else
4945			tcp_send_challenge_ack(sk);
4946		goto discard;
4947	}
4948
4949	/* step 3: check security and precedence [ignored] */
4950
4951	/* step 4: Check for a SYN
4952	 * RFC 5691 4.2 : Send a challenge ack
4953	 */
4954	if (th->syn) {
4955syn_challenge:
4956		if (syn_inerr)
4957			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4958		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
4959		tcp_send_challenge_ack(sk);
4960		goto discard;
4961	}
4962
4963	return true;
4964
4965discard:
4966	__kfree_skb(skb);
4967	return false;
4968}
4969
4970/*
4971 *	TCP receive function for the ESTABLISHED state.
4972 *
4973 *	It is split into a fast path and a slow path. The fast path is
4974 * 	disabled when:
4975 *	- A zero window was announced from us - zero window probing
4976 *        is only handled properly in the slow path.
4977 *	- Out of order segments arrived.
4978 *	- Urgent data is expected.
4979 *	- There is no buffer space left
4980 *	- Unexpected TCP flags/window values/header lengths are received
4981 *	  (detected by checking the TCP header against pred_flags)
4982 *	- Data is sent in both directions. Fast path only supports pure senders
4983 *	  or pure receivers (this means either the sequence number or the ack
4984 *	  value must stay constant)
4985 *	- Unexpected TCP option.
4986 *
4987 *	When these conditions are not satisfied it drops into a standard
4988 *	receive procedure patterned after RFC793 to handle all cases.
4989 *	The first three cases are guaranteed by proper pred_flags setting,
4990 *	the rest is checked inline. Fast processing is turned on in
4991 *	tcp_data_queue when everything is OK.
4992 */
4993int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4994			const struct tcphdr *th, unsigned int len)
4995{
4996	struct tcp_sock *tp = tcp_sk(sk);
4997
4998	if (unlikely(sk->sk_rx_dst == NULL))
4999		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5000	/*
5001	 *	Header prediction.
5002	 *	The code loosely follows the one in the famous
5003	 *	"30 instruction TCP receive" Van Jacobson mail.
5004	 *
5005	 *	Van's trick is to deposit buffers into socket queue
5006	 *	on a device interrupt, to call tcp_recv function
5007	 *	on the receive process context and checksum and copy
5008	 *	the buffer to user space. smart...
5009	 *
5010	 *	Our current scheme is not silly either but we take the
5011	 *	extra cost of the net_bh soft interrupt processing...
5012	 *	We do checksum and copy also but from device to kernel.
5013	 */
5014
5015	tp->rx_opt.saw_tstamp = 0;
5016
5017	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5018	 *	if header_prediction is to be made
5019	 *	'S' will always be tp->tcp_header_len >> 2
5020	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5021	 *  turn it off	(when there are holes in the receive
5022	 *	 space for instance)
5023	 *	PSH flag is ignored.
5024	 */
5025
5026	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5027	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5028	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5029		int tcp_header_len = tp->tcp_header_len;
5030
5031		/* Timestamp header prediction: tcp_header_len
5032		 * is automatically equal to th->doff*4 due to pred_flags
5033		 * match.
5034		 */
5035
5036		/* Check timestamp */
5037		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5038			/* No? Slow path! */
5039			if (!tcp_parse_aligned_timestamp(tp, th))
5040				goto slow_path;
5041
5042			/* If PAWS failed, check it more carefully in slow path */
5043			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5044				goto slow_path;
5045
5046			/* DO NOT update ts_recent here, if checksum fails
5047			 * and timestamp was corrupted part, it will result
5048			 * in a hung connection since we will drop all
5049			 * future packets due to the PAWS test.
5050			 */
5051		}
5052
5053		if (len <= tcp_header_len) {
5054			/* Bulk data transfer: sender */
5055			if (len == tcp_header_len) {
5056				/* Predicted packet is in window by definition.
5057				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5058				 * Hence, check seq<=rcv_wup reduces to:
5059				 */
5060				if (tcp_header_len ==
5061				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5062				    tp->rcv_nxt == tp->rcv_wup)
5063					tcp_store_ts_recent(tp);
5064
5065				/* We know that such packets are checksummed
5066				 * on entry.
