tcp_input.c revision 712a72213fad36cc9e6ec706b5e020d7eb6e03bc
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 *		Pedro Roque	:	Fast Retransmit/Recovery.
24 *					Two receive queues.
25 *					Retransmit queue handled by TCP.
26 *					Better retransmit timer handling.
27 *					New congestion avoidance.
28 *					Header prediction.
29 *					Variable renaming.
30 *
31 *		Eric		:	Fast Retransmit.
32 *		Randy Scott	:	MSS option defines.
33 *		Eric Schenk	:	Fixes to slow start algorithm.
34 *		Eric Schenk	:	Yet another double ACK bug.
35 *		Eric Schenk	:	Delayed ACK bug fixes.
36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37 *		David S. Miller	:	Don't allow zero congestion window.
38 *		Eric Schenk	:	Fix retransmitter so that it sends
39 *					next packet on ack of previous packet.
40 *		Andi Kleen	:	Moved open_request checking here
41 *					and process RSTs for open_requests.
42 *		Andi Kleen	:	Better prune_queue, and other fixes.
43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
44 *					timestamps.
45 *		Andrey Savochkin:	Check sequence numbers correctly when
46 *					removing SACKs due to in sequence incoming
47 *					data segments.
48 *		Andi Kleen:		Make sure we never ack data there is not
49 *					enough room for. Also make this condition
50 *					a fatal error if it might still happen.
51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52 *					connections with MSS<min(MTU,ann. MSS)
53 *					work without delayed acks.
54 *		Andi Kleen:		Process packets with PSH set in the
55 *					fast path.
56 *		J Hadi Salim:		ECN support
57 *	 	Andrei Gurtov,
58 *		Pasi Sarolahti,
59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60 *					engine. Lots of bugs are found.
61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62 */
63
64#define pr_fmt(fmt) "TCP: " fmt
65
66#include <linux/mm.h>
67#include <linux/slab.h>
68#include <linux/module.h>
69#include <linux/sysctl.h>
70#include <linux/kernel.h>
71#include <net/dst.h>
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
76#include <net/netdma.h>
77#include <linux/errqueue.h>
78
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
83int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84EXPORT_SYMBOL(sysctl_tcp_reordering);
85int sysctl_tcp_dsack __read_mostly = 1;
86int sysctl_tcp_app_win __read_mostly = 31;
87int sysctl_tcp_adv_win_scale __read_mostly = 1;
88EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89
90/* rfc5961 challenge ack rate limiting */
91int sysctl_tcp_challenge_ack_limit = 100;
92
93int sysctl_tcp_stdurg __read_mostly;
94int sysctl_tcp_rfc1337 __read_mostly;
95int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96int sysctl_tcp_frto __read_mostly = 2;
97
98int sysctl_tcp_thin_dupack __read_mostly;
99
100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101int sysctl_tcp_early_retrans __read_mostly = 3;
102
103#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
104#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
105#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
106#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
107#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
108#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
109#define FLAG_ECE		0x40 /* ECE in this ACK				*/
110#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
111#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
112#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
114#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
115#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
116
117#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
120#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
121
122#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125/* Adapt the MSS value used to make delayed ack decision to the
126 * real world.
127 */
128static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129{
130	struct inet_connection_sock *icsk = inet_csk(sk);
131	const unsigned int lss = icsk->icsk_ack.last_seg_size;
132	unsigned int len;
133
134	icsk->icsk_ack.last_seg_size = 0;
135
136	/* skb->len may jitter because of SACKs, even if peer
137	 * sends good full-sized frames.
138	 */
139	len = skb_shinfo(skb)->gso_size ? : skb->len;
140	if (len >= icsk->icsk_ack.rcv_mss) {
141		icsk->icsk_ack.rcv_mss = len;
142	} else {
143		/* Otherwise, we make more careful check taking into account,
144		 * that SACKs block is variable.
145		 *
146		 * "len" is invariant segment length, including TCP header.
147		 */
148		len += skb->data - skb_transport_header(skb);
149		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150		    /* If PSH is not set, packet should be
151		     * full sized, provided peer TCP is not badly broken.
152		     * This observation (if it is correct 8)) allows
153		     * to handle super-low mtu links fairly.
154		     */
155		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157			/* Subtract also invariant (if peer is RFC compliant),
158			 * tcp header plus fixed timestamp option length.
159			 * Resulting "len" is MSS free of SACK jitter.
160			 */
161			len -= tcp_sk(sk)->tcp_header_len;
162			icsk->icsk_ack.last_seg_size = len;
163			if (len == lss) {
164				icsk->icsk_ack.rcv_mss = len;
165				return;
166			}
167		}
168		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171	}
172}
173
174static void tcp_incr_quickack(struct sock *sk)
175{
176	struct inet_connection_sock *icsk = inet_csk(sk);
177	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179	if (quickacks == 0)
180		quickacks = 2;
181	if (quickacks > icsk->icsk_ack.quick)
182		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183}
184
185static void tcp_enter_quickack_mode(struct sock *sk)
186{
187	struct inet_connection_sock *icsk = inet_csk(sk);
188	tcp_incr_quickack(sk);
189	icsk->icsk_ack.pingpong = 0;
190	icsk->icsk_ack.ato = TCP_ATO_MIN;
191}
192
193/* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
195 */
196
197static inline bool tcp_in_quickack_mode(const struct sock *sk)
198{
199	const struct inet_connection_sock *icsk = inet_csk(sk);
200
201	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202}
203
204static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205{
206	if (tp->ecn_flags & TCP_ECN_OK)
207		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208}
209
210static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211{
212	if (tcp_hdr(skb)->cwr)
213		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217{
218	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219}
220
221static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222{
223	if (!(tp->ecn_flags & TCP_ECN_OK))
224		return;
225
226	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
227	case INET_ECN_NOT_ECT:
228		/* Funny extension: if ECT is not set on a segment,
229		 * and we already seen ECT on a previous segment,
230		 * it is probably a retransmit.
231		 */
232		if (tp->ecn_flags & TCP_ECN_SEEN)
233			tcp_enter_quickack_mode((struct sock *)tp);
234		break;
235	case INET_ECN_CE:
236		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
237			/* Better not delay acks, sender can have a very low cwnd */
238			tcp_enter_quickack_mode((struct sock *)tp);
239			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
240		}
241		/* fallinto */
242	default:
243		tp->ecn_flags |= TCP_ECN_SEEN;
244	}
245}
246
247static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
248{
249	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
250		tp->ecn_flags &= ~TCP_ECN_OK;
251}
252
253static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
254{
255	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
256		tp->ecn_flags &= ~TCP_ECN_OK;
257}
258
259static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
260{
261	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
262		return true;
263	return false;
264}
265
266/* Buffer size and advertised window tuning.
267 *
268 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
269 */
270
271static void tcp_sndbuf_expand(struct sock *sk)
272{
273	const struct tcp_sock *tp = tcp_sk(sk);
274	int sndmem, per_mss;
275	u32 nr_segs;
276
277	/* Worst case is non GSO/TSO : each frame consumes one skb
278	 * and skb->head is kmalloced using power of two area of memory
279	 */
280	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
281		  MAX_TCP_HEADER +
282		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
283
284	per_mss = roundup_pow_of_two(per_mss) +
285		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
286
287	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
288	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
289
290	/* Fast Recovery (RFC 5681 3.2) :
291	 * Cubic needs 1.7 factor, rounded to 2 to include
292	 * extra cushion (application might react slowly to POLLOUT)
293	 */
294	sndmem = 2 * nr_segs * per_mss;
295
296	if (sk->sk_sndbuf < sndmem)
297		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
298}
299
300/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
301 *
302 * All tcp_full_space() is split to two parts: "network" buffer, allocated
303 * forward and advertised in receiver window (tp->rcv_wnd) and
304 * "application buffer", required to isolate scheduling/application
305 * latencies from network.
306 * window_clamp is maximal advertised window. It can be less than
307 * tcp_full_space(), in this case tcp_full_space() - window_clamp
308 * is reserved for "application" buffer. The less window_clamp is
309 * the smoother our behaviour from viewpoint of network, but the lower
310 * throughput and the higher sensitivity of the connection to losses. 8)
311 *
312 * rcv_ssthresh is more strict window_clamp used at "slow start"
313 * phase to predict further behaviour of this connection.
314 * It is used for two goals:
315 * - to enforce header prediction at sender, even when application
316 *   requires some significant "application buffer". It is check #1.
317 * - to prevent pruning of receive queue because of misprediction
318 *   of receiver window. Check #2.
319 *
320 * The scheme does not work when sender sends good segments opening
321 * window and then starts to feed us spaghetti. But it should work
322 * in common situations. Otherwise, we have to rely on queue collapsing.
323 */
324
325/* Slow part of check#2. */
326static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
327{
328	struct tcp_sock *tp = tcp_sk(sk);
329	/* Optimize this! */
330	int truesize = tcp_win_from_space(skb->truesize) >> 1;
331	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
332
333	while (tp->rcv_ssthresh <= window) {
334		if (truesize <= skb->len)
335			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
336
337		truesize >>= 1;
338		window >>= 1;
339	}
340	return 0;
341}
342
343static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
344{
345	struct tcp_sock *tp = tcp_sk(sk);
346
347	/* Check #1 */
348	if (tp->rcv_ssthresh < tp->window_clamp &&
349	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
350	    !sk_under_memory_pressure(sk)) {
351		int incr;
352
353		/* Check #2. Increase window, if skb with such overhead
354		 * will fit to rcvbuf in future.
355		 */
356		if (tcp_win_from_space(skb->truesize) <= skb->len)
357			incr = 2 * tp->advmss;
358		else
359			incr = __tcp_grow_window(sk, skb);
360
361		if (incr) {
362			incr = max_t(int, incr, 2 * skb->len);
363			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
364					       tp->window_clamp);
365			inet_csk(sk)->icsk_ack.quick |= 1;
366		}
367	}
368}
369
370/* 3. Tuning rcvbuf, when connection enters established state. */
371static void tcp_fixup_rcvbuf(struct sock *sk)
372{
373	u32 mss = tcp_sk(sk)->advmss;
374	int rcvmem;
375
376	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
377		 tcp_default_init_rwnd(mss);
378
379	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
380	 * Allow enough cushion so that sender is not limited by our window
381	 */
382	if (sysctl_tcp_moderate_rcvbuf)
383		rcvmem <<= 2;
384
385	if (sk->sk_rcvbuf < rcvmem)
386		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
387}
388
389/* 4. Try to fixup all. It is made immediately after connection enters
390 *    established state.
391 */
392void tcp_init_buffer_space(struct sock *sk)
393{
394	struct tcp_sock *tp = tcp_sk(sk);
395	int maxwin;
396
397	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
398		tcp_fixup_rcvbuf(sk);
399	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
400		tcp_sndbuf_expand(sk);
401
402	tp->rcvq_space.space = tp->rcv_wnd;
403	tp->rcvq_space.time = tcp_time_stamp;
404	tp->rcvq_space.seq = tp->copied_seq;
405
406	maxwin = tcp_full_space(sk);
407
408	if (tp->window_clamp >= maxwin) {
409		tp->window_clamp = maxwin;
410
411		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
412			tp->window_clamp = max(maxwin -
413					       (maxwin >> sysctl_tcp_app_win),
414					       4 * tp->advmss);
415	}
416
417	/* Force reservation of one segment. */
418	if (sysctl_tcp_app_win &&
419	    tp->window_clamp > 2 * tp->advmss &&
420	    tp->window_clamp + tp->advmss > maxwin)
421		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
422
423	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
424	tp->snd_cwnd_stamp = tcp_time_stamp;
425}
426
427/* 5. Recalculate window clamp after socket hit its memory bounds. */
428static void tcp_clamp_window(struct sock *sk)
429{
430	struct tcp_sock *tp = tcp_sk(sk);
431	struct inet_connection_sock *icsk = inet_csk(sk);
432
433	icsk->icsk_ack.quick = 0;
434
435	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
436	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
437	    !sk_under_memory_pressure(sk) &&
438	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
439		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
440				    sysctl_tcp_rmem[2]);
441	}
442	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
443		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
444}
445
446/* Initialize RCV_MSS value.
447 * RCV_MSS is an our guess about MSS used by the peer.
448 * We haven't any direct information about the MSS.
449 * It's better to underestimate the RCV_MSS rather than overestimate.
450 * Overestimations make us ACKing less frequently than needed.
451 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
452 */
453void tcp_initialize_rcv_mss(struct sock *sk)
454{
455	const struct tcp_sock *tp = tcp_sk(sk);
456	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
457
458	hint = min(hint, tp->rcv_wnd / 2);
459	hint = min(hint, TCP_MSS_DEFAULT);
460	hint = max(hint, TCP_MIN_MSS);
461
462	inet_csk(sk)->icsk_ack.rcv_mss = hint;
463}
464EXPORT_SYMBOL(tcp_initialize_rcv_mss);
465
466/* Receiver "autotuning" code.
467 *
468 * The algorithm for RTT estimation w/o timestamps is based on
469 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
470 * <http://public.lanl.gov/radiant/pubs.html#DRS>
471 *
472 * More detail on this code can be found at
473 * <http://staff.psc.edu/jheffner/>,
474 * though this reference is out of date.  A new paper
475 * is pending.
476 */
477static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
478{
479	u32 new_sample = tp->rcv_rtt_est.rtt;
480	long m = sample;
481
482	if (m == 0)
483		m = 1;
484
485	if (new_sample != 0) {
486		/* If we sample in larger samples in the non-timestamp
487		 * case, we could grossly overestimate the RTT especially
488		 * with chatty applications or bulk transfer apps which
489		 * are stalled on filesystem I/O.
490		 *
491		 * Also, since we are only going for a minimum in the
492		 * non-timestamp case, we do not smooth things out
493		 * else with timestamps disabled convergence takes too
494		 * long.
495		 */
496		if (!win_dep) {
497			m -= (new_sample >> 3);
498			new_sample += m;
499		} else {
500			m <<= 3;
501			if (m < new_sample)
502				new_sample = m;
503		}
504	} else {
505		/* No previous measure. */
506		new_sample = m << 3;
507	}
508
509	if (tp->rcv_rtt_est.rtt != new_sample)
510		tp->rcv_rtt_est.rtt = new_sample;
511}
512
513static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
514{
515	if (tp->rcv_rtt_est.time == 0)
516		goto new_measure;
517	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
518		return;
519	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
520
521new_measure:
522	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
523	tp->rcv_rtt_est.time = tcp_time_stamp;
524}
525
526static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
527					  const struct sk_buff *skb)
528{
529	struct tcp_sock *tp = tcp_sk(sk);
530	if (tp->rx_opt.rcv_tsecr &&
531	    (TCP_SKB_CB(skb)->end_seq -
532	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
533		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
534}
535
536/*
537 * This function should be called every time data is copied to user space.
538 * It calculates the appropriate TCP receive buffer space.
539 */
540void tcp_rcv_space_adjust(struct sock *sk)
541{
542	struct tcp_sock *tp = tcp_sk(sk);
543	int time;
544	int copied;
545
546	time = tcp_time_stamp - tp->rcvq_space.time;
547	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
548		return;
549
550	/* Number of bytes copied to user in last RTT */
551	copied = tp->copied_seq - tp->rcvq_space.seq;
552	if (copied <= tp->rcvq_space.space)
553		goto new_measure;
554
555	/* A bit of theory :
556	 * copied = bytes received in previous RTT, our base window
557	 * To cope with packet losses, we need a 2x factor
558	 * To cope with slow start, and sender growing its cwin by 100 %
559	 * every RTT, we need a 4x factor, because the ACK we are sending
560	 * now is for the next RTT, not the current one :
561	 * <prev RTT . ><current RTT .. ><next RTT .... >
562	 */
563
564	if (sysctl_tcp_moderate_rcvbuf &&
565	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
566		int rcvwin, rcvmem, rcvbuf;
567
568		/* minimal window to cope with packet losses, assuming
569		 * steady state. Add some cushion because of small variations.
570		 */
571		rcvwin = (copied << 1) + 16 * tp->advmss;
572
573		/* If rate increased by 25%,
574		 *	assume slow start, rcvwin = 3 * copied
575		 * If rate increased by 50%,
576		 *	assume sender can use 2x growth, rcvwin = 4 * copied
577		 */
578		if (copied >=
579		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
580			if (copied >=
581			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
582				rcvwin <<= 1;
583			else
584				rcvwin += (rcvwin >> 1);
585		}
586
587		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
588		while (tcp_win_from_space(rcvmem) < tp->advmss)
589			rcvmem += 128;
590
591		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
592		if (rcvbuf > sk->sk_rcvbuf) {
593			sk->sk_rcvbuf = rcvbuf;
594
595			/* Make the window clamp follow along.  */
596			tp->window_clamp = rcvwin;
597		}
598	}
599	tp->rcvq_space.space = copied;
600
601new_measure:
602	tp->rcvq_space.seq = tp->copied_seq;
603	tp->rcvq_space.time = tcp_time_stamp;
604}
605
606/* There is something which you must keep in mind when you analyze the
607 * behavior of the tp->ato delayed ack timeout interval.  When a
608 * connection starts up, we want to ack as quickly as possible.  The
609 * problem is that "good" TCP's do slow start at the beginning of data
610 * transmission.  The means that until we send the first few ACK's the
611 * sender will sit on his end and only queue most of his data, because
612 * he can only send snd_cwnd unacked packets at any given time.  For
613 * each ACK we send, he increments snd_cwnd and transmits more of his
614 * queue.  -DaveM
615 */
616static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
617{
618	struct tcp_sock *tp = tcp_sk(sk);
619	struct inet_connection_sock *icsk = inet_csk(sk);
620	u32 now;
621
622	inet_csk_schedule_ack(sk);
623
624	tcp_measure_rcv_mss(sk, skb);
625
626	tcp_rcv_rtt_measure(tp);
627
628	now = tcp_time_stamp;
629
630	if (!icsk->icsk_ack.ato) {
631		/* The _first_ data packet received, initialize
632		 * delayed ACK engine.
633		 */
634		tcp_incr_quickack(sk);
635		icsk->icsk_ack.ato = TCP_ATO_MIN;
636	} else {
637		int m = now - icsk->icsk_ack.lrcvtime;
638
639		if (m <= TCP_ATO_MIN / 2) {
640			/* The fastest case is the first. */
641			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
642		} else if (m < icsk->icsk_ack.ato) {
643			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
644			if (icsk->icsk_ack.ato > icsk->icsk_rto)
645				icsk->icsk_ack.ato = icsk->icsk_rto;
646		} else if (m > icsk->icsk_rto) {
647			/* Too long gap. Apparently sender failed to
648			 * restart window, so that we send ACKs quickly.
649			 */
650			tcp_incr_quickack(sk);
651			sk_mem_reclaim(sk);
652		}
653	}
654	icsk->icsk_ack.lrcvtime = now;
655
656	TCP_ECN_check_ce(tp, skb);
657
658	if (skb->len >= 128)
659		tcp_grow_window(sk, skb);
660}
661
662/* Called to compute a smoothed rtt estimate. The data fed to this
663 * routine either comes from timestamps, or from segments that were
664 * known _not_ to have been retransmitted [see Karn/Partridge
665 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
666 * piece by Van Jacobson.
667 * NOTE: the next three routines used to be one big routine.
668 * To save cycles in the RFC 1323 implementation it was better to break
669 * it up into three procedures. -- erics
670 */
671static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
672{
673	struct tcp_sock *tp = tcp_sk(sk);
674	long m = mrtt_us; /* RTT */
675	u32 srtt = tp->srtt_us;
676
677	/*	The following amusing code comes from Jacobson's
678	 *	article in SIGCOMM '88.  Note that rtt and mdev
679	 *	are scaled versions of rtt and mean deviation.
680	 *	This is designed to be as fast as possible
681	 *	m stands for "measurement".
682	 *
683	 *	On a 1990 paper the rto value is changed to:
684	 *	RTO = rtt + 4 * mdev
685	 *
686	 * Funny. This algorithm seems to be very broken.
687	 * These formulae increase RTO, when it should be decreased, increase
688	 * too slowly, when it should be increased quickly, decrease too quickly
689	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
690	 * does not matter how to _calculate_ it. Seems, it was trap
691	 * that VJ failed to avoid. 8)
692	 */
693	if (srtt != 0) {
694		m -= (srtt >> 3);	/* m is now error in rtt est */
695		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
696		if (m < 0) {
697			m = -m;		/* m is now abs(error) */
698			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
699			/* This is similar to one of Eifel findings.
700			 * Eifel blocks mdev updates when rtt decreases.
701			 * This solution is a bit different: we use finer gain
702			 * for mdev in this case (alpha*beta).
703			 * Like Eifel it also prevents growth of rto,
704			 * but also it limits too fast rto decreases,
705			 * happening in pure Eifel.
706			 */
707			if (m > 0)
708				m >>= 3;
709		} else {
710			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
711		}
712		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
713		if (tp->mdev_us > tp->mdev_max_us) {
714			tp->mdev_max_us = tp->mdev_us;
715			if (tp->mdev_max_us > tp->rttvar_us)
716				tp->rttvar_us = tp->mdev_max_us;
717		}
718		if (after(tp->snd_una, tp->rtt_seq)) {
719			if (tp->mdev_max_us < tp->rttvar_us)
720				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
721			tp->rtt_seq = tp->snd_nxt;
722			tp->mdev_max_us = tcp_rto_min_us(sk);
723		}
724	} else {
725		/* no previous measure. */
726		srtt = m << 3;		/* take the measured time to be rtt */
727		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
728		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
729		tp->mdev_max_us = tp->rttvar_us;
730		tp->rtt_seq = tp->snd_nxt;
731	}
732	tp->srtt_us = max(1U, srtt);
733}
734
735/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
736 * Note: TCP stack does not yet implement pacing.
737 * FQ packet scheduler can be used to implement cheap but effective
738 * TCP pacing, to smooth the burst on large writes when packets
739 * in flight is significantly lower than cwnd (or rwin)
740 */
741static void tcp_update_pacing_rate(struct sock *sk)
742{
743	const struct tcp_sock *tp = tcp_sk(sk);
744	u64 rate;
745
746	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
747	rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
748
749	rate *= max(tp->snd_cwnd, tp->packets_out);
750
751	if (likely(tp->srtt_us))
752		do_div(rate, tp->srtt_us);
753
754	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
755	 * without any lock. We want to make sure compiler wont store
756	 * intermediate values in this location.
757	 */
758	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
759						sk->sk_max_pacing_rate);
760}
761
762/* Calculate rto without backoff.  This is the second half of Van Jacobson's
763 * routine referred to above.
764 */
765static void tcp_set_rto(struct sock *sk)
766{
767	const struct tcp_sock *tp = tcp_sk(sk);
768	/* Old crap is replaced with new one. 8)
769	 *
770	 * More seriously:
771	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
772	 *    It cannot be less due to utterly erratic ACK generation made
773	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
774	 *    to do with delayed acks, because at cwnd>2 true delack timeout
775	 *    is invisible. Actually, Linux-2.4 also generates erratic
776	 *    ACKs in some circumstances.
