tcp_input.c revision 8dd71c5d28cd88d4400e7f474986e799e39aff37
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 *		Pedro Roque	:	Fast Retransmit/Recovery.
26 *					Two receive queues.
27 *					Retransmit queue handled by TCP.
28 *					Better retransmit timer handling.
29 *					New congestion avoidance.
30 *					Header prediction.
31 *					Variable renaming.
32 *
33 *		Eric		:	Fast Retransmit.
34 *		Randy Scott	:	MSS option defines.
35 *		Eric Schenk	:	Fixes to slow start algorithm.
36 *		Eric Schenk	:	Yet another double ACK bug.
37 *		Eric Schenk	:	Delayed ACK bug fixes.
38 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39 *		David S. Miller	:	Don't allow zero congestion window.
40 *		Eric Schenk	:	Fix retransmitter so that it sends
41 *					next packet on ack of previous packet.
42 *		Andi Kleen	:	Moved open_request checking here
43 *					and process RSTs for open_requests.
44 *		Andi Kleen	:	Better prune_queue, and other fixes.
45 *		Andrey Savochkin:	Fix RTT measurements in the presence of
46 *					timestamps.
47 *		Andrey Savochkin:	Check sequence numbers correctly when
48 *					removing SACKs due to in sequence incoming
49 *					data segments.
50 *		Andi Kleen:		Make sure we never ack data there is not
51 *					enough room for. Also make this condition
52 *					a fatal error if it might still happen.
53 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54 *					connections with MSS<min(MTU,ann. MSS)
55 *					work without delayed acks.
56 *		Andi Kleen:		Process packets with PSH set in the
57 *					fast path.
58 *		J Hadi Salim:		ECN support
59 *	 	Andrei Gurtov,
60 *		Pasi Sarolahti,
61 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62 *					engine. Lots of bugs are found.
63 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64 */
65
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
73#include <net/netdma.h>
74
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly = 2;
89int sysctl_tcp_frto_response __read_mostly;
90int sysctl_tcp_nometrics_save __read_mostly;
91
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
94
95#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101#define FLAG_ECE		0x40 /* ECE in this ACK				*/
102#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
107#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
108
109#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
112#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
113#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115#define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120/* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
122 */
123static void tcp_measure_rcv_mss(struct sock *sk,
124				const struct sk_buff *skb)
125{
126	struct inet_connection_sock *icsk = inet_csk(sk);
127	const unsigned int lss = icsk->icsk_ack.last_seg_size;
128	unsigned int len;
129
130	icsk->icsk_ack.last_seg_size = 0;
131
132	/* skb->len may jitter because of SACKs, even if peer
133	 * sends good full-sized frames.
134	 */
135	len = skb_shinfo(skb)->gso_size ?: skb->len;
136	if (len >= icsk->icsk_ack.rcv_mss) {
137		icsk->icsk_ack.rcv_mss = len;
138	} else {
139		/* Otherwise, we make more careful check taking into account,
140		 * that SACKs block is variable.
141		 *
142		 * "len" is invariant segment length, including TCP header.
143		 */
144		len += skb->data - skb_transport_header(skb);
145		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146		    /* If PSH is not set, packet should be
147		     * full sized, provided peer TCP is not badly broken.
148		     * This observation (if it is correct 8)) allows
149		     * to handle super-low mtu links fairly.
150		     */
151		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153			/* Subtract also invariant (if peer is RFC compliant),
154			 * tcp header plus fixed timestamp option length.
155			 * Resulting "len" is MSS free of SACK jitter.
156			 */
157			len -= tcp_sk(sk)->tcp_header_len;
158			icsk->icsk_ack.last_seg_size = len;
159			if (len == lss) {
160				icsk->icsk_ack.rcv_mss = len;
161				return;
162			}
163		}
164		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167	}
168}
169
170static void tcp_incr_quickack(struct sock *sk)
171{
172	struct inet_connection_sock *icsk = inet_csk(sk);
173	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175	if (quickacks==0)
176		quickacks=2;
177	if (quickacks > icsk->icsk_ack.quick)
178		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179}
180
181void tcp_enter_quickack_mode(struct sock *sk)
182{
183	struct inet_connection_sock *icsk = inet_csk(sk);
184	tcp_incr_quickack(sk);
185	icsk->icsk_ack.pingpong = 0;
186	icsk->icsk_ack.ato = TCP_ATO_MIN;
187}
188
189/* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
193static inline int tcp_in_quickack_mode(const struct sock *sk)
194{
195	const struct inet_connection_sock *icsk = inet_csk(sk);
196	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197}
198
199static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200{
201	if (tp->ecn_flags&TCP_ECN_OK)
202		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203}
204
205static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206{
207	if (tcp_hdr(skb)->cwr)
208		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209}
210
211static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212{
213	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217{
218	if (tp->ecn_flags&TCP_ECN_OK) {
219		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221		/* Funny extension: if ECT is not set on a segment,
222		 * it is surely retransmit. It is not in ECN RFC,
223		 * but Linux follows this rule. */
224		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225			tcp_enter_quickack_mode((struct sock *)tp);
226	}
227}
228
229static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230{
231	if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232		tp->ecn_flags &= ~TCP_ECN_OK;
233}
234
235static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236{
237	if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238		tp->ecn_flags &= ~TCP_ECN_OK;
239}
240
241static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242{
243	if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244		return 1;
245	return 0;
246}
247
248/* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253static void tcp_fixup_sndbuf(struct sock *sk)
254{
255	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256		     sizeof(struct sk_buff);
257
258	if (sk->sk_sndbuf < 3 * sndmem)
259		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260}
261
262/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 *   requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 *   of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287/* Slow part of check#2. */
288static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289{
290	struct tcp_sock *tp = tcp_sk(sk);
291	/* Optimize this! */
292	int truesize = tcp_win_from_space(skb->truesize)/2;
293	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295	while (tp->rcv_ssthresh <= window) {
296		if (truesize <= skb->len)
297			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299		truesize >>= 1;
300		window >>= 1;
301	}
302	return 0;
303}
304
305static void tcp_grow_window(struct sock *sk,
306			    struct sk_buff *skb)
307{
308	struct tcp_sock *tp = tcp_sk(sk);
309
310	/* Check #1 */
311	if (tp->rcv_ssthresh < tp->window_clamp &&
312	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
313	    !tcp_memory_pressure) {
314		int incr;
315
316		/* Check #2. Increase window, if skb with such overhead
317		 * will fit to rcvbuf in future.
318		 */
319		if (tcp_win_from_space(skb->truesize) <= skb->len)
320			incr = 2*tp->advmss;
321		else
322			incr = __tcp_grow_window(sk, skb);
323
324		if (incr) {
325			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326			inet_csk(sk)->icsk_ack.quick |= 1;
327		}
328	}
329}
330
331/* 3. Tuning rcvbuf, when connection enters established state. */
332
333static void tcp_fixup_rcvbuf(struct sock *sk)
334{
335	struct tcp_sock *tp = tcp_sk(sk);
336	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338	/* Try to select rcvbuf so that 4 mss-sized segments
339	 * will fit to window and corresponding skbs will fit to our rcvbuf.
340	 * (was 3; 4 is minimum to allow fast retransmit to work.)
341	 */
342	while (tcp_win_from_space(rcvmem) < tp->advmss)
343		rcvmem += 128;
344	if (sk->sk_rcvbuf < 4 * rcvmem)
345		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346}
347
348/* 4. Try to fixup all. It is made immediately after connection enters
349 *    established state.
350 */
351static void tcp_init_buffer_space(struct sock *sk)
352{
353	struct tcp_sock *tp = tcp_sk(sk);
354	int maxwin;
355
356	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357		tcp_fixup_rcvbuf(sk);
358	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359		tcp_fixup_sndbuf(sk);
360
361	tp->rcvq_space.space = tp->rcv_wnd;
362
363	maxwin = tcp_full_space(sk);
364
365	if (tp->window_clamp >= maxwin) {
366		tp->window_clamp = maxwin;
367
368		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369			tp->window_clamp = max(maxwin -
370					       (maxwin >> sysctl_tcp_app_win),
371					       4 * tp->advmss);
372	}
373
374	/* Force reservation of one segment. */
375	if (sysctl_tcp_app_win &&
376	    tp->window_clamp > 2 * tp->advmss &&
377	    tp->window_clamp + tp->advmss > maxwin)
378		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381	tp->snd_cwnd_stamp = tcp_time_stamp;
382}
383
384/* 5. Recalculate window clamp after socket hit its memory bounds. */
385static void tcp_clamp_window(struct sock *sk)
386{
387	struct tcp_sock *tp = tcp_sk(sk);
388	struct inet_connection_sock *icsk = inet_csk(sk);
389
390	icsk->icsk_ack.quick = 0;
391
392	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394	    !tcp_memory_pressure &&
395	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397				    sysctl_tcp_rmem[2]);
398	}
399	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401}
402
403
404/* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411void tcp_initialize_rcv_mss(struct sock *sk)
412{
413	struct tcp_sock *tp = tcp_sk(sk);
414	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416	hint = min(hint, tp->rcv_wnd/2);
417	hint = min(hint, TCP_MIN_RCVMSS);
418	hint = max(hint, TCP_MIN_MSS);
419
420	inet_csk(sk)->icsk_ack.rcv_mss = hint;
421}
422
423/* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date.  A new paper
432 * is pending.
433 */
434static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435{
436	u32 new_sample = tp->rcv_rtt_est.rtt;
437	long m = sample;
438
439	if (m == 0)
440		m = 1;
441
442	if (new_sample != 0) {
443		/* If we sample in larger samples in the non-timestamp
444		 * case, we could grossly overestimate the RTT especially
445		 * with chatty applications or bulk transfer apps which
446		 * are stalled on filesystem I/O.
447		 *
448		 * Also, since we are only going for a minimum in the
449		 * non-timestamp case, we do not smooth things out
450		 * else with timestamps disabled convergence takes too
451		 * long.
452		 */
453		if (!win_dep) {
454			m -= (new_sample >> 3);
455			new_sample += m;
456		} else if (m < new_sample)
457			new_sample = m << 3;
458	} else {
459		/* No previous measure. */
460		new_sample = m << 3;
461	}
462
463	if (tp->rcv_rtt_est.rtt != new_sample)
464		tp->rcv_rtt_est.rtt = new_sample;
465}
466
467static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468{
469	if (tp->rcv_rtt_est.time == 0)
470		goto new_measure;
471	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472		return;
473	tcp_rcv_rtt_update(tp,
474			   jiffies - tp->rcv_rtt_est.time,
475			   1);
476
477new_measure:
478	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479	tp->rcv_rtt_est.time = tcp_time_stamp;
480}
481
482static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483{
484	struct tcp_sock *tp = tcp_sk(sk);
485	if (tp->rx_opt.rcv_tsecr &&
486	    (TCP_SKB_CB(skb)->end_seq -
487	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489}
490
491/*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495void tcp_rcv_space_adjust(struct sock *sk)
496{
497	struct tcp_sock *tp = tcp_sk(sk);
498	int time;
499	int space;
500
501	if (tp->rcvq_space.time == 0)
502		goto new_measure;
503
504	time = tcp_time_stamp - tp->rcvq_space.time;
505	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506	    tp->rcv_rtt_est.rtt == 0)
507		return;
508
509	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511	space = max(tp->rcvq_space.space, space);
512
513	if (tp->rcvq_space.space != space) {
514		int rcvmem;
515
516		tp->rcvq_space.space = space;
517
518		if (sysctl_tcp_moderate_rcvbuf &&
519		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520			int new_clamp = space;
521
522			/* Receive space grows, normalize in order to
523			 * take into account packet headers and sk_buff
524			 * structure overhead.
525			 */
526			space /= tp->advmss;
527			if (!space)
528				space = 1;
529			rcvmem = (tp->advmss + MAX_TCP_HEADER +
530				  16 + sizeof(struct sk_buff));
531			while (tcp_win_from_space(rcvmem) < tp->advmss)
532				rcvmem += 128;
533			space *= rcvmem;
534			space = min(space, sysctl_tcp_rmem[2]);
535			if (space > sk->sk_rcvbuf) {
536				sk->sk_rcvbuf = space;
537
538				/* Make the window clamp follow along.  */
539				tp->window_clamp = new_clamp;
540			}
541		}
542	}
543
544new_measure:
545	tp->rcvq_space.seq = tp->copied_seq;
546	tp->rcvq_space.time = tcp_time_stamp;
547}
548
549/* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval.  When a
551 * connection starts up, we want to ack as quickly as possible.  The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission.  The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time.  For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue.  -DaveM
558 */
559static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560{
561	struct tcp_sock *tp = tcp_sk(sk);
562	struct inet_connection_sock *icsk = inet_csk(sk);
563	u32 now;
564
565	inet_csk_schedule_ack(sk);
566
567	tcp_measure_rcv_mss(sk, skb);
568
569	tcp_rcv_rtt_measure(tp);
570
571	now = tcp_time_stamp;
572
573	if (!icsk->icsk_ack.ato) {
574		/* The _first_ data packet received, initialize
575		 * delayed ACK engine.
576		 */
577		tcp_incr_quickack(sk);
578		icsk->icsk_ack.ato = TCP_ATO_MIN;
579	} else {
580		int m = now - icsk->icsk_ack.lrcvtime;
581
582		if (m <= TCP_ATO_MIN/2) {
583			/* The fastest case is the first. */
584			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585		} else if (m < icsk->icsk_ack.ato) {
586			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587			if (icsk->icsk_ack.ato > icsk->icsk_rto)
588				icsk->icsk_ack.ato = icsk->icsk_rto;
589		} else if (m > icsk->icsk_rto) {
590			/* Too long gap. Apparently sender failed to
591			 * restart window, so that we send ACKs quickly.
592			 */
593			tcp_incr_quickack(sk);
594			sk_stream_mem_reclaim(sk);
595		}
596	}
597	icsk->icsk_ack.lrcvtime = now;
598
599	TCP_ECN_check_ce(tp, skb);
600
601	if (skb->len >= 128)
602		tcp_grow_window(sk, skb);
603}
604
605static u32 tcp_rto_min(struct sock *sk)
606{
607	struct dst_entry *dst = __sk_dst_get(sk);
608	u32 rto_min = TCP_RTO_MIN;
609
610	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611		rto_min = dst->metrics[RTAX_RTO_MIN-1];
612	return rto_min;
613}
614
615/* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
624static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625{
626	struct tcp_sock *tp = tcp_sk(sk);
627	long m = mrtt; /* RTT */
628
629	/*	The following amusing code comes from Jacobson's
630	 *	article in SIGCOMM '88.  Note that rtt and mdev
631	 *	are scaled versions of rtt and mean deviation.
632	 *	This is designed to be as fast as possible
633	 *	m stands for "measurement".
634	 *
635	 *	On a 1990 paper the rto value is changed to:
636	 *	RTO = rtt + 4 * mdev
637	 *
638	 * Funny. This algorithm seems to be very broken.
639	 * These formulae increase RTO, when it should be decreased, increase
640	 * too slowly, when it should be increased quickly, decrease too quickly
641	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642	 * does not matter how to _calculate_ it. Seems, it was trap
643	 * that VJ failed to avoid. 8)
644	 */
645	if (m == 0)
646		m = 1;
647	if (tp->srtt != 0) {
648		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
649		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
650		if (m < 0) {
651			m = -m;		/* m is now abs(error) */
652			m -= (tp->mdev >> 2);   /* similar update on mdev */
653			/* This is similar to one of Eifel findings.
654			 * Eifel blocks mdev updates when rtt decreases.
655			 * This solution is a bit different: we use finer gain
656			 * for mdev in this case (alpha*beta).
657			 * Like Eifel it also prevents growth of rto,
658			 * but also it limits too fast rto decreases,
659			 * happening in pure Eifel.
660			 */
661			if (m > 0)
662				m >>= 3;
663		} else {
664			m -= (tp->mdev >> 2);   /* similar update on mdev */
665		}
666		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
667		if (tp->mdev > tp->mdev_max) {
668			tp->mdev_max = tp->mdev;
669			if (tp->mdev_max > tp->rttvar)
670				tp->rttvar = tp->mdev_max;
671		}
672		if (after(tp->snd_una, tp->rtt_seq)) {
673			if (tp->mdev_max < tp->rttvar)
674				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675			tp->rtt_seq = tp->snd_nxt;
676			tp->mdev_max = tcp_rto_min(sk);
677		}
678	} else {
679		/* no previous measure. */
680		tp->srtt = m<<3;	/* take the measured time to be rtt */
681		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
682		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683		tp->rtt_seq = tp->snd_nxt;
684	}
685}
686
687/* Calculate rto without backoff.  This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
690static inline void tcp_set_rto(struct sock *sk)
691{
692	const struct tcp_sock *tp = tcp_sk(sk);
693	/* Old crap is replaced with new one. 8)
694	 *
695	 * More seriously:
696	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697	 *    It cannot be less due to utterly erratic ACK generation made
698	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699	 *    to do with delayed acks, because at cwnd>2 true delack timeout
700	 *    is invisible. Actually, Linux-2.4 also generates erratic
701	 *    ACKs in some circumstances.
702	 */
703	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705	/* 2. Fixups made earlier cannot be right.
706	 *    If we do not estimate RTO correctly without them,
707	 *    all the algo is pure shit and should be replaced
708	 *    with correct one. It is exactly, which we pretend to do.
709	 */
710}
711
712/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
715static inline void tcp_bound_rto(struct sock *sk)
716{
717	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719}
720
721/* Save metrics learned by this TCP session.
722   This function is called only, when TCP finishes successfully
723   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725void tcp_update_metrics(struct sock *sk)
726{
727	struct tcp_sock *tp = tcp_sk(sk);
728	struct dst_entry *dst = __sk_dst_get(sk);
729
730	if (sysctl_tcp_nometrics_save)
731		return;
732
733	dst_confirm(dst);
734
735	if (dst && (dst->flags&DST_HOST)) {
736		const struct inet_connection_sock *icsk = inet_csk(sk);
737		int m;
738
739		if (icsk->icsk_backoff || !tp->srtt) {
740			/* This session failed to estimate rtt. Why?
741			 * Probably, no packets returned in time.
742			 * Reset our results.
743			 */
744			if (!(dst_metric_locked(dst, RTAX_RTT)))
745				dst->metrics[RTAX_RTT-1] = 0;
746			return;
747		}
748
749		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751		/* If newly calculated rtt larger than stored one,
752		 * store new one. Otherwise, use EWMA. Remember,
753		 * rtt overestimation is always better than underestimation.
754		 */
755		if (!(dst_metric_locked(dst, RTAX_RTT))) {
756			if (m <= 0)
757				dst->metrics[RTAX_RTT-1] = tp->srtt;
758			else
759				dst->metrics[RTAX_RTT-1] -= (m>>3);
760		}
761
762		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763			if (m < 0)
764				m = -m;
765
766			/* Scale deviation to rttvar fixed point */
767			m >>= 1;
768			if (m < tp->mdev)
769				m = tp->mdev;
770
771			if (m >= dst_metric(dst, RTAX_RTTVAR))
772				dst->metrics[RTAX_RTTVAR-1] = m;
773			else
774				dst->metrics[RTAX_RTTVAR-1] -=
775					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776		}
777
778		if (tp->snd_ssthresh >= 0xFFFF) {
779			/* Slow start still did not finish. */
780			if (dst_metric(dst, RTAX_SSTHRESH) &&
781			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784			if (!dst_metric_locked(dst, RTAX_CWND) &&
785			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
788			   icsk->icsk_ca_state == TCP_CA_Open) {
789			/* Cong. avoidance phase, cwnd is reliable. */
790			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791				dst->metrics[RTAX_SSTHRESH-1] =
792					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793			if (!dst_metric_locked(dst, RTAX_CWND))
794				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795		} else {
796			/* Else slow start did not finish, cwnd is non-sense,
797			   ssthresh may be also invalid.