5067				 */
5068				tcp_ack(sk, skb, 0);
5069				__kfree_skb(skb);
5070				tcp_data_snd_check(sk);
5071				return 0;
5072			} else { /* Header too small */
5073				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5074				goto discard;
5075			}
5076		} else {
5077			int eaten = 0;
5078			int copied_early = 0;
5079			bool fragstolen = false;
5080
5081			if (tp->copied_seq == tp->rcv_nxt &&
5082			    len - tcp_header_len <= tp->ucopy.len) {
5083#ifdef CONFIG_NET_DMA
5084				if (tp->ucopy.task == current &&
5085				    sock_owned_by_user(sk) &&
5086				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5087					copied_early = 1;
5088					eaten = 1;
5089				}
5090#endif
5091				if (tp->ucopy.task == current &&
5092				    sock_owned_by_user(sk) && !copied_early) {
5093					__set_current_state(TASK_RUNNING);
5094
5095					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5096						eaten = 1;
5097				}
5098				if (eaten) {
5099					/* Predicted packet is in window by definition.
5100					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5101					 * Hence, check seq<=rcv_wup reduces to:
5102					 */
5103					if (tcp_header_len ==
5104					    (sizeof(struct tcphdr) +
5105					     TCPOLEN_TSTAMP_ALIGNED) &&
5106					    tp->rcv_nxt == tp->rcv_wup)
5107						tcp_store_ts_recent(tp);
5108
5109					tcp_rcv_rtt_measure_ts(sk, skb);
5110
5111					__skb_pull(skb, tcp_header_len);
5112					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5113					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5114				}
5115				if (copied_early)
5116					tcp_cleanup_rbuf(sk, skb->len);
5117			}
5118			if (!eaten) {
5119				if (tcp_checksum_complete_user(sk, skb))
5120					goto csum_error;
5121
5122				if ((int)skb->truesize > sk->sk_forward_alloc)
5123					goto step5;
5124
5125				/* Predicted packet is in window by definition.
5126				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5127				 * Hence, check seq<=rcv_wup reduces to:
5128				 */
5129				if (tcp_header_len ==
5130				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5131				    tp->rcv_nxt == tp->rcv_wup)
5132					tcp_store_ts_recent(tp);
5133
5134				tcp_rcv_rtt_measure_ts(sk, skb);
5135
5136				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5137
5138				/* Bulk data transfer: receiver */
5139				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5140						      &fragstolen);
5141			}
5142
5143			tcp_event_data_recv(sk, skb);
5144
5145			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5146				/* Well, only one small jumplet in fast path... */
5147				tcp_ack(sk, skb, FLAG_DATA);
5148				tcp_data_snd_check(sk);
5149				if (!inet_csk_ack_scheduled(sk))
5150					goto no_ack;
5151			}
5152
5153			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5154				__tcp_ack_snd_check(sk, 0);
5155no_ack:
5156#ifdef CONFIG_NET_DMA
5157			if (copied_early)
5158				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5159			else
5160#endif
5161			if (eaten)
5162				kfree_skb_partial(skb, fragstolen);
5163			sk->sk_data_ready(sk, 0);
5164			return 0;
5165		}
5166	}
5167
5168slow_path:
5169	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5170		goto csum_error;
5171
5172	if (!th->ack && !th->rst)
5173		goto discard;
5174
5175	/*
5176	 *	Standard slow path.
5177	 */
5178
5179	if (!tcp_validate_incoming(sk, skb, th, 1))
5180		return 0;
5181
5182step5:
5183	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5184		goto discard;
5185
5186	tcp_rcv_rtt_measure_ts(sk, skb);
5187
5188	/* Process urgent data. */
5189	tcp_urg(sk, skb, th);
5190
5191	/* step 7: process the segment text */
5192	tcp_data_queue(sk, skb);
5193
5194	tcp_data_snd_check(sk);
5195	tcp_ack_snd_check(sk);
5196	return 0;
5197
5198csum_error:
5199	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5200	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5201
5202discard:
5203	__kfree_skb(skb);
5204	return 0;
5205}
5206EXPORT_SYMBOL(tcp_rcv_established);
5207
5208void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5209{
5210	struct tcp_sock *tp = tcp_sk(sk);
5211	struct inet_connection_sock *icsk = inet_csk(sk);
5212
5213	tcp_set_state(sk, TCP_ESTABLISHED);
5214
5215	if (skb != NULL) {
5216		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5217		security_inet_conn_established(sk, skb);
5218	}
5219
5220	/* Make sure socket is routed, for correct metrics.  */
5221	icsk->icsk_af_ops->rebuild_header(sk);
5222
5223	tcp_init_metrics(sk);
5224
5225	tcp_init_congestion_control(sk);
5226
5227	/* Prevent spurious tcp_cwnd_restart() on first data
5228	 * packet.
