tcp_input.c revision 923dd347b8904c24bcac89bf038ed4da87f8aa90
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 *		Pedro Roque	:	Fast Retransmit/Recovery.
24 *					Two receive queues.
25 *					Retransmit queue handled by TCP.
26 *					Better retransmit timer handling.
27 *					New congestion avoidance.
28 *					Header prediction.
29 *					Variable renaming.
30 *
31 *		Eric		:	Fast Retransmit.
32 *		Randy Scott	:	MSS option defines.
33 *		Eric Schenk	:	Fixes to slow start algorithm.
34 *		Eric Schenk	:	Yet another double ACK bug.
35 *		Eric Schenk	:	Delayed ACK bug fixes.
36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37 *		David S. Miller	:	Don't allow zero congestion window.
38 *		Eric Schenk	:	Fix retransmitter so that it sends
39 *					next packet on ack of previous packet.
40 *		Andi Kleen	:	Moved open_request checking here
41 *					and process RSTs for open_requests.
42 *		Andi Kleen	:	Better prune_queue, and other fixes.
43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
44 *					timestamps.
45 *		Andrey Savochkin:	Check sequence numbers correctly when
46 *					removing SACKs due to in sequence incoming
47 *					data segments.
48 *		Andi Kleen:		Make sure we never ack data there is not
49 *					enough room for. Also make this condition
50 *					a fatal error if it might still happen.
51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52 *					connections with MSS<min(MTU,ann. MSS)
53 *					work without delayed acks.
54 *		Andi Kleen:		Process packets with PSH set in the
55 *					fast path.
56 *		J Hadi Salim:		ECN support
57 *	 	Andrei Gurtov,
58 *		Pasi Sarolahti,
59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60 *					engine. Lots of bugs are found.
61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62 */
63
64#define pr_fmt(fmt) "TCP: " fmt
65
66#include <linux/mm.h>
67#include <linux/slab.h>
68#include <linux/module.h>
69#include <linux/sysctl.h>
70#include <linux/kernel.h>
71#include <net/dst.h>
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
76#include <net/netdma.h>
77
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83EXPORT_SYMBOL(sysctl_tcp_reordering);
84int sysctl_tcp_ecn __read_mostly = 2;
85EXPORT_SYMBOL(sysctl_tcp_ecn);
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
88int sysctl_tcp_adv_win_scale __read_mostly = 2;
89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91int sysctl_tcp_stdurg __read_mostly;
92int sysctl_tcp_rfc1337 __read_mostly;
93int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94int sysctl_tcp_frto __read_mostly = 2;
95int sysctl_tcp_frto_response __read_mostly;
96int sysctl_tcp_nometrics_save __read_mostly;
97
98int sysctl_tcp_thin_dupack __read_mostly;
99
100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101int sysctl_tcp_abc __read_mostly;
102int sysctl_tcp_early_retrans __read_mostly = 2;
103
104#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
105#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
106#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
107#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
108#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
109#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
110#define FLAG_ECE		0x40 /* ECE in this ACK				*/
111#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
112#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
113#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
114#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
115#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
116#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
117
118#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
121#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
122#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
123
124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127/* Adapt the MSS value used to make delayed ack decision to the
128 * real world.
129 */
130static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131{
132	struct inet_connection_sock *icsk = inet_csk(sk);
133	const unsigned int lss = icsk->icsk_ack.last_seg_size;
134	unsigned int len;
135
136	icsk->icsk_ack.last_seg_size = 0;
137
138	/* skb->len may jitter because of SACKs, even if peer
139	 * sends good full-sized frames.
140	 */
141	len = skb_shinfo(skb)->gso_size ? : skb->len;
142	if (len >= icsk->icsk_ack.rcv_mss) {
143		icsk->icsk_ack.rcv_mss = len;
144	} else {
145		/* Otherwise, we make more careful check taking into account,
146		 * that SACKs block is variable.
147		 *
148		 * "len" is invariant segment length, including TCP header.
149		 */
150		len += skb->data - skb_transport_header(skb);
151		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152		    /* If PSH is not set, packet should be
153		     * full sized, provided peer TCP is not badly broken.
154		     * This observation (if it is correct 8)) allows
155		     * to handle super-low mtu links fairly.
156		     */
157		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159			/* Subtract also invariant (if peer is RFC compliant),
160			 * tcp header plus fixed timestamp option length.
161			 * Resulting "len" is MSS free of SACK jitter.
162			 */
163			len -= tcp_sk(sk)->tcp_header_len;
164			icsk->icsk_ack.last_seg_size = len;
165			if (len == lss) {
166				icsk->icsk_ack.rcv_mss = len;
167				return;
168			}
169		}
170		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173	}
174}
175
176static void tcp_incr_quickack(struct sock *sk)
177{
178	struct inet_connection_sock *icsk = inet_csk(sk);
179	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180
181	if (quickacks == 0)
182		quickacks = 2;
183	if (quickacks > icsk->icsk_ack.quick)
184		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185}
186
187static void tcp_enter_quickack_mode(struct sock *sk)
188{
189	struct inet_connection_sock *icsk = inet_csk(sk);
190	tcp_incr_quickack(sk);
191	icsk->icsk_ack.pingpong = 0;
192	icsk->icsk_ack.ato = TCP_ATO_MIN;
193}
194
195/* Send ACKs quickly, if "quick" count is not exhausted
196 * and the session is not interactive.
197 */
198
199static inline int tcp_in_quickack_mode(const struct sock *sk)
200{
201	const struct inet_connection_sock *icsk = inet_csk(sk);
202	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203}
204
205static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
206{
207	if (tp->ecn_flags & TCP_ECN_OK)
208		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209}
210
211static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
212{
213	if (tcp_hdr(skb)->cwr)
214		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215}
216
217static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
218{
219	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220}
221
222static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
223{
224	if (!(tp->ecn_flags & TCP_ECN_OK))
225		return;
226
227	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
228	case INET_ECN_NOT_ECT:
229		/* Funny extension: if ECT is not set on a segment,
230		 * and we already seen ECT on a previous segment,
231		 * it is probably a retransmit.
232		 */
233		if (tp->ecn_flags & TCP_ECN_SEEN)
234			tcp_enter_quickack_mode((struct sock *)tp);
235		break;
236	case INET_ECN_CE:
237		tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
238		/* fallinto */
239	default:
240		tp->ecn_flags |= TCP_ECN_SEEN;
241	}
242}
243
244static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
245{
246	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
247		tp->ecn_flags &= ~TCP_ECN_OK;
248}
249
250static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
251{
252	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
253		tp->ecn_flags &= ~TCP_ECN_OK;
254}
255
256static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
257{
258	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
259		return 1;
260	return 0;
261}
262
263/* Buffer size and advertised window tuning.
264 *
265 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
266 */
267
268static void tcp_fixup_sndbuf(struct sock *sk)
269{
270	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
271
272	sndmem *= TCP_INIT_CWND;
273	if (sk->sk_sndbuf < sndmem)
274		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
275}
276
277/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
278 *
279 * All tcp_full_space() is split to two parts: "network" buffer, allocated
280 * forward and advertised in receiver window (tp->rcv_wnd) and
281 * "application buffer", required to isolate scheduling/application
282 * latencies from network.
283 * window_clamp is maximal advertised window. It can be less than
284 * tcp_full_space(), in this case tcp_full_space() - window_clamp
285 * is reserved for "application" buffer. The less window_clamp is
286 * the smoother our behaviour from viewpoint of network, but the lower
287 * throughput and the higher sensitivity of the connection to losses. 8)
288 *
289 * rcv_ssthresh is more strict window_clamp used at "slow start"
290 * phase to predict further behaviour of this connection.
291 * It is used for two goals:
292 * - to enforce header prediction at sender, even when application
293 *   requires some significant "application buffer". It is check #1.
294 * - to prevent pruning of receive queue because of misprediction
295 *   of receiver window. Check #2.
296 *
297 * The scheme does not work when sender sends good segments opening
298 * window and then starts to feed us spaghetti. But it should work
299 * in common situations. Otherwise, we have to rely on queue collapsing.
300 */
301
302/* Slow part of check#2. */
303static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
304{
305	struct tcp_sock *tp = tcp_sk(sk);
306	/* Optimize this! */
307	int truesize = tcp_win_from_space(skb->truesize) >> 1;
308	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
309
310	while (tp->rcv_ssthresh <= window) {
311		if (truesize <= skb->len)
312			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
313
314		truesize >>= 1;
315		window >>= 1;
316	}
317	return 0;
318}
319
320static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
321{
322	struct tcp_sock *tp = tcp_sk(sk);
323
324	/* Check #1 */
325	if (tp->rcv_ssthresh < tp->window_clamp &&
326	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
327	    !sk_under_memory_pressure(sk)) {
328		int incr;
329
330		/* Check #2. Increase window, if skb with such overhead
331		 * will fit to rcvbuf in future.
332		 */
333		if (tcp_win_from_space(skb->truesize) <= skb->len)
334			incr = 2 * tp->advmss;
335		else
336			incr = __tcp_grow_window(sk, skb);
337
338		if (incr) {
339			incr = max_t(int, incr, 2 * skb->len);
340			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
341					       tp->window_clamp);
342			inet_csk(sk)->icsk_ack.quick |= 1;
343		}
344	}
345}
346
347/* 3. Tuning rcvbuf, when connection enters established state. */
348
349static void tcp_fixup_rcvbuf(struct sock *sk)
350{
351	u32 mss = tcp_sk(sk)->advmss;
352	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
353	int rcvmem;
354
355	/* Limit to 10 segments if mss <= 1460,
356	 * or 14600/mss segments, with a minimum of two segments.
357	 */
358	if (mss > 1460)
359		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
360
361	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
362	while (tcp_win_from_space(rcvmem) < mss)
363		rcvmem += 128;
364
365	rcvmem *= icwnd;
366
367	if (sk->sk_rcvbuf < rcvmem)
368		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
369}
370
371/* 4. Try to fixup all. It is made immediately after connection enters
372 *    established state.
373 */
374static void tcp_init_buffer_space(struct sock *sk)
375{
376	struct tcp_sock *tp = tcp_sk(sk);
377	int maxwin;
378
379	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
380		tcp_fixup_rcvbuf(sk);
381	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
382		tcp_fixup_sndbuf(sk);
383
384	tp->rcvq_space.space = tp->rcv_wnd;
385
386	maxwin = tcp_full_space(sk);
387
388	if (tp->window_clamp >= maxwin) {
389		tp->window_clamp = maxwin;
390
391		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
392			tp->window_clamp = max(maxwin -
393					       (maxwin >> sysctl_tcp_app_win),
394					       4 * tp->advmss);
395	}
396
397	/* Force reservation of one segment. */
398	if (sysctl_tcp_app_win &&
399	    tp->window_clamp > 2 * tp->advmss &&
400	    tp->window_clamp + tp->advmss > maxwin)
401		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
402
403	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
404	tp->snd_cwnd_stamp = tcp_time_stamp;
405}
406
407/* 5. Recalculate window clamp after socket hit its memory bounds. */
408static void tcp_clamp_window(struct sock *sk)
409{
410	struct tcp_sock *tp = tcp_sk(sk);
411	struct inet_connection_sock *icsk = inet_csk(sk);
412
413	icsk->icsk_ack.quick = 0;
414
415	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
416	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
417	    !sk_under_memory_pressure(sk) &&
418	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
419		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
420				    sysctl_tcp_rmem[2]);
421	}
422	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
423		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
424}
425
426/* Initialize RCV_MSS value.
427 * RCV_MSS is an our guess about MSS used by the peer.
428 * We haven't any direct information about the MSS.
429 * It's better to underestimate the RCV_MSS rather than overestimate.
430 * Overestimations make us ACKing less frequently than needed.
431 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
432 */
433void tcp_initialize_rcv_mss(struct sock *sk)
434{
435	const struct tcp_sock *tp = tcp_sk(sk);
436	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
437
438	hint = min(hint, tp->rcv_wnd / 2);
439	hint = min(hint, TCP_MSS_DEFAULT);
440	hint = max(hint, TCP_MIN_MSS);
441
442	inet_csk(sk)->icsk_ack.rcv_mss = hint;
443}
444EXPORT_SYMBOL(tcp_initialize_rcv_mss);
445
446/* Receiver "autotuning" code.
447 *
448 * The algorithm for RTT estimation w/o timestamps is based on
449 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
450 * <http://public.lanl.gov/radiant/pubs.html#DRS>
451 *
452 * More detail on this code can be found at
453 * <http://staff.psc.edu/jheffner/>,
454 * though this reference is out of date.  A new paper
455 * is pending.
456 */
457static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
458{
459	u32 new_sample = tp->rcv_rtt_est.rtt;
460	long m = sample;
461
462	if (m == 0)
463		m = 1;
464
465	if (new_sample != 0) {
466		/* If we sample in larger samples in the non-timestamp
467		 * case, we could grossly overestimate the RTT especially
468		 * with chatty applications or bulk transfer apps which
469		 * are stalled on filesystem I/O.
470		 *
471		 * Also, since we are only going for a minimum in the
472		 * non-timestamp case, we do not smooth things out
473		 * else with timestamps disabled convergence takes too
474		 * long.
475		 */
476		if (!win_dep) {
477			m -= (new_sample >> 3);
478			new_sample += m;
479		} else {
480			m <<= 3;
481			if (m < new_sample)
482				new_sample = m;
483		}
484	} else {
485		/* No previous measure. */
486		new_sample = m << 3;
487	}
488
489	if (tp->rcv_rtt_est.rtt != new_sample)
490		tp->rcv_rtt_est.rtt = new_sample;
491}
492
493static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
494{
495	if (tp->rcv_rtt_est.time == 0)
496		goto new_measure;
497	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
498		return;
499	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
500
501new_measure:
502	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
503	tp->rcv_rtt_est.time = tcp_time_stamp;
504}
505
506static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
507					  const struct sk_buff *skb)
508{
509	struct tcp_sock *tp = tcp_sk(sk);
510	if (tp->rx_opt.rcv_tsecr &&
511	    (TCP_SKB_CB(skb)->end_seq -
512	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
513		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
514}
515
516/*
517 * This function should be called every time data is copied to user space.
518 * It calculates the appropriate TCP receive buffer space.
519 */
520void tcp_rcv_space_adjust(struct sock *sk)
521{
522	struct tcp_sock *tp = tcp_sk(sk);
523	int time;
524	int space;
525
526	if (tp->rcvq_space.time == 0)
527		goto new_measure;
528
529	time = tcp_time_stamp - tp->rcvq_space.time;
530	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
531		return;
532
533	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
534
535	space = max(tp->rcvq_space.space, space);
536
537	if (tp->rcvq_space.space != space) {
538		int rcvmem;
539
540		tp->rcvq_space.space = space;
541
542		if (sysctl_tcp_moderate_rcvbuf &&
543		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
544			int new_clamp = space;
545
546			/* Receive space grows, normalize in order to
547			 * take into account packet headers and sk_buff
548			 * structure overhead.
549			 */
550			space /= tp->advmss;
551			if (!space)
552				space = 1;
553			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
554			while (tcp_win_from_space(rcvmem) < tp->advmss)
555				rcvmem += 128;
556			space *= rcvmem;
557			space = min(space, sysctl_tcp_rmem[2]);
558			if (space > sk->sk_rcvbuf) {
559				sk->sk_rcvbuf = space;
560
561				/* Make the window clamp follow along.  */
562				tp->window_clamp = new_clamp;
563			}
564		}
565	}
566
567new_measure:
568	tp->rcvq_space.seq = tp->copied_seq;
569	tp->rcvq_space.time = tcp_time_stamp;
570}
571
572/* There is something which you must keep in mind when you analyze the
573 * behavior of the tp->ato delayed ack timeout interval.  When a
574 * connection starts up, we want to ack as quickly as possible.  The
575 * problem is that "good" TCP's do slow start at the beginning of data
576 * transmission.  The means that until we send the first few ACK's the
577 * sender will sit on his end and only queue most of his data, because
578 * he can only send snd_cwnd unacked packets at any given time.  For
579 * each ACK we send, he increments snd_cwnd and transmits more of his
580 * queue.  -DaveM
581 */
582static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
583{
584	struct tcp_sock *tp = tcp_sk(sk);
585	struct inet_connection_sock *icsk = inet_csk(sk);
586	u32 now;
587
588	inet_csk_schedule_ack(sk);
589
590	tcp_measure_rcv_mss(sk, skb);
591
592	tcp_rcv_rtt_measure(tp);
593
594	now = tcp_time_stamp;
595
596	if (!icsk->icsk_ack.ato) {
597		/* The _first_ data packet received, initialize
598		 * delayed ACK engine.
599		 */
600		tcp_incr_quickack(sk);
601		icsk->icsk_ack.ato = TCP_ATO_MIN;
602	} else {
603		int m = now - icsk->icsk_ack.lrcvtime;
604
605		if (m <= TCP_ATO_MIN / 2) {
606			/* The fastest case is the first. */
607			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
608		} else if (m < icsk->icsk_ack.ato) {
609			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
610			if (icsk->icsk_ack.ato > icsk->icsk_rto)
611				icsk->icsk_ack.ato = icsk->icsk_rto;
612		} else if (m > icsk->icsk_rto) {
613			/* Too long gap. Apparently sender failed to
614			 * restart window, so that we send ACKs quickly.
615			 */
616			tcp_incr_quickack(sk);
617			sk_mem_reclaim(sk);
618		}
619	}
620	icsk->icsk_ack.lrcvtime = now;
621
622	TCP_ECN_check_ce(tp, skb);
623
624	if (skb->len >= 128)
625		tcp_grow_window(sk, skb);
626}
627
628/* Called to compute a smoothed rtt estimate. The data fed to this
629 * routine either comes from timestamps, or from segments that were
630 * known _not_ to have been retransmitted [see Karn/Partridge
631 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
632 * piece by Van Jacobson.
633 * NOTE: the next three routines used to be one big routine.
634 * To save cycles in the RFC 1323 implementation it was better to break
635 * it up into three procedures. -- erics
636 */
637static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
638{
639	struct tcp_sock *tp = tcp_sk(sk);
640	long m = mrtt; /* RTT */
641
642	/*	The following amusing code comes from Jacobson's
643	 *	article in SIGCOMM '88.  Note that rtt and mdev
644	 *	are scaled versions of rtt and mean deviation.
645	 *	This is designed to be as fast as possible
646	 *	m stands for "measurement".
647	 *
648	 *	On a 1990 paper the rto value is changed to:
649	 *	RTO = rtt + 4 * mdev
650	 *
651	 * Funny. This algorithm seems to be very broken.
652	 * These formulae increase RTO, when it should be decreased, increase
653	 * too slowly, when it should be increased quickly, decrease too quickly
654	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
655	 * does not matter how to _calculate_ it. Seems, it was trap
656	 * that VJ failed to avoid. 8)
657	 */
658	if (m == 0)
659		m = 1;
660	if (tp->srtt != 0) {
661		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
662		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
663		if (m < 0) {
664			m = -m;		/* m is now abs(error) */
665			m -= (tp->mdev >> 2);   /* similar update on mdev */
666			/* This is similar to one of Eifel findings.
667			 * Eifel blocks mdev updates when rtt decreases.
668			 * This solution is a bit different: we use finer gain
669			 * for mdev in this case (alpha*beta).
670			 * Like Eifel it also prevents growth of rto,
671			 * but also it limits too fast rto decreases,
672			 * happening in pure Eifel.
673			 */
674			if (m > 0)
675				m >>= 3;
676		} else {
677			m -= (tp->mdev >> 2);   /* similar update on mdev */
678		}
679		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
680		if (tp->mdev > tp->mdev_max) {
681			tp->mdev_max = tp->mdev;
682			if (tp->mdev_max > tp->rttvar)
683				tp->rttvar = tp->mdev_max;
684		}
685		if (after(tp->snd_una, tp->rtt_seq)) {
686			if (tp->mdev_max < tp->rttvar)
687				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
688			tp->rtt_seq = tp->snd_nxt;
689			tp->mdev_max = tcp_rto_min(sk);
690		}
691	} else {
692		/* no previous measure. */
693		tp->srtt = m << 3;	/* take the measured time to be rtt */
694		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
695		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
696		tp->rtt_seq = tp->snd_nxt;
697	}
698}
699
700/* Calculate rto without backoff.  This is the second half of Van Jacobson's
701 * routine referred to above.
702 */
703static inline void tcp_set_rto(struct sock *sk)
704{
705	const struct tcp_sock *tp = tcp_sk(sk);
706	/* Old crap is replaced with new one. 8)
707	 *
708	 * More seriously:
709	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
710	 *    It cannot be less due to utterly erratic ACK generation made
711	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
712	 *    to do with delayed acks, because at cwnd>2 true delack timeout
713	 *    is invisible. Actually, Linux-2.4 also generates erratic
714	 *    ACKs in some circumstances.
715	 */
716	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
717
718	/* 2. Fixups made earlier cannot be right.
719	 *    If we do not estimate RTO correctly without them,
720	 *    all the algo is pure shit and should be replaced
721	 *    with correct one. It is exactly, which we pretend to do.
722	 */
723
724	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
725	 * guarantees that rto is higher.
726	 */
727	tcp_bound_rto(sk);
728}
729
730/* Save metrics learned by this TCP session.
731   This function is called only, when TCP finishes successfully
732   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
733 */
734void tcp_update_metrics(struct sock *sk)
735{
736	struct tcp_sock *tp = tcp_sk(sk);
737	struct dst_entry *dst = __sk_dst_get(sk);
738
739	if (sysctl_tcp_nometrics_save)
740		return;
741
742	dst_confirm(dst);
743
744	if (dst && (dst->flags & DST_HOST)) {
745		const struct inet_connection_sock *icsk = inet_csk(sk);
746		int m;
747		unsigned long rtt;
748
749		if (icsk->icsk_backoff || !tp->srtt) {
750			/* This session failed to estimate rtt. Why?
751			 * Probably, no packets returned in time.
752			 * Reset our results.
753			 */
754			if (!(dst_metric_locked(dst, RTAX_RTT)))
755				dst_metric_set(dst, RTAX_RTT, 0);
756			return;
757		}
758
759		rtt = dst_metric_rtt(dst, RTAX_RTT);
760		m = rtt - tp->srtt;
761
762		/* If newly calculated rtt larger than stored one,
763		 * store new one. Otherwise, use EWMA. Remember,
764		 * rtt overestimation is always better than underestimation.
765		 */
766		if (!(dst_metric_locked(dst, RTAX_RTT))) {
767			if (m <= 0)
768				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
769			else
770				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
771		}
772
773		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
774			unsigned long var;
775			if (m < 0)
776				m = -m;
777
778			/* Scale deviation to rttvar fixed point */
779			m >>= 1;
780			if (m < tp->mdev)
781				m = tp->mdev;
782
783			var = dst_metric_rtt(dst, RTAX_RTTVAR);
784			if (m >= var)
785				var = m;
786			else
787				var -= (var - m) >> 2;
788
789			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
790		}
791
792		if (tcp_in_initial_slowstart(tp)) {
793			/* Slow start still did not finish. */
794			if (dst_metric(dst, RTAX_SSTHRESH) &&
795			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
796			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
797				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
798			if (!dst_metric_locked(dst, RTAX_CWND) &&
799			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
800				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
801		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
802			   icsk->icsk_ca_state == TCP_CA_Open) {
803			/* Cong. avoidance phase, cwnd is reliable. */
804			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
805				dst_metric_set(dst, RTAX_SSTHRESH,
806					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
807			if (!dst_metric_locked(dst, RTAX_CWND))
808				dst_metric_set(dst, RTAX_CWND,
809					       (dst_metric(dst, RTAX_CWND) +
810						tp->snd_cwnd) >> 1);
811		} else {
812			/* Else slow start did not finish, cwnd is non-sense,
813			   ssthresh may be also invalid.
