tcp_input.c revision 9ae27e0adbf471c7a6b80102e38e1d5a346b3b38
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 *		Pedro Roque	:	Fast Retransmit/Recovery.
26 *					Two receive queues.
27 *					Retransmit queue handled by TCP.
28 *					Better retransmit timer handling.
29 *					New congestion avoidance.
30 *					Header prediction.
31 *					Variable renaming.
32 *
33 *		Eric		:	Fast Retransmit.
34 *		Randy Scott	:	MSS option defines.
35 *		Eric Schenk	:	Fixes to slow start algorithm.
36 *		Eric Schenk	:	Yet another double ACK bug.
37 *		Eric Schenk	:	Delayed ACK bug fixes.
38 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39 *		David S. Miller	:	Don't allow zero congestion window.
40 *		Eric Schenk	:	Fix retransmitter so that it sends
41 *					next packet on ack of previous packet.
42 *		Andi Kleen	:	Moved open_request checking here
43 *					and process RSTs for open_requests.
44 *		Andi Kleen	:	Better prune_queue, and other fixes.
45 *		Andrey Savochkin:	Fix RTT measurements in the presence of
46 *					timestamps.
47 *		Andrey Savochkin:	Check sequence numbers correctly when
48 *					removing SACKs due to in sequence incoming
49 *					data segments.
50 *		Andi Kleen:		Make sure we never ack data there is not
51 *					enough room for. Also make this condition
52 *					a fatal error if it might still happen.
53 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54 *					connections with MSS<min(MTU,ann. MSS)
55 *					work without delayed acks.
56 *		Andi Kleen:		Process packets with PSH set in the
57 *					fast path.
58 *		J Hadi Salim:		ECN support
59 *	 	Andrei Gurtov,
60 *		Pasi Sarolahti,
61 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62 *					engine. Lots of bugs are found.
63 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64 */
65
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
73#include <net/netdma.h>
74
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly = 2;
89int sysctl_tcp_frto_response __read_mostly;
90int sysctl_tcp_nometrics_save __read_mostly;
91
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
94
95#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101#define FLAG_ECE		0x40 /* ECE in this ACK				*/
102#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
107#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
108#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
109
110#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
113#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
114#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115
116#define IsSackFrto() (sysctl_tcp_frto == 0x2)
117
118#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120
121/* Adapt the MSS value used to make delayed ack decision to the
122 * real world.
123 */
124static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
125{
126	struct inet_connection_sock *icsk = inet_csk(sk);
127	const unsigned int lss = icsk->icsk_ack.last_seg_size;
128	unsigned int len;
129
130	icsk->icsk_ack.last_seg_size = 0;
131
132	/* skb->len may jitter because of SACKs, even if peer
133	 * sends good full-sized frames.
134	 */
135	len = skb_shinfo(skb)->gso_size ? : skb->len;
136	if (len >= icsk->icsk_ack.rcv_mss) {
137		icsk->icsk_ack.rcv_mss = len;
138	} else {
139		/* Otherwise, we make more careful check taking into account,
140		 * that SACKs block is variable.
141		 *
142		 * "len" is invariant segment length, including TCP header.
143		 */
144		len += skb->data - skb_transport_header(skb);
145		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146		    /* If PSH is not set, packet should be
147		     * full sized, provided peer TCP is not badly broken.
148		     * This observation (if it is correct 8)) allows
149		     * to handle super-low mtu links fairly.
150		     */
151		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153			/* Subtract also invariant (if peer is RFC compliant),
154			 * tcp header plus fixed timestamp option length.
155			 * Resulting "len" is MSS free of SACK jitter.
156			 */
157			len -= tcp_sk(sk)->tcp_header_len;
158			icsk->icsk_ack.last_seg_size = len;
159			if (len == lss) {
160				icsk->icsk_ack.rcv_mss = len;
161				return;
162			}
163		}
164		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167	}
168}
169
170static void tcp_incr_quickack(struct sock *sk)
171{
172	struct inet_connection_sock *icsk = inet_csk(sk);
173	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175	if (quickacks == 0)
176		quickacks = 2;
177	if (quickacks > icsk->icsk_ack.quick)
178		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179}
180
181void tcp_enter_quickack_mode(struct sock *sk)
182{
183	struct inet_connection_sock *icsk = inet_csk(sk);
184	tcp_incr_quickack(sk);
185	icsk->icsk_ack.pingpong = 0;
186	icsk->icsk_ack.ato = TCP_ATO_MIN;
187}
188
189/* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
193static inline int tcp_in_quickack_mode(const struct sock *sk)
194{
195	const struct inet_connection_sock *icsk = inet_csk(sk);
196	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197}
198
199static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200{
201	if (tp->ecn_flags & TCP_ECN_OK)
202		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203}
204
205static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206{
207	if (tcp_hdr(skb)->cwr)
208		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209}
210
211static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212{
213	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217{
218	if (tp->ecn_flags & TCP_ECN_OK) {
219		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221		/* Funny extension: if ECT is not set on a segment,
222		 * it is surely retransmit. It is not in ECN RFC,
223		 * but Linux follows this rule. */
224		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225			tcp_enter_quickack_mode((struct sock *)tp);
226	}
227}
228
229static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230{
231	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
232		tp->ecn_flags &= ~TCP_ECN_OK;
233}
234
235static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236{
237	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
238		tp->ecn_flags &= ~TCP_ECN_OK;
239}
240
241static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242{
243	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
244		return 1;
245	return 0;
246}
247
248/* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253static void tcp_fixup_sndbuf(struct sock *sk)
254{
255	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256		     sizeof(struct sk_buff);
257
258	if (sk->sk_sndbuf < 3 * sndmem)
259		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260}
261
262/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 *   requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 *   of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287/* Slow part of check#2. */
288static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289{
290	struct tcp_sock *tp = tcp_sk(sk);
291	/* Optimize this! */
292	int truesize = tcp_win_from_space(skb->truesize) >> 1;
293	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
294
295	while (tp->rcv_ssthresh <= window) {
296		if (truesize <= skb->len)
297			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299		truesize >>= 1;
300		window >>= 1;
301	}
302	return 0;
303}
304
305static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
306{
307	struct tcp_sock *tp = tcp_sk(sk);
308
309	/* Check #1 */
310	if (tp->rcv_ssthresh < tp->window_clamp &&
311	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
312	    !tcp_memory_pressure) {
313		int incr;
314
315		/* Check #2. Increase window, if skb with such overhead
316		 * will fit to rcvbuf in future.
317		 */
318		if (tcp_win_from_space(skb->truesize) <= skb->len)
319			incr = 2 * tp->advmss;
320		else
321			incr = __tcp_grow_window(sk, skb);
322
323		if (incr) {
324			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
325					       tp->window_clamp);
326			inet_csk(sk)->icsk_ack.quick |= 1;
327		}
328	}
329}
330
331/* 3. Tuning rcvbuf, when connection enters established state. */
332
333static void tcp_fixup_rcvbuf(struct sock *sk)
334{
335	struct tcp_sock *tp = tcp_sk(sk);
336	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338	/* Try to select rcvbuf so that 4 mss-sized segments
339	 * will fit to window and corresponding skbs will fit to our rcvbuf.
340	 * (was 3; 4 is minimum to allow fast retransmit to work.)
341	 */
342	while (tcp_win_from_space(rcvmem) < tp->advmss)
343		rcvmem += 128;
344	if (sk->sk_rcvbuf < 4 * rcvmem)
345		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346}
347
348/* 4. Try to fixup all. It is made immediately after connection enters
349 *    established state.
350 */
351static void tcp_init_buffer_space(struct sock *sk)
352{
353	struct tcp_sock *tp = tcp_sk(sk);
354	int maxwin;
355
356	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357		tcp_fixup_rcvbuf(sk);
358	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359		tcp_fixup_sndbuf(sk);
360
361	tp->rcvq_space.space = tp->rcv_wnd;
362
363	maxwin = tcp_full_space(sk);
364
365	if (tp->window_clamp >= maxwin) {
366		tp->window_clamp = maxwin;
367
368		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369			tp->window_clamp = max(maxwin -
370					       (maxwin >> sysctl_tcp_app_win),
371					       4 * tp->advmss);
372	}
373
374	/* Force reservation of one segment. */
375	if (sysctl_tcp_app_win &&
376	    tp->window_clamp > 2 * tp->advmss &&
377	    tp->window_clamp + tp->advmss > maxwin)
378		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381	tp->snd_cwnd_stamp = tcp_time_stamp;
382}
383
384/* 5. Recalculate window clamp after socket hit its memory bounds. */
385static void tcp_clamp_window(struct sock *sk)
386{
387	struct tcp_sock *tp = tcp_sk(sk);
388	struct inet_connection_sock *icsk = inet_csk(sk);
389
390	icsk->icsk_ack.quick = 0;
391
392	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394	    !tcp_memory_pressure &&
395	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397				    sysctl_tcp_rmem[2]);
398	}
399	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
401}
402
403/* Initialize RCV_MSS value.
