tcp_input.c revision 651913ce9de2bbcedef608c5d6cf39c244248509
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 *		Pedro Roque	:	Fast Retransmit/Recovery.
24 *					Two receive queues.
25 *					Retransmit queue handled by TCP.
26 *					Better retransmit timer handling.
27 *					New congestion avoidance.
28 *					Header prediction.
29 *					Variable renaming.
30 *
31 *		Eric		:	Fast Retransmit.
32 *		Randy Scott	:	MSS option defines.
33 *		Eric Schenk	:	Fixes to slow start algorithm.
34 *		Eric Schenk	:	Yet another double ACK bug.
35 *		Eric Schenk	:	Delayed ACK bug fixes.
36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37 *		David S. Miller	:	Don't allow zero congestion window.
38 *		Eric Schenk	:	Fix retransmitter so that it sends
39 *					next packet on ack of previous packet.
40 *		Andi Kleen	:	Moved open_request checking here
41 *					and process RSTs for open_requests.
42 *		Andi Kleen	:	Better prune_queue, and other fixes.
43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
44 *					timestamps.
45 *		Andrey Savochkin:	Check sequence numbers correctly when
46 *					removing SACKs due to in sequence incoming
47 *					data segments.
48 *		Andi Kleen:		Make sure we never ack data there is not
49 *					enough room for. Also make this condition
50 *					a fatal error if it might still happen.
51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52 *					connections with MSS<min(MTU,ann. MSS)
53 *					work without delayed acks.
54 *		Andi Kleen:		Process packets with PSH set in the
55 *					fast path.
56 *		J Hadi Salim:		ECN support
57 *	 	Andrei Gurtov,
58 *		Pasi Sarolahti,
59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60 *					engine. Lots of bugs are found.
61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62 */
63
64#define pr_fmt(fmt) "TCP: " fmt
65
66#include <linux/mm.h>
67#include <linux/slab.h>
68#include <linux/module.h>
69#include <linux/sysctl.h>
70#include <linux/kernel.h>
71#include <net/dst.h>
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
76#include <net/netdma.h>
77
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83EXPORT_SYMBOL(sysctl_tcp_reordering);
84int sysctl_tcp_ecn __read_mostly = 2;
85EXPORT_SYMBOL(sysctl_tcp_ecn);
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
88int sysctl_tcp_adv_win_scale __read_mostly = 2;
89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91int sysctl_tcp_stdurg __read_mostly;
92int sysctl_tcp_rfc1337 __read_mostly;
93int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94int sysctl_tcp_frto __read_mostly = 2;
95int sysctl_tcp_frto_response __read_mostly;
96int sysctl_tcp_nometrics_save __read_mostly;
97
98int sysctl_tcp_thin_dupack __read_mostly;
99
100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101int sysctl_tcp_abc __read_mostly;
102
103#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
104#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
105#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
106#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
107#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
108#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
109#define FLAG_ECE		0x40 /* ECE in this ACK				*/
110#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
111#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
112#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
114#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
115#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
116
117#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
120#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
121#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122
123#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125
126/* Adapt the MSS value used to make delayed ack decision to the
127 * real world.
128 */
129static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130{
131	struct inet_connection_sock *icsk = inet_csk(sk);
132	const unsigned int lss = icsk->icsk_ack.last_seg_size;
133	unsigned int len;
134
135	icsk->icsk_ack.last_seg_size = 0;
136
137	/* skb->len may jitter because of SACKs, even if peer
138	 * sends good full-sized frames.
139	 */
140	len = skb_shinfo(skb)->gso_size ? : skb->len;
141	if (len >= icsk->icsk_ack.rcv_mss) {
142		icsk->icsk_ack.rcv_mss = len;
143	} else {
144		/* Otherwise, we make more careful check taking into account,
145		 * that SACKs block is variable.
146		 *
147		 * "len" is invariant segment length, including TCP header.
148		 */
149		len += skb->data - skb_transport_header(skb);
150		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151		    /* If PSH is not set, packet should be
152		     * full sized, provided peer TCP is not badly broken.
153		     * This observation (if it is correct 8)) allows
154		     * to handle super-low mtu links fairly.
155		     */
156		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158			/* Subtract also invariant (if peer is RFC compliant),
159			 * tcp header plus fixed timestamp option length.
160			 * Resulting "len" is MSS free of SACK jitter.
161			 */
162			len -= tcp_sk(sk)->tcp_header_len;
163			icsk->icsk_ack.last_seg_size = len;
164			if (len == lss) {
165				icsk->icsk_ack.rcv_mss = len;
166				return;
167			}
168		}
169		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172	}
173}
174
175static void tcp_incr_quickack(struct sock *sk)
176{
177	struct inet_connection_sock *icsk = inet_csk(sk);
178	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179
180	if (quickacks == 0)
181		quickacks = 2;
182	if (quickacks > icsk->icsk_ack.quick)
183		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184}
185
186static void tcp_enter_quickack_mode(struct sock *sk)
187{
188	struct inet_connection_sock *icsk = inet_csk(sk);
189	tcp_incr_quickack(sk);
190	icsk->icsk_ack.pingpong = 0;
191	icsk->icsk_ack.ato = TCP_ATO_MIN;
192}
193
194/* Send ACKs quickly, if "quick" count is not exhausted
195 * and the session is not interactive.
196 */
197
198static inline int tcp_in_quickack_mode(const struct sock *sk)
199{
200	const struct inet_connection_sock *icsk = inet_csk(sk);
201	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202}
203
204static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205{
206	if (tp->ecn_flags & TCP_ECN_OK)
207		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208}
209
210static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211{
212	if (tcp_hdr(skb)->cwr)
213		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217{
218	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219}
220
221static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222{
223	if (!(tp->ecn_flags & TCP_ECN_OK))
224		return;
225
226	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
227	case INET_ECN_NOT_ECT:
228		/* Funny extension: if ECT is not set on a segment,
229		 * and we already seen ECT on a previous segment,
230		 * it is probably a retransmit.
231		 */
232		if (tp->ecn_flags & TCP_ECN_SEEN)
233			tcp_enter_quickack_mode((struct sock *)tp);
234		break;
235	case INET_ECN_CE:
236		tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
237		/* fallinto */
238	default:
239		tp->ecn_flags |= TCP_ECN_SEEN;
240	}
241}
242
243static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
244{
245	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
246		tp->ecn_flags &= ~TCP_ECN_OK;
247}
248
249static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
250{
251	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
252		tp->ecn_flags &= ~TCP_ECN_OK;
253}
254
255static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
256{
257	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
258		return 1;
259	return 0;
260}
261
262/* Buffer size and advertised window tuning.
263 *
264 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
265 */
266
267static void tcp_fixup_sndbuf(struct sock *sk)
268{
269	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
270
271	sndmem *= TCP_INIT_CWND;
272	if (sk->sk_sndbuf < sndmem)
273		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
274}
275
276/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
277 *
278 * All tcp_full_space() is split to two parts: "network" buffer, allocated
279 * forward and advertised in receiver window (tp->rcv_wnd) and
280 * "application buffer", required to isolate scheduling/application
281 * latencies from network.
282 * window_clamp is maximal advertised window. It can be less than
283 * tcp_full_space(), in this case tcp_full_space() - window_clamp
284 * is reserved for "application" buffer. The less window_clamp is
285 * the smoother our behaviour from viewpoint of network, but the lower
286 * throughput and the higher sensitivity of the connection to losses. 8)
287 *
288 * rcv_ssthresh is more strict window_clamp used at "slow start"
289 * phase to predict further behaviour of this connection.
290 * It is used for two goals:
291 * - to enforce header prediction at sender, even when application
292 *   requires some significant "application buffer". It is check #1.
293 * - to prevent pruning of receive queue because of misprediction
294 *   of receiver window. Check #2.
295 *
296 * The scheme does not work when sender sends good segments opening
297 * window and then starts to feed us spaghetti. But it should work
298 * in common situations. Otherwise, we have to rely on queue collapsing.
299 */
300
301/* Slow part of check#2. */
302static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
303{
304	struct tcp_sock *tp = tcp_sk(sk);
305	/* Optimize this! */
306	int truesize = tcp_win_from_space(skb->truesize) >> 1;
307	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
308
309	while (tp->rcv_ssthresh <= window) {
310		if (truesize <= skb->len)
311			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
312
313		truesize >>= 1;
314		window >>= 1;
315	}
316	return 0;
317}
318
319static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
320{
321	struct tcp_sock *tp = tcp_sk(sk);
322
323	/* Check #1 */
324	if (tp->rcv_ssthresh < tp->window_clamp &&
325	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
326	    !sk_under_memory_pressure(sk)) {
327		int incr;
328
329		/* Check #2. Increase window, if skb with such overhead
330		 * will fit to rcvbuf in future.
331		 */
332		if (tcp_win_from_space(skb->truesize) <= skb->len)
333			incr = 2 * tp->advmss;
334		else
335			incr = __tcp_grow_window(sk, skb);
336
337		if (incr) {
338			incr = max_t(int, incr, 2 * skb->len);
339			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
340					       tp->window_clamp);
341			inet_csk(sk)->icsk_ack.quick |= 1;
342		}
343	}
344}
345
346/* 3. Tuning rcvbuf, when connection enters established state. */
347
348static void tcp_fixup_rcvbuf(struct sock *sk)
349{
350	u32 mss = tcp_sk(sk)->advmss;
351	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
352	int rcvmem;
353
354	/* Limit to 10 segments if mss <= 1460,
355	 * or 14600/mss segments, with a minimum of two segments.
356	 */
357	if (mss > 1460)
358		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
359
360	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
361	while (tcp_win_from_space(rcvmem) < mss)
362		rcvmem += 128;
363
364	rcvmem *= icwnd;
365
366	if (sk->sk_rcvbuf < rcvmem)
367		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
368}
369
370/* 4. Try to fixup all. It is made immediately after connection enters
371 *    established state.
372 */
373static void tcp_init_buffer_space(struct sock *sk)
374{
375	struct tcp_sock *tp = tcp_sk(sk);
376	int maxwin;
377
378	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
379		tcp_fixup_rcvbuf(sk);
380	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
381		tcp_fixup_sndbuf(sk);
382
383	tp->rcvq_space.space = tp->rcv_wnd;
384
385	maxwin = tcp_full_space(sk);
386
387	if (tp->window_clamp >= maxwin) {
388		tp->window_clamp = maxwin;
389
390		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
391			tp->window_clamp = max(maxwin -
392					       (maxwin >> sysctl_tcp_app_win),
393					       4 * tp->advmss);
394	}
395
396	/* Force reservation of one segment. */
397	if (sysctl_tcp_app_win &&
398	    tp->window_clamp > 2 * tp->advmss &&
399	    tp->window_clamp + tp->advmss > maxwin)
400		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
401
402	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
403	tp->snd_cwnd_stamp = tcp_time_stamp;
404}
405
406/* 5. Recalculate window clamp after socket hit its memory bounds. */
407static void tcp_clamp_window(struct sock *sk)
408{
409	struct tcp_sock *tp = tcp_sk(sk);
410	struct inet_connection_sock *icsk = inet_csk(sk);
411
412	icsk->icsk_ack.quick = 0;
413
414	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
415	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
416	    !sk_under_memory_pressure(sk) &&
417	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
418		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
419				    sysctl_tcp_rmem[2]);
420	}
421	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
422		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
423}
424
425/* Initialize RCV_MSS value.
426 * RCV_MSS is an our guess about MSS used by the peer.
427 * We haven't any direct information about the MSS.
428 * It's better to underestimate the RCV_MSS rather than overestimate.
429 * Overestimations make us ACKing less frequently than needed.
430 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
431 */
432void tcp_initialize_rcv_mss(struct sock *sk)
433{
434	const struct tcp_sock *tp = tcp_sk(sk);
435	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
436
437	hint = min(hint, tp->rcv_wnd / 2);
438	hint = min(hint, TCP_MSS_DEFAULT);
439	hint = max(hint, TCP_MIN_MSS);
440
441	inet_csk(sk)->icsk_ack.rcv_mss = hint;
442}
443EXPORT_SYMBOL(tcp_initialize_rcv_mss);
444
445/* Receiver "autotuning" code.
446 *
447 * The algorithm for RTT estimation w/o timestamps is based on
448 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
449 * <http://public.lanl.gov/radiant/pubs.html#DRS>
450 *
451 * More detail on this code can be found at
452 * <http://staff.psc.edu/jheffner/>,
453 * though this reference is out of date.  A new paper
454 * is pending.
455 */
456static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
457{
458	u32 new_sample = tp->rcv_rtt_est.rtt;
459	long m = sample;
460
461	if (m == 0)
462		m = 1;
463
464	if (new_sample != 0) {
465		/* If we sample in larger samples in the non-timestamp
466		 * case, we could grossly overestimate the RTT especially
467		 * with chatty applications or bulk transfer apps which
468		 * are stalled on filesystem I/O.
469		 *
470		 * Also, since we are only going for a minimum in the
471		 * non-timestamp case, we do not smooth things out
472		 * else with timestamps disabled convergence takes too
473		 * long.
474		 */
475		if (!win_dep) {
476			m -= (new_sample >> 3);
477			new_sample += m;
478		} else {
479			m <<= 3;
480			if (m < new_sample)
481				new_sample = m;
482		}
483	} else {
484		/* No previous measure. */
485		new_sample = m << 3;
486	}
487
488	if (tp->rcv_rtt_est.rtt != new_sample)
489		tp->rcv_rtt_est.rtt = new_sample;
490}
491
492static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
493{
494	if (tp->rcv_rtt_est.time == 0)
495		goto new_measure;
496	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
497		return;
498	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
499
500new_measure:
501	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
502	tp->rcv_rtt_est.time = tcp_time_stamp;
503}
504
505static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
506					  const struct sk_buff *skb)
507{
508	struct tcp_sock *tp = tcp_sk(sk);
509	if (tp->rx_opt.rcv_tsecr &&
510	    (TCP_SKB_CB(skb)->end_seq -
511	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
512		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
513}
514
515/*
516 * This function should be called every time data is copied to user space.
517 * It calculates the appropriate TCP receive buffer space.
518 */
519void tcp_rcv_space_adjust(struct sock *sk)
520{
521	struct tcp_sock *tp = tcp_sk(sk);
522	int time;
523	int space;
524
525	if (tp->rcvq_space.time == 0)
526		goto new_measure;
527
528	time = tcp_time_stamp - tp->rcvq_space.time;
529	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
530		return;
531
532	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
533
534	space = max(tp->rcvq_space.space, space);
535
536	if (tp->rcvq_space.space != space) {
537		int rcvmem;
538
539		tp->rcvq_space.space = space;
540
541		if (sysctl_tcp_moderate_rcvbuf &&
542		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
543			int new_clamp = space;
544
545			/* Receive space grows, normalize in order to
546			 * take into account packet headers and sk_buff
547			 * structure overhead.
548			 */
549			space /= tp->advmss;
550			if (!space)
551				space = 1;
552			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
553			while (tcp_win_from_space(rcvmem) < tp->advmss)
554				rcvmem += 128;
555			space *= rcvmem;
556			space = min(space, sysctl_tcp_rmem[2]);
557			if (space > sk->sk_rcvbuf) {
558				sk->sk_rcvbuf = space;
559
560				/* Make the window clamp follow along.  */
561				tp->window_clamp = new_clamp;
562			}
563		}
564	}
565
566new_measure:
567	tp->rcvq_space.seq = tp->copied_seq;
568	tp->rcvq_space.time = tcp_time_stamp;
569}
570
571/* There is something which you must keep in mind when you analyze the
572 * behavior of the tp->ato delayed ack timeout interval.  When a
573 * connection starts up, we want to ack as quickly as possible.  The
574 * problem is that "good" TCP's do slow start at the beginning of data
575 * transmission.  The means that until we send the first few ACK's the
576 * sender will sit on his end and only queue most of his data, because
577 * he can only send snd_cwnd unacked packets at any given time.  For
578 * each ACK we send, he increments snd_cwnd and transmits more of his
579 * queue.  -DaveM
580 */
581static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
582{
583	struct tcp_sock *tp = tcp_sk(sk);
584	struct inet_connection_sock *icsk = inet_csk(sk);
585	u32 now;
586
587	inet_csk_schedule_ack(sk);
588
589	tcp_measure_rcv_mss(sk, skb);
590
591	tcp_rcv_rtt_measure(tp);
592
593	now = tcp_time_stamp;
594
595	if (!icsk->icsk_ack.ato) {
596		/* The _first_ data packet received, initialize
597		 * delayed ACK engine.
598		 */
599		tcp_incr_quickack(sk);
600		icsk->icsk_ack.ato = TCP_ATO_MIN;
601	} else {
602		int m = now - icsk->icsk_ack.lrcvtime;
603
604		if (m <= TCP_ATO_MIN / 2) {
605			/* The fastest case is the first. */
606			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
607		} else if (m < icsk->icsk_ack.ato) {
608			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
609			if (icsk->icsk_ack.ato > icsk->icsk_rto)
610				icsk->icsk_ack.ato = icsk->icsk_rto;
611		} else if (m > icsk->icsk_rto) {
612			/* Too long gap. Apparently sender failed to
613			 * restart window, so that we send ACKs quickly.
614			 */
615			tcp_incr_quickack(sk);
616			sk_mem_reclaim(sk);
617		}
618	}
619	icsk->icsk_ack.lrcvtime = now;
620
621	TCP_ECN_check_ce(tp, skb);
622
623	if (skb->len >= 128)
624		tcp_grow_window(sk, skb);
625}
626
627/* Called to compute a smoothed rtt estimate. The data fed to this
628 * routine either comes from timestamps, or from segments that were
629 * known _not_ to have been retransmitted [see Karn/Partridge
630 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
631 * piece by Van Jacobson.
632 * NOTE: the next three routines used to be one big routine.
633 * To save cycles in the RFC 1323 implementation it was better to break
634 * it up into three procedures. -- erics
635 */
636static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
637{
638	struct tcp_sock *tp = tcp_sk(sk);
639	long m = mrtt; /* RTT */
640
641	/*	The following amusing code comes from Jacobson's
642	 *	article in SIGCOMM '88.  Note that rtt and mdev
643	 *	are scaled versions of rtt and mean deviation.
644	 *	This is designed to be as fast as possible
645	 *	m stands for "measurement".
646	 *
647	 *	On a 1990 paper the rto value is changed to:
648	 *	RTO = rtt + 4 * mdev
649	 *
650	 * Funny. This algorithm seems to be very broken.
651	 * These formulae increase RTO, when it should be decreased, increase
652	 * too slowly, when it should be increased quickly, decrease too quickly
653	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
654	 * does not matter how to _calculate_ it. Seems, it was trap
655	 * that VJ failed to avoid. 8)
656	 */
657	if (m == 0)
658		m = 1;
659	if (tp->srtt != 0) {
660		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
661		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
662		if (m < 0) {
663			m = -m;		/* m is now abs(error) */
664			m -= (tp->mdev >> 2);   /* similar update on mdev */
665			/* This is similar to one of Eifel findings.
666			 * Eifel blocks mdev updates when rtt decreases.
667			 * This solution is a bit different: we use finer gain
668			 * for mdev in this case (alpha*beta).
669			 * Like Eifel it also prevents growth of rto,
670			 * but also it limits too fast rto decreases,
671			 * happening in pure Eifel.
672			 */
673			if (m > 0)
674				m >>= 3;
675		} else {
676			m -= (tp->mdev >> 2);   /* similar update on mdev */
677		}
678		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
679		if (tp->mdev > tp->mdev_max) {
680			tp->mdev_max = tp->mdev;
681			if (tp->mdev_max > tp->rttvar)
682				tp->rttvar = tp->mdev_max;
683		}
684		if (after(tp->snd_una, tp->rtt_seq)) {
685			if (tp->mdev_max < tp->rttvar)
686				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
687			tp->rtt_seq = tp->snd_nxt;
688			tp->mdev_max = tcp_rto_min(sk);
689		}
690	} else {
691		/* no previous measure. */
692		tp->srtt = m << 3;	/* take the measured time to be rtt */
693		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
694		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
695		tp->rtt_seq = tp->snd_nxt;
696	}
697}
698
699/* Calculate rto without backoff.  This is the second half of Van Jacobson's
700 * routine referred to above.
701 */
702static inline void tcp_set_rto(struct sock *sk)
703{
704	const struct tcp_sock *tp = tcp_sk(sk);
705	/* Old crap is replaced with new one. 8)
706	 *
707	 * More seriously:
708	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
709	 *    It cannot be less due to utterly erratic ACK generation made
710	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
711	 *    to do with delayed acks, because at cwnd>2 true delack timeout
712	 *    is invisible. Actually, Linux-2.4 also generates erratic
713	 *    ACKs in some circumstances.
714	 */
715	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
716
717	/* 2. Fixups made earlier cannot be right.
718	 *    If we do not estimate RTO correctly without them,
719	 *    all the algo is pure shit and should be replaced
720	 *    with correct one. It is exactly, which we pretend to do.
721	 */
722
723	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
724	 * guarantees that rto is higher.
725	 */
726	tcp_bound_rto(sk);
727}
728
729/* Save metrics learned by this TCP session.
730   This function is called only, when TCP finishes successfully
731   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
732 */
733void tcp_update_metrics(struct sock *sk)
734{
735	struct tcp_sock *tp = tcp_sk(sk);
736	struct dst_entry *dst = __sk_dst_get(sk);
737
738	if (sysctl_tcp_nometrics_save)
739		return;
740
741	dst_confirm(dst);
742
743	if (dst && (dst->flags & DST_HOST)) {
744		const struct inet_connection_sock *icsk = inet_csk(sk);
745		int m;
746		unsigned long rtt;
747
748		if (icsk->icsk_backoff || !tp->srtt) {
749			/* This session failed to estimate rtt. Why?
750			 * Probably, no packets returned in time.
751			 * Reset our results.
752			 */
753			if (!(dst_metric_locked(dst, RTAX_RTT)))
754				dst_metric_set(dst, RTAX_RTT, 0);
755			return;
756		}
757
758		rtt = dst_metric_rtt(dst, RTAX_RTT);
759		m = rtt - tp->srtt;
760
761		/* If newly calculated rtt larger than stored one,
762		 * store new one. Otherwise, use EWMA. Remember,
763		 * rtt overestimation is always better than underestimation.
764		 */
765		if (!(dst_metric_locked(dst, RTAX_RTT))) {
766			if (m <= 0)
767				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
768			else
769				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
770		}
771
772		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
773			unsigned long var;
774			if (m < 0)
775				m = -m;
776
777			/* Scale deviation to rttvar fixed point */
778			m >>= 1;
779			if (m < tp->mdev)
780				m = tp->mdev;
781
782			var = dst_metric_rtt(dst, RTAX_RTTVAR);
783			if (m >= var)
784				var = m;
785			else
786				var -= (var - m) >> 2;
787
788			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
789		}
790
791		if (tcp_in_initial_slowstart(tp)) {
792			/* Slow start still did not finish. */
793			if (dst_metric(dst, RTAX_SSTHRESH) &&
794			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
795			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
796				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
797			if (!dst_metric_locked(dst, RTAX_CWND) &&
798			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
799				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
800		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
801			   icsk->icsk_ca_state == TCP_CA_Open) {
802			/* Cong. avoidance phase, cwnd is reliable. */
803			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
804				dst_metric_set(dst, RTAX_SSTHRESH,
805					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
806			if (!dst_metric_locked(dst, RTAX_CWND))
807				dst_metric_set(dst, RTAX_CWND,
808					       (dst_metric(dst, RTAX_CWND) +
809						tp->snd_cwnd) >> 1);
810		} else {
811			/* Else slow start did not finish, cwnd is non-sense,
812			   ssthresh may be also invalid.