777	 */
778	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
779
780	/* 2. Fixups made earlier cannot be right.
781	 *    If we do not estimate RTO correctly without them,
782	 *    all the algo is pure shit and should be replaced
783	 *    with correct one. It is exactly, which we pretend to do.
784	 */
785
786	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
787	 * guarantees that rto is higher.
788	 */
789	tcp_bound_rto(sk);
790}
791
792__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
793{
794	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
795
796	if (!cwnd)
797		cwnd = TCP_INIT_CWND;
798	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
799}
800
801/*
802 * Packet counting of FACK is based on in-order assumptions, therefore TCP
803 * disables it when reordering is detected
804 */
805void tcp_disable_fack(struct tcp_sock *tp)
806{
807	/* RFC3517 uses different metric in lost marker => reset on change */
808	if (tcp_is_fack(tp))
809		tp->lost_skb_hint = NULL;
810	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
811}
812
813/* Take a notice that peer is sending D-SACKs */
814static void tcp_dsack_seen(struct tcp_sock *tp)
815{
816	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
817}
818
819static void tcp_update_reordering(struct sock *sk, const int metric,
820				  const int ts)
821{
822	struct tcp_sock *tp = tcp_sk(sk);
823	if (metric > tp->reordering) {
824		int mib_idx;
825
826		tp->reordering = min(TCP_MAX_REORDERING, metric);
827
828		/* This exciting event is worth to be remembered. 8) */
829		if (ts)
830			mib_idx = LINUX_MIB_TCPTSREORDER;
831		else if (tcp_is_reno(tp))
832			mib_idx = LINUX_MIB_TCPRENOREORDER;
833		else if (tcp_is_fack(tp))
834			mib_idx = LINUX_MIB_TCPFACKREORDER;
835		else
836			mib_idx = LINUX_MIB_TCPSACKREORDER;
837
838		NET_INC_STATS_BH(sock_net(sk), mib_idx);
839#if FASTRETRANS_DEBUG > 1
840		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
841			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
842			 tp->reordering,
843			 tp->fackets_out,
844			 tp->sacked_out,
845			 tp->undo_marker ? tp->undo_retrans : 0);
846#endif
847		tcp_disable_fack(tp);
848	}
849
850	if (metric > 0)
851		tcp_disable_early_retrans(tp);
852}
853
854/* This must be called before lost_out is incremented */
855static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
856{
857	if ((tp->retransmit_skb_hint == NULL) ||
858	    before(TCP_SKB_CB(skb)->seq,
859		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
860		tp->retransmit_skb_hint = skb;
861
862	if (!tp->lost_out ||
863	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
864		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
865}
866
867static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
868{
869	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
870		tcp_verify_retransmit_hint(tp, skb);
871
872		tp->lost_out += tcp_skb_pcount(skb);
873		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
874	}
875}
876
877static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
878					    struct sk_buff *skb)
879{
880	tcp_verify_retransmit_hint(tp, skb);
881
882	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
883		tp->lost_out += tcp_skb_pcount(skb);
884		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
885	}
886}
887
888/* This procedure tags the retransmission queue when SACKs arrive.
889 *
890 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
891 * Packets in queue with these bits set are counted in variables
892 * sacked_out, retrans_out and lost_out, correspondingly.
893 *
894 * Valid combinations are:
895 * Tag  InFlight	Description
896 * 0	1		- orig segment is in flight.
897 * S	0		- nothing flies, orig reached receiver.
898 * L	0		- nothing flies, orig lost by net.
899 * R	2		- both orig and retransmit are in flight.
900 * L|R	1		- orig is lost, retransmit is in flight.
901 * S|R  1		- orig reached receiver, retrans is still in flight.
902 * (L|S|R is logically valid, it could occur when L|R is sacked,
903 *  but it is equivalent to plain S and code short-curcuits it to S.
904 *  L|S is logically invalid, it would mean -1 packet in flight 8))
905 *
906 * These 6 states form finite state machine, controlled by the following events:
907 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
908 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
909 * 3. Loss detection event of two flavors:
910 *	A. Scoreboard estimator decided the packet is lost.
911 *	   A'. Reno "three dupacks" marks head of queue lost.
912 *	   A''. Its FACK modification, head until snd.fack is lost.
913 *	B. SACK arrives sacking SND.NXT at the moment, when the
914 *	   segment was retransmitted.
915 * 4. D-SACK added new rule: D-SACK changes any tag to S.
916 *
917 * It is pleasant to note, that state diagram turns out to be commutative,
918 * so that we are allowed not to be bothered by order of our actions,
919 * when multiple events arrive simultaneously. (see the function below).
920 *
921 * Reordering detection.
922 * --------------------
923 * Reordering metric is maximal distance, which a packet can be displaced
924 * in packet stream. With SACKs we can estimate it:
925 *
926 * 1. SACK fills old hole and the corresponding segment was not
927 *    ever retransmitted -> reordering. Alas, we cannot use it
928 *    when segment was retransmitted.
929 * 2. The last flaw is solved with D-SACK. D-SACK arrives
930 *    for retransmitted and already SACKed segment -> reordering..
931 * Both of these heuristics are not used in Loss state, when we cannot
932 * account for retransmits accurately.
933 *
934 * SACK block validation.
935 * ----------------------
936 *
937 * SACK block range validation checks that the received SACK block fits to
938 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
939 * Note that SND.UNA is not included to the range though being valid because
940 * it means that the receiver is rather inconsistent with itself reporting
941 * SACK reneging when it should advance SND.UNA. Such SACK block this is
942 * perfectly valid, however, in light of RFC2018 which explicitly states
943 * that "SACK block MUST reflect the newest segment.  Even if the newest
944 * segment is going to be discarded ...", not that it looks very clever
945 * in case of head skb. Due to potentional receiver driven attacks, we
946 * choose to avoid immediate execution of a walk in write queue due to
947 * reneging and defer head skb's loss recovery to standard loss recovery
948 * procedure that will eventually trigger (nothing forbids us doing this).
949 *
950 * Implements also blockage to start_seq wrap-around. Problem lies in the
951 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
952 * there's no guarantee that it will be before snd_nxt (n). The problem
953 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
954 * wrap (s_w):
955 *
956 *         <- outs wnd ->                          <- wrapzone ->
957 *         u     e      n                         u_w   e_w  s n_w
958 *         |     |      |                          |     |   |  |
959 * |<------------+------+----- TCP seqno space --------------+---------->|
960 * ...-- <2^31 ->|                                           |<--------...
961 * ...---- >2^31 ------>|                                    |<--------...
962 *
963 * Current code wouldn't be vulnerable but it's better still to discard such
964 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
965 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
966 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
967 * equal to the ideal case (infinite seqno space without wrap caused issues).
968 *
969 * With D-SACK the lower bound is extended to cover sequence space below
970 * SND.UNA down to undo_marker, which is the last point of interest. Yet
971 * again, D-SACK block must not to go across snd_una (for the same reason as
972 * for the normal SACK blocks, explained above). But there all simplicity
973 * ends, TCP might receive valid D-SACKs below that. As long as they reside
974 * fully below undo_marker they do not affect behavior in anyway and can
975 * therefore be safely ignored. In rare cases (which are more or less
976 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
977 * fragmentation and packet reordering past skb's retransmission. To consider
978 * them correctly, the acceptable range must be extended even more though
979 * the exact amount is rather hard to quantify. However, tp->max_window can
980 * be used as an exaggerated estimate.
981 */
982static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
983				   u32 start_seq, u32 end_seq)
984{
985	/* Too far in future, or reversed (interpretation is ambiguous) */
986	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
987		return false;
988
989	/* Nasty start_seq wrap-around check (see comments above) */
990	if (!before(start_seq, tp->snd_nxt))
991		return false;
992
993	/* In outstanding window? ...This is valid exit for D-SACKs too.
994	 * start_seq == snd_una is non-sensical (see comments above)
995	 */
996	if (after(start_seq, tp->snd_una))
997		return true;
998
999	if (!is_dsack || !tp->undo_marker)
1000		return false;
1001
1002	/* ...Then it's D-SACK, and must reside below snd_una completely */
1003	if (after(end_seq, tp->snd_una))
1004		return false;
1005
1006	if (!before(start_seq, tp->undo_marker))
1007		return true;
1008
1009	/* Too old */
1010	if (!after(end_seq, tp->undo_marker))
1011		return false;
1012
1013	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1014	 *   start_seq < undo_marker and end_seq >= undo_marker.
1015	 */
1016	return !before(start_seq, end_seq - tp->max_window);
1017}
1018
1019/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1020 * Event "B". Later note: FACK people cheated me again 8), we have to account
1021 * for reordering! Ugly, but should help.
1022 *
1023 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1024 * less than what is now known to be received by the other end (derived from
1025 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1026 * retransmitted skbs to avoid some costly processing per ACKs.
1027 */
1028static void tcp_mark_lost_retrans(struct sock *sk)
1029{
1030	const struct inet_connection_sock *icsk = inet_csk(sk);
1031	struct tcp_sock *tp = tcp_sk(sk);
1032	struct sk_buff *skb;
1033	int cnt = 0;
1034	u32 new_low_seq = tp->snd_nxt;
1035	u32 received_upto = tcp_highest_sack_seq(tp);
1036
1037	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1038	    !after(received_upto, tp->lost_retrans_low) ||
1039	    icsk->icsk_ca_state != TCP_CA_Recovery)
1040		return;
1041
1042	tcp_for_write_queue(skb, sk) {
1043		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1044
1045		if (skb == tcp_send_head(sk))
1046			break;
1047		if (cnt == tp->retrans_out)
1048			break;
1049		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1050			continue;
1051
1052		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1053			continue;
1054
1055		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1056		 * constraint here (see above) but figuring out that at
1057		 * least tp->reordering SACK blocks reside between ack_seq
1058		 * and received_upto is not easy task to do cheaply with
1059		 * the available datastructures.
1060		 *
1061		 * Whether FACK should check here for tp->reordering segs
1062		 * in-between one could argue for either way (it would be
1063		 * rather simple to implement as we could count fack_count
1064		 * during the walk and do tp->fackets_out - fack_count).
1065		 */
1066		if (after(received_upto, ack_seq)) {
1067			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1068			tp->retrans_out -= tcp_skb_pcount(skb);
1069
1070			tcp_skb_mark_lost_uncond_verify(tp, skb);
1071			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1072		} else {
1073			if (before(ack_seq, new_low_seq))
1074				new_low_seq = ack_seq;
1075			cnt += tcp_skb_pcount(skb);
1076		}
1077	}
1078
1079	if (tp->retrans_out)
1080		tp->lost_retrans_low = new_low_seq;
1081}
1082
1083static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1084			    struct tcp_sack_block_wire *sp, int num_sacks,
1085			    u32 prior_snd_una)
1086{
1087	struct tcp_sock *tp = tcp_sk(sk);
1088	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1089	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1090	bool dup_sack = false;
1091
1092	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1093		dup_sack = true;
1094		tcp_dsack_seen(tp);
1095		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1096	} else if (num_sacks > 1) {
1097		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1098		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1099
1100		if (!after(end_seq_0, end_seq_1) &&
1101		    !before(start_seq_0, start_seq_1)) {
1102			dup_sack = true;
1103			tcp_dsack_seen(tp);
1104			NET_INC_STATS_BH(sock_net(sk),
1105					LINUX_MIB_TCPDSACKOFORECV);
1106		}
1107	}
1108
1109	/* D-SACK for already forgotten data... Do dumb counting. */
1110	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1111	    !after(end_seq_0, prior_snd_una) &&
1112	    after(end_seq_0, tp->undo_marker))
1113		tp->undo_retrans--;
1114
1115	return dup_sack;
1116}
1117
1118struct tcp_sacktag_state {
1119	int	reord;
1120	int	fack_count;
1121	long	rtt_us; /* RTT measured by SACKing never-retransmitted data */
1122	int	flag;
1123};
1124
1125/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1126 * the incoming SACK may not exactly match but we can find smaller MSS
1127 * aligned portion of it that matches. Therefore we might need to fragment
1128 * which may fail and creates some hassle (caller must handle error case
1129 * returns).
1130 *
1131 * FIXME: this could be merged to shift decision code
1132 */
1133static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1134				  u32 start_seq, u32 end_seq)
1135{
1136	int err;
1137	bool in_sack;
1138	unsigned int pkt_len;
1139	unsigned int mss;
1140
1141	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1142		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1143
1144	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1145	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1146		mss = tcp_skb_mss(skb);
1147		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1148
1149		if (!in_sack) {
1150			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1151			if (pkt_len < mss)
1152				pkt_len = mss;
1153		} else {
1154			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1155			if (pkt_len < mss)
1156				return -EINVAL;
1157		}
1158
1159		/* Round if necessary so that SACKs cover only full MSSes
1160		 * and/or the remaining small portion (if present)
1161		 */
1162		if (pkt_len > mss) {
1163			unsigned int new_len = (pkt_len / mss) * mss;
1164			if (!in_sack && new_len < pkt_len) {
1165				new_len += mss;
1166				if (new_len >= skb->len)
1167					return 0;
1168			}
1169			pkt_len = new_len;
1170		}
1171		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1172		if (err < 0)
1173			return err;
1174	}
1175
1176	return in_sack;
1177}
1178
1179/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1180static u8 tcp_sacktag_one(struct sock *sk,
1181			  struct tcp_sacktag_state *state, u8 sacked,
1182			  u32 start_seq, u32 end_seq,
1183			  int dup_sack, int pcount,
1184			  const struct skb_mstamp *xmit_time)
1185{
1186	struct tcp_sock *tp = tcp_sk(sk);
1187	int fack_count = state->fack_count;
1188
1189	/* Account D-SACK for retransmitted packet. */
1190	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1191		if (tp->undo_marker && tp->undo_retrans > 0 &&
1192		    after(end_seq, tp->undo_marker))
1193			tp->undo_retrans--;
1194		if (sacked & TCPCB_SACKED_ACKED)
1195			state->reord = min(fack_count, state->reord);
1196	}
1197
1198	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1199	if (!after(end_seq, tp->snd_una))
1200		return sacked;
1201
1202	if (!(sacked & TCPCB_SACKED_ACKED)) {
1203		if (sacked & TCPCB_SACKED_RETRANS) {
1204			/* If the segment is not tagged as lost,
1205			 * we do not clear RETRANS, believing
1206			 * that retransmission is still in flight.
1207			 */
1208			if (sacked & TCPCB_LOST) {
1209				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1210				tp->lost_out -= pcount;
1211				tp->retrans_out -= pcount;
1212			}
1213		} else {
1214			if (!(sacked & TCPCB_RETRANS)) {
1215				/* New sack for not retransmitted frame,
1216				 * which was in hole. It is reordering.
1217				 */
1218				if (before(start_seq,
1219					   tcp_highest_sack_seq(tp)))
1220					state->reord = min(fack_count,
1221							   state->reord);
1222				if (!after(end_seq, tp->high_seq))
1223					state->flag |= FLAG_ORIG_SACK_ACKED;
1224				/* Pick the earliest sequence sacked for RTT */
1225				if (state->rtt_us < 0) {
1226					struct skb_mstamp now;
1227
1228					skb_mstamp_get(&now);
1229					state->rtt_us = skb_mstamp_us_delta(&now,
1230								xmit_time);
1231				}
1232			}
1233
1234			if (sacked & TCPCB_LOST) {
1235				sacked &= ~TCPCB_LOST;
1236				tp->lost_out -= pcount;
1237			}
1238		}
1239
1240		sacked |= TCPCB_SACKED_ACKED;
1241		state->flag |= FLAG_DATA_SACKED;
1242		tp->sacked_out += pcount;
1243
1244		fack_count += pcount;
1245
1246		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1247		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1248		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1249			tp->lost_cnt_hint += pcount;
1250
1251		if (fack_count > tp->fackets_out)
1252			tp->fackets_out = fack_count;
1253	}
1254
1255	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1256	 * frames and clear it. undo_retrans is decreased above, L|R frames
1257	 * are accounted above as well.
1258	 */
1259	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1260		sacked &= ~TCPCB_SACKED_RETRANS;
1261		tp->retrans_out -= pcount;
1262	}
1263
1264	return sacked;
1265}
1266
1267/* Shift newly-SACKed bytes from this skb to the immediately previous
1268 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1269 */
1270static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1271			    struct tcp_sacktag_state *state,
1272			    unsigned int pcount, int shifted, int mss,
1273			    bool dup_sack)
1274{
1275	struct tcp_sock *tp = tcp_sk(sk);
1276	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1277	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1278	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1279
1280	BUG_ON(!pcount);
1281
1282	/* Adjust counters and hints for the newly sacked sequence
1283	 * range but discard the return value since prev is already
1284	 * marked. We must tag the range first because the seq
1285	 * advancement below implicitly advances
1286	 * tcp_highest_sack_seq() when skb is highest_sack.
1287	 */
1288	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1289			start_seq, end_seq, dup_sack, pcount,
1290			&skb->skb_mstamp);
1291
1292	if (skb == tp->lost_skb_hint)
1293		tp->lost_cnt_hint += pcount;
1294
1295	TCP_SKB_CB(prev)->end_seq += shifted;
1296	TCP_SKB_CB(skb)->seq += shifted;
1297
1298	skb_shinfo(prev)->gso_segs += pcount;
1299	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1300	skb_shinfo(skb)->gso_segs -= pcount;
1301
1302	/* When we're adding to gso_segs == 1, gso_size will be zero,
1303	 * in theory this shouldn't be necessary but as long as DSACK
1304	 * code can come after this skb later on it's better to keep
1305	 * setting gso_size to something.
1306	 */
1307	if (!skb_shinfo(prev)->gso_size) {
1308		skb_shinfo(prev)->gso_size = mss;
1309		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1310	}
1311
1312	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1313	if (skb_shinfo(skb)->gso_segs <= 1) {
1314		skb_shinfo(skb)->gso_size = 0;
1315		skb_shinfo(skb)->gso_type = 0;
1316	}
1317
1318	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1319	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1320
1321	if (skb->len > 0) {
1322		BUG_ON(!tcp_skb_pcount(skb));
1323		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1324		return false;
1325	}
1326
1327	/* Whole SKB was eaten :-) */
1328
1329	if (skb == tp->retransmit_skb_hint)
1330		tp->retransmit_skb_hint = prev;
1331	if (skb == tp->lost_skb_hint) {
1332		tp->lost_skb_hint = prev;
1333		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1334	}
1335
1336	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1337	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1338		TCP_SKB_CB(prev)->end_seq++;
1339
1340	if (skb == tcp_highest_sack(sk))
1341		tcp_advance_highest_sack(sk, skb);
1342
1343	tcp_unlink_write_queue(skb, sk);
1344	sk_wmem_free_skb(sk, skb);
1345
1346	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1347
1348	return true;
1349}
1350
1351/* I wish gso_size would have a bit more sane initialization than
1352 * something-or-zero which complicates things
1353 */
1354static int tcp_skb_seglen(const struct sk_buff *skb)
1355{
1356	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1357}
1358
1359/* Shifting pages past head area doesn't work */
1360static int skb_can_shift(const struct sk_buff *skb)
1361{
1362	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1363}
1364
1365/* Try collapsing SACK blocks spanning across multiple skbs to a single
1366 * skb.
1367 */
1368static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1369					  struct tcp_sacktag_state *state,
1370					  u32 start_seq, u32 end_seq,
1371					  bool dup_sack)
1372{
1373	struct tcp_sock *tp = tcp_sk(sk);
1374	struct sk_buff *prev;
1375	int mss;
1376	int pcount = 0;
1377	int len;
1378	int in_sack;
1379
1380	if (!sk_can_gso(sk))
1381		goto fallback;
1382
1383	/* Normally R but no L won't result in plain S */
1384	if (!dup_sack &&
1385	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1386		goto fallback;
1387	if (!skb_can_shift(skb))
1388		goto fallback;
1389	/* This frame is about to be dropped (was ACKed). */
1390	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1391		goto fallback;
1392
1393	/* Can only happen with delayed DSACK + discard craziness */
1394	if (unlikely(skb == tcp_write_queue_head(sk)))
1395		goto fallback;
1396	prev = tcp_write_queue_prev(sk, skb);
1397
1398	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1399		goto fallback;
1400
1401	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1402		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1403
1404	if (in_sack) {
1405		len = skb->len;
1406		pcount = tcp_skb_pcount(skb);
1407		mss = tcp_skb_seglen(skb);
1408
1409		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1410		 * drop this restriction as unnecessary
1411		 */
1412		if (mss != tcp_skb_seglen(prev))
1413			goto fallback;
1414	} else {
1415		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1416			goto noop;
1417		/* CHECKME: This is non-MSS split case only?, this will
1418		 * cause skipped skbs due to advancing loop btw, original
1419		 * has that feature too
1420		 */
1421		if (tcp_skb_pcount(skb) <= 1)
1422			goto noop;
1423
1424		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1425		if (!in_sack) {
1426			/* TODO: head merge to next could be attempted here
1427			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428			 * though it might not be worth of the additional hassle
1429			 *
1430			 * ...we can probably just fallback to what was done
1431			 * previously. We could try merging non-SACKed ones
1432			 * as well but it probably isn't going to buy off
1433			 * because later SACKs might again split them, and
1434			 * it would make skb timestamp tracking considerably
1435			 * harder problem.
1436			 */
1437			goto fallback;
1438		}
1439
1440		len = end_seq - TCP_SKB_CB(skb)->seq;
1441		BUG_ON(len < 0);
1442		BUG_ON(len > skb->len);
1443
1444		/* MSS boundaries should be honoured or else pcount will
1445		 * severely break even though it makes things bit trickier.
1446		 * Optimize common case to avoid most of the divides
1447		 */
1448		mss = tcp_skb_mss(skb);
1449
1450		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1451		 * drop this restriction as unnecessary
1452		 */
1453		if (mss != tcp_skb_seglen(prev))
1454			goto fallback;
1455
1456		if (len == mss) {
1457			pcount = 1;
1458		} else if (len < mss) {
1459			goto noop;
1460		} else {
1461			pcount = len / mss;
1462			len = pcount * mss;
1463		}
1464	}
1465
1466	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1468		goto fallback;
1469
1470	if (!skb_shift(prev, skb, len))
1471		goto fallback;
1472	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1473		goto out;
1474
1475	/* Hole filled allows collapsing with the next as well, this is very
1476	 * useful when hole on every nth skb pattern happens
1477	 */
1478	if (prev == tcp_write_queue_tail(sk))
1479		goto out;
1480	skb = tcp_write_queue_next(sk, prev);
1481
1482	if (!skb_can_shift(skb) ||
1483	    (skb == tcp_send_head(sk)) ||
1484	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1485	    (mss != tcp_skb_seglen(skb)))
1486		goto out;
1487
1488	len = skb->len;
1489	if (skb_shift(prev, skb, len)) {
1490		pcount += tcp_skb_pcount(skb);
1491		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1492	}
1493
1494out:
1495	state->fack_count += pcount;
1496	return prev;
1497
1498noop:
1499	return skb;
1500
1501fallback:
1502	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1503	return NULL;
1504}
1505
1506static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1507					struct tcp_sack_block *next_dup,
1508					struct tcp_sacktag_state *state,
1509					u32 start_seq, u32 end_seq,
1510					bool dup_sack_in)
1511{
1512	struct tcp_sock *tp = tcp_sk(sk);
1513	struct sk_buff *tmp;
1514
1515	tcp_for_write_queue_from(skb, sk) {
1516		int in_sack = 0;
1517		bool dup_sack = dup_sack_in;
1518
1519		if (skb == tcp_send_head(sk))
1520			break;
1521
1522		/* queue is in-order => we can short-circuit the walk early */
1523		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1524			break;
1525
1526		if ((next_dup != NULL) &&
1527		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1528			in_sack = tcp_match_skb_to_sack(sk, skb,
1529							next_dup->start_seq,
1530							next_dup->end_seq);
1531			if (in_sack > 0)
1532				dup_sack = true;
1533		}
1534
1535		/* skb reference here is a bit tricky to get right, since
1536		 * shifting can eat and free both this skb and the next,
1537		 * so not even _safe variant of the loop is enough.
