tcp_input.c revision 80246ab36ec8baf7d107254adb166baa555a59f8
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 *		Pedro Roque	:	Fast Retransmit/Recovery.
26 *					Two receive queues.
27 *					Retransmit queue handled by TCP.
28 *					Better retransmit timer handling.
29 *					New congestion avoidance.
30 *					Header prediction.
31 *					Variable renaming.
32 *
33 *		Eric		:	Fast Retransmit.
34 *		Randy Scott	:	MSS option defines.
35 *		Eric Schenk	:	Fixes to slow start algorithm.
36 *		Eric Schenk	:	Yet another double ACK bug.
37 *		Eric Schenk	:	Delayed ACK bug fixes.
38 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39 *		David S. Miller	:	Don't allow zero congestion window.
40 *		Eric Schenk	:	Fix retransmitter so that it sends
41 *					next packet on ack of previous packet.
42 *		Andi Kleen	:	Moved open_request checking here
43 *					and process RSTs for open_requests.
44 *		Andi Kleen	:	Better prune_queue, and other fixes.
45 *		Andrey Savochkin:	Fix RTT measurements in the presence of
46 *					timestamps.
47 *		Andrey Savochkin:	Check sequence numbers correctly when
48 *					removing SACKs due to in sequence incoming
49 *					data segments.
50 *		Andi Kleen:		Make sure we never ack data there is not
51 *					enough room for. Also make this condition
52 *					a fatal error if it might still happen.
53 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54 *					connections with MSS<min(MTU,ann. MSS)
55 *					work without delayed acks.
56 *		Andi Kleen:		Process packets with PSH set in the
57 *					fast path.
58 *		J Hadi Salim:		ECN support
59 *	 	Andrei Gurtov,
60 *		Pasi Sarolahti,
61 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62 *					engine. Lots of bugs are found.
63 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64 */
65
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
73#include <net/netdma.h>
74
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly;
89int sysctl_tcp_nometrics_save __read_mostly;
90
91int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92int sysctl_tcp_abc __read_mostly;
93
94#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
95#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
96#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
97#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
98#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
99#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
100#define FLAG_ECE		0x40 /* ECE in this ACK				*/
101#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
102#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
103
104#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
107#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108
109#define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110#define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111#define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112
113#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114
115/* Adapt the MSS value used to make delayed ack decision to the
116 * real world.
117 */
118static void tcp_measure_rcv_mss(struct sock *sk,
119				const struct sk_buff *skb)
120{
121	struct inet_connection_sock *icsk = inet_csk(sk);
122	const unsigned int lss = icsk->icsk_ack.last_seg_size;
123	unsigned int len;
124
125	icsk->icsk_ack.last_seg_size = 0;
126
127	/* skb->len may jitter because of SACKs, even if peer
128	 * sends good full-sized frames.
129	 */
130	len = skb_shinfo(skb)->gso_size ?: skb->len;
131	if (len >= icsk->icsk_ack.rcv_mss) {
132		icsk->icsk_ack.rcv_mss = len;
133	} else {
134		/* Otherwise, we make more careful check taking into account,
135		 * that SACKs block is variable.
136		 *
137		 * "len" is invariant segment length, including TCP header.
138		 */
139		len += skb->data - skb->h.raw;
140		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141		    /* If PSH is not set, packet should be
142		     * full sized, provided peer TCP is not badly broken.
143		     * This observation (if it is correct 8)) allows
144		     * to handle super-low mtu links fairly.
145		     */
146		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148			/* Subtract also invariant (if peer is RFC compliant),
149			 * tcp header plus fixed timestamp option length.
150			 * Resulting "len" is MSS free of SACK jitter.
151			 */
152			len -= tcp_sk(sk)->tcp_header_len;
153			icsk->icsk_ack.last_seg_size = len;
154			if (len == lss) {
155				icsk->icsk_ack.rcv_mss = len;
156				return;
157			}
158		}
159		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
160			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
161		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
162	}
163}
164
165static void tcp_incr_quickack(struct sock *sk)
166{
167	struct inet_connection_sock *icsk = inet_csk(sk);
168	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
169
170	if (quickacks==0)
171		quickacks=2;
172	if (quickacks > icsk->icsk_ack.quick)
173		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174}
175
176void tcp_enter_quickack_mode(struct sock *sk)
177{
178	struct inet_connection_sock *icsk = inet_csk(sk);
179	tcp_incr_quickack(sk);
180	icsk->icsk_ack.pingpong = 0;
181	icsk->icsk_ack.ato = TCP_ATO_MIN;
182}
183
184/* Send ACKs quickly, if "quick" count is not exhausted
185 * and the session is not interactive.
186 */
187
188static inline int tcp_in_quickack_mode(const struct sock *sk)
189{
190	const struct inet_connection_sock *icsk = inet_csk(sk);
191	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192}
193
194/* Buffer size and advertised window tuning.
195 *
196 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197 */
198
199static void tcp_fixup_sndbuf(struct sock *sk)
200{
201	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
202		     sizeof(struct sk_buff);
203
204	if (sk->sk_sndbuf < 3 * sndmem)
205		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206}
207
208/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209 *
210 * All tcp_full_space() is split to two parts: "network" buffer, allocated
211 * forward and advertised in receiver window (tp->rcv_wnd) and
212 * "application buffer", required to isolate scheduling/application
213 * latencies from network.
214 * window_clamp is maximal advertised window. It can be less than
215 * tcp_full_space(), in this case tcp_full_space() - window_clamp
216 * is reserved for "application" buffer. The less window_clamp is
217 * the smoother our behaviour from viewpoint of network, but the lower
218 * throughput and the higher sensitivity of the connection to losses. 8)
219 *
220 * rcv_ssthresh is more strict window_clamp used at "slow start"
221 * phase to predict further behaviour of this connection.
222 * It is used for two goals:
223 * - to enforce header prediction at sender, even when application
224 *   requires some significant "application buffer". It is check #1.
225 * - to prevent pruning of receive queue because of misprediction
226 *   of receiver window. Check #2.
227 *
228 * The scheme does not work when sender sends good segments opening
229 * window and then starts to feed us spaghetti. But it should work
230 * in common situations. Otherwise, we have to rely on queue collapsing.
231 */
232
233/* Slow part of check#2. */
234static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
235			     const struct sk_buff *skb)
236{
237	/* Optimize this! */
238	int truesize = tcp_win_from_space(skb->truesize)/2;
239	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
240
241	while (tp->rcv_ssthresh <= window) {
242		if (truesize <= skb->len)
243			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
244
245		truesize >>= 1;
246		window >>= 1;
247	}
248	return 0;
249}
250
251static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
252			    struct sk_buff *skb)
253{
254	/* Check #1 */
255	if (tp->rcv_ssthresh < tp->window_clamp &&
256	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
257	    !tcp_memory_pressure) {
258		int incr;
259
260		/* Check #2. Increase window, if skb with such overhead
261		 * will fit to rcvbuf in future.
262		 */
263		if (tcp_win_from_space(skb->truesize) <= skb->len)
264			incr = 2*tp->advmss;
265		else
266			incr = __tcp_grow_window(sk, tp, skb);
267
268		if (incr) {
269			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
270			inet_csk(sk)->icsk_ack.quick |= 1;
271		}
272	}
273}
274
275/* 3. Tuning rcvbuf, when connection enters established state. */
276
277static void tcp_fixup_rcvbuf(struct sock *sk)
278{
279	struct tcp_sock *tp = tcp_sk(sk);
280	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281
282	/* Try to select rcvbuf so that 4 mss-sized segments
283	 * will fit to window and corresponding skbs will fit to our rcvbuf.
284	 * (was 3; 4 is minimum to allow fast retransmit to work.)
285	 */
286	while (tcp_win_from_space(rcvmem) < tp->advmss)
287		rcvmem += 128;
288	if (sk->sk_rcvbuf < 4 * rcvmem)
289		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290}
291
292/* 4. Try to fixup all. It is made immediately after connection enters
293 *    established state.
294 */
295static void tcp_init_buffer_space(struct sock *sk)
296{
297	struct tcp_sock *tp = tcp_sk(sk);
298	int maxwin;
299
300	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
301		tcp_fixup_rcvbuf(sk);
302	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
303		tcp_fixup_sndbuf(sk);
304
305	tp->rcvq_space.space = tp->rcv_wnd;
306
307	maxwin = tcp_full_space(sk);
308
309	if (tp->window_clamp >= maxwin) {
310		tp->window_clamp = maxwin;
311
312		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
313			tp->window_clamp = max(maxwin -
314					       (maxwin >> sysctl_tcp_app_win),
315					       4 * tp->advmss);
316	}
317
318	/* Force reservation of one segment. */
319	if (sysctl_tcp_app_win &&
320	    tp->window_clamp > 2 * tp->advmss &&
321	    tp->window_clamp + tp->advmss > maxwin)
322		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323
324	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
325	tp->snd_cwnd_stamp = tcp_time_stamp;
326}
327
328/* 5. Recalculate window clamp after socket hit its memory bounds. */
329static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330{
331	struct inet_connection_sock *icsk = inet_csk(sk);
332
333	icsk->icsk_ack.quick = 0;
334
335	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
336	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
337	    !tcp_memory_pressure &&
338	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
339		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340				    sysctl_tcp_rmem[2]);
341	}
342	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
343		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
344}
345
346
347/* Initialize RCV_MSS value.
348 * RCV_MSS is an our guess about MSS used by the peer.
349 * We haven't any direct information about the MSS.
350 * It's better to underestimate the RCV_MSS rather than overestimate.
351 * Overestimations make us ACKing less frequently than needed.
352 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353 */
354void tcp_initialize_rcv_mss(struct sock *sk)
355{
356	struct tcp_sock *tp = tcp_sk(sk);
357	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358
359	hint = min(hint, tp->rcv_wnd/2);
360	hint = min(hint, TCP_MIN_RCVMSS);
361	hint = max(hint, TCP_MIN_MSS);
362
363	inet_csk(sk)->icsk_ack.rcv_mss = hint;
364}
365
366/* Receiver "autotuning" code.
367 *
368 * The algorithm for RTT estimation w/o timestamps is based on
369 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371 *
372 * More detail on this code can be found at
373 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374 * though this reference is out of date.  A new paper
375 * is pending.
376 */
377static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378{
379	u32 new_sample = tp->rcv_rtt_est.rtt;
380	long m = sample;
381
382	if (m == 0)
383		m = 1;
384
385	if (new_sample != 0) {
386		/* If we sample in larger samples in the non-timestamp
387		 * case, we could grossly overestimate the RTT especially
388		 * with chatty applications or bulk transfer apps which
389		 * are stalled on filesystem I/O.
390		 *
391		 * Also, since we are only going for a minimum in the
392		 * non-timestamp case, we do not smooth things out
393		 * else with timestamps disabled convergence takes too
394		 * long.
395		 */
396		if (!win_dep) {
397			m -= (new_sample >> 3);
398			new_sample += m;
399		} else if (m < new_sample)
400			new_sample = m << 3;
401	} else {
402		/* No previous measure. */
403		new_sample = m << 3;
404	}
405
406	if (tp->rcv_rtt_est.rtt != new_sample)
407		tp->rcv_rtt_est.rtt = new_sample;
408}
409
410static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411{
412	if (tp->rcv_rtt_est.time == 0)
413		goto new_measure;
414	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
415		return;
416	tcp_rcv_rtt_update(tp,
417			   jiffies - tp->rcv_rtt_est.time,
418			   1);
419
420new_measure:
421	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
422	tp->rcv_rtt_est.time = tcp_time_stamp;
423}
424
425static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
426{
427	struct tcp_sock *tp = tcp_sk(sk);
428	if (tp->rx_opt.rcv_tsecr &&
429	    (TCP_SKB_CB(skb)->end_seq -
430	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
431		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
432}
433
434/*
435 * This function should be called every time data is copied to user space.
436 * It calculates the appropriate TCP receive buffer space.
437 */
438void tcp_rcv_space_adjust(struct sock *sk)
439{
440	struct tcp_sock *tp = tcp_sk(sk);
441	int time;
442	int space;
443
444	if (tp->rcvq_space.time == 0)
445		goto new_measure;
446
447	time = tcp_time_stamp - tp->rcvq_space.time;
448	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
449	    tp->rcv_rtt_est.rtt == 0)
450		return;
451
452	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453
454	space = max(tp->rcvq_space.space, space);
455
456	if (tp->rcvq_space.space != space) {
457		int rcvmem;
458
459		tp->rcvq_space.space = space;
460
461		if (sysctl_tcp_moderate_rcvbuf &&
462		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
463			int new_clamp = space;
464
465			/* Receive space grows, normalize in order to
466			 * take into account packet headers and sk_buff
467			 * structure overhead.
468			 */
469			space /= tp->advmss;
470			if (!space)
471				space = 1;
472			rcvmem = (tp->advmss + MAX_TCP_HEADER +
473				  16 + sizeof(struct sk_buff));
474			while (tcp_win_from_space(rcvmem) < tp->advmss)
475				rcvmem += 128;
476			space *= rcvmem;
477			space = min(space, sysctl_tcp_rmem[2]);
478			if (space > sk->sk_rcvbuf) {
479				sk->sk_rcvbuf = space;
480
481				/* Make the window clamp follow along.  */
482				tp->window_clamp = new_clamp;
483			}
484		}
485	}
486
487new_measure:
488	tp->rcvq_space.seq = tp->copied_seq;
489	tp->rcvq_space.time = tcp_time_stamp;
490}
491
492/* There is something which you must keep in mind when you analyze the
493 * behavior of the tp->ato delayed ack timeout interval.  When a
494 * connection starts up, we want to ack as quickly as possible.  The
495 * problem is that "good" TCP's do slow start at the beginning of data
496 * transmission.  The means that until we send the first few ACK's the
497 * sender will sit on his end and only queue most of his data, because
498 * he can only send snd_cwnd unacked packets at any given time.  For
499 * each ACK we send, he increments snd_cwnd and transmits more of his
500 * queue.  -DaveM
501 */
502static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503{
504	struct inet_connection_sock *icsk = inet_csk(sk);
505	u32 now;
506
507	inet_csk_schedule_ack(sk);
508
509	tcp_measure_rcv_mss(sk, skb);
510
511	tcp_rcv_rtt_measure(tp);
512
513	now = tcp_time_stamp;
514
515	if (!icsk->icsk_ack.ato) {
516		/* The _first_ data packet received, initialize
517		 * delayed ACK engine.
518		 */
519		tcp_incr_quickack(sk);
520		icsk->icsk_ack.ato = TCP_ATO_MIN;
521	} else {
522		int m = now - icsk->icsk_ack.lrcvtime;
523
524		if (m <= TCP_ATO_MIN/2) {
525			/* The fastest case is the first. */
526			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
527		} else if (m < icsk->icsk_ack.ato) {
528			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
529			if (icsk->icsk_ack.ato > icsk->icsk_rto)
530				icsk->icsk_ack.ato = icsk->icsk_rto;
531		} else if (m > icsk->icsk_rto) {
532			/* Too long gap. Apparently sender failed to
533			 * restart window, so that we send ACKs quickly.
534			 */
535			tcp_incr_quickack(sk);
536			sk_stream_mem_reclaim(sk);
537		}
538	}
539	icsk->icsk_ack.lrcvtime = now;
540
541	TCP_ECN_check_ce(tp, skb);
542
543	if (skb->len >= 128)
544		tcp_grow_window(sk, tp, skb);
545}
546
547/* Called to compute a smoothed rtt estimate. The data fed to this
548 * routine either comes from timestamps, or from segments that were
549 * known _not_ to have been retransmitted [see Karn/Partridge
550 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551 * piece by Van Jacobson.
552 * NOTE: the next three routines used to be one big routine.
553 * To save cycles in the RFC 1323 implementation it was better to break
554 * it up into three procedures. -- erics
555 */
556static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
557{
558	struct tcp_sock *tp = tcp_sk(sk);
559	long m = mrtt; /* RTT */
560
561	/*	The following amusing code comes from Jacobson's
562	 *	article in SIGCOMM '88.  Note that rtt and mdev
563	 *	are scaled versions of rtt and mean deviation.
564	 *	This is designed to be as fast as possible
565	 *	m stands for "measurement".
566	 *
567	 *	On a 1990 paper the rto value is changed to:
568	 *	RTO = rtt + 4 * mdev
569	 *
570	 * Funny. This algorithm seems to be very broken.
571	 * These formulae increase RTO, when it should be decreased, increase
572	 * too slowly, when it should be increased quickly, decrease too quickly
573	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574	 * does not matter how to _calculate_ it. Seems, it was trap
575	 * that VJ failed to avoid. 8)
576	 */
577	if(m == 0)
578		m = 1;
579	if (tp->srtt != 0) {
580		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
581		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
582		if (m < 0) {
583			m = -m;		/* m is now abs(error) */
584			m -= (tp->mdev >> 2);   /* similar update on mdev */
585			/* This is similar to one of Eifel findings.
586			 * Eifel blocks mdev updates when rtt decreases.
587			 * This solution is a bit different: we use finer gain
588			 * for mdev in this case (alpha*beta).
589			 * Like Eifel it also prevents growth of rto,
590			 * but also it limits too fast rto decreases,
591			 * happening in pure Eifel.
592			 */
593			if (m > 0)
594				m >>= 3;
595		} else {
596			m -= (tp->mdev >> 2);   /* similar update on mdev */
597		}
598		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
599		if (tp->mdev > tp->mdev_max) {
600			tp->mdev_max = tp->mdev;
601			if (tp->mdev_max > tp->rttvar)
602				tp->rttvar = tp->mdev_max;
603		}
604		if (after(tp->snd_una, tp->rtt_seq)) {
605			if (tp->mdev_max < tp->rttvar)
606				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
607			tp->rtt_seq = tp->snd_nxt;
608			tp->mdev_max = TCP_RTO_MIN;
609		}
610	} else {
611		/* no previous measure. */
612		tp->srtt = m<<3;	/* take the measured time to be rtt */
613		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
614		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
615		tp->rtt_seq = tp->snd_nxt;
616	}
617}
618
619/* Calculate rto without backoff.  This is the second half of Van Jacobson's
620 * routine referred to above.