814			 */
815			if (!dst_metric_locked(dst, RTAX_CWND))
816				dst_metric_set(dst, RTAX_CWND,
817					       (dst_metric(dst, RTAX_CWND) +
818						tp->snd_ssthresh) >> 1);
819			if (dst_metric(dst, RTAX_SSTHRESH) &&
820			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
821			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
822				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
823		}
824
825		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
826			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
827			    tp->reordering != sysctl_tcp_reordering)
828				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
829		}
830	}
831}
832
833__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
834{
835	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
836
837	if (!cwnd)
838		cwnd = TCP_INIT_CWND;
839	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
840}
841
842/* Set slow start threshold and cwnd not falling to slow start */
843void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
844{
845	struct tcp_sock *tp = tcp_sk(sk);
846	const struct inet_connection_sock *icsk = inet_csk(sk);
847
848	tp->prior_ssthresh = 0;
849	tp->bytes_acked = 0;
850	if (icsk->icsk_ca_state < TCP_CA_CWR) {
851		tp->undo_marker = 0;
852		if (set_ssthresh)
853			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
854		tp->snd_cwnd = min(tp->snd_cwnd,
855				   tcp_packets_in_flight(tp) + 1U);
856		tp->snd_cwnd_cnt = 0;
857		tp->high_seq = tp->snd_nxt;
858		tp->snd_cwnd_stamp = tcp_time_stamp;
859		TCP_ECN_queue_cwr(tp);
860
861		tcp_set_ca_state(sk, TCP_CA_CWR);
862	}
863}
864
865/*
866 * Packet counting of FACK is based on in-order assumptions, therefore TCP
867 * disables it when reordering is detected
868 */
869static void tcp_disable_fack(struct tcp_sock *tp)
870{
871	/* RFC3517 uses different metric in lost marker => reset on change */
872	if (tcp_is_fack(tp))
873		tp->lost_skb_hint = NULL;
874	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
875}
876
877/* Take a notice that peer is sending D-SACKs */
878static void tcp_dsack_seen(struct tcp_sock *tp)
879{
880	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
881}
882
883/* Initialize metrics on socket. */
884
885static void tcp_init_metrics(struct sock *sk)
886{
887	struct tcp_sock *tp = tcp_sk(sk);
888	struct dst_entry *dst = __sk_dst_get(sk);
889
890	if (dst == NULL)
891		goto reset;
892
893	dst_confirm(dst);
894
895	if (dst_metric_locked(dst, RTAX_CWND))
896		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
897	if (dst_metric(dst, RTAX_SSTHRESH)) {
898		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
899		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
900			tp->snd_ssthresh = tp->snd_cwnd_clamp;
901	} else {
902		/* ssthresh may have been reduced unnecessarily during.
903		 * 3WHS. Restore it back to its initial default.
904		 */
905		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
906	}
907	if (dst_metric(dst, RTAX_REORDERING) &&
908	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
909		tcp_disable_fack(tp);
910		tcp_disable_early_retrans(tp);
911		tp->reordering = dst_metric(dst, RTAX_REORDERING);
912	}
913
914	if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
915		goto reset;
916
917	/* Initial rtt is determined from SYN,SYN-ACK.
918	 * The segment is small and rtt may appear much
919	 * less than real one. Use per-dst memory
920	 * to make it more realistic.
921	 *
922	 * A bit of theory. RTT is time passed after "normal" sized packet
923	 * is sent until it is ACKed. In normal circumstances sending small
924	 * packets force peer to delay ACKs and calculation is correct too.
925	 * The algorithm is adaptive and, provided we follow specs, it
926	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
927	 * tricks sort of "quick acks" for time long enough to decrease RTT
928	 * to low value, and then abruptly stops to do it and starts to delay
929	 * ACKs, wait for troubles.
930	 */
931	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
932		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
933		tp->rtt_seq = tp->snd_nxt;
934	}
935	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
936		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
937		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
938	}
939	tcp_set_rto(sk);
940reset:
941	if (tp->srtt == 0) {
942		/* RFC6298: 5.7 We've failed to get a valid RTT sample from
943		 * 3WHS. This is most likely due to retransmission,
944		 * including spurious one. Reset the RTO back to 3secs
945		 * from the more aggressive 1sec to avoid more spurious
946		 * retransmission.
947		 */
948		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
949		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
950	}
951	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
952	 * retransmitted. In light of RFC6298 more aggressive 1sec
953	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
954	 * retransmission has occurred.
955	 */
956	if (tp->total_retrans > 1)
957		tp->snd_cwnd = 1;
958	else
959		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
960	tp->snd_cwnd_stamp = tcp_time_stamp;
961}
962
963static void tcp_update_reordering(struct sock *sk, const int metric,
964				  const int ts)
965{
966	struct tcp_sock *tp = tcp_sk(sk);
967	if (metric > tp->reordering) {
968		int mib_idx;
969
970		tp->reordering = min(TCP_MAX_REORDERING, metric);
971
972		/* This exciting event is worth to be remembered. 8) */
973		if (ts)
974			mib_idx = LINUX_MIB_TCPTSREORDER;
975		else if (tcp_is_reno(tp))
976			mib_idx = LINUX_MIB_TCPRENOREORDER;
977		else if (tcp_is_fack(tp))
978			mib_idx = LINUX_MIB_TCPFACKREORDER;
979		else
980			mib_idx = LINUX_MIB_TCPSACKREORDER;
981
982		NET_INC_STATS_BH(sock_net(sk), mib_idx);
983#if FASTRETRANS_DEBUG > 1
984		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
985		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
986		       tp->reordering,
987		       tp->fackets_out,
988		       tp->sacked_out,
989		       tp->undo_marker ? tp->undo_retrans : 0);
990#endif
991		tcp_disable_fack(tp);
992	}
993
994	if (metric > 0)
995		tcp_disable_early_retrans(tp);
996}
997
998/* This must be called before lost_out is incremented */
999static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1000{
1001	if ((tp->retransmit_skb_hint == NULL) ||
1002	    before(TCP_SKB_CB(skb)->seq,
1003		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1004		tp->retransmit_skb_hint = skb;
1005
1006	if (!tp->lost_out ||
1007	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1008		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1009}
1010
1011static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1012{
1013	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1014		tcp_verify_retransmit_hint(tp, skb);
1015
1016		tp->lost_out += tcp_skb_pcount(skb);
1017		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1018	}
1019}
1020
1021static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1022					    struct sk_buff *skb)
1023{
1024	tcp_verify_retransmit_hint(tp, skb);
1025
1026	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1027		tp->lost_out += tcp_skb_pcount(skb);
1028		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1029	}
1030}
1031
1032/* This procedure tags the retransmission queue when SACKs arrive.
1033 *
1034 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1035 * Packets in queue with these bits set are counted in variables
1036 * sacked_out, retrans_out and lost_out, correspondingly.
1037 *
1038 * Valid combinations are:
1039 * Tag  InFlight	Description
1040 * 0	1		- orig segment is in flight.
1041 * S	0		- nothing flies, orig reached receiver.
1042 * L	0		- nothing flies, orig lost by net.
1043 * R	2		- both orig and retransmit are in flight.
1044 * L|R	1		- orig is lost, retransmit is in flight.
1045 * S|R  1		- orig reached receiver, retrans is still in flight.
1046 * (L|S|R is logically valid, it could occur when L|R is sacked,
1047 *  but it is equivalent to plain S and code short-curcuits it to S.
1048 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1049 *
1050 * These 6 states form finite state machine, controlled by the following events:
1051 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1052 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1053 * 3. Loss detection event of two flavors:
1054 *	A. Scoreboard estimator decided the packet is lost.
1055 *	   A'. Reno "three dupacks" marks head of queue lost.
1056 *	   A''. Its FACK modification, head until snd.fack is lost.
1057 *	B. SACK arrives sacking SND.NXT at the moment, when the
1058 *	   segment was retransmitted.
1059 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1060 *
1061 * It is pleasant to note, that state diagram turns out to be commutative,
1062 * so that we are allowed not to be bothered by order of our actions,
1063 * when multiple events arrive simultaneously. (see the function below).
1064 *
1065 * Reordering detection.
1066 * --------------------
1067 * Reordering metric is maximal distance, which a packet can be displaced
1068 * in packet stream. With SACKs we can estimate it:
1069 *
1070 * 1. SACK fills old hole and the corresponding segment was not
1071 *    ever retransmitted -> reordering. Alas, we cannot use it
1072 *    when segment was retransmitted.
1073 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1074 *    for retransmitted and already SACKed segment -> reordering..
1075 * Both of these heuristics are not used in Loss state, when we cannot
1076 * account for retransmits accurately.
1077 *
1078 * SACK block validation.
1079 * ----------------------
1080 *
1081 * SACK block range validation checks that the received SACK block fits to
1082 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1083 * Note that SND.UNA is not included to the range though being valid because
1084 * it means that the receiver is rather inconsistent with itself reporting
1085 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1086 * perfectly valid, however, in light of RFC2018 which explicitly states
1087 * that "SACK block MUST reflect the newest segment.  Even if the newest
1088 * segment is going to be discarded ...", not that it looks very clever
1089 * in case of head skb. Due to potentional receiver driven attacks, we
1090 * choose to avoid immediate execution of a walk in write queue due to
1091 * reneging and defer head skb's loss recovery to standard loss recovery
1092 * procedure that will eventually trigger (nothing forbids us doing this).
1093 *
1094 * Implements also blockage to start_seq wrap-around. Problem lies in the
1095 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1096 * there's no guarantee that it will be before snd_nxt (n). The problem
1097 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1098 * wrap (s_w):
1099 *
1100 *         <- outs wnd ->                          <- wrapzone ->
1101 *         u     e      n                         u_w   e_w  s n_w
1102 *         |     |      |                          |     |   |  |
1103 * |<------------+------+----- TCP seqno space --------------+---------->|
1104 * ...-- <2^31 ->|                                           |<--------...
1105 * ...---- >2^31 ------>|                                    |<--------...
1106 *
1107 * Current code wouldn't be vulnerable but it's better still to discard such
1108 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1109 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1110 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1111 * equal to the ideal case (infinite seqno space without wrap caused issues).
1112 *
1113 * With D-SACK the lower bound is extended to cover sequence space below
1114 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1115 * again, D-SACK block must not to go across snd_una (for the same reason as
1116 * for the normal SACK blocks, explained above). But there all simplicity
1117 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1118 * fully below undo_marker they do not affect behavior in anyway and can
1119 * therefore be safely ignored. In rare cases (which are more or less
1120 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1121 * fragmentation and packet reordering past skb's retransmission. To consider
1122 * them correctly, the acceptable range must be extended even more though
1123 * the exact amount is rather hard to quantify. However, tp->max_window can
1124 * be used as an exaggerated estimate.
1125 */
1126static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1127				  u32 start_seq, u32 end_seq)
1128{
1129	/* Too far in future, or reversed (interpretation is ambiguous) */
1130	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1131		return 0;
1132
1133	/* Nasty start_seq wrap-around check (see comments above) */
1134	if (!before(start_seq, tp->snd_nxt))
1135		return 0;
1136
1137	/* In outstanding window? ...This is valid exit for D-SACKs too.
1138	 * start_seq == snd_una is non-sensical (see comments above)
1139	 */
1140	if (after(start_seq, tp->snd_una))
1141		return 1;
1142
1143	if (!is_dsack || !tp->undo_marker)
1144		return 0;
1145
1146	/* ...Then it's D-SACK, and must reside below snd_una completely */
1147	if (after(end_seq, tp->snd_una))
1148		return 0;
1149
1150	if (!before(start_seq, tp->undo_marker))
1151		return 1;
1152
1153	/* Too old */
1154	if (!after(end_seq, tp->undo_marker))
1155		return 0;
1156
1157	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1158	 *   start_seq < undo_marker and end_seq >= undo_marker.
1159	 */
1160	return !before(start_seq, end_seq - tp->max_window);
1161}
1162
1163/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1164 * Event "B". Later note: FACK people cheated me again 8), we have to account
1165 * for reordering! Ugly, but should help.
1166 *
1167 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1168 * less than what is now known to be received by the other end (derived from
1169 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1170 * retransmitted skbs to avoid some costly processing per ACKs.
1171 */
1172static void tcp_mark_lost_retrans(struct sock *sk)
1173{
1174	const struct inet_connection_sock *icsk = inet_csk(sk);
1175	struct tcp_sock *tp = tcp_sk(sk);
1176	struct sk_buff *skb;
1177	int cnt = 0;
1178	u32 new_low_seq = tp->snd_nxt;
1179	u32 received_upto = tcp_highest_sack_seq(tp);
1180
1181	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1182	    !after(received_upto, tp->lost_retrans_low) ||
1183	    icsk->icsk_ca_state != TCP_CA_Recovery)
1184		return;
1185
1186	tcp_for_write_queue(skb, sk) {
1187		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1188
1189		if (skb == tcp_send_head(sk))
1190			break;
1191		if (cnt == tp->retrans_out)
1192			break;
1193		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1194			continue;
1195
1196		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1197			continue;
1198
1199		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1200		 * constraint here (see above) but figuring out that at
1201		 * least tp->reordering SACK blocks reside between ack_seq
1202		 * and received_upto is not easy task to do cheaply with
1203		 * the available datastructures.
1204		 *
1205		 * Whether FACK should check here for tp->reordering segs
1206		 * in-between one could argue for either way (it would be
1207		 * rather simple to implement as we could count fack_count
1208		 * during the walk and do tp->fackets_out - fack_count).
1209		 */
1210		if (after(received_upto, ack_seq)) {
1211			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1212			tp->retrans_out -= tcp_skb_pcount(skb);
1213
1214			tcp_skb_mark_lost_uncond_verify(tp, skb);
1215			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1216		} else {
1217			if (before(ack_seq, new_low_seq))
1218				new_low_seq = ack_seq;
1219			cnt += tcp_skb_pcount(skb);
1220		}
1221	}
1222
1223	if (tp->retrans_out)
1224		tp->lost_retrans_low = new_low_seq;
1225}
1226
1227static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1228			   struct tcp_sack_block_wire *sp, int num_sacks,
1229			   u32 prior_snd_una)
1230{
1231	struct tcp_sock *tp = tcp_sk(sk);
1232	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1233	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1234	int dup_sack = 0;
1235
1236	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1237		dup_sack = 1;
1238		tcp_dsack_seen(tp);
1239		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1240	} else if (num_sacks > 1) {
1241		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1242		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1243
1244		if (!after(end_seq_0, end_seq_1) &&
1245		    !before(start_seq_0, start_seq_1)) {
1246			dup_sack = 1;
1247			tcp_dsack_seen(tp);
1248			NET_INC_STATS_BH(sock_net(sk),
1249					LINUX_MIB_TCPDSACKOFORECV);
1250		}
1251	}
1252
1253	/* D-SACK for already forgotten data... Do dumb counting. */
1254	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1255	    !after(end_seq_0, prior_snd_una) &&
1256	    after(end_seq_0, tp->undo_marker))
1257		tp->undo_retrans--;
1258
1259	return dup_sack;
1260}
1261
1262struct tcp_sacktag_state {
1263	int reord;
1264	int fack_count;
1265	int flag;
1266};
1267
1268/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1269 * the incoming SACK may not exactly match but we can find smaller MSS
1270 * aligned portion of it that matches. Therefore we might need to fragment
1271 * which may fail and creates some hassle (caller must handle error case
1272 * returns).
1273 *
1274 * FIXME: this could be merged to shift decision code
1275 */
1276static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1277				 u32 start_seq, u32 end_seq)
1278{
1279	int in_sack, err;
1280	unsigned int pkt_len;
1281	unsigned int mss;
1282
1283	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1284		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1285
1286	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1287	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1288		mss = tcp_skb_mss(skb);
1289		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1290
1291		if (!in_sack) {
1292			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1293			if (pkt_len < mss)
1294				pkt_len = mss;
1295		} else {
1296			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1297			if (pkt_len < mss)
1298				return -EINVAL;
1299		}
1300
1301		/* Round if necessary so that SACKs cover only full MSSes
1302		 * and/or the remaining small portion (if present)
1303		 */
1304		if (pkt_len > mss) {
1305			unsigned int new_len = (pkt_len / mss) * mss;
1306			if (!in_sack && new_len < pkt_len) {
1307				new_len += mss;
1308				if (new_len > skb->len)
1309					return 0;
1310			}
1311			pkt_len = new_len;
1312		}
1313		err = tcp_fragment(sk, skb, pkt_len, mss);
1314		if (err < 0)
1315			return err;
1316	}
1317
1318	return in_sack;
1319}
1320
1321/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1322static u8 tcp_sacktag_one(struct sock *sk,
1323			  struct tcp_sacktag_state *state, u8 sacked,
1324			  u32 start_seq, u32 end_seq,
1325			  int dup_sack, int pcount)
1326{
1327	struct tcp_sock *tp = tcp_sk(sk);
1328	int fack_count = state->fack_count;
1329
1330	/* Account D-SACK for retransmitted packet. */
1331	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1332		if (tp->undo_marker && tp->undo_retrans &&
1333		    after(end_seq, tp->undo_marker))
1334			tp->undo_retrans--;
1335		if (sacked & TCPCB_SACKED_ACKED)
1336			state->reord = min(fack_count, state->reord);
1337	}
1338
1339	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1340	if (!after(end_seq, tp->snd_una))
1341		return sacked;
1342
1343	if (!(sacked & TCPCB_SACKED_ACKED)) {
1344		if (sacked & TCPCB_SACKED_RETRANS) {
1345			/* If the segment is not tagged as lost,
1346			 * we do not clear RETRANS, believing
1347			 * that retransmission is still in flight.
1348			 */
1349			if (sacked & TCPCB_LOST) {
1350				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1351				tp->lost_out -= pcount;
1352				tp->retrans_out -= pcount;
1353			}
1354		} else {
1355			if (!(sacked & TCPCB_RETRANS)) {
1356				/* New sack for not retransmitted frame,
1357				 * which was in hole. It is reordering.
1358				 */
1359				if (before(start_seq,
1360					   tcp_highest_sack_seq(tp)))
1361					state->reord = min(fack_count,
1362							   state->reord);
1363
1364				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1365				if (!after(end_seq, tp->frto_highmark))
1366					state->flag |= FLAG_ONLY_ORIG_SACKED;
1367			}
1368
1369			if (sacked & TCPCB_LOST) {
1370				sacked &= ~TCPCB_LOST;
1371				tp->lost_out -= pcount;
1372			}
1373		}
1374
1375		sacked |= TCPCB_SACKED_ACKED;
1376		state->flag |= FLAG_DATA_SACKED;
1377		tp->sacked_out += pcount;
1378
1379		fack_count += pcount;
1380
1381		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1382		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1383		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1384			tp->lost_cnt_hint += pcount;
1385
1386		if (fack_count > tp->fackets_out)
1387			tp->fackets_out = fack_count;
1388	}
1389
1390	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1391	 * frames and clear it. undo_retrans is decreased above, L|R frames
1392	 * are accounted above as well.
1393	 */
1394	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1395		sacked &= ~TCPCB_SACKED_RETRANS;
1396		tp->retrans_out -= pcount;
1397	}
1398
1399	return sacked;
1400}
1401
1402/* Shift newly-SACKed bytes from this skb to the immediately previous
1403 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1404 */
1405static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1406			   struct tcp_sacktag_state *state,
1407			   unsigned int pcount, int shifted, int mss,
1408			   int dup_sack)
1409{
1410	struct tcp_sock *tp = tcp_sk(sk);
1411	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1412	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1413	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1414
1415	BUG_ON(!pcount);
1416
1417	/* Adjust counters and hints for the newly sacked sequence
1418	 * range but discard the return value since prev is already
1419	 * marked. We must tag the range first because the seq
1420	 * advancement below implicitly advances
1421	 * tcp_highest_sack_seq() when skb is highest_sack.
1422	 */
1423	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1424			start_seq, end_seq, dup_sack, pcount);
1425
1426	if (skb == tp->lost_skb_hint)
1427		tp->lost_cnt_hint += pcount;
1428
1429	TCP_SKB_CB(prev)->end_seq += shifted;
1430	TCP_SKB_CB(skb)->seq += shifted;
1431
1432	skb_shinfo(prev)->gso_segs += pcount;
1433	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1434	skb_shinfo(skb)->gso_segs -= pcount;
1435
1436	/* When we're adding to gso_segs == 1, gso_size will be zero,
1437	 * in theory this shouldn't be necessary but as long as DSACK
1438	 * code can come after this skb later on it's better to keep
1439	 * setting gso_size to something.
1440	 */
1441	if (!skb_shinfo(prev)->gso_size) {
1442		skb_shinfo(prev)->gso_size = mss;
1443		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1444	}
1445
1446	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1447	if (skb_shinfo(skb)->gso_segs <= 1) {
1448		skb_shinfo(skb)->gso_size = 0;
1449		skb_shinfo(skb)->gso_type = 0;
1450	}
1451
1452	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1453	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1454
1455	if (skb->len > 0) {
1456		BUG_ON(!tcp_skb_pcount(skb));
1457		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1458		return 0;
1459	}
1460
1461	/* Whole SKB was eaten :-) */
1462
1463	if (skb == tp->retransmit_skb_hint)
1464		tp->retransmit_skb_hint = prev;
1465	if (skb == tp->scoreboard_skb_hint)
1466		tp->scoreboard_skb_hint = prev;
1467	if (skb == tp->lost_skb_hint) {
1468		tp->lost_skb_hint = prev;
1469		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1470	}
1471
1472	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1473	if (skb == tcp_highest_sack(sk))
1474		tcp_advance_highest_sack(sk, skb);
1475
1476	tcp_unlink_write_queue(skb, sk);
1477	sk_wmem_free_skb(sk, skb);
1478
1479	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1480
1481	return 1;
1482}
1483
1484/* I wish gso_size would have a bit more sane initialization than
1485 * something-or-zero which complicates things
1486 */
1487static int tcp_skb_seglen(const struct sk_buff *skb)
1488{
1489	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1490}
1491
1492/* Shifting pages past head area doesn't work */
1493static int skb_can_shift(const struct sk_buff *skb)
1494{
1495	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1496}
1497
1498/* Try collapsing SACK blocks spanning across multiple skbs to a single
1499 * skb.
1500 */
1501static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1502					  struct tcp_sacktag_state *state,
1503					  u32 start_seq, u32 end_seq,
1504					  int dup_sack)
1505{
1506	struct tcp_sock *tp = tcp_sk(sk);
1507	struct sk_buff *prev;
1508	int mss;
1509	int pcount = 0;
1510	int len;
1511	int in_sack;
1512
1513	if (!sk_can_gso(sk))
1514		goto fallback;
1515
1516	/* Normally R but no L won't result in plain S */
1517	if (!dup_sack &&
1518	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1519		goto fallback;
1520	if (!skb_can_shift(skb))
1521		goto fallback;
1522	/* This frame is about to be dropped (was ACKed). */
1523	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1524		goto fallback;
1525
1526	/* Can only happen with delayed DSACK + discard craziness */
1527	if (unlikely(skb == tcp_write_queue_head(sk)))
1528		goto fallback;
1529	prev = tcp_write_queue_prev(sk, skb);
1530
1531	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1532		goto fallback;
1533
1534	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1535		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1536
1537	if (in_sack) {
1538		len = skb->len;
1539		pcount = tcp_skb_pcount(skb);
1540		mss = tcp_skb_seglen(skb);
1541
1542		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1543		 * drop this restriction as unnecessary
1544		 */
1545		if (mss != tcp_skb_seglen(prev))
1546			goto fallback;
1547	} else {
1548		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1549			goto noop;
1550		/* CHECKME: This is non-MSS split case only?, this will
1551		 * cause skipped skbs due to advancing loop btw, original
1552		 * has that feature too
1553		 */
1554		if (tcp_skb_pcount(skb) <= 1)
1555			goto noop;
1556
1557		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1558		if (!in_sack) {
1559			/* TODO: head merge to next could be attempted here
1560			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1561			 * though it might not be worth of the additional hassle
1562			 *
1563			 * ...we can probably just fallback to what was done
1564			 * previously. We could try merging non-SACKed ones
1565			 * as well but it probably isn't going to buy off
1566			 * because later SACKs might again split them, and
1567			 * it would make skb timestamp tracking considerably
1568			 * harder problem.