798			 */
799			if (!dst_metric_locked(dst, RTAX_CWND))
800				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801			if (dst->metrics[RTAX_SSTHRESH-1] &&
802			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805		}
806
807		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809			    tp->reordering != sysctl_tcp_reordering)
810				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811		}
812	}
813}
814
815/* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 *	The RFC specifies a window of no more than 4380 bytes
820 *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
821 *	is a bit misleading because they use a clamp at 4380 bytes
822 *	rather than use a multiplier in the relevant range.
823 */
824__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825{
826	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828	if (!cwnd) {
829		if (tp->mss_cache > 1460)
830			cwnd = 2;
831		else
832			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833	}
834	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835}
836
837/* Set slow start threshold and cwnd not falling to slow start */
838void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839{
840	struct tcp_sock *tp = tcp_sk(sk);
841	const struct inet_connection_sock *icsk = inet_csk(sk);
842
843	tp->prior_ssthresh = 0;
844	tp->bytes_acked = 0;
845	if (icsk->icsk_ca_state < TCP_CA_CWR) {
846		tp->undo_marker = 0;
847		if (set_ssthresh)
848			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849		tp->snd_cwnd = min(tp->snd_cwnd,
850				   tcp_packets_in_flight(tp) + 1U);
851		tp->snd_cwnd_cnt = 0;
852		tp->high_seq = tp->snd_nxt;
853		tp->snd_cwnd_stamp = tcp_time_stamp;
854		TCP_ECN_queue_cwr(tp);
855
856		tcp_set_ca_state(sk, TCP_CA_CWR);
857	}
858}
859
860/*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864static void tcp_disable_fack(struct tcp_sock *tp)
865{
866	tp->rx_opt.sack_ok &= ~2;
867}
868
869/* Take a notice that peer is sending D-SACKs */
870static void tcp_dsack_seen(struct tcp_sock *tp)
871{
872	tp->rx_opt.sack_ok |= 4;
873}
874
875/* Initialize metrics on socket. */
876
877static void tcp_init_metrics(struct sock *sk)
878{
879	struct tcp_sock *tp = tcp_sk(sk);
880	struct dst_entry *dst = __sk_dst_get(sk);
881
882	if (dst == NULL)
883		goto reset;
884
885	dst_confirm(dst);
886
887	if (dst_metric_locked(dst, RTAX_CWND))
888		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889	if (dst_metric(dst, RTAX_SSTHRESH)) {
890		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892			tp->snd_ssthresh = tp->snd_cwnd_clamp;
893	}
894	if (dst_metric(dst, RTAX_REORDERING) &&
895	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896		tcp_disable_fack(tp);
897		tp->reordering = dst_metric(dst, RTAX_REORDERING);
898	}
899
900	if (dst_metric(dst, RTAX_RTT) == 0)
901		goto reset;
902
903	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904		goto reset;
905
906	/* Initial rtt is determined from SYN,SYN-ACK.
907	 * The segment is small and rtt may appear much
908	 * less than real one. Use per-dst memory
909	 * to make it more realistic.
910	 *
911	 * A bit of theory. RTT is time passed after "normal" sized packet
912	 * is sent until it is ACKed. In normal circumstances sending small
913	 * packets force peer to delay ACKs and calculation is correct too.
914	 * The algorithm is adaptive and, provided we follow specs, it
915	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916	 * tricks sort of "quick acks" for time long enough to decrease RTT
917	 * to low value, and then abruptly stops to do it and starts to delay
918	 * ACKs, wait for troubles.
919	 */
920	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921		tp->srtt = dst_metric(dst, RTAX_RTT);
922		tp->rtt_seq = tp->snd_nxt;
923	}
924	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927	}
928	tcp_set_rto(sk);
929	tcp_bound_rto(sk);
930	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931		goto reset;
932	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933	tp->snd_cwnd_stamp = tcp_time_stamp;
934	return;
935
936reset:
937	/* Play conservative. If timestamps are not
938	 * supported, TCP will fail to recalculate correct
939	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940	 */
941	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942		tp->srtt = 0;
943		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945	}
946}
947
948static void tcp_update_reordering(struct sock *sk, const int metric,
949				  const int ts)
950{
951	struct tcp_sock *tp = tcp_sk(sk);
952	if (metric > tp->reordering) {
953		tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955		/* This exciting event is worth to be remembered. 8) */
956		if (ts)
957			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958		else if (tcp_is_reno(tp))
959			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960		else if (tcp_is_fack(tp))
961			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962		else
963			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964#if FASTRETRANS_DEBUG > 1
965		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967		       tp->reordering,
968		       tp->fackets_out,
969		       tp->sacked_out,
970		       tp->undo_marker ? tp->undo_retrans : 0);
971#endif
972		tcp_disable_fack(tp);
973	}
974}
975
976/* This procedure tags the retransmission queue when SACKs arrive.
977 *
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
981 *
982 * Valid combinations are:
983 * Tag  InFlight	Description
984 * 0	1		- orig segment is in flight.
985 * S	0		- nothing flies, orig reached receiver.
986 * L	0		- nothing flies, orig lost by net.
987 * R	2		- both orig and retransmit are in flight.
988 * L|R	1		- orig is lost, retransmit is in flight.
989 * S|R  1		- orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 *  but it is equivalent to plain S and code short-curcuits it to S.
992 *  L|S is logically invalid, it would mean -1 packet in flight 8))
993 *
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 *	A. Scoreboard estimator decided the packet is lost.
999 *	   A'. Reno "three dupacks" marks head of queue lost.
1000 *	   A''. Its FACK modfication, head until snd.fack is lost.
1001 *	B. SACK arrives sacking data transmitted after never retransmitted
1002 *	   hole was sent out.
1003 *	C. SACK arrives sacking SND.NXT at the moment, when the
1004 *	   segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 *
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1010 *
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1015 *
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 *    ever retransmitted -> reordering. Alas, we cannot use it
1018 *    when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 *    for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
1023 *
1024 * SACK block validation.
1025 * ----------------------
1026 *
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
1030 * it means that the receiver is rather inconsistent with itself reporting
1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032 * perfectly valid, however, in light of RFC2018 which explicitly states
1033 * that "SACK block MUST reflect the newest segment.  Even if the newest
1034 * segment is going to be discarded ...", not that it looks very clever
1035 * in case of head skb. Due to potentional receiver driven attacks, we
1036 * choose to avoid immediate execution of a walk in write queue due to
1037 * reneging and defer head skb's loss recovery to standard loss recovery
1038 * procedure that will eventually trigger (nothing forbids us doing this).
1039 *
1040 * Implements also blockage to start_seq wrap-around. Problem lies in the
1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042 * there's no guarantee that it will be before snd_nxt (n). The problem
1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044 * wrap (s_w):
1045 *
1046 *         <- outs wnd ->                          <- wrapzone ->
1047 *         u     e      n                         u_w   e_w  s n_w
1048 *         |     |      |                          |     |   |  |
1049 * |<------------+------+----- TCP seqno space --------------+---------->|
1050 * ...-- <2^31 ->|                                           |<--------...
1051 * ...---- >2^31 ------>|                                    |<--------...
1052 *
1053 * Current code wouldn't be vulnerable but it's better still to discard such
1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057 * equal to the ideal case (infinite seqno space without wrap caused issues).
1058 *
1059 * With D-SACK the lower bound is extended to cover sequence space below
1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061 * again, D-SACK block must not to go across snd_una (for the same reason as
1062 * for the normal SACK blocks, explained above). But there all simplicity
1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064 * fully below undo_marker they do not affect behavior in anyway and can
1065 * therefore be safely ignored. In rare cases (which are more or less
1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067 * fragmentation and packet reordering past skb's retransmission. To consider
1068 * them correctly, the acceptable range must be extended even more though
1069 * the exact amount is rather hard to quantify. However, tp->max_window can
1070 * be used as an exaggerated estimate.
1071 */
1072static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073				  u32 start_seq, u32 end_seq)
1074{
1075	/* Too far in future, or reversed (interpretation is ambiguous) */
1076	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077		return 0;
1078
1079	/* Nasty start_seq wrap-around check (see comments above) */
1080	if (!before(start_seq, tp->snd_nxt))
1081		return 0;
1082
1083	/* In outstanding window? ...This is valid exit for D-SACKs too.
1084	 * start_seq == snd_una is non-sensical (see comments above)
1085	 */
1086	if (after(start_seq, tp->snd_una))
1087		return 1;
1088
1089	if (!is_dsack || !tp->undo_marker)
1090		return 0;
1091
1092	/* ...Then it's D-SACK, and must reside below snd_una completely */
1093	if (!after(end_seq, tp->snd_una))
1094		return 0;
1095
1096	if (!before(start_seq, tp->undo_marker))
1097		return 1;
1098
1099	/* Too old */
1100	if (!after(end_seq, tp->undo_marker))
1101		return 0;
1102
1103	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1104	 *   start_seq < undo_marker and end_seq >= undo_marker.
1105	 */
1106	return !before(start_seq, end_seq - tp->max_window);
1107}
1108
1109/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110 * Event "C". Later note: FACK people cheated me again 8), we have to account
1111 * for reordering! Ugly, but should help.
1112 *
1113 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114 * less than what is now known to be received by the other end (derived from
1115 * SACK blocks by the caller). Also calculate the lowest snd_nxt among the
1116 * remaining retransmitted skbs to avoid some costly processing per ACKs.
1117 */
1118static int tcp_mark_lost_retrans(struct sock *sk, u32 received_upto)
1119{
1120	struct tcp_sock *tp = tcp_sk(sk);
1121	struct sk_buff *skb;
1122	int flag = 0;
1123	int cnt = 0;
1124	u32 new_low_seq = tp->snd_nxt;
1125
1126	tcp_for_write_queue(skb, sk) {
1127		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1128
1129		if (skb == tcp_send_head(sk))
1130			break;
1131		if (cnt == tp->retrans_out)
1132			break;
1133		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1134			continue;
1135
1136		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1137			continue;
1138
1139		if (after(received_upto, ack_seq) &&
1140		    (tcp_is_fack(tp) ||
1141		     !before(received_upto,
1142			     ack_seq + tp->reordering * tp->mss_cache))) {
1143			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1144			tp->retrans_out -= tcp_skb_pcount(skb);
1145
1146			/* clear lost hint */
1147			tp->retransmit_skb_hint = NULL;
1148
1149			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1150				tp->lost_out += tcp_skb_pcount(skb);
1151				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1152				flag |= FLAG_DATA_SACKED;
1153				NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1154			}
1155		} else {
1156			if (before(ack_seq, new_low_seq))
1157				new_low_seq = ack_seq;
1158			cnt += tcp_skb_pcount(skb);
1159		}
1160	}
1161
1162	if (tp->retrans_out)
1163		tp->lost_retrans_low = new_low_seq;
1164
1165	return flag;
1166}
1167
1168static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1169			   struct tcp_sack_block_wire *sp, int num_sacks,
1170			   u32 prior_snd_una)
1171{
1172	u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1173	u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1174	int dup_sack = 0;
1175
1176	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1177		dup_sack = 1;
1178		tcp_dsack_seen(tp);
1179		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1180	} else if (num_sacks > 1) {
1181		u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1182		u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1183
1184		if (!after(end_seq_0, end_seq_1) &&
1185		    !before(start_seq_0, start_seq_1)) {
1186			dup_sack = 1;
1187			tcp_dsack_seen(tp);
1188			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1189		}
1190	}
1191
1192	/* D-SACK for already forgotten data... Do dumb counting. */
1193	if (dup_sack &&
1194	    !after(end_seq_0, prior_snd_una) &&
1195	    after(end_seq_0, tp->undo_marker))
1196		tp->undo_retrans--;
1197
1198	return dup_sack;
1199}
1200
1201/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1202 * the incoming SACK may not exactly match but we can find smaller MSS
1203 * aligned portion of it that matches. Therefore we might need to fragment
1204 * which may fail and creates some hassle (caller must handle error case
1205 * returns).
1206 */
1207static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1208				 u32 start_seq, u32 end_seq)
1209{
1210	int in_sack, err;
1211	unsigned int pkt_len;
1212
1213	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1214		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1215
1216	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1217	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1218
1219		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1220
1221		if (!in_sack)
1222			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1223		else
1224			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1225		err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1226		if (err < 0)
1227			return err;
1228	}
1229
1230	return in_sack;
1231}
1232
1233static int
1234tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1235{
1236	const struct inet_connection_sock *icsk = inet_csk(sk);
1237	struct tcp_sock *tp = tcp_sk(sk);
1238	unsigned char *ptr = (skb_transport_header(ack_skb) +
1239			      TCP_SKB_CB(ack_skb)->sacked);
1240	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1241	struct sk_buff *cached_skb;
1242	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1243	int reord = tp->packets_out;
1244	int prior_fackets;
1245	u32 highest_sack_end_seq = tp->lost_retrans_low;
1246	int flag = 0;
1247	int found_dup_sack = 0;
1248	int cached_fack_count;
1249	int i;
1250	int first_sack_index;
1251	int force_one_sack;
1252
1253	if (!tp->sacked_out) {
1254		if (WARN_ON(tp->fackets_out))
1255			tp->fackets_out = 0;
1256		tp->highest_sack = tp->snd_una;
1257	}
1258	prior_fackets = tp->fackets_out;
1259
1260	found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1261					 num_sacks, prior_snd_una);
1262	if (found_dup_sack)
1263		flag |= FLAG_DSACKING_ACK;
1264
1265	/* Eliminate too old ACKs, but take into
1266	 * account more or less fresh ones, they can
1267	 * contain valid SACK info.
1268	 */
1269	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1270		return 0;
1271
1272	/* SACK fastpath:
1273	 * if the only SACK change is the increase of the end_seq of
1274	 * the first block then only apply that SACK block
1275	 * and use retrans queue hinting otherwise slowpath */
1276	force_one_sack = 1;
1277	for (i = 0; i < num_sacks; i++) {
1278		__be32 start_seq = sp[i].start_seq;
1279		__be32 end_seq = sp[i].end_seq;
1280
1281		if (i == 0) {
1282			if (tp->recv_sack_cache[i].start_seq != start_seq)
1283				force_one_sack = 0;
1284		} else {
1285			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1286			    (tp->recv_sack_cache[i].end_seq != end_seq))
1287				force_one_sack = 0;
1288		}
1289		tp->recv_sack_cache[i].start_seq = start_seq;
1290		tp->recv_sack_cache[i].end_seq = end_seq;
1291	}
1292	/* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1293	for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1294		tp->recv_sack_cache[i].start_seq = 0;
1295		tp->recv_sack_cache[i].end_seq = 0;
1296	}
1297
1298	first_sack_index = 0;
1299	if (force_one_sack)
1300		num_sacks = 1;
1301	else {
1302		int j;
1303		tp->fastpath_skb_hint = NULL;
1304
1305		/* order SACK blocks to allow in order walk of the retrans queue */
1306		for (i = num_sacks-1; i > 0; i--) {
1307			for (j = 0; j < i; j++){
1308				if (after(ntohl(sp[j].start_seq),
1309					  ntohl(sp[j+1].start_seq))){
1310					struct tcp_sack_block_wire tmp;
1311
1312					tmp = sp[j];
1313					sp[j] = sp[j+1];
1314					sp[j+1] = tmp;
1315
1316					/* Track where the first SACK block goes to */
1317					if (j == first_sack_index)
1318						first_sack_index = j+1;
1319				}
1320
1321			}
1322		}
1323	}
1324
1325	/* Use SACK fastpath hint if valid */
1326	cached_skb = tp->fastpath_skb_hint;
1327	cached_fack_count = tp->fastpath_cnt_hint;
1328	if (!cached_skb) {
1329		cached_skb = tcp_write_queue_head(sk);
1330		cached_fack_count = 0;
1331	}
1332
1333	for (i = 0; i < num_sacks; i++) {
1334		struct sk_buff *skb;
1335		__u32 start_seq = ntohl(sp->start_seq);
1336		__u32 end_seq = ntohl(sp->end_seq);
1337		int fack_count;
1338		int dup_sack = (found_dup_sack && (i == first_sack_index));
1339		int next_dup = (found_dup_sack && (i+1 == first_sack_index));
1340
1341		sp++;
1342
1343		if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1344			if (dup_sack) {
1345				if (!tp->undo_marker)
1346					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1347				else
1348					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1349			} else {
1350				/* Don't count olds caused by ACK reordering */
1351				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1352				    !after(end_seq, tp->snd_una))
1353					continue;
1354				NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1355			}
1356			continue;
1357		}
1358
1359		skb = cached_skb;
1360		fack_count = cached_fack_count;
1361
1362		/* Event "B" in the comment above. */
1363		if (after(end_seq, tp->high_seq))
1364			flag |= FLAG_DATA_LOST;
1365
1366		tcp_for_write_queue_from(skb, sk) {
1367			int in_sack = 0;
1368			u8 sacked;
1369
1370			if (skb == tcp_send_head(sk))
1371				break;
1372
1373			cached_skb = skb;
1374			cached_fack_count = fack_count;
1375			if (i == first_sack_index) {
1376				tp->fastpath_skb_hint = skb;
1377				tp->fastpath_cnt_hint = fack_count;
1378			}
1379
1380			/* The retransmission queue is always in order, so
1381			 * we can short-circuit the walk early.
1382			 */
1383			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1384				break;
1385
1386			dup_sack = (found_dup_sack && (i == first_sack_index));
1387
1388			/* Due to sorting DSACK may reside within this SACK block! */
1389			if (next_dup) {
1390				u32 dup_start = ntohl(sp->start_seq);
1391				u32 dup_end = ntohl(sp->end_seq);
1392
1393				if (before(TCP_SKB_CB(skb)->seq, dup_end)) {
1394					in_sack = tcp_match_skb_to_sack(sk, skb, dup_start, dup_end);
1395					if (in_sack > 0)
1396						dup_sack = 1;
1397				}
1398			}
1399
1400			/* DSACK info lost if out-of-mem, try SACK still */
1401			if (in_sack <= 0)
1402				in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1403			if (in_sack < 0)
1404				break;
1405
1406			sacked = TCP_SKB_CB(skb)->sacked;
1407
1408			/* Account D-SACK for retransmitted packet. */
1409			if ((dup_sack && in_sack) &&
1410			    (sacked & TCPCB_RETRANS) &&
1411			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1412				tp->undo_retrans--;
1413
1414			/* The frame is ACKed. */
1415			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1416				if (sacked&TCPCB_RETRANS) {
1417					if ((dup_sack && in_sack) &&
1418					    (sacked&TCPCB_SACKED_ACKED))
1419						reord = min(fack_count, reord);
1420				} else {
1421					/* If it was in a hole, we detected reordering. */
1422					if (fack_count < prior_fackets &&
1423					    !(sacked&TCPCB_SACKED_ACKED))
1424						reord = min(fack_count, reord);
1425				}
1426
1427				/* Nothing to do; acked frame is about to be dropped. */
1428				fack_count += tcp_skb_pcount(skb);
1429				continue;
1430			}
1431
1432			if (!in_sack) {
1433				fack_count += tcp_skb_pcount(skb);
1434				continue;
1435			}
1436
1437			if (!(sacked&TCPCB_SACKED_ACKED)) {
1438				if (sacked & TCPCB_SACKED_RETRANS) {
1439					/* If the segment is not tagged as lost,
1440					 * we do not clear RETRANS, believing
1441					 * that retransmission is still in flight.