404 * RCV_MSS is an our guess about MSS used by the peer.
405 * We haven't any direct information about the MSS.
406 * It's better to underestimate the RCV_MSS rather than overestimate.
407 * Overestimations make us ACKing less frequently than needed.
408 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
409 */
410void tcp_initialize_rcv_mss(struct sock *sk)
411{
412	struct tcp_sock *tp = tcp_sk(sk);
413	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
414
415	hint = min(hint, tp->rcv_wnd / 2);
416	hint = min(hint, TCP_MIN_RCVMSS);
417	hint = max(hint, TCP_MIN_MSS);
418
419	inet_csk(sk)->icsk_ack.rcv_mss = hint;
420}
421
422/* Receiver "autotuning" code.
423 *
424 * The algorithm for RTT estimation w/o timestamps is based on
425 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
426 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
427 *
428 * More detail on this code can be found at
429 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
430 * though this reference is out of date.  A new paper
431 * is pending.
432 */
433static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
434{
435	u32 new_sample = tp->rcv_rtt_est.rtt;
436	long m = sample;
437
438	if (m == 0)
439		m = 1;
440
441	if (new_sample != 0) {
442		/* If we sample in larger samples in the non-timestamp
443		 * case, we could grossly overestimate the RTT especially
444		 * with chatty applications or bulk transfer apps which
445		 * are stalled on filesystem I/O.
446		 *
447		 * Also, since we are only going for a minimum in the
448		 * non-timestamp case, we do not smooth things out
449		 * else with timestamps disabled convergence takes too
450		 * long.
451		 */
452		if (!win_dep) {
453			m -= (new_sample >> 3);
454			new_sample += m;
455		} else if (m < new_sample)
456			new_sample = m << 3;
457	} else {
458		/* No previous measure. */
459		new_sample = m << 3;
460	}
461
462	if (tp->rcv_rtt_est.rtt != new_sample)
463		tp->rcv_rtt_est.rtt = new_sample;
464}
465
466static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
467{
468	if (tp->rcv_rtt_est.time == 0)
469		goto new_measure;
470	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
471		return;
472	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
473
474new_measure:
475	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
476	tp->rcv_rtt_est.time = tcp_time_stamp;
477}
478
479static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
480					  const struct sk_buff *skb)
481{
482	struct tcp_sock *tp = tcp_sk(sk);
483	if (tp->rx_opt.rcv_tsecr &&
484	    (TCP_SKB_CB(skb)->end_seq -
485	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
486		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487}
488
489/*
490 * This function should be called every time data is copied to user space.
491 * It calculates the appropriate TCP receive buffer space.
492 */
493void tcp_rcv_space_adjust(struct sock *sk)
494{
495	struct tcp_sock *tp = tcp_sk(sk);
496	int time;
497	int space;
498
499	if (tp->rcvq_space.time == 0)
500		goto new_measure;
501
502	time = tcp_time_stamp - tp->rcvq_space.time;
503	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
504		return;
505
506	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
507
508	space = max(tp->rcvq_space.space, space);
509
510	if (tp->rcvq_space.space != space) {
511		int rcvmem;
512
513		tp->rcvq_space.space = space;
514
515		if (sysctl_tcp_moderate_rcvbuf &&
516		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
517			int new_clamp = space;
518
519			/* Receive space grows, normalize in order to
520			 * take into account packet headers and sk_buff
521			 * structure overhead.
522			 */
523			space /= tp->advmss;
524			if (!space)
525				space = 1;
526			rcvmem = (tp->advmss + MAX_TCP_HEADER +
527				  16 + sizeof(struct sk_buff));
528			while (tcp_win_from_space(rcvmem) < tp->advmss)
529				rcvmem += 128;
530			space *= rcvmem;
531			space = min(space, sysctl_tcp_rmem[2]);
532			if (space > sk->sk_rcvbuf) {
533				sk->sk_rcvbuf = space;
534
535				/* Make the window clamp follow along.  */
536				tp->window_clamp = new_clamp;
537			}
538		}
539	}
540
541new_measure:
542	tp->rcvq_space.seq = tp->copied_seq;
543	tp->rcvq_space.time = tcp_time_stamp;
544}
545
546/* There is something which you must keep in mind when you analyze the
547 * behavior of the tp->ato delayed ack timeout interval.  When a
548 * connection starts up, we want to ack as quickly as possible.  The
549 * problem is that "good" TCP's do slow start at the beginning of data
550 * transmission.  The means that until we send the first few ACK's the
551 * sender will sit on his end and only queue most of his data, because
552 * he can only send snd_cwnd unacked packets at any given time.  For
553 * each ACK we send, he increments snd_cwnd and transmits more of his
554 * queue.  -DaveM
555 */
556static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
557{
558	struct tcp_sock *tp = tcp_sk(sk);
559	struct inet_connection_sock *icsk = inet_csk(sk);
560	u32 now;
561
562	inet_csk_schedule_ack(sk);
563
564	tcp_measure_rcv_mss(sk, skb);
565
566	tcp_rcv_rtt_measure(tp);
567
568	now = tcp_time_stamp;
569
570	if (!icsk->icsk_ack.ato) {
571		/* The _first_ data packet received, initialize
572		 * delayed ACK engine.
573		 */
574		tcp_incr_quickack(sk);
575		icsk->icsk_ack.ato = TCP_ATO_MIN;
576	} else {
577		int m = now - icsk->icsk_ack.lrcvtime;
578
579		if (m <= TCP_ATO_MIN / 2) {
580			/* The fastest case is the first. */
581			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
582		} else if (m < icsk->icsk_ack.ato) {
583			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
584			if (icsk->icsk_ack.ato > icsk->icsk_rto)
585				icsk->icsk_ack.ato = icsk->icsk_rto;
586		} else if (m > icsk->icsk_rto) {
587			/* Too long gap. Apparently sender failed to
588			 * restart window, so that we send ACKs quickly.
589			 */
590			tcp_incr_quickack(sk);
591			sk_mem_reclaim(sk);
592		}
593	}
594	icsk->icsk_ack.lrcvtime = now;
595
596	TCP_ECN_check_ce(tp, skb);
597
598	if (skb->len >= 128)
599		tcp_grow_window(sk, skb);
600}
601
602static u32 tcp_rto_min(struct sock *sk)
603{
604	struct dst_entry *dst = __sk_dst_get(sk);
605	u32 rto_min = TCP_RTO_MIN;
606
607	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
608		rto_min = dst->metrics[RTAX_RTO_MIN - 1];
609	return rto_min;
610}
611
612/* Called to compute a smoothed rtt estimate. The data fed to this
613 * routine either comes from timestamps, or from segments that were
614 * known _not_ to have been retransmitted [see Karn/Partridge
615 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
616 * piece by Van Jacobson.
617 * NOTE: the next three routines used to be one big routine.
618 * To save cycles in the RFC 1323 implementation it was better to break
619 * it up into three procedures. -- erics
620 */
621static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
622{
623	struct tcp_sock *tp = tcp_sk(sk);
624	long m = mrtt; /* RTT */
625
626	/*	The following amusing code comes from Jacobson's
627	 *	article in SIGCOMM '88.  Note that rtt and mdev
628	 *	are scaled versions of rtt and mean deviation.
629	 *	This is designed to be as fast as possible
630	 *	m stands for "measurement".
631	 *
632	 *	On a 1990 paper the rto value is changed to:
633	 *	RTO = rtt + 4 * mdev
634	 *
635	 * Funny. This algorithm seems to be very broken.
636	 * These formulae increase RTO, when it should be decreased, increase
637	 * too slowly, when it should be increased quickly, decrease too quickly
638	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
639	 * does not matter how to _calculate_ it. Seems, it was trap
640	 * that VJ failed to avoid. 8)
641	 */
642	if (m == 0)
643		m = 1;
644	if (tp->srtt != 0) {
645		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
646		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
647		if (m < 0) {
648			m = -m;		/* m is now abs(error) */
649			m -= (tp->mdev >> 2);   /* similar update on mdev */
650			/* This is similar to one of Eifel findings.