1569			 */
1570			goto fallback;
1571		}
1572
1573		len = end_seq - TCP_SKB_CB(skb)->seq;
1574		BUG_ON(len < 0);
1575		BUG_ON(len > skb->len);
1576
1577		/* MSS boundaries should be honoured or else pcount will
1578		 * severely break even though it makes things bit trickier.
1579		 * Optimize common case to avoid most of the divides
1580		 */
1581		mss = tcp_skb_mss(skb);
1582
1583		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1584		 * drop this restriction as unnecessary
1585		 */
1586		if (mss != tcp_skb_seglen(prev))
1587			goto fallback;
1588
1589		if (len == mss) {
1590			pcount = 1;
1591		} else if (len < mss) {
1592			goto noop;
1593		} else {
1594			pcount = len / mss;
1595			len = pcount * mss;
1596		}
1597	}
1598
1599	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1600	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1601		goto fallback;
1602
1603	if (!skb_shift(prev, skb, len))
1604		goto fallback;
1605	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1606		goto out;
1607
1608	/* Hole filled allows collapsing with the next as well, this is very
1609	 * useful when hole on every nth skb pattern happens
1610	 */
1611	if (prev == tcp_write_queue_tail(sk))
1612		goto out;
1613	skb = tcp_write_queue_next(sk, prev);
1614
1615	if (!skb_can_shift(skb) ||
1616	    (skb == tcp_send_head(sk)) ||
1617	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1618	    (mss != tcp_skb_seglen(skb)))
1619		goto out;
1620
1621	len = skb->len;
1622	if (skb_shift(prev, skb, len)) {
1623		pcount += tcp_skb_pcount(skb);
1624		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1625	}
1626
1627out:
1628	state->fack_count += pcount;
1629	return prev;
1630
1631noop:
1632	return skb;
1633
1634fallback:
1635	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1636	return NULL;
1637}
1638
1639static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1640					struct tcp_sack_block *next_dup,
1641					struct tcp_sacktag_state *state,
1642					u32 start_seq, u32 end_seq,
1643					int dup_sack_in)
1644{
1645	struct tcp_sock *tp = tcp_sk(sk);
1646	struct sk_buff *tmp;
1647
1648	tcp_for_write_queue_from(skb, sk) {
1649		int in_sack = 0;
1650		int dup_sack = dup_sack_in;
1651
1652		if (skb == tcp_send_head(sk))
1653			break;
1654
1655		/* queue is in-order => we can short-circuit the walk early */
1656		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1657			break;
1658
1659		if ((next_dup != NULL) &&
1660		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1661			in_sack = tcp_match_skb_to_sack(sk, skb,
1662							next_dup->start_seq,
1663							next_dup->end_seq);
1664			if (in_sack > 0)
1665				dup_sack = 1;
1666		}
1667
1668		/* skb reference here is a bit tricky to get right, since
1669		 * shifting can eat and free both this skb and the next,
1670		 * so not even _safe variant of the loop is enough.
1671		 */
1672		if (in_sack <= 0) {
1673			tmp = tcp_shift_skb_data(sk, skb, state,
1674						 start_seq, end_seq, dup_sack);
1675			if (tmp != NULL) {
1676				if (tmp != skb) {
1677					skb = tmp;
1678					continue;
1679				}
1680
1681				in_sack = 0;
1682			} else {
1683				in_sack = tcp_match_skb_to_sack(sk, skb,
1684								start_seq,
1685								end_seq);
1686			}
1687		}
1688
1689		if (unlikely(in_sack < 0))
1690			break;
1691
1692		if (in_sack) {
1693			TCP_SKB_CB(skb)->sacked =
1694				tcp_sacktag_one(sk,
1695						state,
1696						TCP_SKB_CB(skb)->sacked,
1697						TCP_SKB_CB(skb)->seq,
1698						TCP_SKB_CB(skb)->end_seq,
1699						dup_sack,
1700						tcp_skb_pcount(skb));
1701
1702			if (!before(TCP_SKB_CB(skb)->seq,
1703				    tcp_highest_sack_seq(tp)))
1704				tcp_advance_highest_sack(sk, skb);
1705		}
1706
1707		state->fack_count += tcp_skb_pcount(skb);
1708	}
1709	return skb;
1710}
1711
1712/* Avoid all extra work that is being done by sacktag while walking in
1713 * a normal way
1714 */
1715static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1716					struct tcp_sacktag_state *state,
1717					u32 skip_to_seq)
1718{
1719	tcp_for_write_queue_from(skb, sk) {
1720		if (skb == tcp_send_head(sk))
1721			break;
1722
1723		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1724			break;
1725
1726		state->fack_count += tcp_skb_pcount(skb);
1727	}
1728	return skb;
1729}
1730
1731static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1732						struct sock *sk,
1733						struct tcp_sack_block *next_dup,
1734						struct tcp_sacktag_state *state,
1735						u32 skip_to_seq)
1736{
1737	if (next_dup == NULL)
1738		return skb;
1739
1740	if (before(next_dup->start_seq, skip_to_seq)) {
1741		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1742		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1743				       next_dup->start_seq, next_dup->end_seq,
1744				       1);
1745	}
1746
1747	return skb;
1748}
1749
1750static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1751{
1752	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1753}
1754
1755static int
1756tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1757			u32 prior_snd_una)
1758{
1759	const struct inet_connection_sock *icsk = inet_csk(sk);
1760	struct tcp_sock *tp = tcp_sk(sk);
1761	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1762				    TCP_SKB_CB(ack_skb)->sacked);
1763	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1764	struct tcp_sack_block sp[TCP_NUM_SACKS];
1765	struct tcp_sack_block *cache;
1766	struct tcp_sacktag_state state;
1767	struct sk_buff *skb;
1768	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1769	int used_sacks;
1770	int found_dup_sack = 0;
1771	int i, j;
1772	int first_sack_index;
1773
1774	state.flag = 0;
1775	state.reord = tp->packets_out;
1776
1777	if (!tp->sacked_out) {
1778		if (WARN_ON(tp->fackets_out))
1779			tp->fackets_out = 0;
1780		tcp_highest_sack_reset(sk);
1781	}
1782
1783	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1784					 num_sacks, prior_snd_una);
1785	if (found_dup_sack)
1786		state.flag |= FLAG_DSACKING_ACK;
1787
1788	/* Eliminate too old ACKs, but take into
1789	 * account more or less fresh ones, they can
1790	 * contain valid SACK info.
1791	 */
1792	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1793		return 0;
1794
1795	if (!tp->packets_out)
1796		goto out;
1797
1798	used_sacks = 0;
1799	first_sack_index = 0;
1800	for (i = 0; i < num_sacks; i++) {
1801		int dup_sack = !i && found_dup_sack;
1802
1803		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1804		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1805
1806		if (!tcp_is_sackblock_valid(tp, dup_sack,
1807					    sp[used_sacks].start_seq,
1808					    sp[used_sacks].end_seq)) {
1809			int mib_idx;
1810
1811			if (dup_sack) {
1812				if (!tp->undo_marker)
1813					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1814				else
1815					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1816			} else {
1817				/* Don't count olds caused by ACK reordering */
1818				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1819				    !after(sp[used_sacks].end_seq, tp->snd_una))
1820					continue;
1821				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1822			}
1823
1824			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1825			if (i == 0)
1826				first_sack_index = -1;
1827			continue;
1828		}
1829
1830		/* Ignore very old stuff early */
1831		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1832			continue;
1833
1834		used_sacks++;
1835	}
1836
1837	/* order SACK blocks to allow in order walk of the retrans queue */
1838	for (i = used_sacks - 1; i > 0; i--) {
1839		for (j = 0; j < i; j++) {
1840			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1841				swap(sp[j], sp[j + 1]);
1842
1843				/* Track where the first SACK block goes to */
1844				if (j == first_sack_index)
1845					first_sack_index = j + 1;
1846			}
1847		}
1848	}
1849
1850	skb = tcp_write_queue_head(sk);
1851	state.fack_count = 0;
1852	i = 0;
1853
1854	if (!tp->sacked_out) {
1855		/* It's already past, so skip checking against it */
1856		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1857	} else {
1858		cache = tp->recv_sack_cache;
1859		/* Skip empty blocks in at head of the cache */
1860		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1861		       !cache->end_seq)
1862			cache++;
1863	}
1864
1865	while (i < used_sacks) {
1866		u32 start_seq = sp[i].start_seq;
1867		u32 end_seq = sp[i].end_seq;
1868		int dup_sack = (found_dup_sack && (i == first_sack_index));
1869		struct tcp_sack_block *next_dup = NULL;
1870
1871		if (found_dup_sack && ((i + 1) == first_sack_index))
1872			next_dup = &sp[i + 1];
1873
1874		/* Skip too early cached blocks */
1875		while (tcp_sack_cache_ok(tp, cache) &&
1876		       !before(start_seq, cache->end_seq))
1877			cache++;
1878
1879		/* Can skip some work by looking recv_sack_cache? */
1880		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1881		    after(end_seq, cache->start_seq)) {
1882
1883			/* Head todo? */
1884			if (before(start_seq, cache->start_seq)) {
1885				skb = tcp_sacktag_skip(skb, sk, &state,
1886						       start_seq);
1887				skb = tcp_sacktag_walk(skb, sk, next_dup,
1888						       &state,
1889						       start_seq,
1890						       cache->start_seq,
1891						       dup_sack);
1892			}
1893
1894			/* Rest of the block already fully processed? */
1895			if (!after(end_seq, cache->end_seq))
1896				goto advance_sp;
1897
1898			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1899						       &state,
1900						       cache->end_seq);
1901
1902			/* ...tail remains todo... */
1903			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1904				/* ...but better entrypoint exists! */
1905				skb = tcp_highest_sack(sk);
1906				if (skb == NULL)
1907					break;
1908				state.fack_count = tp->fackets_out;
1909				cache++;
1910				goto walk;
1911			}
1912
1913			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1914			/* Check overlap against next cached too (past this one already) */
1915			cache++;
1916			continue;
1917		}
1918
1919		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1920			skb = tcp_highest_sack(sk);
1921			if (skb == NULL)
1922				break;
1923			state.fack_count = tp->fackets_out;
1924		}
1925		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1926
1927walk:
1928		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1929				       start_seq, end_seq, dup_sack);
1930
1931advance_sp:
1932		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1933		 * due to in-order walk
1934		 */
1935		if (after(end_seq, tp->frto_highmark))
1936			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1937
1938		i++;
1939	}
1940
1941	/* Clear the head of the cache sack blocks so we can skip it next time */
1942	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1943		tp->recv_sack_cache[i].start_seq = 0;
1944		tp->recv_sack_cache[i].end_seq = 0;
1945	}
1946	for (j = 0; j < used_sacks; j++)
1947		tp->recv_sack_cache[i++] = sp[j];
1948
1949	tcp_mark_lost_retrans(sk);
1950
1951	tcp_verify_left_out(tp);
1952
1953	if ((state.reord < tp->fackets_out) &&
1954	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1955	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1956		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1957
1958out:
1959
1960#if FASTRETRANS_DEBUG > 0
1961	WARN_ON((int)tp->sacked_out < 0);
1962	WARN_ON((int)tp->lost_out < 0);
1963	WARN_ON((int)tp->retrans_out < 0);
1964	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1965#endif
1966	return state.flag;
1967}
1968
1969/* Limits sacked_out so that sum with lost_out isn't ever larger than
1970 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1971 */
1972static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1973{
1974	u32 holes;
1975
1976	holes = max(tp->lost_out, 1U);
1977	holes = min(holes, tp->packets_out);
1978
1979	if ((tp->sacked_out + holes) > tp->packets_out) {
1980		tp->sacked_out = tp->packets_out - holes;
1981		return 1;
1982	}
1983	return 0;
1984}
1985
1986/* If we receive more dupacks than we expected counting segments
1987 * in assumption of absent reordering, interpret this as reordering.
1988 * The only another reason could be bug in receiver TCP.
1989 */
1990static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1991{
1992	struct tcp_sock *tp = tcp_sk(sk);
1993	if (tcp_limit_reno_sacked(tp))
1994		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1995}
1996
1997/* Emulate SACKs for SACKless connection: account for a new dupack. */
1998
1999static void tcp_add_reno_sack(struct sock *sk)
2000{
2001	struct tcp_sock *tp = tcp_sk(sk);
2002	tp->sacked_out++;
2003	tcp_check_reno_reordering(sk, 0);
2004	tcp_verify_left_out(tp);
2005}
2006
2007/* Account for ACK, ACKing some data in Reno Recovery phase. */
2008
2009static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2010{
2011	struct tcp_sock *tp = tcp_sk(sk);
2012
2013	if (acked > 0) {
2014		/* One ACK acked hole. The rest eat duplicate ACKs. */
2015		if (acked - 1 >= tp->sacked_out)
2016			tp->sacked_out = 0;
2017		else
2018			tp->sacked_out -= acked - 1;
2019	}
2020	tcp_check_reno_reordering(sk, acked);
2021	tcp_verify_left_out(tp);
2022}
2023
2024static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2025{
2026	tp->sacked_out = 0;
2027}
2028
2029static int tcp_is_sackfrto(const struct tcp_sock *tp)
2030{
2031	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2032}
2033
2034/* F-RTO can only be used if TCP has never retransmitted anything other than
2035 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2036 */
2037int tcp_use_frto(struct sock *sk)
2038{
2039	const struct tcp_sock *tp = tcp_sk(sk);
2040	const struct inet_connection_sock *icsk = inet_csk(sk);
2041	struct sk_buff *skb;
2042
2043	if (!sysctl_tcp_frto)
2044		return 0;
2045
2046	/* MTU probe and F-RTO won't really play nicely along currently */
2047	if (icsk->icsk_mtup.probe_size)
2048		return 0;
2049
2050	if (tcp_is_sackfrto(tp))
2051		return 1;
2052
2053	/* Avoid expensive walking of rexmit queue if possible */
2054	if (tp->retrans_out > 1)
2055		return 0;
2056
2057	skb = tcp_write_queue_head(sk);
2058	if (tcp_skb_is_last(sk, skb))
2059		return 1;
2060	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2061	tcp_for_write_queue_from(skb, sk) {
2062		if (skb == tcp_send_head(sk))
2063			break;
2064		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2065			return 0;
2066		/* Short-circuit when first non-SACKed skb has been checked */
2067		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2068			break;
2069	}
2070	return 1;
2071}
2072
2073/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2074 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2075 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2076 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2077 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2078 * bits are handled if the Loss state is really to be entered (in
2079 * tcp_enter_frto_loss).
2080 *
2081 * Do like tcp_enter_loss() would; when RTO expires the second time it
2082 * does:
2083 *  "Reduce ssthresh if it has not yet been made inside this window."
2084 */
2085void tcp_enter_frto(struct sock *sk)
2086{
2087	const struct inet_connection_sock *icsk = inet_csk(sk);
2088	struct tcp_sock *tp = tcp_sk(sk);
2089	struct sk_buff *skb;
2090
2091	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2092	    tp->snd_una == tp->high_seq ||
2093	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2094	     !icsk->icsk_retransmits)) {
2095		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2096		/* Our state is too optimistic in ssthresh() call because cwnd
2097		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2098		 * recovery has not yet completed. Pattern would be this: RTO,
2099		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2100		 * up here twice).
2101		 * RFC4138 should be more specific on what to do, even though
2102		 * RTO is quite unlikely to occur after the first Cumulative ACK
2103		 * due to back-off and complexity of triggering events ...
2104		 */
2105		if (tp->frto_counter) {
2106			u32 stored_cwnd;
2107			stored_cwnd = tp->snd_cwnd;
2108			tp->snd_cwnd = 2;
2109			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2110			tp->snd_cwnd = stored_cwnd;
2111		} else {
2112			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2113		}
2114		/* ... in theory, cong.control module could do "any tricks" in
2115		 * ssthresh(), which means that ca_state, lost bits and lost_out
2116		 * counter would have to be faked before the call occurs. We
2117		 * consider that too expensive, unlikely and hacky, so modules
2118		 * using these in ssthresh() must deal these incompatibility
2119		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2120		 */
2121		tcp_ca_event(sk, CA_EVENT_FRTO);
2122	}
2123
2124	tp->undo_marker = tp->snd_una;
2125	tp->undo_retrans = 0;
2126
2127	skb = tcp_write_queue_head(sk);
2128	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2129		tp->undo_marker = 0;
2130	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2131		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2132		tp->retrans_out -= tcp_skb_pcount(skb);
2133	}
2134	tcp_verify_left_out(tp);
2135
2136	/* Too bad if TCP was application limited */
2137	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2138
2139	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2140	 * The last condition is necessary at least in tp->frto_counter case.
2141	 */
2142	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2143	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2144	    after(tp->high_seq, tp->snd_una)) {
2145		tp->frto_highmark = tp->high_seq;
2146	} else {
2147		tp->frto_highmark = tp->snd_nxt;
2148	}
2149	tcp_set_ca_state(sk, TCP_CA_Disorder);
2150	tp->high_seq = tp->snd_nxt;
2151	tp->frto_counter = 1;
2152}
2153
2154/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2155 * which indicates that we should follow the traditional RTO recovery,
2156 * i.e. mark everything lost and do go-back-N retransmission.
2157 */
2158static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2159{
2160	struct tcp_sock *tp = tcp_sk(sk);
2161	struct sk_buff *skb;
2162
2163	tp->lost_out = 0;
2164	tp->retrans_out = 0;
2165	if (tcp_is_reno(tp))
2166		tcp_reset_reno_sack(tp);
2167
2168	tcp_for_write_queue(skb, sk) {
2169		if (skb == tcp_send_head(sk))
2170			break;
2171
2172		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2173		/*
2174		 * Count the retransmission made on RTO correctly (only when
2175		 * waiting for the first ACK and did not get it)...
2176		 */
2177		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2178			/* For some reason this R-bit might get cleared? */
2179			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2180				tp->retrans_out += tcp_skb_pcount(skb);
2181			/* ...enter this if branch just for the first segment */
2182			flag |= FLAG_DATA_ACKED;
2183		} else {
2184			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2185				tp->undo_marker = 0;
2186			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2187		}
2188
2189		/* Marking forward transmissions that were made after RTO lost
2190		 * can cause unnecessary retransmissions in some scenarios,
2191		 * SACK blocks will mitigate that in some but not in all cases.
2192		 * We used to not mark them but it was causing break-ups with
2193		 * receivers that do only in-order receival.
2194		 *
2195		 * TODO: we could detect presence of such receiver and select
2196		 * different behavior per flow.
2197		 */
2198		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2199			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2200			tp->lost_out += tcp_skb_pcount(skb);
2201			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2202		}
2203	}
2204	tcp_verify_left_out(tp);
2205
2206	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2207	tp->snd_cwnd_cnt = 0;
2208	tp->snd_cwnd_stamp = tcp_time_stamp;
2209	tp->frto_counter = 0;
2210	tp->bytes_acked = 0;
2211
2212	tp->reordering = min_t(unsigned int, tp->reordering,
2213			       sysctl_tcp_reordering);
2214	tcp_set_ca_state(sk, TCP_CA_Loss);
2215	tp->high_seq = tp->snd_nxt;
2216	TCP_ECN_queue_cwr(tp);
2217
2218	tcp_clear_all_retrans_hints(tp);
2219}
2220
2221static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2222{
2223	tp->retrans_out = 0;
2224	tp->lost_out = 0;
2225
2226	tp->undo_marker = 0;
2227	tp->undo_retrans = 0;
2228}
2229
2230void tcp_clear_retrans(struct tcp_sock *tp)
2231{
2232	tcp_clear_retrans_partial(tp);
2233
2234	tp->fackets_out = 0;
2235	tp->sacked_out = 0;
2236}
2237
2238/* Enter Loss state. If "how" is not zero, forget all SACK information
2239 * and reset tags completely, otherwise preserve SACKs. If receiver
2240 * dropped its ofo queue, we will know this due to reneging detection.
2241 */
2242void tcp_enter_loss(struct sock *sk, int how)
2243{
2244	const struct inet_connection_sock *icsk = inet_csk(sk);
2245	struct tcp_sock *tp = tcp_sk(sk);
2246	struct sk_buff *skb;
2247
2248	/* Reduce ssthresh if it has not yet been made inside this window. */
2249	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2250	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2251		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2252		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2253		tcp_ca_event(sk, CA_EVENT_LOSS);
2254	}
2255	tp->snd_cwnd	   = 1;
2256	tp->snd_cwnd_cnt   = 0;
2257	tp->snd_cwnd_stamp = tcp_time_stamp;
2258
2259	tp->bytes_acked = 0;
2260	tcp_clear_retrans_partial(tp);
2261
2262	if (tcp_is_reno(tp))
2263		tcp_reset_reno_sack(tp);
2264
2265	if (!how) {
2266		/* Push undo marker, if it was plain RTO and nothing
2267		 * was retransmitted. */
2268		tp->undo_marker = tp->snd_una;
2269	} else {
2270		tp->sacked_out = 0;
2271		tp->fackets_out = 0;
2272	}
2273	tcp_clear_all_retrans_hints(tp);
2274
2275	tcp_for_write_queue(skb, sk) {
2276		if (skb == tcp_send_head(sk))
2277			break;
2278
2279		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2280			tp->undo_marker = 0;
2281		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2282		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2283			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2284			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2285			tp->lost_out += tcp_skb_pcount(skb);
2286			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2287		}
2288	}
2289	tcp_verify_left_out(tp);
2290
2291	tp->reordering = min_t(unsigned int, tp->reordering,
2292			       sysctl_tcp_reordering);
2293	tcp_set_ca_state(sk, TCP_CA_Loss);
2294	tp->high_seq = tp->snd_nxt;
2295	TCP_ECN_queue_cwr(tp);
2296	/* Abort F-RTO algorithm if one is in progress */
2297	tp->frto_counter = 0;
2298}
2299
2300/* If ACK arrived pointing to a remembered SACK, it means that our
2301 * remembered SACKs do not reflect real state of receiver i.e.
2302 * receiver _host_ is heavily congested (or buggy).
2303 *
2304 * Do processing similar to RTO timeout.
2305 */
2306static int tcp_check_sack_reneging(struct sock *sk, int flag)
2307{
2308	if (flag & FLAG_SACK_RENEGING) {
2309		struct inet_connection_sock *icsk = inet_csk(sk);
2310		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2311
2312		tcp_enter_loss(sk, 1);
2313		icsk->icsk_retransmits++;
2314		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2315		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2316					  icsk->icsk_rto, TCP_RTO_MAX);
2317		return 1;
2318	}
2319	return 0;
2320}
2321
2322static inline int tcp_fackets_out(const struct tcp_sock *tp)
2323{
2324	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2325}
2326
2327/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2328 * counter when SACK is enabled (without SACK, sacked_out is used for
2329 * that purpose).
2330 *
2331 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2332 * segments up to the highest received SACK block so far and holes in
2333 * between them.
2334 *
2335 * With reordering, holes may still be in flight, so RFC3517 recovery
2336 * uses pure sacked_out (total number of SACKed segments) even though
2337 * it violates the RFC that uses duplicate ACKs, often these are equal
2338 * but when e.g. out-of-window ACKs or packet duplication occurs,
2339 * they differ. Since neither occurs due to loss, TCP should really
2340 * ignore them.
2341 */
2342static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2343{
2344	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2345}
2346
2347static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2348{
2349	struct tcp_sock *tp = tcp_sk(sk);
2350	unsigned long delay;
2351
2352	/* Delay early retransmit and entering fast recovery for
2353	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2354	 * available, or RTO is scheduled to fire first.
2355	 */
2356	if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2357		return false;
2358
2359	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2360	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2361		return false;
2362
2363	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2364	tp->early_retrans_delayed = 1;
2365	return true;
2366}
2367
2368static inline int tcp_skb_timedout(const struct sock *sk,
2369				   const struct sk_buff *skb)
2370{
2371	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2372}
2373
2374static inline int tcp_head_timedout(const struct sock *sk)
2375{
2376	const struct tcp_sock *tp = tcp_sk(sk);
2377
2378	return tp->packets_out &&
2379	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2380}
2381
2382/* Linux NewReno/SACK/FACK/ECN state machine.