813			 */
814			if (!dst_metric_locked(dst, RTAX_CWND))
815				dst_metric_set(dst, RTAX_CWND,
816					       (dst_metric(dst, RTAX_CWND) +
817						tp->snd_ssthresh) >> 1);
818			if (dst_metric(dst, RTAX_SSTHRESH) &&
819			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
820			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
821				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
822		}
823
824		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
825			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
826			    tp->reordering != sysctl_tcp_reordering)
827				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
828		}
829	}
830}
831
832__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
833{
834	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
835
836	if (!cwnd)
837		cwnd = TCP_INIT_CWND;
838	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
839}
840
841/* Set slow start threshold and cwnd not falling to slow start */
842void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
843{
844	struct tcp_sock *tp = tcp_sk(sk);
845	const struct inet_connection_sock *icsk = inet_csk(sk);
846
847	tp->prior_ssthresh = 0;
848	tp->bytes_acked = 0;
849	if (icsk->icsk_ca_state < TCP_CA_CWR) {
850		tp->undo_marker = 0;
851		if (set_ssthresh)
852			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
853		tp->snd_cwnd = min(tp->snd_cwnd,
854				   tcp_packets_in_flight(tp) + 1U);
855		tp->snd_cwnd_cnt = 0;
856		tp->high_seq = tp->snd_nxt;
857		tp->snd_cwnd_stamp = tcp_time_stamp;
858		TCP_ECN_queue_cwr(tp);
859
860		tcp_set_ca_state(sk, TCP_CA_CWR);
861	}
862}
863
864/*
865 * Packet counting of FACK is based on in-order assumptions, therefore TCP
866 * disables it when reordering is detected
867 */
868static void tcp_disable_fack(struct tcp_sock *tp)
869{
870	/* RFC3517 uses different metric in lost marker => reset on change */
871	if (tcp_is_fack(tp))
872		tp->lost_skb_hint = NULL;
873	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
874}
875
876/* Take a notice that peer is sending D-SACKs */
877static void tcp_dsack_seen(struct tcp_sock *tp)
878{
879	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
880}
881
882/* Initialize metrics on socket. */
883
884static void tcp_init_metrics(struct sock *sk)
885{
886	struct tcp_sock *tp = tcp_sk(sk);
887	struct dst_entry *dst = __sk_dst_get(sk);
888
889	if (dst == NULL)
890		goto reset;
891
892	dst_confirm(dst);
893
894	if (dst_metric_locked(dst, RTAX_CWND))
895		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
896	if (dst_metric(dst, RTAX_SSTHRESH)) {
897		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
898		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
899			tp->snd_ssthresh = tp->snd_cwnd_clamp;
900	} else {
901		/* ssthresh may have been reduced unnecessarily during.
902		 * 3WHS. Restore it back to its initial default.
903		 */
904		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
905	}
906	if (dst_metric(dst, RTAX_REORDERING) &&
907	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
908		tcp_disable_fack(tp);
909		tp->reordering = dst_metric(dst, RTAX_REORDERING);
910	}
911
912	if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
913		goto reset;
914
915	/* Initial rtt is determined from SYN,SYN-ACK.
916	 * The segment is small and rtt may appear much
917	 * less than real one. Use per-dst memory
918	 * to make it more realistic.
919	 *
920	 * A bit of theory. RTT is time passed after "normal" sized packet
921	 * is sent until it is ACKed. In normal circumstances sending small
922	 * packets force peer to delay ACKs and calculation is correct too.
923	 * The algorithm is adaptive and, provided we follow specs, it
924	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
925	 * tricks sort of "quick acks" for time long enough to decrease RTT
926	 * to low value, and then abruptly stops to do it and starts to delay
927	 * ACKs, wait for troubles.
928	 */
929	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
930		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
931		tp->rtt_seq = tp->snd_nxt;
932	}
933	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
934		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
935		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
936	}
937	tcp_set_rto(sk);
938reset:
939	if (tp->srtt == 0) {
940		/* RFC2988bis: We've failed to get a valid RTT sample from
941		 * 3WHS. This is most likely due to retransmission,
942		 * including spurious one. Reset the RTO back to 3secs
943		 * from the more aggressive 1sec to avoid more spurious
944		 * retransmission.
945		 */
946		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
947		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
948	}
949	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
950	 * retransmitted. In light of RFC2988bis' more aggressive 1sec
951	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
952	 * retransmission has occurred.
953	 */
954	if (tp->total_retrans > 1)
955		tp->snd_cwnd = 1;
956	else
957		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
958	tp->snd_cwnd_stamp = tcp_time_stamp;
959}
960
961static void tcp_update_reordering(struct sock *sk, const int metric,
962				  const int ts)
963{
964	struct tcp_sock *tp = tcp_sk(sk);
965	if (metric > tp->reordering) {
966		int mib_idx;
967
968		tp->reordering = min(TCP_MAX_REORDERING, metric);
969
970		/* This exciting event is worth to be remembered. 8) */
971		if (ts)
972			mib_idx = LINUX_MIB_TCPTSREORDER;
973		else if (tcp_is_reno(tp))
974			mib_idx = LINUX_MIB_TCPRENOREORDER;
975		else if (tcp_is_fack(tp))
976			mib_idx = LINUX_MIB_TCPFACKREORDER;
977		else
978			mib_idx = LINUX_MIB_TCPSACKREORDER;
979
980		NET_INC_STATS_BH(sock_net(sk), mib_idx);
981#if FASTRETRANS_DEBUG > 1
982		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
983		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
984		       tp->reordering,
985		       tp->fackets_out,
986		       tp->sacked_out,
987		       tp->undo_marker ? tp->undo_retrans : 0);
988#endif
989		tcp_disable_fack(tp);
990	}
991}
992
993/* This must be called before lost_out is incremented */
994static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
995{
996	if ((tp->retransmit_skb_hint == NULL) ||
997	    before(TCP_SKB_CB(skb)->seq,
998		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
999		tp->retransmit_skb_hint = skb;
1000
1001	if (!tp->lost_out ||
1002	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1003		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1004}
1005
1006static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1007{
1008	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1009		tcp_verify_retransmit_hint(tp, skb);
1010
1011		tp->lost_out += tcp_skb_pcount(skb);
1012		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013	}
1014}
1015
1016static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1017					    struct sk_buff *skb)
1018{
1019	tcp_verify_retransmit_hint(tp, skb);
1020
1021	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1022		tp->lost_out += tcp_skb_pcount(skb);
1023		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1024	}
1025}
1026
1027/* This procedure tags the retransmission queue when SACKs arrive.
1028 *
1029 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1030 * Packets in queue with these bits set are counted in variables
1031 * sacked_out, retrans_out and lost_out, correspondingly.
1032 *
1033 * Valid combinations are:
1034 * Tag  InFlight	Description
1035 * 0	1		- orig segment is in flight.
1036 * S	0		- nothing flies, orig reached receiver.
1037 * L	0		- nothing flies, orig lost by net.
1038 * R	2		- both orig and retransmit are in flight.
1039 * L|R	1		- orig is lost, retransmit is in flight.
1040 * S|R  1		- orig reached receiver, retrans is still in flight.
1041 * (L|S|R is logically valid, it could occur when L|R is sacked,
1042 *  but it is equivalent to plain S and code short-curcuits it to S.
1043 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1044 *
1045 * These 6 states form finite state machine, controlled by the following events:
1046 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1047 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1048 * 3. Loss detection event of two flavors:
1049 *	A. Scoreboard estimator decided the packet is lost.
1050 *	   A'. Reno "three dupacks" marks head of queue lost.
1051 *	   A''. Its FACK modification, head until snd.fack is lost.
1052 *	B. SACK arrives sacking SND.NXT at the moment, when the
1053 *	   segment was retransmitted.
1054 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1055 *
1056 * It is pleasant to note, that state diagram turns out to be commutative,
1057 * so that we are allowed not to be bothered by order of our actions,
1058 * when multiple events arrive simultaneously. (see the function below).
1059 *
1060 * Reordering detection.
1061 * --------------------
1062 * Reordering metric is maximal distance, which a packet can be displaced
1063 * in packet stream. With SACKs we can estimate it:
1064 *
1065 * 1. SACK fills old hole and the corresponding segment was not
1066 *    ever retransmitted -> reordering. Alas, we cannot use it
1067 *    when segment was retransmitted.
1068 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1069 *    for retransmitted and already SACKed segment -> reordering..
1070 * Both of these heuristics are not used in Loss state, when we cannot
1071 * account for retransmits accurately.
1072 *
1073 * SACK block validation.
1074 * ----------------------
1075 *
1076 * SACK block range validation checks that the received SACK block fits to
1077 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1078 * Note that SND.UNA is not included to the range though being valid because
1079 * it means that the receiver is rather inconsistent with itself reporting
1080 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1081 * perfectly valid, however, in light of RFC2018 which explicitly states
1082 * that "SACK block MUST reflect the newest segment.  Even if the newest
1083 * segment is going to be discarded ...", not that it looks very clever
1084 * in case of head skb. Due to potentional receiver driven attacks, we
1085 * choose to avoid immediate execution of a walk in write queue due to
1086 * reneging and defer head skb's loss recovery to standard loss recovery
1087 * procedure that will eventually trigger (nothing forbids us doing this).
1088 *
1089 * Implements also blockage to start_seq wrap-around. Problem lies in the
1090 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1091 * there's no guarantee that it will be before snd_nxt (n). The problem
1092 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1093 * wrap (s_w):
1094 *
1095 *         <- outs wnd ->                          <- wrapzone ->
1096 *         u     e      n                         u_w   e_w  s n_w
1097 *         |     |      |                          |     |   |  |
1098 * |<------------+------+----- TCP seqno space --------------+---------->|
1099 * ...-- <2^31 ->|                                           |<--------...
1100 * ...---- >2^31 ------>|                                    |<--------...
1101 *
1102 * Current code wouldn't be vulnerable but it's better still to discard such
1103 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1104 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1105 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1106 * equal to the ideal case (infinite seqno space without wrap caused issues).
1107 *
1108 * With D-SACK the lower bound is extended to cover sequence space below
1109 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1110 * again, D-SACK block must not to go across snd_una (for the same reason as
1111 * for the normal SACK blocks, explained above). But there all simplicity
1112 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1113 * fully below undo_marker they do not affect behavior in anyway and can
1114 * therefore be safely ignored. In rare cases (which are more or less
1115 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1116 * fragmentation and packet reordering past skb's retransmission. To consider
1117 * them correctly, the acceptable range must be extended even more though
1118 * the exact amount is rather hard to quantify. However, tp->max_window can
1119 * be used as an exaggerated estimate.
1120 */
1121static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1122				  u32 start_seq, u32 end_seq)
1123{
1124	/* Too far in future, or reversed (interpretation is ambiguous) */
1125	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1126		return 0;
1127
1128	/* Nasty start_seq wrap-around check (see comments above) */
1129	if (!before(start_seq, tp->snd_nxt))
1130		return 0;
1131
1132	/* In outstanding window? ...This is valid exit for D-SACKs too.
1133	 * start_seq == snd_una is non-sensical (see comments above)
1134	 */
1135	if (after(start_seq, tp->snd_una))
1136		return 1;
1137
1138	if (!is_dsack || !tp->undo_marker)
1139		return 0;
1140
1141	/* ...Then it's D-SACK, and must reside below snd_una completely */
1142	if (after(end_seq, tp->snd_una))
1143		return 0;
1144
1145	if (!before(start_seq, tp->undo_marker))
1146		return 1;
1147
1148	/* Too old */
1149	if (!after(end_seq, tp->undo_marker))
1150		return 0;
1151
1152	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1153	 *   start_seq < undo_marker and end_seq >= undo_marker.
1154	 */
1155	return !before(start_seq, end_seq - tp->max_window);
1156}
1157
1158/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1159 * Event "B". Later note: FACK people cheated me again 8), we have to account
1160 * for reordering! Ugly, but should help.
1161 *
1162 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1163 * less than what is now known to be received by the other end (derived from
1164 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1165 * retransmitted skbs to avoid some costly processing per ACKs.
1166 */
1167static void tcp_mark_lost_retrans(struct sock *sk)
1168{
1169	const struct inet_connection_sock *icsk = inet_csk(sk);
1170	struct tcp_sock *tp = tcp_sk(sk);
1171	struct sk_buff *skb;
1172	int cnt = 0;
1173	u32 new_low_seq = tp->snd_nxt;
1174	u32 received_upto = tcp_highest_sack_seq(tp);
1175
1176	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1177	    !after(received_upto, tp->lost_retrans_low) ||
1178	    icsk->icsk_ca_state != TCP_CA_Recovery)
1179		return;
1180
1181	tcp_for_write_queue(skb, sk) {
1182		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1183
1184		if (skb == tcp_send_head(sk))
1185			break;
1186		if (cnt == tp->retrans_out)
1187			break;
1188		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1189			continue;
1190
1191		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1192			continue;
1193
1194		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1195		 * constraint here (see above) but figuring out that at
1196		 * least tp->reordering SACK blocks reside between ack_seq
1197		 * and received_upto is not easy task to do cheaply with
1198		 * the available datastructures.
1199		 *
1200		 * Whether FACK should check here for tp->reordering segs
1201		 * in-between one could argue for either way (it would be
1202		 * rather simple to implement as we could count fack_count
1203		 * during the walk and do tp->fackets_out - fack_count).
1204		 */
1205		if (after(received_upto, ack_seq)) {
1206			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1207			tp->retrans_out -= tcp_skb_pcount(skb);
1208
1209			tcp_skb_mark_lost_uncond_verify(tp, skb);
1210			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1211		} else {
1212			if (before(ack_seq, new_low_seq))
1213				new_low_seq = ack_seq;
1214			cnt += tcp_skb_pcount(skb);
1215		}
1216	}
1217
1218	if (tp->retrans_out)
1219		tp->lost_retrans_low = new_low_seq;
1220}
1221
1222static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1223			   struct tcp_sack_block_wire *sp, int num_sacks,
1224			   u32 prior_snd_una)
1225{
1226	struct tcp_sock *tp = tcp_sk(sk);
1227	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1228	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1229	int dup_sack = 0;
1230
1231	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1232		dup_sack = 1;
1233		tcp_dsack_seen(tp);
1234		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1235	} else if (num_sacks > 1) {
1236		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1237		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1238
1239		if (!after(end_seq_0, end_seq_1) &&
1240		    !before(start_seq_0, start_seq_1)) {
1241			dup_sack = 1;
1242			tcp_dsack_seen(tp);
1243			NET_INC_STATS_BH(sock_net(sk),
1244					LINUX_MIB_TCPDSACKOFORECV);
1245		}
1246	}
1247
1248	/* D-SACK for already forgotten data... Do dumb counting. */
1249	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1250	    !after(end_seq_0, prior_snd_una) &&
1251	    after(end_seq_0, tp->undo_marker))
1252		tp->undo_retrans--;
1253
1254	return dup_sack;
1255}
1256
1257struct tcp_sacktag_state {
1258	int reord;
1259	int fack_count;
1260	int flag;
1261};
1262
1263/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1264 * the incoming SACK may not exactly match but we can find smaller MSS
1265 * aligned portion of it that matches. Therefore we might need to fragment
1266 * which may fail and creates some hassle (caller must handle error case
1267 * returns).
1268 *
1269 * FIXME: this could be merged to shift decision code
1270 */
1271static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1272				 u32 start_seq, u32 end_seq)
1273{
1274	int in_sack, err;
1275	unsigned int pkt_len;
1276	unsigned int mss;
1277
1278	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1279		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1280
1281	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1282	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1283		mss = tcp_skb_mss(skb);
1284		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1285
1286		if (!in_sack) {
1287			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1288			if (pkt_len < mss)
1289				pkt_len = mss;
1290		} else {
1291			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1292			if (pkt_len < mss)
1293				return -EINVAL;
1294		}
1295
1296		/* Round if necessary so that SACKs cover only full MSSes
1297		 * and/or the remaining small portion (if present)
1298		 */
1299		if (pkt_len > mss) {
1300			unsigned int new_len = (pkt_len / mss) * mss;
1301			if (!in_sack && new_len < pkt_len) {
1302				new_len += mss;
1303				if (new_len > skb->len)
1304					return 0;
1305			}
1306			pkt_len = new_len;
1307		}
1308		err = tcp_fragment(sk, skb, pkt_len, mss);
1309		if (err < 0)
1310			return err;
1311	}
1312
1313	return in_sack;
1314}
1315
1316/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1317static u8 tcp_sacktag_one(struct sock *sk,
1318			  struct tcp_sacktag_state *state, u8 sacked,
1319			  u32 start_seq, u32 end_seq,
1320			  int dup_sack, int pcount)
1321{
1322	struct tcp_sock *tp = tcp_sk(sk);
1323	int fack_count = state->fack_count;
1324
1325	/* Account D-SACK for retransmitted packet. */
1326	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1327		if (tp->undo_marker && tp->undo_retrans &&
1328		    after(end_seq, tp->undo_marker))
1329			tp->undo_retrans--;
1330		if (sacked & TCPCB_SACKED_ACKED)
1331			state->reord = min(fack_count, state->reord);
1332	}
1333
1334	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1335	if (!after(end_seq, tp->snd_una))
1336		return sacked;
1337
1338	if (!(sacked & TCPCB_SACKED_ACKED)) {
1339		if (sacked & TCPCB_SACKED_RETRANS) {
1340			/* If the segment is not tagged as lost,
1341			 * we do not clear RETRANS, believing
1342			 * that retransmission is still in flight.
1343			 */
1344			if (sacked & TCPCB_LOST) {
1345				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1346				tp->lost_out -= pcount;
1347				tp->retrans_out -= pcount;
1348			}
1349		} else {
1350			if (!(sacked & TCPCB_RETRANS)) {
1351				/* New sack for not retransmitted frame,
1352				 * which was in hole. It is reordering.
1353				 */
1354				if (before(start_seq,
1355					   tcp_highest_sack_seq(tp)))
1356					state->reord = min(fack_count,
1357							   state->reord);
1358
1359				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1360				if (!after(end_seq, tp->frto_highmark))
1361					state->flag |= FLAG_ONLY_ORIG_SACKED;
1362			}
1363
1364			if (sacked & TCPCB_LOST) {
1365				sacked &= ~TCPCB_LOST;
1366				tp->lost_out -= pcount;
1367			}
1368		}
1369
1370		sacked |= TCPCB_SACKED_ACKED;
1371		state->flag |= FLAG_DATA_SACKED;
1372		tp->sacked_out += pcount;
1373
1374		fack_count += pcount;
1375
1376		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1377		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1378		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1379			tp->lost_cnt_hint += pcount;
1380
1381		if (fack_count > tp->fackets_out)
1382			tp->fackets_out = fack_count;
1383	}
1384
1385	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1386	 * frames and clear it. undo_retrans is decreased above, L|R frames
1387	 * are accounted above as well.
1388	 */
1389	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1390		sacked &= ~TCPCB_SACKED_RETRANS;
1391		tp->retrans_out -= pcount;
1392	}
1393
1394	return sacked;
1395}
1396
1397/* Shift newly-SACKed bytes from this skb to the immediately previous
1398 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1399 */
1400static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1401			   struct tcp_sacktag_state *state,
1402			   unsigned int pcount, int shifted, int mss,
1403			   int dup_sack)
1404{
1405	struct tcp_sock *tp = tcp_sk(sk);
1406	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1407	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1408	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1409
1410	BUG_ON(!pcount);
1411
1412	/* Adjust counters and hints for the newly sacked sequence
1413	 * range but discard the return value since prev is already
1414	 * marked. We must tag the range first because the seq
1415	 * advancement below implicitly advances
1416	 * tcp_highest_sack_seq() when skb is highest_sack.
1417	 */
1418	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1419			start_seq, end_seq, dup_sack, pcount);
1420
1421	if (skb == tp->lost_skb_hint)
1422		tp->lost_cnt_hint += pcount;
1423
1424	TCP_SKB_CB(prev)->end_seq += shifted;
1425	TCP_SKB_CB(skb)->seq += shifted;
1426
1427	skb_shinfo(prev)->gso_segs += pcount;
1428	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1429	skb_shinfo(skb)->gso_segs -= pcount;
1430
1431	/* When we're adding to gso_segs == 1, gso_size will be zero,
1432	 * in theory this shouldn't be necessary but as long as DSACK
1433	 * code can come after this skb later on it's better to keep
1434	 * setting gso_size to something.
1435	 */
1436	if (!skb_shinfo(prev)->gso_size) {
1437		skb_shinfo(prev)->gso_size = mss;
1438		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1439	}
1440
1441	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1442	if (skb_shinfo(skb)->gso_segs <= 1) {
1443		skb_shinfo(skb)->gso_size = 0;
1444		skb_shinfo(skb)->gso_type = 0;
1445	}
1446
1447	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1448	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1449
1450	if (skb->len > 0) {
1451		BUG_ON(!tcp_skb_pcount(skb));
1452		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1453		return 0;
1454	}
1455
1456	/* Whole SKB was eaten :-) */
1457
1458	if (skb == tp->retransmit_skb_hint)
1459		tp->retransmit_skb_hint = prev;
1460	if (skb == tp->scoreboard_skb_hint)
1461		tp->scoreboard_skb_hint = prev;
1462	if (skb == tp->lost_skb_hint) {
1463		tp->lost_skb_hint = prev;
1464		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1465	}
1466
1467	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1468	if (skb == tcp_highest_sack(sk))
1469		tcp_advance_highest_sack(sk, skb);
1470
1471	tcp_unlink_write_queue(skb, sk);
1472	sk_wmem_free_skb(sk, skb);
1473
1474	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1475
1476	return 1;
1477}
1478
1479/* I wish gso_size would have a bit more sane initialization than
1480 * something-or-zero which complicates things
1481 */
1482static int tcp_skb_seglen(const struct sk_buff *skb)
1483{
1484	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1485}
1486
1487/* Shifting pages past head area doesn't work */
1488static int skb_can_shift(const struct sk_buff *skb)
1489{
1490	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1491}
1492
1493/* Try collapsing SACK blocks spanning across multiple skbs to a single
1494 * skb.