1538		 */
1539		if (in_sack <= 0) {
1540			tmp = tcp_shift_skb_data(sk, skb, state,
1541						 start_seq, end_seq, dup_sack);
1542			if (tmp != NULL) {
1543				if (tmp != skb) {
1544					skb = tmp;
1545					continue;
1546				}
1547
1548				in_sack = 0;
1549			} else {
1550				in_sack = tcp_match_skb_to_sack(sk, skb,
1551								start_seq,
1552								end_seq);
1553			}
1554		}
1555
1556		if (unlikely(in_sack < 0))
1557			break;
1558
1559		if (in_sack) {
1560			TCP_SKB_CB(skb)->sacked =
1561				tcp_sacktag_one(sk,
1562						state,
1563						TCP_SKB_CB(skb)->sacked,
1564						TCP_SKB_CB(skb)->seq,
1565						TCP_SKB_CB(skb)->end_seq,
1566						dup_sack,
1567						tcp_skb_pcount(skb),
1568						&skb->skb_mstamp);
1569
1570			if (!before(TCP_SKB_CB(skb)->seq,
1571				    tcp_highest_sack_seq(tp)))
1572				tcp_advance_highest_sack(sk, skb);
1573		}
1574
1575		state->fack_count += tcp_skb_pcount(skb);
1576	}
1577	return skb;
1578}
1579
1580/* Avoid all extra work that is being done by sacktag while walking in
1581 * a normal way
1582 */
1583static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1584					struct tcp_sacktag_state *state,
1585					u32 skip_to_seq)
1586{
1587	tcp_for_write_queue_from(skb, sk) {
1588		if (skb == tcp_send_head(sk))
1589			break;
1590
1591		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1592			break;
1593
1594		state->fack_count += tcp_skb_pcount(skb);
1595	}
1596	return skb;
1597}
1598
1599static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1600						struct sock *sk,
1601						struct tcp_sack_block *next_dup,
1602						struct tcp_sacktag_state *state,
1603						u32 skip_to_seq)
1604{
1605	if (next_dup == NULL)
1606		return skb;
1607
1608	if (before(next_dup->start_seq, skip_to_seq)) {
1609		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1610		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1611				       next_dup->start_seq, next_dup->end_seq,
1612				       1);
1613	}
1614
1615	return skb;
1616}
1617
1618static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1619{
1620	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1621}
1622
1623static int
1624tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1625			u32 prior_snd_una, long *sack_rtt_us)
1626{
1627	struct tcp_sock *tp = tcp_sk(sk);
1628	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1629				    TCP_SKB_CB(ack_skb)->sacked);
1630	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1631	struct tcp_sack_block sp[TCP_NUM_SACKS];
1632	struct tcp_sack_block *cache;
1633	struct tcp_sacktag_state state;
1634	struct sk_buff *skb;
1635	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1636	int used_sacks;
1637	bool found_dup_sack = false;
1638	int i, j;
1639	int first_sack_index;
1640
1641	state.flag = 0;
1642	state.reord = tp->packets_out;
1643	state.rtt_us = -1L;
1644
1645	if (!tp->sacked_out) {
1646		if (WARN_ON(tp->fackets_out))
1647			tp->fackets_out = 0;
1648		tcp_highest_sack_reset(sk);
1649	}
1650
1651	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1652					 num_sacks, prior_snd_una);
1653	if (found_dup_sack)
1654		state.flag |= FLAG_DSACKING_ACK;
1655
1656	/* Eliminate too old ACKs, but take into
1657	 * account more or less fresh ones, they can
1658	 * contain valid SACK info.
1659	 */
1660	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1661		return 0;
1662
1663	if (!tp->packets_out)
1664		goto out;
1665
1666	used_sacks = 0;
1667	first_sack_index = 0;
1668	for (i = 0; i < num_sacks; i++) {
1669		bool dup_sack = !i && found_dup_sack;
1670
1671		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1672		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1673
1674		if (!tcp_is_sackblock_valid(tp, dup_sack,
1675					    sp[used_sacks].start_seq,
1676					    sp[used_sacks].end_seq)) {
1677			int mib_idx;
1678
1679			if (dup_sack) {
1680				if (!tp->undo_marker)
1681					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1682				else
1683					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1684			} else {
1685				/* Don't count olds caused by ACK reordering */
1686				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1687				    !after(sp[used_sacks].end_seq, tp->snd_una))
1688					continue;
1689				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1690			}
1691
1692			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1693			if (i == 0)
1694				first_sack_index = -1;
1695			continue;
1696		}
1697
1698		/* Ignore very old stuff early */
1699		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1700			continue;
1701
1702		used_sacks++;
1703	}
1704
1705	/* order SACK blocks to allow in order walk of the retrans queue */
1706	for (i = used_sacks - 1; i > 0; i--) {
1707		for (j = 0; j < i; j++) {
1708			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1709				swap(sp[j], sp[j + 1]);
1710
1711				/* Track where the first SACK block goes to */
1712				if (j == first_sack_index)
1713					first_sack_index = j + 1;
1714			}
1715		}
1716	}
1717
1718	skb = tcp_write_queue_head(sk);
1719	state.fack_count = 0;
1720	i = 0;
1721
1722	if (!tp->sacked_out) {
1723		/* It's already past, so skip checking against it */
1724		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1725	} else {
1726		cache = tp->recv_sack_cache;
1727		/* Skip empty blocks in at head of the cache */
1728		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1729		       !cache->end_seq)
1730			cache++;
1731	}
1732
1733	while (i < used_sacks) {
1734		u32 start_seq = sp[i].start_seq;
1735		u32 end_seq = sp[i].end_seq;
1736		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1737		struct tcp_sack_block *next_dup = NULL;
1738
1739		if (found_dup_sack && ((i + 1) == first_sack_index))
1740			next_dup = &sp[i + 1];
1741
1742		/* Skip too early cached blocks */
1743		while (tcp_sack_cache_ok(tp, cache) &&
1744		       !before(start_seq, cache->end_seq))
1745			cache++;
1746
1747		/* Can skip some work by looking recv_sack_cache? */
1748		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1749		    after(end_seq, cache->start_seq)) {
1750
1751			/* Head todo? */
1752			if (before(start_seq, cache->start_seq)) {
1753				skb = tcp_sacktag_skip(skb, sk, &state,
1754						       start_seq);
1755				skb = tcp_sacktag_walk(skb, sk, next_dup,
1756						       &state,
1757						       start_seq,
1758						       cache->start_seq,
1759						       dup_sack);
1760			}
1761
1762			/* Rest of the block already fully processed? */
1763			if (!after(end_seq, cache->end_seq))
1764				goto advance_sp;
1765
1766			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1767						       &state,
1768						       cache->end_seq);
1769
1770			/* ...tail remains todo... */
1771			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1772				/* ...but better entrypoint exists! */
1773				skb = tcp_highest_sack(sk);
1774				if (skb == NULL)
1775					break;
1776				state.fack_count = tp->fackets_out;
1777				cache++;
1778				goto walk;
1779			}
1780
1781			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1782			/* Check overlap against next cached too (past this one already) */
1783			cache++;
1784			continue;
1785		}
1786
1787		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1788			skb = tcp_highest_sack(sk);
1789			if (skb == NULL)
1790				break;
1791			state.fack_count = tp->fackets_out;
1792		}
1793		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1794
1795walk:
1796		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1797				       start_seq, end_seq, dup_sack);
1798
1799advance_sp:
1800		i++;
1801	}
1802
1803	/* Clear the head of the cache sack blocks so we can skip it next time */
1804	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1805		tp->recv_sack_cache[i].start_seq = 0;
1806		tp->recv_sack_cache[i].end_seq = 0;
1807	}
1808	for (j = 0; j < used_sacks; j++)
1809		tp->recv_sack_cache[i++] = sp[j];
1810
1811	tcp_mark_lost_retrans(sk);
1812
1813	tcp_verify_left_out(tp);
1814
1815	if ((state.reord < tp->fackets_out) &&
1816	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1817		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1818
1819out:
1820
1821#if FASTRETRANS_DEBUG > 0
1822	WARN_ON((int)tp->sacked_out < 0);
1823	WARN_ON((int)tp->lost_out < 0);
1824	WARN_ON((int)tp->retrans_out < 0);
1825	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1826#endif
1827	*sack_rtt_us = state.rtt_us;
1828	return state.flag;
1829}
1830
1831/* Limits sacked_out so that sum with lost_out isn't ever larger than
1832 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1833 */
1834static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1835{
1836	u32 holes;
1837
1838	holes = max(tp->lost_out, 1U);
1839	holes = min(holes, tp->packets_out);
1840
1841	if ((tp->sacked_out + holes) > tp->packets_out) {
1842		tp->sacked_out = tp->packets_out - holes;
1843		return true;
1844	}
1845	return false;
1846}
1847
1848/* If we receive more dupacks than we expected counting segments
1849 * in assumption of absent reordering, interpret this as reordering.
1850 * The only another reason could be bug in receiver TCP.
1851 */
1852static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1853{
1854	struct tcp_sock *tp = tcp_sk(sk);
1855	if (tcp_limit_reno_sacked(tp))
1856		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1857}
1858
1859/* Emulate SACKs for SACKless connection: account for a new dupack. */
1860
1861static void tcp_add_reno_sack(struct sock *sk)
1862{
1863	struct tcp_sock *tp = tcp_sk(sk);
1864	tp->sacked_out++;
1865	tcp_check_reno_reordering(sk, 0);
1866	tcp_verify_left_out(tp);
1867}
1868
1869/* Account for ACK, ACKing some data in Reno Recovery phase. */
1870
1871static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1872{
1873	struct tcp_sock *tp = tcp_sk(sk);
1874
1875	if (acked > 0) {
1876		/* One ACK acked hole. The rest eat duplicate ACKs. */
1877		if (acked - 1 >= tp->sacked_out)
1878			tp->sacked_out = 0;
1879		else
1880			tp->sacked_out -= acked - 1;
1881	}
1882	tcp_check_reno_reordering(sk, acked);
1883	tcp_verify_left_out(tp);
1884}
1885
1886static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1887{
1888	tp->sacked_out = 0;
1889}
1890
1891static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1892{
1893	tp->retrans_out = 0;
1894	tp->lost_out = 0;
1895
1896	tp->undo_marker = 0;
1897	tp->undo_retrans = -1;
1898}
1899
1900void tcp_clear_retrans(struct tcp_sock *tp)
1901{
1902	tcp_clear_retrans_partial(tp);
1903
1904	tp->fackets_out = 0;
1905	tp->sacked_out = 0;
1906}
1907
1908/* Enter Loss state. If we detect SACK reneging, forget all SACK information
1909 * and reset tags completely, otherwise preserve SACKs. If receiver
1910 * dropped its ofo queue, we will know this due to reneging detection.
1911 */
1912void tcp_enter_loss(struct sock *sk)
1913{
1914	const struct inet_connection_sock *icsk = inet_csk(sk);
1915	struct tcp_sock *tp = tcp_sk(sk);
1916	struct sk_buff *skb;
1917	bool new_recovery = false;
1918	bool is_reneg;			/* is receiver reneging on SACKs? */
1919
1920	/* Reduce ssthresh if it has not yet been made inside this window. */
1921	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1922	    !after(tp->high_seq, tp->snd_una) ||
1923	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1924		new_recovery = true;
1925		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1926		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1927		tcp_ca_event(sk, CA_EVENT_LOSS);
1928	}
1929	tp->snd_cwnd	   = 1;
1930	tp->snd_cwnd_cnt   = 0;
1931	tp->snd_cwnd_stamp = tcp_time_stamp;
1932
1933	tcp_clear_retrans_partial(tp);
1934
1935	if (tcp_is_reno(tp))
1936		tcp_reset_reno_sack(tp);
1937
1938	tp->undo_marker = tp->snd_una;
1939
1940	skb = tcp_write_queue_head(sk);
1941	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1942	if (is_reneg) {
1943		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1944		tp->sacked_out = 0;
1945		tp->fackets_out = 0;
1946	}
1947	tcp_clear_all_retrans_hints(tp);
1948
1949	tcp_for_write_queue(skb, sk) {
1950		if (skb == tcp_send_head(sk))
1951			break;
1952
1953		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1954			tp->undo_marker = 0;
1955
1956		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1957		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1958			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1959			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1960			tp->lost_out += tcp_skb_pcount(skb);
1961			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1962		}
1963	}
1964	tcp_verify_left_out(tp);
1965
1966	/* Timeout in disordered state after receiving substantial DUPACKs
1967	 * suggests that the degree of reordering is over-estimated.
1968	 */
1969	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1970	    tp->sacked_out >= sysctl_tcp_reordering)
1971		tp->reordering = min_t(unsigned int, tp->reordering,
1972				       sysctl_tcp_reordering);
1973	tcp_set_ca_state(sk, TCP_CA_Loss);
1974	tp->high_seq = tp->snd_nxt;
1975	TCP_ECN_queue_cwr(tp);
1976
1977	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1978	 * loss recovery is underway except recurring timeout(s) on
1979	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1980	 */
1981	tp->frto = sysctl_tcp_frto &&
1982		   (new_recovery || icsk->icsk_retransmits) &&
1983		   !inet_csk(sk)->icsk_mtup.probe_size;
1984}
1985
1986/* If ACK arrived pointing to a remembered SACK, it means that our
1987 * remembered SACKs do not reflect real state of receiver i.e.
1988 * receiver _host_ is heavily congested (or buggy).
1989 *
1990 * To avoid big spurious retransmission bursts due to transient SACK
1991 * scoreboard oddities that look like reneging, we give the receiver a
1992 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1993 * restore sanity to the SACK scoreboard. If the apparent reneging
1994 * persists until this RTO then we'll clear the SACK scoreboard.
1995 */
1996static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1997{
1998	if (flag & FLAG_SACK_RENEGING) {
1999		struct tcp_sock *tp = tcp_sk(sk);
2000		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2001					  msecs_to_jiffies(10));
2002
2003		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2004					  delay, TCP_RTO_MAX);
2005		return true;
2006	}
2007	return false;
2008}
2009
2010static inline int tcp_fackets_out(const struct tcp_sock *tp)
2011{
2012	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2013}
2014
2015/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2016 * counter when SACK is enabled (without SACK, sacked_out is used for
2017 * that purpose).
2018 *
2019 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2020 * segments up to the highest received SACK block so far and holes in
2021 * between them.
2022 *
2023 * With reordering, holes may still be in flight, so RFC3517 recovery
2024 * uses pure sacked_out (total number of SACKed segments) even though
2025 * it violates the RFC that uses duplicate ACKs, often these are equal
2026 * but when e.g. out-of-window ACKs or packet duplication occurs,
2027 * they differ. Since neither occurs due to loss, TCP should really
2028 * ignore them.
2029 */
2030static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2031{
2032	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2033}
2034
2035static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2036{
2037	struct tcp_sock *tp = tcp_sk(sk);
2038	unsigned long delay;
2039
2040	/* Delay early retransmit and entering fast recovery for
2041	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2042	 * available, or RTO is scheduled to fire first.
2043	 */
2044	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2045	    (flag & FLAG_ECE) || !tp->srtt_us)
2046		return false;
2047
2048	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2049		    msecs_to_jiffies(2));
2050
2051	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2052		return false;
2053
2054	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2055				  TCP_RTO_MAX);
2056	return true;
2057}
2058
2059/* Linux NewReno/SACK/FACK/ECN state machine.
2060 * --------------------------------------
2061 *
2062 * "Open"	Normal state, no dubious events, fast path.
2063 * "Disorder"   In all the respects it is "Open",
2064 *		but requires a bit more attention. It is entered when
2065 *		we see some SACKs or dupacks. It is split of "Open"
2066 *		mainly to move some processing from fast path to slow one.
2067 * "CWR"	CWND was reduced due to some Congestion Notification event.
2068 *		It can be ECN, ICMP source quench, local device congestion.
2069 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2070 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2071 *
2072 * tcp_fastretrans_alert() is entered:
2073 * - each incoming ACK, if state is not "Open"
2074 * - when arrived ACK is unusual, namely:
2075 *	* SACK
2076 *	* Duplicate ACK.
2077 *	* ECN ECE.
2078 *
2079 * Counting packets in flight is pretty simple.
2080 *
2081 *	in_flight = packets_out - left_out + retrans_out
2082 *
2083 *	packets_out is SND.NXT-SND.UNA counted in packets.
2084 *
2085 *	retrans_out is number of retransmitted segments.
2086 *
2087 *	left_out is number of segments left network, but not ACKed yet.
2088 *
2089 *		left_out = sacked_out + lost_out
2090 *
2091 *     sacked_out: Packets, which arrived to receiver out of order
2092 *		   and hence not ACKed. With SACKs this number is simply
2093 *		   amount of SACKed data. Even without SACKs
2094 *		   it is easy to give pretty reliable estimate of this number,
2095 *		   counting duplicate ACKs.
2096 *
2097 *       lost_out: Packets lost by network. TCP has no explicit
2098 *		   "loss notification" feedback from network (for now).
2099 *		   It means that this number can be only _guessed_.
2100 *		   Actually, it is the heuristics to predict lossage that
2101 *		   distinguishes different algorithms.
2102 *
2103 *	F.e. after RTO, when all the queue is considered as lost,
2104 *	lost_out = packets_out and in_flight = retrans_out.
2105 *
2106 *		Essentially, we have now two algorithms counting
2107 *		lost packets.
2108 *
2109 *		FACK: It is the simplest heuristics. As soon as we decided
2110 *		that something is lost, we decide that _all_ not SACKed
2111 *		packets until the most forward SACK are lost. I.e.
2112 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2113 *		It is absolutely correct estimate, if network does not reorder
2114 *		packets. And it loses any connection to reality when reordering
2115 *		takes place. We use FACK by default until reordering
2116 *		is suspected on the path to this destination.
2117 *
2118 *		NewReno: when Recovery is entered, we assume that one segment
2119 *		is lost (classic Reno). While we are in Recovery and
2120 *		a partial ACK arrives, we assume that one more packet
2121 *		is lost (NewReno). This heuristics are the same in NewReno
2122 *		and SACK.
2123 *
2124 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2125 *  deflation etc. CWND is real congestion window, never inflated, changes
2126 *  only according to classic VJ rules.
2127 *
2128 * Really tricky (and requiring careful tuning) part of algorithm
2129 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2130 * The first determines the moment _when_ we should reduce CWND and,
2131 * hence, slow down forward transmission. In fact, it determines the moment
2132 * when we decide that hole is caused by loss, rather than by a reorder.
2133 *
2134 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2135 * holes, caused by lost packets.
2136 *
2137 * And the most logically complicated part of algorithm is undo
2138 * heuristics. We detect false retransmits due to both too early
2139 * fast retransmit (reordering) and underestimated RTO, analyzing
2140 * timestamps and D-SACKs. When we detect that some segments were
2141 * retransmitted by mistake and CWND reduction was wrong, we undo
2142 * window reduction and abort recovery phase. This logic is hidden
2143 * inside several functions named tcp_try_undo_<something>.
2144 */
2145
2146/* This function decides, when we should leave Disordered state
2147 * and enter Recovery phase, reducing congestion window.
2148 *
2149 * Main question: may we further continue forward transmission
2150 * with the same cwnd?
2151 */
2152static bool tcp_time_to_recover(struct sock *sk, int flag)
2153{
2154	struct tcp_sock *tp = tcp_sk(sk);
2155	__u32 packets_out;
2156
2157	/* Trick#1: The loss is proven. */
2158	if (tp->lost_out)
2159		return true;
2160
2161	/* Not-A-Trick#2 : Classic rule... */
2162	if (tcp_dupack_heuristics(tp) > tp->reordering)
2163		return true;
2164
2165	/* Trick#4: It is still not OK... But will it be useful to delay
2166	 * recovery more?
2167	 */
2168	packets_out = tp->packets_out;
2169	if (packets_out <= tp->reordering &&
2170	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2171	    !tcp_may_send_now(sk)) {
2172		/* We have nothing to send. This connection is limited
2173		 * either by receiver window or by application.
2174		 */
2175		return true;
2176	}
2177
2178	/* If a thin stream is detected, retransmit after first
2179	 * received dupack. Employ only if SACK is supported in order
2180	 * to avoid possible corner-case series of spurious retransmissions
2181	 * Use only if there are no unsent data.
2182	 */
2183	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2184	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2185	    tcp_is_sack(tp) && !tcp_send_head(sk))
2186		return true;
2187
2188	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2189	 * retransmissions due to small network reorderings, we implement
2190	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2191	 * interval if appropriate.
2192	 */
2193	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2194	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2195	    !tcp_may_send_now(sk))
2196		return !tcp_pause_early_retransmit(sk, flag);
2197
2198	return false;
2199}
2200
2201/* Detect loss in event "A" above by marking head of queue up as lost.
2202 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2203 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2204 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2205 * the maximum SACKed segments to pass before reaching this limit.
