tcp_input.c revision 7363a5b233734dba339f2874ff6ed6c489d3d865
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 *		Pedro Roque	:	Fast Retransmit/Recovery.
24 *					Two receive queues.
25 *					Retransmit queue handled by TCP.
26 *					Better retransmit timer handling.
27 *					New congestion avoidance.
28 *					Header prediction.
29 *					Variable renaming.
30 *
31 *		Eric		:	Fast Retransmit.
32 *		Randy Scott	:	MSS option defines.
33 *		Eric Schenk	:	Fixes to slow start algorithm.
34 *		Eric Schenk	:	Yet another double ACK bug.
35 *		Eric Schenk	:	Delayed ACK bug fixes.
36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37 *		David S. Miller	:	Don't allow zero congestion window.
38 *		Eric Schenk	:	Fix retransmitter so that it sends
39 *					next packet on ack of previous packet.
40 *		Andi Kleen	:	Moved open_request checking here
41 *					and process RSTs for open_requests.
42 *		Andi Kleen	:	Better prune_queue, and other fixes.
43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
44 *					timestamps.
45 *		Andrey Savochkin:	Check sequence numbers correctly when
46 *					removing SACKs due to in sequence incoming
47 *					data segments.
48 *		Andi Kleen:		Make sure we never ack data there is not
49 *					enough room for. Also make this condition
50 *					a fatal error if it might still happen.
51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52 *					connections with MSS<min(MTU,ann. MSS)
53 *					work without delayed acks.
54 *		Andi Kleen:		Process packets with PSH set in the
55 *					fast path.
56 *		J Hadi Salim:		ECN support
57 *	 	Andrei Gurtov,
58 *		Pasi Sarolahti,
59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60 *					engine. Lots of bugs are found.
61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62 */
63
64#include <linux/mm.h>
65#include <linux/module.h>
66#include <linux/sysctl.h>
67#include <net/dst.h>
68#include <net/tcp.h>
69#include <net/inet_common.h>
70#include <linux/ipsec.h>
71#include <asm/unaligned.h>
72#include <net/netdma.h>
73
74int sysctl_tcp_timestamps __read_mostly = 1;
75int sysctl_tcp_window_scaling __read_mostly = 1;
76int sysctl_tcp_sack __read_mostly = 1;
77int sysctl_tcp_fack __read_mostly = 1;
78int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79int sysctl_tcp_ecn __read_mostly;
80int sysctl_tcp_dsack __read_mostly = 1;
81int sysctl_tcp_app_win __read_mostly = 31;
82int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84int sysctl_tcp_stdurg __read_mostly;
85int sysctl_tcp_rfc1337 __read_mostly;
86int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87int sysctl_tcp_frto __read_mostly = 2;
88int sysctl_tcp_frto_response __read_mostly;
89int sysctl_tcp_nometrics_save __read_mostly;
90
91int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92int sysctl_tcp_abc __read_mostly;
93
94#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
95#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
96#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
97#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
98#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
99#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
100#define FLAG_ECE		0x40 /* ECE in this ACK				*/
101#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
102#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
103#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
104#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
106#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
107#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
108
109#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
112#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
113#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118/* Adapt the MSS value used to make delayed ack decision to the
119 * real world.
120 */
121static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122{
123	struct inet_connection_sock *icsk = inet_csk(sk);
124	const unsigned int lss = icsk->icsk_ack.last_seg_size;
125	unsigned int len;
126
127	icsk->icsk_ack.last_seg_size = 0;
128
129	/* skb->len may jitter because of SACKs, even if peer
130	 * sends good full-sized frames.
131	 */
132	len = skb_shinfo(skb)->gso_size ? : skb->len;
133	if (len >= icsk->icsk_ack.rcv_mss) {
134		icsk->icsk_ack.rcv_mss = len;
135	} else {
136		/* Otherwise, we make more careful check taking into account,
137		 * that SACKs block is variable.
138		 *
139		 * "len" is invariant segment length, including TCP header.
140		 */
141		len += skb->data - skb_transport_header(skb);
142		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143		    /* If PSH is not set, packet should be
144		     * full sized, provided peer TCP is not badly broken.
145		     * This observation (if it is correct 8)) allows
146		     * to handle super-low mtu links fairly.
147		     */
148		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150			/* Subtract also invariant (if peer is RFC compliant),
151			 * tcp header plus fixed timestamp option length.
152			 * Resulting "len" is MSS free of SACK jitter.
153			 */
154			len -= tcp_sk(sk)->tcp_header_len;
155			icsk->icsk_ack.last_seg_size = len;
156			if (len == lss) {
157				icsk->icsk_ack.rcv_mss = len;
158				return;
159			}
160		}
161		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164	}
165}
166
167static void tcp_incr_quickack(struct sock *sk)
168{
169	struct inet_connection_sock *icsk = inet_csk(sk);
170	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172	if (quickacks == 0)
173		quickacks = 2;
174	if (quickacks > icsk->icsk_ack.quick)
175		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176}
177
178void tcp_enter_quickack_mode(struct sock *sk)
179{
180	struct inet_connection_sock *icsk = inet_csk(sk);
181	tcp_incr_quickack(sk);
182	icsk->icsk_ack.pingpong = 0;
183	icsk->icsk_ack.ato = TCP_ATO_MIN;
184}
185
186/* Send ACKs quickly, if "quick" count is not exhausted
187 * and the session is not interactive.
188 */
189
190static inline int tcp_in_quickack_mode(const struct sock *sk)
191{
192	const struct inet_connection_sock *icsk = inet_csk(sk);
193	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194}
195
196static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197{
198	if (tp->ecn_flags & TCP_ECN_OK)
199		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200}
201
202static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203{
204	if (tcp_hdr(skb)->cwr)
205		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206}
207
208static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209{
210	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211}
212
213static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214{
215	if (tp->ecn_flags & TCP_ECN_OK) {
216		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218		/* Funny extension: if ECT is not set on a segment,
219		 * it is surely retransmit. It is not in ECN RFC,
220		 * but Linux follows this rule. */
221		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222			tcp_enter_quickack_mode((struct sock *)tp);
223	}
224}
225
226static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227{
228	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229		tp->ecn_flags &= ~TCP_ECN_OK;
230}
231
232static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233{
234	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235		tp->ecn_flags &= ~TCP_ECN_OK;
236}
237
238static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239{
240	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241		return 1;
242	return 0;
243}
244
245/* Buffer size and advertised window tuning.
246 *
247 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248 */
249
250static void tcp_fixup_sndbuf(struct sock *sk)
251{
252	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253		     sizeof(struct sk_buff);
254
255	if (sk->sk_sndbuf < 3 * sndmem)
256		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257}
258
259/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260 *
261 * All tcp_full_space() is split to two parts: "network" buffer, allocated
262 * forward and advertised in receiver window (tp->rcv_wnd) and
263 * "application buffer", required to isolate scheduling/application
264 * latencies from network.
265 * window_clamp is maximal advertised window. It can be less than
266 * tcp_full_space(), in this case tcp_full_space() - window_clamp
267 * is reserved for "application" buffer. The less window_clamp is
268 * the smoother our behaviour from viewpoint of network, but the lower
269 * throughput and the higher sensitivity of the connection to losses. 8)
270 *
271 * rcv_ssthresh is more strict window_clamp used at "slow start"
272 * phase to predict further behaviour of this connection.
273 * It is used for two goals:
274 * - to enforce header prediction at sender, even when application
275 *   requires some significant "application buffer". It is check #1.
276 * - to prevent pruning of receive queue because of misprediction
277 *   of receiver window. Check #2.
278 *
279 * The scheme does not work when sender sends good segments opening
280 * window and then starts to feed us spaghetti. But it should work
281 * in common situations. Otherwise, we have to rely on queue collapsing.
282 */
283
284/* Slow part of check#2. */
285static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286{
287	struct tcp_sock *tp = tcp_sk(sk);
288	/* Optimize this! */
289	int truesize = tcp_win_from_space(skb->truesize) >> 1;
290	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292	while (tp->rcv_ssthresh <= window) {
293		if (truesize <= skb->len)
294			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296		truesize >>= 1;
297		window >>= 1;
298	}
299	return 0;
300}
301
302static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303{
304	struct tcp_sock *tp = tcp_sk(sk);
305
306	/* Check #1 */
307	if (tp->rcv_ssthresh < tp->window_clamp &&
308	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
309	    !tcp_memory_pressure) {
310		int incr;
311
312		/* Check #2. Increase window, if skb with such overhead
313		 * will fit to rcvbuf in future.
314		 */
315		if (tcp_win_from_space(skb->truesize) <= skb->len)
316			incr = 2 * tp->advmss;
317		else
318			incr = __tcp_grow_window(sk, skb);
319
320		if (incr) {
321			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322					       tp->window_clamp);
323			inet_csk(sk)->icsk_ack.quick |= 1;
324		}
325	}
326}
327
328/* 3. Tuning rcvbuf, when connection enters established state. */
329
330static void tcp_fixup_rcvbuf(struct sock *sk)
331{
332	struct tcp_sock *tp = tcp_sk(sk);
333	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335	/* Try to select rcvbuf so that 4 mss-sized segments
336	 * will fit to window and corresponding skbs will fit to our rcvbuf.
337	 * (was 3; 4 is minimum to allow fast retransmit to work.)
338	 */
339	while (tcp_win_from_space(rcvmem) < tp->advmss)
340		rcvmem += 128;
341	if (sk->sk_rcvbuf < 4 * rcvmem)
342		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343}
344
345/* 4. Try to fixup all. It is made immediately after connection enters
346 *    established state.
347 */
348static void tcp_init_buffer_space(struct sock *sk)
349{
350	struct tcp_sock *tp = tcp_sk(sk);
351	int maxwin;
352
353	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354		tcp_fixup_rcvbuf(sk);
355	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356		tcp_fixup_sndbuf(sk);
357
358	tp->rcvq_space.space = tp->rcv_wnd;
359
360	maxwin = tcp_full_space(sk);
361
362	if (tp->window_clamp >= maxwin) {
363		tp->window_clamp = maxwin;
364
365		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366			tp->window_clamp = max(maxwin -
367					       (maxwin >> sysctl_tcp_app_win),
368					       4 * tp->advmss);
369	}
370
371	/* Force reservation of one segment. */
372	if (sysctl_tcp_app_win &&
373	    tp->window_clamp > 2 * tp->advmss &&
374	    tp->window_clamp + tp->advmss > maxwin)
375		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378	tp->snd_cwnd_stamp = tcp_time_stamp;
379}
380
381/* 5. Recalculate window clamp after socket hit its memory bounds. */
382static void tcp_clamp_window(struct sock *sk)
383{
384	struct tcp_sock *tp = tcp_sk(sk);
385	struct inet_connection_sock *icsk = inet_csk(sk);
386
387	icsk->icsk_ack.quick = 0;
388
389	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391	    !tcp_memory_pressure &&
392	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394				    sysctl_tcp_rmem[2]);
395	}
396	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398}
399
400/* Initialize RCV_MSS value.
401 * RCV_MSS is an our guess about MSS used by the peer.
402 * We haven't any direct information about the MSS.
403 * It's better to underestimate the RCV_MSS rather than overestimate.
404 * Overestimations make us ACKing less frequently than needed.
405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406 */
407void tcp_initialize_rcv_mss(struct sock *sk)
408{
409	struct tcp_sock *tp = tcp_sk(sk);
410	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412	hint = min(hint, tp->rcv_wnd / 2);
413	hint = min(hint, TCP_MIN_RCVMSS);
414	hint = max(hint, TCP_MIN_MSS);
415
416	inet_csk(sk)->icsk_ack.rcv_mss = hint;
417}
418
419/* Receiver "autotuning" code.
420 *
421 * The algorithm for RTT estimation w/o timestamps is based on
422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424 *
425 * More detail on this code can be found at
426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427 * though this reference is out of date.  A new paper
428 * is pending.
429 */
430static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431{
432	u32 new_sample = tp->rcv_rtt_est.rtt;
433	long m = sample;
434
435	if (m == 0)
436		m = 1;
437
438	if (new_sample != 0) {
439		/* If we sample in larger samples in the non-timestamp
440		 * case, we could grossly overestimate the RTT especially
441		 * with chatty applications or bulk transfer apps which
442		 * are stalled on filesystem I/O.
443		 *
444		 * Also, since we are only going for a minimum in the
445		 * non-timestamp case, we do not smooth things out
446		 * else with timestamps disabled convergence takes too
447		 * long.
448		 */
449		if (!win_dep) {
450			m -= (new_sample >> 3);
451			new_sample += m;
452		} else if (m < new_sample)
453			new_sample = m << 3;
454	} else {
455		/* No previous measure. */
456		new_sample = m << 3;
457	}
458
459	if (tp->rcv_rtt_est.rtt != new_sample)
460		tp->rcv_rtt_est.rtt = new_sample;
461}
462
463static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464{
465	if (tp->rcv_rtt_est.time == 0)
466		goto new_measure;
467	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468		return;
469	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471new_measure:
472	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473	tp->rcv_rtt_est.time = tcp_time_stamp;
474}
475
476static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477					  const struct sk_buff *skb)
478{
479	struct tcp_sock *tp = tcp_sk(sk);
480	if (tp->rx_opt.rcv_tsecr &&
481	    (TCP_SKB_CB(skb)->end_seq -
482	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484}
485
486/*
487 * This function should be called every time data is copied to user space.
488 * It calculates the appropriate TCP receive buffer space.
489 */
490void tcp_rcv_space_adjust(struct sock *sk)
491{
492	struct tcp_sock *tp = tcp_sk(sk);
493	int time;
494	int space;
495
496	if (tp->rcvq_space.time == 0)
497		goto new_measure;
498
499	time = tcp_time_stamp - tp->rcvq_space.time;
500	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501		return;
502
503	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505	space = max(tp->rcvq_space.space, space);
506
507	if (tp->rcvq_space.space != space) {
508		int rcvmem;
509
510		tp->rcvq_space.space = space;
511
512		if (sysctl_tcp_moderate_rcvbuf &&
513		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514			int new_clamp = space;
515
516			/* Receive space grows, normalize in order to
517			 * take into account packet headers and sk_buff
518			 * structure overhead.
519			 */
520			space /= tp->advmss;
521			if (!space)
522				space = 1;
523			rcvmem = (tp->advmss + MAX_TCP_HEADER +
524				  16 + sizeof(struct sk_buff));
525			while (tcp_win_from_space(rcvmem) < tp->advmss)
526				rcvmem += 128;
527			space *= rcvmem;
528			space = min(space, sysctl_tcp_rmem[2]);
529			if (space > sk->sk_rcvbuf) {
530				sk->sk_rcvbuf = space;
531
532				/* Make the window clamp follow along.  */
533				tp->window_clamp = new_clamp;
534			}
535		}
536	}
537
538new_measure:
539	tp->rcvq_space.seq = tp->copied_seq;
540	tp->rcvq_space.time = tcp_time_stamp;
541}
542
543/* There is something which you must keep in mind when you analyze the
544 * behavior of the tp->ato delayed ack timeout interval.  When a
545 * connection starts up, we want to ack as quickly as possible.  The
546 * problem is that "good" TCP's do slow start at the beginning of data
547 * transmission.  The means that until we send the first few ACK's the
548 * sender will sit on his end and only queue most of his data, because
549 * he can only send snd_cwnd unacked packets at any given time.  For
550 * each ACK we send, he increments snd_cwnd and transmits more of his
551 * queue.  -DaveM
552 */
553static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554{
555	struct tcp_sock *tp = tcp_sk(sk);
556	struct inet_connection_sock *icsk = inet_csk(sk);
557	u32 now;
558
559	inet_csk_schedule_ack(sk);
560
561	tcp_measure_rcv_mss(sk, skb);
562
563	tcp_rcv_rtt_measure(tp);
564
565	now = tcp_time_stamp;
566
567	if (!icsk->icsk_ack.ato) {
568		/* The _first_ data packet received, initialize
569		 * delayed ACK engine.
570		 */
571		tcp_incr_quickack(sk);
572		icsk->icsk_ack.ato = TCP_ATO_MIN;
573	} else {
574		int m = now - icsk->icsk_ack.lrcvtime;
575
576		if (m <= TCP_ATO_MIN / 2) {
577			/* The fastest case is the first. */
578			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579		} else if (m < icsk->icsk_ack.ato) {
580			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581			if (icsk->icsk_ack.ato > icsk->icsk_rto)
582				icsk->icsk_ack.ato = icsk->icsk_rto;
583		} else if (m > icsk->icsk_rto) {
584			/* Too long gap. Apparently sender failed to
585			 * restart window, so that we send ACKs quickly.
586			 */
587			tcp_incr_quickack(sk);
588			sk_mem_reclaim(sk);
589		}
590	}
591	icsk->icsk_ack.lrcvtime = now;
592
593	TCP_ECN_check_ce(tp, skb);
594
595	if (skb->len >= 128)
596		tcp_grow_window(sk, skb);
597}
598
599static u32 tcp_rto_min(struct sock *sk)
600{
601	struct dst_entry *dst = __sk_dst_get(sk);
602	u32 rto_min = TCP_RTO_MIN;
603
604	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606	return rto_min;
607}
608
609/* Called to compute a smoothed rtt estimate. The data fed to this
610 * routine either comes from timestamps, or from segments that were
611 * known _not_ to have been retransmitted [see Karn/Partridge
612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613 * piece by Van Jacobson.
614 * NOTE: the next three routines used to be one big routine.
615 * To save cycles in the RFC 1323 implementation it was better to break
616 * it up into three procedures. -- erics
617 */
618static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619{
620	struct tcp_sock *tp = tcp_sk(sk);
621	long m = mrtt; /* RTT */
622
623	/*	The following amusing code comes from Jacobson's
624	 *	article in SIGCOMM '88.  Note that rtt and mdev
625	 *	are scaled versions of rtt and mean deviation.
626	 *	This is designed to be as fast as possible
627	 *	m stands for "measurement".
628	 *
629	 *	On a 1990 paper the rto value is changed to:
630	 *	RTO = rtt + 4 * mdev
631	 *
632	 * Funny. This algorithm seems to be very broken.
633	 * These formulae increase RTO, when it should be decreased, increase
634	 * too slowly, when it should be increased quickly, decrease too quickly
635	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636	 * does not matter how to _calculate_ it. Seems, it was trap
637	 * that VJ failed to avoid. 8)
638	 */
639	if (m == 0)
640		m = 1;
641	if (tp->srtt != 0) {
642		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
643		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
644		if (m < 0) {
645			m = -m;		/* m is now abs(error) */
646			m -= (tp->mdev >> 2);   /* similar update on mdev */
647			/* This is similar to one of Eifel findings.
648			 * Eifel blocks mdev updates when rtt decreases.
649			 * This solution is a bit different: we use finer gain
650			 * for mdev in this case (alpha*beta).
651			 * Like Eifel it also prevents growth of rto,
652			 * but also it limits too fast rto decreases,
653			 * happening in pure Eifel.
654			 */
655			if (m > 0)
656				m >>= 3;
657		} else {
658			m -= (tp->mdev >> 2);   /* similar update on mdev */
659		}
660		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
661		if (tp->mdev > tp->mdev_max) {
662			tp->mdev_max = tp->mdev;
663			if (tp->mdev_max > tp->rttvar)
664				tp->rttvar = tp->mdev_max;
665		}
666		if (after(tp->snd_una, tp->rtt_seq)) {
667			if (tp->mdev_max < tp->rttvar)
668				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669			tp->rtt_seq = tp->snd_nxt;
670			tp->mdev_max = tcp_rto_min(sk);
671		}
672	} else {
673		/* no previous measure. */
674		tp->srtt = m << 3;	/* take the measured time to be rtt */
675		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
676		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677		tp->rtt_seq = tp->snd_nxt;
678	}
679}
680
681/* Calculate rto without backoff.  This is the second half of Van Jacobson's
682 * routine referred to above.
683 */
684static inline void tcp_set_rto(struct sock *sk)
685{
686	const struct tcp_sock *tp = tcp_sk(sk);
687	/* Old crap is replaced with new one. 8)
688	 *
689	 * More seriously:
690	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691	 *    It cannot be less due to utterly erratic ACK generation made
692	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693	 *    to do with delayed acks, because at cwnd>2 true delack timeout
694	 *    is invisible. Actually, Linux-2.4 also generates erratic
695	 *    ACKs in some circumstances.
696	 */
697	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699	/* 2. Fixups made earlier cannot be right.
700	 *    If we do not estimate RTO correctly without them,
701	 *    all the algo is pure shit and should be replaced
702	 *    with correct one. It is exactly, which we pretend to do.
703	 */
704
705	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
706	 * guarantees that rto is higher.
707	 */
708	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
709		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
710}
711
712/* Save metrics learned by this TCP session.
713   This function is called only, when TCP finishes successfully
714   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715 */
716void tcp_update_metrics(struct sock *sk)
717{
718	struct tcp_sock *tp = tcp_sk(sk);
719	struct dst_entry *dst = __sk_dst_get(sk);
720
721	if (sysctl_tcp_nometrics_save)
722		return;
723
724	dst_confirm(dst);
725
726	if (dst && (dst->flags & DST_HOST)) {
727		const struct inet_connection_sock *icsk = inet_csk(sk);
728		int m;
729		unsigned long rtt;
730
731		if (icsk->icsk_backoff || !tp->srtt) {
732			/* This session failed to estimate rtt. Why?
733			 * Probably, no packets returned in time.
734			 * Reset our results.
735			 */
736			if (!(dst_metric_locked(dst, RTAX_RTT)))
737				dst->metrics[RTAX_RTT - 1] = 0;
738			return;
739		}
740
741		rtt = dst_metric_rtt(dst, RTAX_RTT);
742		m = rtt - tp->srtt;
743
744		/* If newly calculated rtt larger than stored one,
745		 * store new one. Otherwise, use EWMA. Remember,
746		 * rtt overestimation is always better than underestimation.