1442					 */
1443					if (sacked & TCPCB_LOST) {
1444						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1445						tp->lost_out -= tcp_skb_pcount(skb);
1446						tp->retrans_out -= tcp_skb_pcount(skb);
1447
1448						/* clear lost hint */
1449						tp->retransmit_skb_hint = NULL;
1450					}
1451				} else {
1452					/* New sack for not retransmitted frame,
1453					 * which was in hole. It is reordering.
1454					 */
1455					if (!(sacked & TCPCB_RETRANS) &&
1456					    fack_count < prior_fackets)
1457						reord = min(fack_count, reord);
1458
1459					if (sacked & TCPCB_LOST) {
1460						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1461						tp->lost_out -= tcp_skb_pcount(skb);
1462
1463						/* clear lost hint */
1464						tp->retransmit_skb_hint = NULL;
1465					}
1466					/* SACK enhanced F-RTO detection.
1467					 * Set flag if and only if non-rexmitted
1468					 * segments below frto_highmark are
1469					 * SACKed (RFC4138; Appendix B).
1470					 * Clearing correct due to in-order walk
1471					 */
1472					if (after(end_seq, tp->frto_highmark)) {
1473						flag &= ~FLAG_ONLY_ORIG_SACKED;
1474					} else {
1475						if (!(sacked & TCPCB_RETRANS))
1476							flag |= FLAG_ONLY_ORIG_SACKED;
1477					}
1478				}
1479
1480				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1481				flag |= FLAG_DATA_SACKED;
1482				tp->sacked_out += tcp_skb_pcount(skb);
1483
1484				fack_count += tcp_skb_pcount(skb);
1485				if (fack_count > tp->fackets_out)
1486					tp->fackets_out = fack_count;
1487
1488				if (after(TCP_SKB_CB(skb)->seq, tp->highest_sack)) {
1489					tp->highest_sack = TCP_SKB_CB(skb)->seq;
1490					highest_sack_end_seq = TCP_SKB_CB(skb)->end_seq;
1491				}
1492			} else {
1493				if (dup_sack && (sacked&TCPCB_RETRANS))
1494					reord = min(fack_count, reord);
1495
1496				fack_count += tcp_skb_pcount(skb);
1497			}
1498
1499			/* D-SACK. We can detect redundant retransmission
1500			 * in S|R and plain R frames and clear it.
1501			 * undo_retrans is decreased above, L|R frames
1502			 * are accounted above as well.
1503			 */
1504			if (dup_sack &&
1505			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1506				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1507				tp->retrans_out -= tcp_skb_pcount(skb);
1508				tp->retransmit_skb_hint = NULL;
1509			}
1510		}
1511	}
1512
1513	if (tp->retrans_out &&
1514	    after(highest_sack_end_seq, tp->lost_retrans_low) &&
1515	    icsk->icsk_ca_state == TCP_CA_Recovery)
1516		flag |= tcp_mark_lost_retrans(sk, highest_sack_end_seq);
1517
1518	tcp_verify_left_out(tp);
1519
1520	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1521	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1522		tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1523
1524#if FASTRETRANS_DEBUG > 0
1525	BUG_TRAP((int)tp->sacked_out >= 0);
1526	BUG_TRAP((int)tp->lost_out >= 0);
1527	BUG_TRAP((int)tp->retrans_out >= 0);
1528	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1529#endif
1530	return flag;
1531}
1532
1533/* If we receive more dupacks than we expected counting segments
1534 * in assumption of absent reordering, interpret this as reordering.
1535 * The only another reason could be bug in receiver TCP.
1536 */
1537static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1538{
1539	struct tcp_sock *tp = tcp_sk(sk);
1540	u32 holes;
1541
1542	holes = max(tp->lost_out, 1U);
1543	holes = min(holes, tp->packets_out);
1544
1545	if ((tp->sacked_out + holes) > tp->packets_out) {
1546		tp->sacked_out = tp->packets_out - holes;
1547		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1548	}
1549}
1550
1551/* Emulate SACKs for SACKless connection: account for a new dupack. */
1552
1553static void tcp_add_reno_sack(struct sock *sk)
1554{
1555	struct tcp_sock *tp = tcp_sk(sk);
1556	tp->sacked_out++;
1557	tcp_check_reno_reordering(sk, 0);
1558	tcp_verify_left_out(tp);
1559}
1560
1561/* Account for ACK, ACKing some data in Reno Recovery phase. */
1562
1563static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1564{
1565	struct tcp_sock *tp = tcp_sk(sk);
1566
1567	if (acked > 0) {
1568		/* One ACK acked hole. The rest eat duplicate ACKs. */
1569		if (acked-1 >= tp->sacked_out)
1570			tp->sacked_out = 0;
1571		else
1572			tp->sacked_out -= acked-1;
1573	}
1574	tcp_check_reno_reordering(sk, acked);
1575	tcp_verify_left_out(tp);
1576}
1577
1578static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1579{
1580	tp->sacked_out = 0;
1581}
1582
1583/* F-RTO can only be used if TCP has never retransmitted anything other than
1584 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1585 */
1586int tcp_use_frto(struct sock *sk)
1587{
1588	const struct tcp_sock *tp = tcp_sk(sk);
1589	struct sk_buff *skb;
1590
1591	if (!sysctl_tcp_frto)
1592		return 0;
1593
1594	if (IsSackFrto())
1595		return 1;
1596
1597	/* Avoid expensive walking of rexmit queue if possible */
1598	if (tp->retrans_out > 1)
1599		return 0;
1600
1601	skb = tcp_write_queue_head(sk);
1602	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1603	tcp_for_write_queue_from(skb, sk) {
1604		if (skb == tcp_send_head(sk))
1605			break;
1606		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1607			return 0;
1608		/* Short-circuit when first non-SACKed skb has been checked */
1609		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1610			break;
1611	}
1612	return 1;
1613}
1614
1615/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1616 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1617 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1618 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1619 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1620 * bits are handled if the Loss state is really to be entered (in
1621 * tcp_enter_frto_loss).
1622 *
1623 * Do like tcp_enter_loss() would; when RTO expires the second time it
1624 * does:
1625 *  "Reduce ssthresh if it has not yet been made inside this window."
1626 */
1627void tcp_enter_frto(struct sock *sk)
1628{
1629	const struct inet_connection_sock *icsk = inet_csk(sk);
1630	struct tcp_sock *tp = tcp_sk(sk);
1631	struct sk_buff *skb;
1632
1633	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1634	    tp->snd_una == tp->high_seq ||
1635	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1636	     !icsk->icsk_retransmits)) {
1637		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1638		/* Our state is too optimistic in ssthresh() call because cwnd
1639		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1640		 * recovery has not yet completed. Pattern would be this: RTO,
1641		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1642		 * up here twice).
1643		 * RFC4138 should be more specific on what to do, even though
1644		 * RTO is quite unlikely to occur after the first Cumulative ACK
1645		 * due to back-off and complexity of triggering events ...
1646		 */
1647		if (tp->frto_counter) {
1648			u32 stored_cwnd;
1649			stored_cwnd = tp->snd_cwnd;
1650			tp->snd_cwnd = 2;
1651			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1652			tp->snd_cwnd = stored_cwnd;
1653		} else {
1654			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1655		}
1656		/* ... in theory, cong.control module could do "any tricks" in
1657		 * ssthresh(), which means that ca_state, lost bits and lost_out
1658		 * counter would have to be faked before the call occurs. We
1659		 * consider that too expensive, unlikely and hacky, so modules
1660		 * using these in ssthresh() must deal these incompatibility
1661		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1662		 */
1663		tcp_ca_event(sk, CA_EVENT_FRTO);
1664	}
1665
1666	tp->undo_marker = tp->snd_una;
1667	tp->undo_retrans = 0;
1668
1669	skb = tcp_write_queue_head(sk);
1670	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1671		tp->undo_marker = 0;
1672	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1673		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1674		tp->retrans_out -= tcp_skb_pcount(skb);
1675	}
1676	tcp_verify_left_out(tp);
1677
1678	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1679	 * The last condition is necessary at least in tp->frto_counter case.
1680	 */
1681	if (IsSackFrto() && (tp->frto_counter ||
1682	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1683	    after(tp->high_seq, tp->snd_una)) {
1684		tp->frto_highmark = tp->high_seq;
1685	} else {
1686		tp->frto_highmark = tp->snd_nxt;
1687	}
1688	tcp_set_ca_state(sk, TCP_CA_Disorder);
1689	tp->high_seq = tp->snd_nxt;
1690	tp->frto_counter = 1;
1691}
1692
1693/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1694 * which indicates that we should follow the traditional RTO recovery,
1695 * i.e. mark everything lost and do go-back-N retransmission.
1696 */
1697static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1698{
1699	struct tcp_sock *tp = tcp_sk(sk);
1700	struct sk_buff *skb;
1701
1702	tp->lost_out = 0;
1703	tp->retrans_out = 0;
1704	if (tcp_is_reno(tp))
1705		tcp_reset_reno_sack(tp);
1706
1707	tcp_for_write_queue(skb, sk) {
1708		if (skb == tcp_send_head(sk))
1709			break;
1710		/*
1711		 * Count the retransmission made on RTO correctly (only when
1712		 * waiting for the first ACK and did not get it)...
1713		 */
1714		if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1715			/* For some reason this R-bit might get cleared? */
1716			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1717				tp->retrans_out += tcp_skb_pcount(skb);
1718			/* ...enter this if branch just for the first segment */
1719			flag |= FLAG_DATA_ACKED;
1720		} else {
1721			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1722				tp->undo_marker = 0;
1723			TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1724		}
1725
1726		/* Don't lost mark skbs that were fwd transmitted after RTO */
1727		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1728		    !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1729			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1730			tp->lost_out += tcp_skb_pcount(skb);
1731		}
1732	}
1733	tcp_verify_left_out(tp);
1734
1735	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1736	tp->snd_cwnd_cnt = 0;
1737	tp->snd_cwnd_stamp = tcp_time_stamp;
1738	tp->frto_counter = 0;
1739	tp->bytes_acked = 0;
1740
1741	tp->reordering = min_t(unsigned int, tp->reordering,
1742					     sysctl_tcp_reordering);
1743	tcp_set_ca_state(sk, TCP_CA_Loss);
1744	tp->high_seq = tp->frto_highmark;
1745	TCP_ECN_queue_cwr(tp);
1746
1747	tcp_clear_retrans_hints_partial(tp);
1748}
1749
1750static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1751{
1752	tp->retrans_out = 0;
1753	tp->lost_out = 0;
1754
1755	tp->undo_marker = 0;
1756	tp->undo_retrans = 0;
1757}
1758
1759void tcp_clear_retrans(struct tcp_sock *tp)
1760{
1761	tcp_clear_retrans_partial(tp);
1762
1763	tp->fackets_out = 0;
1764	tp->sacked_out = 0;
1765}
1766
1767/* Enter Loss state. If "how" is not zero, forget all SACK information
1768 * and reset tags completely, otherwise preserve SACKs. If receiver
1769 * dropped its ofo queue, we will know this due to reneging detection.
1770 */
1771void tcp_enter_loss(struct sock *sk, int how)
1772{
1773	const struct inet_connection_sock *icsk = inet_csk(sk);
1774	struct tcp_sock *tp = tcp_sk(sk);
1775	struct sk_buff *skb;
1776
1777	/* Reduce ssthresh if it has not yet been made inside this window. */
1778	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1779	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1780		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1781		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1782		tcp_ca_event(sk, CA_EVENT_LOSS);
1783	}
1784	tp->snd_cwnd	   = 1;
1785	tp->snd_cwnd_cnt   = 0;
1786	tp->snd_cwnd_stamp = tcp_time_stamp;
1787
1788	tp->bytes_acked = 0;
1789	tcp_clear_retrans_partial(tp);
1790
1791	if (tcp_is_reno(tp))
1792		tcp_reset_reno_sack(tp);
1793
1794	if (!how) {
1795		/* Push undo marker, if it was plain RTO and nothing
1796		 * was retransmitted. */
1797		tp->undo_marker = tp->snd_una;
1798		tcp_clear_retrans_hints_partial(tp);
1799	} else {
1800		tp->sacked_out = 0;
1801		tp->fackets_out = 0;
1802		tcp_clear_all_retrans_hints(tp);
1803	}
1804
1805	tcp_for_write_queue(skb, sk) {
1806		if (skb == tcp_send_head(sk))
1807			break;
1808
1809		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1810			tp->undo_marker = 0;
1811		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1812		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1813			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1814			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1815			tp->lost_out += tcp_skb_pcount(skb);
1816		}
1817	}
1818	tcp_verify_left_out(tp);
1819
1820	tp->reordering = min_t(unsigned int, tp->reordering,
1821					     sysctl_tcp_reordering);
1822	tcp_set_ca_state(sk, TCP_CA_Loss);
1823	tp->high_seq = tp->snd_nxt;
1824	TCP_ECN_queue_cwr(tp);
1825	/* Abort F-RTO algorithm if one is in progress */
1826	tp->frto_counter = 0;
1827}
1828
1829static int tcp_check_sack_reneging(struct sock *sk)
1830{
1831	struct sk_buff *skb;
1832
1833	/* If ACK arrived pointing to a remembered SACK,
1834	 * it means that our remembered SACKs do not reflect
1835	 * real state of receiver i.e.
1836	 * receiver _host_ is heavily congested (or buggy).
1837	 * Do processing similar to RTO timeout.
1838	 */
1839	if ((skb = tcp_write_queue_head(sk)) != NULL &&
1840	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1841		struct inet_connection_sock *icsk = inet_csk(sk);
1842		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1843
1844		tcp_enter_loss(sk, 1);
1845		icsk->icsk_retransmits++;
1846		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1847		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1848					  icsk->icsk_rto, TCP_RTO_MAX);
1849		return 1;
1850	}
1851	return 0;
1852}
1853
1854static inline int tcp_fackets_out(struct tcp_sock *tp)
1855{
1856	return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1857}
1858
1859static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1860{
1861	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1862}
1863
1864static inline int tcp_head_timedout(struct sock *sk)
1865{
1866	struct tcp_sock *tp = tcp_sk(sk);
1867
1868	return tp->packets_out &&
1869	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1870}
1871
1872/* Linux NewReno/SACK/FACK/ECN state machine.
1873 * --------------------------------------
1874 *
1875 * "Open"	Normal state, no dubious events, fast path.
1876 * "Disorder"   In all the respects it is "Open",
1877 *		but requires a bit more attention. It is entered when
1878 *		we see some SACKs or dupacks. It is split of "Open"
1879 *		mainly to move some processing from fast path to slow one.
1880 * "CWR"	CWND was reduced due to some Congestion Notification event.
1881 *		It can be ECN, ICMP source quench, local device congestion.
1882 * "Recovery"	CWND was reduced, we are fast-retransmitting.
1883 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1884 *
1885 * tcp_fastretrans_alert() is entered:
1886 * - each incoming ACK, if state is not "Open"
1887 * - when arrived ACK is unusual, namely:
1888 *	* SACK
1889 *	* Duplicate ACK.
1890 *	* ECN ECE.
1891 *
1892 * Counting packets in flight is pretty simple.
1893 *
1894 *	in_flight = packets_out - left_out + retrans_out
1895 *
1896 *	packets_out is SND.NXT-SND.UNA counted in packets.
1897 *
1898 *	retrans_out is number of retransmitted segments.
1899 *
1900 *	left_out is number of segments left network, but not ACKed yet.
1901 *
1902 *		left_out = sacked_out + lost_out
1903 *
1904 *     sacked_out: Packets, which arrived to receiver out of order
1905 *		   and hence not ACKed. With SACKs this number is simply
1906 *		   amount of SACKed data. Even without SACKs
1907 *		   it is easy to give pretty reliable estimate of this number,
1908 *		   counting duplicate ACKs.
1909 *
1910 *       lost_out: Packets lost by network. TCP has no explicit
1911 *		   "loss notification" feedback from network (for now).
1912 *		   It means that this number can be only _guessed_.
1913 *		   Actually, it is the heuristics to predict lossage that
1914 *		   distinguishes different algorithms.
1915 *
1916 *	F.e. after RTO, when all the queue is considered as lost,
1917 *	lost_out = packets_out and in_flight = retrans_out.
1918 *
1919 *		Essentially, we have now two algorithms counting
1920 *		lost packets.
1921 *
1922 *		FACK: It is the simplest heuristics. As soon as we decided
1923 *		that something is lost, we decide that _all_ not SACKed
1924 *		packets until the most forward SACK are lost. I.e.
1925 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1926 *		It is absolutely correct estimate, if network does not reorder
1927 *		packets. And it loses any connection to reality when reordering
1928 *		takes place. We use FACK by default until reordering
1929 *		is suspected on the path to this destination.
1930 *
1931 *		NewReno: when Recovery is entered, we assume that one segment
1932 *		is lost (classic Reno). While we are in Recovery and
1933 *		a partial ACK arrives, we assume that one more packet
1934 *		is lost (NewReno). This heuristics are the same in NewReno
1935 *		and SACK.
1936 *
1937 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1938 *  deflation etc. CWND is real congestion window, never inflated, changes
1939 *  only according to classic VJ rules.
1940 *
1941 * Really tricky (and requiring careful tuning) part of algorithm
1942 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1943 * The first determines the moment _when_ we should reduce CWND and,
1944 * hence, slow down forward transmission. In fact, it determines the moment
1945 * when we decide that hole is caused by loss, rather than by a reorder.
1946 *
1947 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1948 * holes, caused by lost packets.
1949 *
1950 * And the most logically complicated part of algorithm is undo
1951 * heuristics. We detect false retransmits due to both too early
1952 * fast retransmit (reordering) and underestimated RTO, analyzing
1953 * timestamps and D-SACKs. When we detect that some segments were
1954 * retransmitted by mistake and CWND reduction was wrong, we undo
1955 * window reduction and abort recovery phase. This logic is hidden
1956 * inside several functions named tcp_try_undo_<something>.
1957 */
1958
1959/* This function decides, when we should leave Disordered state
1960 * and enter Recovery phase, reducing congestion window.
1961 *
1962 * Main question: may we further continue forward transmission
1963 * with the same cwnd?
1964 */
1965static int tcp_time_to_recover(struct sock *sk)
1966{
1967	struct tcp_sock *tp = tcp_sk(sk);
1968	__u32 packets_out;
1969
1970	/* Do not perform any recovery during F-RTO algorithm */
1971	if (tp->frto_counter)
1972		return 0;
1973
1974	/* Trick#1: The loss is proven. */
1975	if (tp->lost_out)
1976		return 1;
1977
1978	/* Not-A-Trick#2 : Classic rule... */
1979	if (tcp_fackets_out(tp) > tp->reordering)
1980		return 1;
1981
1982	/* Trick#3 : when we use RFC2988 timer restart, fast
1983	 * retransmit can be triggered by timeout of queue head.
1984	 */
1985	if (tcp_head_timedout(sk))
1986		return 1;
1987
1988	/* Trick#4: It is still not OK... But will it be useful to delay
1989	 * recovery more?
1990	 */
1991	packets_out = tp->packets_out;
1992	if (packets_out <= tp->reordering &&
1993	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1994	    !tcp_may_send_now(sk)) {
1995		/* We have nothing to send. This connection is limited
1996		 * either by receiver window or by application.
1997		 */
1998		return 1;
1999	}
2000
2001	return 0;
2002}
2003
2004/* RFC: This is from the original, I doubt that this is necessary at all:
2005 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2006 * retransmitted past LOST markings in the first place? I'm not fully sure
2007 * about undo and end of connection cases, which can cause R without L?