621 */
622static inline void tcp_set_rto(struct sock *sk)
623{
624	const struct tcp_sock *tp = tcp_sk(sk);
625	/* Old crap is replaced with new one. 8)
626	 *
627	 * More seriously:
628	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629	 *    It cannot be less due to utterly erratic ACK generation made
630	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631	 *    to do with delayed acks, because at cwnd>2 true delack timeout
632	 *    is invisible. Actually, Linux-2.4 also generates erratic
633	 *    ACKs in some circumstances.
634	 */
635	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
636
637	/* 2. Fixups made earlier cannot be right.
638	 *    If we do not estimate RTO correctly without them,
639	 *    all the algo is pure shit and should be replaced
640	 *    with correct one. It is exactly, which we pretend to do.
641	 */
642}
643
644/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645 * guarantees that rto is higher.
646 */
647static inline void tcp_bound_rto(struct sock *sk)
648{
649	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
650		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
651}
652
653/* Save metrics learned by this TCP session.
654   This function is called only, when TCP finishes successfully
655   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656 */
657void tcp_update_metrics(struct sock *sk)
658{
659	struct tcp_sock *tp = tcp_sk(sk);
660	struct dst_entry *dst = __sk_dst_get(sk);
661
662	if (sysctl_tcp_nometrics_save)
663		return;
664
665	dst_confirm(dst);
666
667	if (dst && (dst->flags&DST_HOST)) {
668		const struct inet_connection_sock *icsk = inet_csk(sk);
669		int m;
670
671		if (icsk->icsk_backoff || !tp->srtt) {
672			/* This session failed to estimate rtt. Why?
673			 * Probably, no packets returned in time.
674			 * Reset our results.
675			 */
676			if (!(dst_metric_locked(dst, RTAX_RTT)))
677				dst->metrics[RTAX_RTT-1] = 0;
678			return;
679		}
680
681		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682
683		/* If newly calculated rtt larger than stored one,
684		 * store new one. Otherwise, use EWMA. Remember,
685		 * rtt overestimation is always better than underestimation.
686		 */
687		if (!(dst_metric_locked(dst, RTAX_RTT))) {
688			if (m <= 0)
689				dst->metrics[RTAX_RTT-1] = tp->srtt;
690			else
691				dst->metrics[RTAX_RTT-1] -= (m>>3);
692		}
693
694		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695			if (m < 0)
696				m = -m;
697
698			/* Scale deviation to rttvar fixed point */
699			m >>= 1;
700			if (m < tp->mdev)
701				m = tp->mdev;
702
703			if (m >= dst_metric(dst, RTAX_RTTVAR))
704				dst->metrics[RTAX_RTTVAR-1] = m;
705			else
706				dst->metrics[RTAX_RTTVAR-1] -=
707					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708		}
709
710		if (tp->snd_ssthresh >= 0xFFFF) {
711			/* Slow start still did not finish. */
712			if (dst_metric(dst, RTAX_SSTHRESH) &&
713			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
714			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
715				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
716			if (!dst_metric_locked(dst, RTAX_CWND) &&
717			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
718				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
719		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
720			   icsk->icsk_ca_state == TCP_CA_Open) {
721			/* Cong. avoidance phase, cwnd is reliable. */
722			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
723				dst->metrics[RTAX_SSTHRESH-1] =
724					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
725			if (!dst_metric_locked(dst, RTAX_CWND))
726				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
727		} else {
728			/* Else slow start did not finish, cwnd is non-sense,
729			   ssthresh may be also invalid.
730			 */
731			if (!dst_metric_locked(dst, RTAX_CWND))
732				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
733			if (dst->metrics[RTAX_SSTHRESH-1] &&
734			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
736				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737		}
738
739		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
740			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
741			    tp->reordering != sysctl_tcp_reordering)
742				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
743		}
744	}
745}
746
747/* Numbers are taken from RFC2414.  */
748__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749{
750	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751
752	if (!cwnd) {
753		if (tp->mss_cache > 1460)
754			cwnd = 2;
755		else
756			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
757	}
758	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759}
760
761/* Set slow start threshold and cwnd not falling to slow start */
762void tcp_enter_cwr(struct sock *sk)
763{
764	struct tcp_sock *tp = tcp_sk(sk);
765
766	tp->prior_ssthresh = 0;
767	tp->bytes_acked = 0;
768	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
769		tp->undo_marker = 0;
770		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
771		tp->snd_cwnd = min(tp->snd_cwnd,
772				   tcp_packets_in_flight(tp) + 1U);
773		tp->snd_cwnd_cnt = 0;
774		tp->high_seq = tp->snd_nxt;
775		tp->snd_cwnd_stamp = tcp_time_stamp;
776		TCP_ECN_queue_cwr(tp);
777
778		tcp_set_ca_state(sk, TCP_CA_CWR);
779	}
780}
781
782/* Initialize metrics on socket. */
783
784static void tcp_init_metrics(struct sock *sk)
785{
786	struct tcp_sock *tp = tcp_sk(sk);
787	struct dst_entry *dst = __sk_dst_get(sk);
788
789	if (dst == NULL)
790		goto reset;
791
792	dst_confirm(dst);
793
794	if (dst_metric_locked(dst, RTAX_CWND))
795		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
796	if (dst_metric(dst, RTAX_SSTHRESH)) {
797		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
798		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
799			tp->snd_ssthresh = tp->snd_cwnd_clamp;
800	}
801	if (dst_metric(dst, RTAX_REORDERING) &&
802	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
803		tp->rx_opt.sack_ok &= ~2;
804		tp->reordering = dst_metric(dst, RTAX_REORDERING);
805	}
806
807	if (dst_metric(dst, RTAX_RTT) == 0)
808		goto reset;
809
810	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
811		goto reset;
812
813	/* Initial rtt is determined from SYN,SYN-ACK.
814	 * The segment is small and rtt may appear much
815	 * less than real one. Use per-dst memory
816	 * to make it more realistic.
817	 *
818	 * A bit of theory. RTT is time passed after "normal" sized packet
819	 * is sent until it is ACKed. In normal circumstances sending small
820	 * packets force peer to delay ACKs and calculation is correct too.
821	 * The algorithm is adaptive and, provided we follow specs, it
822	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823	 * tricks sort of "quick acks" for time long enough to decrease RTT
824	 * to low value, and then abruptly stops to do it and starts to delay
825	 * ACKs, wait for troubles.
826	 */
827	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
828		tp->srtt = dst_metric(dst, RTAX_RTT);
829		tp->rtt_seq = tp->snd_nxt;
830	}
831	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
832		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
833		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834	}
835	tcp_set_rto(sk);
836	tcp_bound_rto(sk);
837	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
838		goto reset;
839	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
840	tp->snd_cwnd_stamp = tcp_time_stamp;
841	return;
842
843reset:
844	/* Play conservative. If timestamps are not
845	 * supported, TCP will fail to recalculate correct
846	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847	 */
848	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
849		tp->srtt = 0;
850		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
851		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
852	}
853}
854
855static void tcp_update_reordering(struct sock *sk, const int metric,
856				  const int ts)
857{
858	struct tcp_sock *tp = tcp_sk(sk);
859	if (metric > tp->reordering) {
860		tp->reordering = min(TCP_MAX_REORDERING, metric);
861
862		/* This exciting event is worth to be remembered. 8) */
863		if (ts)
864			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
865		else if (IsReno(tp))
866			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
867		else if (IsFack(tp))
868			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
869		else
870			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
871#if FASTRETRANS_DEBUG > 1
872		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
873		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874		       tp->reordering,
875		       tp->fackets_out,
876		       tp->sacked_out,
877		       tp->undo_marker ? tp->undo_retrans : 0);
878#endif
879		/* Disable FACK yet. */
880		tp->rx_opt.sack_ok &= ~2;
881	}
882}
883
884/* This procedure tags the retransmission queue when SACKs arrive.
885 *
886 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887 * Packets in queue with these bits set are counted in variables
888 * sacked_out, retrans_out and lost_out, correspondingly.
889 *
890 * Valid combinations are:
891 * Tag  InFlight	Description
892 * 0	1		- orig segment is in flight.
893 * S	0		- nothing flies, orig reached receiver.
894 * L	0		- nothing flies, orig lost by net.
895 * R	2		- both orig and retransmit are in flight.
896 * L|R	1		- orig is lost, retransmit is in flight.
897 * S|R  1		- orig reached receiver, retrans is still in flight.
898 * (L|S|R is logically valid, it could occur when L|R is sacked,
899 *  but it is equivalent to plain S and code short-curcuits it to S.
900 *  L|S is logically invalid, it would mean -1 packet in flight 8))
901 *
902 * These 6 states form finite state machine, controlled by the following events:
903 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905 * 3. Loss detection event of one of three flavors:
906 *	A. Scoreboard estimator decided the packet is lost.
907 *	   A'. Reno "three dupacks" marks head of queue lost.
908 *	   A''. Its FACK modfication, head until snd.fack is lost.
909 *	B. SACK arrives sacking data transmitted after never retransmitted
910 *	   hole was sent out.
911 *	C. SACK arrives sacking SND.NXT at the moment, when the
912 *	   segment was retransmitted.
913 * 4. D-SACK added new rule: D-SACK changes any tag to S.
914 *
915 * It is pleasant to note, that state diagram turns out to be commutative,
916 * so that we are allowed not to be bothered by order of our actions,
917 * when multiple events arrive simultaneously. (see the function below).
918 *
919 * Reordering detection.
920 * --------------------
921 * Reordering metric is maximal distance, which a packet can be displaced
922 * in packet stream. With SACKs we can estimate it:
923 *
924 * 1. SACK fills old hole and the corresponding segment was not
925 *    ever retransmitted -> reordering. Alas, we cannot use it
926 *    when segment was retransmitted.
927 * 2. The last flaw is solved with D-SACK. D-SACK arrives
928 *    for retransmitted and already SACKed segment -> reordering..
929 * Both of these heuristics are not used in Loss state, when we cannot
930 * account for retransmits accurately.
931 */
932static int
933tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934{
935	const struct inet_connection_sock *icsk = inet_csk(sk);
936	struct tcp_sock *tp = tcp_sk(sk);
937	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
938	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
939	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
940	int reord = tp->packets_out;
941	int prior_fackets;
942	u32 lost_retrans = 0;
943	int flag = 0;
944	int dup_sack = 0;
945	int i;
946
947	if (!tp->sacked_out)
948		tp->fackets_out = 0;
949	prior_fackets = tp->fackets_out;
950
951	/* SACK fastpath:
952	 * if the only SACK change is the increase of the end_seq of
953	 * the first block then only apply that SACK block
954	 * and use retrans queue hinting otherwise slowpath */
955	flag = 1;
956	for (i = 0; i< num_sacks; i++) {
957		__u32 start_seq = ntohl(sp[i].start_seq);
958		__u32 end_seq =	 ntohl(sp[i].end_seq);
959
960		if (i == 0){
961			if (tp->recv_sack_cache[i].start_seq != start_seq)
962				flag = 0;
963		} else {
964			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
965			    (tp->recv_sack_cache[i].end_seq != end_seq))
966				flag = 0;
967		}
968		tp->recv_sack_cache[i].start_seq = start_seq;
969		tp->recv_sack_cache[i].end_seq = end_seq;
970
971		/* Check for D-SACK. */
972		if (i == 0) {
973			u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
974
975			if (before(start_seq, ack)) {
976				dup_sack = 1;
977				tp->rx_opt.sack_ok |= 4;
978				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
979			} else if (num_sacks > 1 &&
980				   !after(end_seq, ntohl(sp[1].end_seq)) &&
981				   !before(start_seq, ntohl(sp[1].start_seq))) {
982				dup_sack = 1;
983				tp->rx_opt.sack_ok |= 4;
984				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
985			}
986
987			/* D-SACK for already forgotten data...
988			 * Do dumb counting. */
989			if (dup_sack &&
990			    !after(end_seq, prior_snd_una) &&
991			    after(end_seq, tp->undo_marker))
992				tp->undo_retrans--;
993
994			/* Eliminate too old ACKs, but take into
995			 * account more or less fresh ones, they can
996			 * contain valid SACK info.
997			 */
998			if (before(ack, prior_snd_una - tp->max_window))
999				return 0;
1000		}
1001	}
1002
1003	if (flag)
1004		num_sacks = 1;
1005	else {
1006		int j;
1007		tp->fastpath_skb_hint = NULL;
1008
1009		/* order SACK blocks to allow in order walk of the retrans queue */
1010		for (i = num_sacks-1; i > 0; i--) {
1011			for (j = 0; j < i; j++){
1012				if (after(ntohl(sp[j].start_seq),
1013					  ntohl(sp[j+1].start_seq))){
1014					sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq);
1015					sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq);
1016					sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq);
1017					sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq);
1018				}
1019
1020			}
1021		}
1022	}
1023
1024	/* clear flag as used for different purpose in following code */
1025	flag = 0;
1026
1027	for (i=0; i<num_sacks; i++, sp++) {
1028		struct sk_buff *skb;
1029		__u32 start_seq = ntohl(sp->start_seq);
1030		__u32 end_seq = ntohl(sp->end_seq);
1031		int fack_count;
1032
1033		/* Use SACK fastpath hint if valid */
1034		if (tp->fastpath_skb_hint) {
1035			skb = tp->fastpath_skb_hint;
1036			fack_count = tp->fastpath_cnt_hint;
1037		} else {
1038			skb = sk->sk_write_queue.next;
1039			fack_count = 0;
1040		}
1041
1042		/* Event "B" in the comment above. */
1043		if (after(end_seq, tp->high_seq))
1044			flag |= FLAG_DATA_LOST;
1045
1046		sk_stream_for_retrans_queue_from(skb, sk) {
1047			int in_sack, pcount;
1048			u8 sacked;
1049
1050			tp->fastpath_skb_hint = skb;
1051			tp->fastpath_cnt_hint = fack_count;
1052
1053			/* The retransmission queue is always in order, so
1054			 * we can short-circuit the walk early.
1055			 */
1056			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1057				break;
1058
1059			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1060				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1061
1062			pcount = tcp_skb_pcount(skb);
1063
1064			if (pcount > 1 && !in_sack &&
1065			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1066				unsigned int pkt_len;
1067
1068				in_sack = !after(start_seq,
1069						 TCP_SKB_CB(skb)->seq);
1070
1071				if (!in_sack)
1072					pkt_len = (start_seq -
1073						   TCP_SKB_CB(skb)->seq);
1074				else
1075					pkt_len = (end_seq -
1076						   TCP_SKB_CB(skb)->seq);
1077				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1078					break;
1079				pcount = tcp_skb_pcount(skb);
1080			}
1081
1082			fack_count += pcount;
1083
1084			sacked = TCP_SKB_CB(skb)->sacked;
1085
1086			/* Account D-SACK for retransmitted packet. */
1087			if ((dup_sack && in_sack) &&
1088			    (sacked & TCPCB_RETRANS) &&
1089			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1090				tp->undo_retrans--;
1091
1092			/* The frame is ACKed. */
1093			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1094				if (sacked&TCPCB_RETRANS) {
1095					if ((dup_sack && in_sack) &&
1096					    (sacked&TCPCB_SACKED_ACKED))
1097						reord = min(fack_count, reord);
1098				} else {
1099					/* If it was in a hole, we detected reordering. */
1100					if (fack_count < prior_fackets &&
1101					    !(sacked&TCPCB_SACKED_ACKED))
1102						reord = min(fack_count, reord);
1103				}
1104
1105				/* Nothing to do; acked frame is about to be dropped. */
1106				continue;
1107			}
1108
1109			if ((sacked&TCPCB_SACKED_RETRANS) &&
1110			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1111			    (!lost_retrans || after(end_seq, lost_retrans)))
1112				lost_retrans = end_seq;
1113
1114			if (!in_sack)
1115				continue;
1116
1117			if (!(sacked&TCPCB_SACKED_ACKED)) {
1118				if (sacked & TCPCB_SACKED_RETRANS) {
1119					/* If the segment is not tagged as lost,
1120					 * we do not clear RETRANS, believing
1121					 * that retransmission is still in flight.
1122					 */
1123					if (sacked & TCPCB_LOST) {
1124						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1125						tp->lost_out -= tcp_skb_pcount(skb);
1126						tp->retrans_out -= tcp_skb_pcount(skb);
1127
1128						/* clear lost hint */
1129						tp->retransmit_skb_hint = NULL;
1130					}
1131				} else {
1132					/* New sack for not retransmitted frame,
1133					 * which was in hole. It is reordering.
1134					 */
1135					if (!(sacked & TCPCB_RETRANS) &&
1136					    fack_count < prior_fackets)
1137						reord = min(fack_count, reord);
1138
1139					if (sacked & TCPCB_LOST) {
1140						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1141						tp->lost_out -= tcp_skb_pcount(skb);
1142
1143						/* clear lost hint */
1144						tp->retransmit_skb_hint = NULL;
1145					}
1146				}
1147
1148				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1149				flag |= FLAG_DATA_SACKED;
1150				tp->sacked_out += tcp_skb_pcount(skb);
1151
1152				if (fack_count > tp->fackets_out)
1153					tp->fackets_out = fack_count;
1154			} else {
1155				if (dup_sack && (sacked&TCPCB_RETRANS))
1156					reord = min(fack_count, reord);
1157			}
1158
1159			/* D-SACK. We can detect redundant retransmission
1160			 * in S|R and plain R frames and clear it.
1161			 * undo_retrans is decreased above, L|R frames
1162			 * are accounted above as well.
1163			 */
1164			if (dup_sack &&
1165			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1166				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1167				tp->retrans_out -= tcp_skb_pcount(skb);
1168				tp->retransmit_skb_hint = NULL;
1169			}
1170		}
1171	}
1172
1173	/* Check for lost retransmit. This superb idea is
1174	 * borrowed from "ratehalving". Event "C".