2206 */
2207static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2208{
2209	struct tcp_sock *tp = tcp_sk(sk);
2210	struct sk_buff *skb;
2211	int cnt, oldcnt;
2212	int err;
2213	unsigned int mss;
2214	/* Use SACK to deduce losses of new sequences sent during recovery */
2215	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2216
2217	WARN_ON(packets > tp->packets_out);
2218	if (tp->lost_skb_hint) {
2219		skb = tp->lost_skb_hint;
2220		cnt = tp->lost_cnt_hint;
2221		/* Head already handled? */
2222		if (mark_head && skb != tcp_write_queue_head(sk))
2223			return;
2224	} else {
2225		skb = tcp_write_queue_head(sk);
2226		cnt = 0;
2227	}
2228
2229	tcp_for_write_queue_from(skb, sk) {
2230		if (skb == tcp_send_head(sk))
2231			break;
2232		/* TODO: do this better */
2233		/* this is not the most efficient way to do this... */
2234		tp->lost_skb_hint = skb;
2235		tp->lost_cnt_hint = cnt;
2236
2237		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2238			break;
2239
2240		oldcnt = cnt;
2241		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2242		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2243			cnt += tcp_skb_pcount(skb);
2244
2245		if (cnt > packets) {
2246			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2247			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2248			    (oldcnt >= packets))
2249				break;
2250
2251			mss = skb_shinfo(skb)->gso_size;
2252			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2253					   mss, GFP_ATOMIC);
2254			if (err < 0)
2255				break;
2256			cnt = packets;
2257		}
2258
2259		tcp_skb_mark_lost(tp, skb);
2260
2261		if (mark_head)
2262			break;
2263	}
2264	tcp_verify_left_out(tp);
2265}
2266
2267/* Account newly detected lost packet(s) */
2268
2269static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2270{
2271	struct tcp_sock *tp = tcp_sk(sk);
2272
2273	if (tcp_is_reno(tp)) {
2274		tcp_mark_head_lost(sk, 1, 1);
2275	} else if (tcp_is_fack(tp)) {
2276		int lost = tp->fackets_out - tp->reordering;
2277		if (lost <= 0)
2278			lost = 1;
2279		tcp_mark_head_lost(sk, lost, 0);
2280	} else {
2281		int sacked_upto = tp->sacked_out - tp->reordering;
2282		if (sacked_upto >= 0)
2283			tcp_mark_head_lost(sk, sacked_upto, 0);
2284		else if (fast_rexmit)
2285			tcp_mark_head_lost(sk, 1, 1);
2286	}
2287}
2288
2289/* CWND moderation, preventing bursts due to too big ACKs
2290 * in dubious situations.
2291 */
2292static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2293{
2294	tp->snd_cwnd = min(tp->snd_cwnd,
2295			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2296	tp->snd_cwnd_stamp = tcp_time_stamp;
2297}
2298
2299/* Nothing was retransmitted or returned timestamp is less
2300 * than timestamp of the first retransmission.
2301 */
2302static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2303{
2304	return !tp->retrans_stamp ||
2305		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2306		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2307}
2308
2309/* Undo procedures. */
2310
2311#if FASTRETRANS_DEBUG > 1
2312static void DBGUNDO(struct sock *sk, const char *msg)
2313{
2314	struct tcp_sock *tp = tcp_sk(sk);
2315	struct inet_sock *inet = inet_sk(sk);
2316
2317	if (sk->sk_family == AF_INET) {
2318		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2319			 msg,
2320			 &inet->inet_daddr, ntohs(inet->inet_dport),
2321			 tp->snd_cwnd, tcp_left_out(tp),
2322			 tp->snd_ssthresh, tp->prior_ssthresh,
2323			 tp->packets_out);
2324	}
2325#if IS_ENABLED(CONFIG_IPV6)
2326	else if (sk->sk_family == AF_INET6) {
2327		struct ipv6_pinfo *np = inet6_sk(sk);
2328		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2329			 msg,
2330			 &np->daddr, ntohs(inet->inet_dport),
2331			 tp->snd_cwnd, tcp_left_out(tp),
2332			 tp->snd_ssthresh, tp->prior_ssthresh,
2333			 tp->packets_out);
2334	}
2335#endif
2336}
2337#else
2338#define DBGUNDO(x...) do { } while (0)
2339#endif
2340
2341static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2342{
2343	struct tcp_sock *tp = tcp_sk(sk);
2344
2345	if (unmark_loss) {
2346		struct sk_buff *skb;
2347
2348		tcp_for_write_queue(skb, sk) {
2349			if (skb == tcp_send_head(sk))
2350				break;
2351			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2352		}
2353		tp->lost_out = 0;
2354		tcp_clear_all_retrans_hints(tp);
2355	}
2356
2357	if (tp->prior_ssthresh) {
2358		const struct inet_connection_sock *icsk = inet_csk(sk);
2359
2360		if (icsk->icsk_ca_ops->undo_cwnd)
2361			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2362		else
2363			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2364
2365		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2366			tp->snd_ssthresh = tp->prior_ssthresh;
2367			TCP_ECN_withdraw_cwr(tp);
2368		}
2369	} else {
2370		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2371	}
2372	tp->snd_cwnd_stamp = tcp_time_stamp;
2373	tp->undo_marker = 0;
2374}
2375
2376static inline bool tcp_may_undo(const struct tcp_sock *tp)
2377{
2378	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2379}
2380
2381/* People celebrate: "We love our President!" */
2382static bool tcp_try_undo_recovery(struct sock *sk)
2383{
2384	struct tcp_sock *tp = tcp_sk(sk);
2385
2386	if (tcp_may_undo(tp)) {
2387		int mib_idx;
2388
2389		/* Happy end! We did not retransmit anything
2390		 * or our original transmission succeeded.
2391		 */
2392		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2393		tcp_undo_cwnd_reduction(sk, false);
2394		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2395			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2396		else
2397			mib_idx = LINUX_MIB_TCPFULLUNDO;
2398
2399		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2400	}
2401	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2402		/* Hold old state until something *above* high_seq
2403		 * is ACKed. For Reno it is MUST to prevent false
2404		 * fast retransmits (RFC2582). SACK TCP is safe. */
2405		tcp_moderate_cwnd(tp);
2406		return true;
2407	}
2408	tcp_set_ca_state(sk, TCP_CA_Open);
2409	return false;
2410}
2411
2412/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2413static bool tcp_try_undo_dsack(struct sock *sk)
2414{
2415	struct tcp_sock *tp = tcp_sk(sk);
2416
2417	if (tp->undo_marker && !tp->undo_retrans) {
2418		DBGUNDO(sk, "D-SACK");
2419		tcp_undo_cwnd_reduction(sk, false);
2420		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2421		return true;
2422	}
2423	return false;
2424}
2425
2426/* We can clear retrans_stamp when there are no retransmissions in the
2427 * window. It would seem that it is trivially available for us in
2428 * tp->retrans_out, however, that kind of assumptions doesn't consider
2429 * what will happen if errors occur when sending retransmission for the
2430 * second time. ...It could the that such segment has only
2431 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2432 * the head skb is enough except for some reneging corner cases that
2433 * are not worth the effort.
2434 *
2435 * Main reason for all this complexity is the fact that connection dying
2436 * time now depends on the validity of the retrans_stamp, in particular,
2437 * that successive retransmissions of a segment must not advance
2438 * retrans_stamp under any conditions.
2439 */
2440static bool tcp_any_retrans_done(const struct sock *sk)
2441{
2442	const struct tcp_sock *tp = tcp_sk(sk);
2443	struct sk_buff *skb;
2444
2445	if (tp->retrans_out)
2446		return true;
2447
2448	skb = tcp_write_queue_head(sk);
2449	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2450		return true;
2451
2452	return false;
2453}
2454
2455/* Undo during loss recovery after partial ACK or using F-RTO. */
2456static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2457{
2458	struct tcp_sock *tp = tcp_sk(sk);
2459
2460	if (frto_undo || tcp_may_undo(tp)) {
2461		tcp_undo_cwnd_reduction(sk, true);
2462
2463		DBGUNDO(sk, "partial loss");
2464		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2465		if (frto_undo)
2466			NET_INC_STATS_BH(sock_net(sk),
2467					 LINUX_MIB_TCPSPURIOUSRTOS);
2468		inet_csk(sk)->icsk_retransmits = 0;
2469		if (frto_undo || tcp_is_sack(tp))
2470			tcp_set_ca_state(sk, TCP_CA_Open);
2471		return true;
2472	}
2473	return false;
2474}
2475
2476/* The cwnd reduction in CWR and Recovery use the PRR algorithm
2477 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2478 * It computes the number of packets to send (sndcnt) based on packets newly
2479 * delivered:
2480 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2481 *	cwnd reductions across a full RTT.
2482 *   2) If packets in flight is lower than ssthresh (such as due to excess
2483 *	losses and/or application stalls), do not perform any further cwnd
2484 *	reductions, but instead slow start up to ssthresh.
2485 */
2486static void tcp_init_cwnd_reduction(struct sock *sk)
2487{
2488	struct tcp_sock *tp = tcp_sk(sk);
2489
2490	tp->high_seq = tp->snd_nxt;
2491	tp->tlp_high_seq = 0;
2492	tp->snd_cwnd_cnt = 0;
2493	tp->prior_cwnd = tp->snd_cwnd;
2494	tp->prr_delivered = 0;
2495	tp->prr_out = 0;
2496	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2497	TCP_ECN_queue_cwr(tp);
2498}
2499
2500static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2501			       int fast_rexmit)
2502{
2503	struct tcp_sock *tp = tcp_sk(sk);
2504	int sndcnt = 0;
2505	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2506	int newly_acked_sacked = prior_unsacked -
2507				 (tp->packets_out - tp->sacked_out);
2508
2509	tp->prr_delivered += newly_acked_sacked;
2510	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2511		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2512			       tp->prior_cwnd - 1;
2513		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2514	} else {
2515		sndcnt = min_t(int, delta,
2516			       max_t(int, tp->prr_delivered - tp->prr_out,
2517				     newly_acked_sacked) + 1);
2518	}
2519
2520	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2521	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2522}
2523
2524static inline void tcp_end_cwnd_reduction(struct sock *sk)
2525{
2526	struct tcp_sock *tp = tcp_sk(sk);
2527
2528	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2529	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2530	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2531		tp->snd_cwnd = tp->snd_ssthresh;
2532		tp->snd_cwnd_stamp = tcp_time_stamp;
2533	}
2534	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2535}
2536
2537/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2538void tcp_enter_cwr(struct sock *sk)
2539{
2540	struct tcp_sock *tp = tcp_sk(sk);
2541
2542	tp->prior_ssthresh = 0;
2543	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2544		tp->undo_marker = 0;
2545		tcp_init_cwnd_reduction(sk);
2546		tcp_set_ca_state(sk, TCP_CA_CWR);
2547	}
2548}
2549
2550static void tcp_try_keep_open(struct sock *sk)
2551{
2552	struct tcp_sock *tp = tcp_sk(sk);
2553	int state = TCP_CA_Open;
2554
2555	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2556		state = TCP_CA_Disorder;
2557
2558	if (inet_csk(sk)->icsk_ca_state != state) {
2559		tcp_set_ca_state(sk, state);
2560		tp->high_seq = tp->snd_nxt;
2561	}
2562}
2563
2564static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2565{
2566	struct tcp_sock *tp = tcp_sk(sk);
2567
2568	tcp_verify_left_out(tp);
2569
2570	if (!tcp_any_retrans_done(sk))
2571		tp->retrans_stamp = 0;
2572
2573	if (flag & FLAG_ECE)
2574		tcp_enter_cwr(sk);
2575
2576	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2577		tcp_try_keep_open(sk);
2578	} else {
2579		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2580	}
2581}
2582
2583static void tcp_mtup_probe_failed(struct sock *sk)
2584{
2585	struct inet_connection_sock *icsk = inet_csk(sk);
2586
2587	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2588	icsk->icsk_mtup.probe_size = 0;
2589}
2590
2591static void tcp_mtup_probe_success(struct sock *sk)
2592{
2593	struct tcp_sock *tp = tcp_sk(sk);
2594	struct inet_connection_sock *icsk = inet_csk(sk);
2595
2596	/* FIXME: breaks with very large cwnd */
2597	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2598	tp->snd_cwnd = tp->snd_cwnd *
2599		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2600		       icsk->icsk_mtup.probe_size;
2601	tp->snd_cwnd_cnt = 0;
2602	tp->snd_cwnd_stamp = tcp_time_stamp;
2603	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2604
2605	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2606	icsk->icsk_mtup.probe_size = 0;
2607	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2608}
2609
2610/* Do a simple retransmit without using the backoff mechanisms in
2611 * tcp_timer. This is used for path mtu discovery.
2612 * The socket is already locked here.
2613 */
2614void tcp_simple_retransmit(struct sock *sk)
2615{
2616	const struct inet_connection_sock *icsk = inet_csk(sk);
2617	struct tcp_sock *tp = tcp_sk(sk);
2618	struct sk_buff *skb;
2619	unsigned int mss = tcp_current_mss(sk);
2620	u32 prior_lost = tp->lost_out;
2621
2622	tcp_for_write_queue(skb, sk) {
2623		if (skb == tcp_send_head(sk))
2624			break;
2625		if (tcp_skb_seglen(skb) > mss &&
2626		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2627			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2628				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2629				tp->retrans_out -= tcp_skb_pcount(skb);
2630			}
2631			tcp_skb_mark_lost_uncond_verify(tp, skb);
2632		}
2633	}
2634
2635	tcp_clear_retrans_hints_partial(tp);
2636
2637	if (prior_lost == tp->lost_out)
2638		return;
2639
2640	if (tcp_is_reno(tp))
2641		tcp_limit_reno_sacked(tp);
2642
2643	tcp_verify_left_out(tp);
2644
2645	/* Don't muck with the congestion window here.
2646	 * Reason is that we do not increase amount of _data_
2647	 * in network, but units changed and effective
2648	 * cwnd/ssthresh really reduced now.
2649	 */
2650	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2651		tp->high_seq = tp->snd_nxt;
2652		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2653		tp->prior_ssthresh = 0;
2654		tp->undo_marker = 0;
2655		tcp_set_ca_state(sk, TCP_CA_Loss);
2656	}
2657	tcp_xmit_retransmit_queue(sk);
2658}
2659EXPORT_SYMBOL(tcp_simple_retransmit);
2660
2661static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2662{
2663	struct tcp_sock *tp = tcp_sk(sk);
2664	int mib_idx;
2665
2666	if (tcp_is_reno(tp))
2667		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2668	else
2669		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2670
2671	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2672
2673	tp->prior_ssthresh = 0;
2674	tp->undo_marker = tp->snd_una;
2675	tp->undo_retrans = tp->retrans_out ? : -1;
2676
2677	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2678		if (!ece_ack)
2679			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2680		tcp_init_cwnd_reduction(sk);
2681	}
2682	tcp_set_ca_state(sk, TCP_CA_Recovery);
2683}
2684
2685/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2686 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2687 */
2688static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2689{
2690	struct inet_connection_sock *icsk = inet_csk(sk);
2691	struct tcp_sock *tp = tcp_sk(sk);
2692	bool recovered = !before(tp->snd_una, tp->high_seq);
2693
2694	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2695		/* Step 3.b. A timeout is spurious if not all data are
2696		 * lost, i.e., never-retransmitted data are (s)acked.
2697		 */
2698		if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2699			return;
2700
2701		if (after(tp->snd_nxt, tp->high_seq) &&
2702		    (flag & FLAG_DATA_SACKED || is_dupack)) {
2703			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2704		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2705			tp->high_seq = tp->snd_nxt;
2706			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2707						  TCP_NAGLE_OFF);
2708			if (after(tp->snd_nxt, tp->high_seq))
2709				return; /* Step 2.b */
2710			tp->frto = 0;
2711		}
2712	}
2713
2714	if (recovered) {
2715		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2716		icsk->icsk_retransmits = 0;
2717		tcp_try_undo_recovery(sk);
2718		return;
2719	}
2720	if (flag & FLAG_DATA_ACKED)
2721		icsk->icsk_retransmits = 0;
2722	if (tcp_is_reno(tp)) {
2723		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2724		 * delivered. Lower inflight to clock out (re)tranmissions.
2725		 */
2726		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2727			tcp_add_reno_sack(sk);
2728		else if (flag & FLAG_SND_UNA_ADVANCED)
2729			tcp_reset_reno_sack(tp);
2730	}
2731	if (tcp_try_undo_loss(sk, false))
2732		return;
2733	tcp_xmit_retransmit_queue(sk);
2734}
2735
2736/* Undo during fast recovery after partial ACK. */
2737static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2738				 const int prior_unsacked)
2739{
2740	struct tcp_sock *tp = tcp_sk(sk);
2741
2742	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2743		/* Plain luck! Hole if filled with delayed
2744		 * packet, rather than with a retransmit.
2745		 */
2746		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2747
2748		/* We are getting evidence that the reordering degree is higher
2749		 * than we realized. If there are no retransmits out then we
2750		 * can undo. Otherwise we clock out new packets but do not
2751		 * mark more packets lost or retransmit more.
2752		 */
2753		if (tp->retrans_out) {
2754			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2755			return true;
2756		}
2757
2758		if (!tcp_any_retrans_done(sk))
2759			tp->retrans_stamp = 0;
2760
2761		DBGUNDO(sk, "partial recovery");
2762		tcp_undo_cwnd_reduction(sk, true);
2763		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2764		tcp_try_keep_open(sk);
2765		return true;
2766	}
2767	return false;
2768}
2769
2770/* Process an event, which can update packets-in-flight not trivially.
2771 * Main goal of this function is to calculate new estimate for left_out,
2772 * taking into account both packets sitting in receiver's buffer and
2773 * packets lost by network.
2774 *
2775 * Besides that it does CWND reduction, when packet loss is detected
2776 * and changes state of machine.
2777 *
2778 * It does _not_ decide what to send, it is made in function
2779 * tcp_xmit_retransmit_queue().
2780 */
2781static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2782				  const int prior_unsacked,
2783				  bool is_dupack, int flag)
2784{
2785	struct inet_connection_sock *icsk = inet_csk(sk);
2786	struct tcp_sock *tp = tcp_sk(sk);
2787	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2788				    (tcp_fackets_out(tp) > tp->reordering));
2789	int fast_rexmit = 0;
2790
2791	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2792		tp->sacked_out = 0;
2793	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2794		tp->fackets_out = 0;
2795
2796	/* Now state machine starts.
2797	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2798	if (flag & FLAG_ECE)
2799		tp->prior_ssthresh = 0;
2800
2801	/* B. In all the states check for reneging SACKs. */
2802	if (tcp_check_sack_reneging(sk, flag))
2803		return;
2804
2805	/* C. Check consistency of the current state. */
2806	tcp_verify_left_out(tp);
2807
2808	/* D. Check state exit conditions. State can be terminated
2809	 *    when high_seq is ACKed. */
2810	if (icsk->icsk_ca_state == TCP_CA_Open) {
2811		WARN_ON(tp->retrans_out != 0);
2812		tp->retrans_stamp = 0;
2813	} else if (!before(tp->snd_una, tp->high_seq)) {
2814		switch (icsk->icsk_ca_state) {
2815		case TCP_CA_CWR:
2816			/* CWR is to be held something *above* high_seq
2817			 * is ACKed for CWR bit to reach receiver. */
2818			if (tp->snd_una != tp->high_seq) {
2819				tcp_end_cwnd_reduction(sk);
2820				tcp_set_ca_state(sk, TCP_CA_Open);
2821			}
2822			break;
2823
2824		case TCP_CA_Recovery:
2825			if (tcp_is_reno(tp))
2826				tcp_reset_reno_sack(tp);
2827			if (tcp_try_undo_recovery(sk))
2828				return;
2829			tcp_end_cwnd_reduction(sk);
2830			break;
2831		}
2832	}
2833
2834	/* E. Process state. */
2835	switch (icsk->icsk_ca_state) {
2836	case TCP_CA_Recovery:
2837		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2838			if (tcp_is_reno(tp) && is_dupack)
2839				tcp_add_reno_sack(sk);
2840		} else {
2841			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2842				return;
2843			/* Partial ACK arrived. Force fast retransmit. */
2844			do_lost = tcp_is_reno(tp) ||
2845				  tcp_fackets_out(tp) > tp->reordering;
2846		}
2847		if (tcp_try_undo_dsack(sk)) {
2848			tcp_try_keep_open(sk);
2849			return;
2850		}
2851		break;
2852	case TCP_CA_Loss:
2853		tcp_process_loss(sk, flag, is_dupack);
2854		if (icsk->icsk_ca_state != TCP_CA_Open)
2855			return;
2856		/* Fall through to processing in Open state. */
2857	default:
2858		if (tcp_is_reno(tp)) {
2859			if (flag & FLAG_SND_UNA_ADVANCED)
2860				tcp_reset_reno_sack(tp);
2861			if (is_dupack)
2862				tcp_add_reno_sack(sk);
2863		}
2864
2865		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2866			tcp_try_undo_dsack(sk);
2867
2868		if (!tcp_time_to_recover(sk, flag)) {
2869			tcp_try_to_open(sk, flag, prior_unsacked);
2870			return;
2871		}
2872
2873		/* MTU probe failure: don't reduce cwnd */
2874		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2875		    icsk->icsk_mtup.probe_size &&
2876		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2877			tcp_mtup_probe_failed(sk);
2878			/* Restores the reduction we did in tcp_mtup_probe() */
2879			tp->snd_cwnd++;
2880			tcp_simple_retransmit(sk);
2881			return;
2882		}
2883
2884		/* Otherwise enter Recovery state */
2885		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2886		fast_rexmit = 1;
2887	}
2888
2889	if (do_lost)
2890		tcp_update_scoreboard(sk, fast_rexmit);
2891	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2892	tcp_xmit_retransmit_queue(sk);
2893}
2894
2895static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2896				      long seq_rtt_us, long sack_rtt_us)
2897{
2898	const struct tcp_sock *tp = tcp_sk(sk);
2899
2900	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2901	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2902	 * Karn's algorithm forbids taking RTT if some retransmitted data
2903	 * is acked (RFC6298).
2904	 */
2905	if (flag & FLAG_RETRANS_DATA_ACKED)
2906		seq_rtt_us = -1L;
2907
2908	if (seq_rtt_us < 0)
2909		seq_rtt_us = sack_rtt_us;
2910
2911	/* RTTM Rule: A TSecr value received in a segment is used to
2912	 * update the averaged RTT measurement only if the segment
2913	 * acknowledges some new data, i.e., only if it advances the
2914	 * left edge of the send window.
2915	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2916	 */
2917	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2918	    flag & FLAG_ACKED)
2919		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2920
2921	if (seq_rtt_us < 0)
2922		return false;
2923
2924	tcp_rtt_estimator(sk, seq_rtt_us);
2925	tcp_set_rto(sk);
2926
2927	/* RFC6298: only reset backoff on valid RTT measurement. */
2928	inet_csk(sk)->icsk_backoff = 0;
2929	return true;
2930}
2931
2932/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2933static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2934{
2935	struct tcp_sock *tp = tcp_sk(sk);
2936	long seq_rtt_us = -1L;
2937
2938	if (synack_stamp && !tp->total_retrans)
2939		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2940
2941	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2942	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2943	 */
2944	if (!tp->srtt_us)
2945		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2946}
2947
2948static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2949{
2950	const struct inet_connection_sock *icsk = inet_csk(sk);
2951
2952	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2953	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2954}
2955
2956/* Restart timer after forward progress on connection.
2957 * RFC2988 recommends to restart timer to now+rto.
2958 */
2959void tcp_rearm_rto(struct sock *sk)
2960{
2961	const struct inet_connection_sock *icsk = inet_csk(sk);
2962	struct tcp_sock *tp = tcp_sk(sk);
2963
2964	/* If the retrans timer is currently being used by Fast Open
2965	 * for SYN-ACK retrans purpose, stay put.