2008 */
2009static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2010				       struct sk_buff *skb)
2011{
2012	if ((tp->retransmit_skb_hint != NULL) &&
2013	    before(TCP_SKB_CB(skb)->seq,
2014	    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2015		tp->retransmit_skb_hint = NULL;
2016}
2017
2018/* Mark head of queue up as lost. */
2019static void tcp_mark_head_lost(struct sock *sk, int packets)
2020{
2021	struct tcp_sock *tp = tcp_sk(sk);
2022	struct sk_buff *skb;
2023	int cnt;
2024
2025	BUG_TRAP(packets <= tp->packets_out);
2026	if (tp->lost_skb_hint) {
2027		skb = tp->lost_skb_hint;
2028		cnt = tp->lost_cnt_hint;
2029	} else {
2030		skb = tcp_write_queue_head(sk);
2031		cnt = 0;
2032	}
2033
2034	tcp_for_write_queue_from(skb, sk) {
2035		if (skb == tcp_send_head(sk))
2036			break;
2037		/* TODO: do this better */
2038		/* this is not the most efficient way to do this... */
2039		tp->lost_skb_hint = skb;
2040		tp->lost_cnt_hint = cnt;
2041		cnt += tcp_skb_pcount(skb);
2042		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2043			break;
2044		if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2045			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2046			tp->lost_out += tcp_skb_pcount(skb);
2047			tcp_verify_retransmit_hint(tp, skb);
2048		}
2049	}
2050	tcp_verify_left_out(tp);
2051}
2052
2053/* Account newly detected lost packet(s) */
2054
2055static void tcp_update_scoreboard(struct sock *sk)
2056{
2057	struct tcp_sock *tp = tcp_sk(sk);
2058
2059	if (tcp_is_fack(tp)) {
2060		int lost = tp->fackets_out - tp->reordering;
2061		if (lost <= 0)
2062			lost = 1;
2063		tcp_mark_head_lost(sk, lost);
2064	} else {
2065		tcp_mark_head_lost(sk, 1);
2066	}
2067
2068	/* New heuristics: it is possible only after we switched
2069	 * to restart timer each time when something is ACKed.
2070	 * Hence, we can detect timed out packets during fast
2071	 * retransmit without falling to slow start.
2072	 */
2073	if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
2074		struct sk_buff *skb;
2075
2076		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2077			: tcp_write_queue_head(sk);
2078
2079		tcp_for_write_queue_from(skb, sk) {
2080			if (skb == tcp_send_head(sk))
2081				break;
2082			if (!tcp_skb_timedout(sk, skb))
2083				break;
2084
2085			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2086				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2087				tp->lost_out += tcp_skb_pcount(skb);
2088				tcp_verify_retransmit_hint(tp, skb);
2089			}
2090		}
2091
2092		tp->scoreboard_skb_hint = skb;
2093
2094		tcp_verify_left_out(tp);
2095	}
2096}
2097
2098/* CWND moderation, preventing bursts due to too big ACKs
2099 * in dubious situations.
2100 */
2101static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2102{
2103	tp->snd_cwnd = min(tp->snd_cwnd,
2104			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2105	tp->snd_cwnd_stamp = tcp_time_stamp;
2106}
2107
2108/* Lower bound on congestion window is slow start threshold
2109 * unless congestion avoidance choice decides to overide it.
2110 */
2111static inline u32 tcp_cwnd_min(const struct sock *sk)
2112{
2113	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2114
2115	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2116}
2117
2118/* Decrease cwnd each second ack. */
2119static void tcp_cwnd_down(struct sock *sk, int flag)
2120{
2121	struct tcp_sock *tp = tcp_sk(sk);
2122	int decr = tp->snd_cwnd_cnt + 1;
2123
2124	if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2125	    (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2126		tp->snd_cwnd_cnt = decr&1;
2127		decr >>= 1;
2128
2129		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2130			tp->snd_cwnd -= decr;
2131
2132		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2133		tp->snd_cwnd_stamp = tcp_time_stamp;
2134	}
2135}
2136
2137/* Nothing was retransmitted or returned timestamp is less
2138 * than timestamp of the first retransmission.
2139 */
2140static inline int tcp_packet_delayed(struct tcp_sock *tp)
2141{
2142	return !tp->retrans_stamp ||
2143		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2144		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2145}
2146
2147/* Undo procedures. */
2148
2149#if FASTRETRANS_DEBUG > 1
2150static void DBGUNDO(struct sock *sk, const char *msg)
2151{
2152	struct tcp_sock *tp = tcp_sk(sk);
2153	struct inet_sock *inet = inet_sk(sk);
2154
2155	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2156	       msg,
2157	       NIPQUAD(inet->daddr), ntohs(inet->dport),
2158	       tp->snd_cwnd, tcp_left_out(tp),
2159	       tp->snd_ssthresh, tp->prior_ssthresh,
2160	       tp->packets_out);
2161}
2162#else
2163#define DBGUNDO(x...) do { } while (0)
2164#endif
2165
2166static void tcp_undo_cwr(struct sock *sk, const int undo)
2167{
2168	struct tcp_sock *tp = tcp_sk(sk);
2169
2170	if (tp->prior_ssthresh) {
2171		const struct inet_connection_sock *icsk = inet_csk(sk);
2172
2173		if (icsk->icsk_ca_ops->undo_cwnd)
2174			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2175		else
2176			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2177
2178		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2179			tp->snd_ssthresh = tp->prior_ssthresh;
2180			TCP_ECN_withdraw_cwr(tp);
2181		}
2182	} else {
2183		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2184	}
2185	tcp_moderate_cwnd(tp);
2186	tp->snd_cwnd_stamp = tcp_time_stamp;
2187
2188	/* There is something screwy going on with the retrans hints after
2189	   an undo */
2190	tcp_clear_all_retrans_hints(tp);
2191}
2192
2193static inline int tcp_may_undo(struct tcp_sock *tp)
2194{
2195	return tp->undo_marker &&
2196		(!tp->undo_retrans || tcp_packet_delayed(tp));
2197}
2198
2199/* People celebrate: "We love our President!" */
2200static int tcp_try_undo_recovery(struct sock *sk)
2201{
2202	struct tcp_sock *tp = tcp_sk(sk);
2203
2204	if (tcp_may_undo(tp)) {
2205		/* Happy end! We did not retransmit anything
2206		 * or our original transmission succeeded.
2207		 */
2208		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2209		tcp_undo_cwr(sk, 1);
2210		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2211			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2212		else
2213			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2214		tp->undo_marker = 0;
2215	}
2216	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2217		/* Hold old state until something *above* high_seq
2218		 * is ACKed. For Reno it is MUST to prevent false
2219		 * fast retransmits (RFC2582). SACK TCP is safe. */
2220		tcp_moderate_cwnd(tp);
2221		return 1;
2222	}
2223	tcp_set_ca_state(sk, TCP_CA_Open);
2224	return 0;
2225}
2226
2227/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2228static void tcp_try_undo_dsack(struct sock *sk)
2229{
2230	struct tcp_sock *tp = tcp_sk(sk);
2231
2232	if (tp->undo_marker && !tp->undo_retrans) {
2233		DBGUNDO(sk, "D-SACK");
2234		tcp_undo_cwr(sk, 1);
2235		tp->undo_marker = 0;
2236		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2237	}
2238}
2239
2240/* Undo during fast recovery after partial ACK. */
2241
2242static int tcp_try_undo_partial(struct sock *sk, int acked)
2243{
2244	struct tcp_sock *tp = tcp_sk(sk);
2245	/* Partial ACK arrived. Force Hoe's retransmit. */
2246	int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
2247
2248	if (tcp_may_undo(tp)) {
2249		/* Plain luck! Hole if filled with delayed
2250		 * packet, rather than with a retransmit.
2251		 */
2252		if (tp->retrans_out == 0)
2253			tp->retrans_stamp = 0;
2254
2255		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2256
2257		DBGUNDO(sk, "Hoe");
2258		tcp_undo_cwr(sk, 0);
2259		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2260
2261		/* So... Do not make Hoe's retransmit yet.
2262		 * If the first packet was delayed, the rest
2263		 * ones are most probably delayed as well.
2264		 */
2265		failed = 0;
2266	}
2267	return failed;
2268}
2269
2270/* Undo during loss recovery after partial ACK. */
2271static int tcp_try_undo_loss(struct sock *sk)
2272{
2273	struct tcp_sock *tp = tcp_sk(sk);
2274
2275	if (tcp_may_undo(tp)) {
2276		struct sk_buff *skb;
2277		tcp_for_write_queue(skb, sk) {
2278			if (skb == tcp_send_head(sk))
2279				break;
2280			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2281		}
2282
2283		tcp_clear_all_retrans_hints(tp);
2284
2285		DBGUNDO(sk, "partial loss");
2286		tp->lost_out = 0;
2287		tcp_undo_cwr(sk, 1);
2288		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2289		inet_csk(sk)->icsk_retransmits = 0;
2290		tp->undo_marker = 0;
2291		if (tcp_is_sack(tp))
2292			tcp_set_ca_state(sk, TCP_CA_Open);
2293		return 1;
2294	}
2295	return 0;
2296}
2297
2298static inline void tcp_complete_cwr(struct sock *sk)
2299{
2300	struct tcp_sock *tp = tcp_sk(sk);
2301	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2302	tp->snd_cwnd_stamp = tcp_time_stamp;
2303	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2304}
2305
2306static void tcp_try_to_open(struct sock *sk, int flag)
2307{
2308	struct tcp_sock *tp = tcp_sk(sk);
2309
2310	tcp_verify_left_out(tp);
2311
2312	if (tp->retrans_out == 0)
2313		tp->retrans_stamp = 0;
2314
2315	if (flag&FLAG_ECE)
2316		tcp_enter_cwr(sk, 1);
2317
2318	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2319		int state = TCP_CA_Open;
2320
2321		if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2322			state = TCP_CA_Disorder;
2323
2324		if (inet_csk(sk)->icsk_ca_state != state) {
2325			tcp_set_ca_state(sk, state);
2326			tp->high_seq = tp->snd_nxt;
2327		}
2328		tcp_moderate_cwnd(tp);
2329	} else {
2330		tcp_cwnd_down(sk, flag);
2331	}
2332}
2333
2334static void tcp_mtup_probe_failed(struct sock *sk)
2335{
2336	struct inet_connection_sock *icsk = inet_csk(sk);
2337
2338	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2339	icsk->icsk_mtup.probe_size = 0;
2340}
2341
2342static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2343{
2344	struct tcp_sock *tp = tcp_sk(sk);
2345	struct inet_connection_sock *icsk = inet_csk(sk);
2346
2347	/* FIXME: breaks with very large cwnd */
2348	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2349	tp->snd_cwnd = tp->snd_cwnd *
2350		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2351		       icsk->icsk_mtup.probe_size;
2352	tp->snd_cwnd_cnt = 0;
2353	tp->snd_cwnd_stamp = tcp_time_stamp;
2354	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2355
2356	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2357	icsk->icsk_mtup.probe_size = 0;
2358	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2359}
2360
2361
2362/* Process an event, which can update packets-in-flight not trivially.
2363 * Main goal of this function is to calculate new estimate for left_out,
2364 * taking into account both packets sitting in receiver's buffer and
2365 * packets lost by network.
2366 *
2367 * Besides that it does CWND reduction, when packet loss is detected
2368 * and changes state of machine.
2369 *
2370 * It does _not_ decide what to send, it is made in function
2371 * tcp_xmit_retransmit_queue().
2372 */
2373static void
2374tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2375{
2376	struct inet_connection_sock *icsk = inet_csk(sk);
2377	struct tcp_sock *tp = tcp_sk(sk);
2378	int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2379	int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2380				    (tp->fackets_out > tp->reordering));
2381
2382	/* Some technical things:
2383	 * 1. Reno does not count dupacks (sacked_out) automatically. */
2384	if (!tp->packets_out)
2385		tp->sacked_out = 0;
2386
2387	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2388		tp->fackets_out = 0;
2389
2390	/* Now state machine starts.
2391	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2392	if (flag&FLAG_ECE)
2393		tp->prior_ssthresh = 0;
2394
2395	/* B. In all the states check for reneging SACKs. */
2396	if (tp->sacked_out && tcp_check_sack_reneging(sk))
2397		return;
2398
2399	/* C. Process data loss notification, provided it is valid. */
2400	if ((flag&FLAG_DATA_LOST) &&
2401	    before(tp->snd_una, tp->high_seq) &&
2402	    icsk->icsk_ca_state != TCP_CA_Open &&
2403	    tp->fackets_out > tp->reordering) {
2404		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2405		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2406	}
2407
2408	/* D. Check consistency of the current state. */
2409	tcp_verify_left_out(tp);
2410
2411	/* E. Check state exit conditions. State can be terminated
2412	 *    when high_seq is ACKed. */
2413	if (icsk->icsk_ca_state == TCP_CA_Open) {
2414		BUG_TRAP(tp->retrans_out == 0);
2415		tp->retrans_stamp = 0;
2416	} else if (!before(tp->snd_una, tp->high_seq)) {
2417		switch (icsk->icsk_ca_state) {
2418		case TCP_CA_Loss:
2419			icsk->icsk_retransmits = 0;
2420			if (tcp_try_undo_recovery(sk))
2421				return;
2422			break;
2423
2424		case TCP_CA_CWR:
2425			/* CWR is to be held something *above* high_seq
2426			 * is ACKed for CWR bit to reach receiver. */
2427			if (tp->snd_una != tp->high_seq) {
2428				tcp_complete_cwr(sk);
2429				tcp_set_ca_state(sk, TCP_CA_Open);
2430			}
2431			break;
2432
2433		case TCP_CA_Disorder:
2434			tcp_try_undo_dsack(sk);
2435			if (!tp->undo_marker ||
2436			    /* For SACK case do not Open to allow to undo
2437			     * catching for all duplicate ACKs. */
2438			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2439				tp->undo_marker = 0;
2440				tcp_set_ca_state(sk, TCP_CA_Open);
2441			}
2442			break;
2443
2444		case TCP_CA_Recovery:
2445			if (tcp_is_reno(tp))
2446				tcp_reset_reno_sack(tp);
2447			if (tcp_try_undo_recovery(sk))
2448				return;
2449			tcp_complete_cwr(sk);
2450			break;
2451		}
2452	}
2453
2454	/* F. Process state. */
2455	switch (icsk->icsk_ca_state) {
2456	case TCP_CA_Recovery:
2457		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2458			if (tcp_is_reno(tp) && is_dupack)
2459				tcp_add_reno_sack(sk);
2460		} else
2461			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2462		break;
2463	case TCP_CA_Loss:
2464		if (flag&FLAG_DATA_ACKED)
2465			icsk->icsk_retransmits = 0;
2466		if (!tcp_try_undo_loss(sk)) {
2467			tcp_moderate_cwnd(tp);
2468			tcp_xmit_retransmit_queue(sk);
2469			return;
2470		}
2471		if (icsk->icsk_ca_state != TCP_CA_Open)
2472			return;
2473		/* Loss is undone; fall through to processing in Open state. */
2474	default:
2475		if (tcp_is_reno(tp)) {
2476			if (flag & FLAG_SND_UNA_ADVANCED)
2477				tcp_reset_reno_sack(tp);
2478			if (is_dupack)
2479				tcp_add_reno_sack(sk);
2480		}
2481
2482		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2483			tcp_try_undo_dsack(sk);
2484
2485		if (!tcp_time_to_recover(sk)) {
2486			tcp_try_to_open(sk, flag);
2487			return;
2488		}
2489
2490		/* MTU probe failure: don't reduce cwnd */
2491		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2492		    icsk->icsk_mtup.probe_size &&
2493		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2494			tcp_mtup_probe_failed(sk);
2495			/* Restores the reduction we did in tcp_mtup_probe() */
2496			tp->snd_cwnd++;
2497			tcp_simple_retransmit(sk);
2498			return;
2499		}
2500
2501		/* Otherwise enter Recovery state */
2502
2503		if (tcp_is_reno(tp))
2504			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2505		else
2506			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2507
2508		tp->high_seq = tp->snd_nxt;
2509		tp->prior_ssthresh = 0;
2510		tp->undo_marker = tp->snd_una;
2511		tp->undo_retrans = tp->retrans_out;
2512
2513		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2514			if (!(flag&FLAG_ECE))
2515				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2516			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2517			TCP_ECN_queue_cwr(tp);
2518		}
2519
2520		tp->bytes_acked = 0;
2521		tp->snd_cwnd_cnt = 0;
2522		tcp_set_ca_state(sk, TCP_CA_Recovery);
2523	}
2524
2525	if (do_lost || tcp_head_timedout(sk))
2526		tcp_update_scoreboard(sk);
2527	tcp_cwnd_down(sk, flag);
2528	tcp_xmit_retransmit_queue(sk);
2529}
2530
2531/* Read draft-ietf-tcplw-high-performance before mucking
2532 * with this code. (Supersedes RFC1323)
2533 */
2534static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2535{
2536	/* RTTM Rule: A TSecr value received in a segment is used to
2537	 * update the averaged RTT measurement only if the segment
2538	 * acknowledges some new data, i.e., only if it advances the
2539	 * left edge of the send window.
2540	 *
2541	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2542	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2543	 *
2544	 * Changed: reset backoff as soon as we see the first valid sample.
2545	 * If we do not, we get strongly overestimated rto. With timestamps
2546	 * samples are accepted even from very old segments: f.e., when rtt=1
2547	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2548	 * answer arrives rto becomes 120 seconds! If at least one of segments
2549	 * in window is lost... Voila.	 			--ANK (010210)
2550	 */
2551	struct tcp_sock *tp = tcp_sk(sk);
2552	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2553	tcp_rtt_estimator(sk, seq_rtt);
2554	tcp_set_rto(sk);
2555	inet_csk(sk)->icsk_backoff = 0;
2556	tcp_bound_rto(sk);
2557}
2558
2559static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2560{
2561	/* We don't have a timestamp. Can only use
2562	 * packets that are not retransmitted to determine
2563	 * rtt estimates. Also, we must not reset the
2564	 * backoff for rto until we get a non-retransmitted
2565	 * packet. This allows us to deal with a situation
2566	 * where the network delay has increased suddenly.
2567	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2568	 */
2569
2570	if (flag & FLAG_RETRANS_DATA_ACKED)
2571		return;
2572
2573	tcp_rtt_estimator(sk, seq_rtt);
2574	tcp_set_rto(sk);
2575	inet_csk(sk)->icsk_backoff = 0;
2576	tcp_bound_rto(sk);
2577}
2578
2579static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2580				      const s32 seq_rtt)
2581{
2582	const struct tcp_sock *tp = tcp_sk(sk);
2583	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2584	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2585		tcp_ack_saw_tstamp(sk, flag);
2586	else if (seq_rtt >= 0)
2587		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2588}
2589
2590static void tcp_cong_avoid(struct sock *sk, u32 ack,
2591			   u32 in_flight, int good)
2592{
2593	const struct inet_connection_sock *icsk = inet_csk(sk);
2594	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2595	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2596}
2597
2598/* Restart timer after forward progress on connection.
2599 * RFC2988 recommends to restart timer to now+rto.