1175	 * Later note: FACK people cheated me again 8),
1176	 * we have to account for reordering! Ugly,
1177	 * but should help.
1178	 */
1179	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1180		struct sk_buff *skb;
1181
1182		sk_stream_for_retrans_queue(skb, sk) {
1183			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1184				break;
1185			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1186				continue;
1187			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1188			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1189			    (IsFack(tp) ||
1190			     !before(lost_retrans,
1191				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1192				     tp->mss_cache))) {
1193				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1194				tp->retrans_out -= tcp_skb_pcount(skb);
1195
1196				/* clear lost hint */
1197				tp->retransmit_skb_hint = NULL;
1198
1199				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1200					tp->lost_out += tcp_skb_pcount(skb);
1201					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1202					flag |= FLAG_DATA_SACKED;
1203					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1204				}
1205			}
1206		}
1207	}
1208
1209	tp->left_out = tp->sacked_out + tp->lost_out;
1210
1211	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1212		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1213
1214#if FASTRETRANS_DEBUG > 0
1215	BUG_TRAP((int)tp->sacked_out >= 0);
1216	BUG_TRAP((int)tp->lost_out >= 0);
1217	BUG_TRAP((int)tp->retrans_out >= 0);
1218	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1219#endif
1220	return flag;
1221}
1222
1223/* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1224 * segments to see from the next ACKs whether any data was really missing.
1225 * If the RTO was spurious, new ACKs should arrive.
1226 */
1227void tcp_enter_frto(struct sock *sk)
1228{
1229	const struct inet_connection_sock *icsk = inet_csk(sk);
1230	struct tcp_sock *tp = tcp_sk(sk);
1231	struct sk_buff *skb;
1232
1233	tp->frto_counter = 1;
1234
1235	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1236            tp->snd_una == tp->high_seq ||
1237            (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1238		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1239		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1240		tcp_ca_event(sk, CA_EVENT_FRTO);
1241	}
1242
1243	/* Have to clear retransmission markers here to keep the bookkeeping
1244	 * in shape, even though we are not yet in Loss state.
1245	 * If something was really lost, it is eventually caught up
1246	 * in tcp_enter_frto_loss.
1247	 */
1248	tp->retrans_out = 0;
1249	tp->undo_marker = tp->snd_una;
1250	tp->undo_retrans = 0;
1251
1252	sk_stream_for_retrans_queue(skb, sk) {
1253		TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1254	}
1255	tcp_sync_left_out(tp);
1256
1257	tcp_set_ca_state(sk, TCP_CA_Open);
1258	tp->frto_highmark = tp->snd_nxt;
1259}
1260
1261/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1262 * which indicates that we should follow the traditional RTO recovery,
1263 * i.e. mark everything lost and do go-back-N retransmission.
1264 */
1265static void tcp_enter_frto_loss(struct sock *sk)
1266{
1267	struct tcp_sock *tp = tcp_sk(sk);
1268	struct sk_buff *skb;
1269	int cnt = 0;
1270
1271	tp->sacked_out = 0;
1272	tp->lost_out = 0;
1273	tp->fackets_out = 0;
1274
1275	sk_stream_for_retrans_queue(skb, sk) {
1276		cnt += tcp_skb_pcount(skb);
1277		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1278		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1279
1280			/* Do not mark those segments lost that were
1281			 * forward transmitted after RTO
1282			 */
1283			if (!after(TCP_SKB_CB(skb)->end_seq,
1284				   tp->frto_highmark)) {
1285				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1286				tp->lost_out += tcp_skb_pcount(skb);
1287			}
1288		} else {
1289			tp->sacked_out += tcp_skb_pcount(skb);
1290			tp->fackets_out = cnt;
1291		}
1292	}
1293	tcp_sync_left_out(tp);
1294
1295	tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1296	tp->snd_cwnd_cnt = 0;
1297	tp->snd_cwnd_stamp = tcp_time_stamp;
1298	tp->undo_marker = 0;
1299	tp->frto_counter = 0;
1300
1301	tp->reordering = min_t(unsigned int, tp->reordering,
1302					     sysctl_tcp_reordering);
1303	tcp_set_ca_state(sk, TCP_CA_Loss);
1304	tp->high_seq = tp->frto_highmark;
1305	TCP_ECN_queue_cwr(tp);
1306
1307	clear_all_retrans_hints(tp);
1308}
1309
1310void tcp_clear_retrans(struct tcp_sock *tp)
1311{
1312	tp->left_out = 0;
1313	tp->retrans_out = 0;
1314
1315	tp->fackets_out = 0;
1316	tp->sacked_out = 0;
1317	tp->lost_out = 0;
1318
1319	tp->undo_marker = 0;
1320	tp->undo_retrans = 0;
1321}
1322
1323/* Enter Loss state. If "how" is not zero, forget all SACK information
1324 * and reset tags completely, otherwise preserve SACKs. If receiver
1325 * dropped its ofo queue, we will know this due to reneging detection.
1326 */
1327void tcp_enter_loss(struct sock *sk, int how)
1328{
1329	const struct inet_connection_sock *icsk = inet_csk(sk);
1330	struct tcp_sock *tp = tcp_sk(sk);
1331	struct sk_buff *skb;
1332	int cnt = 0;
1333
1334	/* Reduce ssthresh if it has not yet been made inside this window. */
1335	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1336	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1337		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1338		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1339		tcp_ca_event(sk, CA_EVENT_LOSS);
1340	}
1341	tp->snd_cwnd	   = 1;
1342	tp->snd_cwnd_cnt   = 0;
1343	tp->snd_cwnd_stamp = tcp_time_stamp;
1344
1345	tp->bytes_acked = 0;
1346	tcp_clear_retrans(tp);
1347
1348	/* Push undo marker, if it was plain RTO and nothing
1349	 * was retransmitted. */
1350	if (!how)
1351		tp->undo_marker = tp->snd_una;
1352
1353	sk_stream_for_retrans_queue(skb, sk) {
1354		cnt += tcp_skb_pcount(skb);
1355		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1356			tp->undo_marker = 0;
1357		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1358		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1359			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1360			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1361			tp->lost_out += tcp_skb_pcount(skb);
1362		} else {
1363			tp->sacked_out += tcp_skb_pcount(skb);
1364			tp->fackets_out = cnt;
1365		}
1366	}
1367	tcp_sync_left_out(tp);
1368
1369	tp->reordering = min_t(unsigned int, tp->reordering,
1370					     sysctl_tcp_reordering);
1371	tcp_set_ca_state(sk, TCP_CA_Loss);
1372	tp->high_seq = tp->snd_nxt;
1373	TCP_ECN_queue_cwr(tp);
1374
1375	clear_all_retrans_hints(tp);
1376}
1377
1378static int tcp_check_sack_reneging(struct sock *sk)
1379{
1380	struct sk_buff *skb;
1381
1382	/* If ACK arrived pointing to a remembered SACK,
1383	 * it means that our remembered SACKs do not reflect
1384	 * real state of receiver i.e.
1385	 * receiver _host_ is heavily congested (or buggy).
1386	 * Do processing similar to RTO timeout.
1387	 */
1388	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1389	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1390		struct inet_connection_sock *icsk = inet_csk(sk);
1391		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1392
1393		tcp_enter_loss(sk, 1);
1394		icsk->icsk_retransmits++;
1395		tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1396		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1397					  icsk->icsk_rto, TCP_RTO_MAX);
1398		return 1;
1399	}
1400	return 0;
1401}
1402
1403static inline int tcp_fackets_out(struct tcp_sock *tp)
1404{
1405	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1406}
1407
1408static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1409{
1410	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1411}
1412
1413static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1414{
1415	return tp->packets_out &&
1416	       tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1417}
1418
1419/* Linux NewReno/SACK/FACK/ECN state machine.
1420 * --------------------------------------
1421 *
1422 * "Open"	Normal state, no dubious events, fast path.
1423 * "Disorder"   In all the respects it is "Open",
1424 *		but requires a bit more attention. It is entered when
1425 *		we see some SACKs or dupacks. It is split of "Open"
1426 *		mainly to move some processing from fast path to slow one.
1427 * "CWR"	CWND was reduced due to some Congestion Notification event.
1428 *		It can be ECN, ICMP source quench, local device congestion.
1429 * "Recovery"	CWND was reduced, we are fast-retransmitting.
1430 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1431 *
1432 * tcp_fastretrans_alert() is entered:
1433 * - each incoming ACK, if state is not "Open"
1434 * - when arrived ACK is unusual, namely:
1435 *	* SACK
1436 *	* Duplicate ACK.
1437 *	* ECN ECE.
1438 *
1439 * Counting packets in flight is pretty simple.
1440 *
1441 *	in_flight = packets_out - left_out + retrans_out
1442 *
1443 *	packets_out is SND.NXT-SND.UNA counted in packets.
1444 *
1445 *	retrans_out is number of retransmitted segments.
1446 *
1447 *	left_out is number of segments left network, but not ACKed yet.
1448 *
1449 *		left_out = sacked_out + lost_out
1450 *
1451 *     sacked_out: Packets, which arrived to receiver out of order
1452 *		   and hence not ACKed. With SACKs this number is simply
1453 *		   amount of SACKed data. Even without SACKs
1454 *		   it is easy to give pretty reliable estimate of this number,
1455 *		   counting duplicate ACKs.
1456 *
1457 *       lost_out: Packets lost by network. TCP has no explicit
1458 *		   "loss notification" feedback from network (for now).
1459 *		   It means that this number can be only _guessed_.
1460 *		   Actually, it is the heuristics to predict lossage that
1461 *		   distinguishes different algorithms.
1462 *
1463 *	F.e. after RTO, when all the queue is considered as lost,
1464 *	lost_out = packets_out and in_flight = retrans_out.
1465 *
1466 *		Essentially, we have now two algorithms counting
1467 *		lost packets.
1468 *
1469 *		FACK: It is the simplest heuristics. As soon as we decided
1470 *		that something is lost, we decide that _all_ not SACKed
1471 *		packets until the most forward SACK are lost. I.e.
1472 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1473 *		It is absolutely correct estimate, if network does not reorder
1474 *		packets. And it loses any connection to reality when reordering
1475 *		takes place. We use FACK by default until reordering
1476 *		is suspected on the path to this destination.
1477 *
1478 *		NewReno: when Recovery is entered, we assume that one segment
1479 *		is lost (classic Reno). While we are in Recovery and
1480 *		a partial ACK arrives, we assume that one more packet
1481 *		is lost (NewReno). This heuristics are the same in NewReno
1482 *		and SACK.
1483 *
1484 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1485 *  deflation etc. CWND is real congestion window, never inflated, changes
1486 *  only according to classic VJ rules.
1487 *
1488 * Really tricky (and requiring careful tuning) part of algorithm
1489 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1490 * The first determines the moment _when_ we should reduce CWND and,
1491 * hence, slow down forward transmission. In fact, it determines the moment
1492 * when we decide that hole is caused by loss, rather than by a reorder.
1493 *
1494 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1495 * holes, caused by lost packets.
1496 *
1497 * And the most logically complicated part of algorithm is undo
1498 * heuristics. We detect false retransmits due to both too early
1499 * fast retransmit (reordering) and underestimated RTO, analyzing
1500 * timestamps and D-SACKs. When we detect that some segments were
1501 * retransmitted by mistake and CWND reduction was wrong, we undo
1502 * window reduction and abort recovery phase. This logic is hidden
1503 * inside several functions named tcp_try_undo_<something>.
1504 */
1505
1506/* This function decides, when we should leave Disordered state
1507 * and enter Recovery phase, reducing congestion window.
1508 *
1509 * Main question: may we further continue forward transmission
1510 * with the same cwnd?
1511 */
1512static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1513{
1514	__u32 packets_out;
1515
1516	/* Trick#1: The loss is proven. */
1517	if (tp->lost_out)
1518		return 1;
1519
1520	/* Not-A-Trick#2 : Classic rule... */
1521	if (tcp_fackets_out(tp) > tp->reordering)
1522		return 1;
1523
1524	/* Trick#3 : when we use RFC2988 timer restart, fast
1525	 * retransmit can be triggered by timeout of queue head.
1526	 */
1527	if (tcp_head_timedout(sk, tp))
1528		return 1;
1529
1530	/* Trick#4: It is still not OK... But will it be useful to delay
1531	 * recovery more?
1532	 */
1533	packets_out = tp->packets_out;
1534	if (packets_out <= tp->reordering &&
1535	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1536	    !tcp_may_send_now(sk, tp)) {
1537		/* We have nothing to send. This connection is limited
1538		 * either by receiver window or by application.
1539		 */
1540		return 1;
1541	}
1542
1543	return 0;
1544}
1545
1546/* If we receive more dupacks than we expected counting segments
1547 * in assumption of absent reordering, interpret this as reordering.
1548 * The only another reason could be bug in receiver TCP.
1549 */
1550static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1551{
1552	struct tcp_sock *tp = tcp_sk(sk);
1553	u32 holes;
1554
1555	holes = max(tp->lost_out, 1U);
1556	holes = min(holes, tp->packets_out);
1557
1558	if ((tp->sacked_out + holes) > tp->packets_out) {
1559		tp->sacked_out = tp->packets_out - holes;
1560		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1561	}
1562}
1563
1564/* Emulate SACKs for SACKless connection: account for a new dupack. */
1565
1566static void tcp_add_reno_sack(struct sock *sk)
1567{
1568	struct tcp_sock *tp = tcp_sk(sk);
1569	tp->sacked_out++;
1570	tcp_check_reno_reordering(sk, 0);
1571	tcp_sync_left_out(tp);
1572}
1573
1574/* Account for ACK, ACKing some data in Reno Recovery phase. */
1575
1576static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1577{
1578	if (acked > 0) {
1579		/* One ACK acked hole. The rest eat duplicate ACKs. */
1580		if (acked-1 >= tp->sacked_out)
1581			tp->sacked_out = 0;
1582		else
1583			tp->sacked_out -= acked-1;
1584	}
1585	tcp_check_reno_reordering(sk, acked);
1586	tcp_sync_left_out(tp);
1587}
1588
1589static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1590{
1591	tp->sacked_out = 0;
1592	tp->left_out = tp->lost_out;
1593}
1594
1595/* Mark head of queue up as lost. */
1596static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1597			       int packets, u32 high_seq)
1598{
1599	struct sk_buff *skb;
1600	int cnt;
1601
1602	BUG_TRAP(packets <= tp->packets_out);
1603	if (tp->lost_skb_hint) {
1604		skb = tp->lost_skb_hint;
1605		cnt = tp->lost_cnt_hint;
1606	} else {
1607		skb = sk->sk_write_queue.next;
1608		cnt = 0;
1609	}
1610
1611	sk_stream_for_retrans_queue_from(skb, sk) {
1612		/* TODO: do this better */
1613		/* this is not the most efficient way to do this... */
1614		tp->lost_skb_hint = skb;
1615		tp->lost_cnt_hint = cnt;
1616		cnt += tcp_skb_pcount(skb);
1617		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1618			break;
1619		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1620			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1621			tp->lost_out += tcp_skb_pcount(skb);
1622
1623			/* clear xmit_retransmit_queue hints
1624			 *  if this is beyond hint */
1625			if(tp->retransmit_skb_hint != NULL &&
1626			   before(TCP_SKB_CB(skb)->seq,
1627				  TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1628
1629				tp->retransmit_skb_hint = NULL;
1630			}
1631		}
1632	}
1633	tcp_sync_left_out(tp);
1634}
1635
1636/* Account newly detected lost packet(s) */
1637
1638static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1639{
1640	if (IsFack(tp)) {
1641		int lost = tp->fackets_out - tp->reordering;
1642		if (lost <= 0)
1643			lost = 1;
1644		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1645	} else {
1646		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1647	}
1648
1649	/* New heuristics: it is possible only after we switched
1650	 * to restart timer each time when something is ACKed.
1651	 * Hence, we can detect timed out packets during fast
1652	 * retransmit without falling to slow start.
1653	 */
1654	if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1655		struct sk_buff *skb;
1656
1657		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1658			: sk->sk_write_queue.next;
1659
1660		sk_stream_for_retrans_queue_from(skb, sk) {
1661			if (!tcp_skb_timedout(sk, skb))
1662				break;
1663
1664			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1665				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1666				tp->lost_out += tcp_skb_pcount(skb);
1667
1668				/* clear xmit_retrans hint */
1669				if (tp->retransmit_skb_hint &&
1670				    before(TCP_SKB_CB(skb)->seq,
1671					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1672
1673					tp->retransmit_skb_hint = NULL;
1674			}
1675		}
1676
1677		tp->scoreboard_skb_hint = skb;
1678
1679		tcp_sync_left_out(tp);
1680	}
1681}
1682
1683/* CWND moderation, preventing bursts due to too big ACKs
1684 * in dubious situations.
1685 */
1686static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1687{
1688	tp->snd_cwnd = min(tp->snd_cwnd,
1689			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1690	tp->snd_cwnd_stamp = tcp_time_stamp;
1691}
1692
1693/* Lower bound on congestion window is slow start threshold
1694 * unless congestion avoidance choice decides to overide it.
1695 */
1696static inline u32 tcp_cwnd_min(const struct sock *sk)
1697{
1698	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1699
1700	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1701}
1702
1703/* Decrease cwnd each second ack. */
1704static void tcp_cwnd_down(struct sock *sk)
1705{
1706	struct tcp_sock *tp = tcp_sk(sk);
1707	int decr = tp->snd_cwnd_cnt + 1;
1708
1709	tp->snd_cwnd_cnt = decr&1;
1710	decr >>= 1;
1711
1712	if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1713		tp->snd_cwnd -= decr;
1714
1715	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1716	tp->snd_cwnd_stamp = tcp_time_stamp;
1717}
1718
1719/* Nothing was retransmitted or returned timestamp is less
1720 * than timestamp of the first retransmission.