651			 * Eifel blocks mdev updates when rtt decreases.
652			 * This solution is a bit different: we use finer gain
653			 * for mdev in this case (alpha*beta).
654			 * Like Eifel it also prevents growth of rto,
655			 * but also it limits too fast rto decreases,
656			 * happening in pure Eifel.
657			 */
658			if (m > 0)
659				m >>= 3;
660		} else {
661			m -= (tp->mdev >> 2);   /* similar update on mdev */
662		}
663		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
664		if (tp->mdev > tp->mdev_max) {
665			tp->mdev_max = tp->mdev;
666			if (tp->mdev_max > tp->rttvar)
667				tp->rttvar = tp->mdev_max;
668		}
669		if (after(tp->snd_una, tp->rtt_seq)) {
670			if (tp->mdev_max < tp->rttvar)
671				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
672			tp->rtt_seq = tp->snd_nxt;
673			tp->mdev_max = tcp_rto_min(sk);
674		}
675	} else {
676		/* no previous measure. */
677		tp->srtt = m << 3;	/* take the measured time to be rtt */
678		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
679		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
680		tp->rtt_seq = tp->snd_nxt;
681	}
682}
683
684/* Calculate rto without backoff.  This is the second half of Van Jacobson's
685 * routine referred to above.
686 */
687static inline void tcp_set_rto(struct sock *sk)
688{
689	const struct tcp_sock *tp = tcp_sk(sk);
690	/* Old crap is replaced with new one. 8)
691	 *
692	 * More seriously:
693	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
694	 *    It cannot be less due to utterly erratic ACK generation made
695	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
696	 *    to do with delayed acks, because at cwnd>2 true delack timeout
697	 *    is invisible. Actually, Linux-2.4 also generates erratic
698	 *    ACKs in some circumstances.
699	 */
700	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
701
702	/* 2. Fixups made earlier cannot be right.
703	 *    If we do not estimate RTO correctly without them,
704	 *    all the algo is pure shit and should be replaced
705	 *    with correct one. It is exactly, which we pretend to do.
706	 */
707}
708
709/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
710 * guarantees that rto is higher.
711 */
712static inline void tcp_bound_rto(struct sock *sk)
713{
714	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
715		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
716}
717
718/* Save metrics learned by this TCP session.
719   This function is called only, when TCP finishes successfully
720   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
721 */
722void tcp_update_metrics(struct sock *sk)
723{
724	struct tcp_sock *tp = tcp_sk(sk);
725	struct dst_entry *dst = __sk_dst_get(sk);
726
727	if (sysctl_tcp_nometrics_save)
728		return;
729
730	dst_confirm(dst);
731
732	if (dst && (dst->flags & DST_HOST)) {
733		const struct inet_connection_sock *icsk = inet_csk(sk);
734		int m;
735
736		if (icsk->icsk_backoff || !tp->srtt) {
737			/* This session failed to estimate rtt. Why?
738			 * Probably, no packets returned in time.
739			 * Reset our results.
740			 */
741			if (!(dst_metric_locked(dst, RTAX_RTT)))
742				dst->metrics[RTAX_RTT - 1] = 0;
743			return;
744		}
745
746		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
747
748		/* If newly calculated rtt larger than stored one,
749		 * store new one. Otherwise, use EWMA. Remember,
750		 * rtt overestimation is always better than underestimation.
751		 */
752		if (!(dst_metric_locked(dst, RTAX_RTT))) {
753			if (m <= 0)
754				dst->metrics[RTAX_RTT - 1] = tp->srtt;
755			else
756				dst->metrics[RTAX_RTT - 1] -= (m >> 3);
757		}
758
759		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
760			if (m < 0)
761				m = -m;
762
763			/* Scale deviation to rttvar fixed point */
764			m >>= 1;
765			if (m < tp->mdev)
766				m = tp->mdev;
767
768			if (m >= dst_metric(dst, RTAX_RTTVAR))
769				dst->metrics[RTAX_RTTVAR - 1] = m;
770			else
771				dst->metrics[RTAX_RTTVAR-1] -=
772					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
773		}
774
775		if (tp->snd_ssthresh >= 0xFFFF) {
776			/* Slow start still did not finish. */
777			if (dst_metric(dst, RTAX_SSTHRESH) &&
778			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
779			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
780				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
781			if (!dst_metric_locked(dst, RTAX_CWND) &&
782			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
783				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
784		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
785			   icsk->icsk_ca_state == TCP_CA_Open) {
786			/* Cong. avoidance phase, cwnd is reliable. */
787			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
788				dst->metrics[RTAX_SSTHRESH-1] =
789					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
790			if (!dst_metric_locked(dst, RTAX_CWND))
791				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
792		} else {
793			/* Else slow start did not finish, cwnd is non-sense,
794			   ssthresh may be also invalid.
795			 */
796			if (!dst_metric_locked(dst, RTAX_CWND))
797				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
798			if (dst->metrics[RTAX_SSTHRESH-1] &&
799			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
800			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
801				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
802		}
803
804		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
805			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
806			    tp->reordering != sysctl_tcp_reordering)
807				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
808		}
809	}
810}
811
812/* Numbers are taken from RFC3390.
813 *
814 * John Heffner states:
815 *
816 *	The RFC specifies a window of no more than 4380 bytes
817 *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
818 *	is a bit misleading because they use a clamp at 4380 bytes
819 *	rather than use a multiplier in the relevant range.
820 */
821__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
822{
823	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
824
825	if (!cwnd) {
826		if (tp->mss_cache > 1460)
827			cwnd = 2;
828		else
829			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
830	}
831	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
832}
833
834/* Set slow start threshold and cwnd not falling to slow start */
835void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
836{
837	struct tcp_sock *tp = tcp_sk(sk);
838	const struct inet_connection_sock *icsk = inet_csk(sk);
839
840	tp->prior_ssthresh = 0;
841	tp->bytes_acked = 0;
842	if (icsk->icsk_ca_state < TCP_CA_CWR) {
843		tp->undo_marker = 0;
844		if (set_ssthresh)
845			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
846		tp->snd_cwnd = min(tp->snd_cwnd,
847				   tcp_packets_in_flight(tp) + 1U);
848		tp->snd_cwnd_cnt = 0;
849		tp->high_seq = tp->snd_nxt;
850		tp->snd_cwnd_stamp = tcp_time_stamp;
851		TCP_ECN_queue_cwr(tp);
852
853		tcp_set_ca_state(sk, TCP_CA_CWR);
854	}
855}
856
857/*
858 * Packet counting of FACK is based on in-order assumptions, therefore TCP
859 * disables it when reordering is detected
860 */
861static void tcp_disable_fack(struct tcp_sock *tp)
862{
863	/* RFC3517 uses different metric in lost marker => reset on change */
864	if (tcp_is_fack(tp))
865		tp->lost_skb_hint = NULL;
866	tp->rx_opt.sack_ok &= ~2;
867}
868
869/* Take a notice that peer is sending D-SACKs */
870static void tcp_dsack_seen(struct tcp_sock *tp)
871{
872	tp->rx_opt.sack_ok |= 4;
873}
874
875/* Initialize metrics on socket. */
876
877static void tcp_init_metrics(struct sock *sk)
878{
879	struct tcp_sock *tp = tcp_sk(sk);
880	struct dst_entry *dst = __sk_dst_get(sk);
881
882	if (dst == NULL)
883		goto reset;
884
885	dst_confirm(dst);
886
887	if (dst_metric_locked(dst, RTAX_CWND))
888		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889	if (dst_metric(dst, RTAX_SSTHRESH)) {
890		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892			tp->snd_ssthresh = tp->snd_cwnd_clamp;
893	}
894	if (dst_metric(dst, RTAX_REORDERING) &&
895	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896		tcp_disable_fack(tp);
897		tp->reordering = dst_metric(dst, RTAX_REORDERING);
898	}
899
900	if (dst_metric(dst, RTAX_RTT) == 0)
901		goto reset;
902
903	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904		goto reset;
905
906	/* Initial rtt is determined from SYN,SYN-ACK.
907	 * The segment is small and rtt may appear much
908	 * less than real one. Use per-dst memory
909	 * to make it more realistic.
910	 *
911	 * A bit of theory. RTT is time passed after "normal" sized packet
912	 * is sent until it is ACKed. In normal circumstances sending small
913	 * packets force peer to delay ACKs and calculation is correct too.