2600 */
2601static void tcp_rearm_rto(struct sock *sk)
2602{
2603	struct tcp_sock *tp = tcp_sk(sk);
2604
2605	if (!tp->packets_out) {
2606		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2607	} else {
2608		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2609	}
2610}
2611
2612/* If we get here, the whole TSO packet has not been acked. */
2613static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2614{
2615	struct tcp_sock *tp = tcp_sk(sk);
2616	u32 packets_acked;
2617
2618	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2619
2620	packets_acked = tcp_skb_pcount(skb);
2621	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2622		return 0;
2623	packets_acked -= tcp_skb_pcount(skb);
2624
2625	if (packets_acked) {
2626		BUG_ON(tcp_skb_pcount(skb) == 0);
2627		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2628	}
2629
2630	return packets_acked;
2631}
2632
2633/* Remove acknowledged frames from the retransmission queue. If our packet
2634 * is before the ack sequence we can discard it as it's confirmed to have
2635 * arrived at the other end.
2636 */
2637static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
2638{
2639	struct tcp_sock *tp = tcp_sk(sk);
2640	const struct inet_connection_sock *icsk = inet_csk(sk);
2641	struct sk_buff *skb;
2642	u32 now = tcp_time_stamp;
2643	int fully_acked = 1;
2644	int flag = 0;
2645	int prior_packets = tp->packets_out;
2646	s32 seq_rtt = -1;
2647	ktime_t last_ackt = net_invalid_timestamp();
2648
2649	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2650		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2651		u32 end_seq;
2652		u32 packets_acked;
2653		u8 sacked = scb->sacked;
2654
2655		if (after(scb->end_seq, tp->snd_una)) {
2656			if (tcp_skb_pcount(skb) == 1 ||
2657			    !after(tp->snd_una, scb->seq))
2658				break;
2659
2660			packets_acked = tcp_tso_acked(sk, skb);
2661			if (!packets_acked)
2662				break;
2663
2664			fully_acked = 0;
2665			end_seq = tp->snd_una;
2666		} else {
2667			packets_acked = tcp_skb_pcount(skb);
2668			end_seq = scb->end_seq;
2669		}
2670
2671		/* MTU probing checks */
2672		if (fully_acked && icsk->icsk_mtup.probe_size &&
2673		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2674			tcp_mtup_probe_success(sk, skb);
2675		}
2676
2677		if (sacked) {
2678			if (sacked & TCPCB_RETRANS) {
2679				if (sacked & TCPCB_SACKED_RETRANS)
2680					tp->retrans_out -= packets_acked;
2681				flag |= FLAG_RETRANS_DATA_ACKED;
2682				seq_rtt = -1;
2683				if ((flag & FLAG_DATA_ACKED) ||
2684				    (packets_acked > 1))
2685					flag |= FLAG_NONHEAD_RETRANS_ACKED;
2686			} else if (seq_rtt < 0) {
2687				seq_rtt = now - scb->when;
2688				if (fully_acked)
2689					last_ackt = skb->tstamp;
2690			}
2691
2692			if (sacked & TCPCB_SACKED_ACKED)
2693				tp->sacked_out -= packets_acked;
2694			if (sacked & TCPCB_LOST)
2695				tp->lost_out -= packets_acked;
2696
2697			if ((sacked & TCPCB_URG) && tp->urg_mode &&
2698			    !before(end_seq, tp->snd_up))
2699				tp->urg_mode = 0;
2700		} else if (seq_rtt < 0) {
2701			seq_rtt = now - scb->when;
2702			if (fully_acked)
2703				last_ackt = skb->tstamp;
2704		}
2705		tp->packets_out -= packets_acked;
2706
2707		/* Initial outgoing SYN's get put onto the write_queue
2708		 * just like anything else we transmit.  It is not
2709		 * true data, and if we misinform our callers that
2710		 * this ACK acks real data, we will erroneously exit
2711		 * connection startup slow start one packet too
2712		 * quickly.  This is severely frowned upon behavior.
2713		 */
2714		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2715			flag |= FLAG_DATA_ACKED;
2716		} else {
2717			flag |= FLAG_SYN_ACKED;
2718			tp->retrans_stamp = 0;
2719		}
2720
2721		if (!fully_acked)
2722			break;
2723
2724		tcp_unlink_write_queue(skb, sk);
2725		sk_stream_free_skb(sk, skb);
2726		tcp_clear_all_retrans_hints(tp);
2727	}
2728
2729	if (flag & FLAG_ACKED) {
2730		u32 pkts_acked = prior_packets - tp->packets_out;
2731		const struct tcp_congestion_ops *ca_ops
2732			= inet_csk(sk)->icsk_ca_ops;
2733
2734		tcp_ack_update_rtt(sk, flag, seq_rtt);
2735		tcp_rearm_rto(sk);
2736
2737		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2738		/* hint's skb might be NULL but we don't need to care */
2739		tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2740					       tp->fastpath_cnt_hint);
2741		if (tcp_is_reno(tp))
2742			tcp_remove_reno_sacks(sk, pkts_acked);
2743
2744		if (ca_ops->pkts_acked) {
2745			s32 rtt_us = -1;
2746
2747			/* Is the ACK triggering packet unambiguous? */
2748			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2749				/* High resolution needed and available? */
2750				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2751				    !ktime_equal(last_ackt,
2752						 net_invalid_timestamp()))
2753					rtt_us = ktime_us_delta(ktime_get_real(),
2754								last_ackt);
2755				else if (seq_rtt > 0)
2756					rtt_us = jiffies_to_usecs(seq_rtt);
2757			}
2758
2759			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2760		}
2761	}
2762
2763#if FASTRETRANS_DEBUG > 0
2764	BUG_TRAP((int)tp->sacked_out >= 0);
2765	BUG_TRAP((int)tp->lost_out >= 0);
2766	BUG_TRAP((int)tp->retrans_out >= 0);
2767	if (!tp->packets_out && tcp_is_sack(tp)) {
2768		icsk = inet_csk(sk);
2769		if (tp->lost_out) {
2770			printk(KERN_DEBUG "Leak l=%u %d\n",
2771			       tp->lost_out, icsk->icsk_ca_state);
2772			tp->lost_out = 0;
2773		}
2774		if (tp->sacked_out) {
2775			printk(KERN_DEBUG "Leak s=%u %d\n",
2776			       tp->sacked_out, icsk->icsk_ca_state);
2777			tp->sacked_out = 0;
2778		}
2779		if (tp->retrans_out) {
2780			printk(KERN_DEBUG "Leak r=%u %d\n",
2781			       tp->retrans_out, icsk->icsk_ca_state);
2782			tp->retrans_out = 0;
2783		}
2784	}
2785#endif
2786	*seq_rtt_p = seq_rtt;
2787	return flag;
2788}
2789
2790static void tcp_ack_probe(struct sock *sk)
2791{
2792	const struct tcp_sock *tp = tcp_sk(sk);
2793	struct inet_connection_sock *icsk = inet_csk(sk);
2794
2795	/* Was it a usable window open? */
2796
2797	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2798		   tp->snd_una + tp->snd_wnd)) {
2799		icsk->icsk_backoff = 0;
2800		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2801		/* Socket must be waked up by subsequent tcp_data_snd_check().
2802		 * This function is not for random using!
2803		 */
2804	} else {
2805		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2806					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2807					  TCP_RTO_MAX);
2808	}
2809}
2810
2811static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2812{
2813	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2814		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2815}
2816
2817static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2818{
2819	const struct tcp_sock *tp = tcp_sk(sk);
2820	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2821		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2822}
2823
2824/* Check that window update is acceptable.
2825 * The function assumes that snd_una<=ack<=snd_next.
2826 */
2827static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2828					const u32 ack_seq, const u32 nwin)
2829{
2830	return (after(ack, tp->snd_una) ||
2831		after(ack_seq, tp->snd_wl1) ||
2832		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2833}
2834
2835/* Update our send window.
2836 *
2837 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2838 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2839 */
2840static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2841				 u32 ack_seq)
2842{
2843	struct tcp_sock *tp = tcp_sk(sk);
2844	int flag = 0;
2845	u32 nwin = ntohs(tcp_hdr(skb)->window);
2846
2847	if (likely(!tcp_hdr(skb)->syn))
2848		nwin <<= tp->rx_opt.snd_wscale;
2849
2850	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2851		flag |= FLAG_WIN_UPDATE;
2852		tcp_update_wl(tp, ack, ack_seq);
2853
2854		if (tp->snd_wnd != nwin) {
2855			tp->snd_wnd = nwin;
2856
2857			/* Note, it is the only place, where
2858			 * fast path is recovered for sending TCP.
2859			 */
2860			tp->pred_flags = 0;
2861			tcp_fast_path_check(sk);
2862
2863			if (nwin > tp->max_window) {
2864				tp->max_window = nwin;
2865				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2866			}
2867		}
2868	}
2869
2870	tp->snd_una = ack;
2871
2872	return flag;
2873}
2874
2875/* A very conservative spurious RTO response algorithm: reduce cwnd and
2876 * continue in congestion avoidance.
2877 */
2878static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2879{
2880	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2881	tp->snd_cwnd_cnt = 0;
2882	tp->bytes_acked = 0;
2883	TCP_ECN_queue_cwr(tp);
2884	tcp_moderate_cwnd(tp);
2885}
2886
2887/* A conservative spurious RTO response algorithm: reduce cwnd using
2888 * rate halving and continue in congestion avoidance.
2889 */
2890static void tcp_ratehalving_spur_to_response(struct sock *sk)
2891{
2892	tcp_enter_cwr(sk, 0);
2893}
2894
2895static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2896{
2897	if (flag&FLAG_ECE)
2898		tcp_ratehalving_spur_to_response(sk);
2899	else
2900		tcp_undo_cwr(sk, 1);
2901}
2902
2903/* F-RTO spurious RTO detection algorithm (RFC4138)
2904 *
2905 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2906 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2907 * window (but not to or beyond highest sequence sent before RTO):
2908 *   On First ACK,  send two new segments out.
2909 *   On Second ACK, RTO was likely spurious. Do spurious response (response
2910 *                  algorithm is not part of the F-RTO detection algorithm
2911 *                  given in RFC4138 but can be selected separately).
2912 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2913 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2914 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2915 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2916 *
2917 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2918 * original window even after we transmit two new data segments.
2919 *
2920 * SACK version:
2921 *   on first step, wait until first cumulative ACK arrives, then move to
2922 *   the second step. In second step, the next ACK decides.
2923 *
2924 * F-RTO is implemented (mainly) in four functions:
2925 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
2926 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2927 *     called when tcp_use_frto() showed green light
2928 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2929 *   - tcp_enter_frto_loss() is called if there is not enough evidence
2930 *     to prove that the RTO is indeed spurious. It transfers the control
2931 *     from F-RTO to the conventional RTO recovery
2932 */
2933static int tcp_process_frto(struct sock *sk, int flag)
2934{
2935	struct tcp_sock *tp = tcp_sk(sk);
2936
2937	tcp_verify_left_out(tp);
2938
2939	/* Duplicate the behavior from Loss state (fastretrans_alert) */
2940	if (flag&FLAG_DATA_ACKED)
2941		inet_csk(sk)->icsk_retransmits = 0;
2942
2943	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2944	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2945		tp->undo_marker = 0;
2946
2947	if (!before(tp->snd_una, tp->frto_highmark)) {
2948		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2949		return 1;
2950	}
2951
2952	if (!IsSackFrto() || tcp_is_reno(tp)) {
2953		/* RFC4138 shortcoming in step 2; should also have case c):
2954		 * ACK isn't duplicate nor advances window, e.g., opposite dir
2955		 * data, winupdate
2956		 */
2957		if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2958			return 1;
2959
2960		if (!(flag&FLAG_DATA_ACKED)) {
2961			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2962					    flag);
2963			return 1;
2964		}
2965	} else {
2966		if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2967			/* Prevent sending of new data. */
2968			tp->snd_cwnd = min(tp->snd_cwnd,
2969					   tcp_packets_in_flight(tp));
2970			return 1;
2971		}
2972
2973		if ((tp->frto_counter >= 2) &&
2974		    (!(flag&FLAG_FORWARD_PROGRESS) ||
2975		     ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2976			/* RFC4138 shortcoming (see comment above) */
2977			if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2978				return 1;
2979
2980			tcp_enter_frto_loss(sk, 3, flag);
2981			return 1;
2982		}
2983	}
2984
2985	if (tp->frto_counter == 1) {
2986		/* Sending of the next skb must be allowed or no F-RTO */
2987		if (!tcp_send_head(sk) ||
2988		    after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2989				     tp->snd_una + tp->snd_wnd)) {
2990			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2991					    flag);
2992			return 1;
2993		}
2994
2995		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2996		tp->frto_counter = 2;
2997		return 1;
2998	} else {
2999		switch (sysctl_tcp_frto_response) {
3000		case 2:
3001			tcp_undo_spur_to_response(sk, flag);
3002			break;
3003		case 1:
3004			tcp_conservative_spur_to_response(tp);
3005			break;
3006		default:
3007			tcp_ratehalving_spur_to_response(sk);
3008			break;
3009		}
3010		tp->frto_counter = 0;
3011		tp->undo_marker = 0;
3012		NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3013	}
3014	return 0;
3015}
3016
3017/* This routine deals with incoming acks, but not outgoing ones. */
3018static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3019{
3020	struct inet_connection_sock *icsk = inet_csk(sk);
3021	struct tcp_sock *tp = tcp_sk(sk);
3022	u32 prior_snd_una = tp->snd_una;
3023	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3024	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3025	u32 prior_in_flight;
3026	s32 seq_rtt;
3027	int prior_packets;
3028	int frto_cwnd = 0;
3029
3030	/* If the ack is newer than sent or older than previous acks
3031	 * then we can probably ignore it.
3032	 */
3033	if (after(ack, tp->snd_nxt))
3034		goto uninteresting_ack;
3035
3036	if (before(ack, prior_snd_una))
3037		goto old_ack;
3038
3039	if (after(ack, prior_snd_una))
3040		flag |= FLAG_SND_UNA_ADVANCED;
3041
3042	if (sysctl_tcp_abc) {
3043		if (icsk->icsk_ca_state < TCP_CA_CWR)
3044			tp->bytes_acked += ack - prior_snd_una;
3045		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3046			/* we assume just one segment left network */
3047			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3048	}
3049
3050	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3051		/* Window is constant, pure forward advance.
3052		 * No more checks are required.
3053		 * Note, we use the fact that SND.UNA>=SND.WL2.
3054		 */
3055		tcp_update_wl(tp, ack, ack_seq);
3056		tp->snd_una = ack;
3057		flag |= FLAG_WIN_UPDATE;
3058
3059		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3060
3061		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3062	} else {
3063		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3064			flag |= FLAG_DATA;
3065		else
3066			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3067
3068		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3069
3070		if (TCP_SKB_CB(skb)->sacked)
3071			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3072
3073		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3074			flag |= FLAG_ECE;
3075
3076		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3077	}
3078
3079	/* We passed data and got it acked, remove any soft error
3080	 * log. Something worked...
3081	 */
3082	sk->sk_err_soft = 0;
3083	tp->rcv_tstamp = tcp_time_stamp;
3084	prior_packets = tp->packets_out;
3085	if (!prior_packets)
3086		goto no_queue;
3087
3088	prior_in_flight = tcp_packets_in_flight(tp);
3089
3090	/* See if we can take anything off of the retransmit queue. */
3091	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
3092
3093	/* Guarantee sacktag reordering detection against wrap-arounds */
3094	if (before(tp->frto_highmark, tp->snd_una))
3095		tp->frto_highmark = 0;
3096	if (tp->frto_counter)
3097		frto_cwnd = tcp_process_frto(sk, flag);
3098
3099	if (tcp_ack_is_dubious(sk, flag)) {
3100		/* Advance CWND, if state allows this. */
3101		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3102		    tcp_may_raise_cwnd(sk, flag))
3103			tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3104		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3105	} else {
3106		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3107			tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3108	}
3109
3110	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3111		dst_confirm(sk->sk_dst_cache);
3112
3113	return 1;
3114
3115no_queue:
3116	icsk->icsk_probes_out = 0;
3117
3118	/* If this ack opens up a zero window, clear backoff.  It was
3119	 * being used to time the probes, and is probably far higher than
3120	 * it needs to be for normal retransmission.
3121	 */
3122	if (tcp_send_head(sk))
3123		tcp_ack_probe(sk);
3124	return 1;
3125
3126old_ack:
3127	if (TCP_SKB_CB(skb)->sacked)
3128		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3129
3130uninteresting_ack:
3131	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3132	return 0;
3133}
3134
3135
3136/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3137 * But, this can also be called on packets in the established flow when
3138 * the fast version below fails.
3139 */
3140void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3141{
3142	unsigned char *ptr;
3143	struct tcphdr *th = tcp_hdr(skb);
3144	int length=(th->doff*4)-sizeof(struct tcphdr);
3145
3146	ptr = (unsigned char *)(th + 1);
3147	opt_rx->saw_tstamp = 0;
3148
3149	while (length > 0) {
3150		int opcode=*ptr++;
3151		int opsize;
3152
3153		switch (opcode) {
3154			case TCPOPT_EOL:
3155				return;
3156			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3157				length--;
3158				continue;
3159			default:
3160				opsize=*ptr++;
3161				if (opsize < 2) /* "silly options" */
3162					return;
3163				if (opsize > length)
3164					return;	/* don't parse partial options */
3165				switch (opcode) {
3166				case TCPOPT_MSS:
3167					if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3168						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3169						if (in_mss) {
3170							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3171								in_mss = opt_rx->user_mss;
3172							opt_rx->mss_clamp = in_mss;
3173						}
3174					}
3175					break;
3176				case TCPOPT_WINDOW:
3177					if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3178						if (sysctl_tcp_window_scaling) {
3179							__u8 snd_wscale = *(__u8 *) ptr;
3180							opt_rx->wscale_ok = 1;
3181							if (snd_wscale > 14) {
3182								if (net_ratelimit())
3183									printk(KERN_INFO "tcp_parse_options: Illegal window "
3184									       "scaling value %d >14 received.\n",
3185									       snd_wscale);
3186								snd_wscale = 14;
3187							}
3188							opt_rx->snd_wscale = snd_wscale;
3189						}
3190					break;
3191				case TCPOPT_TIMESTAMP:
3192					if (opsize==TCPOLEN_TIMESTAMP) {
3193						if ((estab && opt_rx->tstamp_ok) ||
3194						    (!estab && sysctl_tcp_timestamps)) {
3195							opt_rx->saw_tstamp = 1;
3196							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3197							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3198						}
3199					}
3200					break;
3201				case TCPOPT_SACK_PERM:
3202					if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3203						if (sysctl_tcp_sack) {
3204							opt_rx->sack_ok = 1;
3205							tcp_sack_reset(opt_rx);
3206						}
3207					}
3208					break;
3209
3210				case TCPOPT_SACK:
3211					if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3212					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3213					   opt_rx->sack_ok) {
3214						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3215					}
3216					break;
3217#ifdef CONFIG_TCP_MD5SIG
3218				case TCPOPT_MD5SIG:
3219					/*
3220					 * The MD5 Hash has already been
3221					 * checked (see tcp_v{4,6}_do_rcv()).
3222					 */
3223					break;
3224#endif
3225				}
3226
3227				ptr+=opsize-2;
3228				length-=opsize;
3229		}
3230	}
3231}
3232
3233/* Fast parse options. This hopes to only see timestamps.
3234 * If it is wrong it falls back on tcp_parse_options().