5229	 */
5230	tp->lsndtime = tcp_time_stamp;
5231
5232	tcp_init_buffer_space(sk);
5233
5234	if (sock_flag(sk, SOCK_KEEPOPEN))
5235		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5236
5237	if (!tp->rx_opt.snd_wscale)
5238		__tcp_fast_path_on(tp, tp->snd_wnd);
5239	else
5240		tp->pred_flags = 0;
5241
5242	if (!sock_flag(sk, SOCK_DEAD)) {
5243		sk->sk_state_change(sk);
5244		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5245	}
5246}
5247
5248static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5249				    struct tcp_fastopen_cookie *cookie)
5250{
5251	struct tcp_sock *tp = tcp_sk(sk);
5252	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5253	u16 mss = tp->rx_opt.mss_clamp;
5254	bool syn_drop;
5255
5256	if (mss == tp->rx_opt.user_mss) {
5257		struct tcp_options_received opt;
5258
5259		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5260		tcp_clear_options(&opt);
5261		opt.user_mss = opt.mss_clamp = 0;
5262		tcp_parse_options(synack, &opt, 0, NULL);
5263		mss = opt.mss_clamp;
5264	}
5265
5266	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5267		cookie->len = -1;
5268
5269	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5270	 * the remote receives only the retransmitted (regular) SYNs: either
5271	 * the original SYN-data or the corresponding SYN-ACK is lost.
5272	 */
5273	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5274
5275	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5276
5277	if (data) { /* Retransmit unacked data in SYN */
5278		tcp_for_write_queue_from(data, sk) {
5279			if (data == tcp_send_head(sk) ||
5280			    __tcp_retransmit_skb(sk, data))
5281				break;
5282		}
5283		tcp_rearm_rto(sk);
5284		return true;
5285	}
5286	tp->syn_data_acked = tp->syn_data;
5287	return false;
5288}
5289
5290static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5291					 const struct tcphdr *th, unsigned int len)
5292{
5293	struct inet_connection_sock *icsk = inet_csk(sk);
5294	struct tcp_sock *tp = tcp_sk(sk);
5295	struct tcp_fastopen_cookie foc = { .len = -1 };
5296	int saved_clamp = tp->rx_opt.mss_clamp;
5297
5298	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5299	if (tp->rx_opt.saw_tstamp)
5300		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5301
5302	if (th->ack) {
5303		/* rfc793:
5304		 * "If the state is SYN-SENT then
5305		 *    first check the ACK bit
5306		 *      If the ACK bit is set
5307		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5308		 *        a reset (unless the RST bit is set, if so drop
5309		 *        the segment and return)"
5310		 */
5311		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5312		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5313			goto reset_and_undo;
5314
5315		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5316		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5317			     tcp_time_stamp)) {
5318			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5319			goto reset_and_undo;
5320		}
5321
5322		/* Now ACK is acceptable.
5323		 *
5324		 * "If the RST bit is set
5325		 *    If the ACK was acceptable then signal the user "error:
5326		 *    connection reset", drop the segment, enter CLOSED state,
5327		 *    delete TCB, and return."
5328		 */
5329
5330		if (th->rst) {
5331			tcp_reset(sk);
5332			goto discard;
5333		}
5334
5335		/* rfc793:
5336		 *   "fifth, if neither of the SYN or RST bits is set then
5337		 *    drop the segment and return."
5338		 *
5339		 *    See note below!
5340		 *                                        --ANK(990513)
5341		 */
5342		if (!th->syn)
5343			goto discard_and_undo;
5344
5345		/* rfc793:
5346		 *   "If the SYN bit is on ...
5347		 *    are acceptable then ...
5348		 *    (our SYN has been ACKed), change the connection
5349		 *    state to ESTABLISHED..."
5350		 */
5351
5352		TCP_ECN_rcv_synack(tp, th);
5353
5354		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5355		tcp_ack(sk, skb, FLAG_SLOWPATH);
5356
5357		/* Ok.. it's good. Set up sequence numbers and
5358		 * move to established.
5359		 */
5360		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5361		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5362
5363		/* RFC1323: The window in SYN & SYN/ACK segments is
5364		 * never scaled.