747		 */
748		if (!(dst_metric_locked(dst, RTAX_RTT))) {
749			if (m <= 0)
750				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
751			else
752				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
753		}
754
755		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
756			unsigned long var;
757			if (m < 0)
758				m = -m;
759
760			/* Scale deviation to rttvar fixed point */
761			m >>= 1;
762			if (m < tp->mdev)
763				m = tp->mdev;
764
765			var = dst_metric_rtt(dst, RTAX_RTTVAR);
766			if (m >= var)
767				var = m;
768			else
769				var -= (var - m) >> 2;
770
771			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
772		}
773
774		if (tp->snd_ssthresh >= 0xFFFF) {
775			/* Slow start still did not finish. */
776			if (dst_metric(dst, RTAX_SSTHRESH) &&
777			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
780			if (!dst_metric_locked(dst, RTAX_CWND) &&
781			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
783		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
784			   icsk->icsk_ca_state == TCP_CA_Open) {
785			/* Cong. avoidance phase, cwnd is reliable. */
786			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787				dst->metrics[RTAX_SSTHRESH-1] =
788					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
789			if (!dst_metric_locked(dst, RTAX_CWND))
790				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
791		} else {
792			/* Else slow start did not finish, cwnd is non-sense,
793			   ssthresh may be also invalid.
794			 */
795			if (!dst_metric_locked(dst, RTAX_CWND))
796				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
797			if (dst_metric(dst, RTAX_SSTHRESH) &&
798			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
799			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
800				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
801		}
802
803		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
804			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
805			    tp->reordering != sysctl_tcp_reordering)
806				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
807		}
808	}
809}
810
811/* Numbers are taken from RFC3390.
812 *
813 * John Heffner states:
814 *
815 *	The RFC specifies a window of no more than 4380 bytes
816 *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
817 *	is a bit misleading because they use a clamp at 4380 bytes
818 *	rather than use a multiplier in the relevant range.
819 */
820__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
821{
822	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
823
824	if (!cwnd) {
825		if (tp->mss_cache > 1460)
826			cwnd = 2;
827		else
828			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
829	}
830	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831}
832
833/* Set slow start threshold and cwnd not falling to slow start */
834void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
835{
836	struct tcp_sock *tp = tcp_sk(sk);
837	const struct inet_connection_sock *icsk = inet_csk(sk);
838
839	tp->prior_ssthresh = 0;
840	tp->bytes_acked = 0;
841	if (icsk->icsk_ca_state < TCP_CA_CWR) {
842		tp->undo_marker = 0;
843		if (set_ssthresh)
844			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
845		tp->snd_cwnd = min(tp->snd_cwnd,
846				   tcp_packets_in_flight(tp) + 1U);
847		tp->snd_cwnd_cnt = 0;
848		tp->high_seq = tp->snd_nxt;
849		tp->snd_cwnd_stamp = tcp_time_stamp;
850		TCP_ECN_queue_cwr(tp);
851
852		tcp_set_ca_state(sk, TCP_CA_CWR);
853	}
854}
855
856/*
857 * Packet counting of FACK is based on in-order assumptions, therefore TCP
858 * disables it when reordering is detected
859 */
860static void tcp_disable_fack(struct tcp_sock *tp)
861{
862	/* RFC3517 uses different metric in lost marker => reset on change */
863	if (tcp_is_fack(tp))
864		tp->lost_skb_hint = NULL;
865	tp->rx_opt.sack_ok &= ~2;
866}
867
868/* Take a notice that peer is sending D-SACKs */
869static void tcp_dsack_seen(struct tcp_sock *tp)
870{
871	tp->rx_opt.sack_ok |= 4;
872}
873
874/* Initialize metrics on socket. */
875
876static void tcp_init_metrics(struct sock *sk)
877{
878	struct tcp_sock *tp = tcp_sk(sk);
879	struct dst_entry *dst = __sk_dst_get(sk);
880
881	if (dst == NULL)
882		goto reset;
883
884	dst_confirm(dst);
885
886	if (dst_metric_locked(dst, RTAX_CWND))
887		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
888	if (dst_metric(dst, RTAX_SSTHRESH)) {
889		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
890		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
891			tp->snd_ssthresh = tp->snd_cwnd_clamp;
892	}
893	if (dst_metric(dst, RTAX_REORDERING) &&
894	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
895		tcp_disable_fack(tp);
896		tp->reordering = dst_metric(dst, RTAX_REORDERING);
897	}
898
899	if (dst_metric(dst, RTAX_RTT) == 0)
900		goto reset;
901
902	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
903		goto reset;
904
905	/* Initial rtt is determined from SYN,SYN-ACK.
906	 * The segment is small and rtt may appear much
907	 * less than real one. Use per-dst memory
908	 * to make it more realistic.
909	 *
910	 * A bit of theory. RTT is time passed after "normal" sized packet
911	 * is sent until it is ACKed. In normal circumstances sending small
912	 * packets force peer to delay ACKs and calculation is correct too.
913	 * The algorithm is adaptive and, provided we follow specs, it
914	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
915	 * tricks sort of "quick acks" for time long enough to decrease RTT
916	 * to low value, and then abruptly stops to do it and starts to delay
917	 * ACKs, wait for troubles.
918	 */
919	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
920		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
921		tp->rtt_seq = tp->snd_nxt;
922	}
923	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
924		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
925		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
926	}
927	tcp_set_rto(sk);
928	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
929		goto reset;
930	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
931	tp->snd_cwnd_stamp = tcp_time_stamp;
932	return;
933
934reset:
935	/* Play conservative. If timestamps are not
936	 * supported, TCP will fail to recalculate correct
937	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
938	 */
939	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
940		tp->srtt = 0;
941		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
942		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
943	}
944}
945
946static void tcp_update_reordering(struct sock *sk, const int metric,
947				  const int ts)
948{
949	struct tcp_sock *tp = tcp_sk(sk);
950	if (metric > tp->reordering) {
951		int mib_idx;
952
953		tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955		/* This exciting event is worth to be remembered. 8) */
956		if (ts)
957			mib_idx = LINUX_MIB_TCPTSREORDER;
958		else if (tcp_is_reno(tp))
959			mib_idx = LINUX_MIB_TCPRENOREORDER;
960		else if (tcp_is_fack(tp))
961			mib_idx = LINUX_MIB_TCPFACKREORDER;
962		else
963			mib_idx = LINUX_MIB_TCPSACKREORDER;
964
965		NET_INC_STATS_BH(sock_net(sk), mib_idx);
966#if FASTRETRANS_DEBUG > 1
967		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
968		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
969		       tp->reordering,
970		       tp->fackets_out,
971		       tp->sacked_out,
972		       tp->undo_marker ? tp->undo_retrans : 0);
973#endif
974		tcp_disable_fack(tp);
975	}
976}
977
978/* This must be called before lost_out is incremented */
979static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
980{
981	if ((tp->retransmit_skb_hint == NULL) ||
982	    before(TCP_SKB_CB(skb)->seq,
983		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
984		tp->retransmit_skb_hint = skb;
985
986	if (!tp->lost_out ||
987	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
988		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
989}
990
991static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
992{
993	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
994		tcp_verify_retransmit_hint(tp, skb);
995
996		tp->lost_out += tcp_skb_pcount(skb);
997		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
998	}
999}
1000
1001static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1002					    struct sk_buff *skb)
1003{
1004	tcp_verify_retransmit_hint(tp, skb);
1005
1006	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1007		tp->lost_out += tcp_skb_pcount(skb);
1008		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1009	}
1010}
1011
1012/* This procedure tags the retransmission queue when SACKs arrive.
1013 *
1014 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1015 * Packets in queue with these bits set are counted in variables
1016 * sacked_out, retrans_out and lost_out, correspondingly.
1017 *
1018 * Valid combinations are:
1019 * Tag  InFlight	Description
1020 * 0	1		- orig segment is in flight.
1021 * S	0		- nothing flies, orig reached receiver.
1022 * L	0		- nothing flies, orig lost by net.
1023 * R	2		- both orig and retransmit are in flight.
1024 * L|R	1		- orig is lost, retransmit is in flight.
1025 * S|R  1		- orig reached receiver, retrans is still in flight.
1026 * (L|S|R is logically valid, it could occur when L|R is sacked,
1027 *  but it is equivalent to plain S and code short-curcuits it to S.
1028 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1029 *
1030 * These 6 states form finite state machine, controlled by the following events:
1031 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1032 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1033 * 3. Loss detection event of one of three flavors:
1034 *	A. Scoreboard estimator decided the packet is lost.
1035 *	   A'. Reno "three dupacks" marks head of queue lost.
1036 *	   A''. Its FACK modfication, head until snd.fack is lost.
1037 *	B. SACK arrives sacking data transmitted after never retransmitted
1038 *	   hole was sent out.
1039 *	C. SACK arrives sacking SND.NXT at the moment, when the
1040 *	   segment was retransmitted.
1041 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1042 *
1043 * It is pleasant to note, that state diagram turns out to be commutative,
1044 * so that we are allowed not to be bothered by order of our actions,
1045 * when multiple events arrive simultaneously. (see the function below).
1046 *
1047 * Reordering detection.
1048 * --------------------
1049 * Reordering metric is maximal distance, which a packet can be displaced
1050 * in packet stream. With SACKs we can estimate it:
1051 *
1052 * 1. SACK fills old hole and the corresponding segment was not
1053 *    ever retransmitted -> reordering. Alas, we cannot use it
1054 *    when segment was retransmitted.
1055 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1056 *    for retransmitted and already SACKed segment -> reordering..
1057 * Both of these heuristics are not used in Loss state, when we cannot
1058 * account for retransmits accurately.
1059 *
1060 * SACK block validation.
1061 * ----------------------
1062 *
1063 * SACK block range validation checks that the received SACK block fits to
1064 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1065 * Note that SND.UNA is not included to the range though being valid because
1066 * it means that the receiver is rather inconsistent with itself reporting
1067 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1068 * perfectly valid, however, in light of RFC2018 which explicitly states
1069 * that "SACK block MUST reflect the newest segment.  Even if the newest
1070 * segment is going to be discarded ...", not that it looks very clever
1071 * in case of head skb. Due to potentional receiver driven attacks, we
1072 * choose to avoid immediate execution of a walk in write queue due to
1073 * reneging and defer head skb's loss recovery to standard loss recovery
1074 * procedure that will eventually trigger (nothing forbids us doing this).
1075 *
1076 * Implements also blockage to start_seq wrap-around. Problem lies in the
1077 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1078 * there's no guarantee that it will be before snd_nxt (n). The problem
1079 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1080 * wrap (s_w):
1081 *
1082 *         <- outs wnd ->                          <- wrapzone ->
1083 *         u     e      n                         u_w   e_w  s n_w
1084 *         |     |      |                          |     |   |  |
1085 * |<------------+------+----- TCP seqno space --------------+---------->|
1086 * ...-- <2^31 ->|                                           |<--------...
1087 * ...---- >2^31 ------>|                                    |<--------...
1088 *
1089 * Current code wouldn't be vulnerable but it's better still to discard such
1090 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1091 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1092 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1093 * equal to the ideal case (infinite seqno space without wrap caused issues).
1094 *
1095 * With D-SACK the lower bound is extended to cover sequence space below
1096 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1097 * again, D-SACK block must not to go across snd_una (for the same reason as
1098 * for the normal SACK blocks, explained above). But there all simplicity
1099 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1100 * fully below undo_marker they do not affect behavior in anyway and can
1101 * therefore be safely ignored. In rare cases (which are more or less
1102 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1103 * fragmentation and packet reordering past skb's retransmission. To consider
1104 * them correctly, the acceptable range must be extended even more though
1105 * the exact amount is rather hard to quantify. However, tp->max_window can
1106 * be used as an exaggerated estimate.
1107 */
1108static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1109				  u32 start_seq, u32 end_seq)
1110{
1111	/* Too far in future, or reversed (interpretation is ambiguous) */
1112	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1113		return 0;
1114
1115	/* Nasty start_seq wrap-around check (see comments above) */
1116	if (!before(start_seq, tp->snd_nxt))
1117		return 0;
1118
1119	/* In outstanding window? ...This is valid exit for D-SACKs too.
1120	 * start_seq == snd_una is non-sensical (see comments above)
1121	 */
1122	if (after(start_seq, tp->snd_una))
1123		return 1;
1124
1125	if (!is_dsack || !tp->undo_marker)
1126		return 0;
1127
1128	/* ...Then it's D-SACK, and must reside below snd_una completely */
1129	if (!after(end_seq, tp->snd_una))
1130		return 0;
1131
1132	if (!before(start_seq, tp->undo_marker))
1133		return 1;
1134
1135	/* Too old */
1136	if (!after(end_seq, tp->undo_marker))
1137		return 0;
1138
1139	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1140	 *   start_seq < undo_marker and end_seq >= undo_marker.
1141	 */
1142	return !before(start_seq, end_seq - tp->max_window);
1143}
1144
1145/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1146 * Event "C". Later note: FACK people cheated me again 8), we have to account
1147 * for reordering! Ugly, but should help.
1148 *
1149 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1150 * less than what is now known to be received by the other end (derived from
1151 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1152 * retransmitted skbs to avoid some costly processing per ACKs.
1153 */
1154static void tcp_mark_lost_retrans(struct sock *sk)
1155{
1156	const struct inet_connection_sock *icsk = inet_csk(sk);
1157	struct tcp_sock *tp = tcp_sk(sk);
1158	struct sk_buff *skb;
1159	int cnt = 0;
1160	u32 new_low_seq = tp->snd_nxt;
1161	u32 received_upto = tcp_highest_sack_seq(tp);
1162
1163	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1164	    !after(received_upto, tp->lost_retrans_low) ||
1165	    icsk->icsk_ca_state != TCP_CA_Recovery)
1166		return;
1167
1168	tcp_for_write_queue(skb, sk) {
1169		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1170
1171		if (skb == tcp_send_head(sk))
1172			break;
1173		if (cnt == tp->retrans_out)
1174			break;
1175		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1176			continue;
1177
1178		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1179			continue;
1180
1181		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1182		 * constraint here (see above) but figuring out that at
1183		 * least tp->reordering SACK blocks reside between ack_seq
1184		 * and received_upto is not easy task to do cheaply with
1185		 * the available datastructures.
1186		 *
1187		 * Whether FACK should check here for tp->reordering segs
1188		 * in-between one could argue for either way (it would be
1189		 * rather simple to implement as we could count fack_count
1190		 * during the walk and do tp->fackets_out - fack_count).
1191		 */
1192		if (after(received_upto, ack_seq)) {
1193			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1194			tp->retrans_out -= tcp_skb_pcount(skb);
1195
1196			tcp_skb_mark_lost_uncond_verify(tp, skb);
1197			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1198		} else {
1199			if (before(ack_seq, new_low_seq))
1200				new_low_seq = ack_seq;
1201			cnt += tcp_skb_pcount(skb);
1202		}
1203	}
1204
1205	if (tp->retrans_out)
1206		tp->lost_retrans_low = new_low_seq;
1207}
1208
1209static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1210			   struct tcp_sack_block_wire *sp, int num_sacks,
1211			   u32 prior_snd_una)
1212{
1213	struct tcp_sock *tp = tcp_sk(sk);
1214	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1215	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1216	int dup_sack = 0;
1217
1218	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1219		dup_sack = 1;
1220		tcp_dsack_seen(tp);
1221		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1222	} else if (num_sacks > 1) {
1223		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1224		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1225
1226		if (!after(end_seq_0, end_seq_1) &&
1227		    !before(start_seq_0, start_seq_1)) {
1228			dup_sack = 1;
1229			tcp_dsack_seen(tp);
1230			NET_INC_STATS_BH(sock_net(sk),
1231					LINUX_MIB_TCPDSACKOFORECV);
1232		}
1233	}
1234
1235	/* D-SACK for already forgotten data... Do dumb counting. */
1236	if (dup_sack &&
1237	    !after(end_seq_0, prior_snd_una) &&
1238	    after(end_seq_0, tp->undo_marker))
1239		tp->undo_retrans--;
1240
1241	return dup_sack;
1242}
1243
1244struct tcp_sacktag_state {
1245	int reord;
1246	int fack_count;
1247	int flag;
1248};
1249
1250/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1251 * the incoming SACK may not exactly match but we can find smaller MSS
1252 * aligned portion of it that matches. Therefore we might need to fragment
1253 * which may fail and creates some hassle (caller must handle error case
1254 * returns).
1255 *
1256 * FIXME: this could be merged to shift decision code
1257 */
1258static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1259				 u32 start_seq, u32 end_seq)
1260{
1261	int in_sack, err;
1262	unsigned int pkt_len;
1263	unsigned int mss;
1264
1265	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1266		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1267
1268	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1269	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1270		mss = tcp_skb_mss(skb);
1271		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1272
1273		if (!in_sack) {
1274			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1275			if (pkt_len < mss)
1276				pkt_len = mss;
1277		} else {
1278			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1279			if (pkt_len < mss)
1280				return -EINVAL;
1281		}
1282
1283		/* Round if necessary so that SACKs cover only full MSSes
1284		 * and/or the remaining small portion (if present)
1285		 */
1286		if (pkt_len > mss) {
1287			unsigned int new_len = (pkt_len / mss) * mss;
1288			if (!in_sack && new_len < pkt_len) {
1289				new_len += mss;
1290				if (new_len > skb->len)
1291					return 0;
1292			}
1293			pkt_len = new_len;
1294		}
1295		err = tcp_fragment(sk, skb, pkt_len, mss);
1296		if (err < 0)
1297			return err;
1298	}
1299
1300	return in_sack;
1301}
1302
1303static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1304			  struct tcp_sacktag_state *state,
1305			  int dup_sack, int pcount)
1306{
1307	struct tcp_sock *tp = tcp_sk(sk);
1308	u8 sacked = TCP_SKB_CB(skb)->sacked;
1309	int fack_count = state->fack_count;
1310
1311	/* Account D-SACK for retransmitted packet. */
1312	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1313		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1314			tp->undo_retrans--;
1315		if (sacked & TCPCB_SACKED_ACKED)
1316			state->reord = min(fack_count, state->reord);
1317	}
1318
1319	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1320	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1321		return sacked;
1322
1323	if (!(sacked & TCPCB_SACKED_ACKED)) {
1324		if (sacked & TCPCB_SACKED_RETRANS) {
1325			/* If the segment is not tagged as lost,
1326			 * we do not clear RETRANS, believing
1327			 * that retransmission is still in flight.
1328			 */
1329			if (sacked & TCPCB_LOST) {
1330				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1331				tp->lost_out -= pcount;
1332				tp->retrans_out -= pcount;
1333			}
1334		} else {
1335			if (!(sacked & TCPCB_RETRANS)) {
1336				/* New sack for not retransmitted frame,
1337				 * which was in hole. It is reordering.
1338				 */
1339				if (before(TCP_SKB_CB(skb)->seq,
1340					   tcp_highest_sack_seq(tp)))
1341					state->reord = min(fack_count,
1342							   state->reord);
1343
1344				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1345				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1346					state->flag |= FLAG_ONLY_ORIG_SACKED;
1347			}
1348
1349			if (sacked & TCPCB_LOST) {
1350				sacked &= ~TCPCB_LOST;
1351				tp->lost_out -= pcount;
1352			}
1353		}
1354
1355		sacked |= TCPCB_SACKED_ACKED;
1356		state->flag |= FLAG_DATA_SACKED;
1357		tp->sacked_out += pcount;
1358
1359		fack_count += pcount;
1360
1361		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1362		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1363		    before(TCP_SKB_CB(skb)->seq,
1364			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1365			tp->lost_cnt_hint += pcount;
1366
1367		if (fack_count > tp->fackets_out)
1368			tp->fackets_out = fack_count;
1369	}
1370
1371	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1372	 * frames and clear it. undo_retrans is decreased above, L|R frames
1373	 * are accounted above as well.
1374	 */
1375	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1376		sacked &= ~TCPCB_SACKED_RETRANS;
1377		tp->retrans_out -= pcount;
1378	}
1379
1380	return sacked;
1381}
1382
1383static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1384			   struct tcp_sacktag_state *state,
1385			   unsigned int pcount, int shifted, int mss,
1386			   int dup_sack)
1387{
1388	struct tcp_sock *tp = tcp_sk(sk);
1389	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1390
1391	BUG_ON(!pcount);
1392
1393	/* Tweak before seqno plays */
1394	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1395	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1396		tp->lost_cnt_hint += pcount;
1397
1398	TCP_SKB_CB(prev)->end_seq += shifted;
1399	TCP_SKB_CB(skb)->seq += shifted;
1400
1401	skb_shinfo(prev)->gso_segs += pcount;
1402	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1403	skb_shinfo(skb)->gso_segs -= pcount;
1404
1405	/* When we're adding to gso_segs == 1, gso_size will be zero,
1406	 * in theory this shouldn't be necessary but as long as DSACK
1407	 * code can come after this skb later on it's better to keep
1408	 * setting gso_size to something.
1409	 */
1410	if (!skb_shinfo(prev)->gso_size) {
1411		skb_shinfo(prev)->gso_size = mss;
1412		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1413	}
1414
1415	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1416	if (skb_shinfo(skb)->gso_segs <= 1) {
1417		skb_shinfo(skb)->gso_size = 0;
1418		skb_shinfo(skb)->gso_type = 0;
1419	}
1420
1421	/* We discard results */
1422	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1423
1424	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1425	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1426
1427	if (skb->len > 0) {
1428		BUG_ON(!tcp_skb_pcount(skb));
1429		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1430		return 0;
1431	}
1432
1433	/* Whole SKB was eaten :-) */
1434
1435	if (skb == tp->retransmit_skb_hint)
1436		tp->retransmit_skb_hint = prev;
1437	if (skb == tp->scoreboard_skb_hint)
1438		tp->scoreboard_skb_hint = prev;
1439	if (skb == tp->lost_skb_hint) {
1440		tp->lost_skb_hint = prev;
1441		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1442	}
1443
1444	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1445	if (skb == tcp_highest_sack(sk))
1446		tcp_advance_highest_sack(sk, skb);
1447
1448	tcp_unlink_write_queue(skb, sk);
1449	sk_wmem_free_skb(sk, skb);
1450
1451	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1452
1453	return 1;
1454}
1455
1456/* I wish gso_size would have a bit more sane initialization than
1457 * something-or-zero which complicates things
1458 */
1459static int tcp_skb_seglen(struct sk_buff *skb)
1460{
1461	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1462}
1463
1464/* Shifting pages past head area doesn't work */
1465static int skb_can_shift(struct sk_buff *skb)
1466{
1467	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1468}
1469
1470/* Try collapsing SACK blocks spanning across multiple skbs to a single
1471 * skb.