1495 */
1496static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1497					  struct tcp_sacktag_state *state,
1498					  u32 start_seq, u32 end_seq,
1499					  int dup_sack)
1500{
1501	struct tcp_sock *tp = tcp_sk(sk);
1502	struct sk_buff *prev;
1503	int mss;
1504	int pcount = 0;
1505	int len;
1506	int in_sack;
1507
1508	if (!sk_can_gso(sk))
1509		goto fallback;
1510
1511	/* Normally R but no L won't result in plain S */
1512	if (!dup_sack &&
1513	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1514		goto fallback;
1515	if (!skb_can_shift(skb))
1516		goto fallback;
1517	/* This frame is about to be dropped (was ACKed). */
1518	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1519		goto fallback;
1520
1521	/* Can only happen with delayed DSACK + discard craziness */
1522	if (unlikely(skb == tcp_write_queue_head(sk)))
1523		goto fallback;
1524	prev = tcp_write_queue_prev(sk, skb);
1525
1526	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1527		goto fallback;
1528
1529	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1530		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1531
1532	if (in_sack) {
1533		len = skb->len;
1534		pcount = tcp_skb_pcount(skb);
1535		mss = tcp_skb_seglen(skb);
1536
1537		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1538		 * drop this restriction as unnecessary
1539		 */
1540		if (mss != tcp_skb_seglen(prev))
1541			goto fallback;
1542	} else {
1543		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1544			goto noop;
1545		/* CHECKME: This is non-MSS split case only?, this will
1546		 * cause skipped skbs due to advancing loop btw, original
1547		 * has that feature too
1548		 */
1549		if (tcp_skb_pcount(skb) <= 1)
1550			goto noop;
1551
1552		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1553		if (!in_sack) {
1554			/* TODO: head merge to next could be attempted here
1555			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1556			 * though it might not be worth of the additional hassle
1557			 *
1558			 * ...we can probably just fallback to what was done
1559			 * previously. We could try merging non-SACKed ones
1560			 * as well but it probably isn't going to buy off
1561			 * because later SACKs might again split them, and
1562			 * it would make skb timestamp tracking considerably
1563			 * harder problem.
1564			 */
1565			goto fallback;
1566		}
1567
1568		len = end_seq - TCP_SKB_CB(skb)->seq;
1569		BUG_ON(len < 0);
1570		BUG_ON(len > skb->len);
1571
1572		/* MSS boundaries should be honoured or else pcount will
1573		 * severely break even though it makes things bit trickier.
1574		 * Optimize common case to avoid most of the divides
1575		 */
1576		mss = tcp_skb_mss(skb);
1577
1578		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1579		 * drop this restriction as unnecessary
1580		 */
1581		if (mss != tcp_skb_seglen(prev))
1582			goto fallback;
1583
1584		if (len == mss) {
1585			pcount = 1;
1586		} else if (len < mss) {
1587			goto noop;
1588		} else {
1589			pcount = len / mss;
1590			len = pcount * mss;
1591		}
1592	}
1593
1594	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1595	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1596		goto fallback;
1597
1598	if (!skb_shift(prev, skb, len))
1599		goto fallback;
1600	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1601		goto out;
1602
1603	/* Hole filled allows collapsing with the next as well, this is very
1604	 * useful when hole on every nth skb pattern happens
1605	 */
1606	if (prev == tcp_write_queue_tail(sk))
1607		goto out;
1608	skb = tcp_write_queue_next(sk, prev);
1609
1610	if (!skb_can_shift(skb) ||
1611	    (skb == tcp_send_head(sk)) ||
1612	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1613	    (mss != tcp_skb_seglen(skb)))
1614		goto out;
1615
1616	len = skb->len;
1617	if (skb_shift(prev, skb, len)) {
1618		pcount += tcp_skb_pcount(skb);
1619		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1620	}
1621
1622out:
1623	state->fack_count += pcount;
1624	return prev;
1625
1626noop:
1627	return skb;
1628
1629fallback:
1630	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1631	return NULL;
1632}
1633
1634static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1635					struct tcp_sack_block *next_dup,
1636					struct tcp_sacktag_state *state,
1637					u32 start_seq, u32 end_seq,
1638					int dup_sack_in)
1639{
1640	struct tcp_sock *tp = tcp_sk(sk);
1641	struct sk_buff *tmp;
1642
1643	tcp_for_write_queue_from(skb, sk) {
1644		int in_sack = 0;
1645		int dup_sack = dup_sack_in;
1646
1647		if (skb == tcp_send_head(sk))
1648			break;
1649
1650		/* queue is in-order => we can short-circuit the walk early */
1651		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1652			break;
1653
1654		if ((next_dup != NULL) &&
1655		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1656			in_sack = tcp_match_skb_to_sack(sk, skb,
1657							next_dup->start_seq,
1658							next_dup->end_seq);
1659			if (in_sack > 0)
1660				dup_sack = 1;
1661		}
1662
1663		/* skb reference here is a bit tricky to get right, since
1664		 * shifting can eat and free both this skb and the next,
1665		 * so not even _safe variant of the loop is enough.
1666		 */
1667		if (in_sack <= 0) {
1668			tmp = tcp_shift_skb_data(sk, skb, state,
1669						 start_seq, end_seq, dup_sack);
1670			if (tmp != NULL) {
1671				if (tmp != skb) {
1672					skb = tmp;
1673					continue;
1674				}
1675
1676				in_sack = 0;
1677			} else {
1678				in_sack = tcp_match_skb_to_sack(sk, skb,
1679								start_seq,
1680								end_seq);
1681			}
1682		}
1683
1684		if (unlikely(in_sack < 0))
1685			break;
1686
1687		if (in_sack) {
1688			TCP_SKB_CB(skb)->sacked =
1689				tcp_sacktag_one(sk,
1690						state,
1691						TCP_SKB_CB(skb)->sacked,
1692						TCP_SKB_CB(skb)->seq,
1693						TCP_SKB_CB(skb)->end_seq,
1694						dup_sack,
1695						tcp_skb_pcount(skb));
1696
1697			if (!before(TCP_SKB_CB(skb)->seq,
1698				    tcp_highest_sack_seq(tp)))
1699				tcp_advance_highest_sack(sk, skb);
1700		}
1701
1702		state->fack_count += tcp_skb_pcount(skb);
1703	}
1704	return skb;
1705}
1706
1707/* Avoid all extra work that is being done by sacktag while walking in
1708 * a normal way
1709 */
1710static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1711					struct tcp_sacktag_state *state,
1712					u32 skip_to_seq)
1713{
1714	tcp_for_write_queue_from(skb, sk) {
1715		if (skb == tcp_send_head(sk))
1716			break;
1717
1718		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1719			break;
1720
1721		state->fack_count += tcp_skb_pcount(skb);
1722	}
1723	return skb;
1724}
1725
1726static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1727						struct sock *sk,
1728						struct tcp_sack_block *next_dup,
1729						struct tcp_sacktag_state *state,
1730						u32 skip_to_seq)
1731{
1732	if (next_dup == NULL)
1733		return skb;
1734
1735	if (before(next_dup->start_seq, skip_to_seq)) {
1736		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1737		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1738				       next_dup->start_seq, next_dup->end_seq,
1739				       1);
1740	}
1741
1742	return skb;
1743}
1744
1745static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1746{
1747	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1748}
1749
1750static int
1751tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1752			u32 prior_snd_una)
1753{
1754	const struct inet_connection_sock *icsk = inet_csk(sk);
1755	struct tcp_sock *tp = tcp_sk(sk);
1756	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1757				    TCP_SKB_CB(ack_skb)->sacked);
1758	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1759	struct tcp_sack_block sp[TCP_NUM_SACKS];
1760	struct tcp_sack_block *cache;
1761	struct tcp_sacktag_state state;
1762	struct sk_buff *skb;
1763	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1764	int used_sacks;
1765	int found_dup_sack = 0;
1766	int i, j;
1767	int first_sack_index;
1768
1769	state.flag = 0;
1770	state.reord = tp->packets_out;
1771
1772	if (!tp->sacked_out) {
1773		if (WARN_ON(tp->fackets_out))
1774			tp->fackets_out = 0;
1775		tcp_highest_sack_reset(sk);
1776	}
1777
1778	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1779					 num_sacks, prior_snd_una);
1780	if (found_dup_sack)
1781		state.flag |= FLAG_DSACKING_ACK;
1782
1783	/* Eliminate too old ACKs, but take into
1784	 * account more or less fresh ones, they can
1785	 * contain valid SACK info.
1786	 */
1787	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1788		return 0;
1789
1790	if (!tp->packets_out)
1791		goto out;
1792
1793	used_sacks = 0;
1794	first_sack_index = 0;
1795	for (i = 0; i < num_sacks; i++) {
1796		int dup_sack = !i && found_dup_sack;
1797
1798		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1799		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1800
1801		if (!tcp_is_sackblock_valid(tp, dup_sack,
1802					    sp[used_sacks].start_seq,
1803					    sp[used_sacks].end_seq)) {
1804			int mib_idx;
1805
1806			if (dup_sack) {
1807				if (!tp->undo_marker)
1808					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1809				else
1810					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1811			} else {
1812				/* Don't count olds caused by ACK reordering */
1813				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1814				    !after(sp[used_sacks].end_seq, tp->snd_una))
1815					continue;
1816				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1817			}
1818
1819			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1820			if (i == 0)
1821				first_sack_index = -1;
1822			continue;
1823		}
1824
1825		/* Ignore very old stuff early */
1826		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1827			continue;
1828
1829		used_sacks++;
1830	}
1831
1832	/* order SACK blocks to allow in order walk of the retrans queue */
1833	for (i = used_sacks - 1; i > 0; i--) {
1834		for (j = 0; j < i; j++) {
1835			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1836				swap(sp[j], sp[j + 1]);
1837
1838				/* Track where the first SACK block goes to */
1839				if (j == first_sack_index)
1840					first_sack_index = j + 1;
1841			}
1842		}
1843	}
1844
1845	skb = tcp_write_queue_head(sk);
1846	state.fack_count = 0;
1847	i = 0;
1848
1849	if (!tp->sacked_out) {
1850		/* It's already past, so skip checking against it */
1851		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1852	} else {
1853		cache = tp->recv_sack_cache;
1854		/* Skip empty blocks in at head of the cache */
1855		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1856		       !cache->end_seq)
1857			cache++;
1858	}
1859
1860	while (i < used_sacks) {
1861		u32 start_seq = sp[i].start_seq;
1862		u32 end_seq = sp[i].end_seq;
1863		int dup_sack = (found_dup_sack && (i == first_sack_index));
1864		struct tcp_sack_block *next_dup = NULL;
1865
1866		if (found_dup_sack && ((i + 1) == first_sack_index))
1867			next_dup = &sp[i + 1];
1868
1869		/* Skip too early cached blocks */
1870		while (tcp_sack_cache_ok(tp, cache) &&
1871		       !before(start_seq, cache->end_seq))
1872			cache++;
1873
1874		/* Can skip some work by looking recv_sack_cache? */
1875		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1876		    after(end_seq, cache->start_seq)) {
1877
1878			/* Head todo? */
1879			if (before(start_seq, cache->start_seq)) {
1880				skb = tcp_sacktag_skip(skb, sk, &state,
1881						       start_seq);
1882				skb = tcp_sacktag_walk(skb, sk, next_dup,
1883						       &state,
1884						       start_seq,
1885						       cache->start_seq,
1886						       dup_sack);
1887			}
1888
1889			/* Rest of the block already fully processed? */
1890			if (!after(end_seq, cache->end_seq))
1891				goto advance_sp;
1892
1893			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1894						       &state,
1895						       cache->end_seq);
1896
1897			/* ...tail remains todo... */
1898			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1899				/* ...but better entrypoint exists! */
1900				skb = tcp_highest_sack(sk);
1901				if (skb == NULL)
1902					break;
1903				state.fack_count = tp->fackets_out;
1904				cache++;
1905				goto walk;
1906			}
1907
1908			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1909			/* Check overlap against next cached too (past this one already) */
1910			cache++;
1911			continue;
1912		}
1913
1914		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1915			skb = tcp_highest_sack(sk);
1916			if (skb == NULL)
1917				break;
1918			state.fack_count = tp->fackets_out;
1919		}
1920		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1921
1922walk:
1923		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1924				       start_seq, end_seq, dup_sack);
1925
1926advance_sp:
1927		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1928		 * due to in-order walk
1929		 */
1930		if (after(end_seq, tp->frto_highmark))
1931			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1932
1933		i++;
1934	}
1935
1936	/* Clear the head of the cache sack blocks so we can skip it next time */
1937	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1938		tp->recv_sack_cache[i].start_seq = 0;
1939		tp->recv_sack_cache[i].end_seq = 0;
1940	}
1941	for (j = 0; j < used_sacks; j++)
1942		tp->recv_sack_cache[i++] = sp[j];
1943
1944	tcp_mark_lost_retrans(sk);
1945
1946	tcp_verify_left_out(tp);
1947
1948	if ((state.reord < tp->fackets_out) &&
1949	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1950	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1951		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1952
1953out:
1954
1955#if FASTRETRANS_DEBUG > 0
1956	WARN_ON((int)tp->sacked_out < 0);
1957	WARN_ON((int)tp->lost_out < 0);
1958	WARN_ON((int)tp->retrans_out < 0);
1959	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1960#endif
1961	return state.flag;
1962}
1963
1964/* Limits sacked_out so that sum with lost_out isn't ever larger than
1965 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1966 */
1967static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1968{
1969	u32 holes;
1970
1971	holes = max(tp->lost_out, 1U);
1972	holes = min(holes, tp->packets_out);
1973
1974	if ((tp->sacked_out + holes) > tp->packets_out) {
1975		tp->sacked_out = tp->packets_out - holes;
1976		return 1;
1977	}
1978	return 0;
1979}
1980
1981/* If we receive more dupacks than we expected counting segments
1982 * in assumption of absent reordering, interpret this as reordering.
1983 * The only another reason could be bug in receiver TCP.
1984 */
1985static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1986{
1987	struct tcp_sock *tp = tcp_sk(sk);
1988	if (tcp_limit_reno_sacked(tp))
1989		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1990}
1991
1992/* Emulate SACKs for SACKless connection: account for a new dupack. */
1993
1994static void tcp_add_reno_sack(struct sock *sk)
1995{
1996	struct tcp_sock *tp = tcp_sk(sk);
1997	tp->sacked_out++;
1998	tcp_check_reno_reordering(sk, 0);
1999	tcp_verify_left_out(tp);
2000}
2001
2002/* Account for ACK, ACKing some data in Reno Recovery phase. */
2003
2004static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2005{
2006	struct tcp_sock *tp = tcp_sk(sk);
2007
2008	if (acked > 0) {
2009		/* One ACK acked hole. The rest eat duplicate ACKs. */
2010		if (acked - 1 >= tp->sacked_out)
2011			tp->sacked_out = 0;
2012		else
2013			tp->sacked_out -= acked - 1;
2014	}
2015	tcp_check_reno_reordering(sk, acked);
2016	tcp_verify_left_out(tp);
2017}
2018
2019static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2020{
2021	tp->sacked_out = 0;
2022}
2023
2024static int tcp_is_sackfrto(const struct tcp_sock *tp)
2025{
2026	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2027}
2028
2029/* F-RTO can only be used if TCP has never retransmitted anything other than
2030 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2031 */
2032int tcp_use_frto(struct sock *sk)
2033{
2034	const struct tcp_sock *tp = tcp_sk(sk);
2035	const struct inet_connection_sock *icsk = inet_csk(sk);
2036	struct sk_buff *skb;
2037
2038	if (!sysctl_tcp_frto)
2039		return 0;
2040
2041	/* MTU probe and F-RTO won't really play nicely along currently */
2042	if (icsk->icsk_mtup.probe_size)
2043		return 0;
2044
2045	if (tcp_is_sackfrto(tp))
2046		return 1;
2047
2048	/* Avoid expensive walking of rexmit queue if possible */
2049	if (tp->retrans_out > 1)
2050		return 0;
2051
2052	skb = tcp_write_queue_head(sk);
2053	if (tcp_skb_is_last(sk, skb))
2054		return 1;
2055	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2056	tcp_for_write_queue_from(skb, sk) {
2057		if (skb == tcp_send_head(sk))
2058			break;
2059		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2060			return 0;
2061		/* Short-circuit when first non-SACKed skb has been checked */
2062		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2063			break;
2064	}
2065	return 1;
2066}
2067
2068/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2069 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2070 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2071 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2072 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2073 * bits are handled if the Loss state is really to be entered (in
2074 * tcp_enter_frto_loss).
2075 *
2076 * Do like tcp_enter_loss() would; when RTO expires the second time it
2077 * does:
2078 *  "Reduce ssthresh if it has not yet been made inside this window."
2079 */
2080void tcp_enter_frto(struct sock *sk)
2081{
2082	const struct inet_connection_sock *icsk = inet_csk(sk);
2083	struct tcp_sock *tp = tcp_sk(sk);
2084	struct sk_buff *skb;
2085
2086	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2087	    tp->snd_una == tp->high_seq ||
2088	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2089	     !icsk->icsk_retransmits)) {
2090		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2091		/* Our state is too optimistic in ssthresh() call because cwnd
2092		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2093		 * recovery has not yet completed. Pattern would be this: RTO,
2094		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2095		 * up here twice).
2096		 * RFC4138 should be more specific on what to do, even though
2097		 * RTO is quite unlikely to occur after the first Cumulative ACK
2098		 * due to back-off and complexity of triggering events ...
2099		 */
2100		if (tp->frto_counter) {
2101			u32 stored_cwnd;
2102			stored_cwnd = tp->snd_cwnd;
2103			tp->snd_cwnd = 2;
2104			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2105			tp->snd_cwnd = stored_cwnd;
2106		} else {
2107			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2108		}
2109		/* ... in theory, cong.control module could do "any tricks" in
2110		 * ssthresh(), which means that ca_state, lost bits and lost_out
2111		 * counter would have to be faked before the call occurs. We
2112		 * consider that too expensive, unlikely and hacky, so modules
2113		 * using these in ssthresh() must deal these incompatibility
2114		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2115		 */
2116		tcp_ca_event(sk, CA_EVENT_FRTO);
2117	}
2118
2119	tp->undo_marker = tp->snd_una;
2120	tp->undo_retrans = 0;
2121
2122	skb = tcp_write_queue_head(sk);
2123	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2124		tp->undo_marker = 0;
2125	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2126		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2127		tp->retrans_out -= tcp_skb_pcount(skb);
2128	}
2129	tcp_verify_left_out(tp);
2130
2131	/* Too bad if TCP was application limited */
2132	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2133
2134	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2135	 * The last condition is necessary at least in tp->frto_counter case.
2136	 */
2137	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2138	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2139	    after(tp->high_seq, tp->snd_una)) {
2140		tp->frto_highmark = tp->high_seq;
2141	} else {
2142		tp->frto_highmark = tp->snd_nxt;
2143	}
2144	tcp_set_ca_state(sk, TCP_CA_Disorder);
2145	tp->high_seq = tp->snd_nxt;
2146	tp->frto_counter = 1;
2147}
2148
2149/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2150 * which indicates that we should follow the traditional RTO recovery,
2151 * i.e. mark everything lost and do go-back-N retransmission.
2152 */
2153static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2154{
2155	struct tcp_sock *tp = tcp_sk(sk);
2156	struct sk_buff *skb;
2157
2158	tp->lost_out = 0;
2159	tp->retrans_out = 0;
2160	if (tcp_is_reno(tp))
2161		tcp_reset_reno_sack(tp);
2162
2163	tcp_for_write_queue(skb, sk) {
2164		if (skb == tcp_send_head(sk))
2165			break;
2166
2167		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2168		/*
2169		 * Count the retransmission made on RTO correctly (only when
2170		 * waiting for the first ACK and did not get it)...
2171		 */
2172		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2173			/* For some reason this R-bit might get cleared? */
2174			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2175				tp->retrans_out += tcp_skb_pcount(skb);
2176			/* ...enter this if branch just for the first segment */
2177			flag |= FLAG_DATA_ACKED;
2178		} else {
2179			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2180				tp->undo_marker = 0;
2181			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2182		}
2183
2184		/* Marking forward transmissions that were made after RTO lost
2185		 * can cause unnecessary retransmissions in some scenarios,
2186		 * SACK blocks will mitigate that in some but not in all cases.
2187		 * We used to not mark them but it was causing break-ups with
2188		 * receivers that do only in-order receival.
2189		 *
2190		 * TODO: we could detect presence of such receiver and select
2191		 * different behavior per flow.
2192		 */
2193		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2194			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2195			tp->lost_out += tcp_skb_pcount(skb);
2196			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2197		}
2198	}
2199	tcp_verify_left_out(tp);
2200
2201	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2202	tp->snd_cwnd_cnt = 0;
2203	tp->snd_cwnd_stamp = tcp_time_stamp;
2204	tp->frto_counter = 0;
2205	tp->bytes_acked = 0;
2206
2207	tp->reordering = min_t(unsigned int, tp->reordering,
2208			       sysctl_tcp_reordering);
2209	tcp_set_ca_state(sk, TCP_CA_Loss);
2210	tp->high_seq = tp->snd_nxt;
2211	TCP_ECN_queue_cwr(tp);
2212
2213	tcp_clear_all_retrans_hints(tp);
2214}
2215
2216static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2217{
2218	tp->retrans_out = 0;
2219	tp->lost_out = 0;
2220
2221	tp->undo_marker = 0;
2222	tp->undo_retrans = 0;
2223}
2224
2225void tcp_clear_retrans(struct tcp_sock *tp)
2226{
2227	tcp_clear_retrans_partial(tp);
2228
2229	tp->fackets_out = 0;
2230	tp->sacked_out = 0;
2231}
2232
2233/* Enter Loss state. If "how" is not zero, forget all SACK information
2234 * and reset tags completely, otherwise preserve SACKs. If receiver
2235 * dropped its ofo queue, we will know this due to reneging detection.
2236 */
2237void tcp_enter_loss(struct sock *sk, int how)
2238{
2239	const struct inet_connection_sock *icsk = inet_csk(sk);
2240	struct tcp_sock *tp = tcp_sk(sk);
2241	struct sk_buff *skb;
2242
2243	/* Reduce ssthresh if it has not yet been made inside this window. */
2244	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2245	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2246		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2247		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2248		tcp_ca_event(sk, CA_EVENT_LOSS);
2249	}
2250	tp->snd_cwnd	   = 1;
2251	tp->snd_cwnd_cnt   = 0;
2252	tp->snd_cwnd_stamp = tcp_time_stamp;
2253
2254	tp->bytes_acked = 0;
2255	tcp_clear_retrans_partial(tp);
2256
2257	if (tcp_is_reno(tp))
2258		tcp_reset_reno_sack(tp);
2259
2260	if (!how) {
2261		/* Push undo marker, if it was plain RTO and nothing
2262		 * was retransmitted. */
2263		tp->undo_marker = tp->snd_una;
2264	} else {
2265		tp->sacked_out = 0;
2266		tp->fackets_out = 0;
2267	}
2268	tcp_clear_all_retrans_hints(tp);
2269
2270	tcp_for_write_queue(skb, sk) {
2271		if (skb == tcp_send_head(sk))
2272			break;
2273
2274		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2275			tp->undo_marker = 0;
2276		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2277		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2278			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2279			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2280			tp->lost_out += tcp_skb_pcount(skb);
2281			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2282		}
2283	}
2284	tcp_verify_left_out(tp);
2285
2286	tp->reordering = min_t(unsigned int, tp->reordering,
2287			       sysctl_tcp_reordering);
2288	tcp_set_ca_state(sk, TCP_CA_Loss);
2289	tp->high_seq = tp->snd_nxt;
2290	TCP_ECN_queue_cwr(tp);
2291	/* Abort F-RTO algorithm if one is in progress */
2292	tp->frto_counter = 0;
2293}
2294
2295/* If ACK arrived pointing to a remembered SACK, it means that our
2296 * remembered SACKs do not reflect real state of receiver i.e.