5365		 */
5366		tp->snd_wnd = ntohs(th->window);
5367
5368		if (!tp->rx_opt.wscale_ok) {
5369			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5370			tp->window_clamp = min(tp->window_clamp, 65535U);
5371		}
5372
5373		if (tp->rx_opt.saw_tstamp) {
5374			tp->rx_opt.tstamp_ok	   = 1;
5375			tp->tcp_header_len =
5376				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5377			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5378			tcp_store_ts_recent(tp);
5379		} else {
5380			tp->tcp_header_len = sizeof(struct tcphdr);
5381		}
5382
5383		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5384			tcp_enable_fack(tp);
5385
5386		tcp_mtup_init(sk);
5387		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5388		tcp_initialize_rcv_mss(sk);
5389
5390		/* Remember, tcp_poll() does not lock socket!
5391		 * Change state from SYN-SENT only after copied_seq
5392		 * is initialized. */
5393		tp->copied_seq = tp->rcv_nxt;
5394
5395		smp_mb();
5396
5397		tcp_finish_connect(sk, skb);
5398
5399		if ((tp->syn_fastopen || tp->syn_data) &&
5400		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5401			return -1;
5402
5403		if (sk->sk_write_pending ||
5404		    icsk->icsk_accept_queue.rskq_defer_accept ||
5405		    icsk->icsk_ack.pingpong) {
5406			/* Save one ACK. Data will be ready after
5407			 * several ticks, if write_pending is set.
5408			 *
5409			 * It may be deleted, but with this feature tcpdumps
5410			 * look so _wonderfully_ clever, that I was not able
5411			 * to stand against the temptation 8)     --ANK
5412			 */
5413			inet_csk_schedule_ack(sk);
5414			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5415			tcp_enter_quickack_mode(sk);
5416			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5417						  TCP_DELACK_MAX, TCP_RTO_MAX);
5418
5419discard:
5420			__kfree_skb(skb);
5421			return 0;
5422		} else {
5423			tcp_send_ack(sk);
5424		}
5425		return -1;
5426	}
5427
5428	/* No ACK in the segment */
5429
5430	if (th->rst) {
5431		/* rfc793:
5432		 * "If the RST bit is set
5433		 *
5434		 *      Otherwise (no ACK) drop the segment and return."
5435		 */
5436
5437		goto discard_and_undo;
5438	}
5439
5440	/* PAWS check. */
5441	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5442	    tcp_paws_reject(&tp->rx_opt, 0))
5443		goto discard_and_undo;
5444
5445	if (th->syn) {
5446		/* We see SYN without ACK. It is attempt of
5447		 * simultaneous connect with crossed SYNs.
5448		 * Particularly, it can be connect to self.
5449		 */
5450		tcp_set_state(sk, TCP_SYN_RECV);
5451
5452		if (tp->rx_opt.saw_tstamp) {
5453			tp->rx_opt.tstamp_ok = 1;
5454			tcp_store_ts_recent(tp);
5455			tp->tcp_header_len =
5456				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5457		} else {
5458			tp->tcp_header_len = sizeof(struct tcphdr);
5459		}
5460
5461		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5462		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5463
5464		/* RFC1323: The window in SYN & SYN/ACK segments is
5465		 * never scaled.
5466		 */
5467		tp->snd_wnd    = ntohs(th->window);
5468		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5469		tp->max_window = tp->snd_wnd;
5470
5471		TCP_ECN_rcv_syn(tp, th);
5472
5473		tcp_mtup_init(sk);
5474		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5475		tcp_initialize_rcv_mss(sk);
5476
5477		tcp_send_synack(sk);
5478#if 0
5479		/* Note, we could accept data and URG from this segment.
5480		 * There are no obstacles to make this (except that we must
5481		 * either change tcp_recvmsg() to prevent it from returning data
5482		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5483		 *
5484		 * However, if we ignore data in ACKless segments sometimes,
5485		 * we have no reasons to accept it sometimes.
5486		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5487		 * is not flawless. So, discard packet for sanity.
5488		 * Uncomment this return to process the data.
5489		 */
5490		return -1;
5491#else
5492		goto discard;
5493#endif
5494	}
5495	/* "fifth, if neither of the SYN or RST bits is set then
5496	 * drop the segment and return."