1472 */
1473static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1474					  struct tcp_sacktag_state *state,
1475					  u32 start_seq, u32 end_seq,
1476					  int dup_sack)
1477{
1478	struct tcp_sock *tp = tcp_sk(sk);
1479	struct sk_buff *prev;
1480	int mss;
1481	int pcount = 0;
1482	int len;
1483	int in_sack;
1484
1485	if (!sk_can_gso(sk))
1486		goto fallback;
1487
1488	/* Normally R but no L won't result in plain S */
1489	if (!dup_sack &&
1490	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1491		goto fallback;
1492	if (!skb_can_shift(skb))
1493		goto fallback;
1494	/* This frame is about to be dropped (was ACKed). */
1495	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1496		goto fallback;
1497
1498	/* Can only happen with delayed DSACK + discard craziness */
1499	if (unlikely(skb == tcp_write_queue_head(sk)))
1500		goto fallback;
1501	prev = tcp_write_queue_prev(sk, skb);
1502
1503	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1504		goto fallback;
1505
1506	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1507		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1508
1509	if (in_sack) {
1510		len = skb->len;
1511		pcount = tcp_skb_pcount(skb);
1512		mss = tcp_skb_seglen(skb);
1513
1514		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1515		 * drop this restriction as unnecessary
1516		 */
1517		if (mss != tcp_skb_seglen(prev))
1518			goto fallback;
1519	} else {
1520		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1521			goto noop;
1522		/* CHECKME: This is non-MSS split case only?, this will
1523		 * cause skipped skbs due to advancing loop btw, original
1524		 * has that feature too
1525		 */
1526		if (tcp_skb_pcount(skb) <= 1)
1527			goto noop;
1528
1529		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1530		if (!in_sack) {
1531			/* TODO: head merge to next could be attempted here
1532			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1533			 * though it might not be worth of the additional hassle
1534			 *
1535			 * ...we can probably just fallback to what was done
1536			 * previously. We could try merging non-SACKed ones
1537			 * as well but it probably isn't going to buy off
1538			 * because later SACKs might again split them, and
1539			 * it would make skb timestamp tracking considerably
1540			 * harder problem.
1541			 */
1542			goto fallback;
1543		}
1544
1545		len = end_seq - TCP_SKB_CB(skb)->seq;
1546		BUG_ON(len < 0);
1547		BUG_ON(len > skb->len);
1548
1549		/* MSS boundaries should be honoured or else pcount will
1550		 * severely break even though it makes things bit trickier.
1551		 * Optimize common case to avoid most of the divides
1552		 */
1553		mss = tcp_skb_mss(skb);
1554
1555		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1556		 * drop this restriction as unnecessary
1557		 */
1558		if (mss != tcp_skb_seglen(prev))
1559			goto fallback;
1560
1561		if (len == mss) {
1562			pcount = 1;
1563		} else if (len < mss) {
1564			goto noop;
1565		} else {
1566			pcount = len / mss;
1567			len = pcount * mss;
1568		}
1569	}
1570
1571	if (!skb_shift(prev, skb, len))
1572		goto fallback;
1573	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1574		goto out;
1575
1576	/* Hole filled allows collapsing with the next as well, this is very
1577	 * useful when hole on every nth skb pattern happens
1578	 */
1579	if (prev == tcp_write_queue_tail(sk))
1580		goto out;
1581	skb = tcp_write_queue_next(sk, prev);
1582
1583	if (!skb_can_shift(skb) ||
1584	    (skb == tcp_send_head(sk)) ||
1585	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1586	    (mss != tcp_skb_seglen(skb)))
1587		goto out;
1588
1589	len = skb->len;
1590	if (skb_shift(prev, skb, len)) {
1591		pcount += tcp_skb_pcount(skb);
1592		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1593	}
1594
1595out:
1596	state->fack_count += pcount;
1597	return prev;
1598
1599noop:
1600	return skb;
1601
1602fallback:
1603	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1604	return NULL;
1605}
1606
1607static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1608					struct tcp_sack_block *next_dup,
1609					struct tcp_sacktag_state *state,
1610					u32 start_seq, u32 end_seq,
1611					int dup_sack_in)
1612{
1613	struct tcp_sock *tp = tcp_sk(sk);
1614	struct sk_buff *tmp;
1615
1616	tcp_for_write_queue_from(skb, sk) {
1617		int in_sack = 0;
1618		int dup_sack = dup_sack_in;
1619
1620		if (skb == tcp_send_head(sk))
1621			break;
1622
1623		/* queue is in-order => we can short-circuit the walk early */
1624		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1625			break;
1626
1627		if ((next_dup != NULL) &&
1628		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1629			in_sack = tcp_match_skb_to_sack(sk, skb,
1630							next_dup->start_seq,
1631							next_dup->end_seq);
1632			if (in_sack > 0)
1633				dup_sack = 1;
1634		}
1635
1636		/* skb reference here is a bit tricky to get right, since
1637		 * shifting can eat and free both this skb and the next,
1638		 * so not even _safe variant of the loop is enough.
1639		 */
1640		if (in_sack <= 0) {
1641			tmp = tcp_shift_skb_data(sk, skb, state,
1642						 start_seq, end_seq, dup_sack);
1643			if (tmp != NULL) {
1644				if (tmp != skb) {
1645					skb = tmp;
1646					continue;
1647				}
1648
1649				in_sack = 0;
1650			} else {
1651				in_sack = tcp_match_skb_to_sack(sk, skb,
1652								start_seq,
1653								end_seq);
1654			}
1655		}
1656
1657		if (unlikely(in_sack < 0))
1658			break;
1659
1660		if (in_sack) {
1661			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1662								  state,
1663								  dup_sack,
1664								  tcp_skb_pcount(skb));
1665
1666			if (!before(TCP_SKB_CB(skb)->seq,
1667				    tcp_highest_sack_seq(tp)))
1668				tcp_advance_highest_sack(sk, skb);
1669		}
1670
1671		state->fack_count += tcp_skb_pcount(skb);
1672	}
1673	return skb;
1674}
1675
1676/* Avoid all extra work that is being done by sacktag while walking in
1677 * a normal way
1678 */
1679static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1680					struct tcp_sacktag_state *state,
1681					u32 skip_to_seq)
1682{
1683	tcp_for_write_queue_from(skb, sk) {
1684		if (skb == tcp_send_head(sk))
1685			break;
1686
1687		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1688			break;
1689
1690		state->fack_count += tcp_skb_pcount(skb);
1691	}
1692	return skb;
1693}
1694
1695static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1696						struct sock *sk,
1697						struct tcp_sack_block *next_dup,
1698						struct tcp_sacktag_state *state,
1699						u32 skip_to_seq)
1700{
1701	if (next_dup == NULL)
1702		return skb;
1703
1704	if (before(next_dup->start_seq, skip_to_seq)) {
1705		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1706		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1707				       next_dup->start_seq, next_dup->end_seq,
1708				       1);
1709	}
1710
1711	return skb;
1712}
1713
1714static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1715{
1716	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1717}
1718
1719static int
1720tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1721			u32 prior_snd_una)
1722{
1723	const struct inet_connection_sock *icsk = inet_csk(sk);
1724	struct tcp_sock *tp = tcp_sk(sk);
1725	unsigned char *ptr = (skb_transport_header(ack_skb) +
1726			      TCP_SKB_CB(ack_skb)->sacked);
1727	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1728	struct tcp_sack_block sp[TCP_NUM_SACKS];
1729	struct tcp_sack_block *cache;
1730	struct tcp_sacktag_state state;
1731	struct sk_buff *skb;
1732	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1733	int used_sacks;
1734	int found_dup_sack = 0;
1735	int i, j;
1736	int first_sack_index;
1737
1738	state.flag = 0;
1739	state.reord = tp->packets_out;
1740
1741	if (!tp->sacked_out) {
1742		if (WARN_ON(tp->fackets_out))
1743			tp->fackets_out = 0;
1744		tcp_highest_sack_reset(sk);
1745	}
1746
1747	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1748					 num_sacks, prior_snd_una);
1749	if (found_dup_sack)
1750		state.flag |= FLAG_DSACKING_ACK;
1751
1752	/* Eliminate too old ACKs, but take into
1753	 * account more or less fresh ones, they can
1754	 * contain valid SACK info.
1755	 */
1756	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1757		return 0;
1758
1759	if (!tp->packets_out)
1760		goto out;
1761
1762	used_sacks = 0;
1763	first_sack_index = 0;
1764	for (i = 0; i < num_sacks; i++) {
1765		int dup_sack = !i && found_dup_sack;
1766
1767		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1768		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1769
1770		if (!tcp_is_sackblock_valid(tp, dup_sack,
1771					    sp[used_sacks].start_seq,
1772					    sp[used_sacks].end_seq)) {
1773			int mib_idx;
1774
1775			if (dup_sack) {
1776				if (!tp->undo_marker)
1777					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1778				else
1779					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1780			} else {
1781				/* Don't count olds caused by ACK reordering */
1782				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1783				    !after(sp[used_sacks].end_seq, tp->snd_una))
1784					continue;
1785				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1786			}
1787
1788			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1789			if (i == 0)
1790				first_sack_index = -1;
1791			continue;
1792		}
1793
1794		/* Ignore very old stuff early */
1795		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1796			continue;
1797
1798		used_sacks++;
1799	}
1800
1801	/* order SACK blocks to allow in order walk of the retrans queue */
1802	for (i = used_sacks - 1; i > 0; i--) {
1803		for (j = 0; j < i; j++) {
1804			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1805				struct tcp_sack_block tmp;
1806
1807				tmp = sp[j];
1808				sp[j] = sp[j + 1];
1809				sp[j + 1] = tmp;
1810
1811				/* Track where the first SACK block goes to */
1812				if (j == first_sack_index)
1813					first_sack_index = j + 1;
1814			}
1815		}
1816	}
1817
1818	skb = tcp_write_queue_head(sk);
1819	state.fack_count = 0;
1820	i = 0;
1821
1822	if (!tp->sacked_out) {
1823		/* It's already past, so skip checking against it */
1824		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1825	} else {
1826		cache = tp->recv_sack_cache;
1827		/* Skip empty blocks in at head of the cache */
1828		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1829		       !cache->end_seq)
1830			cache++;
1831	}
1832
1833	while (i < used_sacks) {
1834		u32 start_seq = sp[i].start_seq;
1835		u32 end_seq = sp[i].end_seq;
1836		int dup_sack = (found_dup_sack && (i == first_sack_index));
1837		struct tcp_sack_block *next_dup = NULL;
1838
1839		if (found_dup_sack && ((i + 1) == first_sack_index))
1840			next_dup = &sp[i + 1];
1841
1842		/* Event "B" in the comment above. */
1843		if (after(end_seq, tp->high_seq))
1844			state.flag |= FLAG_DATA_LOST;
1845
1846		/* Skip too early cached blocks */
1847		while (tcp_sack_cache_ok(tp, cache) &&
1848		       !before(start_seq, cache->end_seq))
1849			cache++;
1850
1851		/* Can skip some work by looking recv_sack_cache? */
1852		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1853		    after(end_seq, cache->start_seq)) {
1854
1855			/* Head todo? */
1856			if (before(start_seq, cache->start_seq)) {
1857				skb = tcp_sacktag_skip(skb, sk, &state,
1858						       start_seq);
1859				skb = tcp_sacktag_walk(skb, sk, next_dup,
1860						       &state,
1861						       start_seq,
1862						       cache->start_seq,
1863						       dup_sack);
1864			}
1865
1866			/* Rest of the block already fully processed? */
1867			if (!after(end_seq, cache->end_seq))
1868				goto advance_sp;
1869
1870			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1871						       &state,
1872						       cache->end_seq);
1873
1874			/* ...tail remains todo... */
1875			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1876				/* ...but better entrypoint exists! */
1877				skb = tcp_highest_sack(sk);
1878				if (skb == NULL)
1879					break;
1880				state.fack_count = tp->fackets_out;
1881				cache++;
1882				goto walk;
1883			}
1884
1885			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1886			/* Check overlap against next cached too (past this one already) */
1887			cache++;
1888			continue;
1889		}
1890
1891		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1892			skb = tcp_highest_sack(sk);
1893			if (skb == NULL)
1894				break;
1895			state.fack_count = tp->fackets_out;
1896		}
1897		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1898
1899walk:
1900		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1901				       start_seq, end_seq, dup_sack);
1902
1903advance_sp:
1904		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1905		 * due to in-order walk
1906		 */
1907		if (after(end_seq, tp->frto_highmark))
1908			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1909
1910		i++;
1911	}
1912
1913	/* Clear the head of the cache sack blocks so we can skip it next time */
1914	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1915		tp->recv_sack_cache[i].start_seq = 0;
1916		tp->recv_sack_cache[i].end_seq = 0;
1917	}
1918	for (j = 0; j < used_sacks; j++)
1919		tp->recv_sack_cache[i++] = sp[j];
1920
1921	tcp_mark_lost_retrans(sk);
1922
1923	tcp_verify_left_out(tp);
1924
1925	if ((state.reord < tp->fackets_out) &&
1926	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1927	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1928		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1929
1930out:
1931
1932#if FASTRETRANS_DEBUG > 0
1933	WARN_ON((int)tp->sacked_out < 0);
1934	WARN_ON((int)tp->lost_out < 0);
1935	WARN_ON((int)tp->retrans_out < 0);
1936	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1937#endif
1938	return state.flag;
1939}
1940
1941/* Limits sacked_out so that sum with lost_out isn't ever larger than
1942 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1943 */
1944static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1945{
1946	u32 holes;
1947
1948	holes = max(tp->lost_out, 1U);
1949	holes = min(holes, tp->packets_out);
1950
1951	if ((tp->sacked_out + holes) > tp->packets_out) {
1952		tp->sacked_out = tp->packets_out - holes;
1953		return 1;
1954	}
1955	return 0;
1956}
1957
1958/* If we receive more dupacks than we expected counting segments
1959 * in assumption of absent reordering, interpret this as reordering.
1960 * The only another reason could be bug in receiver TCP.
1961 */
1962static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1963{
1964	struct tcp_sock *tp = tcp_sk(sk);
1965	if (tcp_limit_reno_sacked(tp))
1966		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1967}
1968
1969/* Emulate SACKs for SACKless connection: account for a new dupack. */
1970
1971static void tcp_add_reno_sack(struct sock *sk)
1972{
1973	struct tcp_sock *tp = tcp_sk(sk);
1974	tp->sacked_out++;
1975	tcp_check_reno_reordering(sk, 0);
1976	tcp_verify_left_out(tp);
1977}
1978
1979/* Account for ACK, ACKing some data in Reno Recovery phase. */
1980
1981static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1982{
1983	struct tcp_sock *tp = tcp_sk(sk);
1984
1985	if (acked > 0) {
1986		/* One ACK acked hole. The rest eat duplicate ACKs. */
1987		if (acked - 1 >= tp->sacked_out)
1988			tp->sacked_out = 0;
1989		else
1990			tp->sacked_out -= acked - 1;
1991	}
1992	tcp_check_reno_reordering(sk, acked);
1993	tcp_verify_left_out(tp);
1994}
1995
1996static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1997{
1998	tp->sacked_out = 0;
1999}
2000
2001static int tcp_is_sackfrto(const struct tcp_sock *tp)
2002{
2003	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2004}
2005
2006/* F-RTO can only be used if TCP has never retransmitted anything other than
2007 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2008 */
2009int tcp_use_frto(struct sock *sk)
2010{
2011	const struct tcp_sock *tp = tcp_sk(sk);
2012	const struct inet_connection_sock *icsk = inet_csk(sk);
2013	struct sk_buff *skb;
2014
2015	if (!sysctl_tcp_frto)
2016		return 0;
2017
2018	/* MTU probe and F-RTO won't really play nicely along currently */
2019	if (icsk->icsk_mtup.probe_size)
2020		return 0;
2021
2022	if (tcp_is_sackfrto(tp))
2023		return 1;
2024
2025	/* Avoid expensive walking of rexmit queue if possible */
2026	if (tp->retrans_out > 1)
2027		return 0;
2028
2029	skb = tcp_write_queue_head(sk);
2030	if (tcp_skb_is_last(sk, skb))
2031		return 1;
2032	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2033	tcp_for_write_queue_from(skb, sk) {
2034		if (skb == tcp_send_head(sk))
2035			break;
2036		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2037			return 0;
2038		/* Short-circuit when first non-SACKed skb has been checked */
2039		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2040			break;
2041	}
2042	return 1;
2043}
2044
2045/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2046 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2047 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2048 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2049 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2050 * bits are handled if the Loss state is really to be entered (in
2051 * tcp_enter_frto_loss).
2052 *
2053 * Do like tcp_enter_loss() would; when RTO expires the second time it
2054 * does:
2055 *  "Reduce ssthresh if it has not yet been made inside this window."
2056 */
2057void tcp_enter_frto(struct sock *sk)
2058{
2059	const struct inet_connection_sock *icsk = inet_csk(sk);
2060	struct tcp_sock *tp = tcp_sk(sk);
2061	struct sk_buff *skb;
2062
2063	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2064	    tp->snd_una == tp->high_seq ||
2065	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2066	     !icsk->icsk_retransmits)) {
2067		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2068		/* Our state is too optimistic in ssthresh() call because cwnd
2069		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2070		 * recovery has not yet completed. Pattern would be this: RTO,
2071		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2072		 * up here twice).
2073		 * RFC4138 should be more specific on what to do, even though
2074		 * RTO is quite unlikely to occur after the first Cumulative ACK
2075		 * due to back-off and complexity of triggering events ...
2076		 */
2077		if (tp->frto_counter) {
2078			u32 stored_cwnd;
2079			stored_cwnd = tp->snd_cwnd;
2080			tp->snd_cwnd = 2;
2081			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2082			tp->snd_cwnd = stored_cwnd;
2083		} else {
2084			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2085		}
2086		/* ... in theory, cong.control module could do "any tricks" in
2087		 * ssthresh(), which means that ca_state, lost bits and lost_out
2088		 * counter would have to be faked before the call occurs. We
2089		 * consider that too expensive, unlikely and hacky, so modules
2090		 * using these in ssthresh() must deal these incompatibility
2091		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2092		 */
2093		tcp_ca_event(sk, CA_EVENT_FRTO);
2094	}
2095
2096	tp->undo_marker = tp->snd_una;
2097	tp->undo_retrans = 0;
2098
2099	skb = tcp_write_queue_head(sk);
2100	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2101		tp->undo_marker = 0;
2102	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2103		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2104		tp->retrans_out -= tcp_skb_pcount(skb);
2105	}
2106	tcp_verify_left_out(tp);
2107
2108	/* Too bad if TCP was application limited */
2109	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2110
2111	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2112	 * The last condition is necessary at least in tp->frto_counter case.
2113	 */
2114	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2115	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2116	    after(tp->high_seq, tp->snd_una)) {
2117		tp->frto_highmark = tp->high_seq;
2118	} else {
2119		tp->frto_highmark = tp->snd_nxt;
2120	}
2121	tcp_set_ca_state(sk, TCP_CA_Disorder);
2122	tp->high_seq = tp->snd_nxt;
2123	tp->frto_counter = 1;
2124}
2125
2126/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2127 * which indicates that we should follow the traditional RTO recovery,
2128 * i.e. mark everything lost and do go-back-N retransmission.
2129 */
2130static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2131{
2132	struct tcp_sock *tp = tcp_sk(sk);
2133	struct sk_buff *skb;
2134
2135	tp->lost_out = 0;
2136	tp->retrans_out = 0;
2137	if (tcp_is_reno(tp))
2138		tcp_reset_reno_sack(tp);
2139
2140	tcp_for_write_queue(skb, sk) {
2141		if (skb == tcp_send_head(sk))
2142			break;
2143
2144		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2145		/*
2146		 * Count the retransmission made on RTO correctly (only when
2147		 * waiting for the first ACK and did not get it)...
2148		 */
2149		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2150			/* For some reason this R-bit might get cleared? */
2151			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2152				tp->retrans_out += tcp_skb_pcount(skb);
2153			/* ...enter this if branch just for the first segment */
2154			flag |= FLAG_DATA_ACKED;
2155		} else {
2156			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2157				tp->undo_marker = 0;
2158			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2159		}
2160
2161		/* Marking forward transmissions that were made after RTO lost
2162		 * can cause unnecessary retransmissions in some scenarios,
2163		 * SACK blocks will mitigate that in some but not in all cases.
2164		 * We used to not mark them but it was causing break-ups with
2165		 * receivers that do only in-order receival.
2166		 *
2167		 * TODO: we could detect presence of such receiver and select
2168		 * different behavior per flow.
2169		 */
2170		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2171			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2172			tp->lost_out += tcp_skb_pcount(skb);
2173			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2174		}
2175	}
2176	tcp_verify_left_out(tp);
2177
2178	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2179	tp->snd_cwnd_cnt = 0;
2180	tp->snd_cwnd_stamp = tcp_time_stamp;
2181	tp->frto_counter = 0;
2182	tp->bytes_acked = 0;
2183
2184	tp->reordering = min_t(unsigned int, tp->reordering,
2185			       sysctl_tcp_reordering);
2186	tcp_set_ca_state(sk, TCP_CA_Loss);
2187	tp->high_seq = tp->snd_nxt;
2188	TCP_ECN_queue_cwr(tp);
2189
2190	tcp_clear_all_retrans_hints(tp);
2191}
2192
2193static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2194{
2195	tp->retrans_out = 0;
2196	tp->lost_out = 0;
2197
2198	tp->undo_marker = 0;
2199	tp->undo_retrans = 0;
2200}
2201
2202void tcp_clear_retrans(struct tcp_sock *tp)
2203{
2204	tcp_clear_retrans_partial(tp);
2205
2206	tp->fackets_out = 0;
2207	tp->sacked_out = 0;
2208}
2209
2210/* Enter Loss state. If "how" is not zero, forget all SACK information
2211 * and reset tags completely, otherwise preserve SACKs. If receiver
2212 * dropped its ofo queue, we will know this due to reneging detection.