2383 * --------------------------------------
2384 *
2385 * "Open"	Normal state, no dubious events, fast path.
2386 * "Disorder"   In all the respects it is "Open",
2387 *		but requires a bit more attention. It is entered when
2388 *		we see some SACKs or dupacks. It is split of "Open"
2389 *		mainly to move some processing from fast path to slow one.
2390 * "CWR"	CWND was reduced due to some Congestion Notification event.
2391 *		It can be ECN, ICMP source quench, local device congestion.
2392 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2393 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2394 *
2395 * tcp_fastretrans_alert() is entered:
2396 * - each incoming ACK, if state is not "Open"
2397 * - when arrived ACK is unusual, namely:
2398 *	* SACK
2399 *	* Duplicate ACK.
2400 *	* ECN ECE.
2401 *
2402 * Counting packets in flight is pretty simple.
2403 *
2404 *	in_flight = packets_out - left_out + retrans_out
2405 *
2406 *	packets_out is SND.NXT-SND.UNA counted in packets.
2407 *
2408 *	retrans_out is number of retransmitted segments.
2409 *
2410 *	left_out is number of segments left network, but not ACKed yet.
2411 *
2412 *		left_out = sacked_out + lost_out
2413 *
2414 *     sacked_out: Packets, which arrived to receiver out of order
2415 *		   and hence not ACKed. With SACKs this number is simply
2416 *		   amount of SACKed data. Even without SACKs
2417 *		   it is easy to give pretty reliable estimate of this number,
2418 *		   counting duplicate ACKs.
2419 *
2420 *       lost_out: Packets lost by network. TCP has no explicit
2421 *		   "loss notification" feedback from network (for now).
2422 *		   It means that this number can be only _guessed_.
2423 *		   Actually, it is the heuristics to predict lossage that
2424 *		   distinguishes different algorithms.
2425 *
2426 *	F.e. after RTO, when all the queue is considered as lost,
2427 *	lost_out = packets_out and in_flight = retrans_out.
2428 *
2429 *		Essentially, we have now two algorithms counting
2430 *		lost packets.
2431 *
2432 *		FACK: It is the simplest heuristics. As soon as we decided
2433 *		that something is lost, we decide that _all_ not SACKed
2434 *		packets until the most forward SACK are lost. I.e.
2435 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2436 *		It is absolutely correct estimate, if network does not reorder
2437 *		packets. And it loses any connection to reality when reordering
2438 *		takes place. We use FACK by default until reordering
2439 *		is suspected on the path to this destination.
2440 *
2441 *		NewReno: when Recovery is entered, we assume that one segment
2442 *		is lost (classic Reno). While we are in Recovery and
2443 *		a partial ACK arrives, we assume that one more packet
2444 *		is lost (NewReno). This heuristics are the same in NewReno
2445 *		and SACK.
2446 *
2447 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2448 *  deflation etc. CWND is real congestion window, never inflated, changes
2449 *  only according to classic VJ rules.
2450 *
2451 * Really tricky (and requiring careful tuning) part of algorithm
2452 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2453 * The first determines the moment _when_ we should reduce CWND and,
2454 * hence, slow down forward transmission. In fact, it determines the moment
2455 * when we decide that hole is caused by loss, rather than by a reorder.
2456 *
2457 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2458 * holes, caused by lost packets.
2459 *
2460 * And the most logically complicated part of algorithm is undo
2461 * heuristics. We detect false retransmits due to both too early
2462 * fast retransmit (reordering) and underestimated RTO, analyzing
2463 * timestamps and D-SACKs. When we detect that some segments were
2464 * retransmitted by mistake and CWND reduction was wrong, we undo
2465 * window reduction and abort recovery phase. This logic is hidden
2466 * inside several functions named tcp_try_undo_<something>.
2467 */
2468
2469/* This function decides, when we should leave Disordered state
2470 * and enter Recovery phase, reducing congestion window.
2471 *
2472 * Main question: may we further continue forward transmission
2473 * with the same cwnd?
2474 */
2475static int tcp_time_to_recover(struct sock *sk, int flag)
2476{
2477	struct tcp_sock *tp = tcp_sk(sk);
2478	__u32 packets_out;
2479
2480	/* Do not perform any recovery during F-RTO algorithm */
2481	if (tp->frto_counter)
2482		return 0;
2483
2484	/* Trick#1: The loss is proven. */
2485	if (tp->lost_out)
2486		return 1;
2487
2488	/* Not-A-Trick#2 : Classic rule... */
2489	if (tcp_dupack_heuristics(tp) > tp->reordering)
2490		return 1;
2491
2492	/* Trick#3 : when we use RFC2988 timer restart, fast
2493	 * retransmit can be triggered by timeout of queue head.
2494	 */
2495	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2496		return 1;
2497
2498	/* Trick#4: It is still not OK... But will it be useful to delay
2499	 * recovery more?
2500	 */
2501	packets_out = tp->packets_out;
2502	if (packets_out <= tp->reordering &&
2503	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2504	    !tcp_may_send_now(sk)) {
2505		/* We have nothing to send. This connection is limited
2506		 * either by receiver window or by application.
2507		 */
2508		return 1;
2509	}
2510
2511	/* If a thin stream is detected, retransmit after first
2512	 * received dupack. Employ only if SACK is supported in order
2513	 * to avoid possible corner-case series of spurious retransmissions
2514	 * Use only if there are no unsent data.
2515	 */
2516	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2517	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2518	    tcp_is_sack(tp) && !tcp_send_head(sk))
2519		return 1;
2520
2521	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2522	 * retransmissions due to small network reorderings, we implement
2523	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2524	 * interval if appropriate.
2525	 */
2526	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2527	    (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2528	    !tcp_may_send_now(sk))
2529		return !tcp_pause_early_retransmit(sk, flag);
2530
2531	return 0;
2532}
2533
2534/* New heuristics: it is possible only after we switched to restart timer
2535 * each time when something is ACKed. Hence, we can detect timed out packets
2536 * during fast retransmit without falling to slow start.
2537 *
2538 * Usefulness of this as is very questionable, since we should know which of
2539 * the segments is the next to timeout which is relatively expensive to find
2540 * in general case unless we add some data structure just for that. The
2541 * current approach certainly won't find the right one too often and when it
2542 * finally does find _something_ it usually marks large part of the window
2543 * right away (because a retransmission with a larger timestamp blocks the
2544 * loop from advancing). -ij
2545 */
2546static void tcp_timeout_skbs(struct sock *sk)
2547{
2548	struct tcp_sock *tp = tcp_sk(sk);
2549	struct sk_buff *skb;
2550
2551	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2552		return;
2553
2554	skb = tp->scoreboard_skb_hint;
2555	if (tp->scoreboard_skb_hint == NULL)
2556		skb = tcp_write_queue_head(sk);
2557
2558	tcp_for_write_queue_from(skb, sk) {
2559		if (skb == tcp_send_head(sk))
2560			break;
2561		if (!tcp_skb_timedout(sk, skb))
2562			break;
2563
2564		tcp_skb_mark_lost(tp, skb);
2565	}
2566
2567	tp->scoreboard_skb_hint = skb;
2568
2569	tcp_verify_left_out(tp);
2570}
2571
2572/* Detect loss in event "A" above by marking head of queue up as lost.
2573 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2574 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2575 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2576 * the maximum SACKed segments to pass before reaching this limit.
2577 */
2578static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2579{
2580	struct tcp_sock *tp = tcp_sk(sk);
2581	struct sk_buff *skb;
2582	int cnt, oldcnt;
2583	int err;
2584	unsigned int mss;
2585	/* Use SACK to deduce losses of new sequences sent during recovery */
2586	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2587
2588	WARN_ON(packets > tp->packets_out);
2589	if (tp->lost_skb_hint) {
2590		skb = tp->lost_skb_hint;
2591		cnt = tp->lost_cnt_hint;
2592		/* Head already handled? */
2593		if (mark_head && skb != tcp_write_queue_head(sk))
2594			return;
2595	} else {
2596		skb = tcp_write_queue_head(sk);
2597		cnt = 0;
2598	}
2599
2600	tcp_for_write_queue_from(skb, sk) {
2601		if (skb == tcp_send_head(sk))
2602			break;
2603		/* TODO: do this better */
2604		/* this is not the most efficient way to do this... */
2605		tp->lost_skb_hint = skb;
2606		tp->lost_cnt_hint = cnt;
2607
2608		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2609			break;
2610
2611		oldcnt = cnt;
2612		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2613		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2614			cnt += tcp_skb_pcount(skb);
2615
2616		if (cnt > packets) {
2617			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2618			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2619			    (oldcnt >= packets))
2620				break;
2621
2622			mss = skb_shinfo(skb)->gso_size;
2623			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2624			if (err < 0)
2625				break;
2626			cnt = packets;
2627		}
2628
2629		tcp_skb_mark_lost(tp, skb);
2630
2631		if (mark_head)
2632			break;
2633	}
2634	tcp_verify_left_out(tp);
2635}
2636
2637/* Account newly detected lost packet(s) */
2638
2639static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2640{
2641	struct tcp_sock *tp = tcp_sk(sk);
2642
2643	if (tcp_is_reno(tp)) {
2644		tcp_mark_head_lost(sk, 1, 1);
2645	} else if (tcp_is_fack(tp)) {
2646		int lost = tp->fackets_out - tp->reordering;
2647		if (lost <= 0)
2648			lost = 1;
2649		tcp_mark_head_lost(sk, lost, 0);
2650	} else {
2651		int sacked_upto = tp->sacked_out - tp->reordering;
2652		if (sacked_upto >= 0)
2653			tcp_mark_head_lost(sk, sacked_upto, 0);
2654		else if (fast_rexmit)
2655			tcp_mark_head_lost(sk, 1, 1);
2656	}
2657
2658	tcp_timeout_skbs(sk);
2659}
2660
2661/* CWND moderation, preventing bursts due to too big ACKs
2662 * in dubious situations.
2663 */
2664static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2665{
2666	tp->snd_cwnd = min(tp->snd_cwnd,
2667			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2668	tp->snd_cwnd_stamp = tcp_time_stamp;
2669}
2670
2671/* Lower bound on congestion window is slow start threshold
2672 * unless congestion avoidance choice decides to overide it.
2673 */
2674static inline u32 tcp_cwnd_min(const struct sock *sk)
2675{
2676	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2677
2678	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2679}
2680
2681/* Decrease cwnd each second ack. */
2682static void tcp_cwnd_down(struct sock *sk, int flag)
2683{
2684	struct tcp_sock *tp = tcp_sk(sk);
2685	int decr = tp->snd_cwnd_cnt + 1;
2686
2687	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2688	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2689		tp->snd_cwnd_cnt = decr & 1;
2690		decr >>= 1;
2691
2692		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2693			tp->snd_cwnd -= decr;
2694
2695		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2696		tp->snd_cwnd_stamp = tcp_time_stamp;
2697	}
2698}
2699
2700/* Nothing was retransmitted or returned timestamp is less
2701 * than timestamp of the first retransmission.
2702 */
2703static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2704{
2705	return !tp->retrans_stamp ||
2706		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2707		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2708}
2709
2710/* Undo procedures. */
2711
2712#if FASTRETRANS_DEBUG > 1
2713static void DBGUNDO(struct sock *sk, const char *msg)
2714{
2715	struct tcp_sock *tp = tcp_sk(sk);
2716	struct inet_sock *inet = inet_sk(sk);
2717
2718	if (sk->sk_family == AF_INET) {
2719		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2720		       msg,
2721		       &inet->inet_daddr, ntohs(inet->inet_dport),
2722		       tp->snd_cwnd, tcp_left_out(tp),
2723		       tp->snd_ssthresh, tp->prior_ssthresh,
2724		       tp->packets_out);
2725	}
2726#if IS_ENABLED(CONFIG_IPV6)
2727	else if (sk->sk_family == AF_INET6) {
2728		struct ipv6_pinfo *np = inet6_sk(sk);
2729		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2730		       msg,
2731		       &np->daddr, ntohs(inet->inet_dport),
2732		       tp->snd_cwnd, tcp_left_out(tp),
2733		       tp->snd_ssthresh, tp->prior_ssthresh,
2734		       tp->packets_out);
2735	}
2736#endif
2737}
2738#else
2739#define DBGUNDO(x...) do { } while (0)
2740#endif
2741
2742static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2743{
2744	struct tcp_sock *tp = tcp_sk(sk);
2745
2746	if (tp->prior_ssthresh) {
2747		const struct inet_connection_sock *icsk = inet_csk(sk);
2748
2749		if (icsk->icsk_ca_ops->undo_cwnd)
2750			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2751		else
2752			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2753
2754		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2755			tp->snd_ssthresh = tp->prior_ssthresh;
2756			TCP_ECN_withdraw_cwr(tp);
2757		}
2758	} else {
2759		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2760	}
2761	tp->snd_cwnd_stamp = tcp_time_stamp;
2762}
2763
2764static inline int tcp_may_undo(const struct tcp_sock *tp)
2765{
2766	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2767}
2768
2769/* People celebrate: "We love our President!" */
2770static int tcp_try_undo_recovery(struct sock *sk)
2771{
2772	struct tcp_sock *tp = tcp_sk(sk);
2773
2774	if (tcp_may_undo(tp)) {
2775		int mib_idx;
2776
2777		/* Happy end! We did not retransmit anything
2778		 * or our original transmission succeeded.
2779		 */
2780		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2781		tcp_undo_cwr(sk, true);
2782		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2783			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2784		else
2785			mib_idx = LINUX_MIB_TCPFULLUNDO;
2786
2787		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2788		tp->undo_marker = 0;
2789	}
2790	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2791		/* Hold old state until something *above* high_seq
2792		 * is ACKed. For Reno it is MUST to prevent false
2793		 * fast retransmits (RFC2582). SACK TCP is safe. */
2794		tcp_moderate_cwnd(tp);
2795		return 1;
2796	}
2797	tcp_set_ca_state(sk, TCP_CA_Open);
2798	return 0;
2799}
2800
2801/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2802static void tcp_try_undo_dsack(struct sock *sk)
2803{
2804	struct tcp_sock *tp = tcp_sk(sk);
2805
2806	if (tp->undo_marker && !tp->undo_retrans) {
2807		DBGUNDO(sk, "D-SACK");
2808		tcp_undo_cwr(sk, true);
2809		tp->undo_marker = 0;
2810		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2811	}
2812}
2813
2814/* We can clear retrans_stamp when there are no retransmissions in the
2815 * window. It would seem that it is trivially available for us in
2816 * tp->retrans_out, however, that kind of assumptions doesn't consider
2817 * what will happen if errors occur when sending retransmission for the
2818 * second time. ...It could the that such segment has only
2819 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2820 * the head skb is enough except for some reneging corner cases that
2821 * are not worth the effort.
2822 *
2823 * Main reason for all this complexity is the fact that connection dying
2824 * time now depends on the validity of the retrans_stamp, in particular,
2825 * that successive retransmissions of a segment must not advance
2826 * retrans_stamp under any conditions.
2827 */
2828static int tcp_any_retrans_done(const struct sock *sk)
2829{
2830	const struct tcp_sock *tp = tcp_sk(sk);
2831	struct sk_buff *skb;
2832
2833	if (tp->retrans_out)
2834		return 1;
2835
2836	skb = tcp_write_queue_head(sk);
2837	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2838		return 1;
2839
2840	return 0;
2841}
2842
2843/* Undo during fast recovery after partial ACK. */
2844
2845static int tcp_try_undo_partial(struct sock *sk, int acked)
2846{
2847	struct tcp_sock *tp = tcp_sk(sk);
2848	/* Partial ACK arrived. Force Hoe's retransmit. */
2849	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2850
2851	if (tcp_may_undo(tp)) {
2852		/* Plain luck! Hole if filled with delayed
2853		 * packet, rather than with a retransmit.
2854		 */
2855		if (!tcp_any_retrans_done(sk))
2856			tp->retrans_stamp = 0;
2857
2858		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2859
2860		DBGUNDO(sk, "Hoe");
2861		tcp_undo_cwr(sk, false);
2862		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2863
2864		/* So... Do not make Hoe's retransmit yet.
2865		 * If the first packet was delayed, the rest
2866		 * ones are most probably delayed as well.
2867		 */
2868		failed = 0;
2869	}
2870	return failed;
2871}
2872
2873/* Undo during loss recovery after partial ACK. */
2874static int tcp_try_undo_loss(struct sock *sk)
2875{
2876	struct tcp_sock *tp = tcp_sk(sk);
2877
2878	if (tcp_may_undo(tp)) {
2879		struct sk_buff *skb;
2880		tcp_for_write_queue(skb, sk) {
2881			if (skb == tcp_send_head(sk))
2882				break;
2883			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2884		}
2885
2886		tcp_clear_all_retrans_hints(tp);
2887
2888		DBGUNDO(sk, "partial loss");
2889		tp->lost_out = 0;
2890		tcp_undo_cwr(sk, true);
2891		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2892		inet_csk(sk)->icsk_retransmits = 0;
2893		tp->undo_marker = 0;
2894		if (tcp_is_sack(tp))
2895			tcp_set_ca_state(sk, TCP_CA_Open);
2896		return 1;
2897	}
2898	return 0;
2899}
2900
2901static inline void tcp_complete_cwr(struct sock *sk)
2902{
2903	struct tcp_sock *tp = tcp_sk(sk);
2904
2905	/* Do not moderate cwnd if it's already undone in cwr or recovery. */
2906	if (tp->undo_marker) {
2907		if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2908			tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2909		else /* PRR */
2910			tp->snd_cwnd = tp->snd_ssthresh;
2911		tp->snd_cwnd_stamp = tcp_time_stamp;
2912	}
2913	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2914}
2915
2916static void tcp_try_keep_open(struct sock *sk)
2917{
2918	struct tcp_sock *tp = tcp_sk(sk);
2919	int state = TCP_CA_Open;
2920
2921	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2922		state = TCP_CA_Disorder;
2923
2924	if (inet_csk(sk)->icsk_ca_state != state) {
2925		tcp_set_ca_state(sk, state);
2926		tp->high_seq = tp->snd_nxt;
2927	}
2928}
2929
2930static void tcp_try_to_open(struct sock *sk, int flag)
2931{
2932	struct tcp_sock *tp = tcp_sk(sk);
2933
2934	tcp_verify_left_out(tp);
2935
2936	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2937		tp->retrans_stamp = 0;
2938
2939	if (flag & FLAG_ECE)
2940		tcp_enter_cwr(sk, 1);
2941
2942	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2943		tcp_try_keep_open(sk);
2944		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2945			tcp_moderate_cwnd(tp);
2946	} else {
2947		tcp_cwnd_down(sk, flag);
2948	}
2949}
2950
2951static void tcp_mtup_probe_failed(struct sock *sk)
2952{
2953	struct inet_connection_sock *icsk = inet_csk(sk);
2954
2955	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2956	icsk->icsk_mtup.probe_size = 0;
2957}
2958
2959static void tcp_mtup_probe_success(struct sock *sk)
2960{
2961	struct tcp_sock *tp = tcp_sk(sk);
2962	struct inet_connection_sock *icsk = inet_csk(sk);
2963
2964	/* FIXME: breaks with very large cwnd */
2965	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2966	tp->snd_cwnd = tp->snd_cwnd *
2967		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2968		       icsk->icsk_mtup.probe_size;
2969	tp->snd_cwnd_cnt = 0;
2970	tp->snd_cwnd_stamp = tcp_time_stamp;
2971	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2972
2973	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2974	icsk->icsk_mtup.probe_size = 0;
2975	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2976}
2977
2978/* Do a simple retransmit without using the backoff mechanisms in
2979 * tcp_timer. This is used for path mtu discovery.
2980 * The socket is already locked here.
2981 */
2982void tcp_simple_retransmit(struct sock *sk)
2983{
2984	const struct inet_connection_sock *icsk = inet_csk(sk);
2985	struct tcp_sock *tp = tcp_sk(sk);
2986	struct sk_buff *skb;
2987	unsigned int mss = tcp_current_mss(sk);
2988	u32 prior_lost = tp->lost_out;
2989
2990	tcp_for_write_queue(skb, sk) {
2991		if (skb == tcp_send_head(sk))
2992			break;
2993		if (tcp_skb_seglen(skb) > mss &&
2994		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2995			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2996				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2997				tp->retrans_out -= tcp_skb_pcount(skb);
2998			}
2999			tcp_skb_mark_lost_uncond_verify(tp, skb);
3000		}
3001	}
3002
3003	tcp_clear_retrans_hints_partial(tp);
3004
3005	if (prior_lost == tp->lost_out)
3006		return;
3007
3008	if (tcp_is_reno(tp))
3009		tcp_limit_reno_sacked(tp);
3010
3011	tcp_verify_left_out(tp);
3012
3013	/* Don't muck with the congestion window here.
3014	 * Reason is that we do not increase amount of _data_
3015	 * in network, but units changed and effective
3016	 * cwnd/ssthresh really reduced now.
3017	 */
3018	if (icsk->icsk_ca_state != TCP_CA_Loss) {
3019		tp->high_seq = tp->snd_nxt;
3020		tp->snd_ssthresh = tcp_current_ssthresh(sk);
3021		tp->prior_ssthresh = 0;
3022		tp->undo_marker = 0;
3023		tcp_set_ca_state(sk, TCP_CA_Loss);
3024	}
3025	tcp_xmit_retransmit_queue(sk);
3026}
3027EXPORT_SYMBOL(tcp_simple_retransmit);
3028
3029/* This function implements the PRR algorithm, specifcally the PRR-SSRB
3030 * (proportional rate reduction with slow start reduction bound) as described in
3031 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3032 * It computes the number of packets to send (sndcnt) based on packets newly
3033 * delivered:
3034 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
3035 *	cwnd reductions across a full RTT.
3036 *   2) If packets in flight is lower than ssthresh (such as due to excess
3037 *	losses and/or application stalls), do not perform any further cwnd
3038 *	reductions, but instead slow start up to ssthresh.
3039 */
3040static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3041					int fast_rexmit, int flag)
3042{
3043	struct tcp_sock *tp = tcp_sk(sk);
3044	int sndcnt = 0;
3045	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3046
3047	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3048		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3049			       tp->prior_cwnd - 1;
3050		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3051	} else {
3052		sndcnt = min_t(int, delta,
3053			       max_t(int, tp->prr_delivered - tp->prr_out,
3054				     newly_acked_sacked) + 1);
3055	}
3056
3057	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3058	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3059}
3060
3061static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
3062{
3063	struct tcp_sock *tp = tcp_sk(sk);
3064	int mib_idx;
3065
3066	if (tcp_is_reno(tp))
3067		mib_idx = LINUX_MIB_TCPRENORECOVERY;
3068	else
3069		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3070
3071	NET_INC_STATS_BH(sock_net(sk), mib_idx);
3072
3073	tp->high_seq = tp->snd_nxt;
3074	tp->prior_ssthresh = 0;
3075	tp->undo_marker = tp->snd_una;
3076	tp->undo_retrans = tp->retrans_out;
3077
3078	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
3079		if (!ece_ack)
3080			tp->prior_ssthresh = tcp_current_ssthresh(sk);
3081		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
3082		TCP_ECN_queue_cwr(tp);
3083	}
3084
3085	tp->bytes_acked = 0;
3086	tp->snd_cwnd_cnt = 0;
3087	tp->prior_cwnd = tp->snd_cwnd;
3088	tp->prr_delivered = 0;
3089	tp->prr_out = 0;
3090	tcp_set_ca_state(sk, TCP_CA_Recovery);
3091}
3092
3093/* Process an event, which can update packets-in-flight not trivially.
3094 * Main goal of this function is to calculate new estimate for left_out,
3095 * taking into account both packets sitting in receiver's buffer and
3096 * packets lost by network.