2966	 */
2967	if (tp->fastopen_rsk)
2968		return;
2969
2970	if (!tp->packets_out) {
2971		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2972	} else {
2973		u32 rto = inet_csk(sk)->icsk_rto;
2974		/* Offset the time elapsed after installing regular RTO */
2975		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2976		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2977			struct sk_buff *skb = tcp_write_queue_head(sk);
2978			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2979			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2980			/* delta may not be positive if the socket is locked
2981			 * when the retrans timer fires and is rescheduled.
2982			 */
2983			if (delta > 0)
2984				rto = delta;
2985		}
2986		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2987					  TCP_RTO_MAX);
2988	}
2989}
2990
2991/* This function is called when the delayed ER timer fires. TCP enters
2992 * fast recovery and performs fast-retransmit.
2993 */
2994void tcp_resume_early_retransmit(struct sock *sk)
2995{
2996	struct tcp_sock *tp = tcp_sk(sk);
2997
2998	tcp_rearm_rto(sk);
2999
3000	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3001	if (!tp->do_early_retrans)
3002		return;
3003
3004	tcp_enter_recovery(sk, false);
3005	tcp_update_scoreboard(sk, 1);
3006	tcp_xmit_retransmit_queue(sk);
3007}
3008
3009/* If we get here, the whole TSO packet has not been acked. */
3010static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3011{
3012	struct tcp_sock *tp = tcp_sk(sk);
3013	u32 packets_acked;
3014
3015	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3016
3017	packets_acked = tcp_skb_pcount(skb);
3018	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3019		return 0;
3020	packets_acked -= tcp_skb_pcount(skb);
3021
3022	if (packets_acked) {
3023		BUG_ON(tcp_skb_pcount(skb) == 0);
3024		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3025	}
3026
3027	return packets_acked;
3028}
3029
3030/* Remove acknowledged frames from the retransmission queue. If our packet
3031 * is before the ack sequence we can discard it as it's confirmed to have
3032 * arrived at the other end.
3033 */
3034static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3035			       u32 prior_snd_una, long sack_rtt_us)
3036{
3037	const struct inet_connection_sock *icsk = inet_csk(sk);
3038	struct skb_mstamp first_ackt, last_ackt, now;
3039	struct tcp_sock *tp = tcp_sk(sk);
3040	u32 prior_sacked = tp->sacked_out;
3041	u32 reord = tp->packets_out;
3042	bool fully_acked = true;
3043	long ca_seq_rtt_us = -1L;
3044	long seq_rtt_us = -1L;
3045	struct sk_buff *skb;
3046	u32 pkts_acked = 0;
3047	bool rtt_update;
3048	int flag = 0;
3049
3050	first_ackt.v64 = 0;
3051
3052	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3053		struct skb_shared_info *shinfo = skb_shinfo(skb);
3054		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3055		u8 sacked = scb->sacked;
3056		u32 acked_pcount;
3057
3058		if (unlikely(shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3059		    between(shinfo->tskey, prior_snd_una, tp->snd_una - 1))
3060			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3061
3062		/* Determine how many packets and what bytes were acked, tso and else */
3063		if (after(scb->end_seq, tp->snd_una)) {
3064			if (tcp_skb_pcount(skb) == 1 ||
3065			    !after(tp->snd_una, scb->seq))
3066				break;
3067
3068			acked_pcount = tcp_tso_acked(sk, skb);
3069			if (!acked_pcount)
3070				break;
3071
3072			fully_acked = false;
3073		} else {
3074			acked_pcount = tcp_skb_pcount(skb);
3075		}
3076
3077		if (sacked & TCPCB_RETRANS) {
3078			if (sacked & TCPCB_SACKED_RETRANS)
3079				tp->retrans_out -= acked_pcount;
3080			flag |= FLAG_RETRANS_DATA_ACKED;
3081		} else {
3082			last_ackt = skb->skb_mstamp;
3083			WARN_ON_ONCE(last_ackt.v64 == 0);
3084			if (!first_ackt.v64)
3085				first_ackt = last_ackt;
3086
3087			if (!(sacked & TCPCB_SACKED_ACKED))
3088				reord = min(pkts_acked, reord);
3089			if (!after(scb->end_seq, tp->high_seq))
3090				flag |= FLAG_ORIG_SACK_ACKED;
3091		}
3092
3093		if (sacked & TCPCB_SACKED_ACKED)
3094			tp->sacked_out -= acked_pcount;
3095		if (sacked & TCPCB_LOST)
3096			tp->lost_out -= acked_pcount;
3097
3098		tp->packets_out -= acked_pcount;
3099		pkts_acked += acked_pcount;
3100
3101		/* Initial outgoing SYN's get put onto the write_queue
3102		 * just like anything else we transmit.  It is not
3103		 * true data, and if we misinform our callers that
3104		 * this ACK acks real data, we will erroneously exit
3105		 * connection startup slow start one packet too
3106		 * quickly.  This is severely frowned upon behavior.
3107		 */
3108		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3109			flag |= FLAG_DATA_ACKED;
3110		} else {
3111			flag |= FLAG_SYN_ACKED;
3112			tp->retrans_stamp = 0;
3113		}
3114
3115		if (!fully_acked)
3116			break;
3117
3118		tcp_unlink_write_queue(skb, sk);
3119		sk_wmem_free_skb(sk, skb);
3120		if (skb == tp->retransmit_skb_hint)
3121			tp->retransmit_skb_hint = NULL;
3122		if (skb == tp->lost_skb_hint)
3123			tp->lost_skb_hint = NULL;
3124	}
3125
3126	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3127		tp->snd_up = tp->snd_una;
3128
3129	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3130		flag |= FLAG_SACK_RENEGING;
3131
3132	skb_mstamp_get(&now);
3133	if (first_ackt.v64) {
3134		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3135		ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3136	}
3137
3138	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3139
3140	if (flag & FLAG_ACKED) {
3141		const struct tcp_congestion_ops *ca_ops
3142			= inet_csk(sk)->icsk_ca_ops;
3143
3144		tcp_rearm_rto(sk);
3145		if (unlikely(icsk->icsk_mtup.probe_size &&
3146			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3147			tcp_mtup_probe_success(sk);
3148		}
3149
3150		if (tcp_is_reno(tp)) {
3151			tcp_remove_reno_sacks(sk, pkts_acked);
3152		} else {
3153			int delta;
3154
3155			/* Non-retransmitted hole got filled? That's reordering */
3156			if (reord < prior_fackets)
3157				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3158
3159			delta = tcp_is_fack(tp) ? pkts_acked :
3160						  prior_sacked - tp->sacked_out;
3161			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3162		}
3163
3164		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3165
3166		if (ca_ops->pkts_acked)
3167			ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
3168
3169	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3170		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3171		/* Do not re-arm RTO if the sack RTT is measured from data sent
3172		 * after when the head was last (re)transmitted. Otherwise the
3173		 * timeout may continue to extend in loss recovery.
3174		 */
3175		tcp_rearm_rto(sk);
3176	}
3177
3178#if FASTRETRANS_DEBUG > 0
3179	WARN_ON((int)tp->sacked_out < 0);
3180	WARN_ON((int)tp->lost_out < 0);
3181	WARN_ON((int)tp->retrans_out < 0);
3182	if (!tp->packets_out && tcp_is_sack(tp)) {
3183		icsk = inet_csk(sk);
3184		if (tp->lost_out) {
3185			pr_debug("Leak l=%u %d\n",
3186				 tp->lost_out, icsk->icsk_ca_state);
3187			tp->lost_out = 0;
3188		}
3189		if (tp->sacked_out) {
3190			pr_debug("Leak s=%u %d\n",
3191				 tp->sacked_out, icsk->icsk_ca_state);
3192			tp->sacked_out = 0;
3193		}
3194		if (tp->retrans_out) {
3195			pr_debug("Leak r=%u %d\n",
3196				 tp->retrans_out, icsk->icsk_ca_state);
3197			tp->retrans_out = 0;
3198		}
3199	}
3200#endif
3201	return flag;
3202}
3203
3204static void tcp_ack_probe(struct sock *sk)
3205{
3206	const struct tcp_sock *tp = tcp_sk(sk);
3207	struct inet_connection_sock *icsk = inet_csk(sk);
3208
3209	/* Was it a usable window open? */
3210
3211	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3212		icsk->icsk_backoff = 0;
3213		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3214		/* Socket must be waked up by subsequent tcp_data_snd_check().
3215		 * This function is not for random using!
3216		 */
3217	} else {
3218		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3219					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3220					  TCP_RTO_MAX);
3221	}
3222}
3223
3224static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3225{
3226	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3227		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3228}
3229
3230/* Decide wheather to run the increase function of congestion control. */
3231static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3232{
3233	if (tcp_in_cwnd_reduction(sk))
3234		return false;
3235
3236	/* If reordering is high then always grow cwnd whenever data is
3237	 * delivered regardless of its ordering. Otherwise stay conservative
3238	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3239	 * new SACK or ECE mark may first advance cwnd here and later reduce
3240	 * cwnd in tcp_fastretrans_alert() based on more states.
3241	 */
3242	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3243		return flag & FLAG_FORWARD_PROGRESS;
3244
3245	return flag & FLAG_DATA_ACKED;
3246}
3247
3248/* Check that window update is acceptable.
3249 * The function assumes that snd_una<=ack<=snd_next.
3250 */
3251static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3252					const u32 ack, const u32 ack_seq,
3253					const u32 nwin)
3254{
3255	return	after(ack, tp->snd_una) ||
3256		after(ack_seq, tp->snd_wl1) ||
3257		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3258}
3259
3260/* Update our send window.
3261 *
3262 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3263 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3264 */
3265static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3266				 u32 ack_seq)
3267{
3268	struct tcp_sock *tp = tcp_sk(sk);
3269	int flag = 0;
3270	u32 nwin = ntohs(tcp_hdr(skb)->window);
3271
3272	if (likely(!tcp_hdr(skb)->syn))
3273		nwin <<= tp->rx_opt.snd_wscale;
3274
3275	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3276		flag |= FLAG_WIN_UPDATE;
3277		tcp_update_wl(tp, ack_seq);
3278
3279		if (tp->snd_wnd != nwin) {
3280			tp->snd_wnd = nwin;
3281
3282			/* Note, it is the only place, where
3283			 * fast path is recovered for sending TCP.
3284			 */
3285			tp->pred_flags = 0;
3286			tcp_fast_path_check(sk);
3287
3288			if (nwin > tp->max_window) {
3289				tp->max_window = nwin;
3290				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3291			}
3292		}
3293	}
3294
3295	tp->snd_una = ack;
3296
3297	return flag;
3298}
3299
3300/* RFC 5961 7 [ACK Throttling] */
3301static void tcp_send_challenge_ack(struct sock *sk)
3302{
3303	/* unprotected vars, we dont care of overwrites */
3304	static u32 challenge_timestamp;
3305	static unsigned int challenge_count;
3306	u32 now = jiffies / HZ;
3307
3308	if (now != challenge_timestamp) {
3309		challenge_timestamp = now;
3310		challenge_count = 0;
3311	}
3312	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3313		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3314		tcp_send_ack(sk);
3315	}
3316}
3317
3318static void tcp_store_ts_recent(struct tcp_sock *tp)
3319{
3320	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3321	tp->rx_opt.ts_recent_stamp = get_seconds();
3322}
3323
3324static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3325{
3326	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3327		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3328		 * extra check below makes sure this can only happen
3329		 * for pure ACK frames.  -DaveM
3330		 *
3331		 * Not only, also it occurs for expired timestamps.
3332		 */
3333
3334		if (tcp_paws_check(&tp->rx_opt, 0))
3335			tcp_store_ts_recent(tp);
3336	}
3337}
3338
3339/* This routine deals with acks during a TLP episode.
3340 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3341 */
3342static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3343{
3344	struct tcp_sock *tp = tcp_sk(sk);
3345	bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3346			     !(flag & (FLAG_SND_UNA_ADVANCED |
3347				       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3348
3349	/* Mark the end of TLP episode on receiving TLP dupack or when
3350	 * ack is after tlp_high_seq.
3351	 */
3352	if (is_tlp_dupack) {
3353		tp->tlp_high_seq = 0;
3354		return;
3355	}
3356
3357	if (after(ack, tp->tlp_high_seq)) {
3358		tp->tlp_high_seq = 0;
3359		/* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3360		if (!(flag & FLAG_DSACKING_ACK)) {
3361			tcp_init_cwnd_reduction(sk);
3362			tcp_set_ca_state(sk, TCP_CA_CWR);
3363			tcp_end_cwnd_reduction(sk);
3364			tcp_try_keep_open(sk);
3365			NET_INC_STATS_BH(sock_net(sk),
3366					 LINUX_MIB_TCPLOSSPROBERECOVERY);
3367		}
3368	}
3369}
3370
3371/* This routine deals with incoming acks, but not outgoing ones. */
3372static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3373{
3374	struct inet_connection_sock *icsk = inet_csk(sk);
3375	struct tcp_sock *tp = tcp_sk(sk);
3376	u32 prior_snd_una = tp->snd_una;
3377	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3378	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3379	bool is_dupack = false;
3380	u32 prior_fackets;
3381	int prior_packets = tp->packets_out;
3382	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3383	int acked = 0; /* Number of packets newly acked */
3384	long sack_rtt_us = -1L;
3385
3386	/* If the ack is older than previous acks
3387	 * then we can probably ignore it.
3388	 */
3389	if (before(ack, prior_snd_una)) {
3390		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3391		if (before(ack, prior_snd_una - tp->max_window)) {
3392			tcp_send_challenge_ack(sk);
3393			return -1;
3394		}
3395		goto old_ack;
3396	}
3397
3398	/* If the ack includes data we haven't sent yet, discard
3399	 * this segment (RFC793 Section 3.9).
3400	 */
3401	if (after(ack, tp->snd_nxt))
3402		goto invalid_ack;
3403
3404	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3405	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3406		tcp_rearm_rto(sk);
3407
3408	if (after(ack, prior_snd_una))
3409		flag |= FLAG_SND_UNA_ADVANCED;
3410
3411	prior_fackets = tp->fackets_out;
3412
3413	/* ts_recent update must be made after we are sure that the packet
3414	 * is in window.
3415	 */
3416	if (flag & FLAG_UPDATE_TS_RECENT)
3417		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3418
3419	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3420		/* Window is constant, pure forward advance.
3421		 * No more checks are required.
3422		 * Note, we use the fact that SND.UNA>=SND.WL2.
3423		 */
3424		tcp_update_wl(tp, ack_seq);
3425		tp->snd_una = ack;
3426		flag |= FLAG_WIN_UPDATE;
3427
3428		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3429
3430		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3431	} else {
3432		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3433			flag |= FLAG_DATA;
3434		else
3435			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3436
3437		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3438
3439		if (TCP_SKB_CB(skb)->sacked)
3440			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3441							&sack_rtt_us);
3442
3443		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3444			flag |= FLAG_ECE;
3445
3446		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3447	}
3448
3449	/* We passed data and got it acked, remove any soft error
3450	 * log. Something worked...
3451	 */
3452	sk->sk_err_soft = 0;
3453	icsk->icsk_probes_out = 0;
3454	tp->rcv_tstamp = tcp_time_stamp;
3455	if (!prior_packets)
3456		goto no_queue;
3457
3458	/* See if we can take anything off of the retransmit queue. */
3459	acked = tp->packets_out;
3460	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3461				    sack_rtt_us);
3462	acked -= tp->packets_out;
3463
3464	/* Advance cwnd if state allows */
3465	if (tcp_may_raise_cwnd(sk, flag))
3466		tcp_cong_avoid(sk, ack, acked);
3467
3468	if (tcp_ack_is_dubious(sk, flag)) {
3469		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3470		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3471				      is_dupack, flag);
3472	}
3473	if (tp->tlp_high_seq)
3474		tcp_process_tlp_ack(sk, ack, flag);
3475
3476	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3477		struct dst_entry *dst = __sk_dst_get(sk);
3478		if (dst)
3479			dst_confirm(dst);
3480	}
3481
3482	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3483		tcp_schedule_loss_probe(sk);
3484	tcp_update_pacing_rate(sk);
3485	return 1;
3486
3487no_queue:
3488	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3489	if (flag & FLAG_DSACKING_ACK)
3490		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3491				      is_dupack, flag);
3492	/* If this ack opens up a zero window, clear backoff.  It was
3493	 * being used to time the probes, and is probably far higher than
3494	 * it needs to be for normal retransmission.
3495	 */
3496	if (tcp_send_head(sk))
3497		tcp_ack_probe(sk);
3498
3499	if (tp->tlp_high_seq)
3500		tcp_process_tlp_ack(sk, ack, flag);
3501	return 1;
3502
3503invalid_ack:
3504	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3505	return -1;
3506
3507old_ack:
3508	/* If data was SACKed, tag it and see if we should send more data.
3509	 * If data was DSACKed, see if we can undo a cwnd reduction.
3510	 */
3511	if (TCP_SKB_CB(skb)->sacked) {
3512		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3513						&sack_rtt_us);
3514		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3515				      is_dupack, flag);
3516	}
3517
3518	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3519	return 0;
3520}
3521
3522/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3523 * But, this can also be called on packets in the established flow when
3524 * the fast version below fails.
3525 */
3526void tcp_parse_options(const struct sk_buff *skb,
3527		       struct tcp_options_received *opt_rx, int estab,
3528		       struct tcp_fastopen_cookie *foc)
3529{
3530	const unsigned char *ptr;
3531	const struct tcphdr *th = tcp_hdr(skb);
3532	int length = (th->doff * 4) - sizeof(struct tcphdr);
3533
3534	ptr = (const unsigned char *)(th + 1);
3535	opt_rx->saw_tstamp = 0;
3536
3537	while (length > 0) {
3538		int opcode = *ptr++;
3539		int opsize;
3540
3541		switch (opcode) {
3542		case TCPOPT_EOL:
3543			return;
3544		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3545			length--;
3546			continue;
3547		default:
3548			opsize = *ptr++;
3549			if (opsize < 2) /* "silly options" */
3550				return;
3551			if (opsize > length)
3552				return;	/* don't parse partial options */
3553			switch (opcode) {
3554			case TCPOPT_MSS:
3555				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3556					u16 in_mss = get_unaligned_be16(ptr);
3557					if (in_mss) {
3558						if (opt_rx->user_mss &&
3559						    opt_rx->user_mss < in_mss)
3560							in_mss = opt_rx->user_mss;
3561						opt_rx->mss_clamp = in_mss;
3562					}
3563				}
3564				break;
3565			case TCPOPT_WINDOW:
3566				if (opsize == TCPOLEN_WINDOW && th->syn &&
3567				    !estab && sysctl_tcp_window_scaling) {
3568					__u8 snd_wscale = *(__u8 *)ptr;
3569					opt_rx->wscale_ok = 1;
3570					if (snd_wscale > 14) {
3571						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3572								     __func__,
3573								     snd_wscale);
3574						snd_wscale = 14;
3575					}
3576					opt_rx->snd_wscale = snd_wscale;
3577				}
3578				break;
3579			case TCPOPT_TIMESTAMP:
3580				if ((opsize == TCPOLEN_TIMESTAMP) &&
3581				    ((estab && opt_rx->tstamp_ok) ||
3582				     (!estab && sysctl_tcp_timestamps))) {
3583					opt_rx->saw_tstamp = 1;
3584					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3585					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3586				}
3587				break;
3588			case TCPOPT_SACK_PERM:
3589				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3590				    !estab && sysctl_tcp_sack) {
3591					opt_rx->sack_ok = TCP_SACK_SEEN;
3592					tcp_sack_reset(opt_rx);
3593				}
3594				break;
3595
3596			case TCPOPT_SACK:
3597				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3598				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3599				   opt_rx->sack_ok) {
3600					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3601				}
3602				break;
3603#ifdef CONFIG_TCP_MD5SIG
3604			case TCPOPT_MD5SIG:
3605				/*
3606				 * The MD5 Hash has already been
3607				 * checked (see tcp_v{4,6}_do_rcv()).
3608				 */
3609				break;
3610#endif
3611			case TCPOPT_EXP:
3612				/* Fast Open option shares code 254 using a
3613				 * 16 bits magic number. It's valid only in
3614				 * SYN or SYN-ACK with an even size.
3615				 */
3616				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3617				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3618				    foc == NULL || !th->syn || (opsize & 1))
3619					break;
3620				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3621				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3622				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3623					memcpy(foc->val, ptr + 2, foc->len);
3624				else if (foc->len != 0)
3625					foc->len = -1;
3626				break;
3627
3628			}
3629			ptr += opsize-2;
3630			length -= opsize;
3631		}
3632	}
3633}
3634EXPORT_SYMBOL(tcp_parse_options);
3635
3636static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3637{
3638	const __be32 *ptr = (const __be32 *)(th + 1);
3639
3640	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3641			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3642		tp->rx_opt.saw_tstamp = 1;
3643		++ptr;
3644		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3645		++ptr;
3646		if (*ptr)
3647			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3648		else
3649			tp->rx_opt.rcv_tsecr = 0;
3650		return true;
3651	}
3652	return false;
3653}
3654
3655/* Fast parse options. This hopes to only see timestamps.
3656 * If it is wrong it falls back on tcp_parse_options().
3657 */
3658static bool tcp_fast_parse_options(const struct sk_buff *skb,
3659				   const struct tcphdr *th, struct tcp_sock *tp)
3660{
3661	/* In the spirit of fast parsing, compare doff directly to constant
3662	 * values.  Because equality is used, short doff can be ignored here.
3663	 */
3664	if (th->doff == (sizeof(*th) / 4)) {
3665		tp->rx_opt.saw_tstamp = 0;
3666		return false;
3667	} else if (tp->rx_opt.tstamp_ok &&
3668		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3669		if (tcp_parse_aligned_timestamp(tp, th))
3670			return true;
3671	}
3672
3673	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3674	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3675		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3676
3677	return true;
3678}
3679
3680#ifdef CONFIG_TCP_MD5SIG
3681/*
3682 * Parse MD5 Signature option
3683 */
3684const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3685{
3686	int length = (th->doff << 2) - sizeof(*th);
3687	const u8 *ptr = (const u8 *)(th + 1);
3688
3689	/* If the TCP option is too short, we can short cut */
3690	if (length < TCPOLEN_MD5SIG)
3691		return NULL;
3692
3693	while (length > 0) {
3694		int opcode = *ptr++;
3695		int opsize;
3696
3697		switch (opcode) {
3698		case TCPOPT_EOL:
3699			return NULL;
3700		case TCPOPT_NOP:
3701			length--;
3702			continue;
3703		default:
3704			opsize = *ptr++;
3705			if (opsize < 2 || opsize > length)
3706				return NULL;
3707			if (opcode == TCPOPT_MD5SIG)
3708				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3709		}
3710		ptr += opsize - 2;
3711		length -= opsize;
3712	}
3713	return NULL;
3714}
3715EXPORT_SYMBOL(tcp_parse_md5sig_option);
3716#endif
3717
3718/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3719 *
3720 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3721 * it can pass through stack. So, the following predicate verifies that
3722 * this segment is not used for anything but congestion avoidance or
3723 * fast retransmit. Moreover, we even are able to eliminate most of such
3724 * second order effects, if we apply some small "replay" window (~RTO)
3725 * to timestamp space.