2213 */
2214void tcp_enter_loss(struct sock *sk, int how)
2215{
2216	const struct inet_connection_sock *icsk = inet_csk(sk);
2217	struct tcp_sock *tp = tcp_sk(sk);
2218	struct sk_buff *skb;
2219
2220	/* Reduce ssthresh if it has not yet been made inside this window. */
2221	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2222	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2223		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2224		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2225		tcp_ca_event(sk, CA_EVENT_LOSS);
2226	}
2227	tp->snd_cwnd	   = 1;
2228	tp->snd_cwnd_cnt   = 0;
2229	tp->snd_cwnd_stamp = tcp_time_stamp;
2230
2231	tp->bytes_acked = 0;
2232	tcp_clear_retrans_partial(tp);
2233
2234	if (tcp_is_reno(tp))
2235		tcp_reset_reno_sack(tp);
2236
2237	if (!how) {
2238		/* Push undo marker, if it was plain RTO and nothing
2239		 * was retransmitted. */
2240		tp->undo_marker = tp->snd_una;
2241	} else {
2242		tp->sacked_out = 0;
2243		tp->fackets_out = 0;
2244	}
2245	tcp_clear_all_retrans_hints(tp);
2246
2247	tcp_for_write_queue(skb, sk) {
2248		if (skb == tcp_send_head(sk))
2249			break;
2250
2251		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2252			tp->undo_marker = 0;
2253		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2254		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2255			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2256			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2257			tp->lost_out += tcp_skb_pcount(skb);
2258			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2259		}
2260	}
2261	tcp_verify_left_out(tp);
2262
2263	tp->reordering = min_t(unsigned int, tp->reordering,
2264			       sysctl_tcp_reordering);
2265	tcp_set_ca_state(sk, TCP_CA_Loss);
2266	tp->high_seq = tp->snd_nxt;
2267	TCP_ECN_queue_cwr(tp);
2268	/* Abort F-RTO algorithm if one is in progress */
2269	tp->frto_counter = 0;
2270}
2271
2272/* If ACK arrived pointing to a remembered SACK, it means that our
2273 * remembered SACKs do not reflect real state of receiver i.e.
2274 * receiver _host_ is heavily congested (or buggy).
2275 *
2276 * Do processing similar to RTO timeout.
2277 */
2278static int tcp_check_sack_reneging(struct sock *sk, int flag)
2279{
2280	if (flag & FLAG_SACK_RENEGING) {
2281		struct inet_connection_sock *icsk = inet_csk(sk);
2282		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2283
2284		tcp_enter_loss(sk, 1);
2285		icsk->icsk_retransmits++;
2286		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2287		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2288					  icsk->icsk_rto, TCP_RTO_MAX);
2289		return 1;
2290	}
2291	return 0;
2292}
2293
2294static inline int tcp_fackets_out(struct tcp_sock *tp)
2295{
2296	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2297}
2298
2299/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2300 * counter when SACK is enabled (without SACK, sacked_out is used for
2301 * that purpose).
2302 *
2303 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2304 * segments up to the highest received SACK block so far and holes in
2305 * between them.
2306 *
2307 * With reordering, holes may still be in flight, so RFC3517 recovery
2308 * uses pure sacked_out (total number of SACKed segments) even though
2309 * it violates the RFC that uses duplicate ACKs, often these are equal
2310 * but when e.g. out-of-window ACKs or packet duplication occurs,
2311 * they differ. Since neither occurs due to loss, TCP should really
2312 * ignore them.
2313 */
2314static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2315{
2316	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2317}
2318
2319static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2320{
2321	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2322}
2323
2324static inline int tcp_head_timedout(struct sock *sk)
2325{
2326	struct tcp_sock *tp = tcp_sk(sk);
2327
2328	return tp->packets_out &&
2329	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2330}
2331
2332/* Linux NewReno/SACK/FACK/ECN state machine.
2333 * --------------------------------------
2334 *
2335 * "Open"	Normal state, no dubious events, fast path.
2336 * "Disorder"   In all the respects it is "Open",
2337 *		but requires a bit more attention. It is entered when
2338 *		we see some SACKs or dupacks. It is split of "Open"
2339 *		mainly to move some processing from fast path to slow one.
2340 * "CWR"	CWND was reduced due to some Congestion Notification event.
2341 *		It can be ECN, ICMP source quench, local device congestion.
2342 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2343 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2344 *
2345 * tcp_fastretrans_alert() is entered:
2346 * - each incoming ACK, if state is not "Open"
2347 * - when arrived ACK is unusual, namely:
2348 *	* SACK
2349 *	* Duplicate ACK.
2350 *	* ECN ECE.
2351 *
2352 * Counting packets in flight is pretty simple.
2353 *
2354 *	in_flight = packets_out - left_out + retrans_out
2355 *
2356 *	packets_out is SND.NXT-SND.UNA counted in packets.
2357 *
2358 *	retrans_out is number of retransmitted segments.
2359 *
2360 *	left_out is number of segments left network, but not ACKed yet.
2361 *
2362 *		left_out = sacked_out + lost_out
2363 *
2364 *     sacked_out: Packets, which arrived to receiver out of order
2365 *		   and hence not ACKed. With SACKs this number is simply
2366 *		   amount of SACKed data. Even without SACKs
2367 *		   it is easy to give pretty reliable estimate of this number,
2368 *		   counting duplicate ACKs.
2369 *
2370 *       lost_out: Packets lost by network. TCP has no explicit
2371 *		   "loss notification" feedback from network (for now).
2372 *		   It means that this number can be only _guessed_.
2373 *		   Actually, it is the heuristics to predict lossage that
2374 *		   distinguishes different algorithms.
2375 *
2376 *	F.e. after RTO, when all the queue is considered as lost,
2377 *	lost_out = packets_out and in_flight = retrans_out.
2378 *
2379 *		Essentially, we have now two algorithms counting
2380 *		lost packets.
2381 *
2382 *		FACK: It is the simplest heuristics. As soon as we decided
2383 *		that something is lost, we decide that _all_ not SACKed
2384 *		packets until the most forward SACK are lost. I.e.
2385 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2386 *		It is absolutely correct estimate, if network does not reorder
2387 *		packets. And it loses any connection to reality when reordering
2388 *		takes place. We use FACK by default until reordering
2389 *		is suspected on the path to this destination.
2390 *
2391 *		NewReno: when Recovery is entered, we assume that one segment
2392 *		is lost (classic Reno). While we are in Recovery and
2393 *		a partial ACK arrives, we assume that one more packet
2394 *		is lost (NewReno). This heuristics are the same in NewReno
2395 *		and SACK.
2396 *
2397 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2398 *  deflation etc. CWND is real congestion window, never inflated, changes
2399 *  only according to classic VJ rules.
2400 *
2401 * Really tricky (and requiring careful tuning) part of algorithm
2402 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2403 * The first determines the moment _when_ we should reduce CWND and,
2404 * hence, slow down forward transmission. In fact, it determines the moment
2405 * when we decide that hole is caused by loss, rather than by a reorder.
2406 *
2407 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2408 * holes, caused by lost packets.
2409 *
2410 * And the most logically complicated part of algorithm is undo
2411 * heuristics. We detect false retransmits due to both too early
2412 * fast retransmit (reordering) and underestimated RTO, analyzing
2413 * timestamps and D-SACKs. When we detect that some segments were
2414 * retransmitted by mistake and CWND reduction was wrong, we undo
2415 * window reduction and abort recovery phase. This logic is hidden
2416 * inside several functions named tcp_try_undo_<something>.
2417 */
2418
2419/* This function decides, when we should leave Disordered state
2420 * and enter Recovery phase, reducing congestion window.
2421 *
2422 * Main question: may we further continue forward transmission
2423 * with the same cwnd?
2424 */
2425static int tcp_time_to_recover(struct sock *sk)
2426{
2427	struct tcp_sock *tp = tcp_sk(sk);
2428	__u32 packets_out;
2429
2430	/* Do not perform any recovery during F-RTO algorithm */
2431	if (tp->frto_counter)
2432		return 0;
2433
2434	/* Trick#1: The loss is proven. */
2435	if (tp->lost_out)
2436		return 1;
2437
2438	/* Not-A-Trick#2 : Classic rule... */
2439	if (tcp_dupack_heurestics(tp) > tp->reordering)
2440		return 1;
2441
2442	/* Trick#3 : when we use RFC2988 timer restart, fast
2443	 * retransmit can be triggered by timeout of queue head.
2444	 */
2445	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2446		return 1;
2447
2448	/* Trick#4: It is still not OK... But will it be useful to delay
2449	 * recovery more?
2450	 */
2451	packets_out = tp->packets_out;
2452	if (packets_out <= tp->reordering &&
2453	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2454	    !tcp_may_send_now(sk)) {
2455		/* We have nothing to send. This connection is limited
2456		 * either by receiver window or by application.
2457		 */
2458		return 1;
2459	}
2460
2461	return 0;
2462}
2463
2464/* New heuristics: it is possible only after we switched to restart timer
2465 * each time when something is ACKed. Hence, we can detect timed out packets
2466 * during fast retransmit without falling to slow start.
2467 *
2468 * Usefulness of this as is very questionable, since we should know which of
2469 * the segments is the next to timeout which is relatively expensive to find
2470 * in general case unless we add some data structure just for that. The
2471 * current approach certainly won't find the right one too often and when it
2472 * finally does find _something_ it usually marks large part of the window
2473 * right away (because a retransmission with a larger timestamp blocks the
2474 * loop from advancing). -ij
2475 */
2476static void tcp_timeout_skbs(struct sock *sk)
2477{
2478	struct tcp_sock *tp = tcp_sk(sk);
2479	struct sk_buff *skb;
2480
2481	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2482		return;
2483
2484	skb = tp->scoreboard_skb_hint;
2485	if (tp->scoreboard_skb_hint == NULL)
2486		skb = tcp_write_queue_head(sk);
2487
2488	tcp_for_write_queue_from(skb, sk) {
2489		if (skb == tcp_send_head(sk))
2490			break;
2491		if (!tcp_skb_timedout(sk, skb))
2492			break;
2493
2494		tcp_skb_mark_lost(tp, skb);
2495	}
2496
2497	tp->scoreboard_skb_hint = skb;
2498
2499	tcp_verify_left_out(tp);
2500}
2501
2502/* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2503 * is against sacked "cnt", otherwise it's against facked "cnt"
2504 */
2505static void tcp_mark_head_lost(struct sock *sk, int packets)
2506{
2507	struct tcp_sock *tp = tcp_sk(sk);
2508	struct sk_buff *skb;
2509	int cnt, oldcnt;
2510	int err;
2511	unsigned int mss;
2512
2513	WARN_ON(packets > tp->packets_out);
2514	if (tp->lost_skb_hint) {
2515		skb = tp->lost_skb_hint;
2516		cnt = tp->lost_cnt_hint;
2517	} else {
2518		skb = tcp_write_queue_head(sk);
2519		cnt = 0;
2520	}
2521
2522	tcp_for_write_queue_from(skb, sk) {
2523		if (skb == tcp_send_head(sk))
2524			break;
2525		/* TODO: do this better */
2526		/* this is not the most efficient way to do this... */
2527		tp->lost_skb_hint = skb;
2528		tp->lost_cnt_hint = cnt;
2529
2530		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2531			break;
2532
2533		oldcnt = cnt;
2534		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2535		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2536			cnt += tcp_skb_pcount(skb);
2537
2538		if (cnt > packets) {
2539			if (tcp_is_sack(tp) || (oldcnt >= packets))
2540				break;
2541
2542			mss = skb_shinfo(skb)->gso_size;
2543			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2544			if (err < 0)
2545				break;
2546			cnt = packets;
2547		}
2548
2549		tcp_skb_mark_lost(tp, skb);
2550	}
2551	tcp_verify_left_out(tp);
2552}
2553
2554/* Account newly detected lost packet(s) */
2555
2556static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2557{
2558	struct tcp_sock *tp = tcp_sk(sk);
2559
2560	if (tcp_is_reno(tp)) {
2561		tcp_mark_head_lost(sk, 1);
2562	} else if (tcp_is_fack(tp)) {
2563		int lost = tp->fackets_out - tp->reordering;
2564		if (lost <= 0)
2565			lost = 1;
2566		tcp_mark_head_lost(sk, lost);
2567	} else {
2568		int sacked_upto = tp->sacked_out - tp->reordering;
2569		if (sacked_upto < fast_rexmit)
2570			sacked_upto = fast_rexmit;
2571		tcp_mark_head_lost(sk, sacked_upto);
2572	}
2573
2574	tcp_timeout_skbs(sk);
2575}
2576
2577/* CWND moderation, preventing bursts due to too big ACKs
2578 * in dubious situations.
2579 */
2580static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2581{
2582	tp->snd_cwnd = min(tp->snd_cwnd,
2583			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2584	tp->snd_cwnd_stamp = tcp_time_stamp;
2585}
2586
2587/* Lower bound on congestion window is slow start threshold
2588 * unless congestion avoidance choice decides to overide it.
2589 */
2590static inline u32 tcp_cwnd_min(const struct sock *sk)
2591{
2592	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2593
2594	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2595}
2596
2597/* Decrease cwnd each second ack. */
2598static void tcp_cwnd_down(struct sock *sk, int flag)
2599{
2600	struct tcp_sock *tp = tcp_sk(sk);
2601	int decr = tp->snd_cwnd_cnt + 1;
2602
2603	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2604	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2605		tp->snd_cwnd_cnt = decr & 1;
2606		decr >>= 1;
2607
2608		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2609			tp->snd_cwnd -= decr;
2610
2611		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2612		tp->snd_cwnd_stamp = tcp_time_stamp;
2613	}
2614}
2615
2616/* Nothing was retransmitted or returned timestamp is less
2617 * than timestamp of the first retransmission.
2618 */
2619static inline int tcp_packet_delayed(struct tcp_sock *tp)
2620{
2621	return !tp->retrans_stamp ||
2622		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2623		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2624}
2625
2626/* Undo procedures. */
2627
2628#if FASTRETRANS_DEBUG > 1
2629static void DBGUNDO(struct sock *sk, const char *msg)
2630{
2631	struct tcp_sock *tp = tcp_sk(sk);
2632	struct inet_sock *inet = inet_sk(sk);
2633
2634	if (sk->sk_family == AF_INET) {
2635		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2636		       msg,
2637		       &inet->daddr, ntohs(inet->dport),
2638		       tp->snd_cwnd, tcp_left_out(tp),
2639		       tp->snd_ssthresh, tp->prior_ssthresh,
2640		       tp->packets_out);
2641	}
2642#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2643	else if (sk->sk_family == AF_INET6) {
2644		struct ipv6_pinfo *np = inet6_sk(sk);
2645		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2646		       msg,
2647		       &np->daddr, ntohs(inet->dport),
2648		       tp->snd_cwnd, tcp_left_out(tp),
2649		       tp->snd_ssthresh, tp->prior_ssthresh,
2650		       tp->packets_out);
2651	}
2652#endif
2653}
2654#else
2655#define DBGUNDO(x...) do { } while (0)
2656#endif
2657
2658static void tcp_undo_cwr(struct sock *sk, const int undo)
2659{
2660	struct tcp_sock *tp = tcp_sk(sk);
2661
2662	if (tp->prior_ssthresh) {
2663		const struct inet_connection_sock *icsk = inet_csk(sk);
2664
2665		if (icsk->icsk_ca_ops->undo_cwnd)
2666			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2667		else
2668			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2669
2670		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2671			tp->snd_ssthresh = tp->prior_ssthresh;
2672			TCP_ECN_withdraw_cwr(tp);
2673		}
2674	} else {
2675		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2676	}
2677	tcp_moderate_cwnd(tp);
2678	tp->snd_cwnd_stamp = tcp_time_stamp;
2679}
2680
2681static inline int tcp_may_undo(struct tcp_sock *tp)
2682{
2683	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2684}
2685
2686/* People celebrate: "We love our President!" */
2687static int tcp_try_undo_recovery(struct sock *sk)
2688{
2689	struct tcp_sock *tp = tcp_sk(sk);
2690
2691	if (tcp_may_undo(tp)) {
2692		int mib_idx;
2693
2694		/* Happy end! We did not retransmit anything
2695		 * or our original transmission succeeded.
2696		 */
2697		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2698		tcp_undo_cwr(sk, 1);
2699		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2700			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2701		else
2702			mib_idx = LINUX_MIB_TCPFULLUNDO;
2703
2704		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2705		tp->undo_marker = 0;
2706	}
2707	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2708		/* Hold old state until something *above* high_seq
2709		 * is ACKed. For Reno it is MUST to prevent false
2710		 * fast retransmits (RFC2582). SACK TCP is safe. */
2711		tcp_moderate_cwnd(tp);
2712		return 1;
2713	}
2714	tcp_set_ca_state(sk, TCP_CA_Open);
2715	return 0;
2716}
2717
2718/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2719static void tcp_try_undo_dsack(struct sock *sk)
2720{
2721	struct tcp_sock *tp = tcp_sk(sk);
2722
2723	if (tp->undo_marker && !tp->undo_retrans) {
2724		DBGUNDO(sk, "D-SACK");
2725		tcp_undo_cwr(sk, 1);
2726		tp->undo_marker = 0;
2727		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2728	}
2729}
2730
2731/* Undo during fast recovery after partial ACK. */
2732
2733static int tcp_try_undo_partial(struct sock *sk, int acked)
2734{
2735	struct tcp_sock *tp = tcp_sk(sk);
2736	/* Partial ACK arrived. Force Hoe's retransmit. */
2737	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2738
2739	if (tcp_may_undo(tp)) {
2740		/* Plain luck! Hole if filled with delayed
2741		 * packet, rather than with a retransmit.
2742		 */
2743		if (tp->retrans_out == 0)
2744			tp->retrans_stamp = 0;
2745
2746		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2747
2748		DBGUNDO(sk, "Hoe");
2749		tcp_undo_cwr(sk, 0);
2750		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2751
2752		/* So... Do not make Hoe's retransmit yet.
2753		 * If the first packet was delayed, the rest
2754		 * ones are most probably delayed as well.
2755		 */
2756		failed = 0;
2757	}
2758	return failed;
2759}
2760
2761/* Undo during loss recovery after partial ACK. */
2762static int tcp_try_undo_loss(struct sock *sk)
2763{
2764	struct tcp_sock *tp = tcp_sk(sk);
2765
2766	if (tcp_may_undo(tp)) {
2767		struct sk_buff *skb;
2768		tcp_for_write_queue(skb, sk) {
2769			if (skb == tcp_send_head(sk))
2770				break;
2771			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2772		}
2773
2774		tcp_clear_all_retrans_hints(tp);
2775
2776		DBGUNDO(sk, "partial loss");
2777		tp->lost_out = 0;
2778		tcp_undo_cwr(sk, 1);
2779		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2780		inet_csk(sk)->icsk_retransmits = 0;
2781		tp->undo_marker = 0;
2782		if (tcp_is_sack(tp))
2783			tcp_set_ca_state(sk, TCP_CA_Open);
2784		return 1;
2785	}
2786	return 0;
2787}
2788
2789static inline void tcp_complete_cwr(struct sock *sk)
2790{
2791	struct tcp_sock *tp = tcp_sk(sk);
2792	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2793	tp->snd_cwnd_stamp = tcp_time_stamp;
2794	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2795}
2796
2797static void tcp_try_keep_open(struct sock *sk)
2798{
2799	struct tcp_sock *tp = tcp_sk(sk);
2800	int state = TCP_CA_Open;
2801
2802	if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2803		state = TCP_CA_Disorder;
2804
2805	if (inet_csk(sk)->icsk_ca_state != state) {
2806		tcp_set_ca_state(sk, state);
2807		tp->high_seq = tp->snd_nxt;
2808	}
2809}
2810
2811static void tcp_try_to_open(struct sock *sk, int flag)
2812{
2813	struct tcp_sock *tp = tcp_sk(sk);
2814
2815	tcp_verify_left_out(tp);
2816
2817	if (!tp->frto_counter && tp->retrans_out == 0)
2818		tp->retrans_stamp = 0;
2819
2820	if (flag & FLAG_ECE)
2821		tcp_enter_cwr(sk, 1);
2822
2823	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2824		tcp_try_keep_open(sk);
2825		tcp_moderate_cwnd(tp);
2826	} else {
2827		tcp_cwnd_down(sk, flag);
2828	}
2829}
2830
2831static void tcp_mtup_probe_failed(struct sock *sk)
2832{
2833	struct inet_connection_sock *icsk = inet_csk(sk);
2834
2835	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2836	icsk->icsk_mtup.probe_size = 0;
2837}
2838
2839static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2840{
2841	struct tcp_sock *tp = tcp_sk(sk);
2842	struct inet_connection_sock *icsk = inet_csk(sk);
2843
2844	/* FIXME: breaks with very large cwnd */
2845	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2846	tp->snd_cwnd = tp->snd_cwnd *
2847		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2848		       icsk->icsk_mtup.probe_size;
2849	tp->snd_cwnd_cnt = 0;
2850	tp->snd_cwnd_stamp = tcp_time_stamp;
2851	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2852
2853	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2854	icsk->icsk_mtup.probe_size = 0;
2855	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2856}
2857
2858/* Do a simple retransmit without using the backoff mechanisms in
2859 * tcp_timer. This is used for path mtu discovery.
2860 * The socket is already locked here.
2861 */
2862void tcp_simple_retransmit(struct sock *sk)
2863{
2864	const struct inet_connection_sock *icsk = inet_csk(sk);
2865	struct tcp_sock *tp = tcp_sk(sk);
2866	struct sk_buff *skb;
2867	unsigned int mss = tcp_current_mss(sk, 0);
2868	u32 prior_lost = tp->lost_out;
2869
2870	tcp_for_write_queue(skb, sk) {
2871		if (skb == tcp_send_head(sk))
2872			break;
2873		if (tcp_skb_seglen(skb) > mss &&
2874		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2875			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2876				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2877				tp->retrans_out -= tcp_skb_pcount(skb);
2878			}
2879			tcp_skb_mark_lost_uncond_verify(tp, skb);
2880		}
2881	}
2882
2883	tcp_clear_retrans_hints_partial(tp);
2884
2885	if (prior_lost == tp->lost_out)
2886		return;
2887
2888	if (tcp_is_reno(tp))
2889		tcp_limit_reno_sacked(tp);
2890
2891	tcp_verify_left_out(tp);
2892
2893	/* Don't muck with the congestion window here.
2894	 * Reason is that we do not increase amount of _data_
2895	 * in network, but units changed and effective
2896	 * cwnd/ssthresh really reduced now.