3097 *
3098 * Besides that it does CWND reduction, when packet loss is detected
3099 * and changes state of machine.
3100 *
3101 * It does _not_ decide what to send, it is made in function
3102 * tcp_xmit_retransmit_queue().
3103 */
3104static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3105				  int newly_acked_sacked, bool is_dupack,
3106				  int flag)
3107{
3108	struct inet_connection_sock *icsk = inet_csk(sk);
3109	struct tcp_sock *tp = tcp_sk(sk);
3110	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3111				    (tcp_fackets_out(tp) > tp->reordering));
3112	int fast_rexmit = 0;
3113
3114	if (WARN_ON(!tp->packets_out && tp->sacked_out))
3115		tp->sacked_out = 0;
3116	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3117		tp->fackets_out = 0;
3118
3119	/* Now state machine starts.
3120	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3121	if (flag & FLAG_ECE)
3122		tp->prior_ssthresh = 0;
3123
3124	/* B. In all the states check for reneging SACKs. */
3125	if (tcp_check_sack_reneging(sk, flag))
3126		return;
3127
3128	/* C. Check consistency of the current state. */
3129	tcp_verify_left_out(tp);
3130
3131	/* D. Check state exit conditions. State can be terminated
3132	 *    when high_seq is ACKed. */
3133	if (icsk->icsk_ca_state == TCP_CA_Open) {
3134		WARN_ON(tp->retrans_out != 0);
3135		tp->retrans_stamp = 0;
3136	} else if (!before(tp->snd_una, tp->high_seq)) {
3137		switch (icsk->icsk_ca_state) {
3138		case TCP_CA_Loss:
3139			icsk->icsk_retransmits = 0;
3140			if (tcp_try_undo_recovery(sk))
3141				return;
3142			break;
3143
3144		case TCP_CA_CWR:
3145			/* CWR is to be held something *above* high_seq
3146			 * is ACKed for CWR bit to reach receiver. */
3147			if (tp->snd_una != tp->high_seq) {
3148				tcp_complete_cwr(sk);
3149				tcp_set_ca_state(sk, TCP_CA_Open);
3150			}
3151			break;
3152
3153		case TCP_CA_Recovery:
3154			if (tcp_is_reno(tp))
3155				tcp_reset_reno_sack(tp);
3156			if (tcp_try_undo_recovery(sk))
3157				return;
3158			tcp_complete_cwr(sk);
3159			break;
3160		}
3161	}
3162
3163	/* E. Process state. */
3164	switch (icsk->icsk_ca_state) {
3165	case TCP_CA_Recovery:
3166		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3167			if (tcp_is_reno(tp) && is_dupack)
3168				tcp_add_reno_sack(sk);
3169		} else
3170			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3171		break;
3172	case TCP_CA_Loss:
3173		if (flag & FLAG_DATA_ACKED)
3174			icsk->icsk_retransmits = 0;
3175		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3176			tcp_reset_reno_sack(tp);
3177		if (!tcp_try_undo_loss(sk)) {
3178			tcp_moderate_cwnd(tp);
3179			tcp_xmit_retransmit_queue(sk);
3180			return;
3181		}
3182		if (icsk->icsk_ca_state != TCP_CA_Open)
3183			return;
3184		/* Loss is undone; fall through to processing in Open state. */
3185	default:
3186		if (tcp_is_reno(tp)) {
3187			if (flag & FLAG_SND_UNA_ADVANCED)
3188				tcp_reset_reno_sack(tp);
3189			if (is_dupack)
3190				tcp_add_reno_sack(sk);
3191		}
3192
3193		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3194			tcp_try_undo_dsack(sk);
3195
3196		if (!tcp_time_to_recover(sk, flag)) {
3197			tcp_try_to_open(sk, flag);
3198			return;
3199		}
3200
3201		/* MTU probe failure: don't reduce cwnd */
3202		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3203		    icsk->icsk_mtup.probe_size &&
3204		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3205			tcp_mtup_probe_failed(sk);
3206			/* Restores the reduction we did in tcp_mtup_probe() */
3207			tp->snd_cwnd++;
3208			tcp_simple_retransmit(sk);
3209			return;
3210		}
3211
3212		/* Otherwise enter Recovery state */
3213		tcp_enter_recovery(sk, (flag & FLAG_ECE));
3214		fast_rexmit = 1;
3215	}
3216
3217	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3218		tcp_update_scoreboard(sk, fast_rexmit);
3219	tp->prr_delivered += newly_acked_sacked;
3220	tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3221	tcp_xmit_retransmit_queue(sk);
3222}
3223
3224void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3225{
3226	tcp_rtt_estimator(sk, seq_rtt);
3227	tcp_set_rto(sk);
3228	inet_csk(sk)->icsk_backoff = 0;
3229}
3230EXPORT_SYMBOL(tcp_valid_rtt_meas);
3231
3232/* Read draft-ietf-tcplw-high-performance before mucking
3233 * with this code. (Supersedes RFC1323)
3234 */
3235static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3236{
3237	/* RTTM Rule: A TSecr value received in a segment is used to
3238	 * update the averaged RTT measurement only if the segment
3239	 * acknowledges some new data, i.e., only if it advances the
3240	 * left edge of the send window.
3241	 *
3242	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3243	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3244	 *
3245	 * Changed: reset backoff as soon as we see the first valid sample.
3246	 * If we do not, we get strongly overestimated rto. With timestamps
3247	 * samples are accepted even from very old segments: f.e., when rtt=1
3248	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3249	 * answer arrives rto becomes 120 seconds! If at least one of segments
3250	 * in window is lost... Voila.	 			--ANK (010210)
3251	 */
3252	struct tcp_sock *tp = tcp_sk(sk);
3253
3254	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3255}
3256
3257static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3258{
3259	/* We don't have a timestamp. Can only use
3260	 * packets that are not retransmitted to determine
3261	 * rtt estimates. Also, we must not reset the
3262	 * backoff for rto until we get a non-retransmitted
3263	 * packet. This allows us to deal with a situation
3264	 * where the network delay has increased suddenly.
3265	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3266	 */
3267
3268	if (flag & FLAG_RETRANS_DATA_ACKED)
3269		return;
3270
3271	tcp_valid_rtt_meas(sk, seq_rtt);
3272}
3273
3274static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3275				      const s32 seq_rtt)
3276{
3277	const struct tcp_sock *tp = tcp_sk(sk);
3278	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3279	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3280		tcp_ack_saw_tstamp(sk, flag);
3281	else if (seq_rtt >= 0)
3282		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3283}
3284
3285static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3286{
3287	const struct inet_connection_sock *icsk = inet_csk(sk);
3288	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3289	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3290}
3291
3292/* Restart timer after forward progress on connection.
3293 * RFC2988 recommends to restart timer to now+rto.
3294 */
3295void tcp_rearm_rto(struct sock *sk)
3296{
3297	struct tcp_sock *tp = tcp_sk(sk);
3298
3299	if (!tp->packets_out) {
3300		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3301	} else {
3302		u32 rto = inet_csk(sk)->icsk_rto;
3303		/* Offset the time elapsed after installing regular RTO */
3304		if (tp->early_retrans_delayed) {
3305			struct sk_buff *skb = tcp_write_queue_head(sk);
3306			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3307			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3308			/* delta may not be positive if the socket is locked
3309			 * when the delayed ER timer fires and is rescheduled.
3310			 */
3311			if (delta > 0)
3312				rto = delta;
3313		}
3314		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3315					  TCP_RTO_MAX);
3316	}
3317	tp->early_retrans_delayed = 0;
3318}
3319
3320/* This function is called when the delayed ER timer fires. TCP enters
3321 * fast recovery and performs fast-retransmit.
3322 */
3323void tcp_resume_early_retransmit(struct sock *sk)
3324{
3325	struct tcp_sock *tp = tcp_sk(sk);
3326
3327	tcp_rearm_rto(sk);
3328
3329	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3330	if (!tp->do_early_retrans)
3331		return;
3332
3333	tcp_enter_recovery(sk, false);
3334	tcp_update_scoreboard(sk, 1);
3335	tcp_xmit_retransmit_queue(sk);
3336}
3337
3338/* If we get here, the whole TSO packet has not been acked. */
3339static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3340{
3341	struct tcp_sock *tp = tcp_sk(sk);
3342	u32 packets_acked;
3343
3344	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3345
3346	packets_acked = tcp_skb_pcount(skb);
3347	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3348		return 0;
3349	packets_acked -= tcp_skb_pcount(skb);
3350
3351	if (packets_acked) {
3352		BUG_ON(tcp_skb_pcount(skb) == 0);
3353		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3354	}
3355
3356	return packets_acked;
3357}
3358
3359/* Remove acknowledged frames from the retransmission queue. If our packet
3360 * is before the ack sequence we can discard it as it's confirmed to have
3361 * arrived at the other end.
3362 */
3363static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3364			       u32 prior_snd_una)
3365{
3366	struct tcp_sock *tp = tcp_sk(sk);
3367	const struct inet_connection_sock *icsk = inet_csk(sk);
3368	struct sk_buff *skb;
3369	u32 now = tcp_time_stamp;
3370	int fully_acked = 1;
3371	int flag = 0;
3372	u32 pkts_acked = 0;
3373	u32 reord = tp->packets_out;
3374	u32 prior_sacked = tp->sacked_out;
3375	s32 seq_rtt = -1;
3376	s32 ca_seq_rtt = -1;
3377	ktime_t last_ackt = net_invalid_timestamp();
3378
3379	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3380		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3381		u32 acked_pcount;
3382		u8 sacked = scb->sacked;
3383
3384		/* Determine how many packets and what bytes were acked, tso and else */
3385		if (after(scb->end_seq, tp->snd_una)) {
3386			if (tcp_skb_pcount(skb) == 1 ||
3387			    !after(tp->snd_una, scb->seq))
3388				break;
3389
3390			acked_pcount = tcp_tso_acked(sk, skb);
3391			if (!acked_pcount)
3392				break;
3393
3394			fully_acked = 0;
3395		} else {
3396			acked_pcount = tcp_skb_pcount(skb);
3397		}
3398
3399		if (sacked & TCPCB_RETRANS) {
3400			if (sacked & TCPCB_SACKED_RETRANS)
3401				tp->retrans_out -= acked_pcount;
3402			flag |= FLAG_RETRANS_DATA_ACKED;
3403			ca_seq_rtt = -1;
3404			seq_rtt = -1;
3405			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3406				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3407		} else {
3408			ca_seq_rtt = now - scb->when;
3409			last_ackt = skb->tstamp;
3410			if (seq_rtt < 0) {
3411				seq_rtt = ca_seq_rtt;
3412			}
3413			if (!(sacked & TCPCB_SACKED_ACKED))
3414				reord = min(pkts_acked, reord);
3415		}
3416
3417		if (sacked & TCPCB_SACKED_ACKED)
3418			tp->sacked_out -= acked_pcount;
3419		if (sacked & TCPCB_LOST)
3420			tp->lost_out -= acked_pcount;
3421
3422		tp->packets_out -= acked_pcount;
3423		pkts_acked += acked_pcount;
3424
3425		/* Initial outgoing SYN's get put onto the write_queue
3426		 * just like anything else we transmit.  It is not
3427		 * true data, and if we misinform our callers that
3428		 * this ACK acks real data, we will erroneously exit
3429		 * connection startup slow start one packet too
3430		 * quickly.  This is severely frowned upon behavior.
3431		 */
3432		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3433			flag |= FLAG_DATA_ACKED;
3434		} else {
3435			flag |= FLAG_SYN_ACKED;
3436			tp->retrans_stamp = 0;
3437		}
3438
3439		if (!fully_acked)
3440			break;
3441
3442		tcp_unlink_write_queue(skb, sk);
3443		sk_wmem_free_skb(sk, skb);
3444		tp->scoreboard_skb_hint = NULL;
3445		if (skb == tp->retransmit_skb_hint)
3446			tp->retransmit_skb_hint = NULL;
3447		if (skb == tp->lost_skb_hint)
3448			tp->lost_skb_hint = NULL;
3449	}
3450
3451	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3452		tp->snd_up = tp->snd_una;
3453
3454	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3455		flag |= FLAG_SACK_RENEGING;
3456
3457	if (flag & FLAG_ACKED) {
3458		const struct tcp_congestion_ops *ca_ops
3459			= inet_csk(sk)->icsk_ca_ops;
3460
3461		if (unlikely(icsk->icsk_mtup.probe_size &&
3462			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3463			tcp_mtup_probe_success(sk);
3464		}
3465
3466		tcp_ack_update_rtt(sk, flag, seq_rtt);
3467		tcp_rearm_rto(sk);
3468
3469		if (tcp_is_reno(tp)) {
3470			tcp_remove_reno_sacks(sk, pkts_acked);
3471		} else {
3472			int delta;
3473
3474			/* Non-retransmitted hole got filled? That's reordering */
3475			if (reord < prior_fackets)
3476				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3477
3478			delta = tcp_is_fack(tp) ? pkts_acked :
3479						  prior_sacked - tp->sacked_out;
3480			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3481		}
3482
3483		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3484
3485		if (ca_ops->pkts_acked) {
3486			s32 rtt_us = -1;
3487
3488			/* Is the ACK triggering packet unambiguous? */
3489			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3490				/* High resolution needed and available? */
3491				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3492				    !ktime_equal(last_ackt,
3493						 net_invalid_timestamp()))
3494					rtt_us = ktime_us_delta(ktime_get_real(),
3495								last_ackt);
3496				else if (ca_seq_rtt >= 0)
3497					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3498			}
3499
3500			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3501		}
3502	}
3503
3504#if FASTRETRANS_DEBUG > 0
3505	WARN_ON((int)tp->sacked_out < 0);
3506	WARN_ON((int)tp->lost_out < 0);
3507	WARN_ON((int)tp->retrans_out < 0);
3508	if (!tp->packets_out && tcp_is_sack(tp)) {
3509		icsk = inet_csk(sk);
3510		if (tp->lost_out) {
3511			printk(KERN_DEBUG "Leak l=%u %d\n",
3512			       tp->lost_out, icsk->icsk_ca_state);
3513			tp->lost_out = 0;
3514		}
3515		if (tp->sacked_out) {
3516			printk(KERN_DEBUG "Leak s=%u %d\n",
3517			       tp->sacked_out, icsk->icsk_ca_state);
3518			tp->sacked_out = 0;
3519		}
3520		if (tp->retrans_out) {
3521			printk(KERN_DEBUG "Leak r=%u %d\n",
3522			       tp->retrans_out, icsk->icsk_ca_state);
3523			tp->retrans_out = 0;
3524		}
3525	}
3526#endif
3527	return flag;
3528}
3529
3530static void tcp_ack_probe(struct sock *sk)
3531{
3532	const struct tcp_sock *tp = tcp_sk(sk);
3533	struct inet_connection_sock *icsk = inet_csk(sk);
3534
3535	/* Was it a usable window open? */
3536
3537	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3538		icsk->icsk_backoff = 0;
3539		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3540		/* Socket must be waked up by subsequent tcp_data_snd_check().
3541		 * This function is not for random using!
3542		 */
3543	} else {
3544		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3545					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3546					  TCP_RTO_MAX);
3547	}
3548}
3549
3550static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3551{
3552	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3553		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3554}
3555
3556static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3557{
3558	const struct tcp_sock *tp = tcp_sk(sk);
3559	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3560		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3561}
3562
3563/* Check that window update is acceptable.
3564 * The function assumes that snd_una<=ack<=snd_next.
3565 */
3566static inline int tcp_may_update_window(const struct tcp_sock *tp,
3567					const u32 ack, const u32 ack_seq,
3568					const u32 nwin)
3569{
3570	return	after(ack, tp->snd_una) ||
3571		after(ack_seq, tp->snd_wl1) ||
3572		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3573}
3574
3575/* Update our send window.
3576 *
3577 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3578 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3579 */
3580static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3581				 u32 ack_seq)
3582{
3583	struct tcp_sock *tp = tcp_sk(sk);
3584	int flag = 0;
3585	u32 nwin = ntohs(tcp_hdr(skb)->window);
3586
3587	if (likely(!tcp_hdr(skb)->syn))
3588		nwin <<= tp->rx_opt.snd_wscale;
3589
3590	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3591		flag |= FLAG_WIN_UPDATE;
3592		tcp_update_wl(tp, ack_seq);
3593
3594		if (tp->snd_wnd != nwin) {
3595			tp->snd_wnd = nwin;
3596
3597			/* Note, it is the only place, where
3598			 * fast path is recovered for sending TCP.
3599			 */
3600			tp->pred_flags = 0;
3601			tcp_fast_path_check(sk);
3602
3603			if (nwin > tp->max_window) {
3604				tp->max_window = nwin;
3605				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3606			}
3607		}
3608	}
3609
3610	tp->snd_una = ack;
3611
3612	return flag;
3613}
3614
3615/* A very conservative spurious RTO response algorithm: reduce cwnd and
3616 * continue in congestion avoidance.
3617 */
3618static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3619{
3620	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3621	tp->snd_cwnd_cnt = 0;
3622	tp->bytes_acked = 0;
3623	TCP_ECN_queue_cwr(tp);
3624	tcp_moderate_cwnd(tp);
3625}
3626
3627/* A conservative spurious RTO response algorithm: reduce cwnd using
3628 * rate halving and continue in congestion avoidance.
3629 */
3630static void tcp_ratehalving_spur_to_response(struct sock *sk)
3631{
3632	tcp_enter_cwr(sk, 0);
3633}
3634
3635static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3636{
3637	if (flag & FLAG_ECE)
3638		tcp_ratehalving_spur_to_response(sk);
3639	else
3640		tcp_undo_cwr(sk, true);
3641}
3642
3643/* F-RTO spurious RTO detection algorithm (RFC4138)
3644 *
3645 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3646 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3647 * window (but not to or beyond highest sequence sent before RTO):
3648 *   On First ACK,  send two new segments out.
3649 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3650 *                  algorithm is not part of the F-RTO detection algorithm
3651 *                  given in RFC4138 but can be selected separately).
3652 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3653 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3654 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3655 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3656 *
3657 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3658 * original window even after we transmit two new data segments.
3659 *
3660 * SACK version:
3661 *   on first step, wait until first cumulative ACK arrives, then move to
3662 *   the second step. In second step, the next ACK decides.
3663 *
3664 * F-RTO is implemented (mainly) in four functions:
3665 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3666 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3667 *     called when tcp_use_frto() showed green light
3668 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3669 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3670 *     to prove that the RTO is indeed spurious. It transfers the control
3671 *     from F-RTO to the conventional RTO recovery
3672 */
3673static int tcp_process_frto(struct sock *sk, int flag)
3674{
3675	struct tcp_sock *tp = tcp_sk(sk);
3676
3677	tcp_verify_left_out(tp);
3678
3679	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3680	if (flag & FLAG_DATA_ACKED)
3681		inet_csk(sk)->icsk_retransmits = 0;
3682
3683	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3684	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3685		tp->undo_marker = 0;
3686
3687	if (!before(tp->snd_una, tp->frto_highmark)) {
3688		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3689		return 1;
3690	}
3691
3692	if (!tcp_is_sackfrto(tp)) {
3693		/* RFC4138 shortcoming in step 2; should also have case c):
3694		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3695		 * data, winupdate
3696		 */
3697		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3698			return 1;
3699
3700		if (!(flag & FLAG_DATA_ACKED)) {
3701			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3702					    flag);
3703			return 1;
3704		}
3705	} else {
3706		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3707			/* Prevent sending of new data. */
3708			tp->snd_cwnd = min(tp->snd_cwnd,
3709					   tcp_packets_in_flight(tp));
3710			return 1;
3711		}
3712
3713		if ((tp->frto_counter >= 2) &&
3714		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3715		     ((flag & FLAG_DATA_SACKED) &&
3716		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3717			/* RFC4138 shortcoming (see comment above) */
3718			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3719			    (flag & FLAG_NOT_DUP))
3720				return 1;
3721
3722			tcp_enter_frto_loss(sk, 3, flag);
3723			return 1;
3724		}
3725	}
3726
3727	if (tp->frto_counter == 1) {
3728		/* tcp_may_send_now needs to see updated state */
3729		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3730		tp->frto_counter = 2;
3731
3732		if (!tcp_may_send_now(sk))
3733			tcp_enter_frto_loss(sk, 2, flag);
3734
3735		return 1;
3736	} else {
3737		switch (sysctl_tcp_frto_response) {
3738		case 2:
3739			tcp_undo_spur_to_response(sk, flag);
3740			break;
3741		case 1:
3742			tcp_conservative_spur_to_response(tp);
3743			break;
3744		default:
3745			tcp_ratehalving_spur_to_response(sk);
3746			break;
3747		}
3748		tp->frto_counter = 0;
3749		tp->undo_marker = 0;
3750		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3751	}
3752	return 0;
3753}
3754
3755/* This routine deals with incoming acks, but not outgoing ones. */
3756static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3757{
3758	struct inet_connection_sock *icsk = inet_csk(sk);
3759	struct tcp_sock *tp = tcp_sk(sk);
3760	u32 prior_snd_una = tp->snd_una;
3761	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3762	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3763	bool is_dupack = false;
3764	u32 prior_in_flight;
3765	u32 prior_fackets;
3766	int prior_packets;
3767	int prior_sacked = tp->sacked_out;
3768	int pkts_acked = 0;
3769	int newly_acked_sacked = 0;
3770	int frto_cwnd = 0;
3771
3772	/* If the ack is older than previous acks
3773	 * then we can probably ignore it.
3774	 */
3775	if (before(ack, prior_snd_una))
3776		goto old_ack;
3777
3778	/* If the ack includes data we haven't sent yet, discard
3779	 * this segment (RFC793 Section 3.9).
3780	 */
3781	if (after(ack, tp->snd_nxt))
3782		goto invalid_ack;
3783
3784	if (tp->early_retrans_delayed)
3785		tcp_rearm_rto(sk);
3786
3787	if (after(ack, prior_snd_una))
3788		flag |= FLAG_SND_UNA_ADVANCED;
3789
3790	if (sysctl_tcp_abc) {
3791		if (icsk->icsk_ca_state < TCP_CA_CWR)
3792			tp->bytes_acked += ack - prior_snd_una;
3793		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3794			/* we assume just one segment left network */
3795			tp->bytes_acked += min(ack - prior_snd_una,
3796					       tp->mss_cache);
3797	}
3798
3799	prior_fackets = tp->fackets_out;
3800	prior_in_flight = tcp_packets_in_flight(tp);
3801
3802	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3803		/* Window is constant, pure forward advance.
3804		 * No more checks are required.
3805		 * Note, we use the fact that SND.UNA>=SND.WL2.
3806		 */
3807		tcp_update_wl(tp, ack_seq);
3808		tp->snd_una = ack;
3809		flag |= FLAG_WIN_UPDATE;
3810
3811		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3812
3813		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3814	} else {
3815		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3816			flag |= FLAG_DATA;
3817		else
3818			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3819
3820		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3821
3822		if (TCP_SKB_CB(skb)->sacked)
3823			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3824
3825		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3826			flag |= FLAG_ECE;
3827
3828		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3829	}
3830
3831	/* We passed data and got it acked, remove any soft error
3832	 * log. Something worked...