5497	 */
5498
5499discard_and_undo:
5500	tcp_clear_options(&tp->rx_opt);
5501	tp->rx_opt.mss_clamp = saved_clamp;
5502	goto discard;
5503
5504reset_and_undo:
5505	tcp_clear_options(&tp->rx_opt);
5506	tp->rx_opt.mss_clamp = saved_clamp;
5507	return 1;
5508}
5509
5510/*
5511 *	This function implements the receiving procedure of RFC 793 for
5512 *	all states except ESTABLISHED and TIME_WAIT.
5513 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5514 *	address independent.
5515 */
5516
5517int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5518			  const struct tcphdr *th, unsigned int len)
5519{
5520	struct tcp_sock *tp = tcp_sk(sk);
5521	struct inet_connection_sock *icsk = inet_csk(sk);
5522	struct request_sock *req;
5523	int queued = 0;
5524	bool acceptable;
5525
5526	tp->rx_opt.saw_tstamp = 0;
5527
5528	switch (sk->sk_state) {
5529	case TCP_CLOSE:
5530		goto discard;
5531
5532	case TCP_LISTEN:
5533		if (th->ack)
5534			return 1;
5535
5536		if (th->rst)
5537			goto discard;
5538
5539		if (th->syn) {
5540			if (th->fin)
5541				goto discard;
5542			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5543				return 1;
5544
5545			/* Now we have several options: In theory there is
5546			 * nothing else in the frame. KA9Q has an option to
5547			 * send data with the syn, BSD accepts data with the
5548			 * syn up to the [to be] advertised window and
5549			 * Solaris 2.1 gives you a protocol error. For now
5550			 * we just ignore it, that fits the spec precisely
5551			 * and avoids incompatibilities. It would be nice in
5552			 * future to drop through and process the data.
5553			 *
5554			 * Now that TTCP is starting to be used we ought to
5555			 * queue this data.
5556			 * But, this leaves one open to an easy denial of
5557			 * service attack, and SYN cookies can't defend
5558			 * against this problem. So, we drop the data
5559			 * in the interest of security over speed unless
5560			 * it's still in use.
5561			 */
5562			kfree_skb(skb);
5563			return 0;
5564		}
5565		goto discard;
5566
5567	case TCP_SYN_SENT:
5568		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5569		if (queued >= 0)
5570			return queued;
5571
5572		/* Do step6 onward by hand. */
5573		tcp_urg(sk, skb, th);
5574		__kfree_skb(skb);
5575		tcp_data_snd_check(sk);
5576		return 0;
5577	}
5578
5579	req = tp->fastopen_rsk;
5580	if (req != NULL) {
5581		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5582		    sk->sk_state != TCP_FIN_WAIT1);
5583
5584		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5585			goto discard;
5586	}
5587
5588	if (!th->ack && !th->rst)
5589		goto discard;
5590
5591	if (!tcp_validate_incoming(sk, skb, th, 0))
5592		return 0;
5593
5594	/* step 5: check the ACK field */
5595	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5596				      FLAG_UPDATE_TS_RECENT) > 0;
5597
5598	switch (sk->sk_state) {
5599	case TCP_SYN_RECV:
5600		if (!acceptable)
5601			return 1;
5602
5603		/* Once we leave TCP_SYN_RECV, we no longer need req
5604		 * so release it.
5605		 */
5606		if (req) {
5607			tp->total_retrans = req->num_retrans;
5608			reqsk_fastopen_remove(sk, req, false);
5609		} else {
5610			/* Make sure socket is routed, for correct metrics. */
5611			icsk->icsk_af_ops->rebuild_header(sk);
5612			tcp_init_congestion_control(sk);
5613
5614			tcp_mtup_init(sk);
5615			tcp_init_buffer_space(sk);
5616			tp->copied_seq = tp->rcv_nxt;
5617		}
5618		smp_mb();
5619		tcp_set_state(sk, TCP_ESTABLISHED);
5620		sk->sk_state_change(sk);
5621
5622		/* Note, that this wakeup is only for marginal crossed SYN case.
5623		 * Passively open sockets are not waked up, because
5624		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5625		 */
5626		if (sk->sk_socket)
5627			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5628
5629		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5630		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5631		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5632		tcp_synack_rtt_meas(sk, req);
5633
5634		if (tp->rx_opt.tstamp_ok)
5635			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5636
5637		if (req) {
5638			/* Re-arm the timer because data may have been sent out.
5639			 * This is similar to the regular data transmission case
5640			 * when new data has just been ack'ed.