3726 *
3727 * All these measures still do not guarantee that we reject wrapped ACKs
3728 * on networks with high bandwidth, when sequence space is recycled fastly,
3729 * but it guarantees that such events will be very rare and do not affect
3730 * connection seriously. This doesn't look nice, but alas, PAWS is really
3731 * buggy extension.
3732 *
3733 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3734 * states that events when retransmit arrives after original data are rare.
3735 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3736 * the biggest problem on large power networks even with minor reordering.
3737 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3738 * up to bandwidth of 18Gigabit/sec. 8) ]
3739 */
3740
3741static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3742{
3743	const struct tcp_sock *tp = tcp_sk(sk);
3744	const struct tcphdr *th = tcp_hdr(skb);
3745	u32 seq = TCP_SKB_CB(skb)->seq;
3746	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3747
3748	return (/* 1. Pure ACK with correct sequence number. */
3749		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3750
3751		/* 2. ... and duplicate ACK. */
3752		ack == tp->snd_una &&
3753
3754		/* 3. ... and does not update window. */
3755		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3756
3757		/* 4. ... and sits in replay window. */
3758		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3759}
3760
3761static inline bool tcp_paws_discard(const struct sock *sk,
3762				   const struct sk_buff *skb)
3763{
3764	const struct tcp_sock *tp = tcp_sk(sk);
3765
3766	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3767	       !tcp_disordered_ack(sk, skb);
3768}
3769
3770/* Check segment sequence number for validity.
3771 *
3772 * Segment controls are considered valid, if the segment
3773 * fits to the window after truncation to the window. Acceptability
3774 * of data (and SYN, FIN, of course) is checked separately.
3775 * See tcp_data_queue(), for example.
3776 *
3777 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3778 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3779 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3780 * (borrowed from freebsd)
3781 */
3782
3783static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3784{
3785	return	!before(end_seq, tp->rcv_wup) &&
3786		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3787}
3788
3789/* When we get a reset we do this. */
3790void tcp_reset(struct sock *sk)
3791{
3792	/* We want the right error as BSD sees it (and indeed as we do). */
3793	switch (sk->sk_state) {
3794	case TCP_SYN_SENT:
3795		sk->sk_err = ECONNREFUSED;
3796		break;
3797	case TCP_CLOSE_WAIT:
3798		sk->sk_err = EPIPE;
3799		break;
3800	case TCP_CLOSE:
3801		return;
3802	default:
3803		sk->sk_err = ECONNRESET;
3804	}
3805	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3806	smp_wmb();
3807
3808	if (!sock_flag(sk, SOCK_DEAD))
3809		sk->sk_error_report(sk);
3810
3811	tcp_done(sk);
3812}
3813
3814/*
3815 * 	Process the FIN bit. This now behaves as it is supposed to work
3816 *	and the FIN takes effect when it is validly part of sequence
3817 *	space. Not before when we get holes.
3818 *
3819 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3820 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3821 *	TIME-WAIT)
3822 *
3823 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3824 *	close and we go into CLOSING (and later onto TIME-WAIT)
3825 *
3826 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3827 */
3828static void tcp_fin(struct sock *sk)
3829{
3830	struct tcp_sock *tp = tcp_sk(sk);
3831	const struct dst_entry *dst;
3832
3833	inet_csk_schedule_ack(sk);
3834
3835	sk->sk_shutdown |= RCV_SHUTDOWN;
3836	sock_set_flag(sk, SOCK_DONE);
3837
3838	switch (sk->sk_state) {
3839	case TCP_SYN_RECV:
3840	case TCP_ESTABLISHED:
3841		/* Move to CLOSE_WAIT */
3842		tcp_set_state(sk, TCP_CLOSE_WAIT);
3843		dst = __sk_dst_get(sk);
3844		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3845			inet_csk(sk)->icsk_ack.pingpong = 1;
3846		break;
3847
3848	case TCP_CLOSE_WAIT:
3849	case TCP_CLOSING:
3850		/* Received a retransmission of the FIN, do
3851		 * nothing.
3852		 */
3853		break;
3854	case TCP_LAST_ACK:
3855		/* RFC793: Remain in the LAST-ACK state. */
3856		break;
3857
3858	case TCP_FIN_WAIT1:
3859		/* This case occurs when a simultaneous close
3860		 * happens, we must ack the received FIN and
3861		 * enter the CLOSING state.
3862		 */
3863		tcp_send_ack(sk);
3864		tcp_set_state(sk, TCP_CLOSING);
3865		break;
3866	case TCP_FIN_WAIT2:
3867		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3868		tcp_send_ack(sk);
3869		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3870		break;
3871	default:
3872		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3873		 * cases we should never reach this piece of code.
3874		 */
3875		pr_err("%s: Impossible, sk->sk_state=%d\n",
3876		       __func__, sk->sk_state);
3877		break;
3878	}
3879
3880	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3881	 * Probably, we should reset in this case. For now drop them.
3882	 */
3883	__skb_queue_purge(&tp->out_of_order_queue);
3884	if (tcp_is_sack(tp))
3885		tcp_sack_reset(&tp->rx_opt);
3886	sk_mem_reclaim(sk);
3887
3888	if (!sock_flag(sk, SOCK_DEAD)) {
3889		sk->sk_state_change(sk);
3890
3891		/* Do not send POLL_HUP for half duplex close. */
3892		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3893		    sk->sk_state == TCP_CLOSE)
3894			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3895		else
3896			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3897	}
3898}
3899
3900static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3901				  u32 end_seq)
3902{
3903	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3904		if (before(seq, sp->start_seq))
3905			sp->start_seq = seq;
3906		if (after(end_seq, sp->end_seq))
3907			sp->end_seq = end_seq;
3908		return true;
3909	}
3910	return false;
3911}
3912
3913static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3914{
3915	struct tcp_sock *tp = tcp_sk(sk);
3916
3917	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3918		int mib_idx;
3919
3920		if (before(seq, tp->rcv_nxt))
3921			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3922		else
3923			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3924
3925		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3926
3927		tp->rx_opt.dsack = 1;
3928		tp->duplicate_sack[0].start_seq = seq;
3929		tp->duplicate_sack[0].end_seq = end_seq;
3930	}
3931}
3932
3933static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3934{
3935	struct tcp_sock *tp = tcp_sk(sk);
3936
3937	if (!tp->rx_opt.dsack)
3938		tcp_dsack_set(sk, seq, end_seq);
3939	else
3940		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3941}
3942
3943static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3944{
3945	struct tcp_sock *tp = tcp_sk(sk);
3946
3947	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3948	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3949		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3950		tcp_enter_quickack_mode(sk);
3951
3952		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3953			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3954
3955			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3956				end_seq = tp->rcv_nxt;
3957			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3958		}
3959	}
3960
3961	tcp_send_ack(sk);
3962}
3963
3964/* These routines update the SACK block as out-of-order packets arrive or
3965 * in-order packets close up the sequence space.
3966 */
3967static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3968{
3969	int this_sack;
3970	struct tcp_sack_block *sp = &tp->selective_acks[0];
3971	struct tcp_sack_block *swalk = sp + 1;
3972
3973	/* See if the recent change to the first SACK eats into
3974	 * or hits the sequence space of other SACK blocks, if so coalesce.
3975	 */
3976	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3977		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3978			int i;
3979
3980			/* Zap SWALK, by moving every further SACK up by one slot.
3981			 * Decrease num_sacks.
3982			 */
3983			tp->rx_opt.num_sacks--;
3984			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3985				sp[i] = sp[i + 1];
3986			continue;
3987		}
3988		this_sack++, swalk++;
3989	}
3990}
3991
3992static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3993{
3994	struct tcp_sock *tp = tcp_sk(sk);
3995	struct tcp_sack_block *sp = &tp->selective_acks[0];
3996	int cur_sacks = tp->rx_opt.num_sacks;
3997	int this_sack;
3998
3999	if (!cur_sacks)
4000		goto new_sack;
4001
4002	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4003		if (tcp_sack_extend(sp, seq, end_seq)) {
4004			/* Rotate this_sack to the first one. */
4005			for (; this_sack > 0; this_sack--, sp--)
4006				swap(*sp, *(sp - 1));
4007			if (cur_sacks > 1)
4008				tcp_sack_maybe_coalesce(tp);
4009			return;
4010		}
4011	}
4012
4013	/* Could not find an adjacent existing SACK, build a new one,
4014	 * put it at the front, and shift everyone else down.  We
4015	 * always know there is at least one SACK present already here.
4016	 *
4017	 * If the sack array is full, forget about the last one.
4018	 */
4019	if (this_sack >= TCP_NUM_SACKS) {
4020		this_sack--;
4021		tp->rx_opt.num_sacks--;
4022		sp--;
4023	}
4024	for (; this_sack > 0; this_sack--, sp--)
4025		*sp = *(sp - 1);
4026
4027new_sack:
4028	/* Build the new head SACK, and we're done. */
4029	sp->start_seq = seq;
4030	sp->end_seq = end_seq;
4031	tp->rx_opt.num_sacks++;
4032}
4033
4034/* RCV.NXT advances, some SACKs should be eaten. */
4035
4036static void tcp_sack_remove(struct tcp_sock *tp)
4037{
4038	struct tcp_sack_block *sp = &tp->selective_acks[0];
4039	int num_sacks = tp->rx_opt.num_sacks;
4040	int this_sack;
4041
4042	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4043	if (skb_queue_empty(&tp->out_of_order_queue)) {
4044		tp->rx_opt.num_sacks = 0;
4045		return;
4046	}
4047
4048	for (this_sack = 0; this_sack < num_sacks;) {
4049		/* Check if the start of the sack is covered by RCV.NXT. */
4050		if (!before(tp->rcv_nxt, sp->start_seq)) {
4051			int i;
4052
4053			/* RCV.NXT must cover all the block! */
4054			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4055
4056			/* Zap this SACK, by moving forward any other SACKS. */
4057			for (i = this_sack+1; i < num_sacks; i++)
4058				tp->selective_acks[i-1] = tp->selective_acks[i];
4059			num_sacks--;
4060			continue;
4061		}
4062		this_sack++;
4063		sp++;
4064	}
4065	tp->rx_opt.num_sacks = num_sacks;
4066}
4067
4068/* This one checks to see if we can put data from the
4069 * out_of_order queue into the receive_queue.
4070 */
4071static void tcp_ofo_queue(struct sock *sk)
4072{
4073	struct tcp_sock *tp = tcp_sk(sk);
4074	__u32 dsack_high = tp->rcv_nxt;
4075	struct sk_buff *skb;
4076
4077	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4078		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4079			break;
4080
4081		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4082			__u32 dsack = dsack_high;
4083			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4084				dsack_high = TCP_SKB_CB(skb)->end_seq;
4085			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4086		}
4087
4088		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4089			SOCK_DEBUG(sk, "ofo packet was already received\n");
4090			__skb_unlink(skb, &tp->out_of_order_queue);
4091			__kfree_skb(skb);
4092			continue;
4093		}
4094		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4095			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4096			   TCP_SKB_CB(skb)->end_seq);
4097
4098		__skb_unlink(skb, &tp->out_of_order_queue);
4099		__skb_queue_tail(&sk->sk_receive_queue, skb);
4100		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4101		if (tcp_hdr(skb)->fin)
4102			tcp_fin(sk);
4103	}
4104}
4105
4106static bool tcp_prune_ofo_queue(struct sock *sk);
4107static int tcp_prune_queue(struct sock *sk);
4108
4109static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4110				 unsigned int size)
4111{
4112	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4113	    !sk_rmem_schedule(sk, skb, size)) {
4114
4115		if (tcp_prune_queue(sk) < 0)
4116			return -1;
4117
4118		if (!sk_rmem_schedule(sk, skb, size)) {
4119			if (!tcp_prune_ofo_queue(sk))
4120				return -1;
4121
4122			if (!sk_rmem_schedule(sk, skb, size))
4123				return -1;
4124		}
4125	}
4126	return 0;
4127}
4128
4129/**
4130 * tcp_try_coalesce - try to merge skb to prior one
4131 * @sk: socket
4132 * @to: prior buffer
4133 * @from: buffer to add in queue
4134 * @fragstolen: pointer to boolean
4135 *
4136 * Before queueing skb @from after @to, try to merge them
4137 * to reduce overall memory use and queue lengths, if cost is small.
4138 * Packets in ofo or receive queues can stay a long time.
4139 * Better try to coalesce them right now to avoid future collapses.
4140 * Returns true if caller should free @from instead of queueing it
4141 */
4142static bool tcp_try_coalesce(struct sock *sk,
4143			     struct sk_buff *to,
4144			     struct sk_buff *from,
4145			     bool *fragstolen)
4146{
4147	int delta;
4148
4149	*fragstolen = false;
4150
4151	if (tcp_hdr(from)->fin)
4152		return false;
4153
4154	/* Its possible this segment overlaps with prior segment in queue */
4155	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4156		return false;
4157
4158	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4159		return false;
4160
4161	atomic_add(delta, &sk->sk_rmem_alloc);
4162	sk_mem_charge(sk, delta);
4163	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4164	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4165	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4166	return true;
4167}
4168
4169static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4170{
4171	struct tcp_sock *tp = tcp_sk(sk);
4172	struct sk_buff *skb1;
4173	u32 seq, end_seq;
4174
4175	TCP_ECN_check_ce(tp, skb);
4176
4177	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4178		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4179		__kfree_skb(skb);
4180		return;
4181	}
4182
4183	/* Disable header prediction. */
4184	tp->pred_flags = 0;
4185	inet_csk_schedule_ack(sk);
4186
4187	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4188	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4189		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4190
4191	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4192	if (!skb1) {
4193		/* Initial out of order segment, build 1 SACK. */
4194		if (tcp_is_sack(tp)) {
4195			tp->rx_opt.num_sacks = 1;
4196			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4197			tp->selective_acks[0].end_seq =
4198						TCP_SKB_CB(skb)->end_seq;
4199		}
4200		__skb_queue_head(&tp->out_of_order_queue, skb);
4201		goto end;
4202	}
4203
4204	seq = TCP_SKB_CB(skb)->seq;
4205	end_seq = TCP_SKB_CB(skb)->end_seq;
4206
4207	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4208		bool fragstolen;
4209
4210		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4211			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4212		} else {
4213			tcp_grow_window(sk, skb);
4214			kfree_skb_partial(skb, fragstolen);
4215			skb = NULL;
4216		}
4217
4218		if (!tp->rx_opt.num_sacks ||
4219		    tp->selective_acks[0].end_seq != seq)
4220			goto add_sack;
4221
4222		/* Common case: data arrive in order after hole. */
4223		tp->selective_acks[0].end_seq = end_seq;
4224		goto end;
4225	}
4226
4227	/* Find place to insert this segment. */
4228	while (1) {
4229		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4230			break;
4231		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4232			skb1 = NULL;
4233			break;
4234		}
4235		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4236	}
4237
4238	/* Do skb overlap to previous one? */
4239	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4240		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4241			/* All the bits are present. Drop. */
4242			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4243			__kfree_skb(skb);
4244			skb = NULL;
4245			tcp_dsack_set(sk, seq, end_seq);
4246			goto add_sack;
4247		}
4248		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4249			/* Partial overlap. */
4250			tcp_dsack_set(sk, seq,
4251				      TCP_SKB_CB(skb1)->end_seq);
4252		} else {
4253			if (skb_queue_is_first(&tp->out_of_order_queue,
4254					       skb1))
4255				skb1 = NULL;
4256			else
4257				skb1 = skb_queue_prev(
4258					&tp->out_of_order_queue,
4259					skb1);
4260		}
4261	}
4262	if (!skb1)
4263		__skb_queue_head(&tp->out_of_order_queue, skb);
4264	else
4265		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4266
4267	/* And clean segments covered by new one as whole. */
4268	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4269		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4270
4271		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4272			break;
4273		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4274			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4275					 end_seq);
4276			break;
4277		}
4278		__skb_unlink(skb1, &tp->out_of_order_queue);
4279		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4280				 TCP_SKB_CB(skb1)->end_seq);
4281		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4282		__kfree_skb(skb1);
4283	}
4284
4285add_sack:
4286	if (tcp_is_sack(tp))
4287		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4288end:
4289	if (skb) {
4290		tcp_grow_window(sk, skb);
4291		skb_set_owner_r(skb, sk);
4292	}
4293}
4294
4295static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4296		  bool *fragstolen)
4297{
4298	int eaten;
4299	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4300
4301	__skb_pull(skb, hdrlen);
4302	eaten = (tail &&
4303		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4304	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4305	if (!eaten) {
4306		__skb_queue_tail(&sk->sk_receive_queue, skb);
4307		skb_set_owner_r(skb, sk);
4308	}
4309	return eaten;
4310}
4311
4312int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4313{
4314	struct sk_buff *skb = NULL;
4315	struct tcphdr *th;
4316	bool fragstolen;
4317
4318	if (size == 0)
4319		return 0;
4320
4321	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4322	if (!skb)
4323		goto err;
4324
4325	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4326		goto err_free;
4327
4328	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4329	skb_reset_transport_header(skb);
4330	memset(th, 0, sizeof(*th));
4331
4332	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4333		goto err_free;
4334
4335	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4336	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4337	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4338
4339	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4340		WARN_ON_ONCE(fragstolen); /* should not happen */
4341		__kfree_skb(skb);
4342	}
4343	return size;
4344
4345err_free:
4346	kfree_skb(skb);
4347err:
4348	return -ENOMEM;
4349}
4350
4351static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4352{
4353	const struct tcphdr *th = tcp_hdr(skb);
4354	struct tcp_sock *tp = tcp_sk(sk);
4355	int eaten = -1;
4356	bool fragstolen = false;
4357
4358	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4359		goto drop;
4360
4361	skb_dst_drop(skb);
4362	__skb_pull(skb, th->doff * 4);
4363
4364	TCP_ECN_accept_cwr(tp, skb);
4365
4366	tp->rx_opt.dsack = 0;
4367
4368	/*  Queue data for delivery to the user.
4369	 *  Packets in sequence go to the receive queue.
4370	 *  Out of sequence packets to the out_of_order_queue.
4371	 */
4372	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4373		if (tcp_receive_window(tp) == 0)
4374			goto out_of_window;
4375
4376		/* Ok. In sequence. In window. */
4377		if (tp->ucopy.task == current &&
4378		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4379		    sock_owned_by_user(sk) && !tp->urg_data) {
4380			int chunk = min_t(unsigned int, skb->len,
4381					  tp->ucopy.len);
4382
4383			__set_current_state(TASK_RUNNING);
4384
4385			local_bh_enable();
4386			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4387				tp->ucopy.len -= chunk;
4388				tp->copied_seq += chunk;
4389				eaten = (chunk == skb->len);
4390				tcp_rcv_space_adjust(sk);
4391			}
4392			local_bh_disable();
4393		}
4394
4395		if (eaten <= 0) {
4396queue_and_out:
4397			if (eaten < 0 &&
4398			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4399				goto drop;
4400
4401			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4402		}
4403		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4404		if (skb->len)
4405			tcp_event_data_recv(sk, skb);
4406		if (th->fin)
4407			tcp_fin(sk);
4408
4409		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4410			tcp_ofo_queue(sk);
4411
4412			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4413			 * gap in queue is filled.
4414			 */
4415			if (skb_queue_empty(&tp->out_of_order_queue))
4416				inet_csk(sk)->icsk_ack.pingpong = 0;
4417		}
4418
4419		if (tp->rx_opt.num_sacks)
4420			tcp_sack_remove(tp);
4421
4422		tcp_fast_path_check(sk);
4423
4424		if (eaten > 0)
4425			kfree_skb_partial(skb, fragstolen);
4426		if (!sock_flag(sk, SOCK_DEAD))
4427			sk->sk_data_ready(sk);
4428		return;
4429	}
4430
4431	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4432		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4433		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4434		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4435
4436out_of_window:
4437		tcp_enter_quickack_mode(sk);
4438		inet_csk_schedule_ack(sk);
4439drop:
4440		__kfree_skb(skb);
4441		return;
4442	}
4443
4444	/* Out of window. F.e. zero window probe. */
4445	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4446		goto out_of_window;
4447
4448	tcp_enter_quickack_mode(sk);
4449
4450	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4451		/* Partial packet, seq < rcv_next < end_seq */
4452		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4453			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4454			   TCP_SKB_CB(skb)->end_seq);
4455
4456		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4457
4458		/* If window is closed, drop tail of packet. But after
4459		 * remembering D-SACK for its head made in previous line.
4460		 */
4461		if (!tcp_receive_window(tp))
4462			goto out_of_window;
4463		goto queue_and_out;
4464	}
4465
4466	tcp_data_queue_ofo(sk, skb);
4467}
4468
4469static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4470					struct sk_buff_head *list)
4471{
4472	struct sk_buff *next = NULL;
4473
4474	if (!skb_queue_is_last(list, skb))
4475		next = skb_queue_next(list, skb);
4476
4477	__skb_unlink(skb, list);
4478	__kfree_skb(skb);
4479	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4480
4481	return next;
4482}
4483
4484/* Collapse contiguous sequence of skbs head..tail with
4485 * sequence numbers start..end.
4486 *
4487 * If tail is NULL, this means until the end of the list.
4488 *
4489 * Segments with FIN/SYN are not collapsed (only because this
4490 * simplifies code)
4491 */
4492static void
4493tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4494	     struct sk_buff *head, struct sk_buff *tail,
4495	     u32 start, u32 end)
4496{
4497	struct sk_buff *skb, *n;
4498	bool end_of_skbs;
4499
4500	/* First, check that queue is collapsible and find
4501	 * the point where collapsing can be useful. */
4502	skb = head;
4503restart:
4504	end_of_skbs = true;
4505	skb_queue_walk_from_safe(list, skb, n) {
4506		if (skb == tail)
4507			break;
4508		/* No new bits? It is possible on ofo queue. */
4509		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4510			skb = tcp_collapse_one(sk, skb, list);
4511			if (!skb)
4512				break;
4513			goto restart;
4514		}
4515
4516		/* The first skb to collapse is:
4517		 * - not SYN/FIN and
4518		 * - bloated or contains data before "start" or
4519		 *   overlaps to the next one.