2297 * receiver _host_ is heavily congested (or buggy).
2298 *
2299 * Do processing similar to RTO timeout.
2300 */
2301static int tcp_check_sack_reneging(struct sock *sk, int flag)
2302{
2303	if (flag & FLAG_SACK_RENEGING) {
2304		struct inet_connection_sock *icsk = inet_csk(sk);
2305		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2306
2307		tcp_enter_loss(sk, 1);
2308		icsk->icsk_retransmits++;
2309		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2310		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2311					  icsk->icsk_rto, TCP_RTO_MAX);
2312		return 1;
2313	}
2314	return 0;
2315}
2316
2317static inline int tcp_fackets_out(const struct tcp_sock *tp)
2318{
2319	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2320}
2321
2322/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2323 * counter when SACK is enabled (without SACK, sacked_out is used for
2324 * that purpose).
2325 *
2326 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2327 * segments up to the highest received SACK block so far and holes in
2328 * between them.
2329 *
2330 * With reordering, holes may still be in flight, so RFC3517 recovery
2331 * uses pure sacked_out (total number of SACKed segments) even though
2332 * it violates the RFC that uses duplicate ACKs, often these are equal
2333 * but when e.g. out-of-window ACKs or packet duplication occurs,
2334 * they differ. Since neither occurs due to loss, TCP should really
2335 * ignore them.
2336 */
2337static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2338{
2339	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2340}
2341
2342static inline int tcp_skb_timedout(const struct sock *sk,
2343				   const struct sk_buff *skb)
2344{
2345	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2346}
2347
2348static inline int tcp_head_timedout(const struct sock *sk)
2349{
2350	const struct tcp_sock *tp = tcp_sk(sk);
2351
2352	return tp->packets_out &&
2353	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2354}
2355
2356/* Linux NewReno/SACK/FACK/ECN state machine.
2357 * --------------------------------------
2358 *
2359 * "Open"	Normal state, no dubious events, fast path.
2360 * "Disorder"   In all the respects it is "Open",
2361 *		but requires a bit more attention. It is entered when
2362 *		we see some SACKs or dupacks. It is split of "Open"
2363 *		mainly to move some processing from fast path to slow one.
2364 * "CWR"	CWND was reduced due to some Congestion Notification event.
2365 *		It can be ECN, ICMP source quench, local device congestion.
2366 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2367 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2368 *
2369 * tcp_fastretrans_alert() is entered:
2370 * - each incoming ACK, if state is not "Open"
2371 * - when arrived ACK is unusual, namely:
2372 *	* SACK
2373 *	* Duplicate ACK.
2374 *	* ECN ECE.
2375 *
2376 * Counting packets in flight is pretty simple.
2377 *
2378 *	in_flight = packets_out - left_out + retrans_out
2379 *
2380 *	packets_out is SND.NXT-SND.UNA counted in packets.
2381 *
2382 *	retrans_out is number of retransmitted segments.
2383 *
2384 *	left_out is number of segments left network, but not ACKed yet.
2385 *
2386 *		left_out = sacked_out + lost_out
2387 *
2388 *     sacked_out: Packets, which arrived to receiver out of order
2389 *		   and hence not ACKed. With SACKs this number is simply
2390 *		   amount of SACKed data. Even without SACKs
2391 *		   it is easy to give pretty reliable estimate of this number,
2392 *		   counting duplicate ACKs.
2393 *
2394 *       lost_out: Packets lost by network. TCP has no explicit
2395 *		   "loss notification" feedback from network (for now).
2396 *		   It means that this number can be only _guessed_.
2397 *		   Actually, it is the heuristics to predict lossage that
2398 *		   distinguishes different algorithms.
2399 *
2400 *	F.e. after RTO, when all the queue is considered as lost,
2401 *	lost_out = packets_out and in_flight = retrans_out.
2402 *
2403 *		Essentially, we have now two algorithms counting
2404 *		lost packets.
2405 *
2406 *		FACK: It is the simplest heuristics. As soon as we decided
2407 *		that something is lost, we decide that _all_ not SACKed
2408 *		packets until the most forward SACK are lost. I.e.
2409 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2410 *		It is absolutely correct estimate, if network does not reorder
2411 *		packets. And it loses any connection to reality when reordering
2412 *		takes place. We use FACK by default until reordering
2413 *		is suspected on the path to this destination.
2414 *
2415 *		NewReno: when Recovery is entered, we assume that one segment
2416 *		is lost (classic Reno). While we are in Recovery and
2417 *		a partial ACK arrives, we assume that one more packet
2418 *		is lost (NewReno). This heuristics are the same in NewReno
2419 *		and SACK.
2420 *
2421 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2422 *  deflation etc. CWND is real congestion window, never inflated, changes
2423 *  only according to classic VJ rules.
2424 *
2425 * Really tricky (and requiring careful tuning) part of algorithm
2426 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2427 * The first determines the moment _when_ we should reduce CWND and,
2428 * hence, slow down forward transmission. In fact, it determines the moment
2429 * when we decide that hole is caused by loss, rather than by a reorder.
2430 *
2431 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2432 * holes, caused by lost packets.
2433 *
2434 * And the most logically complicated part of algorithm is undo
2435 * heuristics. We detect false retransmits due to both too early
2436 * fast retransmit (reordering) and underestimated RTO, analyzing
2437 * timestamps and D-SACKs. When we detect that some segments were
2438 * retransmitted by mistake and CWND reduction was wrong, we undo
2439 * window reduction and abort recovery phase. This logic is hidden
2440 * inside several functions named tcp_try_undo_<something>.
2441 */
2442
2443/* This function decides, when we should leave Disordered state
2444 * and enter Recovery phase, reducing congestion window.
2445 *
2446 * Main question: may we further continue forward transmission
2447 * with the same cwnd?
2448 */
2449static int tcp_time_to_recover(struct sock *sk)
2450{
2451	struct tcp_sock *tp = tcp_sk(sk);
2452	__u32 packets_out;
2453
2454	/* Do not perform any recovery during F-RTO algorithm */
2455	if (tp->frto_counter)
2456		return 0;
2457
2458	/* Trick#1: The loss is proven. */
2459	if (tp->lost_out)
2460		return 1;
2461
2462	/* Not-A-Trick#2 : Classic rule... */
2463	if (tcp_dupack_heuristics(tp) > tp->reordering)
2464		return 1;
2465
2466	/* Trick#3 : when we use RFC2988 timer restart, fast
2467	 * retransmit can be triggered by timeout of queue head.
2468	 */
2469	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2470		return 1;
2471
2472	/* Trick#4: It is still not OK... But will it be useful to delay
2473	 * recovery more?
2474	 */
2475	packets_out = tp->packets_out;
2476	if (packets_out <= tp->reordering &&
2477	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2478	    !tcp_may_send_now(sk)) {
2479		/* We have nothing to send. This connection is limited
2480		 * either by receiver window or by application.
2481		 */
2482		return 1;
2483	}
2484
2485	/* If a thin stream is detected, retransmit after first
2486	 * received dupack. Employ only if SACK is supported in order
2487	 * to avoid possible corner-case series of spurious retransmissions
2488	 * Use only if there are no unsent data.
2489	 */
2490	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2491	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2492	    tcp_is_sack(tp) && !tcp_send_head(sk))
2493		return 1;
2494
2495	return 0;
2496}
2497
2498/* New heuristics: it is possible only after we switched to restart timer
2499 * each time when something is ACKed. Hence, we can detect timed out packets
2500 * during fast retransmit without falling to slow start.
2501 *
2502 * Usefulness of this as is very questionable, since we should know which of
2503 * the segments is the next to timeout which is relatively expensive to find
2504 * in general case unless we add some data structure just for that. The
2505 * current approach certainly won't find the right one too often and when it
2506 * finally does find _something_ it usually marks large part of the window
2507 * right away (because a retransmission with a larger timestamp blocks the
2508 * loop from advancing). -ij
2509 */
2510static void tcp_timeout_skbs(struct sock *sk)
2511{
2512	struct tcp_sock *tp = tcp_sk(sk);
2513	struct sk_buff *skb;
2514
2515	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2516		return;
2517
2518	skb = tp->scoreboard_skb_hint;
2519	if (tp->scoreboard_skb_hint == NULL)
2520		skb = tcp_write_queue_head(sk);
2521
2522	tcp_for_write_queue_from(skb, sk) {
2523		if (skb == tcp_send_head(sk))
2524			break;
2525		if (!tcp_skb_timedout(sk, skb))
2526			break;
2527
2528		tcp_skb_mark_lost(tp, skb);
2529	}
2530
2531	tp->scoreboard_skb_hint = skb;
2532
2533	tcp_verify_left_out(tp);
2534}
2535
2536/* Detect loss in event "A" above by marking head of queue up as lost.
2537 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2538 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2539 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2540 * the maximum SACKed segments to pass before reaching this limit.
2541 */
2542static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2543{
2544	struct tcp_sock *tp = tcp_sk(sk);
2545	struct sk_buff *skb;
2546	int cnt, oldcnt;
2547	int err;
2548	unsigned int mss;
2549	/* Use SACK to deduce losses of new sequences sent during recovery */
2550	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2551
2552	WARN_ON(packets > tp->packets_out);
2553	if (tp->lost_skb_hint) {
2554		skb = tp->lost_skb_hint;
2555		cnt = tp->lost_cnt_hint;
2556		/* Head already handled? */
2557		if (mark_head && skb != tcp_write_queue_head(sk))
2558			return;
2559	} else {
2560		skb = tcp_write_queue_head(sk);
2561		cnt = 0;
2562	}
2563
2564	tcp_for_write_queue_from(skb, sk) {
2565		if (skb == tcp_send_head(sk))
2566			break;
2567		/* TODO: do this better */
2568		/* this is not the most efficient way to do this... */
2569		tp->lost_skb_hint = skb;
2570		tp->lost_cnt_hint = cnt;
2571
2572		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2573			break;
2574
2575		oldcnt = cnt;
2576		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2577		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2578			cnt += tcp_skb_pcount(skb);
2579
2580		if (cnt > packets) {
2581			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2582			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2583			    (oldcnt >= packets))
2584				break;
2585
2586			mss = skb_shinfo(skb)->gso_size;
2587			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2588			if (err < 0)
2589				break;
2590			cnt = packets;
2591		}
2592
2593		tcp_skb_mark_lost(tp, skb);
2594
2595		if (mark_head)
2596			break;
2597	}
2598	tcp_verify_left_out(tp);
2599}
2600
2601/* Account newly detected lost packet(s) */
2602
2603static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2604{
2605	struct tcp_sock *tp = tcp_sk(sk);
2606
2607	if (tcp_is_reno(tp)) {
2608		tcp_mark_head_lost(sk, 1, 1);
2609	} else if (tcp_is_fack(tp)) {
2610		int lost = tp->fackets_out - tp->reordering;
2611		if (lost <= 0)
2612			lost = 1;
2613		tcp_mark_head_lost(sk, lost, 0);
2614	} else {
2615		int sacked_upto = tp->sacked_out - tp->reordering;
2616		if (sacked_upto >= 0)
2617			tcp_mark_head_lost(sk, sacked_upto, 0);
2618		else if (fast_rexmit)
2619			tcp_mark_head_lost(sk, 1, 1);
2620	}
2621
2622	tcp_timeout_skbs(sk);
2623}
2624
2625/* CWND moderation, preventing bursts due to too big ACKs
2626 * in dubious situations.
2627 */
2628static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2629{
2630	tp->snd_cwnd = min(tp->snd_cwnd,
2631			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2632	tp->snd_cwnd_stamp = tcp_time_stamp;
2633}
2634
2635/* Lower bound on congestion window is slow start threshold
2636 * unless congestion avoidance choice decides to overide it.
2637 */
2638static inline u32 tcp_cwnd_min(const struct sock *sk)
2639{
2640	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2641
2642	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2643}
2644
2645/* Decrease cwnd each second ack. */
2646static void tcp_cwnd_down(struct sock *sk, int flag)
2647{
2648	struct tcp_sock *tp = tcp_sk(sk);
2649	int decr = tp->snd_cwnd_cnt + 1;
2650
2651	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2652	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2653		tp->snd_cwnd_cnt = decr & 1;
2654		decr >>= 1;
2655
2656		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2657			tp->snd_cwnd -= decr;
2658
2659		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2660		tp->snd_cwnd_stamp = tcp_time_stamp;
2661	}
2662}
2663
2664/* Nothing was retransmitted or returned timestamp is less
2665 * than timestamp of the first retransmission.
2666 */
2667static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2668{
2669	return !tp->retrans_stamp ||
2670		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2671		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2672}
2673
2674/* Undo procedures. */
2675
2676#if FASTRETRANS_DEBUG > 1
2677static void DBGUNDO(struct sock *sk, const char *msg)
2678{
2679	struct tcp_sock *tp = tcp_sk(sk);
2680	struct inet_sock *inet = inet_sk(sk);
2681
2682	if (sk->sk_family == AF_INET) {
2683		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2684		       msg,
2685		       &inet->inet_daddr, ntohs(inet->inet_dport),
2686		       tp->snd_cwnd, tcp_left_out(tp),
2687		       tp->snd_ssthresh, tp->prior_ssthresh,
2688		       tp->packets_out);
2689	}
2690#if IS_ENABLED(CONFIG_IPV6)
2691	else if (sk->sk_family == AF_INET6) {
2692		struct ipv6_pinfo *np = inet6_sk(sk);
2693		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2694		       msg,
2695		       &np->daddr, ntohs(inet->inet_dport),
2696		       tp->snd_cwnd, tcp_left_out(tp),
2697		       tp->snd_ssthresh, tp->prior_ssthresh,
2698		       tp->packets_out);
2699	}
2700#endif
2701}
2702#else
2703#define DBGUNDO(x...) do { } while (0)
2704#endif
2705
2706static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2707{
2708	struct tcp_sock *tp = tcp_sk(sk);
2709
2710	if (tp->prior_ssthresh) {
2711		const struct inet_connection_sock *icsk = inet_csk(sk);
2712
2713		if (icsk->icsk_ca_ops->undo_cwnd)
2714			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2715		else
2716			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2717
2718		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2719			tp->snd_ssthresh = tp->prior_ssthresh;
2720			TCP_ECN_withdraw_cwr(tp);
2721		}
2722	} else {
2723		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2724	}
2725	tp->snd_cwnd_stamp = tcp_time_stamp;
2726}
2727
2728static inline int tcp_may_undo(const struct tcp_sock *tp)
2729{
2730	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2731}
2732
2733/* People celebrate: "We love our President!" */
2734static int tcp_try_undo_recovery(struct sock *sk)
2735{
2736	struct tcp_sock *tp = tcp_sk(sk);
2737
2738	if (tcp_may_undo(tp)) {
2739		int mib_idx;
2740
2741		/* Happy end! We did not retransmit anything
2742		 * or our original transmission succeeded.
2743		 */
2744		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2745		tcp_undo_cwr(sk, true);
2746		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2747			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2748		else
2749			mib_idx = LINUX_MIB_TCPFULLUNDO;
2750
2751		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2752		tp->undo_marker = 0;
2753	}
2754	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2755		/* Hold old state until something *above* high_seq
2756		 * is ACKed. For Reno it is MUST to prevent false
2757		 * fast retransmits (RFC2582). SACK TCP is safe. */
2758		tcp_moderate_cwnd(tp);
2759		return 1;
2760	}
2761	tcp_set_ca_state(sk, TCP_CA_Open);
2762	return 0;
2763}
2764
2765/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2766static void tcp_try_undo_dsack(struct sock *sk)
2767{
2768	struct tcp_sock *tp = tcp_sk(sk);
2769
2770	if (tp->undo_marker && !tp->undo_retrans) {
2771		DBGUNDO(sk, "D-SACK");
2772		tcp_undo_cwr(sk, true);
2773		tp->undo_marker = 0;
2774		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2775	}
2776}
2777
2778/* We can clear retrans_stamp when there are no retransmissions in the
2779 * window. It would seem that it is trivially available for us in
2780 * tp->retrans_out, however, that kind of assumptions doesn't consider
2781 * what will happen if errors occur when sending retransmission for the
2782 * second time. ...It could the that such segment has only
2783 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2784 * the head skb is enough except for some reneging corner cases that
2785 * are not worth the effort.
2786 *
2787 * Main reason for all this complexity is the fact that connection dying
2788 * time now depends on the validity of the retrans_stamp, in particular,
2789 * that successive retransmissions of a segment must not advance
2790 * retrans_stamp under any conditions.
2791 */
2792static int tcp_any_retrans_done(const struct sock *sk)
2793{
2794	const struct tcp_sock *tp = tcp_sk(sk);
2795	struct sk_buff *skb;
2796
2797	if (tp->retrans_out)
2798		return 1;
2799
2800	skb = tcp_write_queue_head(sk);
2801	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2802		return 1;
2803
2804	return 0;
2805}
2806
2807/* Undo during fast recovery after partial ACK. */
2808
2809static int tcp_try_undo_partial(struct sock *sk, int acked)
2810{
2811	struct tcp_sock *tp = tcp_sk(sk);
2812	/* Partial ACK arrived. Force Hoe's retransmit. */
2813	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2814
2815	if (tcp_may_undo(tp)) {
2816		/* Plain luck! Hole if filled with delayed
2817		 * packet, rather than with a retransmit.
2818		 */
2819		if (!tcp_any_retrans_done(sk))
2820			tp->retrans_stamp = 0;
2821
2822		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2823
2824		DBGUNDO(sk, "Hoe");
2825		tcp_undo_cwr(sk, false);
2826		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2827
2828		/* So... Do not make Hoe's retransmit yet.
2829		 * If the first packet was delayed, the rest
2830		 * ones are most probably delayed as well.
2831		 */
2832		failed = 0;
2833	}
2834	return failed;
2835}
2836
2837/* Undo during loss recovery after partial ACK. */
2838static int tcp_try_undo_loss(struct sock *sk)
2839{
2840	struct tcp_sock *tp = tcp_sk(sk);
2841
2842	if (tcp_may_undo(tp)) {
2843		struct sk_buff *skb;
2844		tcp_for_write_queue(skb, sk) {
2845			if (skb == tcp_send_head(sk))
2846				break;
2847			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2848		}
2849
2850		tcp_clear_all_retrans_hints(tp);
2851
2852		DBGUNDO(sk, "partial loss");
2853		tp->lost_out = 0;
2854		tcp_undo_cwr(sk, true);
2855		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2856		inet_csk(sk)->icsk_retransmits = 0;
2857		tp->undo_marker = 0;
2858		if (tcp_is_sack(tp))
2859			tcp_set_ca_state(sk, TCP_CA_Open);
2860		return 1;
2861	}
2862	return 0;
2863}
2864
2865static inline void tcp_complete_cwr(struct sock *sk)
2866{
2867	struct tcp_sock *tp = tcp_sk(sk);
2868
2869	/* Do not moderate cwnd if it's already undone in cwr or recovery. */
2870	if (tp->undo_marker) {
2871		if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2872			tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2873		else /* PRR */
2874			tp->snd_cwnd = tp->snd_ssthresh;
2875		tp->snd_cwnd_stamp = tcp_time_stamp;
2876	}
2877	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2878}
2879
2880static void tcp_try_keep_open(struct sock *sk)
2881{
2882	struct tcp_sock *tp = tcp_sk(sk);
2883	int state = TCP_CA_Open;
2884
2885	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2886		state = TCP_CA_Disorder;
2887
2888	if (inet_csk(sk)->icsk_ca_state != state) {
2889		tcp_set_ca_state(sk, state);
2890		tp->high_seq = tp->snd_nxt;
2891	}
2892}
2893
2894static void tcp_try_to_open(struct sock *sk, int flag)
2895{
2896	struct tcp_sock *tp = tcp_sk(sk);
2897
2898	tcp_verify_left_out(tp);
2899
2900	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2901		tp->retrans_stamp = 0;
2902
2903	if (flag & FLAG_ECE)
2904		tcp_enter_cwr(sk, 1);
2905
2906	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2907		tcp_try_keep_open(sk);
2908		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2909			tcp_moderate_cwnd(tp);
2910	} else {
2911		tcp_cwnd_down(sk, flag);
2912	}
2913}
2914
2915static void tcp_mtup_probe_failed(struct sock *sk)
2916{
2917	struct inet_connection_sock *icsk = inet_csk(sk);
2918
2919	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2920	icsk->icsk_mtup.probe_size = 0;
2921}
2922
2923static void tcp_mtup_probe_success(struct sock *sk)
2924{
2925	struct tcp_sock *tp = tcp_sk(sk);
2926	struct inet_connection_sock *icsk = inet_csk(sk);
2927
2928	/* FIXME: breaks with very large cwnd */
2929	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2930	tp->snd_cwnd = tp->snd_cwnd *
2931		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2932		       icsk->icsk_mtup.probe_size;
2933	tp->snd_cwnd_cnt = 0;
2934	tp->snd_cwnd_stamp = tcp_time_stamp;
2935	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2936
2937	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2938	icsk->icsk_mtup.probe_size = 0;
2939	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2940}
2941
2942/* Do a simple retransmit without using the backoff mechanisms in
2943 * tcp_timer. This is used for path mtu discovery.
2944 * The socket is already locked here.
2945 */
2946void tcp_simple_retransmit(struct sock *sk)
2947{
2948	const struct inet_connection_sock *icsk = inet_csk(sk);
2949	struct tcp_sock *tp = tcp_sk(sk);
2950	struct sk_buff *skb;
2951	unsigned int mss = tcp_current_mss(sk);
2952	u32 prior_lost = tp->lost_out;
2953
2954	tcp_for_write_queue(skb, sk) {
2955		if (skb == tcp_send_head(sk))
2956			break;
2957		if (tcp_skb_seglen(skb) > mss &&
2958		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2959			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2960				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2961				tp->retrans_out -= tcp_skb_pcount(skb);
2962			}
2963			tcp_skb_mark_lost_uncond_verify(tp, skb);
2964		}
2965	}
2966
2967	tcp_clear_retrans_hints_partial(tp);
2968
2969	if (prior_lost == tp->lost_out)
2970		return;
2971
2972	if (tcp_is_reno(tp))
2973		tcp_limit_reno_sacked(tp);
2974
2975	tcp_verify_left_out(tp);
2976
2977	/* Don't muck with the congestion window here.
2978	 * Reason is that we do not increase amount of _data_
2979	 * in network, but units changed and effective
2980	 * cwnd/ssthresh really reduced now.
2981	 */
2982	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2983		tp->high_seq = tp->snd_nxt;
2984		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2985		tp->prior_ssthresh = 0;
2986		tp->undo_marker = 0;
2987		tcp_set_ca_state(sk, TCP_CA_Loss);
2988	}
2989	tcp_xmit_retransmit_queue(sk);
2990}
2991EXPORT_SYMBOL(tcp_simple_retransmit);
2992
2993/* This function implements the PRR algorithm, specifcally the PRR-SSRB
2994 * (proportional rate reduction with slow start reduction bound) as described in
2995 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2996 * It computes the number of packets to send (sndcnt) based on packets newly
2997 * delivered:
2998 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2999 *	cwnd reductions across a full RTT.
3000 *   2) If packets in flight is lower than ssthresh (such as due to excess
3001 *	losses and/or application stalls), do not perform any further cwnd
3002 *	reductions, but instead slow start up to ssthresh.