914	 * The algorithm is adaptive and, provided we follow specs, it
915	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916	 * tricks sort of "quick acks" for time long enough to decrease RTT
917	 * to low value, and then abruptly stops to do it and starts to delay
918	 * ACKs, wait for troubles.
919	 */
920	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921		tp->srtt = dst_metric(dst, RTAX_RTT);
922		tp->rtt_seq = tp->snd_nxt;
923	}
924	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
927	}
928	tcp_set_rto(sk);
929	tcp_bound_rto(sk);
930	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931		goto reset;
932	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933	tp->snd_cwnd_stamp = tcp_time_stamp;
934	return;
935
936reset:
937	/* Play conservative. If timestamps are not
938	 * supported, TCP will fail to recalculate correct
939	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940	 */
941	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942		tp->srtt = 0;
943		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945	}
946}
947
948static void tcp_update_reordering(struct sock *sk, const int metric,
949				  const int ts)
950{
951	struct tcp_sock *tp = tcp_sk(sk);
952	if (metric > tp->reordering) {
953		tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955		/* This exciting event is worth to be remembered. 8) */
956		if (ts)
957			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958		else if (tcp_is_reno(tp))
959			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960		else if (tcp_is_fack(tp))
961			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962		else
963			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964#if FASTRETRANS_DEBUG > 1
965		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967		       tp->reordering,
968		       tp->fackets_out,
969		       tp->sacked_out,
970		       tp->undo_marker ? tp->undo_retrans : 0);
971#endif
972		tcp_disable_fack(tp);
973	}
974}
975
976/* This procedure tags the retransmission queue when SACKs arrive.
977 *
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
981 *
982 * Valid combinations are:
983 * Tag  InFlight	Description
984 * 0	1		- orig segment is in flight.
985 * S	0		- nothing flies, orig reached receiver.
986 * L	0		- nothing flies, orig lost by net.
987 * R	2		- both orig and retransmit are in flight.
988 * L|R	1		- orig is lost, retransmit is in flight.
989 * S|R  1		- orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 *  but it is equivalent to plain S and code short-curcuits it to S.
992 *  L|S is logically invalid, it would mean -1 packet in flight 8))
993 *
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 *	A. Scoreboard estimator decided the packet is lost.
999 *	   A'. Reno "three dupacks" marks head of queue lost.
1000 *	   A''. Its FACK modfication, head until snd.fack is lost.
1001 *	B. SACK arrives sacking data transmitted after never retransmitted
1002 *	   hole was sent out.
1003 *	C. SACK arrives sacking SND.NXT at the moment, when the
1004 *	   segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 *
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1010 *
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1015 *
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 *    ever retransmitted -> reordering. Alas, we cannot use it
1018 *    when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 *    for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
1023 *
1024 * SACK block validation.
1025 * ----------------------
1026 *
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
1030 * it means that the receiver is rather inconsistent with itself reporting
1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032 * perfectly valid, however, in light of RFC2018 which explicitly states
1033 * that "SACK block MUST reflect the newest segment.  Even if the newest
1034 * segment is going to be discarded ...", not that it looks very clever
1035 * in case of head skb. Due to potentional receiver driven attacks, we
1036 * choose to avoid immediate execution of a walk in write queue due to
1037 * reneging and defer head skb's loss recovery to standard loss recovery
1038 * procedure that will eventually trigger (nothing forbids us doing this).
1039 *
1040 * Implements also blockage to start_seq wrap-around. Problem lies in the
1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042 * there's no guarantee that it will be before snd_nxt (n). The problem
1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044 * wrap (s_w):
1045 *
1046 *         <- outs wnd ->                          <- wrapzone ->
1047 *         u     e      n                         u_w   e_w  s n_w
1048 *         |     |      |                          |     |   |  |
1049 * |<------------+------+----- TCP seqno space --------------+---------->|
1050 * ...-- <2^31 ->|                                           |<--------...
1051 * ...---- >2^31 ------>|                                    |<--------...
1052 *
1053 * Current code wouldn't be vulnerable but it's better still to discard such
1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057 * equal to the ideal case (infinite seqno space without wrap caused issues).
1058 *
1059 * With D-SACK the lower bound is extended to cover sequence space below
1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061 * again, D-SACK block must not to go across snd_una (for the same reason as
1062 * for the normal SACK blocks, explained above). But there all simplicity
1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064 * fully below undo_marker they do not affect behavior in anyway and can
1065 * therefore be safely ignored. In rare cases (which are more or less
1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067 * fragmentation and packet reordering past skb's retransmission. To consider
1068 * them correctly, the acceptable range must be extended even more though
1069 * the exact amount is rather hard to quantify. However, tp->max_window can
1070 * be used as an exaggerated estimate.
1071 */
1072static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073				  u32 start_seq, u32 end_seq)
1074{
1075	/* Too far in future, or reversed (interpretation is ambiguous) */
1076	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077		return 0;
1078
1079	/* Nasty start_seq wrap-around check (see comments above) */
1080	if (!before(start_seq, tp->snd_nxt))
1081		return 0;
1082
1083	/* In outstanding window? ...This is valid exit for D-SACKs too.
1084	 * start_seq == snd_una is non-sensical (see comments above)
1085	 */
1086	if (after(start_seq, tp->snd_una))
1087		return 1;
1088
1089	if (!is_dsack || !tp->undo_marker)
1090		return 0;
1091
1092	/* ...Then it's D-SACK, and must reside below snd_una completely */
1093	if (!after(end_seq, tp->snd_una))
1094		return 0;
1095
1096	if (!before(start_seq, tp->undo_marker))
1097		return 1;
1098
1099	/* Too old */
1100	if (!after(end_seq, tp->undo_marker))
1101		return 0;
1102
1103	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1104	 *   start_seq < undo_marker and end_seq >= undo_marker.
1105	 */
1106	return !before(start_seq, end_seq - tp->max_window);
1107}
1108
1109/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110 * Event "C". Later note: FACK people cheated me again 8), we have to account
1111 * for reordering! Ugly, but should help.
1112 *
1113 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114 * less than what is now known to be received by the other end (derived from
1115 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1116 * retransmitted skbs to avoid some costly processing per ACKs.
1117 */
1118static void tcp_mark_lost_retrans(struct sock *sk)
1119{
1120	const struct inet_connection_sock *icsk = inet_csk(sk);
1121	struct tcp_sock *tp = tcp_sk(sk);
1122	struct sk_buff *skb;
1123	int cnt = 0;
1124	u32 new_low_seq = tp->snd_nxt;
1125	u32 received_upto = tcp_highest_sack_seq(tp);
1126
1127	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1128	    !after(received_upto, tp->lost_retrans_low) ||
1129	    icsk->icsk_ca_state != TCP_CA_Recovery)
1130		return;
1131
1132	tcp_for_write_queue(skb, sk) {
1133		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1134
1135		if (skb == tcp_send_head(sk))
1136			break;
1137		if (cnt == tp->retrans_out)
1138			break;
1139		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1140			continue;
1141
1142		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1143			continue;
1144
1145		if (after(received_upto, ack_seq) &&
1146		    (tcp_is_fack(tp) ||
1147		     !before(received_upto,
1148			     ack_seq + tp->reordering * tp->mss_cache))) {
1149			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1150			tp->retrans_out -= tcp_skb_pcount(skb);
1151
1152			/* clear lost hint */
1153			tp->retransmit_skb_hint = NULL;
1154
1155			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1156				tp->lost_out += tcp_skb_pcount(skb);
1157				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1158			}
1159			NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1160		} else {
1161			if (before(ack_seq, new_low_seq))
1162				new_low_seq = ack_seq;
1163			cnt += tcp_skb_pcount(skb);
1164		}
1165	}
1166
1167	if (tp->retrans_out)
1168		tp->lost_retrans_low = new_low_seq;
1169}
1170
1171static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1172			   struct tcp_sack_block_wire *sp, int num_sacks,
1173			   u32 prior_snd_una)
1174{
1175	u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1176	u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1177	int dup_sack = 0;
1178
1179	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1180		dup_sack = 1;
1181		tcp_dsack_seen(tp);
1182		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1183	} else if (num_sacks > 1) {
1184		u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1185		u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1186
1187		if (!after(end_seq_0, end_seq_1) &&
1188		    !before(start_seq_0, start_seq_1)) {
1189			dup_sack = 1;
1190			tcp_dsack_seen(tp);
1191			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1192		}
1193	}
1194
1195	/* D-SACK for already forgotten data... Do dumb counting. */
1196	if (dup_sack &&
1197	    !after(end_seq_0, prior_snd_una) &&
1198	    after(end_seq_0, tp->undo_marker))
1199		tp->undo_retrans--;
1200
1201	return dup_sack;
1202}
1203
1204/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1205 * the incoming SACK may not exactly match but we can find smaller MSS
1206 * aligned portion of it that matches. Therefore we might need to fragment
1207 * which may fail and creates some hassle (caller must handle error case
1208 * returns).