1721 */
1722static inline int tcp_packet_delayed(struct tcp_sock *tp)
1723{
1724	return !tp->retrans_stamp ||
1725		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1726		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1727}
1728
1729/* Undo procedures. */
1730
1731#if FASTRETRANS_DEBUG > 1
1732static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1733{
1734	struct inet_sock *inet = inet_sk(sk);
1735	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1736	       msg,
1737	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1738	       tp->snd_cwnd, tp->left_out,
1739	       tp->snd_ssthresh, tp->prior_ssthresh,
1740	       tp->packets_out);
1741}
1742#else
1743#define DBGUNDO(x...) do { } while (0)
1744#endif
1745
1746static void tcp_undo_cwr(struct sock *sk, const int undo)
1747{
1748	struct tcp_sock *tp = tcp_sk(sk);
1749
1750	if (tp->prior_ssthresh) {
1751		const struct inet_connection_sock *icsk = inet_csk(sk);
1752
1753		if (icsk->icsk_ca_ops->undo_cwnd)
1754			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1755		else
1756			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1757
1758		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1759			tp->snd_ssthresh = tp->prior_ssthresh;
1760			TCP_ECN_withdraw_cwr(tp);
1761		}
1762	} else {
1763		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1764	}
1765	tcp_moderate_cwnd(tp);
1766	tp->snd_cwnd_stamp = tcp_time_stamp;
1767
1768	/* There is something screwy going on with the retrans hints after
1769	   an undo */
1770	clear_all_retrans_hints(tp);
1771}
1772
1773static inline int tcp_may_undo(struct tcp_sock *tp)
1774{
1775	return tp->undo_marker &&
1776		(!tp->undo_retrans || tcp_packet_delayed(tp));
1777}
1778
1779/* People celebrate: "We love our President!" */
1780static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1781{
1782	if (tcp_may_undo(tp)) {
1783		/* Happy end! We did not retransmit anything
1784		 * or our original transmission succeeded.
1785		 */
1786		DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1787		tcp_undo_cwr(sk, 1);
1788		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1789			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1790		else
1791			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1792		tp->undo_marker = 0;
1793	}
1794	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1795		/* Hold old state until something *above* high_seq
1796		 * is ACKed. For Reno it is MUST to prevent false
1797		 * fast retransmits (RFC2582). SACK TCP is safe. */
1798		tcp_moderate_cwnd(tp);
1799		return 1;
1800	}
1801	tcp_set_ca_state(sk, TCP_CA_Open);
1802	return 0;
1803}
1804
1805/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1806static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1807{
1808	if (tp->undo_marker && !tp->undo_retrans) {
1809		DBGUNDO(sk, tp, "D-SACK");
1810		tcp_undo_cwr(sk, 1);
1811		tp->undo_marker = 0;
1812		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1813	}
1814}
1815
1816/* Undo during fast recovery after partial ACK. */
1817
1818static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1819				int acked)
1820{
1821	/* Partial ACK arrived. Force Hoe's retransmit. */
1822	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1823
1824	if (tcp_may_undo(tp)) {
1825		/* Plain luck! Hole if filled with delayed
1826		 * packet, rather than with a retransmit.
1827		 */
1828		if (tp->retrans_out == 0)
1829			tp->retrans_stamp = 0;
1830
1831		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1832
1833		DBGUNDO(sk, tp, "Hoe");
1834		tcp_undo_cwr(sk, 0);
1835		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1836
1837		/* So... Do not make Hoe's retransmit yet.
1838		 * If the first packet was delayed, the rest
1839		 * ones are most probably delayed as well.
1840		 */
1841		failed = 0;
1842	}
1843	return failed;
1844}
1845
1846/* Undo during loss recovery after partial ACK. */
1847static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1848{
1849	if (tcp_may_undo(tp)) {
1850		struct sk_buff *skb;
1851		sk_stream_for_retrans_queue(skb, sk) {
1852			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1853		}
1854
1855		clear_all_retrans_hints(tp);
1856
1857		DBGUNDO(sk, tp, "partial loss");
1858		tp->lost_out = 0;
1859		tp->left_out = tp->sacked_out;
1860		tcp_undo_cwr(sk, 1);
1861		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1862		inet_csk(sk)->icsk_retransmits = 0;
1863		tp->undo_marker = 0;
1864		if (!IsReno(tp))
1865			tcp_set_ca_state(sk, TCP_CA_Open);
1866		return 1;
1867	}
1868	return 0;
1869}
1870
1871static inline void tcp_complete_cwr(struct sock *sk)
1872{
1873	struct tcp_sock *tp = tcp_sk(sk);
1874	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1875	tp->snd_cwnd_stamp = tcp_time_stamp;
1876	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1877}
1878
1879static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1880{
1881	tp->left_out = tp->sacked_out;
1882
1883	if (tp->retrans_out == 0)
1884		tp->retrans_stamp = 0;
1885
1886	if (flag&FLAG_ECE)
1887		tcp_enter_cwr(sk);
1888
1889	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1890		int state = TCP_CA_Open;
1891
1892		if (tp->left_out || tp->retrans_out || tp->undo_marker)
1893			state = TCP_CA_Disorder;
1894
1895		if (inet_csk(sk)->icsk_ca_state != state) {
1896			tcp_set_ca_state(sk, state);
1897			tp->high_seq = tp->snd_nxt;
1898		}
1899		tcp_moderate_cwnd(tp);
1900	} else {
1901		tcp_cwnd_down(sk);
1902	}
1903}
1904
1905static void tcp_mtup_probe_failed(struct sock *sk)
1906{
1907	struct inet_connection_sock *icsk = inet_csk(sk);
1908
1909	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1910	icsk->icsk_mtup.probe_size = 0;
1911}
1912
1913static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1914{
1915	struct tcp_sock *tp = tcp_sk(sk);
1916	struct inet_connection_sock *icsk = inet_csk(sk);
1917
1918	/* FIXME: breaks with very large cwnd */
1919	tp->prior_ssthresh = tcp_current_ssthresh(sk);
1920	tp->snd_cwnd = tp->snd_cwnd *
1921		       tcp_mss_to_mtu(sk, tp->mss_cache) /
1922		       icsk->icsk_mtup.probe_size;
1923	tp->snd_cwnd_cnt = 0;
1924	tp->snd_cwnd_stamp = tcp_time_stamp;
1925	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1926
1927	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1928	icsk->icsk_mtup.probe_size = 0;
1929	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1930}
1931
1932
1933/* Process an event, which can update packets-in-flight not trivially.
1934 * Main goal of this function is to calculate new estimate for left_out,
1935 * taking into account both packets sitting in receiver's buffer and
1936 * packets lost by network.
1937 *
1938 * Besides that it does CWND reduction, when packet loss is detected
1939 * and changes state of machine.
1940 *
1941 * It does _not_ decide what to send, it is made in function
1942 * tcp_xmit_retransmit_queue().
1943 */
1944static void
1945tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1946		      int prior_packets, int flag)
1947{
1948	struct inet_connection_sock *icsk = inet_csk(sk);
1949	struct tcp_sock *tp = tcp_sk(sk);
1950	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1951
1952	/* Some technical things:
1953	 * 1. Reno does not count dupacks (sacked_out) automatically. */
1954	if (!tp->packets_out)
1955		tp->sacked_out = 0;
1956        /* 2. SACK counts snd_fack in packets inaccurately. */
1957	if (tp->sacked_out == 0)
1958		tp->fackets_out = 0;
1959
1960        /* Now state machine starts.
1961	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1962	if (flag&FLAG_ECE)
1963		tp->prior_ssthresh = 0;
1964
1965	/* B. In all the states check for reneging SACKs. */
1966	if (tp->sacked_out && tcp_check_sack_reneging(sk))
1967		return;
1968
1969	/* C. Process data loss notification, provided it is valid. */
1970	if ((flag&FLAG_DATA_LOST) &&
1971	    before(tp->snd_una, tp->high_seq) &&
1972	    icsk->icsk_ca_state != TCP_CA_Open &&
1973	    tp->fackets_out > tp->reordering) {
1974		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1975		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1976	}
1977
1978	/* D. Synchronize left_out to current state. */
1979	tcp_sync_left_out(tp);
1980
1981	/* E. Check state exit conditions. State can be terminated
1982	 *    when high_seq is ACKed. */
1983	if (icsk->icsk_ca_state == TCP_CA_Open) {
1984		if (!sysctl_tcp_frto)
1985			BUG_TRAP(tp->retrans_out == 0);
1986		tp->retrans_stamp = 0;
1987	} else if (!before(tp->snd_una, tp->high_seq)) {
1988		switch (icsk->icsk_ca_state) {
1989		case TCP_CA_Loss:
1990			icsk->icsk_retransmits = 0;
1991			if (tcp_try_undo_recovery(sk, tp))
1992				return;
1993			break;
1994
1995		case TCP_CA_CWR:
1996			/* CWR is to be held something *above* high_seq
1997			 * is ACKed for CWR bit to reach receiver. */
1998			if (tp->snd_una != tp->high_seq) {
1999				tcp_complete_cwr(sk);
2000				tcp_set_ca_state(sk, TCP_CA_Open);
2001			}
2002			break;
2003
2004		case TCP_CA_Disorder:
2005			tcp_try_undo_dsack(sk, tp);
2006			if (!tp->undo_marker ||
2007			    /* For SACK case do not Open to allow to undo
2008			     * catching for all duplicate ACKs. */
2009			    IsReno(tp) || tp->snd_una != tp->high_seq) {
2010				tp->undo_marker = 0;
2011				tcp_set_ca_state(sk, TCP_CA_Open);
2012			}
2013			break;
2014
2015		case TCP_CA_Recovery:
2016			if (IsReno(tp))
2017				tcp_reset_reno_sack(tp);
2018			if (tcp_try_undo_recovery(sk, tp))
2019				return;
2020			tcp_complete_cwr(sk);
2021			break;
2022		}
2023	}
2024
2025	/* F. Process state. */
2026	switch (icsk->icsk_ca_state) {
2027	case TCP_CA_Recovery:
2028		if (prior_snd_una == tp->snd_una) {
2029			if (IsReno(tp) && is_dupack)
2030				tcp_add_reno_sack(sk);
2031		} else {
2032			int acked = prior_packets - tp->packets_out;
2033			if (IsReno(tp))
2034				tcp_remove_reno_sacks(sk, tp, acked);
2035			is_dupack = tcp_try_undo_partial(sk, tp, acked);
2036		}
2037		break;
2038	case TCP_CA_Loss:
2039		if (flag&FLAG_DATA_ACKED)
2040			icsk->icsk_retransmits = 0;
2041		if (!tcp_try_undo_loss(sk, tp)) {
2042			tcp_moderate_cwnd(tp);
2043			tcp_xmit_retransmit_queue(sk);
2044			return;
2045		}
2046		if (icsk->icsk_ca_state != TCP_CA_Open)
2047			return;
2048		/* Loss is undone; fall through to processing in Open state. */
2049	default:
2050		if (IsReno(tp)) {
2051			if (tp->snd_una != prior_snd_una)
2052				tcp_reset_reno_sack(tp);
2053			if (is_dupack)
2054				tcp_add_reno_sack(sk);
2055		}
2056
2057		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2058			tcp_try_undo_dsack(sk, tp);
2059
2060		if (!tcp_time_to_recover(sk, tp)) {
2061			tcp_try_to_open(sk, tp, flag);
2062			return;
2063		}
2064
2065		/* MTU probe failure: don't reduce cwnd */
2066		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2067		    icsk->icsk_mtup.probe_size &&
2068		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2069			tcp_mtup_probe_failed(sk);
2070			/* Restores the reduction we did in tcp_mtup_probe() */
2071			tp->snd_cwnd++;
2072			tcp_simple_retransmit(sk);
2073			return;
2074		}
2075
2076		/* Otherwise enter Recovery state */
2077
2078		if (IsReno(tp))
2079			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2080		else
2081			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2082
2083		tp->high_seq = tp->snd_nxt;
2084		tp->prior_ssthresh = 0;
2085		tp->undo_marker = tp->snd_una;
2086		tp->undo_retrans = tp->retrans_out;
2087
2088		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2089			if (!(flag&FLAG_ECE))
2090				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2091			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2092			TCP_ECN_queue_cwr(tp);
2093		}
2094
2095		tp->bytes_acked = 0;
2096		tp->snd_cwnd_cnt = 0;
2097		tcp_set_ca_state(sk, TCP_CA_Recovery);
2098	}
2099
2100	if (is_dupack || tcp_head_timedout(sk, tp))
2101		tcp_update_scoreboard(sk, tp);
2102	tcp_cwnd_down(sk);
2103	tcp_xmit_retransmit_queue(sk);
2104}
2105
2106/* Read draft-ietf-tcplw-high-performance before mucking
2107 * with this code. (Supersedes RFC1323)
2108 */
2109static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2110{
2111	/* RTTM Rule: A TSecr value received in a segment is used to
2112	 * update the averaged RTT measurement only if the segment
2113	 * acknowledges some new data, i.e., only if it advances the
2114	 * left edge of the send window.
2115	 *
2116	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2117	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2118	 *
2119	 * Changed: reset backoff as soon as we see the first valid sample.
2120	 * If we do not, we get strongly overestimated rto. With timestamps
2121	 * samples are accepted even from very old segments: f.e., when rtt=1
2122	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2123	 * answer arrives rto becomes 120 seconds! If at least one of segments
2124	 * in window is lost... Voila.	 			--ANK (010210)
2125	 */
2126	struct tcp_sock *tp = tcp_sk(sk);
2127	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2128	tcp_rtt_estimator(sk, seq_rtt);
2129	tcp_set_rto(sk);
2130	inet_csk(sk)->icsk_backoff = 0;
2131	tcp_bound_rto(sk);
2132}
2133
2134static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2135{
2136	/* We don't have a timestamp. Can only use
2137	 * packets that are not retransmitted to determine
2138	 * rtt estimates. Also, we must not reset the
2139	 * backoff for rto until we get a non-retransmitted
2140	 * packet. This allows us to deal with a situation
2141	 * where the network delay has increased suddenly.
2142	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2143	 */
2144
2145	if (flag & FLAG_RETRANS_DATA_ACKED)
2146		return;
2147
2148	tcp_rtt_estimator(sk, seq_rtt);
2149	tcp_set_rto(sk);
2150	inet_csk(sk)->icsk_backoff = 0;
2151	tcp_bound_rto(sk);
2152}
2153
2154static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2155				      const s32 seq_rtt)
2156{
2157	const struct tcp_sock *tp = tcp_sk(sk);
2158	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2159	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2160		tcp_ack_saw_tstamp(sk, flag);
2161	else if (seq_rtt >= 0)
2162		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2163}
2164
2165static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2166			   u32 in_flight, int good)
2167{
2168	const struct inet_connection_sock *icsk = inet_csk(sk);
2169	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2170	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2171}
2172
2173/* Restart timer after forward progress on connection.
2174 * RFC2988 recommends to restart timer to now+rto.
2175 */
2176
2177static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2178{
2179	if (!tp->packets_out) {
2180		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2181	} else {
2182		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2183	}
2184}
2185
2186static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2187			 __u32 now, __s32 *seq_rtt)
2188{
2189	struct tcp_sock *tp = tcp_sk(sk);
2190	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2191	__u32 seq = tp->snd_una;
2192	__u32 packets_acked;
2193	int acked = 0;
2194
2195	/* If we get here, the whole TSO packet has not been
2196	 * acked.
2197	 */
2198	BUG_ON(!after(scb->end_seq, seq));
2199
2200	packets_acked = tcp_skb_pcount(skb);
2201	if (tcp_trim_head(sk, skb, seq - scb->seq))
2202		return 0;
2203	packets_acked -= tcp_skb_pcount(skb);
2204
2205	if (packets_acked) {
2206		__u8 sacked = scb->sacked;
2207
2208		acked |= FLAG_DATA_ACKED;
2209		if (sacked) {
2210			if (sacked & TCPCB_RETRANS) {
2211				if (sacked & TCPCB_SACKED_RETRANS)
2212					tp->retrans_out -= packets_acked;
2213				acked |= FLAG_RETRANS_DATA_ACKED;
2214				*seq_rtt = -1;
2215			} else if (*seq_rtt < 0)
2216				*seq_rtt = now - scb->when;
2217			if (sacked & TCPCB_SACKED_ACKED)
2218				tp->sacked_out -= packets_acked;
2219			if (sacked & TCPCB_LOST)
2220				tp->lost_out -= packets_acked;
2221			if (sacked & TCPCB_URG) {
2222				if (tp->urg_mode &&
2223				    !before(seq, tp->snd_up))
2224					tp->urg_mode = 0;
2225			}
2226		} else if (*seq_rtt < 0)
2227			*seq_rtt = now - scb->when;
2228
2229		if (tp->fackets_out) {
2230			__u32 dval = min(tp->fackets_out, packets_acked);
2231			tp->fackets_out -= dval;
2232		}
2233		tp->packets_out -= packets_acked;
2234
2235		BUG_ON(tcp_skb_pcount(skb) == 0);
2236		BUG_ON(!before(scb->seq, scb->end_seq));
2237	}
2238
2239	return acked;
2240}
2241
2242static u32 tcp_usrtt(struct timeval *tv)
2243{
2244	struct timeval now;
2245
2246	do_gettimeofday(&now);
2247	return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2248}
2249
2250/* Remove acknowledged frames from the retransmission queue. */
2251static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2252{
2253	struct tcp_sock *tp = tcp_sk(sk);
2254	const struct inet_connection_sock *icsk = inet_csk(sk);
2255	struct sk_buff *skb;
2256	__u32 now = tcp_time_stamp;
2257	int acked = 0;
2258	__s32 seq_rtt = -1;
2259	u32 pkts_acked = 0;
2260	void (*rtt_sample)(struct sock *sk, u32 usrtt)
2261		= icsk->icsk_ca_ops->rtt_sample;
2262	struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2263
2264	while ((skb = skb_peek(&sk->sk_write_queue)) &&
2265	       skb != sk->sk_send_head) {
2266		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2267		__u8 sacked = scb->sacked;
2268
2269		/* If our packet is before the ack sequence we can
2270		 * discard it as it's confirmed to have arrived at
2271		 * the other end.