3833	 */
3834	sk->sk_err_soft = 0;
3835	icsk->icsk_probes_out = 0;
3836	tp->rcv_tstamp = tcp_time_stamp;
3837	prior_packets = tp->packets_out;
3838	if (!prior_packets)
3839		goto no_queue;
3840
3841	/* See if we can take anything off of the retransmit queue. */
3842	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3843
3844	pkts_acked = prior_packets - tp->packets_out;
3845	newly_acked_sacked = (prior_packets - prior_sacked) -
3846			     (tp->packets_out - tp->sacked_out);
3847
3848	if (tp->frto_counter)
3849		frto_cwnd = tcp_process_frto(sk, flag);
3850	/* Guarantee sacktag reordering detection against wrap-arounds */
3851	if (before(tp->frto_highmark, tp->snd_una))
3852		tp->frto_highmark = 0;
3853
3854	if (tcp_ack_is_dubious(sk, flag)) {
3855		/* Advance CWND, if state allows this. */
3856		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3857		    tcp_may_raise_cwnd(sk, flag))
3858			tcp_cong_avoid(sk, ack, prior_in_flight);
3859		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3860		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3861				      is_dupack, flag);
3862	} else {
3863		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3864			tcp_cong_avoid(sk, ack, prior_in_flight);
3865	}
3866
3867	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3868		dst_confirm(__sk_dst_get(sk));
3869
3870	return 1;
3871
3872no_queue:
3873	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3874	if (flag & FLAG_DSACKING_ACK)
3875		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3876				      is_dupack, flag);
3877	/* If this ack opens up a zero window, clear backoff.  It was
3878	 * being used to time the probes, and is probably far higher than
3879	 * it needs to be for normal retransmission.
3880	 */
3881	if (tcp_send_head(sk))
3882		tcp_ack_probe(sk);
3883	return 1;
3884
3885invalid_ack:
3886	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3887	return -1;
3888
3889old_ack:
3890	/* If data was SACKed, tag it and see if we should send more data.
3891	 * If data was DSACKed, see if we can undo a cwnd reduction.
3892	 */
3893	if (TCP_SKB_CB(skb)->sacked) {
3894		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3895		newly_acked_sacked = tp->sacked_out - prior_sacked;
3896		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3897				      is_dupack, flag);
3898	}
3899
3900	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3901	return 0;
3902}
3903
3904/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3905 * But, this can also be called on packets in the established flow when
3906 * the fast version below fails.
3907 */
3908void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3909		       const u8 **hvpp, int estab)
3910{
3911	const unsigned char *ptr;
3912	const struct tcphdr *th = tcp_hdr(skb);
3913	int length = (th->doff * 4) - sizeof(struct tcphdr);
3914
3915	ptr = (const unsigned char *)(th + 1);
3916	opt_rx->saw_tstamp = 0;
3917
3918	while (length > 0) {
3919		int opcode = *ptr++;
3920		int opsize;
3921
3922		switch (opcode) {
3923		case TCPOPT_EOL:
3924			return;
3925		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3926			length--;
3927			continue;
3928		default:
3929			opsize = *ptr++;
3930			if (opsize < 2) /* "silly options" */
3931				return;
3932			if (opsize > length)
3933				return;	/* don't parse partial options */
3934			switch (opcode) {
3935			case TCPOPT_MSS:
3936				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3937					u16 in_mss = get_unaligned_be16(ptr);
3938					if (in_mss) {
3939						if (opt_rx->user_mss &&
3940						    opt_rx->user_mss < in_mss)
3941							in_mss = opt_rx->user_mss;
3942						opt_rx->mss_clamp = in_mss;
3943					}
3944				}
3945				break;
3946			case TCPOPT_WINDOW:
3947				if (opsize == TCPOLEN_WINDOW && th->syn &&
3948				    !estab && sysctl_tcp_window_scaling) {
3949					__u8 snd_wscale = *(__u8 *)ptr;
3950					opt_rx->wscale_ok = 1;
3951					if (snd_wscale > 14) {
3952						if (net_ratelimit())
3953							pr_info("%s: Illegal window scaling value %d >14 received\n",
3954								__func__,
3955								snd_wscale);
3956						snd_wscale = 14;
3957					}
3958					opt_rx->snd_wscale = snd_wscale;
3959				}
3960				break;
3961			case TCPOPT_TIMESTAMP:
3962				if ((opsize == TCPOLEN_TIMESTAMP) &&
3963				    ((estab && opt_rx->tstamp_ok) ||
3964				     (!estab && sysctl_tcp_timestamps))) {
3965					opt_rx->saw_tstamp = 1;
3966					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3967					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3968				}
3969				break;
3970			case TCPOPT_SACK_PERM:
3971				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3972				    !estab && sysctl_tcp_sack) {
3973					opt_rx->sack_ok = TCP_SACK_SEEN;
3974					tcp_sack_reset(opt_rx);
3975				}
3976				break;
3977
3978			case TCPOPT_SACK:
3979				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3980				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3981				   opt_rx->sack_ok) {
3982					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3983				}
3984				break;
3985#ifdef CONFIG_TCP_MD5SIG
3986			case TCPOPT_MD5SIG:
3987				/*
3988				 * The MD5 Hash has already been
3989				 * checked (see tcp_v{4,6}_do_rcv()).
3990				 */
3991				break;
3992#endif
3993			case TCPOPT_COOKIE:
3994				/* This option is variable length.
3995				 */
3996				switch (opsize) {
3997				case TCPOLEN_COOKIE_BASE:
3998					/* not yet implemented */
3999					break;
4000				case TCPOLEN_COOKIE_PAIR:
4001					/* not yet implemented */
4002					break;
4003				case TCPOLEN_COOKIE_MIN+0:
4004				case TCPOLEN_COOKIE_MIN+2:
4005				case TCPOLEN_COOKIE_MIN+4:
4006				case TCPOLEN_COOKIE_MIN+6:
4007				case TCPOLEN_COOKIE_MAX:
4008					/* 16-bit multiple */
4009					opt_rx->cookie_plus = opsize;
4010					*hvpp = ptr;
4011					break;
4012				default:
4013					/* ignore option */
4014					break;
4015				}
4016				break;
4017			}
4018
4019			ptr += opsize-2;
4020			length -= opsize;
4021		}
4022	}
4023}
4024EXPORT_SYMBOL(tcp_parse_options);
4025
4026static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4027{
4028	const __be32 *ptr = (const __be32 *)(th + 1);
4029
4030	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4031			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4032		tp->rx_opt.saw_tstamp = 1;
4033		++ptr;
4034		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4035		++ptr;
4036		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4037		return 1;
4038	}
4039	return 0;
4040}
4041
4042/* Fast parse options. This hopes to only see timestamps.
4043 * If it is wrong it falls back on tcp_parse_options().
4044 */
4045static int tcp_fast_parse_options(const struct sk_buff *skb,
4046				  const struct tcphdr *th,
4047				  struct tcp_sock *tp, const u8 **hvpp)
4048{
4049	/* In the spirit of fast parsing, compare doff directly to constant
4050	 * values.  Because equality is used, short doff can be ignored here.
4051	 */
4052	if (th->doff == (sizeof(*th) / 4)) {
4053		tp->rx_opt.saw_tstamp = 0;
4054		return 0;
4055	} else if (tp->rx_opt.tstamp_ok &&
4056		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4057		if (tcp_parse_aligned_timestamp(tp, th))
4058			return 1;
4059	}
4060	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
4061	return 1;
4062}
4063
4064#ifdef CONFIG_TCP_MD5SIG
4065/*
4066 * Parse MD5 Signature option
4067 */
4068const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4069{
4070	int length = (th->doff << 2) - sizeof(*th);
4071	const u8 *ptr = (const u8 *)(th + 1);
4072
4073	/* If the TCP option is too short, we can short cut */
4074	if (length < TCPOLEN_MD5SIG)
4075		return NULL;
4076
4077	while (length > 0) {
4078		int opcode = *ptr++;
4079		int opsize;
4080
4081		switch(opcode) {
4082		case TCPOPT_EOL:
4083			return NULL;
4084		case TCPOPT_NOP:
4085			length--;
4086			continue;
4087		default:
4088			opsize = *ptr++;
4089			if (opsize < 2 || opsize > length)
4090				return NULL;
4091			if (opcode == TCPOPT_MD5SIG)
4092				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4093		}
4094		ptr += opsize - 2;
4095		length -= opsize;
4096	}
4097	return NULL;
4098}
4099EXPORT_SYMBOL(tcp_parse_md5sig_option);
4100#endif
4101
4102static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4103{
4104	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4105	tp->rx_opt.ts_recent_stamp = get_seconds();
4106}
4107
4108static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4109{
4110	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4111		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
4112		 * extra check below makes sure this can only happen
4113		 * for pure ACK frames.  -DaveM
4114		 *
4115		 * Not only, also it occurs for expired timestamps.
4116		 */
4117
4118		if (tcp_paws_check(&tp->rx_opt, 0))
4119			tcp_store_ts_recent(tp);
4120	}
4121}
4122
4123/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4124 *
4125 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4126 * it can pass through stack. So, the following predicate verifies that
4127 * this segment is not used for anything but congestion avoidance or
4128 * fast retransmit. Moreover, we even are able to eliminate most of such
4129 * second order effects, if we apply some small "replay" window (~RTO)
4130 * to timestamp space.
4131 *
4132 * All these measures still do not guarantee that we reject wrapped ACKs
4133 * on networks with high bandwidth, when sequence space is recycled fastly,
4134 * but it guarantees that such events will be very rare and do not affect
4135 * connection seriously. This doesn't look nice, but alas, PAWS is really
4136 * buggy extension.
4137 *
4138 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4139 * states that events when retransmit arrives after original data are rare.
4140 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4141 * the biggest problem on large power networks even with minor reordering.
4142 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4143 * up to bandwidth of 18Gigabit/sec. 8) ]
4144 */
4145
4146static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4147{
4148	const struct tcp_sock *tp = tcp_sk(sk);
4149	const struct tcphdr *th = tcp_hdr(skb);
4150	u32 seq = TCP_SKB_CB(skb)->seq;
4151	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4152
4153	return (/* 1. Pure ACK with correct sequence number. */
4154		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4155
4156		/* 2. ... and duplicate ACK. */
4157		ack == tp->snd_una &&
4158
4159		/* 3. ... and does not update window. */
4160		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4161
4162		/* 4. ... and sits in replay window. */
4163		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4164}
4165
4166static inline int tcp_paws_discard(const struct sock *sk,
4167				   const struct sk_buff *skb)
4168{
4169	const struct tcp_sock *tp = tcp_sk(sk);
4170
4171	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4172	       !tcp_disordered_ack(sk, skb);
4173}
4174
4175/* Check segment sequence number for validity.
4176 *
4177 * Segment controls are considered valid, if the segment
4178 * fits to the window after truncation to the window. Acceptability
4179 * of data (and SYN, FIN, of course) is checked separately.
4180 * See tcp_data_queue(), for example.
4181 *
4182 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4183 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4184 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4185 * (borrowed from freebsd)
4186 */
4187
4188static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4189{
4190	return	!before(end_seq, tp->rcv_wup) &&
4191		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4192}
4193
4194/* When we get a reset we do this. */
4195static void tcp_reset(struct sock *sk)
4196{
4197	/* We want the right error as BSD sees it (and indeed as we do). */
4198	switch (sk->sk_state) {
4199	case TCP_SYN_SENT:
4200		sk->sk_err = ECONNREFUSED;
4201		break;
4202	case TCP_CLOSE_WAIT:
4203		sk->sk_err = EPIPE;
4204		break;
4205	case TCP_CLOSE:
4206		return;
4207	default:
4208		sk->sk_err = ECONNRESET;
4209	}
4210	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4211	smp_wmb();
4212
4213	if (!sock_flag(sk, SOCK_DEAD))
4214		sk->sk_error_report(sk);
4215
4216	tcp_done(sk);
4217}
4218
4219/*
4220 * 	Process the FIN bit. This now behaves as it is supposed to work
4221 *	and the FIN takes effect when it is validly part of sequence
4222 *	space. Not before when we get holes.
4223 *
4224 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4225 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4226 *	TIME-WAIT)
4227 *
4228 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4229 *	close and we go into CLOSING (and later onto TIME-WAIT)
4230 *
4231 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4232 */
4233static void tcp_fin(struct sock *sk)
4234{
4235	struct tcp_sock *tp = tcp_sk(sk);
4236
4237	inet_csk_schedule_ack(sk);
4238
4239	sk->sk_shutdown |= RCV_SHUTDOWN;
4240	sock_set_flag(sk, SOCK_DONE);
4241
4242	switch (sk->sk_state) {
4243	case TCP_SYN_RECV:
4244	case TCP_ESTABLISHED:
4245		/* Move to CLOSE_WAIT */
4246		tcp_set_state(sk, TCP_CLOSE_WAIT);
4247		inet_csk(sk)->icsk_ack.pingpong = 1;
4248		break;
4249
4250	case TCP_CLOSE_WAIT:
4251	case TCP_CLOSING:
4252		/* Received a retransmission of the FIN, do
4253		 * nothing.
4254		 */
4255		break;
4256	case TCP_LAST_ACK:
4257		/* RFC793: Remain in the LAST-ACK state. */
4258		break;
4259
4260	case TCP_FIN_WAIT1:
4261		/* This case occurs when a simultaneous close
4262		 * happens, we must ack the received FIN and
4263		 * enter the CLOSING state.
4264		 */
4265		tcp_send_ack(sk);
4266		tcp_set_state(sk, TCP_CLOSING);
4267		break;
4268	case TCP_FIN_WAIT2:
4269		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4270		tcp_send_ack(sk);
4271		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4272		break;
4273	default:
4274		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4275		 * cases we should never reach this piece of code.
4276		 */
4277		pr_err("%s: Impossible, sk->sk_state=%d\n",
4278		       __func__, sk->sk_state);
4279		break;
4280	}
4281
4282	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4283	 * Probably, we should reset in this case. For now drop them.
4284	 */
4285	__skb_queue_purge(&tp->out_of_order_queue);
4286	if (tcp_is_sack(tp))
4287		tcp_sack_reset(&tp->rx_opt);
4288	sk_mem_reclaim(sk);
4289
4290	if (!sock_flag(sk, SOCK_DEAD)) {
4291		sk->sk_state_change(sk);
4292
4293		/* Do not send POLL_HUP for half duplex close. */
4294		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4295		    sk->sk_state == TCP_CLOSE)
4296			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4297		else
4298			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4299	}
4300}
4301
4302static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4303				  u32 end_seq)
4304{
4305	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4306		if (before(seq, sp->start_seq))
4307			sp->start_seq = seq;
4308		if (after(end_seq, sp->end_seq))
4309			sp->end_seq = end_seq;
4310		return 1;
4311	}
4312	return 0;
4313}
4314
4315static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4316{
4317	struct tcp_sock *tp = tcp_sk(sk);
4318
4319	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4320		int mib_idx;
4321
4322		if (before(seq, tp->rcv_nxt))
4323			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4324		else
4325			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4326
4327		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4328
4329		tp->rx_opt.dsack = 1;
4330		tp->duplicate_sack[0].start_seq = seq;
4331		tp->duplicate_sack[0].end_seq = end_seq;
4332	}
4333}
4334
4335static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4336{
4337	struct tcp_sock *tp = tcp_sk(sk);
4338
4339	if (!tp->rx_opt.dsack)
4340		tcp_dsack_set(sk, seq, end_seq);
4341	else
4342		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4343}
4344
4345static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4346{
4347	struct tcp_sock *tp = tcp_sk(sk);
4348
4349	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4350	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4351		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4352		tcp_enter_quickack_mode(sk);
4353
4354		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4355			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4356
4357			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4358				end_seq = tp->rcv_nxt;
4359			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4360		}
4361	}
4362
4363	tcp_send_ack(sk);
4364}
4365
4366/* These routines update the SACK block as out-of-order packets arrive or
4367 * in-order packets close up the sequence space.
4368 */
4369static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4370{
4371	int this_sack;
4372	struct tcp_sack_block *sp = &tp->selective_acks[0];
4373	struct tcp_sack_block *swalk = sp + 1;
4374
4375	/* See if the recent change to the first SACK eats into
4376	 * or hits the sequence space of other SACK blocks, if so coalesce.
4377	 */
4378	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4379		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4380			int i;
4381
4382			/* Zap SWALK, by moving every further SACK up by one slot.
4383			 * Decrease num_sacks.
4384			 */
4385			tp->rx_opt.num_sacks--;
4386			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4387				sp[i] = sp[i + 1];
4388			continue;
4389		}
4390		this_sack++, swalk++;
4391	}
4392}
4393
4394static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4395{
4396	struct tcp_sock *tp = tcp_sk(sk);
4397	struct tcp_sack_block *sp = &tp->selective_acks[0];
4398	int cur_sacks = tp->rx_opt.num_sacks;
4399	int this_sack;
4400
4401	if (!cur_sacks)
4402		goto new_sack;
4403
4404	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4405		if (tcp_sack_extend(sp, seq, end_seq)) {
4406			/* Rotate this_sack to the first one. */
4407			for (; this_sack > 0; this_sack--, sp--)
4408				swap(*sp, *(sp - 1));
4409			if (cur_sacks > 1)
4410				tcp_sack_maybe_coalesce(tp);
4411			return;
4412		}
4413	}
4414
4415	/* Could not find an adjacent existing SACK, build a new one,
4416	 * put it at the front, and shift everyone else down.  We
4417	 * always know there is at least one SACK present already here.
4418	 *
4419	 * If the sack array is full, forget about the last one.
4420	 */
4421	if (this_sack >= TCP_NUM_SACKS) {
4422		this_sack--;
4423		tp->rx_opt.num_sacks--;
4424		sp--;
4425	}
4426	for (; this_sack > 0; this_sack--, sp--)
4427		*sp = *(sp - 1);
4428
4429new_sack:
4430	/* Build the new head SACK, and we're done. */
4431	sp->start_seq = seq;
4432	sp->end_seq = end_seq;
4433	tp->rx_opt.num_sacks++;
4434}
4435
4436/* RCV.NXT advances, some SACKs should be eaten. */
4437
4438static void tcp_sack_remove(struct tcp_sock *tp)
4439{
4440	struct tcp_sack_block *sp = &tp->selective_acks[0];
4441	int num_sacks = tp->rx_opt.num_sacks;
4442	int this_sack;
4443
4444	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4445	if (skb_queue_empty(&tp->out_of_order_queue)) {
4446		tp->rx_opt.num_sacks = 0;
4447		return;
4448	}
4449
4450	for (this_sack = 0; this_sack < num_sacks;) {
4451		/* Check if the start of the sack is covered by RCV.NXT. */
4452		if (!before(tp->rcv_nxt, sp->start_seq)) {
4453			int i;
4454
4455			/* RCV.NXT must cover all the block! */
4456			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4457
4458			/* Zap this SACK, by moving forward any other SACKS. */
4459			for (i=this_sack+1; i < num_sacks; i++)
4460				tp->selective_acks[i-1] = tp->selective_acks[i];
4461			num_sacks--;
4462			continue;
4463		}
4464		this_sack++;
4465		sp++;
4466	}
4467	tp->rx_opt.num_sacks = num_sacks;
4468}
4469
4470/* This one checks to see if we can put data from the
4471 * out_of_order queue into the receive_queue.
4472 */
4473static void tcp_ofo_queue(struct sock *sk)
4474{
4475	struct tcp_sock *tp = tcp_sk(sk);
4476	__u32 dsack_high = tp->rcv_nxt;
4477	struct sk_buff *skb;
4478
4479	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4480		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4481			break;
4482
4483		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4484			__u32 dsack = dsack_high;
4485			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4486				dsack_high = TCP_SKB_CB(skb)->end_seq;
4487			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4488		}
4489
4490		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4491			SOCK_DEBUG(sk, "ofo packet was already received\n");
4492			__skb_unlink(skb, &tp->out_of_order_queue);
4493			__kfree_skb(skb);
4494			continue;
4495		}
4496		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4497			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4498			   TCP_SKB_CB(skb)->end_seq);
4499
4500		__skb_unlink(skb, &tp->out_of_order_queue);
4501		__skb_queue_tail(&sk->sk_receive_queue, skb);
4502		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4503		if (tcp_hdr(skb)->fin)
4504			tcp_fin(sk);
4505	}
4506}
4507
4508static int tcp_prune_ofo_queue(struct sock *sk);
4509static int tcp_prune_queue(struct sock *sk);
4510
4511static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4512{
4513	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4514	    !sk_rmem_schedule(sk, size)) {
4515
4516		if (tcp_prune_queue(sk) < 0)
4517			return -1;
4518
4519		if (!sk_rmem_schedule(sk, size)) {
4520			if (!tcp_prune_ofo_queue(sk))
4521				return -1;
4522
4523			if (!sk_rmem_schedule(sk, size))
4524				return -1;
4525		}
4526	}
4527	return 0;
4528}
4529
4530/**
4531 * tcp_try_coalesce - try to merge skb to prior one
4532 * @sk: socket
4533 * @to: prior buffer
4534 * @from: buffer to add in queue
4535 * @fragstolen: pointer to boolean
4536 *
4537 * Before queueing skb @from after @to, try to merge them
4538 * to reduce overall memory use and queue lengths, if cost is small.
4539 * Packets in ofo or receive queues can stay a long time.
4540 * Better try to coalesce them right now to avoid future collapses.
4541 * Returns true if caller should free @from instead of queueing it
4542 */
4543static bool tcp_try_coalesce(struct sock *sk,
4544			     struct sk_buff *to,
4545			     struct sk_buff *from,
4546			     bool *fragstolen)
4547{
4548	int i, delta, len = from->len;
4549
4550	*fragstolen = false;
4551	if (tcp_hdr(from)->fin || skb_cloned(to))
4552		return false;
4553	if (len <= skb_tailroom(to)) {
4554		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4555merge:
4556		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4557		TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4558		TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4559		return true;
4560	}
4561
4562	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4563		return false;
4564
4565	if (skb_headlen(from) == 0 &&
4566	    (skb_shinfo(to)->nr_frags +
4567	     skb_shinfo(from)->nr_frags <= MAX_SKB_FRAGS)) {
4568		WARN_ON_ONCE(from->head_frag);
4569		delta = from->truesize - ksize(from->head) -
4570			SKB_DATA_ALIGN(sizeof(struct sk_buff));
4571
4572		WARN_ON_ONCE(delta < len);
4573copyfrags:
4574		memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4575		       skb_shinfo(from)->frags,
4576		       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4577		skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4578
4579		if (skb_cloned(from))
4580			for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4581				skb_frag_ref(from, i);
4582		else
4583			skb_shinfo(from)->nr_frags = 0;
4584
4585		to->truesize += delta;
4586		atomic_add(delta, &sk->sk_rmem_alloc);
4587		sk_mem_charge(sk, delta);
4588		to->len += len;
4589		to->data_len += len;
4590		goto merge;
4591	}
4592	if (from->head_frag) {
4593		struct page *page;
4594		unsigned int offset;
4595
4596		if (skb_shinfo(to)->nr_frags + skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4597			return false;
4598		page = virt_to_head_page(from->head);
4599		offset = from->data - (unsigned char *)page_address(page);
4600		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4601				   page, offset, skb_headlen(from));
4602
4603		if (skb_cloned(from))
4604			get_page(page);
4605		else
4606			*fragstolen = true;
4607
4608		delta = len; /* we dont know real truesize... */
4609		goto copyfrags;
4610	}
4611	return false;
4612}
4613
4614static void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4615{
4616	if (head_stolen)
4617		kmem_cache_free(skbuff_head_cache, skb);
4618	else
4619		__kfree_skb(skb);
4620}
4621
4622static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4623{
4624	struct tcp_sock *tp = tcp_sk(sk);
4625	struct sk_buff *skb1;
4626	u32 seq, end_seq;
4627
4628	TCP_ECN_check_ce(tp, skb);
4629
4630	if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4631		/* TODO: should increment a counter */
4632		__kfree_skb(skb);
4633		return;
4634	}
4635
4636	/* Disable header prediction. */
4637	tp->pred_flags = 0;
4638	inet_csk_schedule_ack(sk);
4639
4640	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4641		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4642
4643	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4644	if (!skb1) {
4645		/* Initial out of order segment, build 1 SACK. */
4646		if (tcp_is_sack(tp)) {
4647			tp->rx_opt.num_sacks = 1;
4648			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4649			tp->selective_acks[0].end_seq =
4650						TCP_SKB_CB(skb)->end_seq;
4651		}
4652		__skb_queue_head(&tp->out_of_order_queue, skb);
4653		goto end;
4654	}
4655
4656	seq = TCP_SKB_CB(skb)->seq;
4657	end_seq = TCP_SKB_CB(skb)->end_seq;
4658
4659	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4660		bool fragstolen;
4661
4662		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4663			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4664		} else {
4665			kfree_skb_partial(skb, fragstolen);
4666			skb = NULL;
4667		}
4668
4669		if (!tp->rx_opt.num_sacks ||
4670		    tp->selective_acks[0].end_seq != seq)
4671			goto add_sack;
4672
4673		/* Common case: data arrive in order after hole. */
4674		tp->selective_acks[0].end_seq = end_seq;
4675		goto end;
4676	}
4677
4678	/* Find place to insert this segment. */
4679	while (1) {
4680		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4681			break;
4682		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4683			skb1 = NULL;
4684			break;
4685		}
4686		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4687	}
4688
4689	/* Do skb overlap to previous one? */
4690	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4691		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4692			/* All the bits are present. Drop. */
4693			__kfree_skb(skb);
4694			skb = NULL;
4695			tcp_dsack_set(sk, seq, end_seq);
4696			goto add_sack;
4697		}
4698		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4699			/* Partial overlap. */
4700			tcp_dsack_set(sk, seq,
4701				      TCP_SKB_CB(skb1)->end_seq);
4702		} else {
4703			if (skb_queue_is_first(&tp->out_of_order_queue,
4704					       skb1))
4705				skb1 = NULL;
4706			else
4707				skb1 = skb_queue_prev(
4708					&tp->out_of_order_queue,
4709					skb1);
4710		}
4711	}
4712	if (!skb1)
4713		__skb_queue_head(&tp->out_of_order_queue, skb);
4714	else
4715		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4716
4717	/* And clean segments covered by new one as whole. */
4718	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4719		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4720
4721		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4722			break;
4723		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4724			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4725					 end_seq);
4726			break;
4727		}
4728		__skb_unlink(skb1, &tp->out_of_order_queue);
4729		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4730				 TCP_SKB_CB(skb1)->end_seq);
4731		__kfree_skb(skb1);
4732	}
4733
4734add_sack:
4735	if (tcp_is_sack(tp))
4736		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4737end:
4738	if (skb)
4739		skb_set_owner_r(skb, sk);
4740}
4741
4742
4743static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4744{
4745	const struct tcphdr *th = tcp_hdr(skb);
4746	struct tcp_sock *tp = tcp_sk(sk);
4747	int eaten = -1;
4748	bool fragstolen = false;
4749
4750	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4751		goto drop;
4752
4753	skb_dst_drop(skb);
4754	__skb_pull(skb, th->doff * 4);
4755
4756	TCP_ECN_accept_cwr(tp, skb);
4757
4758	tp->rx_opt.dsack = 0;
4759
4760	/*  Queue data for delivery to the user.