1209 */
1210static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1211				 u32 start_seq, u32 end_seq)
1212{
1213	int in_sack, err;
1214	unsigned int pkt_len;
1215
1216	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1217		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1218
1219	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1220	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1221
1222		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1223
1224		if (!in_sack)
1225			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1226		else
1227			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1228		err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1229		if (err < 0)
1230			return err;
1231	}
1232
1233	return in_sack;
1234}
1235
1236static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1237			   int *reord, int dup_sack, int fack_count)
1238{
1239	struct tcp_sock *tp = tcp_sk(sk);
1240	u8 sacked = TCP_SKB_CB(skb)->sacked;
1241	int flag = 0;
1242
1243	/* Account D-SACK for retransmitted packet. */
1244	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1245		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1246			tp->undo_retrans--;
1247		if (sacked & TCPCB_SACKED_ACKED)
1248			*reord = min(fack_count, *reord);
1249	}
1250
1251	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1252	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1253		return flag;
1254
1255	if (!(sacked & TCPCB_SACKED_ACKED)) {
1256		if (sacked & TCPCB_SACKED_RETRANS) {
1257			/* If the segment is not tagged as lost,
1258			 * we do not clear RETRANS, believing
1259			 * that retransmission is still in flight.
1260			 */
1261			if (sacked & TCPCB_LOST) {
1262				TCP_SKB_CB(skb)->sacked &=
1263					~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1264				tp->lost_out -= tcp_skb_pcount(skb);
1265				tp->retrans_out -= tcp_skb_pcount(skb);
1266
1267				/* clear lost hint */
1268				tp->retransmit_skb_hint = NULL;
1269			}
1270		} else {
1271			if (!(sacked & TCPCB_RETRANS)) {
1272				/* New sack for not retransmitted frame,
1273				 * which was in hole. It is reordering.
1274				 */
1275				if (before(TCP_SKB_CB(skb)->seq,
1276					   tcp_highest_sack_seq(tp)))
1277					*reord = min(fack_count, *reord);
1278
1279				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1280				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1281					flag |= FLAG_ONLY_ORIG_SACKED;
1282			}
1283
1284			if (sacked & TCPCB_LOST) {
1285				TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1286				tp->lost_out -= tcp_skb_pcount(skb);
1287
1288				/* clear lost hint */
1289				tp->retransmit_skb_hint = NULL;
1290			}
1291		}
1292
1293		TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1294		flag |= FLAG_DATA_SACKED;
1295		tp->sacked_out += tcp_skb_pcount(skb);
1296
1297		fack_count += tcp_skb_pcount(skb);
1298
1299		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1300		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1301		    before(TCP_SKB_CB(skb)->seq,
1302			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1303			tp->lost_cnt_hint += tcp_skb_pcount(skb);
1304
1305		if (fack_count > tp->fackets_out)
1306			tp->fackets_out = fack_count;
1307
1308		if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1309			tcp_advance_highest_sack(sk, skb);
1310	}
1311
1312	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1313	 * frames and clear it. undo_retrans is decreased above, L|R frames
1314	 * are accounted above as well.
1315	 */
1316	if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1317		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1318		tp->retrans_out -= tcp_skb_pcount(skb);
1319		tp->retransmit_skb_hint = NULL;
1320	}
1321
1322	return flag;
1323}
1324
1325static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1326					struct tcp_sack_block *next_dup,
1327					u32 start_seq, u32 end_seq,
1328					int dup_sack_in, int *fack_count,
1329					int *reord, int *flag)
1330{
1331	tcp_for_write_queue_from(skb, sk) {
1332		int in_sack = 0;
1333		int dup_sack = dup_sack_in;
1334
1335		if (skb == tcp_send_head(sk))
1336			break;
1337
1338		/* queue is in-order => we can short-circuit the walk early */
1339		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1340			break;
1341
1342		if ((next_dup != NULL) &&
1343		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1344			in_sack = tcp_match_skb_to_sack(sk, skb,
1345							next_dup->start_seq,
1346							next_dup->end_seq);
1347			if (in_sack > 0)
1348				dup_sack = 1;
1349		}
1350
1351		if (in_sack <= 0)
1352			in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1353							end_seq);
1354		if (unlikely(in_sack < 0))
1355			break;
1356
1357		if (in_sack)
1358			*flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1359						 *fack_count);
1360
1361		*fack_count += tcp_skb_pcount(skb);
1362	}
1363	return skb;
1364}
1365
1366/* Avoid all extra work that is being done by sacktag while walking in
1367 * a normal way
1368 */
1369static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1370					u32 skip_to_seq, int *fack_count)
1371{
1372	tcp_for_write_queue_from(skb, sk) {
1373		if (skb == tcp_send_head(sk))
1374			break;
1375
1376		if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1377			break;
1378
1379		*fack_count += tcp_skb_pcount(skb);
1380	}
1381	return skb;
1382}
1383
1384static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1385						struct sock *sk,
1386						struct tcp_sack_block *next_dup,
1387						u32 skip_to_seq,
1388						int *fack_count, int *reord,
1389						int *flag)
1390{
1391	if (next_dup == NULL)
1392		return skb;
1393
1394	if (before(next_dup->start_seq, skip_to_seq)) {
1395		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1396		tcp_sacktag_walk(skb, sk, NULL,
1397				 next_dup->start_seq, next_dup->end_seq,
1398				 1, fack_count, reord, flag);
1399	}
1400
1401	return skb;
1402}
1403
1404static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1405{
1406	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1407}
1408
1409static int
1410tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1411			u32 prior_snd_una)
1412{
1413	const struct inet_connection_sock *icsk = inet_csk(sk);
1414	struct tcp_sock *tp = tcp_sk(sk);
1415	unsigned char *ptr = (skb_transport_header(ack_skb) +
1416			      TCP_SKB_CB(ack_skb)->sacked);
1417	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1418	struct tcp_sack_block sp[4];
1419	struct tcp_sack_block *cache;
1420	struct sk_buff *skb;
1421	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1422	int used_sacks;
1423	int reord = tp->packets_out;
1424	int flag = 0;
1425	int found_dup_sack = 0;
1426	int fack_count;
1427	int i, j;
1428	int first_sack_index;
1429
1430	if (!tp->sacked_out) {
1431		if (WARN_ON(tp->fackets_out))
1432			tp->fackets_out = 0;
1433		tcp_highest_sack_reset(sk);
1434	}
1435
1436	found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1437					 num_sacks, prior_snd_una);
1438	if (found_dup_sack)
1439		flag |= FLAG_DSACKING_ACK;
1440
1441	/* Eliminate too old ACKs, but take into
1442	 * account more or less fresh ones, they can
1443	 * contain valid SACK info.