2272		 */
2273		if (after(scb->end_seq, tp->snd_una)) {
2274			if (tcp_skb_pcount(skb) > 1 &&
2275			    after(tp->snd_una, scb->seq))
2276				acked |= tcp_tso_acked(sk, skb,
2277						       now, &seq_rtt);
2278			break;
2279		}
2280
2281		/* Initial outgoing SYN's get put onto the write_queue
2282		 * just like anything else we transmit.  It is not
2283		 * true data, and if we misinform our callers that
2284		 * this ACK acks real data, we will erroneously exit
2285		 * connection startup slow start one packet too
2286		 * quickly.  This is severely frowned upon behavior.
2287		 */
2288		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2289			acked |= FLAG_DATA_ACKED;
2290			++pkts_acked;
2291		} else {
2292			acked |= FLAG_SYN_ACKED;
2293			tp->retrans_stamp = 0;
2294		}
2295
2296		/* MTU probing checks */
2297		if (icsk->icsk_mtup.probe_size) {
2298			if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2299				tcp_mtup_probe_success(sk, skb);
2300			}
2301		}
2302
2303		if (sacked) {
2304			if (sacked & TCPCB_RETRANS) {
2305				if(sacked & TCPCB_SACKED_RETRANS)
2306					tp->retrans_out -= tcp_skb_pcount(skb);
2307				acked |= FLAG_RETRANS_DATA_ACKED;
2308				seq_rtt = -1;
2309			} else if (seq_rtt < 0) {
2310				seq_rtt = now - scb->when;
2311				skb_get_timestamp(skb, &tv);
2312			}
2313			if (sacked & TCPCB_SACKED_ACKED)
2314				tp->sacked_out -= tcp_skb_pcount(skb);
2315			if (sacked & TCPCB_LOST)
2316				tp->lost_out -= tcp_skb_pcount(skb);
2317			if (sacked & TCPCB_URG) {
2318				if (tp->urg_mode &&
2319				    !before(scb->end_seq, tp->snd_up))
2320					tp->urg_mode = 0;
2321			}
2322		} else if (seq_rtt < 0) {
2323			seq_rtt = now - scb->when;
2324			skb_get_timestamp(skb, &tv);
2325		}
2326		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2327		tcp_packets_out_dec(tp, skb);
2328		__skb_unlink(skb, &sk->sk_write_queue);
2329		sk_stream_free_skb(sk, skb);
2330		clear_all_retrans_hints(tp);
2331	}
2332
2333	if (acked&FLAG_ACKED) {
2334		tcp_ack_update_rtt(sk, acked, seq_rtt);
2335		tcp_ack_packets_out(sk, tp);
2336		if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2337			(*rtt_sample)(sk, tcp_usrtt(&tv));
2338
2339		if (icsk->icsk_ca_ops->pkts_acked)
2340			icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2341	}
2342
2343#if FASTRETRANS_DEBUG > 0
2344	BUG_TRAP((int)tp->sacked_out >= 0);
2345	BUG_TRAP((int)tp->lost_out >= 0);
2346	BUG_TRAP((int)tp->retrans_out >= 0);
2347	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2348		const struct inet_connection_sock *icsk = inet_csk(sk);
2349		if (tp->lost_out) {
2350			printk(KERN_DEBUG "Leak l=%u %d\n",
2351			       tp->lost_out, icsk->icsk_ca_state);
2352			tp->lost_out = 0;
2353		}
2354		if (tp->sacked_out) {
2355			printk(KERN_DEBUG "Leak s=%u %d\n",
2356			       tp->sacked_out, icsk->icsk_ca_state);
2357			tp->sacked_out = 0;
2358		}
2359		if (tp->retrans_out) {
2360			printk(KERN_DEBUG "Leak r=%u %d\n",
2361			       tp->retrans_out, icsk->icsk_ca_state);
2362			tp->retrans_out = 0;
2363		}
2364	}
2365#endif
2366	*seq_rtt_p = seq_rtt;
2367	return acked;
2368}
2369
2370static void tcp_ack_probe(struct sock *sk)
2371{
2372	const struct tcp_sock *tp = tcp_sk(sk);
2373	struct inet_connection_sock *icsk = inet_csk(sk);
2374
2375	/* Was it a usable window open? */
2376
2377	if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2378		   tp->snd_una + tp->snd_wnd)) {
2379		icsk->icsk_backoff = 0;
2380		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2381		/* Socket must be waked up by subsequent tcp_data_snd_check().
2382		 * This function is not for random using!
2383		 */
2384	} else {
2385		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2386					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2387					  TCP_RTO_MAX);
2388	}
2389}
2390
2391static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2392{
2393	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2394		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2395}
2396
2397static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2398{
2399	const struct tcp_sock *tp = tcp_sk(sk);
2400	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2401		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2402}
2403
2404/* Check that window update is acceptable.
2405 * The function assumes that snd_una<=ack<=snd_next.
2406 */
2407static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2408					const u32 ack_seq, const u32 nwin)
2409{
2410	return (after(ack, tp->snd_una) ||
2411		after(ack_seq, tp->snd_wl1) ||
2412		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2413}
2414
2415/* Update our send window.
2416 *
2417 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2418 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2419 */
2420static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2421				 struct sk_buff *skb, u32 ack, u32 ack_seq)
2422{
2423	int flag = 0;
2424	u32 nwin = ntohs(skb->h.th->window);
2425
2426	if (likely(!skb->h.th->syn))
2427		nwin <<= tp->rx_opt.snd_wscale;
2428
2429	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2430		flag |= FLAG_WIN_UPDATE;
2431		tcp_update_wl(tp, ack, ack_seq);
2432
2433		if (tp->snd_wnd != nwin) {
2434			tp->snd_wnd = nwin;
2435
2436			/* Note, it is the only place, where
2437			 * fast path is recovered for sending TCP.
2438			 */
2439			tp->pred_flags = 0;
2440			tcp_fast_path_check(sk, tp);
2441
2442			if (nwin > tp->max_window) {
2443				tp->max_window = nwin;
2444				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2445			}
2446		}
2447	}
2448
2449	tp->snd_una = ack;
2450
2451	return flag;
2452}
2453
2454static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2455{
2456	struct tcp_sock *tp = tcp_sk(sk);
2457
2458	tcp_sync_left_out(tp);
2459
2460	if (tp->snd_una == prior_snd_una ||
2461	    !before(tp->snd_una, tp->frto_highmark)) {
2462		/* RTO was caused by loss, start retransmitting in
2463		 * go-back-N slow start
2464		 */
2465		tcp_enter_frto_loss(sk);
2466		return;
2467	}
2468
2469	if (tp->frto_counter == 1) {
2470		/* First ACK after RTO advances the window: allow two new
2471		 * segments out.
2472		 */
2473		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2474	} else {
2475		/* Also the second ACK after RTO advances the window.
2476		 * The RTO was likely spurious. Reduce cwnd and continue
2477		 * in congestion avoidance
2478		 */
2479		tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2480		tcp_moderate_cwnd(tp);
2481	}
2482
2483	/* F-RTO affects on two new ACKs following RTO.
2484	 * At latest on third ACK the TCP behavior is back to normal.
2485	 */
2486	tp->frto_counter = (tp->frto_counter + 1) % 3;
2487}
2488
2489/* This routine deals with incoming acks, but not outgoing ones. */
2490static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2491{
2492	struct inet_connection_sock *icsk = inet_csk(sk);
2493	struct tcp_sock *tp = tcp_sk(sk);
2494	u32 prior_snd_una = tp->snd_una;
2495	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2496	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2497	u32 prior_in_flight;
2498	s32 seq_rtt;
2499	int prior_packets;
2500
2501	/* If the ack is newer than sent or older than previous acks
2502	 * then we can probably ignore it.
2503	 */
2504	if (after(ack, tp->snd_nxt))
2505		goto uninteresting_ack;
2506
2507	if (before(ack, prior_snd_una))
2508		goto old_ack;
2509
2510	if (sysctl_tcp_abc) {
2511		if (icsk->icsk_ca_state < TCP_CA_CWR)
2512			tp->bytes_acked += ack - prior_snd_una;
2513		else if (icsk->icsk_ca_state == TCP_CA_Loss)
2514			/* we assume just one segment left network */
2515			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2516	}
2517
2518	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2519		/* Window is constant, pure forward advance.
2520		 * No more checks are required.
2521		 * Note, we use the fact that SND.UNA>=SND.WL2.
2522		 */
2523		tcp_update_wl(tp, ack, ack_seq);
2524		tp->snd_una = ack;
2525		flag |= FLAG_WIN_UPDATE;
2526
2527		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2528
2529		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2530	} else {
2531		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2532			flag |= FLAG_DATA;
2533		else
2534			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2535
2536		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2537
2538		if (TCP_SKB_CB(skb)->sacked)
2539			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2540
2541		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2542			flag |= FLAG_ECE;
2543
2544		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2545	}
2546
2547	/* We passed data and got it acked, remove any soft error
2548	 * log. Something worked...
2549	 */
2550	sk->sk_err_soft = 0;
2551	tp->rcv_tstamp = tcp_time_stamp;
2552	prior_packets = tp->packets_out;
2553	if (!prior_packets)
2554		goto no_queue;
2555
2556	prior_in_flight = tcp_packets_in_flight(tp);
2557
2558	/* See if we can take anything off of the retransmit queue. */
2559	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2560
2561	if (tp->frto_counter)
2562		tcp_process_frto(sk, prior_snd_una);
2563
2564	if (tcp_ack_is_dubious(sk, flag)) {
2565		/* Advance CWND, if state allows this. */
2566		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2567			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2568		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2569	} else {
2570		if ((flag & FLAG_DATA_ACKED))
2571			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2572	}
2573
2574	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2575		dst_confirm(sk->sk_dst_cache);
2576
2577	return 1;
2578
2579no_queue:
2580	icsk->icsk_probes_out = 0;
2581
2582	/* If this ack opens up a zero window, clear backoff.  It was
2583	 * being used to time the probes, and is probably far higher than
2584	 * it needs to be for normal retransmission.
2585	 */
2586	if (sk->sk_send_head)
2587		tcp_ack_probe(sk);
2588	return 1;
2589
2590old_ack:
2591	if (TCP_SKB_CB(skb)->sacked)
2592		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2593
2594uninteresting_ack:
2595	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2596	return 0;
2597}
2598
2599
2600/* Look for tcp options. Normally only called on SYN and SYNACK packets.
2601 * But, this can also be called on packets in the established flow when
2602 * the fast version below fails.
2603 */
2604void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2605{
2606	unsigned char *ptr;
2607	struct tcphdr *th = skb->h.th;
2608	int length=(th->doff*4)-sizeof(struct tcphdr);
2609
2610	ptr = (unsigned char *)(th + 1);
2611	opt_rx->saw_tstamp = 0;
2612
2613	while(length>0) {
2614	  	int opcode=*ptr++;
2615		int opsize;
2616
2617		switch (opcode) {
2618			case TCPOPT_EOL:
2619				return;
2620			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2621				length--;
2622				continue;
2623			default:
2624				opsize=*ptr++;
2625				if (opsize < 2) /* "silly options" */
2626					return;
2627				if (opsize > length)
2628					return;	/* don't parse partial options */
2629	  			switch(opcode) {
2630				case TCPOPT_MSS:
2631					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2632						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2633						if (in_mss) {
2634							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2635								in_mss = opt_rx->user_mss;
2636							opt_rx->mss_clamp = in_mss;
2637						}
2638					}
2639					break;
2640				case TCPOPT_WINDOW:
2641					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2642						if (sysctl_tcp_window_scaling) {
2643							__u8 snd_wscale = *(__u8 *) ptr;
2644							opt_rx->wscale_ok = 1;
2645							if (snd_wscale > 14) {
2646								if(net_ratelimit())
2647									printk(KERN_INFO "tcp_parse_options: Illegal window "
2648									       "scaling value %d >14 received.\n",
2649									       snd_wscale);
2650								snd_wscale = 14;
2651							}
2652							opt_rx->snd_wscale = snd_wscale;
2653						}
2654					break;
2655				case TCPOPT_TIMESTAMP:
2656					if(opsize==TCPOLEN_TIMESTAMP) {
2657						if ((estab && opt_rx->tstamp_ok) ||
2658						    (!estab && sysctl_tcp_timestamps)) {
2659							opt_rx->saw_tstamp = 1;
2660							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2661							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2662						}
2663					}
2664					break;
2665				case TCPOPT_SACK_PERM:
2666					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2667						if (sysctl_tcp_sack) {
2668							opt_rx->sack_ok = 1;
2669							tcp_sack_reset(opt_rx);
2670						}
2671					}
2672					break;
2673
2674				case TCPOPT_SACK:
2675					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2676					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2677					   opt_rx->sack_ok) {
2678						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2679					}
2680	  			};
2681	  			ptr+=opsize-2;
2682	  			length-=opsize;
2683	  	};
2684	}
2685}
2686
2687/* Fast parse options. This hopes to only see timestamps.
2688 * If it is wrong it falls back on tcp_parse_options().
2689 */
2690static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2691				  struct tcp_sock *tp)
2692{
2693	if (th->doff == sizeof(struct tcphdr)>>2) {
2694		tp->rx_opt.saw_tstamp = 0;
2695		return 0;
2696	} else if (tp->rx_opt.tstamp_ok &&
2697		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2698		__be32 *ptr = (__be32 *)(th + 1);
2699		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2700				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2701			tp->rx_opt.saw_tstamp = 1;
2702			++ptr;
2703			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2704			++ptr;
2705			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2706			return 1;
2707		}
2708	}
2709	tcp_parse_options(skb, &tp->rx_opt, 1);
2710	return 1;
2711}
2712
2713static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2714{
2715	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2716	tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2717}
2718
2719static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2720{
2721	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2722		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2723		 * extra check below makes sure this can only happen
2724		 * for pure ACK frames.  -DaveM
2725		 *
2726		 * Not only, also it occurs for expired timestamps.
2727		 */
2728
2729		if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2730		   xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2731			tcp_store_ts_recent(tp);
2732	}
2733}
2734
2735/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2736 *
2737 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2738 * it can pass through stack. So, the following predicate verifies that
2739 * this segment is not used for anything but congestion avoidance or
2740 * fast retransmit. Moreover, we even are able to eliminate most of such
2741 * second order effects, if we apply some small "replay" window (~RTO)
2742 * to timestamp space.
2743 *
2744 * All these measures still do not guarantee that we reject wrapped ACKs
2745 * on networks with high bandwidth, when sequence space is recycled fastly,
2746 * but it guarantees that such events will be very rare and do not affect
2747 * connection seriously. This doesn't look nice, but alas, PAWS is really
2748 * buggy extension.
2749 *
2750 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2751 * states that events when retransmit arrives after original data are rare.
2752 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2753 * the biggest problem on large power networks even with minor reordering.
2754 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2755 * up to bandwidth of 18Gigabit/sec. 8) ]
2756 */
2757
2758static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2759{
2760	struct tcp_sock *tp = tcp_sk(sk);
2761	struct tcphdr *th = skb->h.th;
2762	u32 seq = TCP_SKB_CB(skb)->seq;
2763	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2764
2765	return (/* 1. Pure ACK with correct sequence number. */
2766		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2767
2768		/* 2. ... and duplicate ACK. */
2769		ack == tp->snd_una &&
2770
2771		/* 3. ... and does not update window. */
2772		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2773
2774		/* 4. ... and sits in replay window. */
2775		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2776}
2777
2778static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2779{
2780	const struct tcp_sock *tp = tcp_sk(sk);
2781	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2782		xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2783		!tcp_disordered_ack(sk, skb));
2784}
2785
2786/* Check segment sequence number for validity.
2787 *
2788 * Segment controls are considered valid, if the segment
2789 * fits to the window after truncation to the window. Acceptability
2790 * of data (and SYN, FIN, of course) is checked separately.
2791 * See tcp_data_queue(), for example.
2792 *
2793 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2794 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2795 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2796 * (borrowed from freebsd)
2797 */
2798
2799static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2800{
2801	return	!before(end_seq, tp->rcv_wup) &&
2802		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2803}
2804
2805/* When we get a reset we do this. */
2806static void tcp_reset(struct sock *sk)
2807{
2808	/* We want the right error as BSD sees it (and indeed as we do). */
2809	switch (sk->sk_state) {
2810		case TCP_SYN_SENT:
2811			sk->sk_err = ECONNREFUSED;
2812			break;
2813		case TCP_CLOSE_WAIT:
2814			sk->sk_err = EPIPE;
2815			break;
2816		case TCP_CLOSE:
2817			return;
2818		default:
2819			sk->sk_err = ECONNRESET;
2820	}
2821
2822	if (!sock_flag(sk, SOCK_DEAD))
2823		sk->sk_error_report(sk);
2824
2825	tcp_done(sk);
2826}
2827
2828/*
2829 * 	Process the FIN bit. This now behaves as it is supposed to work
2830 *	and the FIN takes effect when it is validly part of sequence
2831 *	space. Not before when we get holes.
2832 *
2833 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2834 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
2835 *	TIME-WAIT)
2836 *
2837 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
2838 *	close and we go into CLOSING (and later onto TIME-WAIT)
2839 *
2840 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2841 */
2842static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2843{
2844	struct tcp_sock *tp = tcp_sk(sk);
2845
2846	inet_csk_schedule_ack(sk);
2847
2848	sk->sk_shutdown |= RCV_SHUTDOWN;
2849	sock_set_flag(sk, SOCK_DONE);
2850
2851	switch (sk->sk_state) {
2852		case TCP_SYN_RECV:
2853		case TCP_ESTABLISHED:
2854			/* Move to CLOSE_WAIT */
2855			tcp_set_state(sk, TCP_CLOSE_WAIT);
2856			inet_csk(sk)->icsk_ack.pingpong = 1;
2857			break;
2858
2859		case TCP_CLOSE_WAIT:
2860		case TCP_CLOSING:
2861			/* Received a retransmission of the FIN, do
2862			 * nothing.