4520		 */
4521		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4522		    (tcp_win_from_space(skb->truesize) > skb->len ||
4523		     before(TCP_SKB_CB(skb)->seq, start))) {
4524			end_of_skbs = false;
4525			break;
4526		}
4527
4528		if (!skb_queue_is_last(list, skb)) {
4529			struct sk_buff *next = skb_queue_next(list, skb);
4530			if (next != tail &&
4531			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4532				end_of_skbs = false;
4533				break;
4534			}
4535		}
4536
4537		/* Decided to skip this, advance start seq. */
4538		start = TCP_SKB_CB(skb)->end_seq;
4539	}
4540	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4541		return;
4542
4543	while (before(start, end)) {
4544		struct sk_buff *nskb;
4545		unsigned int header = skb_headroom(skb);
4546		int copy = SKB_MAX_ORDER(header, 0);
4547
4548		/* Too big header? This can happen with IPv6. */
4549		if (copy < 0)
4550			return;
4551		if (end - start < copy)
4552			copy = end - start;
4553		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4554		if (!nskb)
4555			return;
4556
4557		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4558		skb_set_network_header(nskb, (skb_network_header(skb) -
4559					      skb->head));
4560		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4561						skb->head));
4562		skb_reserve(nskb, header);
4563		memcpy(nskb->head, skb->head, header);
4564		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4565		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4566		__skb_queue_before(list, skb, nskb);
4567		skb_set_owner_r(nskb, sk);
4568
4569		/* Copy data, releasing collapsed skbs. */
4570		while (copy > 0) {
4571			int offset = start - TCP_SKB_CB(skb)->seq;
4572			int size = TCP_SKB_CB(skb)->end_seq - start;
4573
4574			BUG_ON(offset < 0);
4575			if (size > 0) {
4576				size = min(copy, size);
4577				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4578					BUG();
4579				TCP_SKB_CB(nskb)->end_seq += size;
4580				copy -= size;
4581				start += size;
4582			}
4583			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4584				skb = tcp_collapse_one(sk, skb, list);
4585				if (!skb ||
4586				    skb == tail ||
4587				    tcp_hdr(skb)->syn ||
4588				    tcp_hdr(skb)->fin)
4589					return;
4590			}
4591		}
4592	}
4593}
4594
4595/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4596 * and tcp_collapse() them until all the queue is collapsed.
4597 */
4598static void tcp_collapse_ofo_queue(struct sock *sk)
4599{
4600	struct tcp_sock *tp = tcp_sk(sk);
4601	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4602	struct sk_buff *head;
4603	u32 start, end;
4604
4605	if (skb == NULL)
4606		return;
4607
4608	start = TCP_SKB_CB(skb)->seq;
4609	end = TCP_SKB_CB(skb)->end_seq;
4610	head = skb;
4611
4612	for (;;) {
4613		struct sk_buff *next = NULL;
4614
4615		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4616			next = skb_queue_next(&tp->out_of_order_queue, skb);
4617		skb = next;
4618
4619		/* Segment is terminated when we see gap or when
4620		 * we are at the end of all the queue. */
4621		if (!skb ||
4622		    after(TCP_SKB_CB(skb)->seq, end) ||
4623		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4624			tcp_collapse(sk, &tp->out_of_order_queue,
4625				     head, skb, start, end);
4626			head = skb;
4627			if (!skb)
4628				break;
4629			/* Start new segment */
4630			start = TCP_SKB_CB(skb)->seq;
4631			end = TCP_SKB_CB(skb)->end_seq;
4632		} else {
4633			if (before(TCP_SKB_CB(skb)->seq, start))
4634				start = TCP_SKB_CB(skb)->seq;
4635			if (after(TCP_SKB_CB(skb)->end_seq, end))
4636				end = TCP_SKB_CB(skb)->end_seq;
4637		}
4638	}
4639}
4640
4641/*
4642 * Purge the out-of-order queue.
4643 * Return true if queue was pruned.
4644 */
4645static bool tcp_prune_ofo_queue(struct sock *sk)
4646{
4647	struct tcp_sock *tp = tcp_sk(sk);
4648	bool res = false;
4649
4650	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4651		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4652		__skb_queue_purge(&tp->out_of_order_queue);
4653
4654		/* Reset SACK state.  A conforming SACK implementation will
4655		 * do the same at a timeout based retransmit.  When a connection
4656		 * is in a sad state like this, we care only about integrity
4657		 * of the connection not performance.
4658		 */
4659		if (tp->rx_opt.sack_ok)
4660			tcp_sack_reset(&tp->rx_opt);
4661		sk_mem_reclaim(sk);
4662		res = true;
4663	}
4664	return res;
4665}
4666
4667/* Reduce allocated memory if we can, trying to get
4668 * the socket within its memory limits again.
4669 *
4670 * Return less than zero if we should start dropping frames
4671 * until the socket owning process reads some of the data
4672 * to stabilize the situation.
4673 */
4674static int tcp_prune_queue(struct sock *sk)
4675{
4676	struct tcp_sock *tp = tcp_sk(sk);
4677
4678	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4679
4680	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4681
4682	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4683		tcp_clamp_window(sk);
4684	else if (sk_under_memory_pressure(sk))
4685		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4686
4687	tcp_collapse_ofo_queue(sk);
4688	if (!skb_queue_empty(&sk->sk_receive_queue))
4689		tcp_collapse(sk, &sk->sk_receive_queue,
4690			     skb_peek(&sk->sk_receive_queue),
4691			     NULL,
4692			     tp->copied_seq, tp->rcv_nxt);
4693	sk_mem_reclaim(sk);
4694
4695	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4696		return 0;
4697
4698	/* Collapsing did not help, destructive actions follow.
4699	 * This must not ever occur. */
4700
4701	tcp_prune_ofo_queue(sk);
4702
4703	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4704		return 0;
4705
4706	/* If we are really being abused, tell the caller to silently
4707	 * drop receive data on the floor.  It will get retransmitted
4708	 * and hopefully then we'll have sufficient space.
4709	 */
4710	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4711
4712	/* Massive buffer overcommit. */
4713	tp->pred_flags = 0;
4714	return -1;
4715}
4716
4717static bool tcp_should_expand_sndbuf(const struct sock *sk)
4718{
4719	const struct tcp_sock *tp = tcp_sk(sk);
4720
4721	/* If the user specified a specific send buffer setting, do
4722	 * not modify it.
4723	 */
4724	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4725		return false;
4726
4727	/* If we are under global TCP memory pressure, do not expand.  */
4728	if (sk_under_memory_pressure(sk))
4729		return false;
4730
4731	/* If we are under soft global TCP memory pressure, do not expand.  */
4732	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4733		return false;
4734
4735	/* If we filled the congestion window, do not expand.  */
4736	if (tp->packets_out >= tp->snd_cwnd)
4737		return false;
4738
4739	return true;
4740}
4741
4742/* When incoming ACK allowed to free some skb from write_queue,
4743 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4744 * on the exit from tcp input handler.
4745 *
4746 * PROBLEM: sndbuf expansion does not work well with largesend.
4747 */
4748static void tcp_new_space(struct sock *sk)
4749{
4750	struct tcp_sock *tp = tcp_sk(sk);
4751
4752	if (tcp_should_expand_sndbuf(sk)) {
4753		tcp_sndbuf_expand(sk);
4754		tp->snd_cwnd_stamp = tcp_time_stamp;
4755	}
4756
4757	sk->sk_write_space(sk);
4758}
4759
4760static void tcp_check_space(struct sock *sk)
4761{
4762	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4763		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4764		if (sk->sk_socket &&
4765		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4766			tcp_new_space(sk);
4767	}
4768}
4769
4770static inline void tcp_data_snd_check(struct sock *sk)
4771{
4772	tcp_push_pending_frames(sk);
4773	tcp_check_space(sk);
4774}
4775
4776/*
4777 * Check if sending an ack is needed.
4778 */
4779static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4780{
4781	struct tcp_sock *tp = tcp_sk(sk);
4782
4783	    /* More than one full frame received... */
4784	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4785	     /* ... and right edge of window advances far enough.
4786	      * (tcp_recvmsg() will send ACK otherwise). Or...
4787	      */
4788	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4789	    /* We ACK each frame or... */
4790	    tcp_in_quickack_mode(sk) ||
4791	    /* We have out of order data. */
4792	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4793		/* Then ack it now */
4794		tcp_send_ack(sk);
4795	} else {
4796		/* Else, send delayed ack. */
4797		tcp_send_delayed_ack(sk);
4798	}
4799}
4800
4801static inline void tcp_ack_snd_check(struct sock *sk)
4802{
4803	if (!inet_csk_ack_scheduled(sk)) {
4804		/* We sent a data segment already. */
4805		return;
4806	}
4807	__tcp_ack_snd_check(sk, 1);
4808}
4809
4810/*
4811 *	This routine is only called when we have urgent data
4812 *	signaled. Its the 'slow' part of tcp_urg. It could be
4813 *	moved inline now as tcp_urg is only called from one
4814 *	place. We handle URGent data wrong. We have to - as
4815 *	BSD still doesn't use the correction from RFC961.
4816 *	For 1003.1g we should support a new option TCP_STDURG to permit
4817 *	either form (or just set the sysctl tcp_stdurg).
4818 */
4819
4820static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4821{
4822	struct tcp_sock *tp = tcp_sk(sk);
4823	u32 ptr = ntohs(th->urg_ptr);
4824
4825	if (ptr && !sysctl_tcp_stdurg)
4826		ptr--;
4827	ptr += ntohl(th->seq);
4828
4829	/* Ignore urgent data that we've already seen and read. */
4830	if (after(tp->copied_seq, ptr))
4831		return;
4832
4833	/* Do not replay urg ptr.
4834	 *
4835	 * NOTE: interesting situation not covered by specs.
4836	 * Misbehaving sender may send urg ptr, pointing to segment,
4837	 * which we already have in ofo queue. We are not able to fetch
4838	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4839	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4840	 * situations. But it is worth to think about possibility of some
4841	 * DoSes using some hypothetical application level deadlock.
4842	 */
4843	if (before(ptr, tp->rcv_nxt))
4844		return;
4845
4846	/* Do we already have a newer (or duplicate) urgent pointer? */
4847	if (tp->urg_data && !after(ptr, tp->urg_seq))
4848		return;
4849
4850	/* Tell the world about our new urgent pointer. */
4851	sk_send_sigurg(sk);
4852
4853	/* We may be adding urgent data when the last byte read was
4854	 * urgent. To do this requires some care. We cannot just ignore
4855	 * tp->copied_seq since we would read the last urgent byte again
4856	 * as data, nor can we alter copied_seq until this data arrives
4857	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4858	 *
4859	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4860	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4861	 * and expect that both A and B disappear from stream. This is _wrong_.
4862	 * Though this happens in BSD with high probability, this is occasional.
4863	 * Any application relying on this is buggy. Note also, that fix "works"
4864	 * only in this artificial test. Insert some normal data between A and B and we will
4865	 * decline of BSD again. Verdict: it is better to remove to trap
4866	 * buggy users.
4867	 */
4868	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4869	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4870		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4871		tp->copied_seq++;
4872		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4873			__skb_unlink(skb, &sk->sk_receive_queue);
4874			__kfree_skb(skb);
4875		}
4876	}
4877
4878	tp->urg_data = TCP_URG_NOTYET;
4879	tp->urg_seq = ptr;
4880
4881	/* Disable header prediction. */
4882	tp->pred_flags = 0;
4883}
4884
4885/* This is the 'fast' part of urgent handling. */
4886static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4887{
4888	struct tcp_sock *tp = tcp_sk(sk);
4889
4890	/* Check if we get a new urgent pointer - normally not. */
4891	if (th->urg)
4892		tcp_check_urg(sk, th);
4893
4894	/* Do we wait for any urgent data? - normally not... */
4895	if (tp->urg_data == TCP_URG_NOTYET) {
4896		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4897			  th->syn;
4898
4899		/* Is the urgent pointer pointing into this packet? */
4900		if (ptr < skb->len) {
4901			u8 tmp;
4902			if (skb_copy_bits(skb, ptr, &tmp, 1))
4903				BUG();
4904			tp->urg_data = TCP_URG_VALID | tmp;
4905			if (!sock_flag(sk, SOCK_DEAD))
4906				sk->sk_data_ready(sk);
4907		}
4908	}
4909}
4910
4911static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4912{
4913	struct tcp_sock *tp = tcp_sk(sk);
4914	int chunk = skb->len - hlen;
4915	int err;
4916
4917	local_bh_enable();
4918	if (skb_csum_unnecessary(skb))
4919		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4920	else
4921		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4922						       tp->ucopy.iov);
4923
4924	if (!err) {
4925		tp->ucopy.len -= chunk;
4926		tp->copied_seq += chunk;
4927		tcp_rcv_space_adjust(sk);
4928	}
4929
4930	local_bh_disable();
4931	return err;
4932}
4933
4934static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4935					    struct sk_buff *skb)
4936{
4937	__sum16 result;
4938
4939	if (sock_owned_by_user(sk)) {
4940		local_bh_enable();
4941		result = __tcp_checksum_complete(skb);
4942		local_bh_disable();
4943	} else {
4944		result = __tcp_checksum_complete(skb);
4945	}
4946	return result;
4947}
4948
4949static inline bool tcp_checksum_complete_user(struct sock *sk,
4950					     struct sk_buff *skb)
4951{
4952	return !skb_csum_unnecessary(skb) &&
4953	       __tcp_checksum_complete_user(sk, skb);
4954}
4955
4956#ifdef CONFIG_NET_DMA
4957static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4958				  int hlen)
4959{
4960	struct tcp_sock *tp = tcp_sk(sk);
4961	int chunk = skb->len - hlen;
4962	int dma_cookie;
4963	bool copied_early = false;
4964
4965	if (tp->ucopy.wakeup)
4966		return false;
4967
4968	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4969		tp->ucopy.dma_chan = net_dma_find_channel();
4970
4971	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4972
4973		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4974							 skb, hlen,
4975							 tp->ucopy.iov, chunk,
4976							 tp->ucopy.pinned_list);
4977
4978		if (dma_cookie < 0)
4979			goto out;
4980
4981		tp->ucopy.dma_cookie = dma_cookie;
4982		copied_early = true;
4983
4984		tp->ucopy.len -= chunk;
4985		tp->copied_seq += chunk;
4986		tcp_rcv_space_adjust(sk);
4987
4988		if ((tp->ucopy.len == 0) ||
4989		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4990		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4991			tp->ucopy.wakeup = 1;
4992			sk->sk_data_ready(sk);
4993		}
4994	} else if (chunk > 0) {
4995		tp->ucopy.wakeup = 1;
4996		sk->sk_data_ready(sk);
4997	}
4998out:
4999	return copied_early;
5000}
5001#endif /* CONFIG_NET_DMA */
5002
5003/* Does PAWS and seqno based validation of an incoming segment, flags will
5004 * play significant role here.
5005 */
5006static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5007				  const struct tcphdr *th, int syn_inerr)
5008{
5009	struct tcp_sock *tp = tcp_sk(sk);
5010
5011	/* RFC1323: H1. Apply PAWS check first. */
5012	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5013	    tcp_paws_discard(sk, skb)) {
5014		if (!th->rst) {
5015			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5016			tcp_send_dupack(sk, skb);
5017			goto discard;
5018		}
5019		/* Reset is accepted even if it did not pass PAWS. */
5020	}
5021
5022	/* Step 1: check sequence number */
5023	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5024		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5025		 * (RST) segments are validated by checking their SEQ-fields."
5026		 * And page 69: "If an incoming segment is not acceptable,
5027		 * an acknowledgment should be sent in reply (unless the RST
5028		 * bit is set, if so drop the segment and return)".
5029		 */
5030		if (!th->rst) {
5031			if (th->syn)
5032				goto syn_challenge;
5033			tcp_send_dupack(sk, skb);
5034		}
5035		goto discard;
5036	}
5037
5038	/* Step 2: check RST bit */
5039	if (th->rst) {
5040		/* RFC 5961 3.2 :
5041		 * If sequence number exactly matches RCV.NXT, then
5042		 *     RESET the connection
5043		 * else
5044		 *     Send a challenge ACK
5045		 */
5046		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5047			tcp_reset(sk);
5048		else
5049			tcp_send_challenge_ack(sk);
5050		goto discard;
5051	}
5052
5053	/* step 3: check security and precedence [ignored] */
5054
5055	/* step 4: Check for a SYN
5056	 * RFC 5691 4.2 : Send a challenge ack
5057	 */
5058	if (th->syn) {
5059syn_challenge:
5060		if (syn_inerr)
5061			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5062		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5063		tcp_send_challenge_ack(sk);
5064		goto discard;
5065	}
5066
5067	return true;
5068
5069discard:
5070	__kfree_skb(skb);
5071	return false;
5072}
5073
5074/*
5075 *	TCP receive function for the ESTABLISHED state.
5076 *
5077 *	It is split into a fast path and a slow path. The fast path is
5078 * 	disabled when:
5079 *	- A zero window was announced from us - zero window probing
5080 *        is only handled properly in the slow path.
5081 *	- Out of order segments arrived.
5082 *	- Urgent data is expected.
5083 *	- There is no buffer space left
5084 *	- Unexpected TCP flags/window values/header lengths are received
5085 *	  (detected by checking the TCP header against pred_flags)
5086 *	- Data is sent in both directions. Fast path only supports pure senders
5087 *	  or pure receivers (this means either the sequence number or the ack
5088 *	  value must stay constant)
5089 *	- Unexpected TCP option.
5090 *
5091 *	When these conditions are not satisfied it drops into a standard
5092 *	receive procedure patterned after RFC793 to handle all cases.
5093 *	The first three cases are guaranteed by proper pred_flags setting,
5094 *	the rest is checked inline. Fast processing is turned on in
5095 *	tcp_data_queue when everything is OK.
5096 */
5097void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5098			 const struct tcphdr *th, unsigned int len)
5099{
5100	struct tcp_sock *tp = tcp_sk(sk);
5101
5102	if (unlikely(sk->sk_rx_dst == NULL))
5103		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5104	/*
5105	 *	Header prediction.
5106	 *	The code loosely follows the one in the famous
5107	 *	"30 instruction TCP receive" Van Jacobson mail.
5108	 *
5109	 *	Van's trick is to deposit buffers into socket queue
5110	 *	on a device interrupt, to call tcp_recv function
5111	 *	on the receive process context and checksum and copy
5112	 *	the buffer to user space. smart...
5113	 *
5114	 *	Our current scheme is not silly either but we take the
5115	 *	extra cost of the net_bh soft interrupt processing...
5116	 *	We do checksum and copy also but from device to kernel.
5117	 */
5118
5119	tp->rx_opt.saw_tstamp = 0;
5120
5121	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5122	 *	if header_prediction is to be made
5123	 *	'S' will always be tp->tcp_header_len >> 2
5124	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5125	 *  turn it off	(when there are holes in the receive
5126	 *	 space for instance)
5127	 *	PSH flag is ignored.
5128	 */
5129
5130	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5131	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5132	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5133		int tcp_header_len = tp->tcp_header_len;
5134
5135		/* Timestamp header prediction: tcp_header_len
5136		 * is automatically equal to th->doff*4 due to pred_flags
5137		 * match.
5138		 */
5139
5140		/* Check timestamp */
5141		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5142			/* No? Slow path! */
5143			if (!tcp_parse_aligned_timestamp(tp, th))
5144				goto slow_path;
5145
5146			/* If PAWS failed, check it more carefully in slow path */
5147			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5148				goto slow_path;
5149
5150			/* DO NOT update ts_recent here, if checksum fails
5151			 * and timestamp was corrupted part, it will result
5152			 * in a hung connection since we will drop all
5153			 * future packets due to the PAWS test.
5154			 */
5155		}
5156
5157		if (len <= tcp_header_len) {
5158			/* Bulk data transfer: sender */
5159			if (len == tcp_header_len) {
5160				/* Predicted packet is in window by definition.
5161				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5162				 * Hence, check seq<=rcv_wup reduces to:
5163				 */
5164				if (tcp_header_len ==
5165				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5166				    tp->rcv_nxt == tp->rcv_wup)
5167					tcp_store_ts_recent(tp);
5168
5169				/* We know that such packets are checksummed
5170				 * on entry.
5171				 */
5172				tcp_ack(sk, skb, 0);
5173				__kfree_skb(skb);
5174				tcp_data_snd_check(sk);
5175				return;
5176			} else { /* Header too small */
5177				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5178				goto discard;
5179			}
5180		} else {
5181			int eaten = 0;
5182			int copied_early = 0;
5183			bool fragstolen = false;
5184
5185			if (tp->copied_seq == tp->rcv_nxt &&
5186			    len - tcp_header_len <= tp->ucopy.len) {
5187#ifdef CONFIG_NET_DMA
5188				if (tp->ucopy.task == current &&
5189				    sock_owned_by_user(sk) &&
5190				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5191					copied_early = 1;
5192					eaten = 1;
5193				}
5194#endif
5195				if (tp->ucopy.task == current &&
5196				    sock_owned_by_user(sk) && !copied_early) {
5197					__set_current_state(TASK_RUNNING);
5198
5199					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5200						eaten = 1;
5201				}
5202				if (eaten) {
5203					/* Predicted packet is in window by definition.
5204					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5205					 * Hence, check seq<=rcv_wup reduces to:
5206					 */
5207					if (tcp_header_len ==
5208					    (sizeof(struct tcphdr) +
5209					     TCPOLEN_TSTAMP_ALIGNED) &&
5210					    tp->rcv_nxt == tp->rcv_wup)
5211						tcp_store_ts_recent(tp);
5212
5213					tcp_rcv_rtt_measure_ts(sk, skb);
5214
5215					__skb_pull(skb, tcp_header_len);
5216					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5217					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5218				}
5219				if (copied_early)
5220					tcp_cleanup_rbuf(sk, skb->len);
5221			}
5222			if (!eaten) {
5223				if (tcp_checksum_complete_user(sk, skb))
5224					goto csum_error;
5225
5226				if ((int)skb->truesize > sk->sk_forward_alloc)
5227					goto step5;
5228
5229				/* Predicted packet is in window by definition.
5230				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5231				 * Hence, check seq<=rcv_wup reduces to:
5232				 */
5233				if (tcp_header_len ==
5234				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5235				    tp->rcv_nxt == tp->rcv_wup)
5236					tcp_store_ts_recent(tp);
5237
5238				tcp_rcv_rtt_measure_ts(sk, skb);
5239
5240				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5241
5242				/* Bulk data transfer: receiver */
5243				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5244						      &fragstolen);
5245			}
5246
5247			tcp_event_data_recv(sk, skb);
5248
5249			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5250				/* Well, only one small jumplet in fast path... */
5251				tcp_ack(sk, skb, FLAG_DATA);
5252				tcp_data_snd_check(sk);
5253				if (!inet_csk_ack_scheduled(sk))
5254					goto no_ack;
5255			}
5256
5257			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5258				__tcp_ack_snd_check(sk, 0);
5259no_ack:
5260#ifdef CONFIG_NET_DMA
5261			if (copied_early)
5262				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5263			else
5264#endif
5265			if (eaten)
5266				kfree_skb_partial(skb, fragstolen);
5267			sk->sk_data_ready(sk);
5268			return;
5269		}
5270	}
5271
5272slow_path:
5273	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5274		goto csum_error;
5275
5276	if (!th->ack && !th->rst)
5277		goto discard;
5278
5279	/*
5280	 *	Standard slow path.