3003 */
3004static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3005					int fast_rexmit, int flag)
3006{
3007	struct tcp_sock *tp = tcp_sk(sk);
3008	int sndcnt = 0;
3009	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3010
3011	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3012		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3013			       tp->prior_cwnd - 1;
3014		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3015	} else {
3016		sndcnt = min_t(int, delta,
3017			       max_t(int, tp->prr_delivered - tp->prr_out,
3018				     newly_acked_sacked) + 1);
3019	}
3020
3021	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3022	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3023}
3024
3025/* Process an event, which can update packets-in-flight not trivially.
3026 * Main goal of this function is to calculate new estimate for left_out,
3027 * taking into account both packets sitting in receiver's buffer and
3028 * packets lost by network.
3029 *
3030 * Besides that it does CWND reduction, when packet loss is detected
3031 * and changes state of machine.
3032 *
3033 * It does _not_ decide what to send, it is made in function
3034 * tcp_xmit_retransmit_queue().
3035 */
3036static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3037				  int newly_acked_sacked, bool is_dupack,
3038				  int flag)
3039{
3040	struct inet_connection_sock *icsk = inet_csk(sk);
3041	struct tcp_sock *tp = tcp_sk(sk);
3042	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3043				    (tcp_fackets_out(tp) > tp->reordering));
3044	int fast_rexmit = 0, mib_idx;
3045
3046	if (WARN_ON(!tp->packets_out && tp->sacked_out))
3047		tp->sacked_out = 0;
3048	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3049		tp->fackets_out = 0;
3050
3051	/* Now state machine starts.
3052	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3053	if (flag & FLAG_ECE)
3054		tp->prior_ssthresh = 0;
3055
3056	/* B. In all the states check for reneging SACKs. */
3057	if (tcp_check_sack_reneging(sk, flag))
3058		return;
3059
3060	/* C. Check consistency of the current state. */
3061	tcp_verify_left_out(tp);
3062
3063	/* D. Check state exit conditions. State can be terminated
3064	 *    when high_seq is ACKed. */
3065	if (icsk->icsk_ca_state == TCP_CA_Open) {
3066		WARN_ON(tp->retrans_out != 0);
3067		tp->retrans_stamp = 0;
3068	} else if (!before(tp->snd_una, tp->high_seq)) {
3069		switch (icsk->icsk_ca_state) {
3070		case TCP_CA_Loss:
3071			icsk->icsk_retransmits = 0;
3072			if (tcp_try_undo_recovery(sk))
3073				return;
3074			break;
3075
3076		case TCP_CA_CWR:
3077			/* CWR is to be held something *above* high_seq
3078			 * is ACKed for CWR bit to reach receiver. */
3079			if (tp->snd_una != tp->high_seq) {
3080				tcp_complete_cwr(sk);
3081				tcp_set_ca_state(sk, TCP_CA_Open);
3082			}
3083			break;
3084
3085		case TCP_CA_Recovery:
3086			if (tcp_is_reno(tp))
3087				tcp_reset_reno_sack(tp);
3088			if (tcp_try_undo_recovery(sk))
3089				return;
3090			tcp_complete_cwr(sk);
3091			break;
3092		}
3093	}
3094
3095	/* E. Process state. */
3096	switch (icsk->icsk_ca_state) {
3097	case TCP_CA_Recovery:
3098		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3099			if (tcp_is_reno(tp) && is_dupack)
3100				tcp_add_reno_sack(sk);
3101		} else
3102			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3103		break;
3104	case TCP_CA_Loss:
3105		if (flag & FLAG_DATA_ACKED)
3106			icsk->icsk_retransmits = 0;
3107		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3108			tcp_reset_reno_sack(tp);
3109		if (!tcp_try_undo_loss(sk)) {
3110			tcp_moderate_cwnd(tp);
3111			tcp_xmit_retransmit_queue(sk);
3112			return;
3113		}
3114		if (icsk->icsk_ca_state != TCP_CA_Open)
3115			return;
3116		/* Loss is undone; fall through to processing in Open state. */
3117	default:
3118		if (tcp_is_reno(tp)) {
3119			if (flag & FLAG_SND_UNA_ADVANCED)
3120				tcp_reset_reno_sack(tp);
3121			if (is_dupack)
3122				tcp_add_reno_sack(sk);
3123		}
3124
3125		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3126			tcp_try_undo_dsack(sk);
3127
3128		if (!tcp_time_to_recover(sk)) {
3129			tcp_try_to_open(sk, flag);
3130			return;
3131		}
3132
3133		/* MTU probe failure: don't reduce cwnd */
3134		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3135		    icsk->icsk_mtup.probe_size &&
3136		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3137			tcp_mtup_probe_failed(sk);
3138			/* Restores the reduction we did in tcp_mtup_probe() */
3139			tp->snd_cwnd++;
3140			tcp_simple_retransmit(sk);
3141			return;
3142		}
3143
3144		/* Otherwise enter Recovery state */
3145
3146		if (tcp_is_reno(tp))
3147			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3148		else
3149			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3150
3151		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3152
3153		tp->high_seq = tp->snd_nxt;
3154		tp->prior_ssthresh = 0;
3155		tp->undo_marker = tp->snd_una;
3156		tp->undo_retrans = tp->retrans_out;
3157
3158		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3159			if (!(flag & FLAG_ECE))
3160				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3161			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3162			TCP_ECN_queue_cwr(tp);
3163		}
3164
3165		tp->bytes_acked = 0;
3166		tp->snd_cwnd_cnt = 0;
3167		tp->prior_cwnd = tp->snd_cwnd;
3168		tp->prr_delivered = 0;
3169		tp->prr_out = 0;
3170		tcp_set_ca_state(sk, TCP_CA_Recovery);
3171		fast_rexmit = 1;
3172	}
3173
3174	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3175		tcp_update_scoreboard(sk, fast_rexmit);
3176	tp->prr_delivered += newly_acked_sacked;
3177	tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3178	tcp_xmit_retransmit_queue(sk);
3179}
3180
3181void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3182{
3183	tcp_rtt_estimator(sk, seq_rtt);
3184	tcp_set_rto(sk);
3185	inet_csk(sk)->icsk_backoff = 0;
3186}
3187EXPORT_SYMBOL(tcp_valid_rtt_meas);
3188
3189/* Read draft-ietf-tcplw-high-performance before mucking
3190 * with this code. (Supersedes RFC1323)
3191 */
3192static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3193{
3194	/* RTTM Rule: A TSecr value received in a segment is used to
3195	 * update the averaged RTT measurement only if the segment
3196	 * acknowledges some new data, i.e., only if it advances the
3197	 * left edge of the send window.
3198	 *
3199	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3200	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3201	 *
3202	 * Changed: reset backoff as soon as we see the first valid sample.
3203	 * If we do not, we get strongly overestimated rto. With timestamps
3204	 * samples are accepted even from very old segments: f.e., when rtt=1
3205	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3206	 * answer arrives rto becomes 120 seconds! If at least one of segments
3207	 * in window is lost... Voila.	 			--ANK (010210)
3208	 */
3209	struct tcp_sock *tp = tcp_sk(sk);
3210
3211	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3212}
3213
3214static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3215{
3216	/* We don't have a timestamp. Can only use
3217	 * packets that are not retransmitted to determine
3218	 * rtt estimates. Also, we must not reset the
3219	 * backoff for rto until we get a non-retransmitted
3220	 * packet. This allows us to deal with a situation
3221	 * where the network delay has increased suddenly.
3222	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3223	 */
3224
3225	if (flag & FLAG_RETRANS_DATA_ACKED)
3226		return;
3227
3228	tcp_valid_rtt_meas(sk, seq_rtt);
3229}
3230
3231static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3232				      const s32 seq_rtt)
3233{
3234	const struct tcp_sock *tp = tcp_sk(sk);
3235	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3236	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3237		tcp_ack_saw_tstamp(sk, flag);
3238	else if (seq_rtt >= 0)
3239		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3240}
3241
3242static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3243{
3244	const struct inet_connection_sock *icsk = inet_csk(sk);
3245	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3246	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3247}
3248
3249/* Restart timer after forward progress on connection.
3250 * RFC2988 recommends to restart timer to now+rto.
3251 */
3252static void tcp_rearm_rto(struct sock *sk)
3253{
3254	const struct tcp_sock *tp = tcp_sk(sk);
3255
3256	if (!tp->packets_out) {
3257		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3258	} else {
3259		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3260					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3261	}
3262}
3263
3264/* If we get here, the whole TSO packet has not been acked. */
3265static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3266{
3267	struct tcp_sock *tp = tcp_sk(sk);
3268	u32 packets_acked;
3269
3270	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3271
3272	packets_acked = tcp_skb_pcount(skb);
3273	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3274		return 0;
3275	packets_acked -= tcp_skb_pcount(skb);
3276
3277	if (packets_acked) {
3278		BUG_ON(tcp_skb_pcount(skb) == 0);
3279		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3280	}
3281
3282	return packets_acked;
3283}
3284
3285/* Remove acknowledged frames from the retransmission queue. If our packet
3286 * is before the ack sequence we can discard it as it's confirmed to have
3287 * arrived at the other end.
3288 */
3289static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3290			       u32 prior_snd_una)
3291{
3292	struct tcp_sock *tp = tcp_sk(sk);
3293	const struct inet_connection_sock *icsk = inet_csk(sk);
3294	struct sk_buff *skb;
3295	u32 now = tcp_time_stamp;
3296	int fully_acked = 1;
3297	int flag = 0;
3298	u32 pkts_acked = 0;
3299	u32 reord = tp->packets_out;
3300	u32 prior_sacked = tp->sacked_out;
3301	s32 seq_rtt = -1;
3302	s32 ca_seq_rtt = -1;
3303	ktime_t last_ackt = net_invalid_timestamp();
3304
3305	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3306		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3307		u32 acked_pcount;
3308		u8 sacked = scb->sacked;
3309
3310		/* Determine how many packets and what bytes were acked, tso and else */
3311		if (after(scb->end_seq, tp->snd_una)) {
3312			if (tcp_skb_pcount(skb) == 1 ||
3313			    !after(tp->snd_una, scb->seq))
3314				break;
3315
3316			acked_pcount = tcp_tso_acked(sk, skb);
3317			if (!acked_pcount)
3318				break;
3319
3320			fully_acked = 0;
3321		} else {
3322			acked_pcount = tcp_skb_pcount(skb);
3323		}
3324
3325		if (sacked & TCPCB_RETRANS) {
3326			if (sacked & TCPCB_SACKED_RETRANS)
3327				tp->retrans_out -= acked_pcount;
3328			flag |= FLAG_RETRANS_DATA_ACKED;
3329			ca_seq_rtt = -1;
3330			seq_rtt = -1;
3331			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3332				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3333		} else {
3334			ca_seq_rtt = now - scb->when;
3335			last_ackt = skb->tstamp;
3336			if (seq_rtt < 0) {
3337				seq_rtt = ca_seq_rtt;
3338			}
3339			if (!(sacked & TCPCB_SACKED_ACKED))
3340				reord = min(pkts_acked, reord);
3341		}
3342
3343		if (sacked & TCPCB_SACKED_ACKED)
3344			tp->sacked_out -= acked_pcount;
3345		if (sacked & TCPCB_LOST)
3346			tp->lost_out -= acked_pcount;
3347
3348		tp->packets_out -= acked_pcount;
3349		pkts_acked += acked_pcount;
3350
3351		/* Initial outgoing SYN's get put onto the write_queue
3352		 * just like anything else we transmit.  It is not
3353		 * true data, and if we misinform our callers that
3354		 * this ACK acks real data, we will erroneously exit
3355		 * connection startup slow start one packet too
3356		 * quickly.  This is severely frowned upon behavior.
3357		 */
3358		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3359			flag |= FLAG_DATA_ACKED;
3360		} else {
3361			flag |= FLAG_SYN_ACKED;
3362			tp->retrans_stamp = 0;
3363		}
3364
3365		if (!fully_acked)
3366			break;
3367
3368		tcp_unlink_write_queue(skb, sk);
3369		sk_wmem_free_skb(sk, skb);
3370		tp->scoreboard_skb_hint = NULL;
3371		if (skb == tp->retransmit_skb_hint)
3372			tp->retransmit_skb_hint = NULL;
3373		if (skb == tp->lost_skb_hint)
3374			tp->lost_skb_hint = NULL;
3375	}
3376
3377	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3378		tp->snd_up = tp->snd_una;
3379
3380	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3381		flag |= FLAG_SACK_RENEGING;
3382
3383	if (flag & FLAG_ACKED) {
3384		const struct tcp_congestion_ops *ca_ops
3385			= inet_csk(sk)->icsk_ca_ops;
3386
3387		if (unlikely(icsk->icsk_mtup.probe_size &&
3388			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3389			tcp_mtup_probe_success(sk);
3390		}
3391
3392		tcp_ack_update_rtt(sk, flag, seq_rtt);
3393		tcp_rearm_rto(sk);
3394
3395		if (tcp_is_reno(tp)) {
3396			tcp_remove_reno_sacks(sk, pkts_acked);
3397		} else {
3398			int delta;
3399
3400			/* Non-retransmitted hole got filled? That's reordering */
3401			if (reord < prior_fackets)
3402				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3403
3404			delta = tcp_is_fack(tp) ? pkts_acked :
3405						  prior_sacked - tp->sacked_out;
3406			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3407		}
3408
3409		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3410
3411		if (ca_ops->pkts_acked) {
3412			s32 rtt_us = -1;
3413
3414			/* Is the ACK triggering packet unambiguous? */
3415			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3416				/* High resolution needed and available? */
3417				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3418				    !ktime_equal(last_ackt,
3419						 net_invalid_timestamp()))
3420					rtt_us = ktime_us_delta(ktime_get_real(),
3421								last_ackt);
3422				else if (ca_seq_rtt >= 0)
3423					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3424			}
3425
3426			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3427		}
3428	}
3429
3430#if FASTRETRANS_DEBUG > 0
3431	WARN_ON((int)tp->sacked_out < 0);
3432	WARN_ON((int)tp->lost_out < 0);
3433	WARN_ON((int)tp->retrans_out < 0);
3434	if (!tp->packets_out && tcp_is_sack(tp)) {
3435		icsk = inet_csk(sk);
3436		if (tp->lost_out) {
3437			printk(KERN_DEBUG "Leak l=%u %d\n",
3438			       tp->lost_out, icsk->icsk_ca_state);
3439			tp->lost_out = 0;
3440		}
3441		if (tp->sacked_out) {
3442			printk(KERN_DEBUG "Leak s=%u %d\n",
3443			       tp->sacked_out, icsk->icsk_ca_state);
3444			tp->sacked_out = 0;
3445		}
3446		if (tp->retrans_out) {
3447			printk(KERN_DEBUG "Leak r=%u %d\n",
3448			       tp->retrans_out, icsk->icsk_ca_state);
3449			tp->retrans_out = 0;
3450		}
3451	}
3452#endif
3453	return flag;
3454}
3455
3456static void tcp_ack_probe(struct sock *sk)
3457{
3458	const struct tcp_sock *tp = tcp_sk(sk);
3459	struct inet_connection_sock *icsk = inet_csk(sk);
3460
3461	/* Was it a usable window open? */
3462
3463	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3464		icsk->icsk_backoff = 0;
3465		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3466		/* Socket must be waked up by subsequent tcp_data_snd_check().
3467		 * This function is not for random using!
3468		 */
3469	} else {
3470		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3471					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3472					  TCP_RTO_MAX);
3473	}
3474}
3475
3476static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3477{
3478	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3479		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3480}
3481
3482static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3483{
3484	const struct tcp_sock *tp = tcp_sk(sk);
3485	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3486		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3487}
3488
3489/* Check that window update is acceptable.
3490 * The function assumes that snd_una<=ack<=snd_next.
3491 */
3492static inline int tcp_may_update_window(const struct tcp_sock *tp,
3493					const u32 ack, const u32 ack_seq,
3494					const u32 nwin)
3495{
3496	return	after(ack, tp->snd_una) ||
3497		after(ack_seq, tp->snd_wl1) ||
3498		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3499}
3500
3501/* Update our send window.
3502 *
3503 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3504 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3505 */
3506static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3507				 u32 ack_seq)
3508{
3509	struct tcp_sock *tp = tcp_sk(sk);
3510	int flag = 0;
3511	u32 nwin = ntohs(tcp_hdr(skb)->window);
3512
3513	if (likely(!tcp_hdr(skb)->syn))
3514		nwin <<= tp->rx_opt.snd_wscale;
3515
3516	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3517		flag |= FLAG_WIN_UPDATE;
3518		tcp_update_wl(tp, ack_seq);
3519
3520		if (tp->snd_wnd != nwin) {
3521			tp->snd_wnd = nwin;
3522
3523			/* Note, it is the only place, where
3524			 * fast path is recovered for sending TCP.
3525			 */
3526			tp->pred_flags = 0;
3527			tcp_fast_path_check(sk);
3528
3529			if (nwin > tp->max_window) {
3530				tp->max_window = nwin;
3531				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3532			}
3533		}
3534	}
3535
3536	tp->snd_una = ack;
3537
3538	return flag;
3539}
3540
3541/* A very conservative spurious RTO response algorithm: reduce cwnd and
3542 * continue in congestion avoidance.
3543 */
3544static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3545{
3546	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3547	tp->snd_cwnd_cnt = 0;
3548	tp->bytes_acked = 0;
3549	TCP_ECN_queue_cwr(tp);
3550	tcp_moderate_cwnd(tp);
3551}
3552
3553/* A conservative spurious RTO response algorithm: reduce cwnd using
3554 * rate halving and continue in congestion avoidance.
3555 */
3556static void tcp_ratehalving_spur_to_response(struct sock *sk)
3557{
3558	tcp_enter_cwr(sk, 0);
3559}
3560
3561static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3562{
3563	if (flag & FLAG_ECE)
3564		tcp_ratehalving_spur_to_response(sk);
3565	else
3566		tcp_undo_cwr(sk, true);
3567}
3568
3569/* F-RTO spurious RTO detection algorithm (RFC4138)
3570 *
3571 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3572 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3573 * window (but not to or beyond highest sequence sent before RTO):
3574 *   On First ACK,  send two new segments out.
3575 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3576 *                  algorithm is not part of the F-RTO detection algorithm
3577 *                  given in RFC4138 but can be selected separately).
3578 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3579 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3580 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3581 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3582 *
3583 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3584 * original window even after we transmit two new data segments.
3585 *
3586 * SACK version:
3587 *   on first step, wait until first cumulative ACK arrives, then move to
3588 *   the second step. In second step, the next ACK decides.
3589 *
3590 * F-RTO is implemented (mainly) in four functions:
3591 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3592 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3593 *     called when tcp_use_frto() showed green light
3594 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3595 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3596 *     to prove that the RTO is indeed spurious. It transfers the control
3597 *     from F-RTO to the conventional RTO recovery
3598 */
3599static int tcp_process_frto(struct sock *sk, int flag)
3600{
3601	struct tcp_sock *tp = tcp_sk(sk);
3602
3603	tcp_verify_left_out(tp);
3604
3605	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3606	if (flag & FLAG_DATA_ACKED)
3607		inet_csk(sk)->icsk_retransmits = 0;
3608
3609	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3610	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3611		tp->undo_marker = 0;
3612
3613	if (!before(tp->snd_una, tp->frto_highmark)) {
3614		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3615		return 1;
3616	}
3617
3618	if (!tcp_is_sackfrto(tp)) {
3619		/* RFC4138 shortcoming in step 2; should also have case c):
3620		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3621		 * data, winupdate
3622		 */
3623		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3624			return 1;
3625
3626		if (!(flag & FLAG_DATA_ACKED)) {
3627			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3628					    flag);
3629			return 1;
3630		}
3631	} else {
3632		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3633			/* Prevent sending of new data. */
3634			tp->snd_cwnd = min(tp->snd_cwnd,
3635					   tcp_packets_in_flight(tp));
3636			return 1;
3637		}
3638
3639		if ((tp->frto_counter >= 2) &&
3640		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3641		     ((flag & FLAG_DATA_SACKED) &&
3642		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3643			/* RFC4138 shortcoming (see comment above) */
3644			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3645			    (flag & FLAG_NOT_DUP))
3646				return 1;
3647
3648			tcp_enter_frto_loss(sk, 3, flag);
3649			return 1;
3650		}
3651	}
3652
3653	if (tp->frto_counter == 1) {
3654		/* tcp_may_send_now needs to see updated state */
3655		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3656		tp->frto_counter = 2;
3657
3658		if (!tcp_may_send_now(sk))
3659			tcp_enter_frto_loss(sk, 2, flag);
3660
3661		return 1;
3662	} else {
3663		switch (sysctl_tcp_frto_response) {
3664		case 2:
3665			tcp_undo_spur_to_response(sk, flag);
3666			break;
3667		case 1:
3668			tcp_conservative_spur_to_response(tp);
3669			break;
3670		default:
3671			tcp_ratehalving_spur_to_response(sk);
3672			break;
3673		}
3674		tp->frto_counter = 0;
3675		tp->undo_marker = 0;
3676		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3677	}
3678	return 0;
3679}
3680
3681/* This routine deals with incoming acks, but not outgoing ones. */
3682static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3683{
3684	struct inet_connection_sock *icsk = inet_csk(sk);
3685	struct tcp_sock *tp = tcp_sk(sk);
3686	u32 prior_snd_una = tp->snd_una;
3687	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3688	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3689	bool is_dupack = false;
3690	u32 prior_in_flight;
3691	u32 prior_fackets;
3692	int prior_packets;
3693	int prior_sacked = tp->sacked_out;
3694	int pkts_acked = 0;
3695	int newly_acked_sacked = 0;
3696	int frto_cwnd = 0;
3697
3698	/* If the ack is older than previous acks
3699	 * then we can probably ignore it.
3700	 */
3701	if (before(ack, prior_snd_una))
3702		goto old_ack;
3703
3704	/* If the ack includes data we haven't sent yet, discard
3705	 * this segment (RFC793 Section 3.9).
3706	 */
3707	if (after(ack, tp->snd_nxt))
3708		goto invalid_ack;
3709
3710	if (after(ack, prior_snd_una))
3711		flag |= FLAG_SND_UNA_ADVANCED;
3712
3713	if (sysctl_tcp_abc) {
3714		if (icsk->icsk_ca_state < TCP_CA_CWR)
3715			tp->bytes_acked += ack - prior_snd_una;
3716		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3717			/* we assume just one segment left network */
3718			tp->bytes_acked += min(ack - prior_snd_una,
3719					       tp->mss_cache);
3720	}
3721
3722	prior_fackets = tp->fackets_out;
3723	prior_in_flight = tcp_packets_in_flight(tp);
3724
3725	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3726		/* Window is constant, pure forward advance.
3727		 * No more checks are required.
3728		 * Note, we use the fact that SND.UNA>=SND.WL2.
3729		 */
3730		tcp_update_wl(tp, ack_seq);
3731		tp->snd_una = ack;
3732		flag |= FLAG_WIN_UPDATE;
3733
3734		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3735
3736		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3737	} else {
3738		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3739			flag |= FLAG_DATA;
3740		else
3741			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3742
3743		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3744
3745		if (TCP_SKB_CB(skb)->sacked)
3746			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3747
3748		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3749			flag |= FLAG_ECE;
3750
3751		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3752	}
3753
3754	/* We passed data and got it acked, remove any soft error
3755	 * log. Something worked...