4761	 *  Packets in sequence go to the receive queue.
4762	 *  Out of sequence packets to the out_of_order_queue.
4763	 */
4764	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4765		if (tcp_receive_window(tp) == 0)
4766			goto out_of_window;
4767
4768		/* Ok. In sequence. In window. */
4769		if (tp->ucopy.task == current &&
4770		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4771		    sock_owned_by_user(sk) && !tp->urg_data) {
4772			int chunk = min_t(unsigned int, skb->len,
4773					  tp->ucopy.len);
4774
4775			__set_current_state(TASK_RUNNING);
4776
4777			local_bh_enable();
4778			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4779				tp->ucopy.len -= chunk;
4780				tp->copied_seq += chunk;
4781				eaten = (chunk == skb->len);
4782				tcp_rcv_space_adjust(sk);
4783			}
4784			local_bh_disable();
4785		}
4786
4787		if (eaten <= 0) {
4788			struct sk_buff *tail;
4789queue_and_out:
4790			if (eaten < 0 &&
4791			    tcp_try_rmem_schedule(sk, skb->truesize))
4792				goto drop;
4793
4794			tail = skb_peek_tail(&sk->sk_receive_queue);
4795			eaten = (tail &&
4796				 tcp_try_coalesce(sk, tail, skb,
4797						  &fragstolen)) ? 1 : 0;
4798			if (eaten <= 0) {
4799				skb_set_owner_r(skb, sk);
4800				__skb_queue_tail(&sk->sk_receive_queue, skb);
4801			}
4802		}
4803		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4804		if (skb->len)
4805			tcp_event_data_recv(sk, skb);
4806		if (th->fin)
4807			tcp_fin(sk);
4808
4809		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4810			tcp_ofo_queue(sk);
4811
4812			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4813			 * gap in queue is filled.
4814			 */
4815			if (skb_queue_empty(&tp->out_of_order_queue))
4816				inet_csk(sk)->icsk_ack.pingpong = 0;
4817		}
4818
4819		if (tp->rx_opt.num_sacks)
4820			tcp_sack_remove(tp);
4821
4822		tcp_fast_path_check(sk);
4823
4824		if (eaten > 0)
4825			kfree_skb_partial(skb, fragstolen);
4826		else if (!sock_flag(sk, SOCK_DEAD))
4827			sk->sk_data_ready(sk, 0);
4828		return;
4829	}
4830
4831	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4832		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4833		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4834		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4835
4836out_of_window:
4837		tcp_enter_quickack_mode(sk);
4838		inet_csk_schedule_ack(sk);
4839drop:
4840		__kfree_skb(skb);
4841		return;
4842	}
4843
4844	/* Out of window. F.e. zero window probe. */
4845	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4846		goto out_of_window;
4847
4848	tcp_enter_quickack_mode(sk);
4849
4850	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4851		/* Partial packet, seq < rcv_next < end_seq */
4852		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4853			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4854			   TCP_SKB_CB(skb)->end_seq);
4855
4856		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4857
4858		/* If window is closed, drop tail of packet. But after
4859		 * remembering D-SACK for its head made in previous line.
4860		 */
4861		if (!tcp_receive_window(tp))
4862			goto out_of_window;
4863		goto queue_and_out;
4864	}
4865
4866	tcp_data_queue_ofo(sk, skb);
4867}
4868
4869static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4870					struct sk_buff_head *list)
4871{
4872	struct sk_buff *next = NULL;
4873
4874	if (!skb_queue_is_last(list, skb))
4875		next = skb_queue_next(list, skb);
4876
4877	__skb_unlink(skb, list);
4878	__kfree_skb(skb);
4879	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4880
4881	return next;
4882}
4883
4884/* Collapse contiguous sequence of skbs head..tail with
4885 * sequence numbers start..end.
4886 *
4887 * If tail is NULL, this means until the end of the list.
4888 *
4889 * Segments with FIN/SYN are not collapsed (only because this
4890 * simplifies code)
4891 */
4892static void
4893tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4894	     struct sk_buff *head, struct sk_buff *tail,
4895	     u32 start, u32 end)
4896{
4897	struct sk_buff *skb, *n;
4898	bool end_of_skbs;
4899
4900	/* First, check that queue is collapsible and find
4901	 * the point where collapsing can be useful. */
4902	skb = head;
4903restart:
4904	end_of_skbs = true;
4905	skb_queue_walk_from_safe(list, skb, n) {
4906		if (skb == tail)
4907			break;
4908		/* No new bits? It is possible on ofo queue. */
4909		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4910			skb = tcp_collapse_one(sk, skb, list);
4911			if (!skb)
4912				break;
4913			goto restart;
4914		}
4915
4916		/* The first skb to collapse is:
4917		 * - not SYN/FIN and
4918		 * - bloated or contains data before "start" or
4919		 *   overlaps to the next one.
4920		 */
4921		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4922		    (tcp_win_from_space(skb->truesize) > skb->len ||
4923		     before(TCP_SKB_CB(skb)->seq, start))) {
4924			end_of_skbs = false;
4925			break;
4926		}
4927
4928		if (!skb_queue_is_last(list, skb)) {
4929			struct sk_buff *next = skb_queue_next(list, skb);
4930			if (next != tail &&
4931			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4932				end_of_skbs = false;
4933				break;
4934			}
4935		}
4936
4937		/* Decided to skip this, advance start seq. */
4938		start = TCP_SKB_CB(skb)->end_seq;
4939	}
4940	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4941		return;
4942
4943	while (before(start, end)) {
4944		struct sk_buff *nskb;
4945		unsigned int header = skb_headroom(skb);
4946		int copy = SKB_MAX_ORDER(header, 0);
4947
4948		/* Too big header? This can happen with IPv6. */
4949		if (copy < 0)
4950			return;
4951		if (end - start < copy)
4952			copy = end - start;
4953		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4954		if (!nskb)
4955			return;
4956
4957		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4958		skb_set_network_header(nskb, (skb_network_header(skb) -
4959					      skb->head));
4960		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4961						skb->head));
4962		skb_reserve(nskb, header);
4963		memcpy(nskb->head, skb->head, header);
4964		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4965		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4966		__skb_queue_before(list, skb, nskb);
4967		skb_set_owner_r(nskb, sk);
4968
4969		/* Copy data, releasing collapsed skbs. */
4970		while (copy > 0) {
4971			int offset = start - TCP_SKB_CB(skb)->seq;
4972			int size = TCP_SKB_CB(skb)->end_seq - start;
4973
4974			BUG_ON(offset < 0);
4975			if (size > 0) {
4976				size = min(copy, size);
4977				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4978					BUG();
4979				TCP_SKB_CB(nskb)->end_seq += size;
4980				copy -= size;
4981				start += size;
4982			}
4983			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4984				skb = tcp_collapse_one(sk, skb, list);
4985				if (!skb ||
4986				    skb == tail ||
4987				    tcp_hdr(skb)->syn ||
4988				    tcp_hdr(skb)->fin)
4989					return;
4990			}
4991		}
4992	}
4993}
4994
4995/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4996 * and tcp_collapse() them until all the queue is collapsed.
4997 */
4998static void tcp_collapse_ofo_queue(struct sock *sk)
4999{
5000	struct tcp_sock *tp = tcp_sk(sk);
5001	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
5002	struct sk_buff *head;
5003	u32 start, end;
5004
5005	if (skb == NULL)
5006		return;
5007
5008	start = TCP_SKB_CB(skb)->seq;
5009	end = TCP_SKB_CB(skb)->end_seq;
5010	head = skb;
5011
5012	for (;;) {
5013		struct sk_buff *next = NULL;
5014
5015		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
5016			next = skb_queue_next(&tp->out_of_order_queue, skb);
5017		skb = next;
5018
5019		/* Segment is terminated when we see gap or when
5020		 * we are at the end of all the queue. */
5021		if (!skb ||
5022		    after(TCP_SKB_CB(skb)->seq, end) ||
5023		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5024			tcp_collapse(sk, &tp->out_of_order_queue,
5025				     head, skb, start, end);
5026			head = skb;
5027			if (!skb)
5028				break;
5029			/* Start new segment */
5030			start = TCP_SKB_CB(skb)->seq;
5031			end = TCP_SKB_CB(skb)->end_seq;
5032		} else {
5033			if (before(TCP_SKB_CB(skb)->seq, start))
5034				start = TCP_SKB_CB(skb)->seq;
5035			if (after(TCP_SKB_CB(skb)->end_seq, end))
5036				end = TCP_SKB_CB(skb)->end_seq;
5037		}
5038	}
5039}
5040
5041/*
5042 * Purge the out-of-order queue.
5043 * Return true if queue was pruned.
5044 */
5045static int tcp_prune_ofo_queue(struct sock *sk)
5046{
5047	struct tcp_sock *tp = tcp_sk(sk);
5048	int res = 0;
5049
5050	if (!skb_queue_empty(&tp->out_of_order_queue)) {
5051		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
5052		__skb_queue_purge(&tp->out_of_order_queue);
5053
5054		/* Reset SACK state.  A conforming SACK implementation will
5055		 * do the same at a timeout based retransmit.  When a connection
5056		 * is in a sad state like this, we care only about integrity
5057		 * of the connection not performance.
5058		 */
5059		if (tp->rx_opt.sack_ok)
5060			tcp_sack_reset(&tp->rx_opt);
5061		sk_mem_reclaim(sk);
5062		res = 1;
5063	}
5064	return res;
5065}
5066
5067/* Reduce allocated memory if we can, trying to get
5068 * the socket within its memory limits again.
5069 *
5070 * Return less than zero if we should start dropping frames
5071 * until the socket owning process reads some of the data
5072 * to stabilize the situation.
5073 */
5074static int tcp_prune_queue(struct sock *sk)
5075{
5076	struct tcp_sock *tp = tcp_sk(sk);
5077
5078	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5079
5080	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
5081
5082	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5083		tcp_clamp_window(sk);
5084	else if (sk_under_memory_pressure(sk))
5085		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5086
5087	tcp_collapse_ofo_queue(sk);
5088	if (!skb_queue_empty(&sk->sk_receive_queue))
5089		tcp_collapse(sk, &sk->sk_receive_queue,
5090			     skb_peek(&sk->sk_receive_queue),
5091			     NULL,
5092			     tp->copied_seq, tp->rcv_nxt);
5093	sk_mem_reclaim(sk);
5094
5095	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5096		return 0;
5097
5098	/* Collapsing did not help, destructive actions follow.
5099	 * This must not ever occur. */
5100
5101	tcp_prune_ofo_queue(sk);
5102
5103	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5104		return 0;
5105
5106	/* If we are really being abused, tell the caller to silently
5107	 * drop receive data on the floor.  It will get retransmitted
5108	 * and hopefully then we'll have sufficient space.
5109	 */
5110	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
5111
5112	/* Massive buffer overcommit. */
5113	tp->pred_flags = 0;
5114	return -1;
5115}
5116
5117/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
5118 * As additional protections, we do not touch cwnd in retransmission phases,
5119 * and if application hit its sndbuf limit recently.
5120 */
5121void tcp_cwnd_application_limited(struct sock *sk)
5122{
5123	struct tcp_sock *tp = tcp_sk(sk);
5124
5125	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
5126	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5127		/* Limited by application or receiver window. */
5128		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
5129		u32 win_used = max(tp->snd_cwnd_used, init_win);
5130		if (win_used < tp->snd_cwnd) {
5131			tp->snd_ssthresh = tcp_current_ssthresh(sk);
5132			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
5133		}
5134		tp->snd_cwnd_used = 0;
5135	}
5136	tp->snd_cwnd_stamp = tcp_time_stamp;
5137}
5138
5139static int tcp_should_expand_sndbuf(const struct sock *sk)
5140{
5141	const struct tcp_sock *tp = tcp_sk(sk);
5142
5143	/* If the user specified a specific send buffer setting, do
5144	 * not modify it.
5145	 */
5146	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5147		return 0;
5148
5149	/* If we are under global TCP memory pressure, do not expand.  */
5150	if (sk_under_memory_pressure(sk))
5151		return 0;
5152
5153	/* If we are under soft global TCP memory pressure, do not expand.  */
5154	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5155		return 0;
5156
5157	/* If we filled the congestion window, do not expand.  */
5158	if (tp->packets_out >= tp->snd_cwnd)
5159		return 0;
5160
5161	return 1;
5162}
5163
5164/* When incoming ACK allowed to free some skb from write_queue,
5165 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5166 * on the exit from tcp input handler.
5167 *
5168 * PROBLEM: sndbuf expansion does not work well with largesend.
5169 */
5170static void tcp_new_space(struct sock *sk)
5171{
5172	struct tcp_sock *tp = tcp_sk(sk);
5173
5174	if (tcp_should_expand_sndbuf(sk)) {
5175		int sndmem = SKB_TRUESIZE(max_t(u32,
5176						tp->rx_opt.mss_clamp,
5177						tp->mss_cache) +
5178					  MAX_TCP_HEADER);
5179		int demanded = max_t(unsigned int, tp->snd_cwnd,
5180				     tp->reordering + 1);
5181		sndmem *= 2 * demanded;
5182		if (sndmem > sk->sk_sndbuf)
5183			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5184		tp->snd_cwnd_stamp = tcp_time_stamp;
5185	}
5186
5187	sk->sk_write_space(sk);
5188}
5189
5190static void tcp_check_space(struct sock *sk)
5191{
5192	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5193		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5194		if (sk->sk_socket &&
5195		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5196			tcp_new_space(sk);
5197	}
5198}
5199
5200static inline void tcp_data_snd_check(struct sock *sk)
5201{
5202	tcp_push_pending_frames(sk);
5203	tcp_check_space(sk);
5204}
5205
5206/*
5207 * Check if sending an ack is needed.
5208 */
5209static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5210{
5211	struct tcp_sock *tp = tcp_sk(sk);
5212
5213	    /* More than one full frame received... */
5214	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5215	     /* ... and right edge of window advances far enough.
5216	      * (tcp_recvmsg() will send ACK otherwise). Or...
5217	      */
5218	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5219	    /* We ACK each frame or... */
5220	    tcp_in_quickack_mode(sk) ||
5221	    /* We have out of order data. */
5222	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5223		/* Then ack it now */
5224		tcp_send_ack(sk);
5225	} else {
5226		/* Else, send delayed ack. */
5227		tcp_send_delayed_ack(sk);
5228	}
5229}
5230
5231static inline void tcp_ack_snd_check(struct sock *sk)
5232{
5233	if (!inet_csk_ack_scheduled(sk)) {
5234		/* We sent a data segment already. */
5235		return;
5236	}
5237	__tcp_ack_snd_check(sk, 1);
5238}
5239
5240/*
5241 *	This routine is only called when we have urgent data
5242 *	signaled. Its the 'slow' part of tcp_urg. It could be
5243 *	moved inline now as tcp_urg is only called from one
5244 *	place. We handle URGent data wrong. We have to - as
5245 *	BSD still doesn't use the correction from RFC961.
5246 *	For 1003.1g we should support a new option TCP_STDURG to permit
5247 *	either form (or just set the sysctl tcp_stdurg).
5248 */
5249
5250static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5251{
5252	struct tcp_sock *tp = tcp_sk(sk);
5253	u32 ptr = ntohs(th->urg_ptr);
5254
5255	if (ptr && !sysctl_tcp_stdurg)
5256		ptr--;
5257	ptr += ntohl(th->seq);
5258
5259	/* Ignore urgent data that we've already seen and read. */
5260	if (after(tp->copied_seq, ptr))
5261		return;
5262
5263	/* Do not replay urg ptr.
5264	 *
5265	 * NOTE: interesting situation not covered by specs.
5266	 * Misbehaving sender may send urg ptr, pointing to segment,
5267	 * which we already have in ofo queue. We are not able to fetch
5268	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5269	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5270	 * situations. But it is worth to think about possibility of some
5271	 * DoSes using some hypothetical application level deadlock.
5272	 */
5273	if (before(ptr, tp->rcv_nxt))
5274		return;
5275
5276	/* Do we already have a newer (or duplicate) urgent pointer? */
5277	if (tp->urg_data && !after(ptr, tp->urg_seq))
5278		return;
5279
5280	/* Tell the world about our new urgent pointer. */
5281	sk_send_sigurg(sk);
5282
5283	/* We may be adding urgent data when the last byte read was
5284	 * urgent. To do this requires some care. We cannot just ignore
5285	 * tp->copied_seq since we would read the last urgent byte again
5286	 * as data, nor can we alter copied_seq until this data arrives
5287	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5288	 *
5289	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5290	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5291	 * and expect that both A and B disappear from stream. This is _wrong_.
5292	 * Though this happens in BSD with high probability, this is occasional.
5293	 * Any application relying on this is buggy. Note also, that fix "works"
5294	 * only in this artificial test. Insert some normal data between A and B and we will
5295	 * decline of BSD again. Verdict: it is better to remove to trap
5296	 * buggy users.
5297	 */
5298	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5299	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5300		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5301		tp->copied_seq++;
5302		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5303			__skb_unlink(skb, &sk->sk_receive_queue);
5304			__kfree_skb(skb);
5305		}
5306	}
5307
5308	tp->urg_data = TCP_URG_NOTYET;
5309	tp->urg_seq = ptr;
5310
5311	/* Disable header prediction. */
5312	tp->pred_flags = 0;
5313}
5314
5315/* This is the 'fast' part of urgent handling. */
5316static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5317{
5318	struct tcp_sock *tp = tcp_sk(sk);
5319
5320	/* Check if we get a new urgent pointer - normally not. */
5321	if (th->urg)
5322		tcp_check_urg(sk, th);
5323
5324	/* Do we wait for any urgent data? - normally not... */
5325	if (tp->urg_data == TCP_URG_NOTYET) {
5326		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5327			  th->syn;
5328
5329		/* Is the urgent pointer pointing into this packet? */
5330		if (ptr < skb->len) {
5331			u8 tmp;
5332			if (skb_copy_bits(skb, ptr, &tmp, 1))
5333				BUG();
5334			tp->urg_data = TCP_URG_VALID | tmp;
5335			if (!sock_flag(sk, SOCK_DEAD))
5336				sk->sk_data_ready(sk, 0);
5337		}
5338	}
5339}
5340
5341static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5342{
5343	struct tcp_sock *tp = tcp_sk(sk);
5344	int chunk = skb->len - hlen;
5345	int err;
5346
5347	local_bh_enable();
5348	if (skb_csum_unnecessary(skb))
5349		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5350	else
5351		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5352						       tp->ucopy.iov);
5353
5354	if (!err) {
5355		tp->ucopy.len -= chunk;
5356		tp->copied_seq += chunk;
5357		tcp_rcv_space_adjust(sk);
5358	}
5359
5360	local_bh_disable();
5361	return err;
5362}
5363
5364static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5365					    struct sk_buff *skb)
5366{
5367	__sum16 result;
5368
5369	if (sock_owned_by_user(sk)) {
5370		local_bh_enable();
5371		result = __tcp_checksum_complete(skb);
5372		local_bh_disable();
5373	} else {
5374		result = __tcp_checksum_complete(skb);
5375	}
5376	return result;
5377}
5378
5379static inline int tcp_checksum_complete_user(struct sock *sk,
5380					     struct sk_buff *skb)
5381{
5382	return !skb_csum_unnecessary(skb) &&
5383	       __tcp_checksum_complete_user(sk, skb);
5384}
5385
5386#ifdef CONFIG_NET_DMA
5387static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5388				  int hlen)
5389{
5390	struct tcp_sock *tp = tcp_sk(sk);
5391	int chunk = skb->len - hlen;
5392	int dma_cookie;
5393	int copied_early = 0;
5394
5395	if (tp->ucopy.wakeup)
5396		return 0;
5397
5398	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5399		tp->ucopy.dma_chan = net_dma_find_channel();
5400
5401	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5402
5403		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5404							 skb, hlen,
5405							 tp->ucopy.iov, chunk,
5406							 tp->ucopy.pinned_list);
5407
5408		if (dma_cookie < 0)
5409			goto out;
5410
5411		tp->ucopy.dma_cookie = dma_cookie;
5412		copied_early = 1;
5413
5414		tp->ucopy.len -= chunk;
5415		tp->copied_seq += chunk;
5416		tcp_rcv_space_adjust(sk);
5417
5418		if ((tp->ucopy.len == 0) ||
5419		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5420		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5421			tp->ucopy.wakeup = 1;
5422			sk->sk_data_ready(sk, 0);
5423		}
5424	} else if (chunk > 0) {
5425		tp->ucopy.wakeup = 1;
5426		sk->sk_data_ready(sk, 0);
5427	}
5428out:
5429	return copied_early;
5430}
5431#endif /* CONFIG_NET_DMA */
5432
5433/* Does PAWS and seqno based validation of an incoming segment, flags will
5434 * play significant role here.
5435 */
5436static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5437			      const struct tcphdr *th, int syn_inerr)
5438{
5439	const u8 *hash_location;
5440	struct tcp_sock *tp = tcp_sk(sk);
5441
5442	/* RFC1323: H1. Apply PAWS check first. */
5443	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5444	    tp->rx_opt.saw_tstamp &&
5445	    tcp_paws_discard(sk, skb)) {
5446		if (!th->rst) {
5447			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5448			tcp_send_dupack(sk, skb);
5449			goto discard;
5450		}
5451		/* Reset is accepted even if it did not pass PAWS. */
5452	}
5453
5454	/* Step 1: check sequence number */
5455	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5456		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5457		 * (RST) segments are validated by checking their SEQ-fields."