1444	 */
1445	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1446		return 0;
1447
1448	if (!tp->packets_out)
1449		goto out;
1450
1451	used_sacks = 0;
1452	first_sack_index = 0;
1453	for (i = 0; i < num_sacks; i++) {
1454		int dup_sack = !i && found_dup_sack;
1455
1456		sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1457		sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1458
1459		if (!tcp_is_sackblock_valid(tp, dup_sack,
1460					    sp[used_sacks].start_seq,
1461					    sp[used_sacks].end_seq)) {
1462			if (dup_sack) {
1463				if (!tp->undo_marker)
1464					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1465				else
1466					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1467			} else {
1468				/* Don't count olds caused by ACK reordering */
1469				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1470				    !after(sp[used_sacks].end_seq, tp->snd_una))
1471					continue;
1472				NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1473			}
1474			if (i == 0)
1475				first_sack_index = -1;
1476			continue;
1477		}
1478
1479		/* Ignore very old stuff early */
1480		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1481			continue;
1482
1483		used_sacks++;
1484	}
1485
1486	/* order SACK blocks to allow in order walk of the retrans queue */
1487	for (i = used_sacks - 1; i > 0; i--) {
1488		for (j = 0; j < i; j++) {
1489			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1490				struct tcp_sack_block tmp;
1491
1492				tmp = sp[j];
1493				sp[j] = sp[j + 1];
1494				sp[j + 1] = tmp;
1495
1496				/* Track where the first SACK block goes to */
1497				if (j == first_sack_index)
1498					first_sack_index = j + 1;
1499			}
1500		}
1501	}
1502
1503	skb = tcp_write_queue_head(sk);
1504	fack_count = 0;
1505	i = 0;
1506
1507	if (!tp->sacked_out) {
1508		/* It's already past, so skip checking against it */
1509		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1510	} else {
1511		cache = tp->recv_sack_cache;
1512		/* Skip empty blocks in at head of the cache */
1513		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1514		       !cache->end_seq)
1515			cache++;
1516	}
1517
1518	while (i < used_sacks) {
1519		u32 start_seq = sp[i].start_seq;
1520		u32 end_seq = sp[i].end_seq;
1521		int dup_sack = (found_dup_sack && (i == first_sack_index));
1522		struct tcp_sack_block *next_dup = NULL;
1523
1524		if (found_dup_sack && ((i + 1) == first_sack_index))
1525			next_dup = &sp[i + 1];
1526
1527		/* Event "B" in the comment above. */
1528		if (after(end_seq, tp->high_seq))
1529			flag |= FLAG_DATA_LOST;
1530
1531		/* Skip too early cached blocks */
1532		while (tcp_sack_cache_ok(tp, cache) &&
1533		       !before(start_seq, cache->end_seq))
1534			cache++;
1535
1536		/* Can skip some work by looking recv_sack_cache? */
1537		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1538		    after(end_seq, cache->start_seq)) {
1539
1540			/* Head todo? */
1541			if (before(start_seq, cache->start_seq)) {
1542				skb = tcp_sacktag_skip(skb, sk, start_seq,
1543						       &fack_count);
1544				skb = tcp_sacktag_walk(skb, sk, next_dup,
1545						       start_seq,
1546						       cache->start_seq,
1547						       dup_sack, &fack_count,
1548						       &reord, &flag);
1549			}
1550
1551			/* Rest of the block already fully processed? */
1552			if (!after(end_seq, cache->end_seq))
1553				goto advance_sp;
1554
1555			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1556						       cache->end_seq,
1557						       &fack_count, &reord,
1558						       &flag);
1559
1560			/* ...tail remains todo... */
1561			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1562				/* ...but better entrypoint exists! */
1563				skb = tcp_highest_sack(sk);
1564				if (skb == NULL)
1565					break;
1566				fack_count = tp->fackets_out;
1567				cache++;
1568				goto walk;
1569			}
1570
1571			skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1572					       &fack_count);
1573			/* Check overlap against next cached too (past this one already) */
1574			cache++;
1575			continue;
1576		}
1577
1578		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1579			skb = tcp_highest_sack(sk);
1580			if (skb == NULL)
1581				break;
1582			fack_count = tp->fackets_out;
1583		}
1584		skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1585
1586walk:
1587		skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1588				       dup_sack, &fack_count, &reord, &flag);
1589
1590advance_sp:
1591		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1592		 * due to in-order walk
1593		 */
1594		if (after(end_seq, tp->frto_highmark))
1595			flag &= ~FLAG_ONLY_ORIG_SACKED;
1596
1597		i++;
1598	}
1599
1600	/* Clear the head of the cache sack blocks so we can skip it next time */
1601	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1602		tp->recv_sack_cache[i].start_seq = 0;
1603		tp->recv_sack_cache[i].end_seq = 0;
1604	}
1605	for (j = 0; j < used_sacks; j++)
1606		tp->recv_sack_cache[i++] = sp[j];
1607
1608	tcp_mark_lost_retrans(sk);
1609
1610	tcp_verify_left_out(tp);
1611
1612	if ((reord < tp->fackets_out) &&
1613	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1614	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1615		tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1616
1617out:
1618
1619#if FASTRETRANS_DEBUG > 0
1620	BUG_TRAP((int)tp->sacked_out >= 0);
1621	BUG_TRAP((int)tp->lost_out >= 0);
1622	BUG_TRAP((int)tp->retrans_out >= 0);
1623	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1624#endif
1625	return flag;
1626}
1627
1628/* Limits sacked_out so that sum with lost_out isn't ever larger than
1629 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1630 */
1631int tcp_limit_reno_sacked(struct tcp_sock *tp)
1632{
1633	u32 holes;
1634
1635	holes = max(tp->lost_out, 1U);
1636	holes = min(holes, tp->packets_out);
1637
1638	if ((tp->sacked_out + holes) > tp->packets_out) {
1639		tp->sacked_out = tp->packets_out - holes;
1640		return 1;
1641	}
1642	return 0;
1643}
1644
1645/* If we receive more dupacks than we expected counting segments
1646 * in assumption of absent reordering, interpret this as reordering.
1647 * The only another reason could be bug in receiver TCP.
1648 */
1649static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1650{
1651	struct tcp_sock *tp = tcp_sk(sk);
1652	if (tcp_limit_reno_sacked(tp))
1653		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1654}
1655
1656/* Emulate SACKs for SACKless connection: account for a new dupack. */
1657
1658static void tcp_add_reno_sack(struct sock *sk)
1659{
1660	struct tcp_sock *tp = tcp_sk(sk);
1661	tp->sacked_out++;
1662	tcp_check_reno_reordering(sk, 0);
1663	tcp_verify_left_out(tp);
1664}
1665
1666/* Account for ACK, ACKing some data in Reno Recovery phase. */
1667
1668static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1669{
1670	struct tcp_sock *tp = tcp_sk(sk);
1671
1672	if (acked > 0) {
1673		/* One ACK acked hole. The rest eat duplicate ACKs. */
1674		if (acked - 1 >= tp->sacked_out)
1675			tp->sacked_out = 0;
1676		else
1677			tp->sacked_out -= acked - 1;
1678	}
1679	tcp_check_reno_reordering(sk, acked);
1680	tcp_verify_left_out(tp);
1681}
1682
1683static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1684{
1685	tp->sacked_out = 0;
1686}
1687
1688/* F-RTO can only be used if TCP has never retransmitted anything other than
1689 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1690 */
1691int tcp_use_frto(struct sock *sk)
1692{
1693	const struct tcp_sock *tp = tcp_sk(sk);
1694	const struct inet_connection_sock *icsk = inet_csk(sk);
1695	struct sk_buff *skb;
1696
1697	if (!sysctl_tcp_frto)
1698		return 0;
1699
1700	/* MTU probe and F-RTO won't really play nicely along currently */
1701	if (icsk->icsk_mtup.probe_size)
1702		return 0;
1703
1704	if (IsSackFrto())
1705		return 1;
1706
1707	/* Avoid expensive walking of rexmit queue if possible */
1708	if (tp->retrans_out > 1)
1709		return 0;
1710
1711	skb = tcp_write_queue_head(sk);
1712	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1713	tcp_for_write_queue_from(skb, sk) {
1714		if (skb == tcp_send_head(sk))
1715			break;
1716		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1717			return 0;
1718		/* Short-circuit when first non-SACKed skb has been checked */
1719		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1720			break;
1721	}
1722	return 1;
1723}
1724
1725/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1726 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1727 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1728 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1729 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1730 * bits are handled if the Loss state is really to be entered (in
1731 * tcp_enter_frto_loss).
1732 *
1733 * Do like tcp_enter_loss() would; when RTO expires the second time it
1734 * does:
1735 *  "Reduce ssthresh if it has not yet been made inside this window."
1736 */
1737void tcp_enter_frto(struct sock *sk)
1738{
1739	const struct inet_connection_sock *icsk = inet_csk(sk);
1740	struct tcp_sock *tp = tcp_sk(sk);
1741	struct sk_buff *skb;
1742
1743	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1744	    tp->snd_una == tp->high_seq ||
1745	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1746	     !icsk->icsk_retransmits)) {
1747		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1748		/* Our state is too optimistic in ssthresh() call because cwnd
1749		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1750		 * recovery has not yet completed. Pattern would be this: RTO,
1751		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1752		 * up here twice).
1753		 * RFC4138 should be more specific on what to do, even though
1754		 * RTO is quite unlikely to occur after the first Cumulative ACK
1755		 * due to back-off and complexity of triggering events ...