3756	 */
3757	sk->sk_err_soft = 0;
3758	icsk->icsk_probes_out = 0;
3759	tp->rcv_tstamp = tcp_time_stamp;
3760	prior_packets = tp->packets_out;
3761	if (!prior_packets)
3762		goto no_queue;
3763
3764	/* See if we can take anything off of the retransmit queue. */
3765	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3766
3767	pkts_acked = prior_packets - tp->packets_out;
3768	newly_acked_sacked = (prior_packets - prior_sacked) -
3769			     (tp->packets_out - tp->sacked_out);
3770
3771	if (tp->frto_counter)
3772		frto_cwnd = tcp_process_frto(sk, flag);
3773	/* Guarantee sacktag reordering detection against wrap-arounds */
3774	if (before(tp->frto_highmark, tp->snd_una))
3775		tp->frto_highmark = 0;
3776
3777	if (tcp_ack_is_dubious(sk, flag)) {
3778		/* Advance CWND, if state allows this. */
3779		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3780		    tcp_may_raise_cwnd(sk, flag))
3781			tcp_cong_avoid(sk, ack, prior_in_flight);
3782		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3783		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3784				      is_dupack, flag);
3785	} else {
3786		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3787			tcp_cong_avoid(sk, ack, prior_in_flight);
3788	}
3789
3790	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3791		dst_confirm(__sk_dst_get(sk));
3792
3793	return 1;
3794
3795no_queue:
3796	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3797	if (flag & FLAG_DSACKING_ACK)
3798		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3799				      is_dupack, flag);
3800	/* If this ack opens up a zero window, clear backoff.  It was
3801	 * being used to time the probes, and is probably far higher than
3802	 * it needs to be for normal retransmission.
3803	 */
3804	if (tcp_send_head(sk))
3805		tcp_ack_probe(sk);
3806	return 1;
3807
3808invalid_ack:
3809	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3810	return -1;
3811
3812old_ack:
3813	/* If data was SACKed, tag it and see if we should send more data.
3814	 * If data was DSACKed, see if we can undo a cwnd reduction.
3815	 */
3816	if (TCP_SKB_CB(skb)->sacked) {
3817		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3818		newly_acked_sacked = tp->sacked_out - prior_sacked;
3819		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3820				      is_dupack, flag);
3821	}
3822
3823	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3824	return 0;
3825}
3826
3827/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3828 * But, this can also be called on packets in the established flow when
3829 * the fast version below fails.
3830 */
3831void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3832		       const u8 **hvpp, int estab)
3833{
3834	const unsigned char *ptr;
3835	const struct tcphdr *th = tcp_hdr(skb);
3836	int length = (th->doff * 4) - sizeof(struct tcphdr);
3837
3838	ptr = (const unsigned char *)(th + 1);
3839	opt_rx->saw_tstamp = 0;
3840
3841	while (length > 0) {
3842		int opcode = *ptr++;
3843		int opsize;
3844
3845		switch (opcode) {
3846		case TCPOPT_EOL:
3847			return;
3848		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3849			length--;
3850			continue;
3851		default:
3852			opsize = *ptr++;
3853			if (opsize < 2) /* "silly options" */
3854				return;
3855			if (opsize > length)
3856				return;	/* don't parse partial options */
3857			switch (opcode) {
3858			case TCPOPT_MSS:
3859				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3860					u16 in_mss = get_unaligned_be16(ptr);
3861					if (in_mss) {
3862						if (opt_rx->user_mss &&
3863						    opt_rx->user_mss < in_mss)
3864							in_mss = opt_rx->user_mss;
3865						opt_rx->mss_clamp = in_mss;
3866					}
3867				}
3868				break;
3869			case TCPOPT_WINDOW:
3870				if (opsize == TCPOLEN_WINDOW && th->syn &&
3871				    !estab && sysctl_tcp_window_scaling) {
3872					__u8 snd_wscale = *(__u8 *)ptr;
3873					opt_rx->wscale_ok = 1;
3874					if (snd_wscale > 14) {
3875						if (net_ratelimit())
3876							pr_info("%s: Illegal window scaling value %d >14 received\n",
3877								__func__,
3878								snd_wscale);
3879						snd_wscale = 14;
3880					}
3881					opt_rx->snd_wscale = snd_wscale;
3882				}
3883				break;
3884			case TCPOPT_TIMESTAMP:
3885				if ((opsize == TCPOLEN_TIMESTAMP) &&
3886				    ((estab && opt_rx->tstamp_ok) ||
3887				     (!estab && sysctl_tcp_timestamps))) {
3888					opt_rx->saw_tstamp = 1;
3889					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3890					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3891				}
3892				break;
3893			case TCPOPT_SACK_PERM:
3894				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3895				    !estab && sysctl_tcp_sack) {
3896					opt_rx->sack_ok = TCP_SACK_SEEN;
3897					tcp_sack_reset(opt_rx);
3898				}
3899				break;
3900
3901			case TCPOPT_SACK:
3902				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3903				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3904				   opt_rx->sack_ok) {
3905					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3906				}
3907				break;
3908#ifdef CONFIG_TCP_MD5SIG
3909			case TCPOPT_MD5SIG:
3910				/*
3911				 * The MD5 Hash has already been
3912				 * checked (see tcp_v{4,6}_do_rcv()).
3913				 */
3914				break;
3915#endif
3916			case TCPOPT_COOKIE:
3917				/* This option is variable length.
3918				 */
3919				switch (opsize) {
3920				case TCPOLEN_COOKIE_BASE:
3921					/* not yet implemented */
3922					break;
3923				case TCPOLEN_COOKIE_PAIR:
3924					/* not yet implemented */
3925					break;
3926				case TCPOLEN_COOKIE_MIN+0:
3927				case TCPOLEN_COOKIE_MIN+2:
3928				case TCPOLEN_COOKIE_MIN+4:
3929				case TCPOLEN_COOKIE_MIN+6:
3930				case TCPOLEN_COOKIE_MAX:
3931					/* 16-bit multiple */
3932					opt_rx->cookie_plus = opsize;
3933					*hvpp = ptr;
3934					break;
3935				default:
3936					/* ignore option */
3937					break;
3938				}
3939				break;
3940			}
3941
3942			ptr += opsize-2;
3943			length -= opsize;
3944		}
3945	}
3946}
3947EXPORT_SYMBOL(tcp_parse_options);
3948
3949static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3950{
3951	const __be32 *ptr = (const __be32 *)(th + 1);
3952
3953	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3954			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3955		tp->rx_opt.saw_tstamp = 1;
3956		++ptr;
3957		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3958		++ptr;
3959		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3960		return 1;
3961	}
3962	return 0;
3963}
3964
3965/* Fast parse options. This hopes to only see timestamps.
3966 * If it is wrong it falls back on tcp_parse_options().
3967 */
3968static int tcp_fast_parse_options(const struct sk_buff *skb,
3969				  const struct tcphdr *th,
3970				  struct tcp_sock *tp, const u8 **hvpp)
3971{
3972	/* In the spirit of fast parsing, compare doff directly to constant
3973	 * values.  Because equality is used, short doff can be ignored here.
3974	 */
3975	if (th->doff == (sizeof(*th) / 4)) {
3976		tp->rx_opt.saw_tstamp = 0;
3977		return 0;
3978	} else if (tp->rx_opt.tstamp_ok &&
3979		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3980		if (tcp_parse_aligned_timestamp(tp, th))
3981			return 1;
3982	}
3983	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3984	return 1;
3985}
3986
3987#ifdef CONFIG_TCP_MD5SIG
3988/*
3989 * Parse MD5 Signature option
3990 */
3991const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3992{
3993	int length = (th->doff << 2) - sizeof(*th);
3994	const u8 *ptr = (const u8 *)(th + 1);
3995
3996	/* If the TCP option is too short, we can short cut */
3997	if (length < TCPOLEN_MD5SIG)
3998		return NULL;
3999
4000	while (length > 0) {
4001		int opcode = *ptr++;
4002		int opsize;
4003
4004		switch(opcode) {
4005		case TCPOPT_EOL:
4006			return NULL;
4007		case TCPOPT_NOP:
4008			length--;
4009			continue;
4010		default:
4011			opsize = *ptr++;
4012			if (opsize < 2 || opsize > length)
4013				return NULL;
4014			if (opcode == TCPOPT_MD5SIG)
4015				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4016		}
4017		ptr += opsize - 2;
4018		length -= opsize;
4019	}
4020	return NULL;
4021}
4022EXPORT_SYMBOL(tcp_parse_md5sig_option);
4023#endif
4024
4025static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4026{
4027	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4028	tp->rx_opt.ts_recent_stamp = get_seconds();
4029}
4030
4031static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4032{
4033	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4034		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
4035		 * extra check below makes sure this can only happen
4036		 * for pure ACK frames.  -DaveM
4037		 *
4038		 * Not only, also it occurs for expired timestamps.
4039		 */
4040
4041		if (tcp_paws_check(&tp->rx_opt, 0))
4042			tcp_store_ts_recent(tp);
4043	}
4044}
4045
4046/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4047 *
4048 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4049 * it can pass through stack. So, the following predicate verifies that
4050 * this segment is not used for anything but congestion avoidance or
4051 * fast retransmit. Moreover, we even are able to eliminate most of such
4052 * second order effects, if we apply some small "replay" window (~RTO)
4053 * to timestamp space.
4054 *
4055 * All these measures still do not guarantee that we reject wrapped ACKs
4056 * on networks with high bandwidth, when sequence space is recycled fastly,
4057 * but it guarantees that such events will be very rare and do not affect
4058 * connection seriously. This doesn't look nice, but alas, PAWS is really
4059 * buggy extension.
4060 *
4061 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4062 * states that events when retransmit arrives after original data are rare.
4063 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4064 * the biggest problem on large power networks even with minor reordering.
4065 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4066 * up to bandwidth of 18Gigabit/sec. 8) ]
4067 */
4068
4069static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4070{
4071	const struct tcp_sock *tp = tcp_sk(sk);
4072	const struct tcphdr *th = tcp_hdr(skb);
4073	u32 seq = TCP_SKB_CB(skb)->seq;
4074	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4075
4076	return (/* 1. Pure ACK with correct sequence number. */
4077		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4078
4079		/* 2. ... and duplicate ACK. */
4080		ack == tp->snd_una &&
4081
4082		/* 3. ... and does not update window. */
4083		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4084
4085		/* 4. ... and sits in replay window. */
4086		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4087}
4088
4089static inline int tcp_paws_discard(const struct sock *sk,
4090				   const struct sk_buff *skb)
4091{
4092	const struct tcp_sock *tp = tcp_sk(sk);
4093
4094	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4095	       !tcp_disordered_ack(sk, skb);
4096}
4097
4098/* Check segment sequence number for validity.
4099 *
4100 * Segment controls are considered valid, if the segment
4101 * fits to the window after truncation to the window. Acceptability
4102 * of data (and SYN, FIN, of course) is checked separately.
4103 * See tcp_data_queue(), for example.
4104 *
4105 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4106 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4107 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4108 * (borrowed from freebsd)
4109 */
4110
4111static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4112{
4113	return	!before(end_seq, tp->rcv_wup) &&
4114		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4115}
4116
4117/* When we get a reset we do this. */
4118static void tcp_reset(struct sock *sk)
4119{
4120	/* We want the right error as BSD sees it (and indeed as we do). */
4121	switch (sk->sk_state) {
4122	case TCP_SYN_SENT:
4123		sk->sk_err = ECONNREFUSED;
4124		break;
4125	case TCP_CLOSE_WAIT:
4126		sk->sk_err = EPIPE;
4127		break;
4128	case TCP_CLOSE:
4129		return;
4130	default:
4131		sk->sk_err = ECONNRESET;
4132	}
4133	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4134	smp_wmb();
4135
4136	if (!sock_flag(sk, SOCK_DEAD))
4137		sk->sk_error_report(sk);
4138
4139	tcp_done(sk);
4140}
4141
4142/*
4143 * 	Process the FIN bit. This now behaves as it is supposed to work
4144 *	and the FIN takes effect when it is validly part of sequence
4145 *	space. Not before when we get holes.
4146 *
4147 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4148 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4149 *	TIME-WAIT)
4150 *
4151 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4152 *	close and we go into CLOSING (and later onto TIME-WAIT)
4153 *
4154 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4155 */
4156static void tcp_fin(struct sock *sk)
4157{
4158	struct tcp_sock *tp = tcp_sk(sk);
4159
4160	inet_csk_schedule_ack(sk);
4161
4162	sk->sk_shutdown |= RCV_SHUTDOWN;
4163	sock_set_flag(sk, SOCK_DONE);
4164
4165	switch (sk->sk_state) {
4166	case TCP_SYN_RECV:
4167	case TCP_ESTABLISHED:
4168		/* Move to CLOSE_WAIT */
4169		tcp_set_state(sk, TCP_CLOSE_WAIT);
4170		inet_csk(sk)->icsk_ack.pingpong = 1;
4171		break;
4172
4173	case TCP_CLOSE_WAIT:
4174	case TCP_CLOSING:
4175		/* Received a retransmission of the FIN, do
4176		 * nothing.
4177		 */
4178		break;
4179	case TCP_LAST_ACK:
4180		/* RFC793: Remain in the LAST-ACK state. */
4181		break;
4182
4183	case TCP_FIN_WAIT1:
4184		/* This case occurs when a simultaneous close
4185		 * happens, we must ack the received FIN and
4186		 * enter the CLOSING state.
4187		 */
4188		tcp_send_ack(sk);
4189		tcp_set_state(sk, TCP_CLOSING);
4190		break;
4191	case TCP_FIN_WAIT2:
4192		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4193		tcp_send_ack(sk);
4194		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4195		break;
4196	default:
4197		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4198		 * cases we should never reach this piece of code.
4199		 */
4200		pr_err("%s: Impossible, sk->sk_state=%d\n",
4201		       __func__, sk->sk_state);
4202		break;
4203	}
4204
4205	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4206	 * Probably, we should reset in this case. For now drop them.
4207	 */
4208	__skb_queue_purge(&tp->out_of_order_queue);
4209	if (tcp_is_sack(tp))
4210		tcp_sack_reset(&tp->rx_opt);
4211	sk_mem_reclaim(sk);
4212
4213	if (!sock_flag(sk, SOCK_DEAD)) {
4214		sk->sk_state_change(sk);
4215
4216		/* Do not send POLL_HUP for half duplex close. */
4217		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4218		    sk->sk_state == TCP_CLOSE)
4219			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4220		else
4221			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4222	}
4223}
4224
4225static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4226				  u32 end_seq)
4227{
4228	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4229		if (before(seq, sp->start_seq))
4230			sp->start_seq = seq;
4231		if (after(end_seq, sp->end_seq))
4232			sp->end_seq = end_seq;
4233		return 1;
4234	}
4235	return 0;
4236}
4237
4238static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4239{
4240	struct tcp_sock *tp = tcp_sk(sk);
4241
4242	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4243		int mib_idx;
4244
4245		if (before(seq, tp->rcv_nxt))
4246			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4247		else
4248			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4249
4250		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4251
4252		tp->rx_opt.dsack = 1;
4253		tp->duplicate_sack[0].start_seq = seq;
4254		tp->duplicate_sack[0].end_seq = end_seq;
4255	}
4256}
4257
4258static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4259{
4260	struct tcp_sock *tp = tcp_sk(sk);
4261
4262	if (!tp->rx_opt.dsack)
4263		tcp_dsack_set(sk, seq, end_seq);
4264	else
4265		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4266}
4267
4268static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4269{
4270	struct tcp_sock *tp = tcp_sk(sk);
4271
4272	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4273	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4274		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4275		tcp_enter_quickack_mode(sk);
4276
4277		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4278			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4279
4280			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4281				end_seq = tp->rcv_nxt;
4282			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4283		}
4284	}
4285
4286	tcp_send_ack(sk);
4287}
4288
4289/* These routines update the SACK block as out-of-order packets arrive or
4290 * in-order packets close up the sequence space.
4291 */
4292static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4293{
4294	int this_sack;
4295	struct tcp_sack_block *sp = &tp->selective_acks[0];
4296	struct tcp_sack_block *swalk = sp + 1;
4297
4298	/* See if the recent change to the first SACK eats into
4299	 * or hits the sequence space of other SACK blocks, if so coalesce.
4300	 */
4301	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4302		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4303			int i;
4304
4305			/* Zap SWALK, by moving every further SACK up by one slot.
4306			 * Decrease num_sacks.
4307			 */
4308			tp->rx_opt.num_sacks--;
4309			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4310				sp[i] = sp[i + 1];
4311			continue;
4312		}
4313		this_sack++, swalk++;
4314	}
4315}
4316
4317static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4318{
4319	struct tcp_sock *tp = tcp_sk(sk);
4320	struct tcp_sack_block *sp = &tp->selective_acks[0];
4321	int cur_sacks = tp->rx_opt.num_sacks;
4322	int this_sack;
4323
4324	if (!cur_sacks)
4325		goto new_sack;
4326
4327	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4328		if (tcp_sack_extend(sp, seq, end_seq)) {
4329			/* Rotate this_sack to the first one. */
4330			for (; this_sack > 0; this_sack--, sp--)
4331				swap(*sp, *(sp - 1));
4332			if (cur_sacks > 1)
4333				tcp_sack_maybe_coalesce(tp);
4334			return;
4335		}
4336	}
4337
4338	/* Could not find an adjacent existing SACK, build a new one,
4339	 * put it at the front, and shift everyone else down.  We
4340	 * always know there is at least one SACK present already here.
4341	 *
4342	 * If the sack array is full, forget about the last one.
4343	 */
4344	if (this_sack >= TCP_NUM_SACKS) {
4345		this_sack--;
4346		tp->rx_opt.num_sacks--;
4347		sp--;
4348	}
4349	for (; this_sack > 0; this_sack--, sp--)
4350		*sp = *(sp - 1);
4351
4352new_sack:
4353	/* Build the new head SACK, and we're done. */
4354	sp->start_seq = seq;
4355	sp->end_seq = end_seq;
4356	tp->rx_opt.num_sacks++;
4357}
4358
4359/* RCV.NXT advances, some SACKs should be eaten. */
4360
4361static void tcp_sack_remove(struct tcp_sock *tp)
4362{
4363	struct tcp_sack_block *sp = &tp->selective_acks[0];
4364	int num_sacks = tp->rx_opt.num_sacks;
4365	int this_sack;
4366
4367	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4368	if (skb_queue_empty(&tp->out_of_order_queue)) {
4369		tp->rx_opt.num_sacks = 0;
4370		return;
4371	}
4372
4373	for (this_sack = 0; this_sack < num_sacks;) {
4374		/* Check if the start of the sack is covered by RCV.NXT. */
4375		if (!before(tp->rcv_nxt, sp->start_seq)) {
4376			int i;
4377
4378			/* RCV.NXT must cover all the block! */
4379			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4380
4381			/* Zap this SACK, by moving forward any other SACKS. */
4382			for (i=this_sack+1; i < num_sacks; i++)
4383				tp->selective_acks[i-1] = tp->selective_acks[i];
4384			num_sacks--;
4385			continue;
4386		}
4387		this_sack++;
4388		sp++;
4389	}
4390	tp->rx_opt.num_sacks = num_sacks;
4391}
4392
4393/* This one checks to see if we can put data from the
4394 * out_of_order queue into the receive_queue.
4395 */
4396static void tcp_ofo_queue(struct sock *sk)
4397{
4398	struct tcp_sock *tp = tcp_sk(sk);
4399	__u32 dsack_high = tp->rcv_nxt;
4400	struct sk_buff *skb;
4401
4402	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4403		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4404			break;
4405
4406		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4407			__u32 dsack = dsack_high;
4408			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4409				dsack_high = TCP_SKB_CB(skb)->end_seq;
4410			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4411		}
4412
4413		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4414			SOCK_DEBUG(sk, "ofo packet was already received\n");
4415			__skb_unlink(skb, &tp->out_of_order_queue);
4416			__kfree_skb(skb);
4417			continue;
4418		}
4419		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4420			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4421			   TCP_SKB_CB(skb)->end_seq);
4422
4423		__skb_unlink(skb, &tp->out_of_order_queue);
4424		__skb_queue_tail(&sk->sk_receive_queue, skb);
4425		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4426		if (tcp_hdr(skb)->fin)
4427			tcp_fin(sk);
4428	}
4429}
4430
4431static int tcp_prune_ofo_queue(struct sock *sk);
4432static int tcp_prune_queue(struct sock *sk);
4433
4434static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4435{
4436	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4437	    !sk_rmem_schedule(sk, size)) {
4438
4439		if (tcp_prune_queue(sk) < 0)
4440			return -1;
4441
4442		if (!sk_rmem_schedule(sk, size)) {
4443			if (!tcp_prune_ofo_queue(sk))
4444				return -1;
4445
4446			if (!sk_rmem_schedule(sk, size))
4447				return -1;
4448		}
4449	}
4450	return 0;
4451}
4452
4453static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4454{
4455	struct tcp_sock *tp = tcp_sk(sk);
4456	struct sk_buff *skb1;
4457	u32 seq, end_seq;
4458
4459	TCP_ECN_check_ce(tp, skb);
4460
4461	if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4462		/* TODO: should increment a counter */
4463		__kfree_skb(skb);
4464		return;
4465	}
4466
4467	/* Disable header prediction. */
4468	tp->pred_flags = 0;
4469	inet_csk_schedule_ack(sk);
4470
4471	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4472		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4473
4474	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4475	if (!skb1) {
4476		/* Initial out of order segment, build 1 SACK. */
4477		if (tcp_is_sack(tp)) {
4478			tp->rx_opt.num_sacks = 1;
4479			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4480			tp->selective_acks[0].end_seq =
4481						TCP_SKB_CB(skb)->end_seq;
4482		}
4483		__skb_queue_head(&tp->out_of_order_queue, skb);
4484		goto end;
4485	}
4486
4487	seq = TCP_SKB_CB(skb)->seq;
4488	end_seq = TCP_SKB_CB(skb)->end_seq;
4489
4490	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4491		/* Packets in ofo can stay in queue a long time.
4492		 * Better try to coalesce them right now
4493		 * to avoid future tcp_collapse_ofo_queue(),
4494		 * probably the most expensive function in tcp stack.