5641			 *
5642			 * (TFO) - we could try to be more aggressive and
5643			 * retransmitting any data sooner based on when they
5644			 * are sent out.
5645			 */
5646			tcp_rearm_rto(sk);
5647		} else
5648			tcp_init_metrics(sk);
5649
5650		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5651		tp->lsndtime = tcp_time_stamp;
5652
5653		tcp_initialize_rcv_mss(sk);
5654		tcp_fast_path_on(tp);
5655		break;
5656
5657	case TCP_FIN_WAIT1: {
5658		struct dst_entry *dst;
5659		int tmo;
5660
5661		/* If we enter the TCP_FIN_WAIT1 state and we are a
5662		 * Fast Open socket and this is the first acceptable
5663		 * ACK we have received, this would have acknowledged
5664		 * our SYNACK so stop the SYNACK timer.
5665		 */
5666		if (req != NULL) {
5667			/* Return RST if ack_seq is invalid.
5668			 * Note that RFC793 only says to generate a
5669			 * DUPACK for it but for TCP Fast Open it seems
5670			 * better to treat this case like TCP_SYN_RECV
5671			 * above.
5672			 */
5673			if (!acceptable)
5674				return 1;
5675			/* We no longer need the request sock. */
5676			reqsk_fastopen_remove(sk, req, false);
5677			tcp_rearm_rto(sk);
5678		}
5679		if (tp->snd_una != tp->write_seq)
5680			break;
5681
5682		tcp_set_state(sk, TCP_FIN_WAIT2);
5683		sk->sk_shutdown |= SEND_SHUTDOWN;
5684
5685		dst = __sk_dst_get(sk);
5686		if (dst)
5687			dst_confirm(dst);
5688
5689		if (!sock_flag(sk, SOCK_DEAD)) {
5690			/* Wake up lingering close() */
5691			sk->sk_state_change(sk);
5692			break;
5693		}
5694
5695		if (tp->linger2 < 0 ||
5696		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5697		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5698			tcp_done(sk);
5699			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5700			return 1;
5701		}
5702
5703		tmo = tcp_fin_time(sk);
5704		if (tmo > TCP_TIMEWAIT_LEN) {
5705			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5706		} else if (th->fin || sock_owned_by_user(sk)) {
5707			/* Bad case. We could lose such FIN otherwise.
5708			 * It is not a big problem, but it looks confusing
5709			 * and not so rare event. We still can lose it now,
5710			 * if it spins in bh_lock_sock(), but it is really
5711			 * marginal case.
5712			 */
5713			inet_csk_reset_keepalive_timer(sk, tmo);
5714		} else {
5715			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5716			goto discard;
5717		}
5718		break;
5719	}
5720
5721	case TCP_CLOSING:
5722		if (tp->snd_una == tp->write_seq) {
5723			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5724			goto discard;
5725		}
5726		break;
5727
5728	case TCP_LAST_ACK:
5729		if (tp->snd_una == tp->write_seq) {
5730			tcp_update_metrics(sk);
5731			tcp_done(sk);
5732			goto discard;
5733		}
5734		break;
5735	}
5736
5737	/* step 6: check the URG bit */
5738	tcp_urg(sk, skb, th);
5739
5740	/* step 7: process the segment text */
5741	switch (sk->sk_state) {
5742	case TCP_CLOSE_WAIT:
5743	case TCP_CLOSING:
5744	case TCP_LAST_ACK:
5745		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5746			break;
5747	case TCP_FIN_WAIT1:
5748	case TCP_FIN_WAIT2:
5749		/* RFC 793 says to queue data in these states,
5750		 * RFC 1122 says we MUST send a reset.
5751		 * BSD 4.4 also does reset.
5752		 */
5753		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5754			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5755			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5756				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5757				tcp_reset(sk);
5758				return 1;
5759			}
5760		}
5761		/* Fall through */
5762	case TCP_ESTABLISHED:
5763		tcp_data_queue(sk, skb);
5764		queued = 1;
5765		break;
5766	}
5767
5768	/* tcp_data could move socket to TIME-WAIT */
5769	if (sk->sk_state != TCP_CLOSE) {
5770		tcp_data_snd_check(sk);
5771		tcp_ack_snd_check(sk);
5772	}
5773
5774	if (!queued) {
5775discard:
5776		__kfree_skb(skb);
5777	}
5778	return 0;
5779}
5780EXPORT_SYMBOL(tcp_rcv_state_process);
5781