5281	 */
5282
5283	if (!tcp_validate_incoming(sk, skb, th, 1))
5284		return;
5285
5286step5:
5287	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5288		goto discard;
5289
5290	tcp_rcv_rtt_measure_ts(sk, skb);
5291
5292	/* Process urgent data. */
5293	tcp_urg(sk, skb, th);
5294
5295	/* step 7: process the segment text */
5296	tcp_data_queue(sk, skb);
5297
5298	tcp_data_snd_check(sk);
5299	tcp_ack_snd_check(sk);
5300	return;
5301
5302csum_error:
5303	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5304	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5305
5306discard:
5307	__kfree_skb(skb);
5308}
5309EXPORT_SYMBOL(tcp_rcv_established);
5310
5311void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5312{
5313	struct tcp_sock *tp = tcp_sk(sk);
5314	struct inet_connection_sock *icsk = inet_csk(sk);
5315
5316	tcp_set_state(sk, TCP_ESTABLISHED);
5317
5318	if (skb != NULL) {
5319		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5320		security_inet_conn_established(sk, skb);
5321	}
5322
5323	/* Make sure socket is routed, for correct metrics.  */
5324	icsk->icsk_af_ops->rebuild_header(sk);
5325
5326	tcp_init_metrics(sk);
5327
5328	tcp_init_congestion_control(sk);
5329
5330	/* Prevent spurious tcp_cwnd_restart() on first data
5331	 * packet.
5332	 */
5333	tp->lsndtime = tcp_time_stamp;
5334
5335	tcp_init_buffer_space(sk);
5336
5337	if (sock_flag(sk, SOCK_KEEPOPEN))
5338		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5339
5340	if (!tp->rx_opt.snd_wscale)
5341		__tcp_fast_path_on(tp, tp->snd_wnd);
5342	else
5343		tp->pred_flags = 0;
5344
5345	if (!sock_flag(sk, SOCK_DEAD)) {
5346		sk->sk_state_change(sk);
5347		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5348	}
5349}
5350
5351static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5352				    struct tcp_fastopen_cookie *cookie)
5353{
5354	struct tcp_sock *tp = tcp_sk(sk);
5355	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5356	u16 mss = tp->rx_opt.mss_clamp;
5357	bool syn_drop;
5358
5359	if (mss == tp->rx_opt.user_mss) {
5360		struct tcp_options_received opt;
5361
5362		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5363		tcp_clear_options(&opt);
5364		opt.user_mss = opt.mss_clamp = 0;
5365		tcp_parse_options(synack, &opt, 0, NULL);
5366		mss = opt.mss_clamp;
5367	}
5368
5369	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5370		cookie->len = -1;
5371
5372	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5373	 * the remote receives only the retransmitted (regular) SYNs: either
5374	 * the original SYN-data or the corresponding SYN-ACK is lost.
5375	 */
5376	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5377
5378	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5379
5380	if (data) { /* Retransmit unacked data in SYN */
5381		tcp_for_write_queue_from(data, sk) {
5382			if (data == tcp_send_head(sk) ||
5383			    __tcp_retransmit_skb(sk, data))
5384				break;
5385		}
5386		tcp_rearm_rto(sk);
5387		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5388		return true;
5389	}
5390	tp->syn_data_acked = tp->syn_data;
5391	if (tp->syn_data_acked)
5392		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5393	return false;
5394}
5395
5396static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5397					 const struct tcphdr *th, unsigned int len)
5398{
5399	struct inet_connection_sock *icsk = inet_csk(sk);
5400	struct tcp_sock *tp = tcp_sk(sk);
5401	struct tcp_fastopen_cookie foc = { .len = -1 };
5402	int saved_clamp = tp->rx_opt.mss_clamp;
5403
5404	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5405	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5406		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5407
5408	if (th->ack) {
5409		/* rfc793:
5410		 * "If the state is SYN-SENT then
5411		 *    first check the ACK bit
5412		 *      If the ACK bit is set
5413		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5414		 *        a reset (unless the RST bit is set, if so drop
5415		 *        the segment and return)"
5416		 */
5417		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5418		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5419			goto reset_and_undo;
5420
5421		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5422		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5423			     tcp_time_stamp)) {
5424			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5425			goto reset_and_undo;
5426		}
5427
5428		/* Now ACK is acceptable.
5429		 *
5430		 * "If the RST bit is set
5431		 *    If the ACK was acceptable then signal the user "error:
5432		 *    connection reset", drop the segment, enter CLOSED state,
5433		 *    delete TCB, and return."
5434		 */
5435
5436		if (th->rst) {
5437			tcp_reset(sk);
5438			goto discard;
5439		}
5440
5441		/* rfc793:
5442		 *   "fifth, if neither of the SYN or RST bits is set then
5443		 *    drop the segment and return."
5444		 *
5445		 *    See note below!
5446		 *                                        --ANK(990513)
5447		 */
5448		if (!th->syn)
5449			goto discard_and_undo;
5450
5451		/* rfc793:
5452		 *   "If the SYN bit is on ...
5453		 *    are acceptable then ...
5454		 *    (our SYN has been ACKed), change the connection
5455		 *    state to ESTABLISHED..."
5456		 */
5457
5458		TCP_ECN_rcv_synack(tp, th);
5459
5460		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5461		tcp_ack(sk, skb, FLAG_SLOWPATH);
5462
5463		/* Ok.. it's good. Set up sequence numbers and
5464		 * move to established.
5465		 */
5466		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5467		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5468
5469		/* RFC1323: The window in SYN & SYN/ACK segments is
5470		 * never scaled.
5471		 */
5472		tp->snd_wnd = ntohs(th->window);
5473
5474		if (!tp->rx_opt.wscale_ok) {
5475			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5476			tp->window_clamp = min(tp->window_clamp, 65535U);
5477		}
5478
5479		if (tp->rx_opt.saw_tstamp) {
5480			tp->rx_opt.tstamp_ok	   = 1;
5481			tp->tcp_header_len =
5482				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5483			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5484			tcp_store_ts_recent(tp);
5485		} else {
5486			tp->tcp_header_len = sizeof(struct tcphdr);
5487		}
5488
5489		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5490			tcp_enable_fack(tp);
5491
5492		tcp_mtup_init(sk);
5493		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5494		tcp_initialize_rcv_mss(sk);
5495
5496		/* Remember, tcp_poll() does not lock socket!
5497		 * Change state from SYN-SENT only after copied_seq
5498		 * is initialized. */
5499		tp->copied_seq = tp->rcv_nxt;
5500
5501		smp_mb();
5502
5503		tcp_finish_connect(sk, skb);
5504
5505		if ((tp->syn_fastopen || tp->syn_data) &&
5506		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5507			return -1;
5508
5509		if (sk->sk_write_pending ||
5510		    icsk->icsk_accept_queue.rskq_defer_accept ||
5511		    icsk->icsk_ack.pingpong) {
5512			/* Save one ACK. Data will be ready after
5513			 * several ticks, if write_pending is set.
5514			 *
5515			 * It may be deleted, but with this feature tcpdumps
5516			 * look so _wonderfully_ clever, that I was not able
5517			 * to stand against the temptation 8)     --ANK
5518			 */
5519			inet_csk_schedule_ack(sk);
5520			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5521			tcp_enter_quickack_mode(sk);
5522			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5523						  TCP_DELACK_MAX, TCP_RTO_MAX);
5524
5525discard:
5526			__kfree_skb(skb);
5527			return 0;
5528		} else {
5529			tcp_send_ack(sk);
5530		}
5531		return -1;
5532	}
5533
5534	/* No ACK in the segment */
5535
5536	if (th->rst) {
5537		/* rfc793:
5538		 * "If the RST bit is set
5539		 *
5540		 *      Otherwise (no ACK) drop the segment and return."
5541		 */
5542
5543		goto discard_and_undo;
5544	}
5545
5546	/* PAWS check. */
5547	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5548	    tcp_paws_reject(&tp->rx_opt, 0))
5549		goto discard_and_undo;
5550
5551	if (th->syn) {
5552		/* We see SYN without ACK. It is attempt of
5553		 * simultaneous connect with crossed SYNs.
5554		 * Particularly, it can be connect to self.
5555		 */
5556		tcp_set_state(sk, TCP_SYN_RECV);
5557
5558		if (tp->rx_opt.saw_tstamp) {
5559			tp->rx_opt.tstamp_ok = 1;
5560			tcp_store_ts_recent(tp);
5561			tp->tcp_header_len =
5562				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5563		} else {
5564			tp->tcp_header_len = sizeof(struct tcphdr);
5565		}
5566
5567		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5568		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5569
5570		/* RFC1323: The window in SYN & SYN/ACK segments is
5571		 * never scaled.
5572		 */
5573		tp->snd_wnd    = ntohs(th->window);
5574		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5575		tp->max_window = tp->snd_wnd;
5576
5577		TCP_ECN_rcv_syn(tp, th);
5578
5579		tcp_mtup_init(sk);
5580		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5581		tcp_initialize_rcv_mss(sk);
5582
5583		tcp_send_synack(sk);
5584#if 0
5585		/* Note, we could accept data and URG from this segment.
5586		 * There are no obstacles to make this (except that we must
5587		 * either change tcp_recvmsg() to prevent it from returning data
5588		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5589		 *
5590		 * However, if we ignore data in ACKless segments sometimes,
5591		 * we have no reasons to accept it sometimes.
5592		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5593		 * is not flawless. So, discard packet for sanity.
5594		 * Uncomment this return to process the data.
5595		 */
5596		return -1;
5597#else
5598		goto discard;
5599#endif
5600	}
5601	/* "fifth, if neither of the SYN or RST bits is set then
5602	 * drop the segment and return."
5603	 */
5604
5605discard_and_undo:
5606	tcp_clear_options(&tp->rx_opt);
5607	tp->rx_opt.mss_clamp = saved_clamp;
5608	goto discard;
5609
5610reset_and_undo:
5611	tcp_clear_options(&tp->rx_opt);
5612	tp->rx_opt.mss_clamp = saved_clamp;
5613	return 1;
5614}
5615
5616/*
5617 *	This function implements the receiving procedure of RFC 793 for
5618 *	all states except ESTABLISHED and TIME_WAIT.
5619 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5620 *	address independent.
5621 */
5622
5623int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5624			  const struct tcphdr *th, unsigned int len)
5625{
5626	struct tcp_sock *tp = tcp_sk(sk);
5627	struct inet_connection_sock *icsk = inet_csk(sk);
5628	struct request_sock *req;
5629	int queued = 0;
5630	bool acceptable;
5631	u32 synack_stamp;
5632
5633	tp->rx_opt.saw_tstamp = 0;
5634
5635	switch (sk->sk_state) {
5636	case TCP_CLOSE:
5637		goto discard;
5638
5639	case TCP_LISTEN:
5640		if (th->ack)
5641			return 1;
5642
5643		if (th->rst)
5644			goto discard;
5645
5646		if (th->syn) {
5647			if (th->fin)
5648				goto discard;
5649			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5650				return 1;
5651
5652			/* Now we have several options: In theory there is
5653			 * nothing else in the frame. KA9Q has an option to
5654			 * send data with the syn, BSD accepts data with the
5655			 * syn up to the [to be] advertised window and
5656			 * Solaris 2.1 gives you a protocol error. For now
5657			 * we just ignore it, that fits the spec precisely
5658			 * and avoids incompatibilities. It would be nice in
5659			 * future to drop through and process the data.
5660			 *
5661			 * Now that TTCP is starting to be used we ought to
5662			 * queue this data.
5663			 * But, this leaves one open to an easy denial of
5664			 * service attack, and SYN cookies can't defend
5665			 * against this problem. So, we drop the data
5666			 * in the interest of security over speed unless
5667			 * it's still in use.
5668			 */
5669			kfree_skb(skb);
5670			return 0;
5671		}
5672		goto discard;
5673
5674	case TCP_SYN_SENT:
5675		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5676		if (queued >= 0)
5677			return queued;
5678
5679		/* Do step6 onward by hand. */
5680		tcp_urg(sk, skb, th);
5681		__kfree_skb(skb);
5682		tcp_data_snd_check(sk);
5683		return 0;
5684	}
5685
5686	req = tp->fastopen_rsk;
5687	if (req != NULL) {
5688		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5689		    sk->sk_state != TCP_FIN_WAIT1);
5690
5691		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5692			goto discard;
5693	}
5694
5695	if (!th->ack && !th->rst)
5696		goto discard;
5697
5698	if (!tcp_validate_incoming(sk, skb, th, 0))
5699		return 0;
5700
5701	/* step 5: check the ACK field */
5702	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5703				      FLAG_UPDATE_TS_RECENT) > 0;
5704
5705	switch (sk->sk_state) {
5706	case TCP_SYN_RECV:
5707		if (!acceptable)
5708			return 1;
5709
5710		/* Once we leave TCP_SYN_RECV, we no longer need req
5711		 * so release it.
5712		 */
5713		if (req) {
5714			synack_stamp = tcp_rsk(req)->snt_synack;
5715			tp->total_retrans = req->num_retrans;
5716			reqsk_fastopen_remove(sk, req, false);
5717		} else {
5718			synack_stamp = tp->lsndtime;
5719			/* Make sure socket is routed, for correct metrics. */
5720			icsk->icsk_af_ops->rebuild_header(sk);
5721			tcp_init_congestion_control(sk);
5722
5723			tcp_mtup_init(sk);
5724			tp->copied_seq = tp->rcv_nxt;
5725			tcp_init_buffer_space(sk);
5726		}
5727		smp_mb();
5728		tcp_set_state(sk, TCP_ESTABLISHED);
5729		sk->sk_state_change(sk);
5730
5731		/* Note, that this wakeup is only for marginal crossed SYN case.
5732		 * Passively open sockets are not waked up, because
5733		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5734		 */
5735		if (sk->sk_socket)
5736			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5737
5738		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5739		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5740		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5741		tcp_synack_rtt_meas(sk, synack_stamp);
5742
5743		if (tp->rx_opt.tstamp_ok)
5744			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5745
5746		if (req) {
5747			/* Re-arm the timer because data may have been sent out.
5748			 * This is similar to the regular data transmission case
5749			 * when new data has just been ack'ed.
5750			 *
5751			 * (TFO) - we could try to be more aggressive and
5752			 * retransmitting any data sooner based on when they
5753			 * are sent out.
5754			 */
5755			tcp_rearm_rto(sk);
5756		} else
5757			tcp_init_metrics(sk);
5758
5759		tcp_update_pacing_rate(sk);
5760
5761		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5762		tp->lsndtime = tcp_time_stamp;
5763
5764		tcp_initialize_rcv_mss(sk);
5765		tcp_fast_path_on(tp);
5766		break;
5767
5768	case TCP_FIN_WAIT1: {
5769		struct dst_entry *dst;
5770		int tmo;
5771
5772		/* If we enter the TCP_FIN_WAIT1 state and we are a
5773		 * Fast Open socket and this is the first acceptable
5774		 * ACK we have received, this would have acknowledged
5775		 * our SYNACK so stop the SYNACK timer.
5776		 */
5777		if (req != NULL) {
5778			/* Return RST if ack_seq is invalid.
5779			 * Note that RFC793 only says to generate a
5780			 * DUPACK for it but for TCP Fast Open it seems
5781			 * better to treat this case like TCP_SYN_RECV
5782			 * above.
5783			 */
5784			if (!acceptable)
5785				return 1;
5786			/* We no longer need the request sock. */
5787			reqsk_fastopen_remove(sk, req, false);
5788			tcp_rearm_rto(sk);
5789		}
5790		if (tp->snd_una != tp->write_seq)
5791			break;
5792
5793		tcp_set_state(sk, TCP_FIN_WAIT2);
5794		sk->sk_shutdown |= SEND_SHUTDOWN;
5795
5796		dst = __sk_dst_get(sk);
5797		if (dst)
5798			dst_confirm(dst);
5799
5800		if (!sock_flag(sk, SOCK_DEAD)) {
5801			/* Wake up lingering close() */
5802			sk->sk_state_change(sk);
5803			break;
5804		}
5805
5806		if (tp->linger2 < 0 ||
5807		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5808		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5809			tcp_done(sk);
5810			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5811			return 1;
5812		}
5813
5814		tmo = tcp_fin_time(sk);
5815		if (tmo > TCP_TIMEWAIT_LEN) {
5816			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5817		} else if (th->fin || sock_owned_by_user(sk)) {
5818			/* Bad case. We could lose such FIN otherwise.
5819			 * It is not a big problem, but it looks confusing
5820			 * and not so rare event. We still can lose it now,
5821			 * if it spins in bh_lock_sock(), but it is really
5822			 * marginal case.
5823			 */
5824			inet_csk_reset_keepalive_timer(sk, tmo);
5825		} else {
5826			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5827			goto discard;
5828		}
5829		break;
5830	}
5831
5832	case TCP_CLOSING:
5833		if (tp->snd_una == tp->write_seq) {
5834			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5835			goto discard;
5836		}
5837		break;
5838
5839	case TCP_LAST_ACK:
5840		if (tp->snd_una == tp->write_seq) {
5841			tcp_update_metrics(sk);
5842			tcp_done(sk);
5843			goto discard;
5844		}
5845		break;
5846	}
5847
5848	/* step 6: check the URG bit */
5849	tcp_urg(sk, skb, th);
5850
5851	/* step 7: process the segment text */
5852	switch (sk->sk_state) {
5853	case TCP_CLOSE_WAIT:
5854	case TCP_CLOSING:
5855	case TCP_LAST_ACK:
5856		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5857			break;
5858	case TCP_FIN_WAIT1:
5859	case TCP_FIN_WAIT2:
5860		/* RFC 793 says to queue data in these states,
5861		 * RFC 1122 says we MUST send a reset.
5862		 * BSD 4.4 also does reset.
5863		 */
5864		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5865			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5866			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5867				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5868				tcp_reset(sk);
5869				return 1;
5870			}
5871		}
5872		/* Fall through */
5873	case TCP_ESTABLISHED:
5874		tcp_data_queue(sk, skb);
5875		queued = 1;
5876		break;
5877	}
5878
5879	/* tcp_data could move socket to TIME-WAIT */
5880	if (sk->sk_state != TCP_CLOSE) {
5881		tcp_data_snd_check(sk);
5882		tcp_ack_snd_check(sk);
5883	}
5884
5885	if (!queued) {
5886discard:
5887		__kfree_skb(skb);
5888	}
5889	return 0;
5890}
5891EXPORT_SYMBOL(tcp_rcv_state_process);
5892
5893static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5894{
5895	struct inet_request_sock *ireq = inet_rsk(req);
5896
5897	if (family == AF_INET)
5898		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
5899			       &ireq->ir_rmt_addr, port);
5900#if IS_ENABLED(CONFIG_IPV6)
5901	else if (family == AF_INET6)
5902		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI6/%u\n"),
5903			       &ireq->ir_v6_rmt_addr, port);
5904#endif
5905}
5906
5907int tcp_conn_request(struct request_sock_ops *rsk_ops,
5908		     const struct tcp_request_sock_ops *af_ops,
5909		     struct sock *sk, struct sk_buff *skb)
5910{
5911	struct tcp_options_received tmp_opt;
5912	struct request_sock *req;
5913	struct tcp_sock *tp = tcp_sk(sk);
5914	struct dst_entry *dst = NULL;
5915	__u32 isn = TCP_SKB_CB(skb)->when;
5916	bool want_cookie = false, fastopen;
5917	struct flowi fl;
5918	struct tcp_fastopen_cookie foc = { .len = -1 };
5919	int err;
5920
5921
5922	/* TW buckets are converted to open requests without
5923	 * limitations, they conserve resources and peer is
5924	 * evidently real one.
5925	 */
5926	if ((sysctl_tcp_syncookies == 2 ||
5927	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
5928		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
5929		if (!want_cookie)
5930			goto drop;
5931	}
5932
5933
5934	/* Accept backlog is full. If we have already queued enough
5935	 * of warm entries in syn queue, drop request. It is better than
5936	 * clogging syn queue with openreqs with exponentially increasing
5937	 * timeout.
5938	 */
5939	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
5940		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
5941		goto drop;
5942	}
5943
5944	req = inet_reqsk_alloc(rsk_ops);
5945	if (!req)
5946		goto drop;
5947
5948	tcp_rsk(req)->af_specific = af_ops;
5949
5950	tcp_clear_options(&tmp_opt);
5951	tmp_opt.mss_clamp = af_ops->mss_clamp;
5952	tmp_opt.user_mss  = tp->rx_opt.user_mss;
5953	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
5954
5955	if (want_cookie && !tmp_opt.saw_tstamp)
5956		tcp_clear_options(&tmp_opt);
5957
5958	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
5959	tcp_openreq_init(req, &tmp_opt, skb, sk);
5960
5961	af_ops->init_req(req, sk, skb);
5962
5963	if (security_inet_conn_request(sk, skb, req))
5964		goto drop_and_free;
5965
5966	if (!want_cookie || tmp_opt.tstamp_ok)
5967		TCP_ECN_create_request(req, skb, sock_net(sk));
5968
5969	if (want_cookie) {
5970		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
5971		req->cookie_ts = tmp_opt.tstamp_ok;
5972	} else if (!isn) {
5973		/* VJ's idea. We save last timestamp seen
5974		 * from the destination in peer table, when entering
5975		 * state TIME-WAIT, and check against it before
5976		 * accepting new connection request.
5977		 *
5978		 * If "isn" is not zero, this request hit alive
5979		 * timewait bucket, so that all the necessary checks
5980		 * are made in the function processing timewait state.
5981		 */
5982		if (tmp_opt.saw_tstamp && tcp_death_row.sysctl_tw_recycle) {
5983			bool strict;
5984
5985			dst = af_ops->route_req(sk, &fl, req, &strict);
5986			if (dst && strict &&
5987			    !tcp_peer_is_proven(req, dst, true)) {
5988				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
5989				goto drop_and_release;
5990			}
5991		}
5992		/* Kill the following clause, if you dislike this way. */
5993		else if (!sysctl_tcp_syncookies &&
5994			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
5995			  (sysctl_max_syn_backlog >> 2)) &&
5996			 !tcp_peer_is_proven(req, dst, false)) {
5997			/* Without syncookies last quarter of
5998			 * backlog is filled with destinations,
5999			 * proven to be alive.
6000			 * It means that we continue to communicate
6001			 * to destinations, already remembered
6002			 * to the moment of synflood.
6003			 */
6004			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6005				    rsk_ops->family);
6006			goto drop_and_release;
6007		}
6008
6009		isn = af_ops->init_seq(skb);
6010	}
6011	if (!dst) {
6012		dst = af_ops->route_req(sk, &fl, req, NULL);
6013		if (!dst)
6014			goto drop_and_free;
6015	}
6016
6017	tcp_rsk(req)->snt_isn = isn;
6018	tcp_openreq_init_rwin(req, sk, dst);
6019	fastopen = !want_cookie &&
6020		   tcp_try_fastopen(sk, skb, req, &foc, dst);
6021	err = af_ops->send_synack(sk, dst, &fl, req,
6022				  skb_get_queue_mapping(skb), &foc);
6023	if (!fastopen) {
6024		if (err || want_cookie)
6025			goto drop_and_free;
6026
6027		tcp_rsk(req)->listener = NULL;
6028		af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6029	}
6030
6031	return 0;
6032
6033drop_and_release:
6034	dst_release(dst);
6035drop_and_free:
6036	reqsk_free(req);
6037drop:
6038	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6039	return 0;
6040}
6041EXPORT_SYMBOL(tcp_conn_request);
6042