2863			 */
2864			break;
2865		case TCP_LAST_ACK:
2866			/* RFC793: Remain in the LAST-ACK state. */
2867			break;
2868
2869		case TCP_FIN_WAIT1:
2870			/* This case occurs when a simultaneous close
2871			 * happens, we must ack the received FIN and
2872			 * enter the CLOSING state.
2873			 */
2874			tcp_send_ack(sk);
2875			tcp_set_state(sk, TCP_CLOSING);
2876			break;
2877		case TCP_FIN_WAIT2:
2878			/* Received a FIN -- send ACK and enter TIME_WAIT. */
2879			tcp_send_ack(sk);
2880			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2881			break;
2882		default:
2883			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
2884			 * cases we should never reach this piece of code.
2885			 */
2886			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2887			       __FUNCTION__, sk->sk_state);
2888			break;
2889	};
2890
2891	/* It _is_ possible, that we have something out-of-order _after_ FIN.
2892	 * Probably, we should reset in this case. For now drop them.
2893	 */
2894	__skb_queue_purge(&tp->out_of_order_queue);
2895	if (tp->rx_opt.sack_ok)
2896		tcp_sack_reset(&tp->rx_opt);
2897	sk_stream_mem_reclaim(sk);
2898
2899	if (!sock_flag(sk, SOCK_DEAD)) {
2900		sk->sk_state_change(sk);
2901
2902		/* Do not send POLL_HUP for half duplex close. */
2903		if (sk->sk_shutdown == SHUTDOWN_MASK ||
2904		    sk->sk_state == TCP_CLOSE)
2905			sk_wake_async(sk, 1, POLL_HUP);
2906		else
2907			sk_wake_async(sk, 1, POLL_IN);
2908	}
2909}
2910
2911static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2912{
2913	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2914		if (before(seq, sp->start_seq))
2915			sp->start_seq = seq;
2916		if (after(end_seq, sp->end_seq))
2917			sp->end_seq = end_seq;
2918		return 1;
2919	}
2920	return 0;
2921}
2922
2923static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2924{
2925	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2926		if (before(seq, tp->rcv_nxt))
2927			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2928		else
2929			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2930
2931		tp->rx_opt.dsack = 1;
2932		tp->duplicate_sack[0].start_seq = seq;
2933		tp->duplicate_sack[0].end_seq = end_seq;
2934		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2935	}
2936}
2937
2938static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2939{
2940	if (!tp->rx_opt.dsack)
2941		tcp_dsack_set(tp, seq, end_seq);
2942	else
2943		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2944}
2945
2946static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2947{
2948	struct tcp_sock *tp = tcp_sk(sk);
2949
2950	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2951	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2952		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2953		tcp_enter_quickack_mode(sk);
2954
2955		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2956			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2957
2958			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2959				end_seq = tp->rcv_nxt;
2960			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2961		}
2962	}
2963
2964	tcp_send_ack(sk);
2965}
2966
2967/* These routines update the SACK block as out-of-order packets arrive or
2968 * in-order packets close up the sequence space.
2969 */
2970static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2971{
2972	int this_sack;
2973	struct tcp_sack_block *sp = &tp->selective_acks[0];
2974	struct tcp_sack_block *swalk = sp+1;
2975
2976	/* See if the recent change to the first SACK eats into
2977	 * or hits the sequence space of other SACK blocks, if so coalesce.
2978	 */
2979	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2980		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2981			int i;
2982
2983			/* Zap SWALK, by moving every further SACK up by one slot.
2984			 * Decrease num_sacks.
2985			 */
2986			tp->rx_opt.num_sacks--;
2987			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2988			for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2989				sp[i] = sp[i+1];
2990			continue;
2991		}
2992		this_sack++, swalk++;
2993	}
2994}
2995
2996static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2997{
2998	__u32 tmp;
2999
3000	tmp = sack1->start_seq;
3001	sack1->start_seq = sack2->start_seq;
3002	sack2->start_seq = tmp;
3003
3004	tmp = sack1->end_seq;
3005	sack1->end_seq = sack2->end_seq;
3006	sack2->end_seq = tmp;
3007}
3008
3009static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3010{
3011	struct tcp_sock *tp = tcp_sk(sk);
3012	struct tcp_sack_block *sp = &tp->selective_acks[0];
3013	int cur_sacks = tp->rx_opt.num_sacks;
3014	int this_sack;
3015
3016	if (!cur_sacks)
3017		goto new_sack;
3018
3019	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3020		if (tcp_sack_extend(sp, seq, end_seq)) {
3021			/* Rotate this_sack to the first one. */
3022			for (; this_sack>0; this_sack--, sp--)
3023				tcp_sack_swap(sp, sp-1);
3024			if (cur_sacks > 1)
3025				tcp_sack_maybe_coalesce(tp);
3026			return;
3027		}
3028	}
3029
3030	/* Could not find an adjacent existing SACK, build a new one,
3031	 * put it at the front, and shift everyone else down.  We
3032	 * always know there is at least one SACK present already here.
3033	 *
3034	 * If the sack array is full, forget about the last one.
3035	 */
3036	if (this_sack >= 4) {
3037		this_sack--;
3038		tp->rx_opt.num_sacks--;
3039		sp--;
3040	}
3041	for(; this_sack > 0; this_sack--, sp--)
3042		*sp = *(sp-1);
3043
3044new_sack:
3045	/* Build the new head SACK, and we're done. */
3046	sp->start_seq = seq;
3047	sp->end_seq = end_seq;
3048	tp->rx_opt.num_sacks++;
3049	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3050}
3051
3052/* RCV.NXT advances, some SACKs should be eaten. */
3053
3054static void tcp_sack_remove(struct tcp_sock *tp)
3055{
3056	struct tcp_sack_block *sp = &tp->selective_acks[0];
3057	int num_sacks = tp->rx_opt.num_sacks;
3058	int this_sack;
3059
3060	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3061	if (skb_queue_empty(&tp->out_of_order_queue)) {
3062		tp->rx_opt.num_sacks = 0;
3063		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3064		return;
3065	}
3066
3067	for(this_sack = 0; this_sack < num_sacks; ) {
3068		/* Check if the start of the sack is covered by RCV.NXT. */
3069		if (!before(tp->rcv_nxt, sp->start_seq)) {
3070			int i;
3071
3072			/* RCV.NXT must cover all the block! */
3073			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3074
3075			/* Zap this SACK, by moving forward any other SACKS. */
3076			for (i=this_sack+1; i < num_sacks; i++)
3077				tp->selective_acks[i-1] = tp->selective_acks[i];
3078			num_sacks--;
3079			continue;
3080		}
3081		this_sack++;
3082		sp++;
3083	}
3084	if (num_sacks != tp->rx_opt.num_sacks) {
3085		tp->rx_opt.num_sacks = num_sacks;
3086		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3087	}
3088}
3089
3090/* This one checks to see if we can put data from the
3091 * out_of_order queue into the receive_queue.
3092 */
3093static void tcp_ofo_queue(struct sock *sk)
3094{
3095	struct tcp_sock *tp = tcp_sk(sk);
3096	__u32 dsack_high = tp->rcv_nxt;
3097	struct sk_buff *skb;
3098
3099	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3100		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3101			break;
3102
3103		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3104			__u32 dsack = dsack_high;
3105			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3106				dsack_high = TCP_SKB_CB(skb)->end_seq;
3107			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3108		}
3109
3110		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3111			SOCK_DEBUG(sk, "ofo packet was already received \n");
3112			__skb_unlink(skb, &tp->out_of_order_queue);
3113			__kfree_skb(skb);
3114			continue;
3115		}
3116		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3117			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3118			   TCP_SKB_CB(skb)->end_seq);
3119
3120		__skb_unlink(skb, &tp->out_of_order_queue);
3121		__skb_queue_tail(&sk->sk_receive_queue, skb);
3122		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3123		if(skb->h.th->fin)
3124			tcp_fin(skb, sk, skb->h.th);
3125	}
3126}
3127
3128static int tcp_prune_queue(struct sock *sk);
3129
3130static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3131{
3132	struct tcphdr *th = skb->h.th;
3133	struct tcp_sock *tp = tcp_sk(sk);
3134	int eaten = -1;
3135
3136	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3137		goto drop;
3138
3139	__skb_pull(skb, th->doff*4);
3140
3141	TCP_ECN_accept_cwr(tp, skb);
3142
3143	if (tp->rx_opt.dsack) {
3144		tp->rx_opt.dsack = 0;
3145		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3146						    4 - tp->rx_opt.tstamp_ok);
3147	}
3148
3149	/*  Queue data for delivery to the user.
3150	 *  Packets in sequence go to the receive queue.
3151	 *  Out of sequence packets to the out_of_order_queue.
3152	 */
3153	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3154		if (tcp_receive_window(tp) == 0)
3155			goto out_of_window;
3156
3157		/* Ok. In sequence. In window. */
3158		if (tp->ucopy.task == current &&
3159		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3160		    sock_owned_by_user(sk) && !tp->urg_data) {
3161			int chunk = min_t(unsigned int, skb->len,
3162							tp->ucopy.len);
3163
3164			__set_current_state(TASK_RUNNING);
3165
3166			local_bh_enable();
3167			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3168				tp->ucopy.len -= chunk;
3169				tp->copied_seq += chunk;
3170				eaten = (chunk == skb->len && !th->fin);
3171				tcp_rcv_space_adjust(sk);
3172			}
3173			local_bh_disable();
3174		}
3175
3176		if (eaten <= 0) {
3177queue_and_out:
3178			if (eaten < 0 &&
3179			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3180			     !sk_stream_rmem_schedule(sk, skb))) {
3181				if (tcp_prune_queue(sk) < 0 ||
3182				    !sk_stream_rmem_schedule(sk, skb))
3183					goto drop;
3184			}
3185			sk_stream_set_owner_r(skb, sk);
3186			__skb_queue_tail(&sk->sk_receive_queue, skb);
3187		}
3188		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3189		if(skb->len)
3190			tcp_event_data_recv(sk, tp, skb);
3191		if(th->fin)
3192			tcp_fin(skb, sk, th);
3193
3194		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3195			tcp_ofo_queue(sk);
3196
3197			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3198			 * gap in queue is filled.
3199			 */
3200			if (skb_queue_empty(&tp->out_of_order_queue))
3201				inet_csk(sk)->icsk_ack.pingpong = 0;
3202		}
3203
3204		if (tp->rx_opt.num_sacks)
3205			tcp_sack_remove(tp);
3206
3207		tcp_fast_path_check(sk, tp);
3208
3209		if (eaten > 0)
3210			__kfree_skb(skb);
3211		else if (!sock_flag(sk, SOCK_DEAD))
3212			sk->sk_data_ready(sk, 0);
3213		return;
3214	}
3215
3216	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3217		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3218		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3219		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3220
3221out_of_window:
3222		tcp_enter_quickack_mode(sk);
3223		inet_csk_schedule_ack(sk);
3224drop:
3225		__kfree_skb(skb);
3226		return;
3227	}
3228
3229	/* Out of window. F.e. zero window probe. */
3230	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3231		goto out_of_window;
3232
3233	tcp_enter_quickack_mode(sk);
3234
3235	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3236		/* Partial packet, seq < rcv_next < end_seq */
3237		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3238			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3239			   TCP_SKB_CB(skb)->end_seq);
3240
3241		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3242
3243		/* If window is closed, drop tail of packet. But after
3244		 * remembering D-SACK for its head made in previous line.
3245		 */
3246		if (!tcp_receive_window(tp))
3247			goto out_of_window;
3248		goto queue_and_out;
3249	}
3250
3251	TCP_ECN_check_ce(tp, skb);
3252
3253	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3254	    !sk_stream_rmem_schedule(sk, skb)) {
3255		if (tcp_prune_queue(sk) < 0 ||
3256		    !sk_stream_rmem_schedule(sk, skb))
3257			goto drop;
3258	}
3259
3260	/* Disable header prediction. */
3261	tp->pred_flags = 0;
3262	inet_csk_schedule_ack(sk);
3263
3264	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3265		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3266
3267	sk_stream_set_owner_r(skb, sk);
3268
3269	if (!skb_peek(&tp->out_of_order_queue)) {
3270		/* Initial out of order segment, build 1 SACK. */
3271		if (tp->rx_opt.sack_ok) {
3272			tp->rx_opt.num_sacks = 1;
3273			tp->rx_opt.dsack     = 0;
3274			tp->rx_opt.eff_sacks = 1;
3275			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3276			tp->selective_acks[0].end_seq =
3277						TCP_SKB_CB(skb)->end_seq;
3278		}
3279		__skb_queue_head(&tp->out_of_order_queue,skb);
3280	} else {
3281		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3282		u32 seq = TCP_SKB_CB(skb)->seq;
3283		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3284
3285		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3286			__skb_append(skb1, skb, &tp->out_of_order_queue);
3287
3288			if (!tp->rx_opt.num_sacks ||
3289			    tp->selective_acks[0].end_seq != seq)
3290				goto add_sack;
3291
3292			/* Common case: data arrive in order after hole. */
3293			tp->selective_acks[0].end_seq = end_seq;
3294			return;
3295		}
3296
3297		/* Find place to insert this segment. */
3298		do {
3299			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3300				break;
3301		} while ((skb1 = skb1->prev) !=
3302			 (struct sk_buff*)&tp->out_of_order_queue);
3303
3304		/* Do skb overlap to previous one? */
3305		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3306		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3307			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3308				/* All the bits are present. Drop. */
3309				__kfree_skb(skb);
3310				tcp_dsack_set(tp, seq, end_seq);
3311				goto add_sack;
3312			}
3313			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3314				/* Partial overlap. */
3315				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3316			} else {
3317				skb1 = skb1->prev;
3318			}
3319		}
3320		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3321
3322		/* And clean segments covered by new one as whole. */
3323		while ((skb1 = skb->next) !=
3324		       (struct sk_buff*)&tp->out_of_order_queue &&
3325		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3326		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3327			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3328			       break;
3329		       }
3330		       __skb_unlink(skb1, &tp->out_of_order_queue);
3331		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3332		       __kfree_skb(skb1);
3333		}
3334
3335add_sack:
3336		if (tp->rx_opt.sack_ok)
3337			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3338	}
3339}
3340
3341/* Collapse contiguous sequence of skbs head..tail with
3342 * sequence numbers start..end.
3343 * Segments with FIN/SYN are not collapsed (only because this
3344 * simplifies code)
3345 */
3346static void
3347tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3348	     struct sk_buff *head, struct sk_buff *tail,
3349	     u32 start, u32 end)
3350{
3351	struct sk_buff *skb;
3352
3353	/* First, check that queue is collapsible and find
3354	 * the point where collapsing can be useful. */
3355	for (skb = head; skb != tail; ) {
3356		/* No new bits? It is possible on ofo queue. */
3357		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3358			struct sk_buff *next = skb->next;
3359			__skb_unlink(skb, list);
3360			__kfree_skb(skb);
3361			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3362			skb = next;
3363			continue;
3364		}
3365
3366		/* The first skb to collapse is:
3367		 * - not SYN/FIN and
3368		 * - bloated or contains data before "start" or
3369		 *   overlaps to the next one.
3370		 */
3371		if (!skb->h.th->syn && !skb->h.th->fin &&
3372		    (tcp_win_from_space(skb->truesize) > skb->len ||
3373		     before(TCP_SKB_CB(skb)->seq, start) ||
3374		     (skb->next != tail &&
3375		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3376			break;
3377
3378		/* Decided to skip this, advance start seq. */
3379		start = TCP_SKB_CB(skb)->end_seq;
3380		skb = skb->next;
3381	}
3382	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3383		return;
3384
3385	while (before(start, end)) {
3386		struct sk_buff *nskb;
3387		int header = skb_headroom(skb);
3388		int copy = SKB_MAX_ORDER(header, 0);
3389
3390		/* Too big header? This can happen with IPv6. */
3391		if (copy < 0)
3392			return;
3393		if (end-start < copy)
3394			copy = end-start;
3395		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3396		if (!nskb)
3397			return;
3398		skb_reserve(nskb, header);
3399		memcpy(nskb->head, skb->head, header);
3400		nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3401		nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3402		nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3403		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3404		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3405		__skb_insert(nskb, skb->prev, skb, list);
3406		sk_stream_set_owner_r(nskb, sk);
3407
3408		/* Copy data, releasing collapsed skbs. */
3409		while (copy > 0) {
3410			int offset = start - TCP_SKB_CB(skb)->seq;
3411			int size = TCP_SKB_CB(skb)->end_seq - start;
3412
3413			BUG_ON(offset < 0);
3414			if (size > 0) {
3415				size = min(copy, size);
3416				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3417					BUG();
3418				TCP_SKB_CB(nskb)->end_seq += size;
3419				copy -= size;
3420				start += size;
3421			}
3422			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3423				struct sk_buff *next = skb->next;
3424				__skb_unlink(skb, list);
3425				__kfree_skb(skb);
3426				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3427				skb = next;
3428				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3429					return;
3430			}
3431		}
3432	}
3433}
3434
3435/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3436 * and tcp_collapse() them until all the queue is collapsed.
3437 */
3438static void tcp_collapse_ofo_queue(struct sock *sk)
3439{
3440	struct tcp_sock *tp = tcp_sk(sk);
3441	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3442	struct sk_buff *head;
3443	u32 start, end;
3444
3445	if (skb == NULL)
3446		return;
3447
3448	start = TCP_SKB_CB(skb)->seq;
3449	end = TCP_SKB_CB(skb)->end_seq;
3450	head = skb;
3451
3452	for (;;) {
3453		skb = skb->next;
3454
3455		/* Segment is terminated when we see gap or when
3456		 * we are at the end of all the queue. */
3457		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3458		    after(TCP_SKB_CB(skb)->seq, end) ||
3459		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3460			tcp_collapse(sk, &tp->out_of_order_queue,
3461				     head, skb, start, end);
3462			head = skb;
3463			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3464				break;
3465			/* Start new segment */
3466			start = TCP_SKB_CB(skb)->seq;
3467			end = TCP_SKB_CB(skb)->end_seq;
3468		} else {
3469			if (before(TCP_SKB_CB(skb)->seq, start))
3470				start = TCP_SKB_CB(skb)->seq;
3471			if (after(TCP_SKB_CB(skb)->end_seq, end))
3472				end = TCP_SKB_CB(skb)->end_seq;
3473		}
3474	}
3475}
3476
3477/* Reduce allocated memory if we can, trying to get
3478 * the socket within its memory limits again.