5458		 * And page 69: "If an incoming segment is not acceptable,
5459		 * an acknowledgment should be sent in reply (unless the RST
5460		 * bit is set, if so drop the segment and return)".
5461		 */
5462		if (!th->rst)
5463			tcp_send_dupack(sk, skb);
5464		goto discard;
5465	}
5466
5467	/* Step 2: check RST bit */
5468	if (th->rst) {
5469		tcp_reset(sk);
5470		goto discard;
5471	}
5472
5473	/* ts_recent update must be made after we are sure that the packet
5474	 * is in window.
5475	 */
5476	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5477
5478	/* step 3: check security and precedence [ignored] */
5479
5480	/* step 4: Check for a SYN in window. */
5481	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5482		if (syn_inerr)
5483			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5484		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5485		tcp_reset(sk);
5486		return -1;
5487	}
5488
5489	return 1;
5490
5491discard:
5492	__kfree_skb(skb);
5493	return 0;
5494}
5495
5496void tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen)
5497{
5498	__skb_pull(skb, hdrlen);
5499	__skb_queue_tail(&sk->sk_receive_queue, skb);
5500	skb_set_owner_r(skb, sk);
5501	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5502}
5503
5504/*
5505 *	TCP receive function for the ESTABLISHED state.
5506 *
5507 *	It is split into a fast path and a slow path. The fast path is
5508 * 	disabled when:
5509 *	- A zero window was announced from us - zero window probing
5510 *        is only handled properly in the slow path.
5511 *	- Out of order segments arrived.
5512 *	- Urgent data is expected.
5513 *	- There is no buffer space left
5514 *	- Unexpected TCP flags/window values/header lengths are received
5515 *	  (detected by checking the TCP header against pred_flags)
5516 *	- Data is sent in both directions. Fast path only supports pure senders
5517 *	  or pure receivers (this means either the sequence number or the ack
5518 *	  value must stay constant)
5519 *	- Unexpected TCP option.
5520 *
5521 *	When these conditions are not satisfied it drops into a standard
5522 *	receive procedure patterned after RFC793 to handle all cases.
5523 *	The first three cases are guaranteed by proper pred_flags setting,
5524 *	the rest is checked inline. Fast processing is turned on in
5525 *	tcp_data_queue when everything is OK.
5526 */
5527int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5528			const struct tcphdr *th, unsigned int len)
5529{
5530	struct tcp_sock *tp = tcp_sk(sk);
5531	int res;
5532
5533	/*
5534	 *	Header prediction.
5535	 *	The code loosely follows the one in the famous
5536	 *	"30 instruction TCP receive" Van Jacobson mail.
5537	 *
5538	 *	Van's trick is to deposit buffers into socket queue
5539	 *	on a device interrupt, to call tcp_recv function
5540	 *	on the receive process context and checksum and copy
5541	 *	the buffer to user space. smart...
5542	 *
5543	 *	Our current scheme is not silly either but we take the
5544	 *	extra cost of the net_bh soft interrupt processing...
5545	 *	We do checksum and copy also but from device to kernel.
5546	 */
5547
5548	tp->rx_opt.saw_tstamp = 0;
5549
5550	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5551	 *	if header_prediction is to be made
5552	 *	'S' will always be tp->tcp_header_len >> 2
5553	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5554	 *  turn it off	(when there are holes in the receive
5555	 *	 space for instance)
5556	 *	PSH flag is ignored.
5557	 */
5558
5559	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5560	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5561	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5562		int tcp_header_len = tp->tcp_header_len;
5563
5564		/* Timestamp header prediction: tcp_header_len
5565		 * is automatically equal to th->doff*4 due to pred_flags
5566		 * match.
5567		 */
5568
5569		/* Check timestamp */
5570		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5571			/* No? Slow path! */
5572			if (!tcp_parse_aligned_timestamp(tp, th))
5573				goto slow_path;
5574
5575			/* If PAWS failed, check it more carefully in slow path */
5576			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5577				goto slow_path;
5578
5579			/* DO NOT update ts_recent here, if checksum fails
5580			 * and timestamp was corrupted part, it will result
5581			 * in a hung connection since we will drop all
5582			 * future packets due to the PAWS test.
5583			 */
5584		}
5585
5586		if (len <= tcp_header_len) {
5587			/* Bulk data transfer: sender */
5588			if (len == tcp_header_len) {
5589				/* Predicted packet is in window by definition.
5590				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5591				 * Hence, check seq<=rcv_wup reduces to:
5592				 */
5593				if (tcp_header_len ==
5594				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5595				    tp->rcv_nxt == tp->rcv_wup)
5596					tcp_store_ts_recent(tp);
5597
5598				/* We know that such packets are checksummed
5599				 * on entry.
5600				 */
5601				tcp_ack(sk, skb, 0);
5602				__kfree_skb(skb);
5603				tcp_data_snd_check(sk);
5604				return 0;
5605			} else { /* Header too small */
5606				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5607				goto discard;
5608			}
5609		} else {
5610			int eaten = 0;
5611			int copied_early = 0;
5612
5613			if (tp->copied_seq == tp->rcv_nxt &&
5614			    len - tcp_header_len <= tp->ucopy.len) {
5615#ifdef CONFIG_NET_DMA
5616				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5617					copied_early = 1;
5618					eaten = 1;
5619				}
5620#endif
5621				if (tp->ucopy.task == current &&
5622				    sock_owned_by_user(sk) && !copied_early) {
5623					__set_current_state(TASK_RUNNING);
5624
5625					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5626						eaten = 1;
5627				}
5628				if (eaten) {
5629					/* Predicted packet is in window by definition.
5630					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5631					 * Hence, check seq<=rcv_wup reduces to:
5632					 */
5633					if (tcp_header_len ==
5634					    (sizeof(struct tcphdr) +
5635					     TCPOLEN_TSTAMP_ALIGNED) &&
5636					    tp->rcv_nxt == tp->rcv_wup)
5637						tcp_store_ts_recent(tp);
5638
5639					tcp_rcv_rtt_measure_ts(sk, skb);
5640
5641					__skb_pull(skb, tcp_header_len);
5642					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5643					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5644				}
5645				if (copied_early)
5646					tcp_cleanup_rbuf(sk, skb->len);
5647			}
5648			if (!eaten) {
5649				if (tcp_checksum_complete_user(sk, skb))
5650					goto csum_error;
5651
5652				/* Predicted packet is in window by definition.
5653				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5654				 * Hence, check seq<=rcv_wup reduces to:
5655				 */
5656				if (tcp_header_len ==
5657				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5658				    tp->rcv_nxt == tp->rcv_wup)
5659					tcp_store_ts_recent(tp);
5660
5661				tcp_rcv_rtt_measure_ts(sk, skb);
5662
5663				if ((int)skb->truesize > sk->sk_forward_alloc)
5664					goto step5;
5665
5666				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5667
5668				/* Bulk data transfer: receiver */
5669				tcp_queue_rcv(sk, skb, tcp_header_len);
5670			}
5671
5672			tcp_event_data_recv(sk, skb);
5673
5674			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5675				/* Well, only one small jumplet in fast path... */
5676				tcp_ack(sk, skb, FLAG_DATA);
5677				tcp_data_snd_check(sk);
5678				if (!inet_csk_ack_scheduled(sk))
5679					goto no_ack;
5680			}
5681
5682			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5683				__tcp_ack_snd_check(sk, 0);
5684no_ack:
5685#ifdef CONFIG_NET_DMA
5686			if (copied_early)
5687				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5688			else
5689#endif
5690			if (eaten)
5691				__kfree_skb(skb);
5692			else
5693				sk->sk_data_ready(sk, 0);
5694			return 0;
5695		}
5696	}
5697
5698slow_path:
5699	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5700		goto csum_error;
5701
5702	/*
5703	 *	Standard slow path.
5704	 */
5705
5706	res = tcp_validate_incoming(sk, skb, th, 1);
5707	if (res <= 0)
5708		return -res;
5709
5710step5:
5711	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5712		goto discard;
5713
5714	tcp_rcv_rtt_measure_ts(sk, skb);
5715
5716	/* Process urgent data. */
5717	tcp_urg(sk, skb, th);
5718
5719	/* step 7: process the segment text */
5720	tcp_data_queue(sk, skb);
5721
5722	tcp_data_snd_check(sk);
5723	tcp_ack_snd_check(sk);
5724	return 0;
5725
5726csum_error:
5727	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5728
5729discard:
5730	__kfree_skb(skb);
5731	return 0;
5732}
5733EXPORT_SYMBOL(tcp_rcv_established);
5734
5735void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5736{
5737	struct tcp_sock *tp = tcp_sk(sk);
5738	struct inet_connection_sock *icsk = inet_csk(sk);
5739
5740	tcp_set_state(sk, TCP_ESTABLISHED);
5741
5742	if (skb != NULL)
5743		security_inet_conn_established(sk, skb);
5744
5745	/* Make sure socket is routed, for correct metrics.  */
5746	icsk->icsk_af_ops->rebuild_header(sk);
5747
5748	tcp_init_metrics(sk);
5749
5750	tcp_init_congestion_control(sk);
5751
5752	/* Prevent spurious tcp_cwnd_restart() on first data
5753	 * packet.
5754	 */
5755	tp->lsndtime = tcp_time_stamp;
5756
5757	tcp_init_buffer_space(sk);
5758
5759	if (sock_flag(sk, SOCK_KEEPOPEN))
5760		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5761
5762	if (!tp->rx_opt.snd_wscale)
5763		__tcp_fast_path_on(tp, tp->snd_wnd);
5764	else
5765		tp->pred_flags = 0;
5766
5767	if (!sock_flag(sk, SOCK_DEAD)) {
5768		sk->sk_state_change(sk);
5769		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5770	}
5771}
5772
5773static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5774					 const struct tcphdr *th, unsigned int len)
5775{
5776	const u8 *hash_location;
5777	struct inet_connection_sock *icsk = inet_csk(sk);
5778	struct tcp_sock *tp = tcp_sk(sk);
5779	struct tcp_cookie_values *cvp = tp->cookie_values;
5780	int saved_clamp = tp->rx_opt.mss_clamp;
5781
5782	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5783
5784	if (th->ack) {
5785		/* rfc793:
5786		 * "If the state is SYN-SENT then
5787		 *    first check the ACK bit
5788		 *      If the ACK bit is set
5789		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5790		 *        a reset (unless the RST bit is set, if so drop
5791		 *        the segment and return)"
5792		 *
5793		 *  We do not send data with SYN, so that RFC-correct
5794		 *  test reduces to:
5795		 */
5796		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5797			goto reset_and_undo;
5798
5799		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5800		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5801			     tcp_time_stamp)) {
5802			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5803			goto reset_and_undo;
5804		}
5805
5806		/* Now ACK is acceptable.
5807		 *
5808		 * "If the RST bit is set
5809		 *    If the ACK was acceptable then signal the user "error:
5810		 *    connection reset", drop the segment, enter CLOSED state,
5811		 *    delete TCB, and return."
5812		 */
5813
5814		if (th->rst) {
5815			tcp_reset(sk);
5816			goto discard;
5817		}
5818
5819		/* rfc793:
5820		 *   "fifth, if neither of the SYN or RST bits is set then
5821		 *    drop the segment and return."
5822		 *
5823		 *    See note below!
5824		 *                                        --ANK(990513)
5825		 */
5826		if (!th->syn)
5827			goto discard_and_undo;
5828
5829		/* rfc793:
5830		 *   "If the SYN bit is on ...
5831		 *    are acceptable then ...
5832		 *    (our SYN has been ACKed), change the connection
5833		 *    state to ESTABLISHED..."
5834		 */
5835
5836		TCP_ECN_rcv_synack(tp, th);
5837
5838		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5839		tcp_ack(sk, skb, FLAG_SLOWPATH);
5840
5841		/* Ok.. it's good. Set up sequence numbers and
5842		 * move to established.
5843		 */
5844		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5845		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5846
5847		/* RFC1323: The window in SYN & SYN/ACK segments is
5848		 * never scaled.
5849		 */
5850		tp->snd_wnd = ntohs(th->window);
5851		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5852
5853		if (!tp->rx_opt.wscale_ok) {
5854			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5855			tp->window_clamp = min(tp->window_clamp, 65535U);
5856		}
5857
5858		if (tp->rx_opt.saw_tstamp) {
5859			tp->rx_opt.tstamp_ok	   = 1;
5860			tp->tcp_header_len =
5861				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5862			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5863			tcp_store_ts_recent(tp);
5864		} else {
5865			tp->tcp_header_len = sizeof(struct tcphdr);
5866		}
5867
5868		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5869			tcp_enable_fack(tp);
5870
5871		tcp_mtup_init(sk);
5872		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5873		tcp_initialize_rcv_mss(sk);
5874
5875		/* Remember, tcp_poll() does not lock socket!
5876		 * Change state from SYN-SENT only after copied_seq
5877		 * is initialized. */
5878		tp->copied_seq = tp->rcv_nxt;
5879
5880		if (cvp != NULL &&
5881		    cvp->cookie_pair_size > 0 &&
5882		    tp->rx_opt.cookie_plus > 0) {
5883			int cookie_size = tp->rx_opt.cookie_plus
5884					- TCPOLEN_COOKIE_BASE;
5885			int cookie_pair_size = cookie_size
5886					     + cvp->cookie_desired;
5887
5888			/* A cookie extension option was sent and returned.
5889			 * Note that each incoming SYNACK replaces the
5890			 * Responder cookie.  The initial exchange is most
5891			 * fragile, as protection against spoofing relies
5892			 * entirely upon the sequence and timestamp (above).
5893			 * This replacement strategy allows the correct pair to
5894			 * pass through, while any others will be filtered via
5895			 * Responder verification later.
5896			 */
5897			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5898				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5899				       hash_location, cookie_size);
5900				cvp->cookie_pair_size = cookie_pair_size;
5901			}
5902		}
5903
5904		smp_mb();
5905
5906		tcp_finish_connect(sk, skb);
5907
5908		if (sk->sk_write_pending ||
5909		    icsk->icsk_accept_queue.rskq_defer_accept ||
5910		    icsk->icsk_ack.pingpong) {
5911			/* Save one ACK. Data will be ready after
5912			 * several ticks, if write_pending is set.
5913			 *
5914			 * It may be deleted, but with this feature tcpdumps
5915			 * look so _wonderfully_ clever, that I was not able
5916			 * to stand against the temptation 8)     --ANK
5917			 */
5918			inet_csk_schedule_ack(sk);
5919			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5920			tcp_enter_quickack_mode(sk);
5921			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5922						  TCP_DELACK_MAX, TCP_RTO_MAX);
5923
5924discard:
5925			__kfree_skb(skb);
5926			return 0;
5927		} else {
5928			tcp_send_ack(sk);
5929		}
5930		return -1;
5931	}
5932
5933	/* No ACK in the segment */
5934
5935	if (th->rst) {
5936		/* rfc793:
5937		 * "If the RST bit is set
5938		 *
5939		 *      Otherwise (no ACK) drop the segment and return."
5940		 */
5941
5942		goto discard_and_undo;
5943	}
5944
5945	/* PAWS check. */
5946	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5947	    tcp_paws_reject(&tp->rx_opt, 0))
5948		goto discard_and_undo;
5949
5950	if (th->syn) {
5951		/* We see SYN without ACK. It is attempt of
5952		 * simultaneous connect with crossed SYNs.
5953		 * Particularly, it can be connect to self.
5954		 */
5955		tcp_set_state(sk, TCP_SYN_RECV);
5956
5957		if (tp->rx_opt.saw_tstamp) {
5958			tp->rx_opt.tstamp_ok = 1;
5959			tcp_store_ts_recent(tp);
5960			tp->tcp_header_len =
5961				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5962		} else {
5963			tp->tcp_header_len = sizeof(struct tcphdr);
5964		}
5965
5966		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5967		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5968
5969		/* RFC1323: The window in SYN & SYN/ACK segments is
5970		 * never scaled.
5971		 */
5972		tp->snd_wnd    = ntohs(th->window);
5973		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5974		tp->max_window = tp->snd_wnd;
5975
5976		TCP_ECN_rcv_syn(tp, th);
5977
5978		tcp_mtup_init(sk);
5979		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5980		tcp_initialize_rcv_mss(sk);
5981
5982		tcp_send_synack(sk);
5983#if 0
5984		/* Note, we could accept data and URG from this segment.
5985		 * There are no obstacles to make this.
5986		 *
5987		 * However, if we ignore data in ACKless segments sometimes,
5988		 * we have no reasons to accept it sometimes.
5989		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5990		 * is not flawless. So, discard packet for sanity.
5991		 * Uncomment this return to process the data.
5992		 */
5993		return -1;
5994#else
5995		goto discard;
5996#endif
5997	}
5998	/* "fifth, if neither of the SYN or RST bits is set then
5999	 * drop the segment and return."
6000	 */
6001
6002discard_and_undo:
6003	tcp_clear_options(&tp->rx_opt);
6004	tp->rx_opt.mss_clamp = saved_clamp;
6005	goto discard;
6006
6007reset_and_undo:
6008	tcp_clear_options(&tp->rx_opt);
6009	tp->rx_opt.mss_clamp = saved_clamp;
6010	return 1;
6011}
6012
6013/*
6014 *	This function implements the receiving procedure of RFC 793 for
6015 *	all states except ESTABLISHED and TIME_WAIT.
6016 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6017 *	address independent.
6018 */
6019
6020int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
6021			  const struct tcphdr *th, unsigned int len)
6022{
6023	struct tcp_sock *tp = tcp_sk(sk);
6024	struct inet_connection_sock *icsk = inet_csk(sk);
6025	int queued = 0;
6026	int res;
6027
6028	tp->rx_opt.saw_tstamp = 0;
6029
6030	switch (sk->sk_state) {
6031	case TCP_CLOSE:
6032		goto discard;
6033
6034	case TCP_LISTEN:
6035		if (th->ack)
6036			return 1;
6037
6038		if (th->rst)
6039			goto discard;
6040
6041		if (th->syn) {
6042			if (th->fin)
6043				goto discard;
6044			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
6045				return 1;
6046
6047			/* Now we have several options: In theory there is
6048			 * nothing else in the frame. KA9Q has an option to
6049			 * send data with the syn, BSD accepts data with the
6050			 * syn up to the [to be] advertised window and
6051			 * Solaris 2.1 gives you a protocol error. For now
6052			 * we just ignore it, that fits the spec precisely
6053			 * and avoids incompatibilities. It would be nice in
6054			 * future to drop through and process the data.
6055			 *
6056			 * Now that TTCP is starting to be used we ought to
6057			 * queue this data.
6058			 * But, this leaves one open to an easy denial of
6059			 * service attack, and SYN cookies can't defend
6060			 * against this problem. So, we drop the data
6061			 * in the interest of security over speed unless
6062			 * it's still in use.
6063			 */
6064			kfree_skb(skb);
6065			return 0;
6066		}
6067		goto discard;
6068
6069	case TCP_SYN_SENT:
6070		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
6071		if (queued >= 0)
6072			return queued;
6073
6074		/* Do step6 onward by hand. */
6075		tcp_urg(sk, skb, th);
6076		__kfree_skb(skb);
6077		tcp_data_snd_check(sk);
6078		return 0;
6079	}
6080
6081	res = tcp_validate_incoming(sk, skb, th, 0);
6082	if (res <= 0)
6083		return -res;
6084
6085	/* step 5: check the ACK field */
6086	if (th->ack) {
6087		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
6088
6089		switch (sk->sk_state) {
6090		case TCP_SYN_RECV:
6091			if (acceptable) {
6092				tp->copied_seq = tp->rcv_nxt;
6093				smp_mb();
6094				tcp_set_state(sk, TCP_ESTABLISHED);
6095				sk->sk_state_change(sk);
6096
6097				/* Note, that this wakeup is only for marginal
6098				 * crossed SYN case. Passively open sockets
6099				 * are not waked up, because sk->sk_sleep ==
6100				 * NULL and sk->sk_socket == NULL.
6101				 */
6102				if (sk->sk_socket)
6103					sk_wake_async(sk,
6104						      SOCK_WAKE_IO, POLL_OUT);
6105
6106				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6107				tp->snd_wnd = ntohs(th->window) <<
6108					      tp->rx_opt.snd_wscale;
6109				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6110
6111				if (tp->rx_opt.tstamp_ok)
6112					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6113
6114				/* Make sure socket is routed, for
6115				 * correct metrics.
6116				 */
6117				icsk->icsk_af_ops->rebuild_header(sk);
6118
6119				tcp_init_metrics(sk);
6120
6121				tcp_init_congestion_control(sk);
6122
6123				/* Prevent spurious tcp_cwnd_restart() on
6124				 * first data packet.
6125				 */
6126				tp->lsndtime = tcp_time_stamp;
6127
6128				tcp_mtup_init(sk);
6129				tcp_initialize_rcv_mss(sk);
6130				tcp_init_buffer_space(sk);
6131				tcp_fast_path_on(tp);
6132			} else {
6133				return 1;
6134			}
6135			break;
6136
6137		case TCP_FIN_WAIT1:
6138			if (tp->snd_una == tp->write_seq) {
6139				tcp_set_state(sk, TCP_FIN_WAIT2);
6140				sk->sk_shutdown |= SEND_SHUTDOWN;
6141				dst_confirm(__sk_dst_get(sk));
6142
6143				if (!sock_flag(sk, SOCK_DEAD))
6144					/* Wake up lingering close() */
6145					sk->sk_state_change(sk);
6146				else {
6147					int tmo;
6148
6149					if (tp->linger2 < 0 ||
6150					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6151					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6152						tcp_done(sk);
6153						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6154						return 1;
6155					}
6156
6157					tmo = tcp_fin_time(sk);
6158					if (tmo > TCP_TIMEWAIT_LEN) {
6159						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6160					} else if (th->fin || sock_owned_by_user(sk)) {
6161						/* Bad case. We could lose such FIN otherwise.
6162						 * It is not a big problem, but it looks confusing
6163						 * and not so rare event. We still can lose it now,
6164						 * if it spins in bh_lock_sock(), but it is really
6165						 * marginal case.
6166						 */
6167						inet_csk_reset_keepalive_timer(sk, tmo);
6168					} else {
6169						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6170						goto discard;
6171					}
6172				}
6173			}
6174			break;
6175
6176		case TCP_CLOSING:
6177			if (tp->snd_una == tp->write_seq) {
6178				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6179				goto discard;
6180			}
6181			break;
6182
6183		case TCP_LAST_ACK:
6184			if (tp->snd_una == tp->write_seq) {
6185				tcp_update_metrics(sk);
6186				tcp_done(sk);
6187				goto discard;
6188			}
6189			break;
6190		}
6191	} else
6192		goto discard;
6193
6194	/* step 6: check the URG bit */
6195	tcp_urg(sk, skb, th);
6196
6197	/* step 7: process the segment text */
6198	switch (sk->sk_state) {
6199	case TCP_CLOSE_WAIT:
6200	case TCP_CLOSING:
6201	case TCP_LAST_ACK:
6202		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6203			break;
6204	case TCP_FIN_WAIT1:
6205	case TCP_FIN_WAIT2:
6206		/* RFC 793 says to queue data in these states,
6207		 * RFC 1122 says we MUST send a reset.
6208		 * BSD 4.4 also does reset.
6209		 */
6210		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6211			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6212			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6213				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6214				tcp_reset(sk);
6215				return 1;
6216			}
6217		}
6218		/* Fall through */
6219	case TCP_ESTABLISHED:
6220		tcp_data_queue(sk, skb);
6221		queued = 1;
6222		break;
6223	}
6224
6225	/* tcp_data could move socket to TIME-WAIT */
6226	if (sk->sk_state != TCP_CLOSE) {
6227		tcp_data_snd_check(sk);
6228		tcp_ack_snd_check(sk);
6229	}
6230
6231	if (!queued) {
6232discard:
6233		__kfree_skb(skb);
6234	}
6235	return 0;
6236}
6237EXPORT_SYMBOL(tcp_rcv_state_process);
6238