3235 */
3236static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3237				  struct tcp_sock *tp)
3238{
3239	if (th->doff == sizeof(struct tcphdr)>>2) {
3240		tp->rx_opt.saw_tstamp = 0;
3241		return 0;
3242	} else if (tp->rx_opt.tstamp_ok &&
3243		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3244		__be32 *ptr = (__be32 *)(th + 1);
3245		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3246				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3247			tp->rx_opt.saw_tstamp = 1;
3248			++ptr;
3249			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3250			++ptr;
3251			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3252			return 1;
3253		}
3254	}
3255	tcp_parse_options(skb, &tp->rx_opt, 1);
3256	return 1;
3257}
3258
3259static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3260{
3261	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3262	tp->rx_opt.ts_recent_stamp = get_seconds();
3263}
3264
3265static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3266{
3267	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3268		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3269		 * extra check below makes sure this can only happen
3270		 * for pure ACK frames.  -DaveM
3271		 *
3272		 * Not only, also it occurs for expired timestamps.
3273		 */
3274
3275		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3276		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3277			tcp_store_ts_recent(tp);
3278	}
3279}
3280
3281/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3282 *
3283 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3284 * it can pass through stack. So, the following predicate verifies that
3285 * this segment is not used for anything but congestion avoidance or
3286 * fast retransmit. Moreover, we even are able to eliminate most of such
3287 * second order effects, if we apply some small "replay" window (~RTO)
3288 * to timestamp space.
3289 *
3290 * All these measures still do not guarantee that we reject wrapped ACKs
3291 * on networks with high bandwidth, when sequence space is recycled fastly,
3292 * but it guarantees that such events will be very rare and do not affect
3293 * connection seriously. This doesn't look nice, but alas, PAWS is really
3294 * buggy extension.
3295 *
3296 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3297 * states that events when retransmit arrives after original data are rare.
3298 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3299 * the biggest problem on large power networks even with minor reordering.
3300 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3301 * up to bandwidth of 18Gigabit/sec. 8) ]
3302 */
3303
3304static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3305{
3306	struct tcp_sock *tp = tcp_sk(sk);
3307	struct tcphdr *th = tcp_hdr(skb);
3308	u32 seq = TCP_SKB_CB(skb)->seq;
3309	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3310
3311	return (/* 1. Pure ACK with correct sequence number. */
3312		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3313
3314		/* 2. ... and duplicate ACK. */
3315		ack == tp->snd_una &&
3316
3317		/* 3. ... and does not update window. */
3318		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3319
3320		/* 4. ... and sits in replay window. */
3321		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3322}
3323
3324static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3325{
3326	const struct tcp_sock *tp = tcp_sk(sk);
3327	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3328		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3329		!tcp_disordered_ack(sk, skb));
3330}
3331
3332/* Check segment sequence number for validity.
3333 *
3334 * Segment controls are considered valid, if the segment
3335 * fits to the window after truncation to the window. Acceptability
3336 * of data (and SYN, FIN, of course) is checked separately.
3337 * See tcp_data_queue(), for example.
3338 *
3339 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3340 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3341 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3342 * (borrowed from freebsd)
3343 */
3344
3345static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3346{
3347	return	!before(end_seq, tp->rcv_wup) &&
3348		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3349}
3350
3351/* When we get a reset we do this. */
3352static void tcp_reset(struct sock *sk)
3353{
3354	/* We want the right error as BSD sees it (and indeed as we do). */
3355	switch (sk->sk_state) {
3356		case TCP_SYN_SENT:
3357			sk->sk_err = ECONNREFUSED;
3358			break;
3359		case TCP_CLOSE_WAIT:
3360			sk->sk_err = EPIPE;
3361			break;
3362		case TCP_CLOSE:
3363			return;
3364		default:
3365			sk->sk_err = ECONNRESET;
3366	}
3367
3368	if (!sock_flag(sk, SOCK_DEAD))
3369		sk->sk_error_report(sk);
3370
3371	tcp_done(sk);
3372}
3373
3374/*
3375 * 	Process the FIN bit. This now behaves as it is supposed to work
3376 *	and the FIN takes effect when it is validly part of sequence
3377 *	space. Not before when we get holes.
3378 *
3379 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3380 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3381 *	TIME-WAIT)
3382 *
3383 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3384 *	close and we go into CLOSING (and later onto TIME-WAIT)
3385 *
3386 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3387 */
3388static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3389{
3390	struct tcp_sock *tp = tcp_sk(sk);
3391
3392	inet_csk_schedule_ack(sk);
3393
3394	sk->sk_shutdown |= RCV_SHUTDOWN;
3395	sock_set_flag(sk, SOCK_DONE);
3396
3397	switch (sk->sk_state) {
3398		case TCP_SYN_RECV:
3399		case TCP_ESTABLISHED:
3400			/* Move to CLOSE_WAIT */
3401			tcp_set_state(sk, TCP_CLOSE_WAIT);
3402			inet_csk(sk)->icsk_ack.pingpong = 1;
3403			break;
3404
3405		case TCP_CLOSE_WAIT:
3406		case TCP_CLOSING:
3407			/* Received a retransmission of the FIN, do
3408			 * nothing.
3409			 */
3410			break;
3411		case TCP_LAST_ACK:
3412			/* RFC793: Remain in the LAST-ACK state. */
3413			break;
3414
3415		case TCP_FIN_WAIT1:
3416			/* This case occurs when a simultaneous close
3417			 * happens, we must ack the received FIN and
3418			 * enter the CLOSING state.
3419			 */
3420			tcp_send_ack(sk);
3421			tcp_set_state(sk, TCP_CLOSING);
3422			break;
3423		case TCP_FIN_WAIT2:
3424			/* Received a FIN -- send ACK and enter TIME_WAIT. */
3425			tcp_send_ack(sk);
3426			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3427			break;
3428		default:
3429			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3430			 * cases we should never reach this piece of code.
3431			 */
3432			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3433			       __FUNCTION__, sk->sk_state);
3434			break;
3435	}
3436
3437	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3438	 * Probably, we should reset in this case. For now drop them.
3439	 */
3440	__skb_queue_purge(&tp->out_of_order_queue);
3441	if (tcp_is_sack(tp))
3442		tcp_sack_reset(&tp->rx_opt);
3443	sk_stream_mem_reclaim(sk);
3444
3445	if (!sock_flag(sk, SOCK_DEAD)) {
3446		sk->sk_state_change(sk);
3447
3448		/* Do not send POLL_HUP for half duplex close. */
3449		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3450		    sk->sk_state == TCP_CLOSE)
3451			sk_wake_async(sk, 1, POLL_HUP);
3452		else
3453			sk_wake_async(sk, 1, POLL_IN);
3454	}
3455}
3456
3457static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3458{
3459	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3460		if (before(seq, sp->start_seq))
3461			sp->start_seq = seq;
3462		if (after(end_seq, sp->end_seq))
3463			sp->end_seq = end_seq;
3464		return 1;
3465	}
3466	return 0;
3467}
3468
3469static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3470{
3471	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3472		if (before(seq, tp->rcv_nxt))
3473			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3474		else
3475			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3476
3477		tp->rx_opt.dsack = 1;
3478		tp->duplicate_sack[0].start_seq = seq;
3479		tp->duplicate_sack[0].end_seq = end_seq;
3480		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3481	}
3482}
3483
3484static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3485{
3486	if (!tp->rx_opt.dsack)
3487		tcp_dsack_set(tp, seq, end_seq);
3488	else
3489		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3490}
3491
3492static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3493{
3494	struct tcp_sock *tp = tcp_sk(sk);
3495
3496	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3497	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3498		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3499		tcp_enter_quickack_mode(sk);
3500
3501		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3502			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3503
3504			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3505				end_seq = tp->rcv_nxt;
3506			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3507		}
3508	}
3509
3510	tcp_send_ack(sk);
3511}
3512
3513/* These routines update the SACK block as out-of-order packets arrive or
3514 * in-order packets close up the sequence space.
3515 */
3516static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3517{
3518	int this_sack;
3519	struct tcp_sack_block *sp = &tp->selective_acks[0];
3520	struct tcp_sack_block *swalk = sp+1;
3521
3522	/* See if the recent change to the first SACK eats into
3523	 * or hits the sequence space of other SACK blocks, if so coalesce.
3524	 */
3525	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3526		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3527			int i;
3528
3529			/* Zap SWALK, by moving every further SACK up by one slot.
3530			 * Decrease num_sacks.
3531			 */
3532			tp->rx_opt.num_sacks--;
3533			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3534			for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3535				sp[i] = sp[i+1];
3536			continue;
3537		}
3538		this_sack++, swalk++;
3539	}
3540}
3541
3542static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3543{
3544	__u32 tmp;
3545
3546	tmp = sack1->start_seq;
3547	sack1->start_seq = sack2->start_seq;
3548	sack2->start_seq = tmp;
3549
3550	tmp = sack1->end_seq;
3551	sack1->end_seq = sack2->end_seq;
3552	sack2->end_seq = tmp;
3553}
3554
3555static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3556{
3557	struct tcp_sock *tp = tcp_sk(sk);
3558	struct tcp_sack_block *sp = &tp->selective_acks[0];
3559	int cur_sacks = tp->rx_opt.num_sacks;
3560	int this_sack;
3561
3562	if (!cur_sacks)
3563		goto new_sack;
3564
3565	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3566		if (tcp_sack_extend(sp, seq, end_seq)) {
3567			/* Rotate this_sack to the first one. */
3568			for (; this_sack>0; this_sack--, sp--)
3569				tcp_sack_swap(sp, sp-1);
3570			if (cur_sacks > 1)
3571				tcp_sack_maybe_coalesce(tp);
3572			return;
3573		}
3574	}
3575
3576	/* Could not find an adjacent existing SACK, build a new one,
3577	 * put it at the front, and shift everyone else down.  We
3578	 * always know there is at least one SACK present already here.
3579	 *
3580	 * If the sack array is full, forget about the last one.
3581	 */
3582	if (this_sack >= 4) {
3583		this_sack--;
3584		tp->rx_opt.num_sacks--;
3585		sp--;
3586	}
3587	for (; this_sack > 0; this_sack--, sp--)
3588		*sp = *(sp-1);
3589
3590new_sack:
3591	/* Build the new head SACK, and we're done. */
3592	sp->start_seq = seq;
3593	sp->end_seq = end_seq;
3594	tp->rx_opt.num_sacks++;
3595	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3596}
3597
3598/* RCV.NXT advances, some SACKs should be eaten. */
3599
3600static void tcp_sack_remove(struct tcp_sock *tp)
3601{
3602	struct tcp_sack_block *sp = &tp->selective_acks[0];
3603	int num_sacks = tp->rx_opt.num_sacks;
3604	int this_sack;
3605
3606	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3607	if (skb_queue_empty(&tp->out_of_order_queue)) {
3608		tp->rx_opt.num_sacks = 0;
3609		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3610		return;
3611	}
3612
3613	for (this_sack = 0; this_sack < num_sacks; ) {
3614		/* Check if the start of the sack is covered by RCV.NXT. */
3615		if (!before(tp->rcv_nxt, sp->start_seq)) {
3616			int i;
3617
3618			/* RCV.NXT must cover all the block! */
3619			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3620
3621			/* Zap this SACK, by moving forward any other SACKS. */
3622			for (i=this_sack+1; i < num_sacks; i++)
3623				tp->selective_acks[i-1] = tp->selective_acks[i];
3624			num_sacks--;
3625			continue;
3626		}
3627		this_sack++;
3628		sp++;
3629	}
3630	if (num_sacks != tp->rx_opt.num_sacks) {
3631		tp->rx_opt.num_sacks = num_sacks;
3632		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3633	}
3634}
3635
3636/* This one checks to see if we can put data from the
3637 * out_of_order queue into the receive_queue.
3638 */
3639static void tcp_ofo_queue(struct sock *sk)
3640{
3641	struct tcp_sock *tp = tcp_sk(sk);
3642	__u32 dsack_high = tp->rcv_nxt;
3643	struct sk_buff *skb;
3644
3645	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3646		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3647			break;
3648
3649		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3650			__u32 dsack = dsack_high;
3651			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3652				dsack_high = TCP_SKB_CB(skb)->end_seq;
3653			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3654		}
3655
3656		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3657			SOCK_DEBUG(sk, "ofo packet was already received \n");
3658			__skb_unlink(skb, &tp->out_of_order_queue);
3659			__kfree_skb(skb);
3660			continue;
3661		}
3662		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3663			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3664			   TCP_SKB_CB(skb)->end_seq);
3665
3666		__skb_unlink(skb, &tp->out_of_order_queue);
3667		__skb_queue_tail(&sk->sk_receive_queue, skb);
3668		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3669		if (tcp_hdr(skb)->fin)
3670			tcp_fin(skb, sk, tcp_hdr(skb));
3671	}
3672}
3673
3674static int tcp_prune_queue(struct sock *sk);
3675
3676static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3677{
3678	struct tcphdr *th = tcp_hdr(skb);
3679	struct tcp_sock *tp = tcp_sk(sk);
3680	int eaten = -1;
3681
3682	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3683		goto drop;
3684
3685	__skb_pull(skb, th->doff*4);
3686
3687	TCP_ECN_accept_cwr(tp, skb);
3688
3689	if (tp->rx_opt.dsack) {
3690		tp->rx_opt.dsack = 0;
3691		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3692						    4 - tp->rx_opt.tstamp_ok);
3693	}
3694
3695	/*  Queue data for delivery to the user.
3696	 *  Packets in sequence go to the receive queue.
3697	 *  Out of sequence packets to the out_of_order_queue.
3698	 */
3699	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3700		if (tcp_receive_window(tp) == 0)
3701			goto out_of_window;
3702
3703		/* Ok. In sequence. In window. */
3704		if (tp->ucopy.task == current &&
3705		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3706		    sock_owned_by_user(sk) && !tp->urg_data) {
3707			int chunk = min_t(unsigned int, skb->len,
3708							tp->ucopy.len);
3709
3710			__set_current_state(TASK_RUNNING);
3711
3712			local_bh_enable();
3713			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3714				tp->ucopy.len -= chunk;
3715				tp->copied_seq += chunk;
3716				eaten = (chunk == skb->len && !th->fin);
3717				tcp_rcv_space_adjust(sk);
3718			}
3719			local_bh_disable();
3720		}
3721
3722		if (eaten <= 0) {
3723queue_and_out:
3724			if (eaten < 0 &&
3725			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3726			     !sk_stream_rmem_schedule(sk, skb))) {
3727				if (tcp_prune_queue(sk) < 0 ||
3728				    !sk_stream_rmem_schedule(sk, skb))
3729					goto drop;
3730			}
3731			sk_stream_set_owner_r(skb, sk);
3732			__skb_queue_tail(&sk->sk_receive_queue, skb);
3733		}
3734		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3735		if (skb->len)
3736			tcp_event_data_recv(sk, skb);
3737		if (th->fin)
3738			tcp_fin(skb, sk, th);
3739
3740		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3741			tcp_ofo_queue(sk);
3742
3743			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3744			 * gap in queue is filled.
3745			 */
3746			if (skb_queue_empty(&tp->out_of_order_queue))
3747				inet_csk(sk)->icsk_ack.pingpong = 0;
3748		}
3749
3750		if (tp->rx_opt.num_sacks)
3751			tcp_sack_remove(tp);
3752
3753		tcp_fast_path_check(sk);
3754
3755		if (eaten > 0)
3756			__kfree_skb(skb);
3757		else if (!sock_flag(sk, SOCK_DEAD))
3758			sk->sk_data_ready(sk, 0);
3759		return;
3760	}
3761
3762	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3763		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3764		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3765		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3766
3767out_of_window:
3768		tcp_enter_quickack_mode(sk);
3769		inet_csk_schedule_ack(sk);
3770drop:
3771		__kfree_skb(skb);
3772		return;
3773	}
3774
3775	/* Out of window. F.e. zero window probe. */
3776	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3777		goto out_of_window;
3778
3779	tcp_enter_quickack_mode(sk);
3780
3781	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3782		/* Partial packet, seq < rcv_next < end_seq */
3783		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3784			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3785			   TCP_SKB_CB(skb)->end_seq);
3786
3787		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3788
3789		/* If window is closed, drop tail of packet. But after
3790		 * remembering D-SACK for its head made in previous line.
3791		 */
3792		if (!tcp_receive_window(tp))
3793			goto out_of_window;
3794		goto queue_and_out;
3795	}
3796
3797	TCP_ECN_check_ce(tp, skb);
3798
3799	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3800	    !sk_stream_rmem_schedule(sk, skb)) {
3801		if (tcp_prune_queue(sk) < 0 ||
3802		    !sk_stream_rmem_schedule(sk, skb))
3803			goto drop;
3804	}
3805
3806	/* Disable header prediction. */
3807	tp->pred_flags = 0;
3808	inet_csk_schedule_ack(sk);
3809
3810	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3811		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3812
3813	sk_stream_set_owner_r(skb, sk);
3814
3815	if (!skb_peek(&tp->out_of_order_queue)) {
3816		/* Initial out of order segment, build 1 SACK. */
3817		if (tcp_is_sack(tp)) {
3818			tp->rx_opt.num_sacks = 1;
3819			tp->rx_opt.dsack     = 0;
3820			tp->rx_opt.eff_sacks = 1;
3821			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3822			tp->selective_acks[0].end_seq =
3823						TCP_SKB_CB(skb)->end_seq;
3824		}
3825		__skb_queue_head(&tp->out_of_order_queue,skb);
3826	} else {
3827		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3828		u32 seq = TCP_SKB_CB(skb)->seq;
3829		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3830
3831		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3832			__skb_append(skb1, skb, &tp->out_of_order_queue);
3833
3834			if (!tp->rx_opt.num_sacks ||
3835			    tp->selective_acks[0].end_seq != seq)
3836				goto add_sack;
3837
3838			/* Common case: data arrive in order after hole. */
3839			tp->selective_acks[0].end_seq = end_seq;
3840			return;
3841		}
3842
3843		/* Find place to insert this segment. */
3844		do {
3845			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3846				break;
3847		} while ((skb1 = skb1->prev) !=
3848			 (struct sk_buff*)&tp->out_of_order_queue);
3849
3850		/* Do skb overlap to previous one? */
3851		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3852		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3853			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3854				/* All the bits are present. Drop. */
3855				__kfree_skb(skb);
3856				tcp_dsack_set(tp, seq, end_seq);
3857				goto add_sack;
3858			}
3859			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3860				/* Partial overlap. */
3861				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3862			} else {
3863				skb1 = skb1->prev;
3864			}
3865		}
3866		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3867
3868		/* And clean segments covered by new one as whole. */
3869		while ((skb1 = skb->next) !=
3870		       (struct sk_buff*)&tp->out_of_order_queue &&
3871		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3872		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3873			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3874			       break;
3875		       }
3876		       __skb_unlink(skb1, &tp->out_of_order_queue);
3877		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3878		       __kfree_skb(skb1);
3879		}
3880
3881add_sack:
3882		if (tcp_is_sack(tp))
3883			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3884	}
3885}
3886
3887/* Collapse contiguous sequence of skbs head..tail with
3888 * sequence numbers start..end.
3889 * Segments with FIN/SYN are not collapsed (only because this
3890 * simplifies code)
3891 */
3892static void
3893tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3894	     struct sk_buff *head, struct sk_buff *tail,
3895	     u32 start, u32 end)
3896{
3897	struct sk_buff *skb;
3898
3899	/* First, check that queue is collapsible and find
3900	 * the point where collapsing can be useful. */
3901	for (skb = head; skb != tail; ) {
3902		/* No new bits? It is possible on ofo queue. */
3903		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3904			struct sk_buff *next = skb->next;
3905			__skb_unlink(skb, list);
3906			__kfree_skb(skb);
3907			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3908			skb = next;
3909			continue;
3910		}
3911
3912		/* The first skb to collapse is:
3913		 * - not SYN/FIN and
3914		 * - bloated or contains data before "start" or
3915		 *   overlaps to the next one.