2897	 */
2898	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2899		tp->high_seq = tp->snd_nxt;
2900		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2901		tp->prior_ssthresh = 0;
2902		tp->undo_marker = 0;
2903		tcp_set_ca_state(sk, TCP_CA_Loss);
2904	}
2905	tcp_xmit_retransmit_queue(sk);
2906}
2907
2908/* Process an event, which can update packets-in-flight not trivially.
2909 * Main goal of this function is to calculate new estimate for left_out,
2910 * taking into account both packets sitting in receiver's buffer and
2911 * packets lost by network.
2912 *
2913 * Besides that it does CWND reduction, when packet loss is detected
2914 * and changes state of machine.
2915 *
2916 * It does _not_ decide what to send, it is made in function
2917 * tcp_xmit_retransmit_queue().
2918 */
2919static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2920{
2921	struct inet_connection_sock *icsk = inet_csk(sk);
2922	struct tcp_sock *tp = tcp_sk(sk);
2923	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2924	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2925				    (tcp_fackets_out(tp) > tp->reordering));
2926	int fast_rexmit = 0, mib_idx;
2927
2928	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2929		tp->sacked_out = 0;
2930	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2931		tp->fackets_out = 0;
2932
2933	/* Now state machine starts.
2934	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2935	if (flag & FLAG_ECE)
2936		tp->prior_ssthresh = 0;
2937
2938	/* B. In all the states check for reneging SACKs. */
2939	if (tcp_check_sack_reneging(sk, flag))
2940		return;
2941
2942	/* C. Process data loss notification, provided it is valid. */
2943	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2944	    before(tp->snd_una, tp->high_seq) &&
2945	    icsk->icsk_ca_state != TCP_CA_Open &&
2946	    tp->fackets_out > tp->reordering) {
2947		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2948		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2949	}
2950
2951	/* D. Check consistency of the current state. */
2952	tcp_verify_left_out(tp);
2953
2954	/* E. Check state exit conditions. State can be terminated
2955	 *    when high_seq is ACKed. */
2956	if (icsk->icsk_ca_state == TCP_CA_Open) {
2957		WARN_ON(tp->retrans_out != 0);
2958		tp->retrans_stamp = 0;
2959	} else if (!before(tp->snd_una, tp->high_seq)) {
2960		switch (icsk->icsk_ca_state) {
2961		case TCP_CA_Loss:
2962			icsk->icsk_retransmits = 0;
2963			if (tcp_try_undo_recovery(sk))
2964				return;
2965			break;
2966
2967		case TCP_CA_CWR:
2968			/* CWR is to be held something *above* high_seq
2969			 * is ACKed for CWR bit to reach receiver. */
2970			if (tp->snd_una != tp->high_seq) {
2971				tcp_complete_cwr(sk);
2972				tcp_set_ca_state(sk, TCP_CA_Open);
2973			}
2974			break;
2975
2976		case TCP_CA_Disorder:
2977			tcp_try_undo_dsack(sk);
2978			if (!tp->undo_marker ||
2979			    /* For SACK case do not Open to allow to undo
2980			     * catching for all duplicate ACKs. */
2981			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2982				tp->undo_marker = 0;
2983				tcp_set_ca_state(sk, TCP_CA_Open);
2984			}
2985			break;
2986
2987		case TCP_CA_Recovery:
2988			if (tcp_is_reno(tp))
2989				tcp_reset_reno_sack(tp);
2990			if (tcp_try_undo_recovery(sk))
2991				return;
2992			tcp_complete_cwr(sk);
2993			break;
2994		}
2995	}
2996
2997	/* F. Process state. */
2998	switch (icsk->icsk_ca_state) {
2999	case TCP_CA_Recovery:
3000		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3001			if (tcp_is_reno(tp) && is_dupack)
3002				tcp_add_reno_sack(sk);
3003		} else
3004			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3005		break;
3006	case TCP_CA_Loss:
3007		if (flag & FLAG_DATA_ACKED)
3008			icsk->icsk_retransmits = 0;
3009		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3010			tcp_reset_reno_sack(tp);
3011		if (!tcp_try_undo_loss(sk)) {
3012			tcp_moderate_cwnd(tp);
3013			tcp_xmit_retransmit_queue(sk);
3014			return;
3015		}
3016		if (icsk->icsk_ca_state != TCP_CA_Open)
3017			return;
3018		/* Loss is undone; fall through to processing in Open state. */
3019	default:
3020		if (tcp_is_reno(tp)) {
3021			if (flag & FLAG_SND_UNA_ADVANCED)
3022				tcp_reset_reno_sack(tp);
3023			if (is_dupack)
3024				tcp_add_reno_sack(sk);
3025		}
3026
3027		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3028			tcp_try_undo_dsack(sk);
3029
3030		if (!tcp_time_to_recover(sk)) {
3031			tcp_try_to_open(sk, flag);
3032			return;
3033		}
3034
3035		/* MTU probe failure: don't reduce cwnd */
3036		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3037		    icsk->icsk_mtup.probe_size &&
3038		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3039			tcp_mtup_probe_failed(sk);
3040			/* Restores the reduction we did in tcp_mtup_probe() */
3041			tp->snd_cwnd++;
3042			tcp_simple_retransmit(sk);
3043			return;
3044		}
3045
3046		/* Otherwise enter Recovery state */
3047
3048		if (tcp_is_reno(tp))
3049			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3050		else
3051			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3052
3053		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3054
3055		tp->high_seq = tp->snd_nxt;
3056		tp->prior_ssthresh = 0;
3057		tp->undo_marker = tp->snd_una;
3058		tp->undo_retrans = tp->retrans_out;
3059
3060		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3061			if (!(flag & FLAG_ECE))
3062				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3063			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3064			TCP_ECN_queue_cwr(tp);
3065		}
3066
3067		tp->bytes_acked = 0;
3068		tp->snd_cwnd_cnt = 0;
3069		tcp_set_ca_state(sk, TCP_CA_Recovery);
3070		fast_rexmit = 1;
3071	}
3072
3073	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3074		tcp_update_scoreboard(sk, fast_rexmit);
3075	tcp_cwnd_down(sk, flag);
3076	tcp_xmit_retransmit_queue(sk);
3077}
3078
3079static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3080{
3081	tcp_rtt_estimator(sk, seq_rtt);
3082	tcp_set_rto(sk);
3083	inet_csk(sk)->icsk_backoff = 0;
3084}
3085
3086/* Read draft-ietf-tcplw-high-performance before mucking
3087 * with this code. (Supersedes RFC1323)
3088 */
3089static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3090{
3091	/* RTTM Rule: A TSecr value received in a segment is used to
3092	 * update the averaged RTT measurement only if the segment
3093	 * acknowledges some new data, i.e., only if it advances the
3094	 * left edge of the send window.
3095	 *
3096	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3097	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3098	 *
3099	 * Changed: reset backoff as soon as we see the first valid sample.
3100	 * If we do not, we get strongly overestimated rto. With timestamps
3101	 * samples are accepted even from very old segments: f.e., when rtt=1
3102	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3103	 * answer arrives rto becomes 120 seconds! If at least one of segments
3104	 * in window is lost... Voila.	 			--ANK (010210)
3105	 */
3106	struct tcp_sock *tp = tcp_sk(sk);
3107
3108	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3109}
3110
3111static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3112{
3113	/* We don't have a timestamp. Can only use
3114	 * packets that are not retransmitted to determine
3115	 * rtt estimates. Also, we must not reset the
3116	 * backoff for rto until we get a non-retransmitted
3117	 * packet. This allows us to deal with a situation
3118	 * where the network delay has increased suddenly.
3119	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3120	 */
3121
3122	if (flag & FLAG_RETRANS_DATA_ACKED)
3123		return;
3124
3125	tcp_valid_rtt_meas(sk, seq_rtt);
3126}
3127
3128static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3129				      const s32 seq_rtt)
3130{
3131	const struct tcp_sock *tp = tcp_sk(sk);
3132	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3133	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3134		tcp_ack_saw_tstamp(sk, flag);
3135	else if (seq_rtt >= 0)
3136		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3137}
3138
3139static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3140{
3141	const struct inet_connection_sock *icsk = inet_csk(sk);
3142	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3143	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3144}
3145
3146/* Restart timer after forward progress on connection.
3147 * RFC2988 recommends to restart timer to now+rto.
3148 */
3149static void tcp_rearm_rto(struct sock *sk)
3150{
3151	struct tcp_sock *tp = tcp_sk(sk);
3152
3153	if (!tp->packets_out) {
3154		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3155	} else {
3156		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3157					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3158	}
3159}
3160
3161/* If we get here, the whole TSO packet has not been acked. */
3162static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3163{
3164	struct tcp_sock *tp = tcp_sk(sk);
3165	u32 packets_acked;
3166
3167	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3168
3169	packets_acked = tcp_skb_pcount(skb);
3170	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3171		return 0;
3172	packets_acked -= tcp_skb_pcount(skb);
3173
3174	if (packets_acked) {
3175		BUG_ON(tcp_skb_pcount(skb) == 0);
3176		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3177	}
3178
3179	return packets_acked;
3180}
3181
3182/* Remove acknowledged frames from the retransmission queue. If our packet
3183 * is before the ack sequence we can discard it as it's confirmed to have
3184 * arrived at the other end.
3185 */
3186static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3187			       u32 prior_snd_una)
3188{
3189	struct tcp_sock *tp = tcp_sk(sk);
3190	const struct inet_connection_sock *icsk = inet_csk(sk);
3191	struct sk_buff *skb;
3192	u32 now = tcp_time_stamp;
3193	int fully_acked = 1;
3194	int flag = 0;
3195	u32 pkts_acked = 0;
3196	u32 reord = tp->packets_out;
3197	u32 prior_sacked = tp->sacked_out;
3198	s32 seq_rtt = -1;
3199	s32 ca_seq_rtt = -1;
3200	ktime_t last_ackt = net_invalid_timestamp();
3201
3202	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3203		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3204		u32 end_seq;
3205		u32 acked_pcount;
3206		u8 sacked = scb->sacked;
3207
3208		/* Determine how many packets and what bytes were acked, tso and else */
3209		if (after(scb->end_seq, tp->snd_una)) {
3210			if (tcp_skb_pcount(skb) == 1 ||
3211			    !after(tp->snd_una, scb->seq))
3212				break;
3213
3214			acked_pcount = tcp_tso_acked(sk, skb);
3215			if (!acked_pcount)
3216				break;
3217
3218			fully_acked = 0;
3219			end_seq = tp->snd_una;
3220		} else {
3221			acked_pcount = tcp_skb_pcount(skb);
3222			end_seq = scb->end_seq;
3223		}
3224
3225		/* MTU probing checks */
3226		if (fully_acked && icsk->icsk_mtup.probe_size &&
3227		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
3228			tcp_mtup_probe_success(sk, skb);
3229		}
3230
3231		if (sacked & TCPCB_RETRANS) {
3232			if (sacked & TCPCB_SACKED_RETRANS)
3233				tp->retrans_out -= acked_pcount;
3234			flag |= FLAG_RETRANS_DATA_ACKED;
3235			ca_seq_rtt = -1;
3236			seq_rtt = -1;
3237			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3238				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3239		} else {
3240			ca_seq_rtt = now - scb->when;
3241			last_ackt = skb->tstamp;
3242			if (seq_rtt < 0) {
3243				seq_rtt = ca_seq_rtt;
3244			}
3245			if (!(sacked & TCPCB_SACKED_ACKED))
3246				reord = min(pkts_acked, reord);
3247		}
3248
3249		if (sacked & TCPCB_SACKED_ACKED)
3250			tp->sacked_out -= acked_pcount;
3251		if (sacked & TCPCB_LOST)
3252			tp->lost_out -= acked_pcount;
3253
3254		tp->packets_out -= acked_pcount;
3255		pkts_acked += acked_pcount;
3256
3257		/* Initial outgoing SYN's get put onto the write_queue
3258		 * just like anything else we transmit.  It is not
3259		 * true data, and if we misinform our callers that
3260		 * this ACK acks real data, we will erroneously exit
3261		 * connection startup slow start one packet too
3262		 * quickly.  This is severely frowned upon behavior.
3263		 */
3264		if (!(scb->flags & TCPCB_FLAG_SYN)) {
3265			flag |= FLAG_DATA_ACKED;
3266		} else {
3267			flag |= FLAG_SYN_ACKED;
3268			tp->retrans_stamp = 0;
3269		}
3270
3271		if (!fully_acked)
3272			break;
3273
3274		tcp_unlink_write_queue(skb, sk);
3275		sk_wmem_free_skb(sk, skb);
3276		tp->scoreboard_skb_hint = NULL;
3277		if (skb == tp->retransmit_skb_hint)
3278			tp->retransmit_skb_hint = NULL;
3279		if (skb == tp->lost_skb_hint)
3280			tp->lost_skb_hint = NULL;
3281	}
3282
3283	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3284		tp->snd_up = tp->snd_una;
3285
3286	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3287		flag |= FLAG_SACK_RENEGING;
3288
3289	if (flag & FLAG_ACKED) {
3290		const struct tcp_congestion_ops *ca_ops
3291			= inet_csk(sk)->icsk_ca_ops;
3292
3293		tcp_ack_update_rtt(sk, flag, seq_rtt);
3294		tcp_rearm_rto(sk);
3295
3296		if (tcp_is_reno(tp)) {
3297			tcp_remove_reno_sacks(sk, pkts_acked);
3298		} else {
3299			int delta;
3300
3301			/* Non-retransmitted hole got filled? That's reordering */
3302			if (reord < prior_fackets)
3303				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3304
3305			delta = tcp_is_fack(tp) ? pkts_acked :
3306						  prior_sacked - tp->sacked_out;
3307			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3308		}
3309
3310		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3311
3312		if (ca_ops->pkts_acked) {
3313			s32 rtt_us = -1;
3314
3315			/* Is the ACK triggering packet unambiguous? */
3316			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3317				/* High resolution needed and available? */
3318				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3319				    !ktime_equal(last_ackt,
3320						 net_invalid_timestamp()))
3321					rtt_us = ktime_us_delta(ktime_get_real(),
3322								last_ackt);
3323				else if (ca_seq_rtt > 0)
3324					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3325			}
3326
3327			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3328		}
3329	}
3330
3331#if FASTRETRANS_DEBUG > 0
3332	WARN_ON((int)tp->sacked_out < 0);
3333	WARN_ON((int)tp->lost_out < 0);
3334	WARN_ON((int)tp->retrans_out < 0);
3335	if (!tp->packets_out && tcp_is_sack(tp)) {
3336		icsk = inet_csk(sk);
3337		if (tp->lost_out) {
3338			printk(KERN_DEBUG "Leak l=%u %d\n",
3339			       tp->lost_out, icsk->icsk_ca_state);
3340			tp->lost_out = 0;
3341		}
3342		if (tp->sacked_out) {
3343			printk(KERN_DEBUG "Leak s=%u %d\n",
3344			       tp->sacked_out, icsk->icsk_ca_state);
3345			tp->sacked_out = 0;
3346		}
3347		if (tp->retrans_out) {
3348			printk(KERN_DEBUG "Leak r=%u %d\n",
3349			       tp->retrans_out, icsk->icsk_ca_state);
3350			tp->retrans_out = 0;
3351		}
3352	}
3353#endif
3354	return flag;
3355}
3356
3357static void tcp_ack_probe(struct sock *sk)
3358{
3359	const struct tcp_sock *tp = tcp_sk(sk);
3360	struct inet_connection_sock *icsk = inet_csk(sk);
3361
3362	/* Was it a usable window open? */
3363
3364	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3365		icsk->icsk_backoff = 0;
3366		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3367		/* Socket must be waked up by subsequent tcp_data_snd_check().
3368		 * This function is not for random using!
3369		 */
3370	} else {
3371		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3372					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3373					  TCP_RTO_MAX);
3374	}
3375}
3376
3377static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3378{
3379	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3380		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3381}
3382
3383static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3384{
3385	const struct tcp_sock *tp = tcp_sk(sk);
3386	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3387		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3388}
3389
3390/* Check that window update is acceptable.
3391 * The function assumes that snd_una<=ack<=snd_next.
3392 */
3393static inline int tcp_may_update_window(const struct tcp_sock *tp,
3394					const u32 ack, const u32 ack_seq,
3395					const u32 nwin)
3396{
3397	return (after(ack, tp->snd_una) ||
3398		after(ack_seq, tp->snd_wl1) ||
3399		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3400}
3401
3402/* Update our send window.
3403 *
3404 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3405 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3406 */
3407static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3408				 u32 ack_seq)
3409{
3410	struct tcp_sock *tp = tcp_sk(sk);
3411	int flag = 0;
3412	u32 nwin = ntohs(tcp_hdr(skb)->window);
3413
3414	if (likely(!tcp_hdr(skb)->syn))
3415		nwin <<= tp->rx_opt.snd_wscale;
3416
3417	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3418		flag |= FLAG_WIN_UPDATE;
3419		tcp_update_wl(tp, ack, ack_seq);
3420
3421		if (tp->snd_wnd != nwin) {
3422			tp->snd_wnd = nwin;
3423
3424			/* Note, it is the only place, where
3425			 * fast path is recovered for sending TCP.
3426			 */
3427			tp->pred_flags = 0;
3428			tcp_fast_path_check(sk);
3429
3430			if (nwin > tp->max_window) {
3431				tp->max_window = nwin;
3432				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3433			}
3434		}
3435	}
3436
3437	tp->snd_una = ack;
3438
3439	return flag;
3440}
3441
3442/* A very conservative spurious RTO response algorithm: reduce cwnd and
3443 * continue in congestion avoidance.
3444 */
3445static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3446{
3447	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3448	tp->snd_cwnd_cnt = 0;
3449	tp->bytes_acked = 0;
3450	TCP_ECN_queue_cwr(tp);
3451	tcp_moderate_cwnd(tp);
3452}
3453
3454/* A conservative spurious RTO response algorithm: reduce cwnd using
3455 * rate halving and continue in congestion avoidance.
3456 */
3457static void tcp_ratehalving_spur_to_response(struct sock *sk)
3458{
3459	tcp_enter_cwr(sk, 0);
3460}
3461
3462static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3463{
3464	if (flag & FLAG_ECE)
3465		tcp_ratehalving_spur_to_response(sk);
3466	else
3467		tcp_undo_cwr(sk, 1);
3468}
3469
3470/* F-RTO spurious RTO detection algorithm (RFC4138)
3471 *
3472 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3473 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3474 * window (but not to or beyond highest sequence sent before RTO):
3475 *   On First ACK,  send two new segments out.
3476 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3477 *                  algorithm is not part of the F-RTO detection algorithm
3478 *                  given in RFC4138 but can be selected separately).
3479 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3480 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3481 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3482 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3483 *
3484 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3485 * original window even after we transmit two new data segments.
3486 *
3487 * SACK version:
3488 *   on first step, wait until first cumulative ACK arrives, then move to
3489 *   the second step. In second step, the next ACK decides.
3490 *
3491 * F-RTO is implemented (mainly) in four functions:
3492 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3493 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3494 *     called when tcp_use_frto() showed green light
3495 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3496 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3497 *     to prove that the RTO is indeed spurious. It transfers the control
3498 *     from F-RTO to the conventional RTO recovery
3499 */
3500static int tcp_process_frto(struct sock *sk, int flag)
3501{
3502	struct tcp_sock *tp = tcp_sk(sk);
3503
3504	tcp_verify_left_out(tp);
3505
3506	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3507	if (flag & FLAG_DATA_ACKED)
3508		inet_csk(sk)->icsk_retransmits = 0;
3509
3510	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3511	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3512		tp->undo_marker = 0;
3513
3514	if (!before(tp->snd_una, tp->frto_highmark)) {
3515		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3516		return 1;
3517	}
3518
3519	if (!tcp_is_sackfrto(tp)) {
3520		/* RFC4138 shortcoming in step 2; should also have case c):
3521		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3522		 * data, winupdate
3523		 */
3524		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3525			return 1;
3526
3527		if (!(flag & FLAG_DATA_ACKED)) {
3528			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3529					    flag);
3530			return 1;
3531		}
3532	} else {
3533		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3534			/* Prevent sending of new data. */
3535			tp->snd_cwnd = min(tp->snd_cwnd,
3536					   tcp_packets_in_flight(tp));
3537			return 1;
3538		}
3539
3540		if ((tp->frto_counter >= 2) &&
3541		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3542		     ((flag & FLAG_DATA_SACKED) &&
3543		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3544			/* RFC4138 shortcoming (see comment above) */
3545			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3546			    (flag & FLAG_NOT_DUP))
3547				return 1;
3548
3549			tcp_enter_frto_loss(sk, 3, flag);
3550			return 1;
3551		}
3552	}
3553
3554	if (tp->frto_counter == 1) {
3555		/* tcp_may_send_now needs to see updated state */
3556		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3557		tp->frto_counter = 2;
3558
3559		if (!tcp_may_send_now(sk))
3560			tcp_enter_frto_loss(sk, 2, flag);
3561
3562		return 1;
3563	} else {
3564		switch (sysctl_tcp_frto_response) {
3565		case 2:
3566			tcp_undo_spur_to_response(sk, flag);
3567			break;
3568		case 1:
3569			tcp_conservative_spur_to_response(tp);
3570			break;
3571		default:
3572			tcp_ratehalving_spur_to_response(sk);
3573			break;
3574		}
3575		tp->frto_counter = 0;
3576		tp->undo_marker = 0;
3577		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3578	}
3579	return 0;
3580}
3581
3582/* This routine deals with incoming acks, but not outgoing ones. */
3583static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3584{
3585	struct inet_connection_sock *icsk = inet_csk(sk);
3586	struct tcp_sock *tp = tcp_sk(sk);
3587	u32 prior_snd_una = tp->snd_una;
3588	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3589	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3590	u32 prior_in_flight;
3591	u32 prior_fackets;
3592	int prior_packets;
3593	int frto_cwnd = 0;
3594
3595	/* If the ack is newer than sent or older than previous acks
3596	 * then we can probably ignore it.
3597	 */
3598	if (after(ack, tp->snd_nxt))
3599		goto uninteresting_ack;
3600
3601	if (before(ack, prior_snd_una))
3602		goto old_ack;
3603
3604	if (after(ack, prior_snd_una))
3605		flag |= FLAG_SND_UNA_ADVANCED;
3606
3607	if (sysctl_tcp_abc) {
3608		if (icsk->icsk_ca_state < TCP_CA_CWR)
3609			tp->bytes_acked += ack - prior_snd_una;
3610		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3611			/* we assume just one segment left network */
3612			tp->bytes_acked += min(ack - prior_snd_una,
3613					       tp->mss_cache);
3614	}
3615
3616	prior_fackets = tp->fackets_out;
3617	prior_in_flight = tcp_packets_in_flight(tp);
3618
3619	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3620		/* Window is constant, pure forward advance.