1756		 */
1757		if (tp->frto_counter) {
1758			u32 stored_cwnd;
1759			stored_cwnd = tp->snd_cwnd;
1760			tp->snd_cwnd = 2;
1761			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1762			tp->snd_cwnd = stored_cwnd;
1763		} else {
1764			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1765		}
1766		/* ... in theory, cong.control module could do "any tricks" in
1767		 * ssthresh(), which means that ca_state, lost bits and lost_out
1768		 * counter would have to be faked before the call occurs. We
1769		 * consider that too expensive, unlikely and hacky, so modules
1770		 * using these in ssthresh() must deal these incompatibility
1771		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1772		 */
1773		tcp_ca_event(sk, CA_EVENT_FRTO);
1774	}
1775
1776	tp->undo_marker = tp->snd_una;
1777	tp->undo_retrans = 0;
1778
1779	skb = tcp_write_queue_head(sk);
1780	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1781		tp->undo_marker = 0;
1782	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1783		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1784		tp->retrans_out -= tcp_skb_pcount(skb);
1785	}
1786	tcp_verify_left_out(tp);
1787
1788	/* Too bad if TCP was application limited */
1789	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1790
1791	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1792	 * The last condition is necessary at least in tp->frto_counter case.
1793	 */
1794	if (IsSackFrto() && (tp->frto_counter ||
1795	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1796	    after(tp->high_seq, tp->snd_una)) {
1797		tp->frto_highmark = tp->high_seq;
1798	} else {
1799		tp->frto_highmark = tp->snd_nxt;
1800	}
1801	tcp_set_ca_state(sk, TCP_CA_Disorder);
1802	tp->high_seq = tp->snd_nxt;
1803	tp->frto_counter = 1;
1804}
1805
1806/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1807 * which indicates that we should follow the traditional RTO recovery,
1808 * i.e. mark everything lost and do go-back-N retransmission.
1809 */
1810static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1811{
1812	struct tcp_sock *tp = tcp_sk(sk);
1813	struct sk_buff *skb;
1814
1815	tp->lost_out = 0;
1816	tp->retrans_out = 0;
1817	if (tcp_is_reno(tp))
1818		tcp_reset_reno_sack(tp);
1819
1820	tcp_for_write_queue(skb, sk) {
1821		if (skb == tcp_send_head(sk))
1822			break;
1823
1824		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1825		/*
1826		 * Count the retransmission made on RTO correctly (only when
1827		 * waiting for the first ACK and did not get it)...
1828		 */
1829		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1830			/* For some reason this R-bit might get cleared? */
1831			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1832				tp->retrans_out += tcp_skb_pcount(skb);
1833			/* ...enter this if branch just for the first segment */
1834			flag |= FLAG_DATA_ACKED;
1835		} else {
1836			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1837				tp->undo_marker = 0;
1838			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1839		}
1840
1841		/* Don't lost mark skbs that were fwd transmitted after RTO */
1842		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) &&
1843		    !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1844			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1845			tp->lost_out += tcp_skb_pcount(skb);
1846		}
1847	}
1848	tcp_verify_left_out(tp);
1849
1850	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1851	tp->snd_cwnd_cnt = 0;
1852	tp->snd_cwnd_stamp = tcp_time_stamp;
1853	tp->frto_counter = 0;
1854	tp->bytes_acked = 0;
1855
1856	tp->reordering = min_t(unsigned int, tp->reordering,
1857			       sysctl_tcp_reordering);
1858	tcp_set_ca_state(sk, TCP_CA_Loss);
1859	tp->high_seq = tp->frto_highmark;
1860	TCP_ECN_queue_cwr(tp);
1861
1862	tcp_clear_retrans_hints_partial(tp);
1863}
1864
1865static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1866{
1867	tp->retrans_out = 0;
1868	tp->lost_out = 0;
1869
1870	tp->undo_marker = 0;
1871	tp->undo_retrans = 0;
1872}
1873
1874void tcp_clear_retrans(struct tcp_sock *tp)
1875{
1876	tcp_clear_retrans_partial(tp);
1877
1878	tp->fackets_out = 0;
1879	tp->sacked_out = 0;
1880}
1881
1882/* Enter Loss state. If "how" is not zero, forget all SACK information
1883 * and reset tags completely, otherwise preserve SACKs. If receiver
1884 * dropped its ofo queue, we will know this due to reneging detection.
1885 */
1886void tcp_enter_loss(struct sock *sk, int how)
1887{
1888	const struct inet_connection_sock *icsk = inet_csk(sk);
1889	struct tcp_sock *tp = tcp_sk(sk);
1890	struct sk_buff *skb;
1891
1892	/* Reduce ssthresh if it has not yet been made inside this window. */
1893	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1894	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1895		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1896		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1897		tcp_ca_event(sk, CA_EVENT_LOSS);
1898	}
1899	tp->snd_cwnd	   = 1;
1900	tp->snd_cwnd_cnt   = 0;
1901	tp->snd_cwnd_stamp = tcp_time_stamp;
1902
1903	tp->bytes_acked = 0;
1904	tcp_clear_retrans_partial(tp);
1905
1906	if (tcp_is_reno(tp))
1907		tcp_reset_reno_sack(tp);
1908
1909	if (!how) {
1910		/* Push undo marker, if it was plain RTO and nothing
1911		 * was retransmitted. */
1912		tp->undo_marker = tp->snd_una;
1913		tcp_clear_retrans_hints_partial(tp);
1914	} else {
1915		tp->sacked_out = 0;
1916		tp->fackets_out = 0;
1917		tcp_clear_all_retrans_hints(tp);
1918	}
1919
1920	tcp_for_write_queue(skb, sk) {
1921		if (skb == tcp_send_head(sk))
1922			break;
1923
1924		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1925			tp->undo_marker = 0;
1926		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1927		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1928			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1929			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1930			tp->lost_out += tcp_skb_pcount(skb);
1931		}
1932	}
1933	tcp_verify_left_out(tp);
1934
1935	tp->reordering = min_t(unsigned int, tp->reordering,
1936			       sysctl_tcp_reordering);
1937	tcp_set_ca_state(sk, TCP_CA_Loss);
1938	tp->high_seq = tp->snd_nxt;
1939	TCP_ECN_queue_cwr(tp);
1940	/* Abort F-RTO algorithm if one is in progress */
1941	tp->frto_counter = 0;
1942}
1943
1944/* If ACK arrived pointing to a remembered SACK, it means that our
1945 * remembered SACKs do not reflect real state of receiver i.e.
1946 * receiver _host_ is heavily congested (or buggy).
1947 *
1948 * Do processing similar to RTO timeout.
1949 */
1950static int tcp_check_sack_reneging(struct sock *sk, int flag)
1951{
1952	if (flag & FLAG_SACK_RENEGING) {
1953		struct inet_connection_sock *icsk = inet_csk(sk);
1954		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1955
1956		tcp_enter_loss(sk, 1);
1957		icsk->icsk_retransmits++;
1958		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1959		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1960					  icsk->icsk_rto, TCP_RTO_MAX);
1961		return 1;
1962	}
1963	return 0;
1964}
1965
1966static inline int tcp_fackets_out(struct tcp_sock *tp)
1967{
1968	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1969}
1970
1971/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1972 * counter when SACK is enabled (without SACK, sacked_out is used for
1973 * that purpose).
1974 *
1975 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1976 * segments up to the highest received SACK block so far and holes in
1977 * between them.
1978 *
1979 * With reordering, holes may still be in flight, so RFC3517 recovery
1980 * uses pure sacked_out (total number of SACKed segments) even though
1981 * it violates the RFC that uses duplicate ACKs, often these are equal
1982 * but when e.g. out-of-window ACKs or packet duplication occurs,
1983 * they differ. Since neither occurs due to loss, TCP should really
1984 * ignore them.
1985 */
1986static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1987{
1988	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1989}
1990
1991static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1992{
1993	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1994}
1995
1996static inline int tcp_head_timedout(struct sock *sk)
1997{
1998	struct tcp_sock *tp = tcp_sk(sk);
1999
2000	return tp->packets_out &&
2001	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2002}
2003
2004/* Linux NewReno/SACK/FACK/ECN state machine.
2005 * --------------------------------------
2006 *
2007 * "Open"	Normal state, no dubious events, fast path.
2008 * "Disorder"   In all the respects it is "Open",
2009 *		but requires a bit more attention. It is entered when
2010 *		we see some SACKs or dupacks. It is split of "Open"
2011 *		mainly to move some processing from fast path to slow one.
2012 * "CWR"	CWND was reduced due to some Congestion Notification event.
2013 *		It can be ECN, ICMP source quench, local device congestion.
2014 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2015 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2016 *
2017 * tcp_fastretrans_alert() is entered:
2018 * - each incoming ACK, if state is not "Open"
2019 * - when arrived ACK is unusual, namely:
2020 *	* SACK
2021 *	* Duplicate ACK.