4495		 */
4496		if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) {
4497			NET_INC_STATS_BH(sock_net(sk),
4498					 LINUX_MIB_TCPRCVCOALESCE);
4499			BUG_ON(skb_copy_bits(skb, 0,
4500					     skb_put(skb1, skb->len),
4501					     skb->len));
4502			TCP_SKB_CB(skb1)->end_seq = end_seq;
4503			TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
4504			__kfree_skb(skb);
4505			skb = NULL;
4506		} else {
4507			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4508		}
4509
4510		if (!tp->rx_opt.num_sacks ||
4511		    tp->selective_acks[0].end_seq != seq)
4512			goto add_sack;
4513
4514		/* Common case: data arrive in order after hole. */
4515		tp->selective_acks[0].end_seq = end_seq;
4516		goto end;
4517	}
4518
4519	/* Find place to insert this segment. */
4520	while (1) {
4521		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4522			break;
4523		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4524			skb1 = NULL;
4525			break;
4526		}
4527		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4528	}
4529
4530	/* Do skb overlap to previous one? */
4531	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4532		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4533			/* All the bits are present. Drop. */
4534			__kfree_skb(skb);
4535			skb = NULL;
4536			tcp_dsack_set(sk, seq, end_seq);
4537			goto add_sack;
4538		}
4539		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4540			/* Partial overlap. */
4541			tcp_dsack_set(sk, seq,
4542				      TCP_SKB_CB(skb1)->end_seq);
4543		} else {
4544			if (skb_queue_is_first(&tp->out_of_order_queue,
4545					       skb1))
4546				skb1 = NULL;
4547			else
4548				skb1 = skb_queue_prev(
4549					&tp->out_of_order_queue,
4550					skb1);
4551		}
4552	}
4553	if (!skb1)
4554		__skb_queue_head(&tp->out_of_order_queue, skb);
4555	else
4556		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4557
4558	/* And clean segments covered by new one as whole. */
4559	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4560		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4561
4562		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4563			break;
4564		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4565			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4566					 end_seq);
4567			break;
4568		}
4569		__skb_unlink(skb1, &tp->out_of_order_queue);
4570		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4571				 TCP_SKB_CB(skb1)->end_seq);
4572		__kfree_skb(skb1);
4573	}
4574
4575add_sack:
4576	if (tcp_is_sack(tp))
4577		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4578end:
4579	if (skb)
4580		skb_set_owner_r(skb, sk);
4581}
4582
4583
4584static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4585{
4586	const struct tcphdr *th = tcp_hdr(skb);
4587	struct tcp_sock *tp = tcp_sk(sk);
4588	int eaten = -1;
4589
4590	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4591		goto drop;
4592
4593	skb_dst_drop(skb);
4594	__skb_pull(skb, th->doff * 4);
4595
4596	TCP_ECN_accept_cwr(tp, skb);
4597
4598	tp->rx_opt.dsack = 0;
4599
4600	/*  Queue data for delivery to the user.
4601	 *  Packets in sequence go to the receive queue.
4602	 *  Out of sequence packets to the out_of_order_queue.
4603	 */
4604	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4605		if (tcp_receive_window(tp) == 0)
4606			goto out_of_window;
4607
4608		/* Ok. In sequence. In window. */
4609		if (tp->ucopy.task == current &&
4610		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4611		    sock_owned_by_user(sk) && !tp->urg_data) {
4612			int chunk = min_t(unsigned int, skb->len,
4613					  tp->ucopy.len);
4614
4615			__set_current_state(TASK_RUNNING);
4616
4617			local_bh_enable();
4618			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4619				tp->ucopy.len -= chunk;
4620				tp->copied_seq += chunk;
4621				eaten = (chunk == skb->len);
4622				tcp_rcv_space_adjust(sk);
4623			}
4624			local_bh_disable();
4625		}
4626
4627		if (eaten <= 0) {
4628queue_and_out:
4629			if (eaten < 0 &&
4630			    tcp_try_rmem_schedule(sk, skb->truesize))
4631				goto drop;
4632
4633			skb_set_owner_r(skb, sk);
4634			__skb_queue_tail(&sk->sk_receive_queue, skb);
4635		}
4636		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4637		if (skb->len)
4638			tcp_event_data_recv(sk, skb);
4639		if (th->fin)
4640			tcp_fin(sk);
4641
4642		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4643			tcp_ofo_queue(sk);
4644
4645			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4646			 * gap in queue is filled.
4647			 */
4648			if (skb_queue_empty(&tp->out_of_order_queue))
4649				inet_csk(sk)->icsk_ack.pingpong = 0;
4650		}
4651
4652		if (tp->rx_opt.num_sacks)
4653			tcp_sack_remove(tp);
4654
4655		tcp_fast_path_check(sk);
4656
4657		if (eaten > 0)
4658			__kfree_skb(skb);
4659		else if (!sock_flag(sk, SOCK_DEAD))
4660			sk->sk_data_ready(sk, 0);
4661		return;
4662	}
4663
4664	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4665		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4666		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4667		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4668
4669out_of_window:
4670		tcp_enter_quickack_mode(sk);
4671		inet_csk_schedule_ack(sk);
4672drop:
4673		__kfree_skb(skb);
4674		return;
4675	}
4676
4677	/* Out of window. F.e. zero window probe. */
4678	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4679		goto out_of_window;
4680
4681	tcp_enter_quickack_mode(sk);
4682
4683	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4684		/* Partial packet, seq < rcv_next < end_seq */
4685		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4686			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4687			   TCP_SKB_CB(skb)->end_seq);
4688
4689		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4690
4691		/* If window is closed, drop tail of packet. But after
4692		 * remembering D-SACK for its head made in previous line.
4693		 */
4694		if (!tcp_receive_window(tp))
4695			goto out_of_window;
4696		goto queue_and_out;
4697	}
4698
4699	tcp_data_queue_ofo(sk, skb);
4700}
4701
4702static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4703					struct sk_buff_head *list)
4704{
4705	struct sk_buff *next = NULL;
4706
4707	if (!skb_queue_is_last(list, skb))
4708		next = skb_queue_next(list, skb);
4709
4710	__skb_unlink(skb, list);
4711	__kfree_skb(skb);
4712	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4713
4714	return next;
4715}
4716
4717/* Collapse contiguous sequence of skbs head..tail with
4718 * sequence numbers start..end.
4719 *
4720 * If tail is NULL, this means until the end of the list.
4721 *
4722 * Segments with FIN/SYN are not collapsed (only because this
4723 * simplifies code)
4724 */
4725static void
4726tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4727	     struct sk_buff *head, struct sk_buff *tail,
4728	     u32 start, u32 end)
4729{
4730	struct sk_buff *skb, *n;
4731	bool end_of_skbs;
4732
4733	/* First, check that queue is collapsible and find
4734	 * the point where collapsing can be useful. */
4735	skb = head;
4736restart:
4737	end_of_skbs = true;
4738	skb_queue_walk_from_safe(list, skb, n) {
4739		if (skb == tail)
4740			break;
4741		/* No new bits? It is possible on ofo queue. */
4742		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4743			skb = tcp_collapse_one(sk, skb, list);
4744			if (!skb)
4745				break;
4746			goto restart;
4747		}
4748
4749		/* The first skb to collapse is:
4750		 * - not SYN/FIN and
4751		 * - bloated or contains data before "start" or
4752		 *   overlaps to the next one.
4753		 */
4754		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4755		    (tcp_win_from_space(skb->truesize) > skb->len ||
4756		     before(TCP_SKB_CB(skb)->seq, start))) {
4757			end_of_skbs = false;
4758			break;
4759		}
4760
4761		if (!skb_queue_is_last(list, skb)) {
4762			struct sk_buff *next = skb_queue_next(list, skb);
4763			if (next != tail &&
4764			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4765				end_of_skbs = false;
4766				break;
4767			}
4768		}
4769
4770		/* Decided to skip this, advance start seq. */
4771		start = TCP_SKB_CB(skb)->end_seq;
4772	}
4773	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4774		return;
4775
4776	while (before(start, end)) {
4777		struct sk_buff *nskb;
4778		unsigned int header = skb_headroom(skb);
4779		int copy = SKB_MAX_ORDER(header, 0);
4780
4781		/* Too big header? This can happen with IPv6. */
4782		if (copy < 0)
4783			return;
4784		if (end - start < copy)
4785			copy = end - start;
4786		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4787		if (!nskb)
4788			return;
4789
4790		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4791		skb_set_network_header(nskb, (skb_network_header(skb) -
4792					      skb->head));
4793		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4794						skb->head));
4795		skb_reserve(nskb, header);
4796		memcpy(nskb->head, skb->head, header);
4797		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4798		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4799		__skb_queue_before(list, skb, nskb);
4800		skb_set_owner_r(nskb, sk);
4801
4802		/* Copy data, releasing collapsed skbs. */
4803		while (copy > 0) {
4804			int offset = start - TCP_SKB_CB(skb)->seq;
4805			int size = TCP_SKB_CB(skb)->end_seq - start;
4806
4807			BUG_ON(offset < 0);
4808			if (size > 0) {
4809				size = min(copy, size);
4810				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4811					BUG();
4812				TCP_SKB_CB(nskb)->end_seq += size;
4813				copy -= size;
4814				start += size;
4815			}
4816			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4817				skb = tcp_collapse_one(sk, skb, list);
4818				if (!skb ||
4819				    skb == tail ||
4820				    tcp_hdr(skb)->syn ||
4821				    tcp_hdr(skb)->fin)
4822					return;
4823			}
4824		}
4825	}
4826}
4827
4828/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4829 * and tcp_collapse() them until all the queue is collapsed.
4830 */
4831static void tcp_collapse_ofo_queue(struct sock *sk)
4832{
4833	struct tcp_sock *tp = tcp_sk(sk);
4834	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4835	struct sk_buff *head;
4836	u32 start, end;
4837
4838	if (skb == NULL)
4839		return;
4840
4841	start = TCP_SKB_CB(skb)->seq;
4842	end = TCP_SKB_CB(skb)->end_seq;
4843	head = skb;
4844
4845	for (;;) {
4846		struct sk_buff *next = NULL;
4847
4848		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4849			next = skb_queue_next(&tp->out_of_order_queue, skb);
4850		skb = next;
4851
4852		/* Segment is terminated when we see gap or when
4853		 * we are at the end of all the queue. */
4854		if (!skb ||
4855		    after(TCP_SKB_CB(skb)->seq, end) ||
4856		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4857			tcp_collapse(sk, &tp->out_of_order_queue,
4858				     head, skb, start, end);
4859			head = skb;
4860			if (!skb)
4861				break;
4862			/* Start new segment */
4863			start = TCP_SKB_CB(skb)->seq;
4864			end = TCP_SKB_CB(skb)->end_seq;
4865		} else {
4866			if (before(TCP_SKB_CB(skb)->seq, start))
4867				start = TCP_SKB_CB(skb)->seq;
4868			if (after(TCP_SKB_CB(skb)->end_seq, end))
4869				end = TCP_SKB_CB(skb)->end_seq;
4870		}
4871	}
4872}
4873
4874/*
4875 * Purge the out-of-order queue.
4876 * Return true if queue was pruned.
4877 */
4878static int tcp_prune_ofo_queue(struct sock *sk)
4879{
4880	struct tcp_sock *tp = tcp_sk(sk);
4881	int res = 0;
4882
4883	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4884		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4885		__skb_queue_purge(&tp->out_of_order_queue);
4886
4887		/* Reset SACK state.  A conforming SACK implementation will
4888		 * do the same at a timeout based retransmit.  When a connection
4889		 * is in a sad state like this, we care only about integrity
4890		 * of the connection not performance.
4891		 */
4892		if (tp->rx_opt.sack_ok)
4893			tcp_sack_reset(&tp->rx_opt);
4894		sk_mem_reclaim(sk);
4895		res = 1;
4896	}
4897	return res;
4898}
4899
4900/* Reduce allocated memory if we can, trying to get
4901 * the socket within its memory limits again.
4902 *
4903 * Return less than zero if we should start dropping frames
4904 * until the socket owning process reads some of the data
4905 * to stabilize the situation.
4906 */
4907static int tcp_prune_queue(struct sock *sk)
4908{
4909	struct tcp_sock *tp = tcp_sk(sk);
4910
4911	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4912
4913	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4914
4915	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4916		tcp_clamp_window(sk);
4917	else if (sk_under_memory_pressure(sk))
4918		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4919
4920	tcp_collapse_ofo_queue(sk);
4921	if (!skb_queue_empty(&sk->sk_receive_queue))
4922		tcp_collapse(sk, &sk->sk_receive_queue,
4923			     skb_peek(&sk->sk_receive_queue),
4924			     NULL,
4925			     tp->copied_seq, tp->rcv_nxt);
4926	sk_mem_reclaim(sk);
4927
4928	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4929		return 0;
4930
4931	/* Collapsing did not help, destructive actions follow.
4932	 * This must not ever occur. */
4933
4934	tcp_prune_ofo_queue(sk);
4935
4936	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4937		return 0;
4938
4939	/* If we are really being abused, tell the caller to silently
4940	 * drop receive data on the floor.  It will get retransmitted
4941	 * and hopefully then we'll have sufficient space.
4942	 */
4943	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4944
4945	/* Massive buffer overcommit. */
4946	tp->pred_flags = 0;
4947	return -1;
4948}
4949
4950/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4951 * As additional protections, we do not touch cwnd in retransmission phases,
4952 * and if application hit its sndbuf limit recently.
4953 */
4954void tcp_cwnd_application_limited(struct sock *sk)
4955{
4956	struct tcp_sock *tp = tcp_sk(sk);
4957
4958	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4959	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4960		/* Limited by application or receiver window. */
4961		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4962		u32 win_used = max(tp->snd_cwnd_used, init_win);
4963		if (win_used < tp->snd_cwnd) {
4964			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4965			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4966		}
4967		tp->snd_cwnd_used = 0;
4968	}
4969	tp->snd_cwnd_stamp = tcp_time_stamp;
4970}
4971
4972static int tcp_should_expand_sndbuf(const struct sock *sk)
4973{
4974	const struct tcp_sock *tp = tcp_sk(sk);
4975
4976	/* If the user specified a specific send buffer setting, do
4977	 * not modify it.
4978	 */
4979	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4980		return 0;
4981
4982	/* If we are under global TCP memory pressure, do not expand.  */
4983	if (sk_under_memory_pressure(sk))
4984		return 0;
4985
4986	/* If we are under soft global TCP memory pressure, do not expand.  */
4987	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4988		return 0;
4989
4990	/* If we filled the congestion window, do not expand.  */
4991	if (tp->packets_out >= tp->snd_cwnd)
4992		return 0;
4993
4994	return 1;
4995}
4996
4997/* When incoming ACK allowed to free some skb from write_queue,
4998 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4999 * on the exit from tcp input handler.
5000 *
5001 * PROBLEM: sndbuf expansion does not work well with largesend.
5002 */
5003static void tcp_new_space(struct sock *sk)
5004{
5005	struct tcp_sock *tp = tcp_sk(sk);
5006
5007	if (tcp_should_expand_sndbuf(sk)) {
5008		int sndmem = SKB_TRUESIZE(max_t(u32,
5009						tp->rx_opt.mss_clamp,
5010						tp->mss_cache) +
5011					  MAX_TCP_HEADER);
5012		int demanded = max_t(unsigned int, tp->snd_cwnd,
5013				     tp->reordering + 1);
5014		sndmem *= 2 * demanded;
5015		if (sndmem > sk->sk_sndbuf)
5016			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5017		tp->snd_cwnd_stamp = tcp_time_stamp;
5018	}
5019
5020	sk->sk_write_space(sk);
5021}
5022
5023static void tcp_check_space(struct sock *sk)
5024{
5025	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5026		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5027		if (sk->sk_socket &&
5028		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5029			tcp_new_space(sk);
5030	}
5031}
5032
5033static inline void tcp_data_snd_check(struct sock *sk)
5034{
5035	tcp_push_pending_frames(sk);
5036	tcp_check_space(sk);
5037}
5038
5039/*
5040 * Check if sending an ack is needed.
5041 */
5042static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5043{
5044	struct tcp_sock *tp = tcp_sk(sk);
5045
5046	    /* More than one full frame received... */
5047	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5048	     /* ... and right edge of window advances far enough.
5049	      * (tcp_recvmsg() will send ACK otherwise). Or...
5050	      */
5051	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5052	    /* We ACK each frame or... */
5053	    tcp_in_quickack_mode(sk) ||
5054	    /* We have out of order data. */
5055	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5056		/* Then ack it now */
5057		tcp_send_ack(sk);
5058	} else {
5059		/* Else, send delayed ack. */
5060		tcp_send_delayed_ack(sk);
5061	}
5062}
5063
5064static inline void tcp_ack_snd_check(struct sock *sk)
5065{
5066	if (!inet_csk_ack_scheduled(sk)) {
5067		/* We sent a data segment already. */
5068		return;
5069	}
5070	__tcp_ack_snd_check(sk, 1);
5071}
5072
5073/*
5074 *	This routine is only called when we have urgent data
5075 *	signaled. Its the 'slow' part of tcp_urg. It could be
5076 *	moved inline now as tcp_urg is only called from one
5077 *	place. We handle URGent data wrong. We have to - as
5078 *	BSD still doesn't use the correction from RFC961.
5079 *	For 1003.1g we should support a new option TCP_STDURG to permit
5080 *	either form (or just set the sysctl tcp_stdurg).
5081 */
5082
5083static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5084{
5085	struct tcp_sock *tp = tcp_sk(sk);
5086	u32 ptr = ntohs(th->urg_ptr);
5087
5088	if (ptr && !sysctl_tcp_stdurg)
5089		ptr--;
5090	ptr += ntohl(th->seq);
5091
5092	/* Ignore urgent data that we've already seen and read. */
5093	if (after(tp->copied_seq, ptr))
5094		return;
5095
5096	/* Do not replay urg ptr.
5097	 *
5098	 * NOTE: interesting situation not covered by specs.
5099	 * Misbehaving sender may send urg ptr, pointing to segment,
5100	 * which we already have in ofo queue. We are not able to fetch
5101	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5102	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5103	 * situations. But it is worth to think about possibility of some
5104	 * DoSes using some hypothetical application level deadlock.
5105	 */
5106	if (before(ptr, tp->rcv_nxt))
5107		return;
5108
5109	/* Do we already have a newer (or duplicate) urgent pointer? */
5110	if (tp->urg_data && !after(ptr, tp->urg_seq))
5111		return;
5112
5113	/* Tell the world about our new urgent pointer. */
5114	sk_send_sigurg(sk);
5115
5116	/* We may be adding urgent data when the last byte read was
5117	 * urgent. To do this requires some care. We cannot just ignore
5118	 * tp->copied_seq since we would read the last urgent byte again
5119	 * as data, nor can we alter copied_seq until this data arrives
5120	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5121	 *
5122	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5123	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5124	 * and expect that both A and B disappear from stream. This is _wrong_.
5125	 * Though this happens in BSD with high probability, this is occasional.
5126	 * Any application relying on this is buggy. Note also, that fix "works"
5127	 * only in this artificial test. Insert some normal data between A and B and we will
5128	 * decline of BSD again. Verdict: it is better to remove to trap
5129	 * buggy users.
5130	 */
5131	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5132	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5133		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5134		tp->copied_seq++;
5135		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5136			__skb_unlink(skb, &sk->sk_receive_queue);
5137			__kfree_skb(skb);
5138		}
5139	}
5140
5141	tp->urg_data = TCP_URG_NOTYET;
5142	tp->urg_seq = ptr;
5143
5144	/* Disable header prediction. */
5145	tp->pred_flags = 0;
5146}
5147
5148/* This is the 'fast' part of urgent handling. */
5149static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5150{
5151	struct tcp_sock *tp = tcp_sk(sk);
5152
5153	/* Check if we get a new urgent pointer - normally not. */
5154	if (th->urg)
5155		tcp_check_urg(sk, th);
5156
5157	/* Do we wait for any urgent data? - normally not... */
5158	if (tp->urg_data == TCP_URG_NOTYET) {
5159		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5160			  th->syn;
5161
5162		/* Is the urgent pointer pointing into this packet? */
5163		if (ptr < skb->len) {
5164			u8 tmp;
5165			if (skb_copy_bits(skb, ptr, &tmp, 1))
5166				BUG();
5167			tp->urg_data = TCP_URG_VALID | tmp;
5168			if (!sock_flag(sk, SOCK_DEAD))
5169				sk->sk_data_ready(sk, 0);
5170		}
5171	}
5172}
5173
5174static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5175{
5176	struct tcp_sock *tp = tcp_sk(sk);
5177	int chunk = skb->len - hlen;
5178	int err;
5179
5180	local_bh_enable();
5181	if (skb_csum_unnecessary(skb))
5182		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5183	else
5184		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5185						       tp->ucopy.iov);
5186
5187	if (!err) {
5188		tp->ucopy.len -= chunk;
5189		tp->copied_seq += chunk;
5190		tcp_rcv_space_adjust(sk);
5191	}
5192
5193	local_bh_disable();
5194	return err;
5195}
5196
5197static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5198					    struct sk_buff *skb)
5199{
5200	__sum16 result;
5201
5202	if (sock_owned_by_user(sk)) {
5203		local_bh_enable();
5204		result = __tcp_checksum_complete(skb);
5205		local_bh_disable();
5206	} else {
5207		result = __tcp_checksum_complete(skb);
5208	}
5209	return result;
5210}
5211
5212static inline int tcp_checksum_complete_user(struct sock *sk,
5213					     struct sk_buff *skb)
5214{
5215	return !skb_csum_unnecessary(skb) &&
5216	       __tcp_checksum_complete_user(sk, skb);
5217}
5218
5219#ifdef CONFIG_NET_DMA
5220static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5221				  int hlen)
5222{
5223	struct tcp_sock *tp = tcp_sk(sk);
5224	int chunk = skb->len - hlen;
5225	int dma_cookie;
5226	int copied_early = 0;
5227
5228	if (tp->ucopy.wakeup)
5229		return 0;
5230
5231	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5232		tp->ucopy.dma_chan = net_dma_find_channel();
5233
5234	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5235
5236		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5237							 skb, hlen,
5238							 tp->ucopy.iov, chunk,
5239							 tp->ucopy.pinned_list);
5240
5241		if (dma_cookie < 0)
5242			goto out;
5243
5244		tp->ucopy.dma_cookie = dma_cookie;
5245		copied_early = 1;
5246
5247		tp->ucopy.len -= chunk;
5248		tp->copied_seq += chunk;
5249		tcp_rcv_space_adjust(sk);
5250
5251		if ((tp->ucopy.len == 0) ||
5252		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5253		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5254			tp->ucopy.wakeup = 1;
5255			sk->sk_data_ready(sk, 0);
5256		}
5257	} else if (chunk > 0) {
5258		tp->ucopy.wakeup = 1;
5259		sk->sk_data_ready(sk, 0);
5260	}
5261out:
5262	return copied_early;
5263}
5264#endif /* CONFIG_NET_DMA */
5265
5266/* Does PAWS and seqno based validation of an incoming segment, flags will
5267 * play significant role here.
5268 */
5269static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5270			      const struct tcphdr *th, int syn_inerr)
5271{
5272	const u8 *hash_location;
5273	struct tcp_sock *tp = tcp_sk(sk);
5274
5275	/* RFC1323: H1. Apply PAWS check first. */
5276	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5277	    tp->rx_opt.saw_tstamp &&
5278	    tcp_paws_discard(sk, skb)) {
5279		if (!th->rst) {
5280			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5281			tcp_send_dupack(sk, skb);
5282			goto discard;
5283		}
5284		/* Reset is accepted even if it did not pass PAWS. */
5285	}
5286
5287	/* Step 1: check sequence number */
5288	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5289		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5290		 * (RST) segments are validated by checking their SEQ-fields."
5291		 * And page 69: "If an incoming segment is not acceptable,
5292		 * an acknowledgment should be sent in reply (unless the RST
5293		 * bit is set, if so drop the segment and return)".
5294		 */
5295		if (!th->rst)
5296			tcp_send_dupack(sk, skb);
5297		goto discard;
5298	}
5299
5300	/* Step 2: check RST bit */
5301	if (th->rst) {
5302		tcp_reset(sk);
5303		goto discard;
5304	}
5305
5306	/* ts_recent update must be made after we are sure that the packet
5307	 * is in window.