3621		 * No more checks are required.
3622		 * Note, we use the fact that SND.UNA>=SND.WL2.
3623		 */
3624		tcp_update_wl(tp, ack, ack_seq);
3625		tp->snd_una = ack;
3626		flag |= FLAG_WIN_UPDATE;
3627
3628		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3629
3630		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3631	} else {
3632		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3633			flag |= FLAG_DATA;
3634		else
3635			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3636
3637		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3638
3639		if (TCP_SKB_CB(skb)->sacked)
3640			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3641
3642		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3643			flag |= FLAG_ECE;
3644
3645		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3646	}
3647
3648	/* We passed data and got it acked, remove any soft error
3649	 * log. Something worked...
3650	 */
3651	sk->sk_err_soft = 0;
3652	icsk->icsk_probes_out = 0;
3653	tp->rcv_tstamp = tcp_time_stamp;
3654	prior_packets = tp->packets_out;
3655	if (!prior_packets)
3656		goto no_queue;
3657
3658	/* See if we can take anything off of the retransmit queue. */
3659	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3660
3661	if (tp->frto_counter)
3662		frto_cwnd = tcp_process_frto(sk, flag);
3663	/* Guarantee sacktag reordering detection against wrap-arounds */
3664	if (before(tp->frto_highmark, tp->snd_una))
3665		tp->frto_highmark = 0;
3666
3667	if (tcp_ack_is_dubious(sk, flag)) {
3668		/* Advance CWND, if state allows this. */
3669		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3670		    tcp_may_raise_cwnd(sk, flag))
3671			tcp_cong_avoid(sk, ack, prior_in_flight);
3672		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3673				      flag);
3674	} else {
3675		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3676			tcp_cong_avoid(sk, ack, prior_in_flight);
3677	}
3678
3679	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3680		dst_confirm(sk->sk_dst_cache);
3681
3682	return 1;
3683
3684no_queue:
3685	/* If this ack opens up a zero window, clear backoff.  It was
3686	 * being used to time the probes, and is probably far higher than
3687	 * it needs to be for normal retransmission.
3688	 */
3689	if (tcp_send_head(sk))
3690		tcp_ack_probe(sk);
3691	return 1;
3692
3693old_ack:
3694	if (TCP_SKB_CB(skb)->sacked) {
3695		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3696		if (icsk->icsk_ca_state == TCP_CA_Open)
3697			tcp_try_keep_open(sk);
3698	}
3699
3700uninteresting_ack:
3701	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3702	return 0;
3703}
3704
3705/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3706 * But, this can also be called on packets in the established flow when
3707 * the fast version below fails.
3708 */
3709void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3710		       int estab)
3711{
3712	unsigned char *ptr;
3713	struct tcphdr *th = tcp_hdr(skb);
3714	int length = (th->doff * 4) - sizeof(struct tcphdr);
3715
3716	ptr = (unsigned char *)(th + 1);
3717	opt_rx->saw_tstamp = 0;
3718
3719	while (length > 0) {
3720		int opcode = *ptr++;
3721		int opsize;
3722
3723		switch (opcode) {
3724		case TCPOPT_EOL:
3725			return;
3726		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3727			length--;
3728			continue;
3729		default:
3730			opsize = *ptr++;
3731			if (opsize < 2) /* "silly options" */
3732				return;
3733			if (opsize > length)
3734				return;	/* don't parse partial options */
3735			switch (opcode) {
3736			case TCPOPT_MSS:
3737				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3738					u16 in_mss = get_unaligned_be16(ptr);
3739					if (in_mss) {
3740						if (opt_rx->user_mss &&
3741						    opt_rx->user_mss < in_mss)
3742							in_mss = opt_rx->user_mss;
3743						opt_rx->mss_clamp = in_mss;
3744					}
3745				}
3746				break;
3747			case TCPOPT_WINDOW:
3748				if (opsize == TCPOLEN_WINDOW && th->syn &&
3749				    !estab && sysctl_tcp_window_scaling) {
3750					__u8 snd_wscale = *(__u8 *)ptr;
3751					opt_rx->wscale_ok = 1;
3752					if (snd_wscale > 14) {
3753						if (net_ratelimit())
3754							printk(KERN_INFO "tcp_parse_options: Illegal window "
3755							       "scaling value %d >14 received.\n",
3756							       snd_wscale);
3757						snd_wscale = 14;
3758					}
3759					opt_rx->snd_wscale = snd_wscale;
3760				}
3761				break;
3762			case TCPOPT_TIMESTAMP:
3763				if ((opsize == TCPOLEN_TIMESTAMP) &&
3764				    ((estab && opt_rx->tstamp_ok) ||
3765				     (!estab && sysctl_tcp_timestamps))) {
3766					opt_rx->saw_tstamp = 1;
3767					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3768					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3769				}
3770				break;
3771			case TCPOPT_SACK_PERM:
3772				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3773				    !estab && sysctl_tcp_sack) {
3774					opt_rx->sack_ok = 1;
3775					tcp_sack_reset(opt_rx);
3776				}
3777				break;
3778
3779			case TCPOPT_SACK:
3780				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3781				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3782				   opt_rx->sack_ok) {
3783					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3784				}
3785				break;
3786#ifdef CONFIG_TCP_MD5SIG
3787			case TCPOPT_MD5SIG:
3788				/*
3789				 * The MD5 Hash has already been
3790				 * checked (see tcp_v{4,6}_do_rcv()).
3791				 */
3792				break;
3793#endif
3794			}
3795
3796			ptr += opsize-2;
3797			length -= opsize;
3798		}
3799	}
3800}
3801
3802static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3803{
3804	__be32 *ptr = (__be32 *)(th + 1);
3805
3806	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3807			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3808		tp->rx_opt.saw_tstamp = 1;
3809		++ptr;
3810		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3811		++ptr;
3812		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3813		return 1;
3814	}
3815	return 0;
3816}
3817
3818/* Fast parse options. This hopes to only see timestamps.
3819 * If it is wrong it falls back on tcp_parse_options().
3820 */
3821static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3822				  struct tcp_sock *tp)
3823{
3824	if (th->doff == sizeof(struct tcphdr) >> 2) {
3825		tp->rx_opt.saw_tstamp = 0;
3826		return 0;
3827	} else if (tp->rx_opt.tstamp_ok &&
3828		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3829		if (tcp_parse_aligned_timestamp(tp, th))
3830			return 1;
3831	}
3832	tcp_parse_options(skb, &tp->rx_opt, 1);
3833	return 1;
3834}
3835
3836#ifdef CONFIG_TCP_MD5SIG
3837/*
3838 * Parse MD5 Signature option
3839 */
3840u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3841{
3842	int length = (th->doff << 2) - sizeof (*th);
3843	u8 *ptr = (u8*)(th + 1);
3844
3845	/* If the TCP option is too short, we can short cut */
3846	if (length < TCPOLEN_MD5SIG)
3847		return NULL;
3848
3849	while (length > 0) {
3850		int opcode = *ptr++;
3851		int opsize;
3852
3853		switch(opcode) {
3854		case TCPOPT_EOL:
3855			return NULL;
3856		case TCPOPT_NOP:
3857			length--;
3858			continue;
3859		default:
3860			opsize = *ptr++;
3861			if (opsize < 2 || opsize > length)
3862				return NULL;
3863			if (opcode == TCPOPT_MD5SIG)
3864				return ptr;
3865		}
3866		ptr += opsize - 2;
3867		length -= opsize;
3868	}
3869	return NULL;
3870}
3871#endif
3872
3873static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3874{
3875	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3876	tp->rx_opt.ts_recent_stamp = get_seconds();
3877}
3878
3879static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3880{
3881	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3882		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3883		 * extra check below makes sure this can only happen
3884		 * for pure ACK frames.  -DaveM
3885		 *
3886		 * Not only, also it occurs for expired timestamps.
3887		 */
3888
3889		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3890		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3891			tcp_store_ts_recent(tp);
3892	}
3893}
3894
3895/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3896 *
3897 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3898 * it can pass through stack. So, the following predicate verifies that
3899 * this segment is not used for anything but congestion avoidance or
3900 * fast retransmit. Moreover, we even are able to eliminate most of such
3901 * second order effects, if we apply some small "replay" window (~RTO)
3902 * to timestamp space.
3903 *
3904 * All these measures still do not guarantee that we reject wrapped ACKs
3905 * on networks with high bandwidth, when sequence space is recycled fastly,
3906 * but it guarantees that such events will be very rare and do not affect
3907 * connection seriously. This doesn't look nice, but alas, PAWS is really
3908 * buggy extension.
3909 *
3910 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3911 * states that events when retransmit arrives after original data are rare.
3912 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3913 * the biggest problem on large power networks even with minor reordering.
3914 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3915 * up to bandwidth of 18Gigabit/sec. 8) ]
3916 */
3917
3918static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3919{
3920	struct tcp_sock *tp = tcp_sk(sk);
3921	struct tcphdr *th = tcp_hdr(skb);
3922	u32 seq = TCP_SKB_CB(skb)->seq;
3923	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3924
3925	return (/* 1. Pure ACK with correct sequence number. */
3926		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3927
3928		/* 2. ... and duplicate ACK. */
3929		ack == tp->snd_una &&
3930
3931		/* 3. ... and does not update window. */
3932		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3933
3934		/* 4. ... and sits in replay window. */
3935		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3936}
3937
3938static inline int tcp_paws_discard(const struct sock *sk,
3939				   const struct sk_buff *skb)
3940{
3941	const struct tcp_sock *tp = tcp_sk(sk);
3942	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3943		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3944		!tcp_disordered_ack(sk, skb));
3945}
3946
3947/* Check segment sequence number for validity.
3948 *
3949 * Segment controls are considered valid, if the segment
3950 * fits to the window after truncation to the window. Acceptability
3951 * of data (and SYN, FIN, of course) is checked separately.
3952 * See tcp_data_queue(), for example.
3953 *
3954 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3955 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3956 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3957 * (borrowed from freebsd)
3958 */
3959
3960static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3961{
3962	return	!before(end_seq, tp->rcv_wup) &&
3963		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3964}
3965
3966/* When we get a reset we do this. */
3967static void tcp_reset(struct sock *sk)
3968{
3969	/* We want the right error as BSD sees it (and indeed as we do). */
3970	switch (sk->sk_state) {
3971	case TCP_SYN_SENT:
3972		sk->sk_err = ECONNREFUSED;
3973		break;
3974	case TCP_CLOSE_WAIT:
3975		sk->sk_err = EPIPE;
3976		break;
3977	case TCP_CLOSE:
3978		return;
3979	default:
3980		sk->sk_err = ECONNRESET;
3981	}
3982
3983	if (!sock_flag(sk, SOCK_DEAD))
3984		sk->sk_error_report(sk);
3985
3986	tcp_done(sk);
3987}
3988
3989/*
3990 * 	Process the FIN bit. This now behaves as it is supposed to work
3991 *	and the FIN takes effect when it is validly part of sequence
3992 *	space. Not before when we get holes.
3993 *
3994 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3995 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3996 *	TIME-WAIT)
3997 *
3998 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3999 *	close and we go into CLOSING (and later onto TIME-WAIT)
4000 *
4001 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4002 */
4003static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4004{
4005	struct tcp_sock *tp = tcp_sk(sk);
4006
4007	inet_csk_schedule_ack(sk);
4008
4009	sk->sk_shutdown |= RCV_SHUTDOWN;
4010	sock_set_flag(sk, SOCK_DONE);
4011
4012	switch (sk->sk_state) {
4013	case TCP_SYN_RECV:
4014	case TCP_ESTABLISHED:
4015		/* Move to CLOSE_WAIT */
4016		tcp_set_state(sk, TCP_CLOSE_WAIT);
4017		inet_csk(sk)->icsk_ack.pingpong = 1;
4018		break;
4019
4020	case TCP_CLOSE_WAIT:
4021	case TCP_CLOSING:
4022		/* Received a retransmission of the FIN, do
4023		 * nothing.
4024		 */
4025		break;
4026	case TCP_LAST_ACK:
4027		/* RFC793: Remain in the LAST-ACK state. */
4028		break;
4029
4030	case TCP_FIN_WAIT1:
4031		/* This case occurs when a simultaneous close
4032		 * happens, we must ack the received FIN and
4033		 * enter the CLOSING state.
4034		 */
4035		tcp_send_ack(sk);
4036		tcp_set_state(sk, TCP_CLOSING);
4037		break;
4038	case TCP_FIN_WAIT2:
4039		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4040		tcp_send_ack(sk);
4041		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4042		break;
4043	default:
4044		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4045		 * cases we should never reach this piece of code.
4046		 */
4047		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4048		       __func__, sk->sk_state);
4049		break;
4050	}
4051
4052	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4053	 * Probably, we should reset in this case. For now drop them.
4054	 */
4055	__skb_queue_purge(&tp->out_of_order_queue);
4056	if (tcp_is_sack(tp))
4057		tcp_sack_reset(&tp->rx_opt);
4058	sk_mem_reclaim(sk);
4059
4060	if (!sock_flag(sk, SOCK_DEAD)) {
4061		sk->sk_state_change(sk);
4062
4063		/* Do not send POLL_HUP for half duplex close. */
4064		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4065		    sk->sk_state == TCP_CLOSE)
4066			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4067		else
4068			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4069	}
4070}
4071
4072static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4073				  u32 end_seq)
4074{
4075	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4076		if (before(seq, sp->start_seq))
4077			sp->start_seq = seq;
4078		if (after(end_seq, sp->end_seq))
4079			sp->end_seq = end_seq;
4080		return 1;
4081	}
4082	return 0;
4083}
4084
4085static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4086{
4087	struct tcp_sock *tp = tcp_sk(sk);
4088
4089	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4090		int mib_idx;
4091
4092		if (before(seq, tp->rcv_nxt))
4093			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4094		else
4095			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4096
4097		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4098
4099		tp->rx_opt.dsack = 1;
4100		tp->duplicate_sack[0].start_seq = seq;
4101		tp->duplicate_sack[0].end_seq = end_seq;
4102		tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
4103	}
4104}
4105
4106static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4107{
4108	struct tcp_sock *tp = tcp_sk(sk);
4109
4110	if (!tp->rx_opt.dsack)
4111		tcp_dsack_set(sk, seq, end_seq);
4112	else
4113		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4114}
4115
4116static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4117{
4118	struct tcp_sock *tp = tcp_sk(sk);
4119
4120	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4121	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4122		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4123		tcp_enter_quickack_mode(sk);
4124
4125		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4126			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4127
4128			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4129				end_seq = tp->rcv_nxt;
4130			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4131		}
4132	}
4133
4134	tcp_send_ack(sk);
4135}
4136
4137/* These routines update the SACK block as out-of-order packets arrive or
4138 * in-order packets close up the sequence space.
4139 */
4140static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4141{
4142	int this_sack;
4143	struct tcp_sack_block *sp = &tp->selective_acks[0];
4144	struct tcp_sack_block *swalk = sp + 1;
4145
4146	/* See if the recent change to the first SACK eats into
4147	 * or hits the sequence space of other SACK blocks, if so coalesce.
4148	 */
4149	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4150		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4151			int i;
4152
4153			/* Zap SWALK, by moving every further SACK up by one slot.
4154			 * Decrease num_sacks.
4155			 */
4156			tp->rx_opt.num_sacks--;
4157			tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4158					       tp->rx_opt.dsack;
4159			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4160				sp[i] = sp[i + 1];
4161			continue;
4162		}
4163		this_sack++, swalk++;
4164	}
4165}
4166
4167static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
4168				 struct tcp_sack_block *sack2)
4169{
4170	__u32 tmp;
4171
4172	tmp = sack1->start_seq;
4173	sack1->start_seq = sack2->start_seq;
4174	sack2->start_seq = tmp;
4175
4176	tmp = sack1->end_seq;
4177	sack1->end_seq = sack2->end_seq;
4178	sack2->end_seq = tmp;
4179}
4180
4181static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4182{
4183	struct tcp_sock *tp = tcp_sk(sk);
4184	struct tcp_sack_block *sp = &tp->selective_acks[0];
4185	int cur_sacks = tp->rx_opt.num_sacks;
4186	int this_sack;
4187
4188	if (!cur_sacks)
4189		goto new_sack;
4190
4191	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4192		if (tcp_sack_extend(sp, seq, end_seq)) {
4193			/* Rotate this_sack to the first one. */
4194			for (; this_sack > 0; this_sack--, sp--)
4195				tcp_sack_swap(sp, sp - 1);
4196			if (cur_sacks > 1)
4197				tcp_sack_maybe_coalesce(tp);
4198			return;
4199		}
4200	}
4201
4202	/* Could not find an adjacent existing SACK, build a new one,
4203	 * put it at the front, and shift everyone else down.  We
4204	 * always know there is at least one SACK present already here.
4205	 *
4206	 * If the sack array is full, forget about the last one.
4207	 */
4208	if (this_sack >= TCP_NUM_SACKS) {
4209		this_sack--;
4210		tp->rx_opt.num_sacks--;
4211		sp--;
4212	}
4213	for (; this_sack > 0; this_sack--, sp--)
4214		*sp = *(sp - 1);
4215
4216new_sack:
4217	/* Build the new head SACK, and we're done. */
4218	sp->start_seq = seq;
4219	sp->end_seq = end_seq;
4220	tp->rx_opt.num_sacks++;
4221	tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
4222}
4223
4224/* RCV.NXT advances, some SACKs should be eaten. */
4225
4226static void tcp_sack_remove(struct tcp_sock *tp)
4227{
4228	struct tcp_sack_block *sp = &tp->selective_acks[0];
4229	int num_sacks = tp->rx_opt.num_sacks;
4230	int this_sack;
4231
4232	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4233	if (skb_queue_empty(&tp->out_of_order_queue)) {
4234		tp->rx_opt.num_sacks = 0;
4235		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
4236		return;
4237	}
4238
4239	for (this_sack = 0; this_sack < num_sacks;) {
4240		/* Check if the start of the sack is covered by RCV.NXT. */
4241		if (!before(tp->rcv_nxt, sp->start_seq)) {
4242			int i;
4243
4244			/* RCV.NXT must cover all the block! */
4245			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4246
4247			/* Zap this SACK, by moving forward any other SACKS. */
4248			for (i=this_sack+1; i < num_sacks; i++)
4249				tp->selective_acks[i-1] = tp->selective_acks[i];
4250			num_sacks--;
4251			continue;
4252		}
4253		this_sack++;
4254		sp++;
4255	}
4256	if (num_sacks != tp->rx_opt.num_sacks) {
4257		tp->rx_opt.num_sacks = num_sacks;
4258		tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4259				       tp->rx_opt.dsack;
4260	}
4261}
4262
4263/* This one checks to see if we can put data from the
4264 * out_of_order queue into the receive_queue.
4265 */
4266static void tcp_ofo_queue(struct sock *sk)
4267{
4268	struct tcp_sock *tp = tcp_sk(sk);
4269	__u32 dsack_high = tp->rcv_nxt;
4270	struct sk_buff *skb;
4271
4272	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4273		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4274			break;
4275
4276		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4277			__u32 dsack = dsack_high;
4278			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4279				dsack_high = TCP_SKB_CB(skb)->end_seq;
4280			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4281		}
4282
4283		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4284			SOCK_DEBUG(sk, "ofo packet was already received \n");
4285			__skb_unlink(skb, &tp->out_of_order_queue);
4286			__kfree_skb(skb);
4287			continue;
4288		}
4289		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4290			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4291			   TCP_SKB_CB(skb)->end_seq);
4292
4293		__skb_unlink(skb, &tp->out_of_order_queue);
4294		__skb_queue_tail(&sk->sk_receive_queue, skb);
4295		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4296		if (tcp_hdr(skb)->fin)
4297			tcp_fin(skb, sk, tcp_hdr(skb));
4298	}
4299}
4300
4301static int tcp_prune_ofo_queue(struct sock *sk);
4302static int tcp_prune_queue(struct sock *sk);
4303
4304static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4305{
4306	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4307	    !sk_rmem_schedule(sk, size)) {
4308
4309		if (tcp_prune_queue(sk) < 0)
4310			return -1;
4311
4312		if (!sk_rmem_schedule(sk, size)) {
4313			if (!tcp_prune_ofo_queue(sk))
4314				return -1;
4315
4316			if (!sk_rmem_schedule(sk, size))
4317				return -1;
4318		}
4319	}
4320	return 0;
4321}
4322
4323static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4324{
4325	struct tcphdr *th = tcp_hdr(skb);
4326	struct tcp_sock *tp = tcp_sk(sk);
4327	int eaten = -1;
4328
4329	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4330		goto drop;
4331
4332	__skb_pull(skb, th->doff * 4);
4333
4334	TCP_ECN_accept_cwr(tp, skb);
4335
4336	if (tp->rx_opt.dsack) {
4337		tp->rx_opt.dsack = 0;
4338		tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
4339	}
4340
4341	/*  Queue data for delivery to the user.
4342	 *  Packets in sequence go to the receive queue.
4343	 *  Out of sequence packets to the out_of_order_queue.
4344	 */
4345	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4346		if (tcp_receive_window(tp) == 0)
4347			goto out_of_window;
4348
4349		/* Ok. In sequence. In window. */
4350		if (tp->ucopy.task == current &&
4351		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4352		    sock_owned_by_user(sk) && !tp->urg_data) {
4353			int chunk = min_t(unsigned int, skb->len,
4354					  tp->ucopy.len);
4355
4356			__set_current_state(TASK_RUNNING);
4357
4358			local_bh_enable();
4359			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4360				tp->ucopy.len -= chunk;
4361				tp->copied_seq += chunk;
4362				eaten = (chunk == skb->len && !th->fin);
4363				tcp_rcv_space_adjust(sk);
4364			}
4365			local_bh_disable();
4366		}
4367
4368		if (eaten <= 0) {
4369queue_and_out:
4370			if (eaten < 0 &&
4371			    tcp_try_rmem_schedule(sk, skb->truesize))
4372				goto drop;
4373
4374			skb_set_owner_r(skb, sk);
4375			__skb_queue_tail(&sk->sk_receive_queue, skb);
4376		}
4377		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4378		if (skb->len)
4379			tcp_event_data_recv(sk, skb);
4380		if (th->fin)
4381			tcp_fin(skb, sk, th);
4382
4383		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4384			tcp_ofo_queue(sk);
4385
4386			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4387			 * gap in queue is filled.