3479 *
3480 * Return less than zero if we should start dropping frames
3481 * until the socket owning process reads some of the data
3482 * to stabilize the situation.
3483 */
3484static int tcp_prune_queue(struct sock *sk)
3485{
3486	struct tcp_sock *tp = tcp_sk(sk);
3487
3488	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3489
3490	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3491
3492	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3493		tcp_clamp_window(sk, tp);
3494	else if (tcp_memory_pressure)
3495		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3496
3497	tcp_collapse_ofo_queue(sk);
3498	tcp_collapse(sk, &sk->sk_receive_queue,
3499		     sk->sk_receive_queue.next,
3500		     (struct sk_buff*)&sk->sk_receive_queue,
3501		     tp->copied_seq, tp->rcv_nxt);
3502	sk_stream_mem_reclaim(sk);
3503
3504	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3505		return 0;
3506
3507	/* Collapsing did not help, destructive actions follow.
3508	 * This must not ever occur. */
3509
3510	/* First, purge the out_of_order queue. */
3511	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3512		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3513		__skb_queue_purge(&tp->out_of_order_queue);
3514
3515		/* Reset SACK state.  A conforming SACK implementation will
3516		 * do the same at a timeout based retransmit.  When a connection
3517		 * is in a sad state like this, we care only about integrity
3518		 * of the connection not performance.
3519		 */
3520		if (tp->rx_opt.sack_ok)
3521			tcp_sack_reset(&tp->rx_opt);
3522		sk_stream_mem_reclaim(sk);
3523	}
3524
3525	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3526		return 0;
3527
3528	/* If we are really being abused, tell the caller to silently
3529	 * drop receive data on the floor.  It will get retransmitted
3530	 * and hopefully then we'll have sufficient space.
3531	 */
3532	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3533
3534	/* Massive buffer overcommit. */
3535	tp->pred_flags = 0;
3536	return -1;
3537}
3538
3539
3540/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3541 * As additional protections, we do not touch cwnd in retransmission phases,
3542 * and if application hit its sndbuf limit recently.
3543 */
3544void tcp_cwnd_application_limited(struct sock *sk)
3545{
3546	struct tcp_sock *tp = tcp_sk(sk);
3547
3548	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3549	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3550		/* Limited by application or receiver window. */
3551		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3552		u32 win_used = max(tp->snd_cwnd_used, init_win);
3553		if (win_used < tp->snd_cwnd) {
3554			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3555			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3556		}
3557		tp->snd_cwnd_used = 0;
3558	}
3559	tp->snd_cwnd_stamp = tcp_time_stamp;
3560}
3561
3562static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3563{
3564	/* If the user specified a specific send buffer setting, do
3565	 * not modify it.
3566	 */
3567	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3568		return 0;
3569
3570	/* If we are under global TCP memory pressure, do not expand.  */
3571	if (tcp_memory_pressure)
3572		return 0;
3573
3574	/* If we are under soft global TCP memory pressure, do not expand.  */
3575	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3576		return 0;
3577
3578	/* If we filled the congestion window, do not expand.  */
3579	if (tp->packets_out >= tp->snd_cwnd)
3580		return 0;
3581
3582	return 1;
3583}
3584
3585/* When incoming ACK allowed to free some skb from write_queue,
3586 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3587 * on the exit from tcp input handler.
3588 *
3589 * PROBLEM: sndbuf expansion does not work well with largesend.
3590 */
3591static void tcp_new_space(struct sock *sk)
3592{
3593	struct tcp_sock *tp = tcp_sk(sk);
3594
3595	if (tcp_should_expand_sndbuf(sk, tp)) {
3596 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3597			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3598		    demanded = max_t(unsigned int, tp->snd_cwnd,
3599						   tp->reordering + 1);
3600		sndmem *= 2*demanded;
3601		if (sndmem > sk->sk_sndbuf)
3602			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3603		tp->snd_cwnd_stamp = tcp_time_stamp;
3604	}
3605
3606	sk->sk_write_space(sk);
3607}
3608
3609static void tcp_check_space(struct sock *sk)
3610{
3611	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3612		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3613		if (sk->sk_socket &&
3614		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3615			tcp_new_space(sk);
3616	}
3617}
3618
3619static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3620{
3621	tcp_push_pending_frames(sk, tp);
3622	tcp_check_space(sk);
3623}
3624
3625/*
3626 * Check if sending an ack is needed.
3627 */
3628static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3629{
3630	struct tcp_sock *tp = tcp_sk(sk);
3631
3632	    /* More than one full frame received... */
3633	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3634	     /* ... and right edge of window advances far enough.
3635	      * (tcp_recvmsg() will send ACK otherwise). Or...
3636	      */
3637	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3638	    /* We ACK each frame or... */
3639	    tcp_in_quickack_mode(sk) ||
3640	    /* We have out of order data. */
3641	    (ofo_possible &&
3642	     skb_peek(&tp->out_of_order_queue))) {
3643		/* Then ack it now */
3644		tcp_send_ack(sk);
3645	} else {
3646		/* Else, send delayed ack. */
3647		tcp_send_delayed_ack(sk);
3648	}
3649}
3650
3651static inline void tcp_ack_snd_check(struct sock *sk)
3652{
3653	if (!inet_csk_ack_scheduled(sk)) {
3654		/* We sent a data segment already. */
3655		return;
3656	}
3657	__tcp_ack_snd_check(sk, 1);
3658}
3659
3660/*
3661 *	This routine is only called when we have urgent data
3662 *	signaled. Its the 'slow' part of tcp_urg. It could be
3663 *	moved inline now as tcp_urg is only called from one
3664 *	place. We handle URGent data wrong. We have to - as
3665 *	BSD still doesn't use the correction from RFC961.
3666 *	For 1003.1g we should support a new option TCP_STDURG to permit
3667 *	either form (or just set the sysctl tcp_stdurg).
3668 */
3669
3670static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3671{
3672	struct tcp_sock *tp = tcp_sk(sk);
3673	u32 ptr = ntohs(th->urg_ptr);
3674
3675	if (ptr && !sysctl_tcp_stdurg)
3676		ptr--;
3677	ptr += ntohl(th->seq);
3678
3679	/* Ignore urgent data that we've already seen and read. */
3680	if (after(tp->copied_seq, ptr))
3681		return;
3682
3683	/* Do not replay urg ptr.
3684	 *
3685	 * NOTE: interesting situation not covered by specs.
3686	 * Misbehaving sender may send urg ptr, pointing to segment,
3687	 * which we already have in ofo queue. We are not able to fetch
3688	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3689	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3690	 * situations. But it is worth to think about possibility of some
3691	 * DoSes using some hypothetical application level deadlock.
3692	 */
3693	if (before(ptr, tp->rcv_nxt))
3694		return;
3695
3696	/* Do we already have a newer (or duplicate) urgent pointer? */
3697	if (tp->urg_data && !after(ptr, tp->urg_seq))
3698		return;
3699
3700	/* Tell the world about our new urgent pointer. */
3701	sk_send_sigurg(sk);
3702
3703	/* We may be adding urgent data when the last byte read was
3704	 * urgent. To do this requires some care. We cannot just ignore
3705	 * tp->copied_seq since we would read the last urgent byte again
3706	 * as data, nor can we alter copied_seq until this data arrives
3707	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3708	 *
3709	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3710	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3711	 * and expect that both A and B disappear from stream. This is _wrong_.
3712	 * Though this happens in BSD with high probability, this is occasional.
3713	 * Any application relying on this is buggy. Note also, that fix "works"
3714	 * only in this artificial test. Insert some normal data between A and B and we will
3715	 * decline of BSD again. Verdict: it is better to remove to trap
3716	 * buggy users.
3717	 */
3718	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3719	    !sock_flag(sk, SOCK_URGINLINE) &&
3720	    tp->copied_seq != tp->rcv_nxt) {
3721		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3722		tp->copied_seq++;
3723		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3724			__skb_unlink(skb, &sk->sk_receive_queue);
3725			__kfree_skb(skb);
3726		}
3727	}
3728
3729	tp->urg_data   = TCP_URG_NOTYET;
3730	tp->urg_seq    = ptr;
3731
3732	/* Disable header prediction. */
3733	tp->pred_flags = 0;
3734}
3735
3736/* This is the 'fast' part of urgent handling. */
3737static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3738{
3739	struct tcp_sock *tp = tcp_sk(sk);
3740
3741	/* Check if we get a new urgent pointer - normally not. */
3742	if (th->urg)
3743		tcp_check_urg(sk,th);
3744
3745	/* Do we wait for any urgent data? - normally not... */
3746	if (tp->urg_data == TCP_URG_NOTYET) {
3747		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3748			  th->syn;
3749
3750		/* Is the urgent pointer pointing into this packet? */
3751		if (ptr < skb->len) {
3752			u8 tmp;
3753			if (skb_copy_bits(skb, ptr, &tmp, 1))
3754				BUG();
3755			tp->urg_data = TCP_URG_VALID | tmp;
3756			if (!sock_flag(sk, SOCK_DEAD))
3757				sk->sk_data_ready(sk, 0);
3758		}
3759	}
3760}
3761
3762static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3763{
3764	struct tcp_sock *tp = tcp_sk(sk);
3765	int chunk = skb->len - hlen;
3766	int err;
3767
3768	local_bh_enable();
3769	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3770		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3771	else
3772		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3773						       tp->ucopy.iov);
3774
3775	if (!err) {
3776		tp->ucopy.len -= chunk;
3777		tp->copied_seq += chunk;
3778		tcp_rcv_space_adjust(sk);
3779	}
3780
3781	local_bh_disable();
3782	return err;
3783}
3784
3785static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3786{
3787	int result;
3788
3789	if (sock_owned_by_user(sk)) {
3790		local_bh_enable();
3791		result = __tcp_checksum_complete(skb);
3792		local_bh_disable();
3793	} else {
3794		result = __tcp_checksum_complete(skb);
3795	}
3796	return result;
3797}
3798
3799static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3800{
3801	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3802		__tcp_checksum_complete_user(sk, skb);
3803}
3804
3805#ifdef CONFIG_NET_DMA
3806static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3807{
3808	struct tcp_sock *tp = tcp_sk(sk);
3809	int chunk = skb->len - hlen;
3810	int dma_cookie;
3811	int copied_early = 0;
3812
3813	if (tp->ucopy.wakeup)
3814          	return 0;
3815
3816	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3817		tp->ucopy.dma_chan = get_softnet_dma();
3818
3819	if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3820
3821		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3822			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3823
3824		if (dma_cookie < 0)
3825			goto out;
3826
3827		tp->ucopy.dma_cookie = dma_cookie;
3828		copied_early = 1;
3829
3830		tp->ucopy.len -= chunk;
3831		tp->copied_seq += chunk;
3832		tcp_rcv_space_adjust(sk);
3833
3834		if ((tp->ucopy.len == 0) ||
3835		    (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3836		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3837			tp->ucopy.wakeup = 1;
3838			sk->sk_data_ready(sk, 0);
3839		}
3840	} else if (chunk > 0) {
3841		tp->ucopy.wakeup = 1;
3842		sk->sk_data_ready(sk, 0);
3843	}
3844out:
3845	return copied_early;
3846}
3847#endif /* CONFIG_NET_DMA */
3848
3849/*
3850 *	TCP receive function for the ESTABLISHED state.
3851 *
3852 *	It is split into a fast path and a slow path. The fast path is
3853 * 	disabled when:
3854 *	- A zero window was announced from us - zero window probing
3855 *        is only handled properly in the slow path.
3856 *	- Out of order segments arrived.
3857 *	- Urgent data is expected.
3858 *	- There is no buffer space left
3859 *	- Unexpected TCP flags/window values/header lengths are received
3860 *	  (detected by checking the TCP header against pred_flags)
3861 *	- Data is sent in both directions. Fast path only supports pure senders
3862 *	  or pure receivers (this means either the sequence number or the ack
3863 *	  value must stay constant)
3864 *	- Unexpected TCP option.
3865 *
3866 *	When these conditions are not satisfied it drops into a standard
3867 *	receive procedure patterned after RFC793 to handle all cases.
3868 *	The first three cases are guaranteed by proper pred_flags setting,
3869 *	the rest is checked inline. Fast processing is turned on in
3870 *	tcp_data_queue when everything is OK.
3871 */
3872int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3873			struct tcphdr *th, unsigned len)
3874{
3875	struct tcp_sock *tp = tcp_sk(sk);
3876
3877	/*
3878	 *	Header prediction.
3879	 *	The code loosely follows the one in the famous
3880	 *	"30 instruction TCP receive" Van Jacobson mail.
3881	 *
3882	 *	Van's trick is to deposit buffers into socket queue
3883	 *	on a device interrupt, to call tcp_recv function
3884	 *	on the receive process context and checksum and copy
3885	 *	the buffer to user space. smart...
3886	 *
3887	 *	Our current scheme is not silly either but we take the
3888	 *	extra cost of the net_bh soft interrupt processing...
3889	 *	We do checksum and copy also but from device to kernel.
3890	 */
3891
3892	tp->rx_opt.saw_tstamp = 0;
3893
3894	/*	pred_flags is 0xS?10 << 16 + snd_wnd
3895	 *	if header_prediction is to be made
3896	 *	'S' will always be tp->tcp_header_len >> 2
3897	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
3898	 *  turn it off	(when there are holes in the receive
3899	 *	 space for instance)
3900	 *	PSH flag is ignored.
3901	 */
3902
3903	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3904		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3905		int tcp_header_len = tp->tcp_header_len;
3906
3907		/* Timestamp header prediction: tcp_header_len
3908		 * is automatically equal to th->doff*4 due to pred_flags
3909		 * match.
3910		 */
3911
3912		/* Check timestamp */
3913		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3914			__be32 *ptr = (__be32 *)(th + 1);
3915
3916			/* No? Slow path! */
3917			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3918					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3919				goto slow_path;
3920
3921			tp->rx_opt.saw_tstamp = 1;
3922			++ptr;
3923			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3924			++ptr;
3925			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3926
3927			/* If PAWS failed, check it more carefully in slow path */
3928			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3929				goto slow_path;
3930
3931			/* DO NOT update ts_recent here, if checksum fails
3932			 * and timestamp was corrupted part, it will result
3933			 * in a hung connection since we will drop all
3934			 * future packets due to the PAWS test.
3935			 */
3936		}
3937
3938		if (len <= tcp_header_len) {
3939			/* Bulk data transfer: sender */
3940			if (len == tcp_header_len) {
3941				/* Predicted packet is in window by definition.
3942				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3943				 * Hence, check seq<=rcv_wup reduces to:
3944				 */
3945				if (tcp_header_len ==
3946				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3947				    tp->rcv_nxt == tp->rcv_wup)
3948					tcp_store_ts_recent(tp);
3949
3950				/* We know that such packets are checksummed
3951				 * on entry.
3952				 */
3953				tcp_ack(sk, skb, 0);
3954				__kfree_skb(skb);
3955				tcp_data_snd_check(sk, tp);
3956				return 0;
3957			} else { /* Header too small */
3958				TCP_INC_STATS_BH(TCP_MIB_INERRS);
3959				goto discard;
3960			}
3961		} else {
3962			int eaten = 0;
3963			int copied_early = 0;
3964
3965			if (tp->copied_seq == tp->rcv_nxt &&
3966			    len - tcp_header_len <= tp->ucopy.len) {
3967#ifdef CONFIG_NET_DMA
3968				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
3969					copied_early = 1;
3970					eaten = 1;
3971				}
3972#endif
3973				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
3974					__set_current_state(TASK_RUNNING);
3975
3976					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
3977						eaten = 1;
3978				}
3979				if (eaten) {
3980					/* Predicted packet is in window by definition.
3981					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3982					 * Hence, check seq<=rcv_wup reduces to:
3983					 */
3984					if (tcp_header_len ==
3985					    (sizeof(struct tcphdr) +
3986					     TCPOLEN_TSTAMP_ALIGNED) &&
3987					    tp->rcv_nxt == tp->rcv_wup)
3988						tcp_store_ts_recent(tp);
3989
3990					tcp_rcv_rtt_measure_ts(sk, skb);
3991
3992					__skb_pull(skb, tcp_header_len);
3993					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3994					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3995				}
3996				if (copied_early)
3997					tcp_cleanup_rbuf(sk, skb->len);
3998			}
3999			if (!eaten) {
4000				if (tcp_checksum_complete_user(sk, skb))
4001					goto csum_error;
4002
4003				/* Predicted packet is in window by definition.
4004				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4005				 * Hence, check seq<=rcv_wup reduces to:
4006				 */
4007				if (tcp_header_len ==
4008				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4009				    tp->rcv_nxt == tp->rcv_wup)
4010					tcp_store_ts_recent(tp);
4011
4012				tcp_rcv_rtt_measure_ts(sk, skb);
4013
4014				if ((int)skb->truesize > sk->sk_forward_alloc)
4015					goto step5;
4016
4017				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4018
4019				/* Bulk data transfer: receiver */
4020				__skb_pull(skb,tcp_header_len);
4021				__skb_queue_tail(&sk->sk_receive_queue, skb);
4022				sk_stream_set_owner_r(skb, sk);
4023				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4024			}
4025
4026			tcp_event_data_recv(sk, tp, skb);
4027
4028			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4029				/* Well, only one small jumplet in fast path... */
4030				tcp_ack(sk, skb, FLAG_DATA);
4031				tcp_data_snd_check(sk, tp);
4032				if (!inet_csk_ack_scheduled(sk))
4033					goto no_ack;
4034			}
4035
4036			__tcp_ack_snd_check(sk, 0);
4037no_ack:
4038#ifdef CONFIG_NET_DMA
4039			if (copied_early)
4040				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4041			else
4042#endif
4043			if (eaten)
4044				__kfree_skb(skb);
4045			else
4046				sk->sk_data_ready(sk, 0);
4047			return 0;
4048		}
4049	}
4050
4051slow_path:
4052	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4053		goto csum_error;
4054
4055	/*
4056	 * RFC1323: H1. Apply PAWS check first.