3916		 */
3917		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3918		    (tcp_win_from_space(skb->truesize) > skb->len ||
3919		     before(TCP_SKB_CB(skb)->seq, start) ||
3920		     (skb->next != tail &&
3921		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3922			break;
3923
3924		/* Decided to skip this, advance start seq. */
3925		start = TCP_SKB_CB(skb)->end_seq;
3926		skb = skb->next;
3927	}
3928	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3929		return;
3930
3931	while (before(start, end)) {
3932		struct sk_buff *nskb;
3933		unsigned int header = skb_headroom(skb);
3934		int copy = SKB_MAX_ORDER(header, 0);
3935
3936		/* Too big header? This can happen with IPv6. */
3937		if (copy < 0)
3938			return;
3939		if (end-start < copy)
3940			copy = end-start;
3941		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3942		if (!nskb)
3943			return;
3944
3945		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3946		skb_set_network_header(nskb, (skb_network_header(skb) -
3947					      skb->head));
3948		skb_set_transport_header(nskb, (skb_transport_header(skb) -
3949						skb->head));
3950		skb_reserve(nskb, header);
3951		memcpy(nskb->head, skb->head, header);
3952		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3953		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3954		__skb_insert(nskb, skb->prev, skb, list);
3955		sk_stream_set_owner_r(nskb, sk);
3956
3957		/* Copy data, releasing collapsed skbs. */
3958		while (copy > 0) {
3959			int offset = start - TCP_SKB_CB(skb)->seq;
3960			int size = TCP_SKB_CB(skb)->end_seq - start;
3961
3962			BUG_ON(offset < 0);
3963			if (size > 0) {
3964				size = min(copy, size);
3965				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3966					BUG();
3967				TCP_SKB_CB(nskb)->end_seq += size;
3968				copy -= size;
3969				start += size;
3970			}
3971			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3972				struct sk_buff *next = skb->next;
3973				__skb_unlink(skb, list);
3974				__kfree_skb(skb);
3975				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3976				skb = next;
3977				if (skb == tail ||
3978				    tcp_hdr(skb)->syn ||
3979				    tcp_hdr(skb)->fin)
3980					return;
3981			}
3982		}
3983	}
3984}
3985
3986/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3987 * and tcp_collapse() them until all the queue is collapsed.
3988 */
3989static void tcp_collapse_ofo_queue(struct sock *sk)
3990{
3991	struct tcp_sock *tp = tcp_sk(sk);
3992	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3993	struct sk_buff *head;
3994	u32 start, end;
3995
3996	if (skb == NULL)
3997		return;
3998
3999	start = TCP_SKB_CB(skb)->seq;
4000	end = TCP_SKB_CB(skb)->end_seq;
4001	head = skb;
4002
4003	for (;;) {
4004		skb = skb->next;
4005
4006		/* Segment is terminated when we see gap or when
4007		 * we are at the end of all the queue. */
4008		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4009		    after(TCP_SKB_CB(skb)->seq, end) ||
4010		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4011			tcp_collapse(sk, &tp->out_of_order_queue,
4012				     head, skb, start, end);
4013			head = skb;
4014			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4015				break;
4016			/* Start new segment */
4017			start = TCP_SKB_CB(skb)->seq;
4018			end = TCP_SKB_CB(skb)->end_seq;
4019		} else {
4020			if (before(TCP_SKB_CB(skb)->seq, start))
4021				start = TCP_SKB_CB(skb)->seq;
4022			if (after(TCP_SKB_CB(skb)->end_seq, end))
4023				end = TCP_SKB_CB(skb)->end_seq;
4024		}
4025	}
4026}
4027
4028/* Reduce allocated memory if we can, trying to get
4029 * the socket within its memory limits again.
4030 *
4031 * Return less than zero if we should start dropping frames
4032 * until the socket owning process reads some of the data
4033 * to stabilize the situation.
4034 */
4035static int tcp_prune_queue(struct sock *sk)
4036{
4037	struct tcp_sock *tp = tcp_sk(sk);
4038
4039	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4040
4041	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4042
4043	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4044		tcp_clamp_window(sk);
4045	else if (tcp_memory_pressure)
4046		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4047
4048	tcp_collapse_ofo_queue(sk);
4049	tcp_collapse(sk, &sk->sk_receive_queue,
4050		     sk->sk_receive_queue.next,
4051		     (struct sk_buff*)&sk->sk_receive_queue,
4052		     tp->copied_seq, tp->rcv_nxt);
4053	sk_stream_mem_reclaim(sk);
4054
4055	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4056		return 0;
4057
4058	/* Collapsing did not help, destructive actions follow.
4059	 * This must not ever occur. */
4060
4061	/* First, purge the out_of_order queue. */
4062	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4063		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4064		__skb_queue_purge(&tp->out_of_order_queue);
4065
4066		/* Reset SACK state.  A conforming SACK implementation will
4067		 * do the same at a timeout based retransmit.  When a connection
4068		 * is in a sad state like this, we care only about integrity
4069		 * of the connection not performance.
4070		 */
4071		if (tcp_is_sack(tp))
4072			tcp_sack_reset(&tp->rx_opt);
4073		sk_stream_mem_reclaim(sk);
4074	}
4075
4076	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4077		return 0;
4078
4079	/* If we are really being abused, tell the caller to silently
4080	 * drop receive data on the floor.  It will get retransmitted
4081	 * and hopefully then we'll have sufficient space.
4082	 */
4083	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4084
4085	/* Massive buffer overcommit. */
4086	tp->pred_flags = 0;
4087	return -1;
4088}
4089
4090
4091/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4092 * As additional protections, we do not touch cwnd in retransmission phases,
4093 * and if application hit its sndbuf limit recently.
4094 */
4095void tcp_cwnd_application_limited(struct sock *sk)
4096{
4097	struct tcp_sock *tp = tcp_sk(sk);
4098
4099	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4100	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4101		/* Limited by application or receiver window. */
4102		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4103		u32 win_used = max(tp->snd_cwnd_used, init_win);
4104		if (win_used < tp->snd_cwnd) {
4105			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4106			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4107		}
4108		tp->snd_cwnd_used = 0;
4109	}
4110	tp->snd_cwnd_stamp = tcp_time_stamp;
4111}
4112
4113static int tcp_should_expand_sndbuf(struct sock *sk)
4114{
4115	struct tcp_sock *tp = tcp_sk(sk);
4116
4117	/* If the user specified a specific send buffer setting, do
4118	 * not modify it.
4119	 */
4120	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4121		return 0;
4122
4123	/* If we are under global TCP memory pressure, do not expand.  */
4124	if (tcp_memory_pressure)
4125		return 0;
4126
4127	/* If we are under soft global TCP memory pressure, do not expand.  */
4128	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4129		return 0;
4130
4131	/* If we filled the congestion window, do not expand.  */
4132	if (tp->packets_out >= tp->snd_cwnd)
4133		return 0;
4134
4135	return 1;
4136}
4137
4138/* When incoming ACK allowed to free some skb from write_queue,
4139 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4140 * on the exit from tcp input handler.
4141 *
4142 * PROBLEM: sndbuf expansion does not work well with largesend.
4143 */
4144static void tcp_new_space(struct sock *sk)
4145{
4146	struct tcp_sock *tp = tcp_sk(sk);
4147
4148	if (tcp_should_expand_sndbuf(sk)) {
4149		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4150			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4151		    demanded = max_t(unsigned int, tp->snd_cwnd,
4152						   tp->reordering + 1);
4153		sndmem *= 2*demanded;
4154		if (sndmem > sk->sk_sndbuf)
4155			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4156		tp->snd_cwnd_stamp = tcp_time_stamp;
4157	}
4158
4159	sk->sk_write_space(sk);
4160}
4161
4162static void tcp_check_space(struct sock *sk)
4163{
4164	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4165		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4166		if (sk->sk_socket &&
4167		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4168			tcp_new_space(sk);
4169	}
4170}
4171
4172static inline void tcp_data_snd_check(struct sock *sk)
4173{
4174	tcp_push_pending_frames(sk);
4175	tcp_check_space(sk);
4176}
4177
4178/*
4179 * Check if sending an ack is needed.
4180 */
4181static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4182{
4183	struct tcp_sock *tp = tcp_sk(sk);
4184
4185	    /* More than one full frame received... */
4186	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4187	     /* ... and right edge of window advances far enough.
4188	      * (tcp_recvmsg() will send ACK otherwise). Or...
4189	      */
4190	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4191	    /* We ACK each frame or... */
4192	    tcp_in_quickack_mode(sk) ||
4193	    /* We have out of order data. */
4194	    (ofo_possible &&
4195	     skb_peek(&tp->out_of_order_queue))) {
4196		/* Then ack it now */
4197		tcp_send_ack(sk);
4198	} else {
4199		/* Else, send delayed ack. */
4200		tcp_send_delayed_ack(sk);
4201	}
4202}
4203
4204static inline void tcp_ack_snd_check(struct sock *sk)
4205{
4206	if (!inet_csk_ack_scheduled(sk)) {
4207		/* We sent a data segment already. */
4208		return;
4209	}
4210	__tcp_ack_snd_check(sk, 1);
4211}
4212
4213/*
4214 *	This routine is only called when we have urgent data
4215 *	signaled. Its the 'slow' part of tcp_urg. It could be
4216 *	moved inline now as tcp_urg is only called from one
4217 *	place. We handle URGent data wrong. We have to - as
4218 *	BSD still doesn't use the correction from RFC961.
4219 *	For 1003.1g we should support a new option TCP_STDURG to permit
4220 *	either form (or just set the sysctl tcp_stdurg).
4221 */
4222
4223static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4224{
4225	struct tcp_sock *tp = tcp_sk(sk);
4226	u32 ptr = ntohs(th->urg_ptr);
4227
4228	if (ptr && !sysctl_tcp_stdurg)
4229		ptr--;
4230	ptr += ntohl(th->seq);
4231
4232	/* Ignore urgent data that we've already seen and read. */
4233	if (after(tp->copied_seq, ptr))
4234		return;
4235
4236	/* Do not replay urg ptr.
4237	 *
4238	 * NOTE: interesting situation not covered by specs.
4239	 * Misbehaving sender may send urg ptr, pointing to segment,
4240	 * which we already have in ofo queue. We are not able to fetch
4241	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4242	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4243	 * situations. But it is worth to think about possibility of some
4244	 * DoSes using some hypothetical application level deadlock.
4245	 */
4246	if (before(ptr, tp->rcv_nxt))
4247		return;
4248
4249	/* Do we already have a newer (or duplicate) urgent pointer? */
4250	if (tp->urg_data && !after(ptr, tp->urg_seq))
4251		return;
4252
4253	/* Tell the world about our new urgent pointer. */
4254	sk_send_sigurg(sk);
4255
4256	/* We may be adding urgent data when the last byte read was
4257	 * urgent. To do this requires some care. We cannot just ignore
4258	 * tp->copied_seq since we would read the last urgent byte again
4259	 * as data, nor can we alter copied_seq until this data arrives
4260	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4261	 *
4262	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4263	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4264	 * and expect that both A and B disappear from stream. This is _wrong_.
4265	 * Though this happens in BSD with high probability, this is occasional.
4266	 * Any application relying on this is buggy. Note also, that fix "works"
4267	 * only in this artificial test. Insert some normal data between A and B and we will
4268	 * decline of BSD again. Verdict: it is better to remove to trap
4269	 * buggy users.
4270	 */
4271	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4272	    !sock_flag(sk, SOCK_URGINLINE) &&
4273	    tp->copied_seq != tp->rcv_nxt) {
4274		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4275		tp->copied_seq++;
4276		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4277			__skb_unlink(skb, &sk->sk_receive_queue);
4278			__kfree_skb(skb);
4279		}
4280	}
4281
4282	tp->urg_data   = TCP_URG_NOTYET;
4283	tp->urg_seq    = ptr;
4284
4285	/* Disable header prediction. */
4286	tp->pred_flags = 0;
4287}
4288
4289/* This is the 'fast' part of urgent handling. */
4290static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4291{
4292	struct tcp_sock *tp = tcp_sk(sk);
4293
4294	/* Check if we get a new urgent pointer - normally not. */
4295	if (th->urg)
4296		tcp_check_urg(sk,th);
4297
4298	/* Do we wait for any urgent data? - normally not... */
4299	if (tp->urg_data == TCP_URG_NOTYET) {
4300		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4301			  th->syn;
4302
4303		/* Is the urgent pointer pointing into this packet? */
4304		if (ptr < skb->len) {
4305			u8 tmp;
4306			if (skb_copy_bits(skb, ptr, &tmp, 1))
4307				BUG();
4308			tp->urg_data = TCP_URG_VALID | tmp;
4309			if (!sock_flag(sk, SOCK_DEAD))
4310				sk->sk_data_ready(sk, 0);
4311		}
4312	}
4313}
4314
4315static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4316{
4317	struct tcp_sock *tp = tcp_sk(sk);
4318	int chunk = skb->len - hlen;
4319	int err;
4320
4321	local_bh_enable();
4322	if (skb_csum_unnecessary(skb))
4323		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4324	else
4325		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4326						       tp->ucopy.iov);
4327
4328	if (!err) {
4329		tp->ucopy.len -= chunk;
4330		tp->copied_seq += chunk;
4331		tcp_rcv_space_adjust(sk);
4332	}
4333
4334	local_bh_disable();
4335	return err;
4336}
4337
4338static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4339{
4340	__sum16 result;
4341
4342	if (sock_owned_by_user(sk)) {
4343		local_bh_enable();
4344		result = __tcp_checksum_complete(skb);
4345		local_bh_disable();
4346	} else {
4347		result = __tcp_checksum_complete(skb);
4348	}
4349	return result;
4350}
4351
4352static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4353{
4354	return !skb_csum_unnecessary(skb) &&
4355		__tcp_checksum_complete_user(sk, skb);
4356}
4357
4358#ifdef CONFIG_NET_DMA
4359static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4360{
4361	struct tcp_sock *tp = tcp_sk(sk);
4362	int chunk = skb->len - hlen;
4363	int dma_cookie;
4364	int copied_early = 0;
4365
4366	if (tp->ucopy.wakeup)
4367		return 0;
4368
4369	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4370		tp->ucopy.dma_chan = get_softnet_dma();
4371
4372	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4373
4374		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4375			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4376
4377		if (dma_cookie < 0)
4378			goto out;
4379
4380		tp->ucopy.dma_cookie = dma_cookie;
4381		copied_early = 1;
4382
4383		tp->ucopy.len -= chunk;
4384		tp->copied_seq += chunk;
4385		tcp_rcv_space_adjust(sk);
4386
4387		if ((tp->ucopy.len == 0) ||
4388		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4389		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4390			tp->ucopy.wakeup = 1;
4391			sk->sk_data_ready(sk, 0);
4392		}
4393	} else if (chunk > 0) {
4394		tp->ucopy.wakeup = 1;
4395		sk->sk_data_ready(sk, 0);
4396	}
4397out:
4398	return copied_early;
4399}
4400#endif /* CONFIG_NET_DMA */
4401
4402/*
4403 *	TCP receive function for the ESTABLISHED state.
4404 *
4405 *	It is split into a fast path and a slow path. The fast path is
4406 * 	disabled when:
4407 *	- A zero window was announced from us - zero window probing
4408 *        is only handled properly in the slow path.
4409 *	- Out of order segments arrived.
4410 *	- Urgent data is expected.
4411 *	- There is no buffer space left
4412 *	- Unexpected TCP flags/window values/header lengths are received
4413 *	  (detected by checking the TCP header against pred_flags)
4414 *	- Data is sent in both directions. Fast path only supports pure senders
4415 *	  or pure receivers (this means either the sequence number or the ack
4416 *	  value must stay constant)
4417 *	- Unexpected TCP option.
4418 *
4419 *	When these conditions are not satisfied it drops into a standard
4420 *	receive procedure patterned after RFC793 to handle all cases.
4421 *	The first three cases are guaranteed by proper pred_flags setting,
4422 *	the rest is checked inline. Fast processing is turned on in
4423 *	tcp_data_queue when everything is OK.
4424 */
4425int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4426			struct tcphdr *th, unsigned len)
4427{
4428	struct tcp_sock *tp = tcp_sk(sk);
4429
4430	/*
4431	 *	Header prediction.
4432	 *	The code loosely follows the one in the famous
4433	 *	"30 instruction TCP receive" Van Jacobson mail.
4434	 *
4435	 *	Van's trick is to deposit buffers into socket queue
4436	 *	on a device interrupt, to call tcp_recv function
4437	 *	on the receive process context and checksum and copy
4438	 *	the buffer to user space. smart...
4439	 *
4440	 *	Our current scheme is not silly either but we take the
4441	 *	extra cost of the net_bh soft interrupt processing...
4442	 *	We do checksum and copy also but from device to kernel.
4443	 */
4444
4445	tp->rx_opt.saw_tstamp = 0;
4446
4447	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4448	 *	if header_prediction is to be made
4449	 *	'S' will always be tp->tcp_header_len >> 2
4450	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4451	 *  turn it off	(when there are holes in the receive
4452	 *	 space for instance)
4453	 *	PSH flag is ignored.
4454	 */
4455
4456	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4457		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4458		int tcp_header_len = tp->tcp_header_len;
4459
4460		/* Timestamp header prediction: tcp_header_len
4461		 * is automatically equal to th->doff*4 due to pred_flags
4462		 * match.
4463		 */
4464
4465		/* Check timestamp */
4466		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4467			__be32 *ptr = (__be32 *)(th + 1);
4468
4469			/* No? Slow path! */
4470			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4471					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4472				goto slow_path;
4473
4474			tp->rx_opt.saw_tstamp = 1;
4475			++ptr;
4476			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4477			++ptr;
4478			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4479
4480			/* If PAWS failed, check it more carefully in slow path */
4481			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4482				goto slow_path;
4483
4484			/* DO NOT update ts_recent here, if checksum fails
4485			 * and timestamp was corrupted part, it will result
4486			 * in a hung connection since we will drop all
4487			 * future packets due to the PAWS test.
4488			 */
4489		}
4490
4491		if (len <= tcp_header_len) {
4492			/* Bulk data transfer: sender */
4493			if (len == tcp_header_len) {
4494				/* Predicted packet is in window by definition.
4495				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4496				 * Hence, check seq<=rcv_wup reduces to:
4497				 */
4498				if (tcp_header_len ==
4499				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4500				    tp->rcv_nxt == tp->rcv_wup)
4501					tcp_store_ts_recent(tp);
4502
4503				/* We know that such packets are checksummed
4504				 * on entry.
4505				 */
4506				tcp_ack(sk, skb, 0);
4507				__kfree_skb(skb);
4508				tcp_data_snd_check(sk);
4509				return 0;
4510			} else { /* Header too small */
4511				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4512				goto discard;
4513			}
4514		} else {
4515			int eaten = 0;
4516			int copied_early = 0;
4517
4518			if (tp->copied_seq == tp->rcv_nxt &&
4519			    len - tcp_header_len <= tp->ucopy.len) {
4520#ifdef CONFIG_NET_DMA
4521				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4522					copied_early = 1;
4523					eaten = 1;
4524				}
4525#endif
4526				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4527					__set_current_state(TASK_RUNNING);
4528
4529					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4530						eaten = 1;
4531				}
4532				if (eaten) {
4533					/* Predicted packet is in window by definition.