4388			 */
4389			if (skb_queue_empty(&tp->out_of_order_queue))
4390				inet_csk(sk)->icsk_ack.pingpong = 0;
4391		}
4392
4393		if (tp->rx_opt.num_sacks)
4394			tcp_sack_remove(tp);
4395
4396		tcp_fast_path_check(sk);
4397
4398		if (eaten > 0)
4399			__kfree_skb(skb);
4400		else if (!sock_flag(sk, SOCK_DEAD))
4401			sk->sk_data_ready(sk, 0);
4402		return;
4403	}
4404
4405	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4406		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4407		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4408		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4409
4410out_of_window:
4411		tcp_enter_quickack_mode(sk);
4412		inet_csk_schedule_ack(sk);
4413drop:
4414		__kfree_skb(skb);
4415		return;
4416	}
4417
4418	/* Out of window. F.e. zero window probe. */
4419	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4420		goto out_of_window;
4421
4422	tcp_enter_quickack_mode(sk);
4423
4424	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4425		/* Partial packet, seq < rcv_next < end_seq */
4426		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4427			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4428			   TCP_SKB_CB(skb)->end_seq);
4429
4430		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4431
4432		/* If window is closed, drop tail of packet. But after
4433		 * remembering D-SACK for its head made in previous line.
4434		 */
4435		if (!tcp_receive_window(tp))
4436			goto out_of_window;
4437		goto queue_and_out;
4438	}
4439
4440	TCP_ECN_check_ce(tp, skb);
4441
4442	if (tcp_try_rmem_schedule(sk, skb->truesize))
4443		goto drop;
4444
4445	/* Disable header prediction. */
4446	tp->pred_flags = 0;
4447	inet_csk_schedule_ack(sk);
4448
4449	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4450		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4451
4452	skb_set_owner_r(skb, sk);
4453
4454	if (!skb_peek(&tp->out_of_order_queue)) {
4455		/* Initial out of order segment, build 1 SACK. */
4456		if (tcp_is_sack(tp)) {
4457			tp->rx_opt.num_sacks = 1;
4458			tp->rx_opt.dsack     = 0;
4459			tp->rx_opt.eff_sacks = 1;
4460			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4461			tp->selective_acks[0].end_seq =
4462						TCP_SKB_CB(skb)->end_seq;
4463		}
4464		__skb_queue_head(&tp->out_of_order_queue, skb);
4465	} else {
4466		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4467		u32 seq = TCP_SKB_CB(skb)->seq;
4468		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4469
4470		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4471			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4472
4473			if (!tp->rx_opt.num_sacks ||
4474			    tp->selective_acks[0].end_seq != seq)
4475				goto add_sack;
4476
4477			/* Common case: data arrive in order after hole. */
4478			tp->selective_acks[0].end_seq = end_seq;
4479			return;
4480		}
4481
4482		/* Find place to insert this segment. */
4483		do {
4484			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4485				break;
4486		} while ((skb1 = skb1->prev) !=
4487			 (struct sk_buff *)&tp->out_of_order_queue);
4488
4489		/* Do skb overlap to previous one? */
4490		if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4491		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4492			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4493				/* All the bits are present. Drop. */
4494				__kfree_skb(skb);
4495				tcp_dsack_set(sk, seq, end_seq);
4496				goto add_sack;
4497			}
4498			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4499				/* Partial overlap. */
4500				tcp_dsack_set(sk, seq,
4501					      TCP_SKB_CB(skb1)->end_seq);
4502			} else {
4503				skb1 = skb1->prev;
4504			}
4505		}
4506		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4507
4508		/* And clean segments covered by new one as whole. */
4509		while ((skb1 = skb->next) !=
4510		       (struct sk_buff *)&tp->out_of_order_queue &&
4511		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4512			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4513				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4514						 end_seq);
4515				break;
4516			}
4517			__skb_unlink(skb1, &tp->out_of_order_queue);
4518			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4519					 TCP_SKB_CB(skb1)->end_seq);
4520			__kfree_skb(skb1);
4521		}
4522
4523add_sack:
4524		if (tcp_is_sack(tp))
4525			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4526	}
4527}
4528
4529static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4530					struct sk_buff_head *list)
4531{
4532	struct sk_buff *next = skb->next;
4533
4534	__skb_unlink(skb, list);
4535	__kfree_skb(skb);
4536	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4537
4538	return next;
4539}
4540
4541/* Collapse contiguous sequence of skbs head..tail with
4542 * sequence numbers start..end.
4543 * Segments with FIN/SYN are not collapsed (only because this
4544 * simplifies code)
4545 */
4546static void
4547tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4548	     struct sk_buff *head, struct sk_buff *tail,
4549	     u32 start, u32 end)
4550{
4551	struct sk_buff *skb;
4552
4553	/* First, check that queue is collapsible and find
4554	 * the point where collapsing can be useful. */
4555	for (skb = head; skb != tail;) {
4556		/* No new bits? It is possible on ofo queue. */
4557		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4558			skb = tcp_collapse_one(sk, skb, list);
4559			continue;
4560		}
4561
4562		/* The first skb to collapse is:
4563		 * - not SYN/FIN and
4564		 * - bloated or contains data before "start" or
4565		 *   overlaps to the next one.
4566		 */
4567		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4568		    (tcp_win_from_space(skb->truesize) > skb->len ||
4569		     before(TCP_SKB_CB(skb)->seq, start) ||
4570		     (skb->next != tail &&
4571		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4572			break;
4573
4574		/* Decided to skip this, advance start seq. */
4575		start = TCP_SKB_CB(skb)->end_seq;
4576		skb = skb->next;
4577	}
4578	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4579		return;
4580
4581	while (before(start, end)) {
4582		struct sk_buff *nskb;
4583		unsigned int header = skb_headroom(skb);
4584		int copy = SKB_MAX_ORDER(header, 0);
4585
4586		/* Too big header? This can happen with IPv6. */
4587		if (copy < 0)
4588			return;
4589		if (end - start < copy)
4590			copy = end - start;
4591		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4592		if (!nskb)
4593			return;
4594
4595		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4596		skb_set_network_header(nskb, (skb_network_header(skb) -
4597					      skb->head));
4598		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4599						skb->head));
4600		skb_reserve(nskb, header);
4601		memcpy(nskb->head, skb->head, header);
4602		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4603		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4604		__skb_queue_before(list, skb, nskb);
4605		skb_set_owner_r(nskb, sk);
4606
4607		/* Copy data, releasing collapsed skbs. */
4608		while (copy > 0) {
4609			int offset = start - TCP_SKB_CB(skb)->seq;
4610			int size = TCP_SKB_CB(skb)->end_seq - start;
4611
4612			BUG_ON(offset < 0);
4613			if (size > 0) {
4614				size = min(copy, size);
4615				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4616					BUG();
4617				TCP_SKB_CB(nskb)->end_seq += size;
4618				copy -= size;
4619				start += size;
4620			}
4621			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4622				skb = tcp_collapse_one(sk, skb, list);
4623				if (skb == tail ||
4624				    tcp_hdr(skb)->syn ||
4625				    tcp_hdr(skb)->fin)
4626					return;
4627			}
4628		}
4629	}
4630}
4631
4632/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4633 * and tcp_collapse() them until all the queue is collapsed.
4634 */
4635static void tcp_collapse_ofo_queue(struct sock *sk)
4636{
4637	struct tcp_sock *tp = tcp_sk(sk);
4638	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4639	struct sk_buff *head;
4640	u32 start, end;
4641
4642	if (skb == NULL)
4643		return;
4644
4645	start = TCP_SKB_CB(skb)->seq;
4646	end = TCP_SKB_CB(skb)->end_seq;
4647	head = skb;
4648
4649	for (;;) {
4650		skb = skb->next;
4651
4652		/* Segment is terminated when we see gap or when
4653		 * we are at the end of all the queue. */
4654		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4655		    after(TCP_SKB_CB(skb)->seq, end) ||
4656		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4657			tcp_collapse(sk, &tp->out_of_order_queue,
4658				     head, skb, start, end);
4659			head = skb;
4660			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4661				break;
4662			/* Start new segment */
4663			start = TCP_SKB_CB(skb)->seq;
4664			end = TCP_SKB_CB(skb)->end_seq;
4665		} else {
4666			if (before(TCP_SKB_CB(skb)->seq, start))
4667				start = TCP_SKB_CB(skb)->seq;
4668			if (after(TCP_SKB_CB(skb)->end_seq, end))
4669				end = TCP_SKB_CB(skb)->end_seq;
4670		}
4671	}
4672}
4673
4674/*
4675 * Purge the out-of-order queue.
4676 * Return true if queue was pruned.
4677 */
4678static int tcp_prune_ofo_queue(struct sock *sk)
4679{
4680	struct tcp_sock *tp = tcp_sk(sk);
4681	int res = 0;
4682
4683	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4684		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4685		__skb_queue_purge(&tp->out_of_order_queue);
4686
4687		/* Reset SACK state.  A conforming SACK implementation will
4688		 * do the same at a timeout based retransmit.  When a connection
4689		 * is in a sad state like this, we care only about integrity
4690		 * of the connection not performance.
4691		 */
4692		if (tp->rx_opt.sack_ok)
4693			tcp_sack_reset(&tp->rx_opt);
4694		sk_mem_reclaim(sk);
4695		res = 1;
4696	}
4697	return res;
4698}
4699
4700/* Reduce allocated memory if we can, trying to get
4701 * the socket within its memory limits again.
4702 *
4703 * Return less than zero if we should start dropping frames
4704 * until the socket owning process reads some of the data
4705 * to stabilize the situation.
4706 */
4707static int tcp_prune_queue(struct sock *sk)
4708{
4709	struct tcp_sock *tp = tcp_sk(sk);
4710
4711	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4712
4713	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4714
4715	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4716		tcp_clamp_window(sk);
4717	else if (tcp_memory_pressure)
4718		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4719
4720	tcp_collapse_ofo_queue(sk);
4721	tcp_collapse(sk, &sk->sk_receive_queue,
4722		     sk->sk_receive_queue.next,
4723		     (struct sk_buff *)&sk->sk_receive_queue,
4724		     tp->copied_seq, tp->rcv_nxt);
4725	sk_mem_reclaim(sk);
4726
4727	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4728		return 0;
4729
4730	/* Collapsing did not help, destructive actions follow.
4731	 * This must not ever occur. */
4732
4733	tcp_prune_ofo_queue(sk);
4734
4735	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4736		return 0;
4737
4738	/* If we are really being abused, tell the caller to silently
4739	 * drop receive data on the floor.  It will get retransmitted
4740	 * and hopefully then we'll have sufficient space.
4741	 */
4742	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4743
4744	/* Massive buffer overcommit. */
4745	tp->pred_flags = 0;
4746	return -1;
4747}
4748
4749/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4750 * As additional protections, we do not touch cwnd in retransmission phases,
4751 * and if application hit its sndbuf limit recently.
4752 */
4753void tcp_cwnd_application_limited(struct sock *sk)
4754{
4755	struct tcp_sock *tp = tcp_sk(sk);
4756
4757	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4758	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4759		/* Limited by application or receiver window. */
4760		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4761		u32 win_used = max(tp->snd_cwnd_used, init_win);
4762		if (win_used < tp->snd_cwnd) {
4763			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4764			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4765		}
4766		tp->snd_cwnd_used = 0;
4767	}
4768	tp->snd_cwnd_stamp = tcp_time_stamp;
4769}
4770
4771static int tcp_should_expand_sndbuf(struct sock *sk)
4772{
4773	struct tcp_sock *tp = tcp_sk(sk);
4774
4775	/* If the user specified a specific send buffer setting, do
4776	 * not modify it.
4777	 */
4778	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4779		return 0;
4780
4781	/* If we are under global TCP memory pressure, do not expand.  */
4782	if (tcp_memory_pressure)
4783		return 0;
4784
4785	/* If we are under soft global TCP memory pressure, do not expand.  */
4786	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4787		return 0;
4788
4789	/* If we filled the congestion window, do not expand.  */
4790	if (tp->packets_out >= tp->snd_cwnd)
4791		return 0;
4792
4793	return 1;
4794}
4795
4796/* When incoming ACK allowed to free some skb from write_queue,
4797 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4798 * on the exit from tcp input handler.
4799 *
4800 * PROBLEM: sndbuf expansion does not work well with largesend.
4801 */
4802static void tcp_new_space(struct sock *sk)
4803{
4804	struct tcp_sock *tp = tcp_sk(sk);
4805
4806	if (tcp_should_expand_sndbuf(sk)) {
4807		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4808			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4809		int demanded = max_t(unsigned int, tp->snd_cwnd,
4810				     tp->reordering + 1);
4811		sndmem *= 2 * demanded;
4812		if (sndmem > sk->sk_sndbuf)
4813			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4814		tp->snd_cwnd_stamp = tcp_time_stamp;
4815	}
4816
4817	sk->sk_write_space(sk);
4818}
4819
4820static void tcp_check_space(struct sock *sk)
4821{
4822	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4823		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4824		if (sk->sk_socket &&
4825		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4826			tcp_new_space(sk);
4827	}
4828}
4829
4830static inline void tcp_data_snd_check(struct sock *sk)
4831{
4832	tcp_push_pending_frames(sk);
4833	tcp_check_space(sk);
4834}
4835
4836/*
4837 * Check if sending an ack is needed.
4838 */
4839static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4840{
4841	struct tcp_sock *tp = tcp_sk(sk);
4842
4843	    /* More than one full frame received... */
4844	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4845	     /* ... and right edge of window advances far enough.
4846	      * (tcp_recvmsg() will send ACK otherwise). Or...
4847	      */
4848	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4849	    /* We ACK each frame or... */
4850	    tcp_in_quickack_mode(sk) ||
4851	    /* We have out of order data. */
4852	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4853		/* Then ack it now */
4854		tcp_send_ack(sk);
4855	} else {
4856		/* Else, send delayed ack. */
4857		tcp_send_delayed_ack(sk);
4858	}
4859}
4860
4861static inline void tcp_ack_snd_check(struct sock *sk)
4862{
4863	if (!inet_csk_ack_scheduled(sk)) {
4864		/* We sent a data segment already. */
4865		return;
4866	}
4867	__tcp_ack_snd_check(sk, 1);
4868}
4869
4870/*
4871 *	This routine is only called when we have urgent data
4872 *	signaled. Its the 'slow' part of tcp_urg. It could be
4873 *	moved inline now as tcp_urg is only called from one
4874 *	place. We handle URGent data wrong. We have to - as
4875 *	BSD still doesn't use the correction from RFC961.
4876 *	For 1003.1g we should support a new option TCP_STDURG to permit
4877 *	either form (or just set the sysctl tcp_stdurg).
4878 */
4879
4880static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4881{
4882	struct tcp_sock *tp = tcp_sk(sk);
4883	u32 ptr = ntohs(th->urg_ptr);
4884
4885	if (ptr && !sysctl_tcp_stdurg)
4886		ptr--;
4887	ptr += ntohl(th->seq);
4888
4889	/* Ignore urgent data that we've already seen and read. */
4890	if (after(tp->copied_seq, ptr))
4891		return;
4892
4893	/* Do not replay urg ptr.
4894	 *
4895	 * NOTE: interesting situation not covered by specs.
4896	 * Misbehaving sender may send urg ptr, pointing to segment,
4897	 * which we already have in ofo queue. We are not able to fetch
4898	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4899	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4900	 * situations. But it is worth to think about possibility of some
4901	 * DoSes using some hypothetical application level deadlock.
4902	 */
4903	if (before(ptr, tp->rcv_nxt))
4904		return;
4905
4906	/* Do we already have a newer (or duplicate) urgent pointer? */
4907	if (tp->urg_data && !after(ptr, tp->urg_seq))
4908		return;
4909
4910	/* Tell the world about our new urgent pointer. */
4911	sk_send_sigurg(sk);
4912
4913	/* We may be adding urgent data when the last byte read was
4914	 * urgent. To do this requires some care. We cannot just ignore
4915	 * tp->copied_seq since we would read the last urgent byte again
4916	 * as data, nor can we alter copied_seq until this data arrives
4917	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4918	 *
4919	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4920	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4921	 * and expect that both A and B disappear from stream. This is _wrong_.
4922	 * Though this happens in BSD with high probability, this is occasional.
4923	 * Any application relying on this is buggy. Note also, that fix "works"
4924	 * only in this artificial test. Insert some normal data between A and B and we will
4925	 * decline of BSD again. Verdict: it is better to remove to trap
4926	 * buggy users.
4927	 */
4928	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4929	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4930		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4931		tp->copied_seq++;
4932		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4933			__skb_unlink(skb, &sk->sk_receive_queue);
4934			__kfree_skb(skb);
4935		}
4936	}
4937
4938	tp->urg_data = TCP_URG_NOTYET;
4939	tp->urg_seq = ptr;
4940
4941	/* Disable header prediction. */
4942	tp->pred_flags = 0;
4943}
4944
4945/* This is the 'fast' part of urgent handling. */
4946static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4947{
4948	struct tcp_sock *tp = tcp_sk(sk);
4949
4950	/* Check if we get a new urgent pointer - normally not. */
4951	if (th->urg)
4952		tcp_check_urg(sk, th);
4953
4954	/* Do we wait for any urgent data? - normally not... */
4955	if (tp->urg_data == TCP_URG_NOTYET) {
4956		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4957			  th->syn;
4958
4959		/* Is the urgent pointer pointing into this packet? */
4960		if (ptr < skb->len) {
4961			u8 tmp;
4962			if (skb_copy_bits(skb, ptr, &tmp, 1))
4963				BUG();
4964			tp->urg_data = TCP_URG_VALID | tmp;
4965			if (!sock_flag(sk, SOCK_DEAD))
4966				sk->sk_data_ready(sk, 0);
4967		}
4968	}
4969}
4970
4971static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4972{
4973	struct tcp_sock *tp = tcp_sk(sk);
4974	int chunk = skb->len - hlen;
4975	int err;
4976
4977	local_bh_enable();
4978	if (skb_csum_unnecessary(skb))
4979		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4980	else
4981		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4982						       tp->ucopy.iov);
4983
4984	if (!err) {
4985		tp->ucopy.len -= chunk;
4986		tp->copied_seq += chunk;
4987		tcp_rcv_space_adjust(sk);
4988	}
4989
4990	local_bh_disable();
4991	return err;
4992}
4993
4994static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4995					    struct sk_buff *skb)
4996{
4997	__sum16 result;
4998
4999	if (sock_owned_by_user(sk)) {
5000		local_bh_enable();
5001		result = __tcp_checksum_complete(skb);
5002		local_bh_disable();
5003	} else {
5004		result = __tcp_checksum_complete(skb);
5005	}
5006	return result;
5007}
5008
5009static inline int tcp_checksum_complete_user(struct sock *sk,
5010					     struct sk_buff *skb)
5011{
5012	return !skb_csum_unnecessary(skb) &&
5013	       __tcp_checksum_complete_user(sk, skb);
5014}
5015
5016#ifdef CONFIG_NET_DMA
5017static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5018				  int hlen)
5019{
5020	struct tcp_sock *tp = tcp_sk(sk);
5021	int chunk = skb->len - hlen;
5022	int dma_cookie;
5023	int copied_early = 0;
5024
5025	if (tp->ucopy.wakeup)
5026		return 0;
5027
5028	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5029		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5030
5031	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5032
5033		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5034							 skb, hlen,
5035							 tp->ucopy.iov, chunk,
5036							 tp->ucopy.pinned_list);
5037
5038		if (dma_cookie < 0)
5039			goto out;
5040
5041		tp->ucopy.dma_cookie = dma_cookie;
5042		copied_early = 1;
5043
5044		tp->ucopy.len -= chunk;
5045		tp->copied_seq += chunk;
5046		tcp_rcv_space_adjust(sk);
5047
5048		if ((tp->ucopy.len == 0) ||
5049		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5050		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5051			tp->ucopy.wakeup = 1;
5052			sk->sk_data_ready(sk, 0);
5053		}
5054	} else if (chunk > 0) {
5055		tp->ucopy.wakeup = 1;
5056		sk->sk_data_ready(sk, 0);
5057	}
5058out:
5059	return copied_early;
5060}
5061#endif /* CONFIG_NET_DMA */
5062
5063/* Does PAWS and seqno based validation of an incoming segment, flags will
5064 * play significant role here.
5065 */
5066static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5067			      struct tcphdr *th, int syn_inerr)
5068{
5069	struct tcp_sock *tp = tcp_sk(sk);
5070
5071	/* RFC1323: H1. Apply PAWS check first. */
5072	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5073	    tcp_paws_discard(sk, skb)) {
5074		if (!th->rst) {
5075			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5076			tcp_send_dupack(sk, skb);
5077			goto discard;
5078		}
5079		/* Reset is accepted even if it did not pass PAWS. */
5080	}
5081
5082	/* Step 1: check sequence number */
5083	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5084		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5085		 * (RST) segments are validated by checking their SEQ-fields."
5086		 * And page 69: "If an incoming segment is not acceptable,
5087		 * an acknowledgment should be sent in reply (unless the RST
5088		 * bit is set, if so drop the segment and return)".
5089		 */
5090		if (!th->rst)
5091			tcp_send_dupack(sk, skb);
5092		goto discard;
5093	}
5094
5095	/* Step 2: check RST bit */
5096	if (th->rst) {
5097		tcp_reset(sk);
5098		goto discard;
5099	}
5100
5101	/* ts_recent update must be made after we are sure that the packet
5102	 * is in window.
5103	 */
5104	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5105
5106	/* step 3: check security and precedence [ignored] */
5107
5108	/* step 4: Check for a SYN in window. */
5109	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5110		if (syn_inerr)
5111			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5112		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5113		tcp_reset(sk);
5114		return -1;
5115	}
5116
5117	return 1;
5118
5119discard:
5120	__kfree_skb(skb);
5121	return 0;
5122}
5123
5124/*
5125 *	TCP receive function for the ESTABLISHED state.