4057	 */
4058	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4059	    tcp_paws_discard(sk, skb)) {
4060		if (!th->rst) {
4061			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4062			tcp_send_dupack(sk, skb);
4063			goto discard;
4064		}
4065		/* Resets are accepted even if PAWS failed.
4066
4067		   ts_recent update must be made after we are sure
4068		   that the packet is in window.
4069		 */
4070	}
4071
4072	/*
4073	 *	Standard slow path.
4074	 */
4075
4076	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4077		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4078		 * (RST) segments are validated by checking their SEQ-fields."
4079		 * And page 69: "If an incoming segment is not acceptable,
4080		 * an acknowledgment should be sent in reply (unless the RST bit
4081		 * is set, if so drop the segment and return)".
4082		 */
4083		if (!th->rst)
4084			tcp_send_dupack(sk, skb);
4085		goto discard;
4086	}
4087
4088	if(th->rst) {
4089		tcp_reset(sk);
4090		goto discard;
4091	}
4092
4093	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4094
4095	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4096		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4097		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4098		tcp_reset(sk);
4099		return 1;
4100	}
4101
4102step5:
4103	if(th->ack)
4104		tcp_ack(sk, skb, FLAG_SLOWPATH);
4105
4106	tcp_rcv_rtt_measure_ts(sk, skb);
4107
4108	/* Process urgent data. */
4109	tcp_urg(sk, skb, th);
4110
4111	/* step 7: process the segment text */
4112	tcp_data_queue(sk, skb);
4113
4114	tcp_data_snd_check(sk, tp);
4115	tcp_ack_snd_check(sk);
4116	return 0;
4117
4118csum_error:
4119	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4120
4121discard:
4122	__kfree_skb(skb);
4123	return 0;
4124}
4125
4126static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4127					 struct tcphdr *th, unsigned len)
4128{
4129	struct tcp_sock *tp = tcp_sk(sk);
4130	struct inet_connection_sock *icsk = inet_csk(sk);
4131	int saved_clamp = tp->rx_opt.mss_clamp;
4132
4133	tcp_parse_options(skb, &tp->rx_opt, 0);
4134
4135	if (th->ack) {
4136		/* rfc793:
4137		 * "If the state is SYN-SENT then
4138		 *    first check the ACK bit
4139		 *      If the ACK bit is set
4140		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4141		 *        a reset (unless the RST bit is set, if so drop
4142		 *        the segment and return)"
4143		 *
4144		 *  We do not send data with SYN, so that RFC-correct
4145		 *  test reduces to:
4146		 */
4147		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4148			goto reset_and_undo;
4149
4150		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4151		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4152			     tcp_time_stamp)) {
4153			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4154			goto reset_and_undo;
4155		}
4156
4157		/* Now ACK is acceptable.
4158		 *
4159		 * "If the RST bit is set
4160		 *    If the ACK was acceptable then signal the user "error:
4161		 *    connection reset", drop the segment, enter CLOSED state,
4162		 *    delete TCB, and return."
4163		 */
4164
4165		if (th->rst) {
4166			tcp_reset(sk);
4167			goto discard;
4168		}
4169
4170		/* rfc793:
4171		 *   "fifth, if neither of the SYN or RST bits is set then
4172		 *    drop the segment and return."
4173		 *
4174		 *    See note below!
4175		 *                                        --ANK(990513)
4176		 */
4177		if (!th->syn)
4178			goto discard_and_undo;
4179
4180		/* rfc793:
4181		 *   "If the SYN bit is on ...
4182		 *    are acceptable then ...
4183		 *    (our SYN has been ACKed), change the connection
4184		 *    state to ESTABLISHED..."
4185		 */
4186
4187		TCP_ECN_rcv_synack(tp, th);
4188
4189		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4190		tcp_ack(sk, skb, FLAG_SLOWPATH);
4191
4192		/* Ok.. it's good. Set up sequence numbers and
4193		 * move to established.
4194		 */
4195		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4196		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4197
4198		/* RFC1323: The window in SYN & SYN/ACK segments is
4199		 * never scaled.
4200		 */
4201		tp->snd_wnd = ntohs(th->window);
4202		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4203
4204		if (!tp->rx_opt.wscale_ok) {
4205			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4206			tp->window_clamp = min(tp->window_clamp, 65535U);
4207		}
4208
4209		if (tp->rx_opt.saw_tstamp) {
4210			tp->rx_opt.tstamp_ok	   = 1;
4211			tp->tcp_header_len =
4212				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4213			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4214			tcp_store_ts_recent(tp);
4215		} else {
4216			tp->tcp_header_len = sizeof(struct tcphdr);
4217		}
4218
4219		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4220			tp->rx_opt.sack_ok |= 2;
4221
4222		tcp_mtup_init(sk);
4223		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4224		tcp_initialize_rcv_mss(sk);
4225
4226		/* Remember, tcp_poll() does not lock socket!
4227		 * Change state from SYN-SENT only after copied_seq
4228		 * is initialized. */
4229		tp->copied_seq = tp->rcv_nxt;
4230		mb();
4231		tcp_set_state(sk, TCP_ESTABLISHED);
4232
4233		/* Make sure socket is routed, for correct metrics.  */
4234		icsk->icsk_af_ops->rebuild_header(sk);
4235
4236		tcp_init_metrics(sk);
4237
4238		tcp_init_congestion_control(sk);
4239
4240		/* Prevent spurious tcp_cwnd_restart() on first data
4241		 * packet.
4242		 */
4243		tp->lsndtime = tcp_time_stamp;
4244
4245		tcp_init_buffer_space(sk);
4246
4247		if (sock_flag(sk, SOCK_KEEPOPEN))
4248			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4249
4250		if (!tp->rx_opt.snd_wscale)
4251			__tcp_fast_path_on(tp, tp->snd_wnd);
4252		else
4253			tp->pred_flags = 0;
4254
4255		if (!sock_flag(sk, SOCK_DEAD)) {
4256			sk->sk_state_change(sk);
4257			sk_wake_async(sk, 0, POLL_OUT);
4258		}
4259
4260		if (sk->sk_write_pending ||
4261		    icsk->icsk_accept_queue.rskq_defer_accept ||
4262		    icsk->icsk_ack.pingpong) {
4263			/* Save one ACK. Data will be ready after
4264			 * several ticks, if write_pending is set.
4265			 *
4266			 * It may be deleted, but with this feature tcpdumps
4267			 * look so _wonderfully_ clever, that I was not able
4268			 * to stand against the temptation 8)     --ANK
4269			 */
4270			inet_csk_schedule_ack(sk);
4271			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4272			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4273			tcp_incr_quickack(sk);
4274			tcp_enter_quickack_mode(sk);
4275			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4276						  TCP_DELACK_MAX, TCP_RTO_MAX);
4277
4278discard:
4279			__kfree_skb(skb);
4280			return 0;
4281		} else {
4282			tcp_send_ack(sk);
4283		}
4284		return -1;
4285	}
4286
4287	/* No ACK in the segment */
4288
4289	if (th->rst) {
4290		/* rfc793:
4291		 * "If the RST bit is set
4292		 *
4293		 *      Otherwise (no ACK) drop the segment and return."
4294		 */
4295
4296		goto discard_and_undo;
4297	}
4298
4299	/* PAWS check. */
4300	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4301		goto discard_and_undo;
4302
4303	if (th->syn) {
4304		/* We see SYN without ACK. It is attempt of
4305		 * simultaneous connect with crossed SYNs.
4306		 * Particularly, it can be connect to self.
4307		 */
4308		tcp_set_state(sk, TCP_SYN_RECV);
4309
4310		if (tp->rx_opt.saw_tstamp) {
4311			tp->rx_opt.tstamp_ok = 1;
4312			tcp_store_ts_recent(tp);
4313			tp->tcp_header_len =
4314				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4315		} else {
4316			tp->tcp_header_len = sizeof(struct tcphdr);
4317		}
4318
4319		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4320		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4321
4322		/* RFC1323: The window in SYN & SYN/ACK segments is
4323		 * never scaled.
4324		 */
4325		tp->snd_wnd    = ntohs(th->window);
4326		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4327		tp->max_window = tp->snd_wnd;
4328
4329		TCP_ECN_rcv_syn(tp, th);
4330
4331		tcp_mtup_init(sk);
4332		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4333		tcp_initialize_rcv_mss(sk);
4334
4335
4336		tcp_send_synack(sk);
4337#if 0
4338		/* Note, we could accept data and URG from this segment.
4339		 * There are no obstacles to make this.
4340		 *
4341		 * However, if we ignore data in ACKless segments sometimes,
4342		 * we have no reasons to accept it sometimes.
4343		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4344		 * is not flawless. So, discard packet for sanity.
4345		 * Uncomment this return to process the data.
4346		 */
4347		return -1;
4348#else
4349		goto discard;
4350#endif
4351	}
4352	/* "fifth, if neither of the SYN or RST bits is set then
4353	 * drop the segment and return."
4354	 */
4355
4356discard_and_undo:
4357	tcp_clear_options(&tp->rx_opt);
4358	tp->rx_opt.mss_clamp = saved_clamp;
4359	goto discard;
4360
4361reset_and_undo:
4362	tcp_clear_options(&tp->rx_opt);
4363	tp->rx_opt.mss_clamp = saved_clamp;
4364	return 1;
4365}
4366
4367
4368/*
4369 *	This function implements the receiving procedure of RFC 793 for
4370 *	all states except ESTABLISHED and TIME_WAIT.
4371 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4372 *	address independent.
4373 */
4374
4375int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4376			  struct tcphdr *th, unsigned len)
4377{
4378	struct tcp_sock *tp = tcp_sk(sk);
4379	struct inet_connection_sock *icsk = inet_csk(sk);
4380	int queued = 0;
4381
4382	tp->rx_opt.saw_tstamp = 0;
4383
4384	switch (sk->sk_state) {
4385	case TCP_CLOSE:
4386		goto discard;
4387
4388	case TCP_LISTEN:
4389		if(th->ack)
4390			return 1;
4391
4392		if(th->rst)
4393			goto discard;
4394
4395		if(th->syn) {
4396			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4397				return 1;
4398
4399			/* Now we have several options: In theory there is
4400			 * nothing else in the frame. KA9Q has an option to
4401			 * send data with the syn, BSD accepts data with the
4402			 * syn up to the [to be] advertised window and
4403			 * Solaris 2.1 gives you a protocol error. For now
4404			 * we just ignore it, that fits the spec precisely
4405			 * and avoids incompatibilities. It would be nice in
4406			 * future to drop through and process the data.
4407			 *
4408			 * Now that TTCP is starting to be used we ought to
4409			 * queue this data.
4410			 * But, this leaves one open to an easy denial of
4411		 	 * service attack, and SYN cookies can't defend
4412			 * against this problem. So, we drop the data
4413			 * in the interest of security over speed.
4414			 */
4415			goto discard;
4416		}
4417		goto discard;
4418
4419	case TCP_SYN_SENT:
4420		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4421		if (queued >= 0)
4422			return queued;
4423
4424		/* Do step6 onward by hand. */
4425		tcp_urg(sk, skb, th);
4426		__kfree_skb(skb);
4427		tcp_data_snd_check(sk, tp);
4428		return 0;
4429	}
4430
4431	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4432	    tcp_paws_discard(sk, skb)) {
4433		if (!th->rst) {
4434			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4435			tcp_send_dupack(sk, skb);
4436			goto discard;
4437		}
4438		/* Reset is accepted even if it did not pass PAWS. */
4439	}
4440
4441	/* step 1: check sequence number */
4442	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4443		if (!th->rst)
4444			tcp_send_dupack(sk, skb);
4445		goto discard;
4446	}
4447
4448	/* step 2: check RST bit */
4449	if(th->rst) {
4450		tcp_reset(sk);
4451		goto discard;
4452	}
4453
4454	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4455
4456	/* step 3: check security and precedence [ignored] */
4457
4458	/*	step 4:
4459	 *
4460	 *	Check for a SYN in window.
4461	 */
4462	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4463		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4464		tcp_reset(sk);
4465		return 1;
4466	}
4467
4468	/* step 5: check the ACK field */
4469	if (th->ack) {
4470		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4471
4472		switch(sk->sk_state) {
4473		case TCP_SYN_RECV:
4474			if (acceptable) {
4475				tp->copied_seq = tp->rcv_nxt;
4476				mb();
4477				tcp_set_state(sk, TCP_ESTABLISHED);
4478				sk->sk_state_change(sk);
4479
4480				/* Note, that this wakeup is only for marginal
4481				 * crossed SYN case. Passively open sockets
4482				 * are not waked up, because sk->sk_sleep ==
4483				 * NULL and sk->sk_socket == NULL.
4484				 */
4485				if (sk->sk_socket) {
4486					sk_wake_async(sk,0,POLL_OUT);
4487				}
4488
4489				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4490				tp->snd_wnd = ntohs(th->window) <<
4491					      tp->rx_opt.snd_wscale;
4492				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4493					    TCP_SKB_CB(skb)->seq);
4494
4495				/* tcp_ack considers this ACK as duplicate
4496				 * and does not calculate rtt.
4497				 * Fix it at least with timestamps.
4498				 */
4499				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4500				    !tp->srtt)
4501					tcp_ack_saw_tstamp(sk, 0);
4502
4503				if (tp->rx_opt.tstamp_ok)
4504					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4505
4506				/* Make sure socket is routed, for
4507				 * correct metrics.
4508				 */
4509				icsk->icsk_af_ops->rebuild_header(sk);
4510
4511				tcp_init_metrics(sk);
4512
4513				tcp_init_congestion_control(sk);
4514
4515				/* Prevent spurious tcp_cwnd_restart() on
4516				 * first data packet.
4517				 */
4518				tp->lsndtime = tcp_time_stamp;
4519
4520				tcp_mtup_init(sk);
4521				tcp_initialize_rcv_mss(sk);
4522				tcp_init_buffer_space(sk);
4523				tcp_fast_path_on(tp);
4524			} else {
4525				return 1;
4526			}
4527			break;
4528
4529		case TCP_FIN_WAIT1:
4530			if (tp->snd_una == tp->write_seq) {
4531				tcp_set_state(sk, TCP_FIN_WAIT2);
4532				sk->sk_shutdown |= SEND_SHUTDOWN;
4533				dst_confirm(sk->sk_dst_cache);
4534
4535				if (!sock_flag(sk, SOCK_DEAD))
4536					/* Wake up lingering close() */
4537					sk->sk_state_change(sk);
4538				else {
4539					int tmo;
4540
4541					if (tp->linger2 < 0 ||
4542					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4543					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4544						tcp_done(sk);
4545						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4546						return 1;
4547					}
4548
4549					tmo = tcp_fin_time(sk);
4550					if (tmo > TCP_TIMEWAIT_LEN) {
4551						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4552					} else if (th->fin || sock_owned_by_user(sk)) {
4553						/* Bad case. We could lose such FIN otherwise.
4554						 * It is not a big problem, but it looks confusing
4555						 * and not so rare event. We still can lose it now,
4556						 * if it spins in bh_lock_sock(), but it is really
4557						 * marginal case.
4558						 */
4559						inet_csk_reset_keepalive_timer(sk, tmo);
4560					} else {
4561						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4562						goto discard;
4563					}
4564				}
4565			}
4566			break;
4567
4568		case TCP_CLOSING:
4569			if (tp->snd_una == tp->write_seq) {
4570				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4571				goto discard;
4572			}
4573			break;
4574
4575		case TCP_LAST_ACK:
4576			if (tp->snd_una == tp->write_seq) {
4577				tcp_update_metrics(sk);
4578				tcp_done(sk);
4579				goto discard;
4580			}
4581			break;
4582		}
4583	} else
4584		goto discard;
4585
4586	/* step 6: check the URG bit */
4587	tcp_urg(sk, skb, th);
4588
4589	/* step 7: process the segment text */
4590	switch (sk->sk_state) {
4591	case TCP_CLOSE_WAIT:
4592	case TCP_CLOSING:
4593	case TCP_LAST_ACK:
4594		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4595			break;
4596	case TCP_FIN_WAIT1:
4597	case TCP_FIN_WAIT2:
4598		/* RFC 793 says to queue data in these states,
4599		 * RFC 1122 says we MUST send a reset.
4600		 * BSD 4.4 also does reset.
4601		 */
4602		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4603			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4604			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4605				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4606				tcp_reset(sk);
4607				return 1;
4608			}
4609		}
4610		/* Fall through */
4611	case TCP_ESTABLISHED:
4612		tcp_data_queue(sk, skb);
4613		queued = 1;
4614		break;
4615	}
4616
4617	/* tcp_data could move socket to TIME-WAIT */
4618	if (sk->sk_state != TCP_CLOSE) {
4619		tcp_data_snd_check(sk, tp);
4620		tcp_ack_snd_check(sk);
4621	}
4622
4623	if (!queued) {
4624discard:
4625		__kfree_skb(skb);
4626	}
4627	return 0;
4628}
4629
4630EXPORT_SYMBOL(sysctl_tcp_ecn);
4631EXPORT_SYMBOL(sysctl_tcp_reordering);
4632EXPORT_SYMBOL(tcp_parse_options);
4633EXPORT_SYMBOL(tcp_rcv_established);
4634EXPORT_SYMBOL(tcp_rcv_state_process);
4635EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4636