4534					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4535					 * Hence, check seq<=rcv_wup reduces to:
4536					 */
4537					if (tcp_header_len ==
4538					    (sizeof(struct tcphdr) +
4539					     TCPOLEN_TSTAMP_ALIGNED) &&
4540					    tp->rcv_nxt == tp->rcv_wup)
4541						tcp_store_ts_recent(tp);
4542
4543					tcp_rcv_rtt_measure_ts(sk, skb);
4544
4545					__skb_pull(skb, tcp_header_len);
4546					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4547					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4548				}
4549				if (copied_early)
4550					tcp_cleanup_rbuf(sk, skb->len);
4551			}
4552			if (!eaten) {
4553				if (tcp_checksum_complete_user(sk, skb))
4554					goto csum_error;
4555
4556				/* Predicted packet is in window by definition.
4557				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4558				 * Hence, check seq<=rcv_wup reduces to:
4559				 */
4560				if (tcp_header_len ==
4561				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4562				    tp->rcv_nxt == tp->rcv_wup)
4563					tcp_store_ts_recent(tp);
4564
4565				tcp_rcv_rtt_measure_ts(sk, skb);
4566
4567				if ((int)skb->truesize > sk->sk_forward_alloc)
4568					goto step5;
4569
4570				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4571
4572				/* Bulk data transfer: receiver */
4573				__skb_pull(skb,tcp_header_len);
4574				__skb_queue_tail(&sk->sk_receive_queue, skb);
4575				sk_stream_set_owner_r(skb, sk);
4576				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4577			}
4578
4579			tcp_event_data_recv(sk, skb);
4580
4581			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4582				/* Well, only one small jumplet in fast path... */
4583				tcp_ack(sk, skb, FLAG_DATA);
4584				tcp_data_snd_check(sk);
4585				if (!inet_csk_ack_scheduled(sk))
4586					goto no_ack;
4587			}
4588
4589			__tcp_ack_snd_check(sk, 0);
4590no_ack:
4591#ifdef CONFIG_NET_DMA
4592			if (copied_early)
4593				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4594			else
4595#endif
4596			if (eaten)
4597				__kfree_skb(skb);
4598			else
4599				sk->sk_data_ready(sk, 0);
4600			return 0;
4601		}
4602	}
4603
4604slow_path:
4605	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4606		goto csum_error;
4607
4608	/*
4609	 * RFC1323: H1. Apply PAWS check first.
4610	 */
4611	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4612	    tcp_paws_discard(sk, skb)) {
4613		if (!th->rst) {
4614			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4615			tcp_send_dupack(sk, skb);
4616			goto discard;
4617		}
4618		/* Resets are accepted even if PAWS failed.
4619
4620		   ts_recent update must be made after we are sure
4621		   that the packet is in window.
4622		 */
4623	}
4624
4625	/*
4626	 *	Standard slow path.
4627	 */
4628
4629	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4630		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4631		 * (RST) segments are validated by checking their SEQ-fields."
4632		 * And page 69: "If an incoming segment is not acceptable,
4633		 * an acknowledgment should be sent in reply (unless the RST bit
4634		 * is set, if so drop the segment and return)".
4635		 */
4636		if (!th->rst)
4637			tcp_send_dupack(sk, skb);
4638		goto discard;
4639	}
4640
4641	if (th->rst) {
4642		tcp_reset(sk);
4643		goto discard;
4644	}
4645
4646	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4647
4648	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4649		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4650		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4651		tcp_reset(sk);
4652		return 1;
4653	}
4654
4655step5:
4656	if (th->ack)
4657		tcp_ack(sk, skb, FLAG_SLOWPATH);
4658
4659	tcp_rcv_rtt_measure_ts(sk, skb);
4660
4661	/* Process urgent data. */
4662	tcp_urg(sk, skb, th);
4663
4664	/* step 7: process the segment text */
4665	tcp_data_queue(sk, skb);
4666
4667	tcp_data_snd_check(sk);
4668	tcp_ack_snd_check(sk);
4669	return 0;
4670
4671csum_error:
4672	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4673
4674discard:
4675	__kfree_skb(skb);
4676	return 0;
4677}
4678
4679static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4680					 struct tcphdr *th, unsigned len)
4681{
4682	struct tcp_sock *tp = tcp_sk(sk);
4683	struct inet_connection_sock *icsk = inet_csk(sk);
4684	int saved_clamp = tp->rx_opt.mss_clamp;
4685
4686	tcp_parse_options(skb, &tp->rx_opt, 0);
4687
4688	if (th->ack) {
4689		/* rfc793:
4690		 * "If the state is SYN-SENT then
4691		 *    first check the ACK bit
4692		 *      If the ACK bit is set
4693		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4694		 *        a reset (unless the RST bit is set, if so drop
4695		 *        the segment and return)"
4696		 *
4697		 *  We do not send data with SYN, so that RFC-correct
4698		 *  test reduces to:
4699		 */
4700		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4701			goto reset_and_undo;
4702
4703		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4704		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4705			     tcp_time_stamp)) {
4706			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4707			goto reset_and_undo;
4708		}
4709
4710		/* Now ACK is acceptable.
4711		 *
4712		 * "If the RST bit is set
4713		 *    If the ACK was acceptable then signal the user "error:
4714		 *    connection reset", drop the segment, enter CLOSED state,
4715		 *    delete TCB, and return."
4716		 */
4717
4718		if (th->rst) {
4719			tcp_reset(sk);
4720			goto discard;
4721		}
4722
4723		/* rfc793:
4724		 *   "fifth, if neither of the SYN or RST bits is set then
4725		 *    drop the segment and return."
4726		 *
4727		 *    See note below!
4728		 *                                        --ANK(990513)
4729		 */
4730		if (!th->syn)
4731			goto discard_and_undo;
4732
4733		/* rfc793:
4734		 *   "If the SYN bit is on ...
4735		 *    are acceptable then ...
4736		 *    (our SYN has been ACKed), change the connection
4737		 *    state to ESTABLISHED..."
4738		 */
4739
4740		TCP_ECN_rcv_synack(tp, th);
4741
4742		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4743		tcp_ack(sk, skb, FLAG_SLOWPATH);
4744
4745		/* Ok.. it's good. Set up sequence numbers and
4746		 * move to established.
4747		 */
4748		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4749		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4750
4751		/* RFC1323: The window in SYN & SYN/ACK segments is
4752		 * never scaled.
4753		 */
4754		tp->snd_wnd = ntohs(th->window);
4755		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4756
4757		if (!tp->rx_opt.wscale_ok) {
4758			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4759			tp->window_clamp = min(tp->window_clamp, 65535U);
4760		}
4761
4762		if (tp->rx_opt.saw_tstamp) {
4763			tp->rx_opt.tstamp_ok	   = 1;
4764			tp->tcp_header_len =
4765				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4766			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4767			tcp_store_ts_recent(tp);
4768		} else {
4769			tp->tcp_header_len = sizeof(struct tcphdr);
4770		}
4771
4772		if (tcp_is_sack(tp) && sysctl_tcp_fack)
4773			tcp_enable_fack(tp);
4774
4775		tcp_mtup_init(sk);
4776		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4777		tcp_initialize_rcv_mss(sk);
4778
4779		/* Remember, tcp_poll() does not lock socket!
4780		 * Change state from SYN-SENT only after copied_seq
4781		 * is initialized. */
4782		tp->copied_seq = tp->rcv_nxt;
4783		smp_mb();
4784		tcp_set_state(sk, TCP_ESTABLISHED);
4785
4786		security_inet_conn_established(sk, skb);
4787
4788		/* Make sure socket is routed, for correct metrics.  */
4789		icsk->icsk_af_ops->rebuild_header(sk);
4790
4791		tcp_init_metrics(sk);
4792
4793		tcp_init_congestion_control(sk);
4794
4795		/* Prevent spurious tcp_cwnd_restart() on first data
4796		 * packet.
4797		 */
4798		tp->lsndtime = tcp_time_stamp;
4799
4800		tcp_init_buffer_space(sk);
4801
4802		if (sock_flag(sk, SOCK_KEEPOPEN))
4803			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4804
4805		if (!tp->rx_opt.snd_wscale)
4806			__tcp_fast_path_on(tp, tp->snd_wnd);
4807		else
4808			tp->pred_flags = 0;
4809
4810		if (!sock_flag(sk, SOCK_DEAD)) {
4811			sk->sk_state_change(sk);
4812			sk_wake_async(sk, 0, POLL_OUT);
4813		}
4814
4815		if (sk->sk_write_pending ||
4816		    icsk->icsk_accept_queue.rskq_defer_accept ||
4817		    icsk->icsk_ack.pingpong) {
4818			/* Save one ACK. Data will be ready after
4819			 * several ticks, if write_pending is set.
4820			 *
4821			 * It may be deleted, but with this feature tcpdumps
4822			 * look so _wonderfully_ clever, that I was not able
4823			 * to stand against the temptation 8)     --ANK
4824			 */
4825			inet_csk_schedule_ack(sk);
4826			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4827			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4828			tcp_incr_quickack(sk);
4829			tcp_enter_quickack_mode(sk);
4830			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4831						  TCP_DELACK_MAX, TCP_RTO_MAX);
4832
4833discard:
4834			__kfree_skb(skb);
4835			return 0;
4836		} else {
4837			tcp_send_ack(sk);
4838		}
4839		return -1;
4840	}
4841
4842	/* No ACK in the segment */
4843
4844	if (th->rst) {
4845		/* rfc793:
4846		 * "If the RST bit is set
4847		 *
4848		 *      Otherwise (no ACK) drop the segment and return."
4849		 */
4850
4851		goto discard_and_undo;
4852	}
4853
4854	/* PAWS check. */
4855	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4856		goto discard_and_undo;
4857
4858	if (th->syn) {
4859		/* We see SYN without ACK. It is attempt of
4860		 * simultaneous connect with crossed SYNs.
4861		 * Particularly, it can be connect to self.
4862		 */
4863		tcp_set_state(sk, TCP_SYN_RECV);
4864
4865		if (tp->rx_opt.saw_tstamp) {
4866			tp->rx_opt.tstamp_ok = 1;
4867			tcp_store_ts_recent(tp);
4868			tp->tcp_header_len =
4869				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4870		} else {
4871			tp->tcp_header_len = sizeof(struct tcphdr);
4872		}
4873
4874		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4875		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4876
4877		/* RFC1323: The window in SYN & SYN/ACK segments is
4878		 * never scaled.
4879		 */
4880		tp->snd_wnd    = ntohs(th->window);
4881		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4882		tp->max_window = tp->snd_wnd;
4883
4884		TCP_ECN_rcv_syn(tp, th);
4885
4886		tcp_mtup_init(sk);
4887		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4888		tcp_initialize_rcv_mss(sk);
4889
4890
4891		tcp_send_synack(sk);
4892#if 0
4893		/* Note, we could accept data and URG from this segment.
4894		 * There are no obstacles to make this.
4895		 *
4896		 * However, if we ignore data in ACKless segments sometimes,
4897		 * we have no reasons to accept it sometimes.
4898		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4899		 * is not flawless. So, discard packet for sanity.
4900		 * Uncomment this return to process the data.
4901		 */
4902		return -1;
4903#else
4904		goto discard;
4905#endif
4906	}
4907	/* "fifth, if neither of the SYN or RST bits is set then
4908	 * drop the segment and return."
4909	 */
4910
4911discard_and_undo:
4912	tcp_clear_options(&tp->rx_opt);
4913	tp->rx_opt.mss_clamp = saved_clamp;
4914	goto discard;
4915
4916reset_and_undo:
4917	tcp_clear_options(&tp->rx_opt);
4918	tp->rx_opt.mss_clamp = saved_clamp;
4919	return 1;
4920}
4921
4922
4923/*
4924 *	This function implements the receiving procedure of RFC 793 for
4925 *	all states except ESTABLISHED and TIME_WAIT.
4926 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4927 *	address independent.
4928 */
4929
4930int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4931			  struct tcphdr *th, unsigned len)
4932{
4933	struct tcp_sock *tp = tcp_sk(sk);
4934	struct inet_connection_sock *icsk = inet_csk(sk);
4935	int queued = 0;
4936
4937	tp->rx_opt.saw_tstamp = 0;
4938
4939	switch (sk->sk_state) {
4940	case TCP_CLOSE:
4941		goto discard;
4942
4943	case TCP_LISTEN:
4944		if (th->ack)
4945			return 1;
4946
4947		if (th->rst)
4948			goto discard;
4949
4950		if (th->syn) {
4951			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4952				return 1;
4953
4954			/* Now we have several options: In theory there is
4955			 * nothing else in the frame. KA9Q has an option to
4956			 * send data with the syn, BSD accepts data with the
4957			 * syn up to the [to be] advertised window and
4958			 * Solaris 2.1 gives you a protocol error. For now
4959			 * we just ignore it, that fits the spec precisely
4960			 * and avoids incompatibilities. It would be nice in
4961			 * future to drop through and process the data.
4962			 *
4963			 * Now that TTCP is starting to be used we ought to
4964			 * queue this data.
4965			 * But, this leaves one open to an easy denial of
4966			 * service attack, and SYN cookies can't defend
4967			 * against this problem. So, we drop the data
4968			 * in the interest of security over speed unless
4969			 * it's still in use.
4970			 */
4971			kfree_skb(skb);
4972			return 0;
4973		}
4974		goto discard;
4975
4976	case TCP_SYN_SENT:
4977		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4978		if (queued >= 0)
4979			return queued;
4980
4981		/* Do step6 onward by hand. */
4982		tcp_urg(sk, skb, th);
4983		__kfree_skb(skb);
4984		tcp_data_snd_check(sk);
4985		return 0;
4986	}
4987
4988	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4989	    tcp_paws_discard(sk, skb)) {
4990		if (!th->rst) {
4991			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4992			tcp_send_dupack(sk, skb);
4993			goto discard;
4994		}
4995		/* Reset is accepted even if it did not pass PAWS. */
4996	}
4997
4998	/* step 1: check sequence number */
4999	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5000		if (!th->rst)
5001			tcp_send_dupack(sk, skb);
5002		goto discard;
5003	}
5004
5005	/* step 2: check RST bit */
5006	if (th->rst) {
5007		tcp_reset(sk);
5008		goto discard;
5009	}
5010
5011	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5012
5013	/* step 3: check security and precedence [ignored] */
5014
5015	/*	step 4:
5016	 *
5017	 *	Check for a SYN in window.
5018	 */
5019	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5020		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5021		tcp_reset(sk);
5022		return 1;
5023	}
5024
5025	/* step 5: check the ACK field */
5026	if (th->ack) {
5027		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5028
5029		switch (sk->sk_state) {
5030		case TCP_SYN_RECV:
5031			if (acceptable) {
5032				tp->copied_seq = tp->rcv_nxt;
5033				smp_mb();
5034				tcp_set_state(sk, TCP_ESTABLISHED);
5035				sk->sk_state_change(sk);
5036
5037				/* Note, that this wakeup is only for marginal
5038				 * crossed SYN case. Passively open sockets
5039				 * are not waked up, because sk->sk_sleep ==
5040				 * NULL and sk->sk_socket == NULL.
5041				 */
5042				if (sk->sk_socket) {
5043					sk_wake_async(sk,0,POLL_OUT);
5044				}
5045
5046				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5047				tp->snd_wnd = ntohs(th->window) <<
5048					      tp->rx_opt.snd_wscale;
5049				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5050					    TCP_SKB_CB(skb)->seq);
5051
5052				/* tcp_ack considers this ACK as duplicate
5053				 * and does not calculate rtt.
5054				 * Fix it at least with timestamps.
5055				 */
5056				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5057				    !tp->srtt)
5058					tcp_ack_saw_tstamp(sk, 0);
5059
5060				if (tp->rx_opt.tstamp_ok)
5061					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5062
5063				/* Make sure socket is routed, for
5064				 * correct metrics.
5065				 */
5066				icsk->icsk_af_ops->rebuild_header(sk);
5067
5068				tcp_init_metrics(sk);
5069
5070				tcp_init_congestion_control(sk);
5071
5072				/* Prevent spurious tcp_cwnd_restart() on
5073				 * first data packet.
5074				 */
5075				tp->lsndtime = tcp_time_stamp;
5076
5077				tcp_mtup_init(sk);
5078				tcp_initialize_rcv_mss(sk);
5079				tcp_init_buffer_space(sk);
5080				tcp_fast_path_on(tp);
5081			} else {
5082				return 1;
5083			}
5084			break;
5085
5086		case TCP_FIN_WAIT1:
5087			if (tp->snd_una == tp->write_seq) {
5088				tcp_set_state(sk, TCP_FIN_WAIT2);
5089				sk->sk_shutdown |= SEND_SHUTDOWN;
5090				dst_confirm(sk->sk_dst_cache);
5091
5092				if (!sock_flag(sk, SOCK_DEAD))
5093					/* Wake up lingering close() */
5094					sk->sk_state_change(sk);
5095				else {
5096					int tmo;
5097
5098					if (tp->linger2 < 0 ||
5099					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5100					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5101						tcp_done(sk);
5102						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5103						return 1;
5104					}
5105
5106					tmo = tcp_fin_time(sk);
5107					if (tmo > TCP_TIMEWAIT_LEN) {
5108						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5109					} else if (th->fin || sock_owned_by_user(sk)) {
5110						/* Bad case. We could lose such FIN otherwise.
5111						 * It is not a big problem, but it looks confusing
5112						 * and not so rare event. We still can lose it now,
5113						 * if it spins in bh_lock_sock(), but it is really
5114						 * marginal case.
5115						 */
5116						inet_csk_reset_keepalive_timer(sk, tmo);
5117					} else {
5118						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5119						goto discard;
5120					}
5121				}
5122			}
5123			break;
5124
5125		case TCP_CLOSING:
5126			if (tp->snd_una == tp->write_seq) {
5127				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5128				goto discard;
5129			}
5130			break;
5131
5132		case TCP_LAST_ACK:
5133			if (tp->snd_una == tp->write_seq) {
5134				tcp_update_metrics(sk);
5135				tcp_done(sk);
5136				goto discard;
5137			}
5138			break;
5139		}
5140	} else
5141		goto discard;
5142
5143	/* step 6: check the URG bit */
5144	tcp_urg(sk, skb, th);
5145
5146	/* step 7: process the segment text */
5147	switch (sk->sk_state) {
5148	case TCP_CLOSE_WAIT:
5149	case TCP_CLOSING:
5150	case TCP_LAST_ACK:
5151		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5152			break;
5153	case TCP_FIN_WAIT1:
5154	case TCP_FIN_WAIT2:
5155		/* RFC 793 says to queue data in these states,
5156		 * RFC 1122 says we MUST send a reset.
5157		 * BSD 4.4 also does reset.
5158		 */
5159		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5160			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5161			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5162				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5163				tcp_reset(sk);
5164				return 1;
5165			}
5166		}
5167		/* Fall through */
5168	case TCP_ESTABLISHED:
5169		tcp_data_queue(sk, skb);
5170		queued = 1;
5171		break;
5172	}
5173
5174	/* tcp_data could move socket to TIME-WAIT */
5175	if (sk->sk_state != TCP_CLOSE) {
5176		tcp_data_snd_check(sk);
5177		tcp_ack_snd_check(sk);
5178	}
5179
5180	if (!queued) {
5181discard:
5182		__kfree_skb(skb);
5183	}
5184	return 0;
5185}
5186
5187EXPORT_SYMBOL(sysctl_tcp_ecn);
5188EXPORT_SYMBOL(sysctl_tcp_reordering);
5189EXPORT_SYMBOL(tcp_parse_options);
5190EXPORT_SYMBOL(tcp_rcv_established);
5191EXPORT_SYMBOL(tcp_rcv_state_process);
5192EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5193