5126 *
5127 *	It is split into a fast path and a slow path. The fast path is
5128 * 	disabled when:
5129 *	- A zero window was announced from us - zero window probing
5130 *        is only handled properly in the slow path.
5131 *	- Out of order segments arrived.
5132 *	- Urgent data is expected.
5133 *	- There is no buffer space left
5134 *	- Unexpected TCP flags/window values/header lengths are received
5135 *	  (detected by checking the TCP header against pred_flags)
5136 *	- Data is sent in both directions. Fast path only supports pure senders
5137 *	  or pure receivers (this means either the sequence number or the ack
5138 *	  value must stay constant)
5139 *	- Unexpected TCP option.
5140 *
5141 *	When these conditions are not satisfied it drops into a standard
5142 *	receive procedure patterned after RFC793 to handle all cases.
5143 *	The first three cases are guaranteed by proper pred_flags setting,
5144 *	the rest is checked inline. Fast processing is turned on in
5145 *	tcp_data_queue when everything is OK.
5146 */
5147int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5148			struct tcphdr *th, unsigned len)
5149{
5150	struct tcp_sock *tp = tcp_sk(sk);
5151	int res;
5152
5153	/*
5154	 *	Header prediction.
5155	 *	The code loosely follows the one in the famous
5156	 *	"30 instruction TCP receive" Van Jacobson mail.
5157	 *
5158	 *	Van's trick is to deposit buffers into socket queue
5159	 *	on a device interrupt, to call tcp_recv function
5160	 *	on the receive process context and checksum and copy
5161	 *	the buffer to user space. smart...
5162	 *
5163	 *	Our current scheme is not silly either but we take the
5164	 *	extra cost of the net_bh soft interrupt processing...
5165	 *	We do checksum and copy also but from device to kernel.
5166	 */
5167
5168	tp->rx_opt.saw_tstamp = 0;
5169
5170	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5171	 *	if header_prediction is to be made
5172	 *	'S' will always be tp->tcp_header_len >> 2
5173	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5174	 *  turn it off	(when there are holes in the receive
5175	 *	 space for instance)
5176	 *	PSH flag is ignored.
5177	 */
5178
5179	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5180	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5181		int tcp_header_len = tp->tcp_header_len;
5182
5183		/* Timestamp header prediction: tcp_header_len
5184		 * is automatically equal to th->doff*4 due to pred_flags
5185		 * match.
5186		 */
5187
5188		/* Check timestamp */
5189		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5190			/* No? Slow path! */
5191			if (!tcp_parse_aligned_timestamp(tp, th))
5192				goto slow_path;
5193
5194			/* If PAWS failed, check it more carefully in slow path */
5195			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5196				goto slow_path;
5197
5198			/* DO NOT update ts_recent here, if checksum fails
5199			 * and timestamp was corrupted part, it will result
5200			 * in a hung connection since we will drop all
5201			 * future packets due to the PAWS test.
5202			 */
5203		}
5204
5205		if (len <= tcp_header_len) {
5206			/* Bulk data transfer: sender */
5207			if (len == tcp_header_len) {
5208				/* Predicted packet is in window by definition.
5209				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5210				 * Hence, check seq<=rcv_wup reduces to:
5211				 */
5212				if (tcp_header_len ==
5213				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5214				    tp->rcv_nxt == tp->rcv_wup)
5215					tcp_store_ts_recent(tp);
5216
5217				/* We know that such packets are checksummed
5218				 * on entry.
5219				 */
5220				tcp_ack(sk, skb, 0);
5221				__kfree_skb(skb);
5222				tcp_data_snd_check(sk);
5223				return 0;
5224			} else { /* Header too small */
5225				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5226				goto discard;
5227			}
5228		} else {
5229			int eaten = 0;
5230			int copied_early = 0;
5231
5232			if (tp->copied_seq == tp->rcv_nxt &&
5233			    len - tcp_header_len <= tp->ucopy.len) {
5234#ifdef CONFIG_NET_DMA
5235				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5236					copied_early = 1;
5237					eaten = 1;
5238				}
5239#endif
5240				if (tp->ucopy.task == current &&
5241				    sock_owned_by_user(sk) && !copied_early) {
5242					__set_current_state(TASK_RUNNING);
5243
5244					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5245						eaten = 1;
5246				}
5247				if (eaten) {
5248					/* Predicted packet is in window by definition.
5249					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5250					 * Hence, check seq<=rcv_wup reduces to:
5251					 */
5252					if (tcp_header_len ==
5253					    (sizeof(struct tcphdr) +
5254					     TCPOLEN_TSTAMP_ALIGNED) &&
5255					    tp->rcv_nxt == tp->rcv_wup)
5256						tcp_store_ts_recent(tp);
5257
5258					tcp_rcv_rtt_measure_ts(sk, skb);
5259
5260					__skb_pull(skb, tcp_header_len);
5261					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5262					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5263				}
5264				if (copied_early)
5265					tcp_cleanup_rbuf(sk, skb->len);
5266			}
5267			if (!eaten) {
5268				if (tcp_checksum_complete_user(sk, skb))
5269					goto csum_error;
5270
5271				/* Predicted packet is in window by definition.
5272				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5273				 * Hence, check seq<=rcv_wup reduces to:
5274				 */
5275				if (tcp_header_len ==
5276				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5277				    tp->rcv_nxt == tp->rcv_wup)
5278					tcp_store_ts_recent(tp);
5279
5280				tcp_rcv_rtt_measure_ts(sk, skb);
5281
5282				if ((int)skb->truesize > sk->sk_forward_alloc)
5283					goto step5;
5284
5285				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5286
5287				/* Bulk data transfer: receiver */
5288				__skb_pull(skb, tcp_header_len);
5289				__skb_queue_tail(&sk->sk_receive_queue, skb);
5290				skb_set_owner_r(skb, sk);
5291				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5292			}
5293
5294			tcp_event_data_recv(sk, skb);
5295
5296			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5297				/* Well, only one small jumplet in fast path... */
5298				tcp_ack(sk, skb, FLAG_DATA);
5299				tcp_data_snd_check(sk);
5300				if (!inet_csk_ack_scheduled(sk))
5301					goto no_ack;
5302			}
5303
5304			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5305				__tcp_ack_snd_check(sk, 0);
5306no_ack:
5307#ifdef CONFIG_NET_DMA
5308			if (copied_early)
5309				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5310			else
5311#endif
5312			if (eaten)
5313				__kfree_skb(skb);
5314			else
5315				sk->sk_data_ready(sk, 0);
5316			return 0;
5317		}
5318	}
5319
5320slow_path:
5321	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5322		goto csum_error;
5323
5324	/*
5325	 *	Standard slow path.
5326	 */
5327
5328	res = tcp_validate_incoming(sk, skb, th, 1);
5329	if (res <= 0)
5330		return -res;
5331
5332step5:
5333	if (th->ack)
5334		tcp_ack(sk, skb, FLAG_SLOWPATH);
5335
5336	tcp_rcv_rtt_measure_ts(sk, skb);
5337
5338	/* Process urgent data. */
5339	tcp_urg(sk, skb, th);
5340
5341	/* step 7: process the segment text */
5342	tcp_data_queue(sk, skb);
5343
5344	tcp_data_snd_check(sk);
5345	tcp_ack_snd_check(sk);
5346	return 0;
5347
5348csum_error:
5349	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5350
5351discard:
5352	__kfree_skb(skb);
5353	return 0;
5354}
5355
5356static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5357					 struct tcphdr *th, unsigned len)
5358{
5359	struct tcp_sock *tp = tcp_sk(sk);
5360	struct inet_connection_sock *icsk = inet_csk(sk);
5361	int saved_clamp = tp->rx_opt.mss_clamp;
5362
5363	tcp_parse_options(skb, &tp->rx_opt, 0);
5364
5365	if (th->ack) {
5366		/* rfc793:
5367		 * "If the state is SYN-SENT then
5368		 *    first check the ACK bit
5369		 *      If the ACK bit is set
5370		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5371		 *        a reset (unless the RST bit is set, if so drop
5372		 *        the segment and return)"
5373		 *
5374		 *  We do not send data with SYN, so that RFC-correct
5375		 *  test reduces to:
5376		 */
5377		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5378			goto reset_and_undo;
5379
5380		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5381		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5382			     tcp_time_stamp)) {
5383			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5384			goto reset_and_undo;
5385		}
5386
5387		/* Now ACK is acceptable.
5388		 *
5389		 * "If the RST bit is set
5390		 *    If the ACK was acceptable then signal the user "error:
5391		 *    connection reset", drop the segment, enter CLOSED state,
5392		 *    delete TCB, and return."
5393		 */
5394
5395		if (th->rst) {
5396			tcp_reset(sk);
5397			goto discard;
5398		}
5399
5400		/* rfc793:
5401		 *   "fifth, if neither of the SYN or RST bits is set then
5402		 *    drop the segment and return."
5403		 *
5404		 *    See note below!
5405		 *                                        --ANK(990513)
5406		 */
5407		if (!th->syn)
5408			goto discard_and_undo;
5409
5410		/* rfc793:
5411		 *   "If the SYN bit is on ...
5412		 *    are acceptable then ...
5413		 *    (our SYN has been ACKed), change the connection
5414		 *    state to ESTABLISHED..."
5415		 */
5416
5417		TCP_ECN_rcv_synack(tp, th);
5418
5419		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5420		tcp_ack(sk, skb, FLAG_SLOWPATH);
5421
5422		/* Ok.. it's good. Set up sequence numbers and
5423		 * move to established.
5424		 */
5425		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5426		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5427
5428		/* RFC1323: The window in SYN & SYN/ACK segments is
5429		 * never scaled.
5430		 */
5431		tp->snd_wnd = ntohs(th->window);
5432		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5433
5434		if (!tp->rx_opt.wscale_ok) {
5435			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5436			tp->window_clamp = min(tp->window_clamp, 65535U);
5437		}
5438
5439		if (tp->rx_opt.saw_tstamp) {
5440			tp->rx_opt.tstamp_ok	   = 1;
5441			tp->tcp_header_len =
5442				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5443			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5444			tcp_store_ts_recent(tp);
5445		} else {
5446			tp->tcp_header_len = sizeof(struct tcphdr);
5447		}
5448
5449		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5450			tcp_enable_fack(tp);
5451
5452		tcp_mtup_init(sk);
5453		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5454		tcp_initialize_rcv_mss(sk);
5455
5456		/* Remember, tcp_poll() does not lock socket!
5457		 * Change state from SYN-SENT only after copied_seq
5458		 * is initialized. */
5459		tp->copied_seq = tp->rcv_nxt;
5460		smp_mb();
5461		tcp_set_state(sk, TCP_ESTABLISHED);
5462
5463		security_inet_conn_established(sk, skb);
5464
5465		/* Make sure socket is routed, for correct metrics.  */
5466		icsk->icsk_af_ops->rebuild_header(sk);
5467
5468		tcp_init_metrics(sk);
5469
5470		tcp_init_congestion_control(sk);
5471
5472		/* Prevent spurious tcp_cwnd_restart() on first data
5473		 * packet.
5474		 */
5475		tp->lsndtime = tcp_time_stamp;
5476
5477		tcp_init_buffer_space(sk);
5478
5479		if (sock_flag(sk, SOCK_KEEPOPEN))
5480			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5481
5482		if (!tp->rx_opt.snd_wscale)
5483			__tcp_fast_path_on(tp, tp->snd_wnd);
5484		else
5485			tp->pred_flags = 0;
5486
5487		if (!sock_flag(sk, SOCK_DEAD)) {
5488			sk->sk_state_change(sk);
5489			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5490		}
5491
5492		if (sk->sk_write_pending ||
5493		    icsk->icsk_accept_queue.rskq_defer_accept ||
5494		    icsk->icsk_ack.pingpong) {
5495			/* Save one ACK. Data will be ready after
5496			 * several ticks, if write_pending is set.
5497			 *
5498			 * It may be deleted, but with this feature tcpdumps
5499			 * look so _wonderfully_ clever, that I was not able
5500			 * to stand against the temptation 8)     --ANK
5501			 */
5502			inet_csk_schedule_ack(sk);
5503			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5504			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5505			tcp_incr_quickack(sk);
5506			tcp_enter_quickack_mode(sk);
5507			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5508						  TCP_DELACK_MAX, TCP_RTO_MAX);
5509
5510discard:
5511			__kfree_skb(skb);
5512			return 0;
5513		} else {
5514			tcp_send_ack(sk);
5515		}
5516		return -1;
5517	}
5518
5519	/* No ACK in the segment */
5520
5521	if (th->rst) {
5522		/* rfc793:
5523		 * "If the RST bit is set
5524		 *
5525		 *      Otherwise (no ACK) drop the segment and return."
5526		 */
5527
5528		goto discard_and_undo;
5529	}
5530
5531	/* PAWS check. */
5532	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5533	    tcp_paws_check(&tp->rx_opt, 0))
5534		goto discard_and_undo;
5535
5536	if (th->syn) {
5537		/* We see SYN without ACK. It is attempt of
5538		 * simultaneous connect with crossed SYNs.
5539		 * Particularly, it can be connect to self.
5540		 */
5541		tcp_set_state(sk, TCP_SYN_RECV);
5542
5543		if (tp->rx_opt.saw_tstamp) {
5544			tp->rx_opt.tstamp_ok = 1;
5545			tcp_store_ts_recent(tp);
5546			tp->tcp_header_len =
5547				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5548		} else {
5549			tp->tcp_header_len = sizeof(struct tcphdr);
5550		}
5551
5552		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5553		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5554
5555		/* RFC1323: The window in SYN & SYN/ACK segments is
5556		 * never scaled.
5557		 */
5558		tp->snd_wnd    = ntohs(th->window);
5559		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5560		tp->max_window = tp->snd_wnd;
5561
5562		TCP_ECN_rcv_syn(tp, th);
5563
5564		tcp_mtup_init(sk);
5565		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5566		tcp_initialize_rcv_mss(sk);
5567
5568		tcp_send_synack(sk);
5569#if 0
5570		/* Note, we could accept data and URG from this segment.
5571		 * There are no obstacles to make this.
5572		 *
5573		 * However, if we ignore data in ACKless segments sometimes,
5574		 * we have no reasons to accept it sometimes.
5575		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5576		 * is not flawless. So, discard packet for sanity.
5577		 * Uncomment this return to process the data.
5578		 */
5579		return -1;
5580#else
5581		goto discard;
5582#endif
5583	}
5584	/* "fifth, if neither of the SYN or RST bits is set then
5585	 * drop the segment and return."
5586	 */
5587
5588discard_and_undo:
5589	tcp_clear_options(&tp->rx_opt);
5590	tp->rx_opt.mss_clamp = saved_clamp;
5591	goto discard;
5592
5593reset_and_undo:
5594	tcp_clear_options(&tp->rx_opt);
5595	tp->rx_opt.mss_clamp = saved_clamp;
5596	return 1;
5597}
5598
5599/*
5600 *	This function implements the receiving procedure of RFC 793 for
5601 *	all states except ESTABLISHED and TIME_WAIT.
5602 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5603 *	address independent.
5604 */
5605
5606int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5607			  struct tcphdr *th, unsigned len)
5608{
5609	struct tcp_sock *tp = tcp_sk(sk);
5610	struct inet_connection_sock *icsk = inet_csk(sk);
5611	int queued = 0;
5612	int res;
5613
5614	tp->rx_opt.saw_tstamp = 0;
5615
5616	switch (sk->sk_state) {
5617	case TCP_CLOSE:
5618		goto discard;
5619
5620	case TCP_LISTEN:
5621		if (th->ack)
5622			return 1;
5623
5624		if (th->rst)
5625			goto discard;
5626
5627		if (th->syn) {
5628			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5629				return 1;
5630
5631			/* Now we have several options: In theory there is
5632			 * nothing else in the frame. KA9Q has an option to
5633			 * send data with the syn, BSD accepts data with the
5634			 * syn up to the [to be] advertised window and
5635			 * Solaris 2.1 gives you a protocol error. For now
5636			 * we just ignore it, that fits the spec precisely
5637			 * and avoids incompatibilities. It would be nice in
5638			 * future to drop through and process the data.
5639			 *
5640			 * Now that TTCP is starting to be used we ought to
5641			 * queue this data.
5642			 * But, this leaves one open to an easy denial of
5643			 * service attack, and SYN cookies can't defend
5644			 * against this problem. So, we drop the data
5645			 * in the interest of security over speed unless
5646			 * it's still in use.
5647			 */
5648			kfree_skb(skb);
5649			return 0;
5650		}
5651		goto discard;
5652
5653	case TCP_SYN_SENT:
5654		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5655		if (queued >= 0)
5656			return queued;
5657
5658		/* Do step6 onward by hand. */
5659		tcp_urg(sk, skb, th);
5660		__kfree_skb(skb);
5661		tcp_data_snd_check(sk);
5662		return 0;
5663	}
5664
5665	res = tcp_validate_incoming(sk, skb, th, 0);
5666	if (res <= 0)
5667		return -res;
5668
5669	/* step 5: check the ACK field */
5670	if (th->ack) {
5671		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5672
5673		switch (sk->sk_state) {
5674		case TCP_SYN_RECV:
5675			if (acceptable) {
5676				tp->copied_seq = tp->rcv_nxt;
5677				smp_mb();
5678				tcp_set_state(sk, TCP_ESTABLISHED);
5679				sk->sk_state_change(sk);
5680
5681				/* Note, that this wakeup is only for marginal
5682				 * crossed SYN case. Passively open sockets
5683				 * are not waked up, because sk->sk_sleep ==
5684				 * NULL and sk->sk_socket == NULL.
5685				 */
5686				if (sk->sk_socket)
5687					sk_wake_async(sk,
5688						      SOCK_WAKE_IO, POLL_OUT);
5689
5690				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5691				tp->snd_wnd = ntohs(th->window) <<
5692					      tp->rx_opt.snd_wscale;
5693				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5694					    TCP_SKB_CB(skb)->seq);
5695
5696				/* tcp_ack considers this ACK as duplicate
5697				 * and does not calculate rtt.
5698				 * Fix it at least with timestamps.
5699				 */
5700				if (tp->rx_opt.saw_tstamp &&
5701				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5702					tcp_ack_saw_tstamp(sk, 0);
5703
5704				if (tp->rx_opt.tstamp_ok)
5705					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5706
5707				/* Make sure socket is routed, for
5708				 * correct metrics.
5709				 */
5710				icsk->icsk_af_ops->rebuild_header(sk);
5711
5712				tcp_init_metrics(sk);
5713
5714				tcp_init_congestion_control(sk);
5715
5716				/* Prevent spurious tcp_cwnd_restart() on
5717				 * first data packet.
5718				 */
5719				tp->lsndtime = tcp_time_stamp;
5720
5721				tcp_mtup_init(sk);
5722				tcp_initialize_rcv_mss(sk);
5723				tcp_init_buffer_space(sk);
5724				tcp_fast_path_on(tp);
5725			} else {
5726				return 1;
5727			}
5728			break;
5729
5730		case TCP_FIN_WAIT1:
5731			if (tp->snd_una == tp->write_seq) {
5732				tcp_set_state(sk, TCP_FIN_WAIT2);
5733				sk->sk_shutdown |= SEND_SHUTDOWN;
5734				dst_confirm(sk->sk_dst_cache);
5735
5736				if (!sock_flag(sk, SOCK_DEAD))
5737					/* Wake up lingering close() */
5738					sk->sk_state_change(sk);
5739				else {
5740					int tmo;
5741
5742					if (tp->linger2 < 0 ||
5743					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5744					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5745						tcp_done(sk);
5746						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5747						return 1;
5748					}
5749
5750					tmo = tcp_fin_time(sk);
5751					if (tmo > TCP_TIMEWAIT_LEN) {
5752						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5753					} else if (th->fin || sock_owned_by_user(sk)) {
5754						/* Bad case. We could lose such FIN otherwise.
5755						 * It is not a big problem, but it looks confusing
5756						 * and not so rare event. We still can lose it now,
5757						 * if it spins in bh_lock_sock(), but it is really
5758						 * marginal case.
5759						 */
5760						inet_csk_reset_keepalive_timer(sk, tmo);
5761					} else {
5762						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5763						goto discard;
5764					}
5765				}
5766			}
5767			break;
5768
5769		case TCP_CLOSING:
5770			if (tp->snd_una == tp->write_seq) {
5771				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5772				goto discard;
5773			}
5774			break;
5775
5776		case TCP_LAST_ACK:
5777			if (tp->snd_una == tp->write_seq) {
5778				tcp_update_metrics(sk);
5779				tcp_done(sk);
5780				goto discard;
5781			}
5782			break;
5783		}
5784	} else
5785		goto discard;
5786
5787	/* step 6: check the URG bit */
5788	tcp_urg(sk, skb, th);
5789
5790	/* step 7: process the segment text */
5791	switch (sk->sk_state) {
5792	case TCP_CLOSE_WAIT:
5793	case TCP_CLOSING:
5794	case TCP_LAST_ACK:
5795		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5796			break;
5797	case TCP_FIN_WAIT1:
5798	case TCP_FIN_WAIT2:
5799		/* RFC 793 says to queue data in these states,
5800		 * RFC 1122 says we MUST send a reset.
5801		 * BSD 4.4 also does reset.
5802		 */
5803		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5804			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5805			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5806				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5807				tcp_reset(sk);
5808				return 1;
5809			}
5810		}
5811		/* Fall through */
5812	case TCP_ESTABLISHED:
5813		tcp_data_queue(sk, skb);
5814		queued = 1;
5815		break;
5816	}
5817
5818	/* tcp_data could move socket to TIME-WAIT */
5819	if (sk->sk_state != TCP_CLOSE) {
5820		tcp_data_snd_check(sk);
5821		tcp_ack_snd_check(sk);
5822	}
5823
5824	if (!queued) {
5825discard:
5826		__kfree_skb(skb);
5827	}
5828	return 0;
5829}
5830
5831EXPORT_SYMBOL(sysctl_tcp_ecn);
5832EXPORT_SYMBOL(sysctl_tcp_reordering);
5833EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5834EXPORT_SYMBOL(tcp_parse_options);
5835#ifdef CONFIG_TCP_MD5SIG
5836EXPORT_SYMBOL(tcp_parse_md5sig_option);
5837#endif
5838EXPORT_SYMBOL(tcp_rcv_established);
5839EXPORT_SYMBOL(tcp_rcv_state_process);
5840EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5841