5308	 */
5309	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5310
5311	/* step 3: check security and precedence [ignored] */
5312
5313	/* step 4: Check for a SYN in window. */
5314	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5315		if (syn_inerr)
5316			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5317		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5318		tcp_reset(sk);
5319		return -1;
5320	}
5321
5322	return 1;
5323
5324discard:
5325	__kfree_skb(skb);
5326	return 0;
5327}
5328
5329/*
5330 *	TCP receive function for the ESTABLISHED state.
5331 *
5332 *	It is split into a fast path and a slow path. The fast path is
5333 * 	disabled when:
5334 *	- A zero window was announced from us - zero window probing
5335 *        is only handled properly in the slow path.
5336 *	- Out of order segments arrived.
5337 *	- Urgent data is expected.
5338 *	- There is no buffer space left
5339 *	- Unexpected TCP flags/window values/header lengths are received
5340 *	  (detected by checking the TCP header against pred_flags)
5341 *	- Data is sent in both directions. Fast path only supports pure senders
5342 *	  or pure receivers (this means either the sequence number or the ack
5343 *	  value must stay constant)
5344 *	- Unexpected TCP option.
5345 *
5346 *	When these conditions are not satisfied it drops into a standard
5347 *	receive procedure patterned after RFC793 to handle all cases.
5348 *	The first three cases are guaranteed by proper pred_flags setting,
5349 *	the rest is checked inline. Fast processing is turned on in
5350 *	tcp_data_queue when everything is OK.
5351 */
5352int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5353			const struct tcphdr *th, unsigned int len)
5354{
5355	struct tcp_sock *tp = tcp_sk(sk);
5356	int res;
5357
5358	/*
5359	 *	Header prediction.
5360	 *	The code loosely follows the one in the famous
5361	 *	"30 instruction TCP receive" Van Jacobson mail.
5362	 *
5363	 *	Van's trick is to deposit buffers into socket queue
5364	 *	on a device interrupt, to call tcp_recv function
5365	 *	on the receive process context and checksum and copy
5366	 *	the buffer to user space. smart...
5367	 *
5368	 *	Our current scheme is not silly either but we take the
5369	 *	extra cost of the net_bh soft interrupt processing...
5370	 *	We do checksum and copy also but from device to kernel.
5371	 */
5372
5373	tp->rx_opt.saw_tstamp = 0;
5374
5375	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5376	 *	if header_prediction is to be made
5377	 *	'S' will always be tp->tcp_header_len >> 2
5378	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5379	 *  turn it off	(when there are holes in the receive
5380	 *	 space for instance)
5381	 *	PSH flag is ignored.
5382	 */
5383
5384	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5385	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5386	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5387		int tcp_header_len = tp->tcp_header_len;
5388
5389		/* Timestamp header prediction: tcp_header_len
5390		 * is automatically equal to th->doff*4 due to pred_flags
5391		 * match.
5392		 */
5393
5394		/* Check timestamp */
5395		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5396			/* No? Slow path! */
5397			if (!tcp_parse_aligned_timestamp(tp, th))
5398				goto slow_path;
5399
5400			/* If PAWS failed, check it more carefully in slow path */
5401			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5402				goto slow_path;
5403
5404			/* DO NOT update ts_recent here, if checksum fails
5405			 * and timestamp was corrupted part, it will result
5406			 * in a hung connection since we will drop all
5407			 * future packets due to the PAWS test.
5408			 */
5409		}
5410
5411		if (len <= tcp_header_len) {
5412			/* Bulk data transfer: sender */
5413			if (len == tcp_header_len) {
5414				/* Predicted packet is in window by definition.
5415				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5416				 * Hence, check seq<=rcv_wup reduces to:
5417				 */
5418				if (tcp_header_len ==
5419				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5420				    tp->rcv_nxt == tp->rcv_wup)
5421					tcp_store_ts_recent(tp);
5422
5423				/* We know that such packets are checksummed
5424				 * on entry.
5425				 */
5426				tcp_ack(sk, skb, 0);
5427				__kfree_skb(skb);
5428				tcp_data_snd_check(sk);
5429				return 0;
5430			} else { /* Header too small */
5431				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5432				goto discard;
5433			}
5434		} else {
5435			int eaten = 0;
5436			int copied_early = 0;
5437
5438			if (tp->copied_seq == tp->rcv_nxt &&
5439			    len - tcp_header_len <= tp->ucopy.len) {
5440#ifdef CONFIG_NET_DMA
5441				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5442					copied_early = 1;
5443					eaten = 1;
5444				}
5445#endif
5446				if (tp->ucopy.task == current &&
5447				    sock_owned_by_user(sk) && !copied_early) {
5448					__set_current_state(TASK_RUNNING);
5449
5450					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5451						eaten = 1;
5452				}
5453				if (eaten) {
5454					/* Predicted packet is in window by definition.
5455					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5456					 * Hence, check seq<=rcv_wup reduces to:
5457					 */
5458					if (tcp_header_len ==
5459					    (sizeof(struct tcphdr) +
5460					     TCPOLEN_TSTAMP_ALIGNED) &&
5461					    tp->rcv_nxt == tp->rcv_wup)
5462						tcp_store_ts_recent(tp);
5463
5464					tcp_rcv_rtt_measure_ts(sk, skb);
5465
5466					__skb_pull(skb, tcp_header_len);
5467					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5468					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5469				}
5470				if (copied_early)
5471					tcp_cleanup_rbuf(sk, skb->len);
5472			}
5473			if (!eaten) {
5474				if (tcp_checksum_complete_user(sk, skb))
5475					goto csum_error;
5476
5477				/* Predicted packet is in window by definition.
5478				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5479				 * Hence, check seq<=rcv_wup reduces to:
5480				 */
5481				if (tcp_header_len ==
5482				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5483				    tp->rcv_nxt == tp->rcv_wup)
5484					tcp_store_ts_recent(tp);
5485
5486				tcp_rcv_rtt_measure_ts(sk, skb);
5487
5488				if ((int)skb->truesize > sk->sk_forward_alloc)
5489					goto step5;
5490
5491				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5492
5493				/* Bulk data transfer: receiver */
5494				__skb_pull(skb, tcp_header_len);
5495				__skb_queue_tail(&sk->sk_receive_queue, skb);
5496				skb_set_owner_r(skb, sk);
5497				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5498			}
5499
5500			tcp_event_data_recv(sk, skb);
5501
5502			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5503				/* Well, only one small jumplet in fast path... */
5504				tcp_ack(sk, skb, FLAG_DATA);
5505				tcp_data_snd_check(sk);
5506				if (!inet_csk_ack_scheduled(sk))
5507					goto no_ack;
5508			}
5509
5510			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5511				__tcp_ack_snd_check(sk, 0);
5512no_ack:
5513#ifdef CONFIG_NET_DMA
5514			if (copied_early)
5515				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5516			else
5517#endif
5518			if (eaten)
5519				__kfree_skb(skb);
5520			else
5521				sk->sk_data_ready(sk, 0);
5522			return 0;
5523		}
5524	}
5525
5526slow_path:
5527	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5528		goto csum_error;
5529
5530	/*
5531	 *	Standard slow path.
5532	 */
5533
5534	res = tcp_validate_incoming(sk, skb, th, 1);
5535	if (res <= 0)
5536		return -res;
5537
5538step5:
5539	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5540		goto discard;
5541
5542	tcp_rcv_rtt_measure_ts(sk, skb);
5543
5544	/* Process urgent data. */
5545	tcp_urg(sk, skb, th);
5546
5547	/* step 7: process the segment text */
5548	tcp_data_queue(sk, skb);
5549
5550	tcp_data_snd_check(sk);
5551	tcp_ack_snd_check(sk);
5552	return 0;
5553
5554csum_error:
5555	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5556
5557discard:
5558	__kfree_skb(skb);
5559	return 0;
5560}
5561EXPORT_SYMBOL(tcp_rcv_established);
5562
5563static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5564					 const struct tcphdr *th, unsigned int len)
5565{
5566	const u8 *hash_location;
5567	struct inet_connection_sock *icsk = inet_csk(sk);
5568	struct tcp_sock *tp = tcp_sk(sk);
5569	struct tcp_cookie_values *cvp = tp->cookie_values;
5570	int saved_clamp = tp->rx_opt.mss_clamp;
5571
5572	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5573
5574	if (th->ack) {
5575		/* rfc793:
5576		 * "If the state is SYN-SENT then
5577		 *    first check the ACK bit
5578		 *      If the ACK bit is set
5579		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5580		 *        a reset (unless the RST bit is set, if so drop
5581		 *        the segment and return)"
5582		 *
5583		 *  We do not send data with SYN, so that RFC-correct
5584		 *  test reduces to:
5585		 */
5586		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5587			goto reset_and_undo;
5588
5589		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5590		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5591			     tcp_time_stamp)) {
5592			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5593			goto reset_and_undo;
5594		}
5595
5596		/* Now ACK is acceptable.
5597		 *
5598		 * "If the RST bit is set
5599		 *    If the ACK was acceptable then signal the user "error:
5600		 *    connection reset", drop the segment, enter CLOSED state,
5601		 *    delete TCB, and return."
5602		 */
5603
5604		if (th->rst) {
5605			tcp_reset(sk);
5606			goto discard;
5607		}
5608
5609		/* rfc793:
5610		 *   "fifth, if neither of the SYN or RST bits is set then
5611		 *    drop the segment and return."
5612		 *
5613		 *    See note below!
5614		 *                                        --ANK(990513)
5615		 */
5616		if (!th->syn)
5617			goto discard_and_undo;
5618
5619		/* rfc793:
5620		 *   "If the SYN bit is on ...
5621		 *    are acceptable then ...
5622		 *    (our SYN has been ACKed), change the connection
5623		 *    state to ESTABLISHED..."
5624		 */
5625
5626		TCP_ECN_rcv_synack(tp, th);
5627
5628		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5629		tcp_ack(sk, skb, FLAG_SLOWPATH);
5630
5631		/* Ok.. it's good. Set up sequence numbers and
5632		 * move to established.
5633		 */
5634		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5635		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5636
5637		/* RFC1323: The window in SYN & SYN/ACK segments is
5638		 * never scaled.
5639		 */
5640		tp->snd_wnd = ntohs(th->window);
5641		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5642
5643		if (!tp->rx_opt.wscale_ok) {
5644			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5645			tp->window_clamp = min(tp->window_clamp, 65535U);
5646		}
5647
5648		if (tp->rx_opt.saw_tstamp) {
5649			tp->rx_opt.tstamp_ok	   = 1;
5650			tp->tcp_header_len =
5651				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5652			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5653			tcp_store_ts_recent(tp);
5654		} else {
5655			tp->tcp_header_len = sizeof(struct tcphdr);
5656		}
5657
5658		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5659			tcp_enable_fack(tp);
5660
5661		tcp_mtup_init(sk);
5662		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5663		tcp_initialize_rcv_mss(sk);
5664
5665		/* Remember, tcp_poll() does not lock socket!
5666		 * Change state from SYN-SENT only after copied_seq
5667		 * is initialized. */
5668		tp->copied_seq = tp->rcv_nxt;
5669
5670		if (cvp != NULL &&
5671		    cvp->cookie_pair_size > 0 &&
5672		    tp->rx_opt.cookie_plus > 0) {
5673			int cookie_size = tp->rx_opt.cookie_plus
5674					- TCPOLEN_COOKIE_BASE;
5675			int cookie_pair_size = cookie_size
5676					     + cvp->cookie_desired;
5677
5678			/* A cookie extension option was sent and returned.
5679			 * Note that each incoming SYNACK replaces the
5680			 * Responder cookie.  The initial exchange is most
5681			 * fragile, as protection against spoofing relies
5682			 * entirely upon the sequence and timestamp (above).
5683			 * This replacement strategy allows the correct pair to
5684			 * pass through, while any others will be filtered via
5685			 * Responder verification later.
5686			 */
5687			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5688				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5689				       hash_location, cookie_size);
5690				cvp->cookie_pair_size = cookie_pair_size;
5691			}
5692		}
5693
5694		smp_mb();
5695		tcp_set_state(sk, TCP_ESTABLISHED);
5696
5697		security_inet_conn_established(sk, skb);
5698
5699		/* Make sure socket is routed, for correct metrics.  */
5700		icsk->icsk_af_ops->rebuild_header(sk);
5701
5702		tcp_init_metrics(sk);
5703
5704		tcp_init_congestion_control(sk);
5705
5706		/* Prevent spurious tcp_cwnd_restart() on first data
5707		 * packet.
5708		 */
5709		tp->lsndtime = tcp_time_stamp;
5710
5711		tcp_init_buffer_space(sk);
5712
5713		if (sock_flag(sk, SOCK_KEEPOPEN))
5714			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5715
5716		if (!tp->rx_opt.snd_wscale)
5717			__tcp_fast_path_on(tp, tp->snd_wnd);
5718		else
5719			tp->pred_flags = 0;
5720
5721		if (!sock_flag(sk, SOCK_DEAD)) {
5722			sk->sk_state_change(sk);
5723			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5724		}
5725
5726		if (sk->sk_write_pending ||
5727		    icsk->icsk_accept_queue.rskq_defer_accept ||
5728		    icsk->icsk_ack.pingpong) {
5729			/* Save one ACK. Data will be ready after
5730			 * several ticks, if write_pending is set.
5731			 *
5732			 * It may be deleted, but with this feature tcpdumps
5733			 * look so _wonderfully_ clever, that I was not able
5734			 * to stand against the temptation 8)     --ANK
5735			 */
5736			inet_csk_schedule_ack(sk);
5737			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5738			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5739			tcp_incr_quickack(sk);
5740			tcp_enter_quickack_mode(sk);
5741			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5742						  TCP_DELACK_MAX, TCP_RTO_MAX);
5743
5744discard:
5745			__kfree_skb(skb);
5746			return 0;
5747		} else {
5748			tcp_send_ack(sk);
5749		}
5750		return -1;
5751	}
5752
5753	/* No ACK in the segment */
5754
5755	if (th->rst) {
5756		/* rfc793:
5757		 * "If the RST bit is set
5758		 *
5759		 *      Otherwise (no ACK) drop the segment and return."
5760		 */
5761
5762		goto discard_and_undo;
5763	}
5764
5765	/* PAWS check. */
5766	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5767	    tcp_paws_reject(&tp->rx_opt, 0))
5768		goto discard_and_undo;
5769
5770	if (th->syn) {
5771		/* We see SYN without ACK. It is attempt of
5772		 * simultaneous connect with crossed SYNs.
5773		 * Particularly, it can be connect to self.
5774		 */
5775		tcp_set_state(sk, TCP_SYN_RECV);
5776
5777		if (tp->rx_opt.saw_tstamp) {
5778			tp->rx_opt.tstamp_ok = 1;
5779			tcp_store_ts_recent(tp);
5780			tp->tcp_header_len =
5781				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5782		} else {
5783			tp->tcp_header_len = sizeof(struct tcphdr);
5784		}
5785
5786		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5787		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5788
5789		/* RFC1323: The window in SYN & SYN/ACK segments is
5790		 * never scaled.
5791		 */
5792		tp->snd_wnd    = ntohs(th->window);
5793		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5794		tp->max_window = tp->snd_wnd;
5795
5796		TCP_ECN_rcv_syn(tp, th);
5797
5798		tcp_mtup_init(sk);
5799		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5800		tcp_initialize_rcv_mss(sk);
5801
5802		tcp_send_synack(sk);
5803#if 0
5804		/* Note, we could accept data and URG from this segment.
5805		 * There are no obstacles to make this.
5806		 *
5807		 * However, if we ignore data in ACKless segments sometimes,
5808		 * we have no reasons to accept it sometimes.
5809		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5810		 * is not flawless. So, discard packet for sanity.
5811		 * Uncomment this return to process the data.
5812		 */
5813		return -1;
5814#else
5815		goto discard;
5816#endif
5817	}
5818	/* "fifth, if neither of the SYN or RST bits is set then
5819	 * drop the segment and return."
5820	 */
5821
5822discard_and_undo:
5823	tcp_clear_options(&tp->rx_opt);
5824	tp->rx_opt.mss_clamp = saved_clamp;
5825	goto discard;
5826
5827reset_and_undo:
5828	tcp_clear_options(&tp->rx_opt);
5829	tp->rx_opt.mss_clamp = saved_clamp;
5830	return 1;
5831}
5832
5833/*
5834 *	This function implements the receiving procedure of RFC 793 for
5835 *	all states except ESTABLISHED and TIME_WAIT.
5836 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5837 *	address independent.
5838 */
5839
5840int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5841			  const struct tcphdr *th, unsigned int len)
5842{
5843	struct tcp_sock *tp = tcp_sk(sk);
5844	struct inet_connection_sock *icsk = inet_csk(sk);
5845	int queued = 0;
5846	int res;
5847
5848	tp->rx_opt.saw_tstamp = 0;
5849
5850	switch (sk->sk_state) {
5851	case TCP_CLOSE:
5852		goto discard;
5853
5854	case TCP_LISTEN:
5855		if (th->ack)
5856			return 1;
5857
5858		if (th->rst)
5859			goto discard;
5860
5861		if (th->syn) {
5862			if (th->fin)
5863				goto discard;
5864			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5865				return 1;
5866
5867			/* Now we have several options: In theory there is
5868			 * nothing else in the frame. KA9Q has an option to
5869			 * send data with the syn, BSD accepts data with the
5870			 * syn up to the [to be] advertised window and
5871			 * Solaris 2.1 gives you a protocol error. For now
5872			 * we just ignore it, that fits the spec precisely
5873			 * and avoids incompatibilities. It would be nice in
5874			 * future to drop through and process the data.
5875			 *
5876			 * Now that TTCP is starting to be used we ought to
5877			 * queue this data.
5878			 * But, this leaves one open to an easy denial of
5879			 * service attack, and SYN cookies can't defend
5880			 * against this problem. So, we drop the data
5881			 * in the interest of security over speed unless
5882			 * it's still in use.
5883			 */
5884			kfree_skb(skb);
5885			return 0;
5886		}
5887		goto discard;
5888
5889	case TCP_SYN_SENT:
5890		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5891		if (queued >= 0)
5892			return queued;
5893
5894		/* Do step6 onward by hand. */
5895		tcp_urg(sk, skb, th);
5896		__kfree_skb(skb);
5897		tcp_data_snd_check(sk);
5898		return 0;
5899	}
5900
5901	res = tcp_validate_incoming(sk, skb, th, 0);
5902	if (res <= 0)
5903		return -res;
5904
5905	/* step 5: check the ACK field */
5906	if (th->ack) {
5907		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5908
5909		switch (sk->sk_state) {
5910		case TCP_SYN_RECV:
5911			if (acceptable) {
5912				tp->copied_seq = tp->rcv_nxt;
5913				smp_mb();
5914				tcp_set_state(sk, TCP_ESTABLISHED);
5915				sk->sk_state_change(sk);
5916
5917				/* Note, that this wakeup is only for marginal
5918				 * crossed SYN case. Passively open sockets
5919				 * are not waked up, because sk->sk_sleep ==
5920				 * NULL and sk->sk_socket == NULL.
5921				 */
5922				if (sk->sk_socket)
5923					sk_wake_async(sk,
5924						      SOCK_WAKE_IO, POLL_OUT);
5925
5926				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5927				tp->snd_wnd = ntohs(th->window) <<
5928					      tp->rx_opt.snd_wscale;
5929				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5930
5931				if (tp->rx_opt.tstamp_ok)
5932					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5933
5934				/* Make sure socket is routed, for
5935				 * correct metrics.
5936				 */
5937				icsk->icsk_af_ops->rebuild_header(sk);
5938
5939				tcp_init_metrics(sk);
5940
5941				tcp_init_congestion_control(sk);
5942
5943				/* Prevent spurious tcp_cwnd_restart() on
5944				 * first data packet.
5945				 */
5946				tp->lsndtime = tcp_time_stamp;
5947
5948				tcp_mtup_init(sk);
5949				tcp_initialize_rcv_mss(sk);
5950				tcp_init_buffer_space(sk);
5951				tcp_fast_path_on(tp);
5952			} else {
5953				return 1;
5954			}
5955			break;
5956
5957		case TCP_FIN_WAIT1:
5958			if (tp->snd_una == tp->write_seq) {
5959				tcp_set_state(sk, TCP_FIN_WAIT2);
5960				sk->sk_shutdown |= SEND_SHUTDOWN;
5961				dst_confirm(__sk_dst_get(sk));
5962
5963				if (!sock_flag(sk, SOCK_DEAD))
5964					/* Wake up lingering close() */
5965					sk->sk_state_change(sk);
5966				else {
5967					int tmo;
5968
5969					if (tp->linger2 < 0 ||
5970					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5971					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5972						tcp_done(sk);
5973						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5974						return 1;
5975					}
5976
5977					tmo = tcp_fin_time(sk);
5978					if (tmo > TCP_TIMEWAIT_LEN) {
5979						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5980					} else if (th->fin || sock_owned_by_user(sk)) {
5981						/* Bad case. We could lose such FIN otherwise.
5982						 * It is not a big problem, but it looks confusing
5983						 * and not so rare event. We still can lose it now,
5984						 * if it spins in bh_lock_sock(), but it is really
5985						 * marginal case.
5986						 */
5987						inet_csk_reset_keepalive_timer(sk, tmo);
5988					} else {
5989						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5990						goto discard;
5991					}
5992				}
5993			}
5994			break;
5995
5996		case TCP_CLOSING:
5997			if (tp->snd_una == tp->write_seq) {
5998				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5999				goto discard;
6000			}
6001			break;
6002
6003		case TCP_LAST_ACK:
6004			if (tp->snd_una == tp->write_seq) {
6005				tcp_update_metrics(sk);
6006				tcp_done(sk);
6007				goto discard;
6008			}
6009			break;
6010		}
6011	} else
6012		goto discard;
6013
6014	/* step 6: check the URG bit */
6015	tcp_urg(sk, skb, th);
6016
6017	/* step 7: process the segment text */
6018	switch (sk->sk_state) {
6019	case TCP_CLOSE_WAIT:
6020	case TCP_CLOSING:
6021	case TCP_LAST_ACK:
6022		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6023			break;
6024	case TCP_FIN_WAIT1:
6025	case TCP_FIN_WAIT2:
6026		/* RFC 793 says to queue data in these states,
6027		 * RFC 1122 says we MUST send a reset.
6028		 * BSD 4.4 also does reset.
6029		 */
6030		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6031			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6032			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6033				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6034				tcp_reset(sk);
6035				return 1;
6036			}
6037		}
6038		/* Fall through */
6039	case TCP_ESTABLISHED:
6040		tcp_data_queue(sk, skb);
6041		queued = 1;
6042		break;
6043	}
6044
6045	/* tcp_data could move socket to TIME-WAIT */
6046	if (sk->sk_state != TCP_CLOSE) {
6047		tcp_data_snd_check(sk);
6048		tcp_ack_snd_check(sk);
6049	}
6050
6051	if (!queued) {
6052discard:
6053		__kfree_skb(skb);
6054	}
6055	return 0;
6056}
6057EXPORT_SYMBOL(tcp_rcv_state_process);
6058