2022 *	* ECN ECE.
2023 *
2024 * Counting packets in flight is pretty simple.
2025 *
2026 *	in_flight = packets_out - left_out + retrans_out
2027 *
2028 *	packets_out is SND.NXT-SND.UNA counted in packets.
2029 *
2030 *	retrans_out is number of retransmitted segments.
2031 *
2032 *	left_out is number of segments left network, but not ACKed yet.
2033 *
2034 *		left_out = sacked_out + lost_out
2035 *
2036 *     sacked_out: Packets, which arrived to receiver out of order
2037 *		   and hence not ACKed. With SACKs this number is simply
2038 *		   amount of SACKed data. Even without SACKs
2039 *		   it is easy to give pretty reliable estimate of this number,
2040 *		   counting duplicate ACKs.
2041 *
2042 *       lost_out: Packets lost by network. TCP has no explicit
2043 *		   "loss notification" feedback from network (for now).
2044 *		   It means that this number can be only _guessed_.
2045 *		   Actually, it is the heuristics to predict lossage that
2046 *		   distinguishes different algorithms.
2047 *
2048 *	F.e. after RTO, when all the queue is considered as lost,
2049 *	lost_out = packets_out and in_flight = retrans_out.
2050 *
2051 *		Essentially, we have now two algorithms counting
2052 *		lost packets.
2053 *
2054 *		FACK: It is the simplest heuristics. As soon as we decided
2055 *		that something is lost, we decide that _all_ not SACKed
2056 *		packets until the most forward SACK are lost. I.e.
2057 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2058 *		It is absolutely correct estimate, if network does not reorder
2059 *		packets. And it loses any connection to reality when reordering
2060 *		takes place. We use FACK by default until reordering
2061 *		is suspected on the path to this destination.
2062 *
2063 *		NewReno: when Recovery is entered, we assume that one segment
2064 *		is lost (classic Reno). While we are in Recovery and
2065 *		a partial ACK arrives, we assume that one more packet
2066 *		is lost (NewReno). This heuristics are the same in NewReno
2067 *		and SACK.
2068 *
2069 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2070 *  deflation etc. CWND is real congestion window, never inflated, changes
2071 *  only according to classic VJ rules.
2072 *
2073 * Really tricky (and requiring careful tuning) part of algorithm
2074 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2075 * The first determines the moment _when_ we should reduce CWND and,
2076 * hence, slow down forward transmission. In fact, it determines the moment
2077 * when we decide that hole is caused by loss, rather than by a reorder.
2078 *
2079 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2080 * holes, caused by lost packets.
2081 *
2082 * And the most logically complicated part of algorithm is undo
2083 * heuristics. We detect false retransmits due to both too early
2084 * fast retransmit (reordering) and underestimated RTO, analyzing
2085 * timestamps and D-SACKs. When we detect that some segments were
2086 * retransmitted by mistake and CWND reduction was wrong, we undo
2087 * window reduction and abort recovery phase. This logic is hidden
2088 * inside several functions named tcp_try_undo_<something>.
2089 */
2090
2091/* This function decides, when we should leave Disordered state
2092 * and enter Recovery phase, reducing congestion window.
2093 *
2094 * Main question: may we further continue forward transmission
2095 * with the same cwnd?
2096 */
2097static int tcp_time_to_recover(struct sock *sk)
2098{
2099	struct tcp_sock *tp = tcp_sk(sk);
2100	__u32 packets_out;
2101
2102	/* Do not perform any recovery during F-RTO algorithm */
2103	if (tp->frto_counter)
2104		return 0;
2105
2106	/* Trick#1: The loss is proven. */
2107	if (tp->lost_out)
2108		return 1;
2109
2110	/* Not-A-Trick#2 : Classic rule... */
2111	if (tcp_dupack_heurestics(tp) > tp->reordering)
2112		return 1;
2113
2114	/* Trick#3 : when we use RFC2988 timer restart, fast
2115	 * retransmit can be triggered by timeout of queue head.
2116	 */
2117	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2118		return 1;
2119
2120	/* Trick#4: It is still not OK... But will it be useful to delay
2121	 * recovery more?
2122	 */
2123	packets_out = tp->packets_out;
2124	if (packets_out <= tp->reordering &&
2125	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2126	    !tcp_may_send_now(sk)) {
2127		/* We have nothing to send. This connection is limited
2128		 * either by receiver window or by application.
2129		 */
2130		return 1;
2131	}
2132
2133	return 0;
2134}
2135
2136/* RFC: This is from the original, I doubt that this is necessary at all:
2137 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2138 * retransmitted past LOST markings in the first place? I'm not fully sure
2139 * about undo and end of connection cases, which can cause R without L?
2140 */
2141static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2142{
2143	if ((tp->retransmit_skb_hint != NULL) &&
2144	    before(TCP_SKB_CB(skb)->seq,
2145		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2146		tp->retransmit_skb_hint = NULL;
2147}
2148
2149/* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2150 * is against sacked "cnt", otherwise it's against facked "cnt"
2151 */
2152static void tcp_mark_head_lost(struct sock *sk, int packets)
2153{
2154	struct tcp_sock *tp = tcp_sk(sk);
2155	struct sk_buff *skb;
2156	int cnt, oldcnt;
2157	int err;
2158	unsigned int mss;
2159
2160	BUG_TRAP(packets <= tp->packets_out);
2161	if (tp->lost_skb_hint) {
2162		skb = tp->lost_skb_hint;
2163		cnt = tp->lost_cnt_hint;
2164	} else {
2165		skb = tcp_write_queue_head(sk);
2166		cnt = 0;
2167	}
2168
2169	tcp_for_write_queue_from(skb, sk) {
2170		if (skb == tcp_send_head(sk))
2171			break;
2172		/* TODO: do this better */
2173		/* this is not the most efficient way to do this... */
2174		tp->lost_skb_hint = skb;
2175		tp->lost_cnt_hint = cnt;
2176
2177		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2178			break;
2179
2180		oldcnt = cnt;
2181		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2182		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2183			cnt += tcp_skb_pcount(skb);
2184
2185		if (cnt > packets) {
2186			if (tcp_is_sack(tp) || (oldcnt >= packets))
2187				break;
2188
2189			mss = skb_shinfo(skb)->gso_size;
2190			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2191			if (err < 0)
2192				break;
2193			cnt = packets;
2194		}
2195
2196		if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2197			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2198			tp->lost_out += tcp_skb_pcount(skb);
2199			tcp_verify_retransmit_hint(tp, skb);
2200		}
2201	}
2202	tcp_verify_left_out(tp);
2203}
2204
2205/* Account newly detected lost packet(s) */
2206
2207static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2208{
2209	struct tcp_sock *tp = tcp_sk(sk);
2210
2211	if (tcp_is_reno(tp)) {
2212		tcp_mark_head_lost(sk, 1);
2213	} else if (tcp_is_fack(tp)) {
2214		int lost = tp->fackets_out - tp->reordering;
2215		if (lost <= 0)
2216			lost = 1;
2217		tcp_mark_head_lost(sk, lost);
2218	} else {
2219		int sacked_upto = tp->sacked_out - tp->reordering;
2220		if (sacked_upto < fast_rexmit)
2221			sacked_upto = fast_rexmit;
2222		tcp_mark_head_lost(sk, sacked_upto);
2223	}
2224
2225	/* New heuristics: it is possible only after we switched
2226	 * to restart timer each time when something is ACKed.
2227	 * Hence, we can detect timed out packets during fast
2228	 * retransmit without falling to slow start.
2229	 */
2230	if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2231		struct sk_buff *skb;
2232
2233		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2234			: tcp_write_queue_head(sk);
2235
2236		tcp_for_write_queue_from(skb, sk) {
2237			if (skb == tcp_send_head(sk))
2238				break;
2239			if (!tcp_skb_timedout(sk, skb))
2240				break;
2241
2242			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2243				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2244				tp->lost_out += tcp_skb_pcount(skb);
2245				tcp_verify_retransmit_hint(tp, skb);
2246			}
2247		}
2248
2249		tp->scoreboard_skb_hint = skb;
2250
2251		tcp_verify_left_out(tp);
2252	}
2253}
2254
2255/* CWND moderation, preventing bursts due to too big ACKs
2256 * in dubious situations.
2257 */
2258static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2259{
2260	tp->snd_cwnd = min(tp->snd_cwnd,
2261			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2262	tp->snd_cwnd_stamp = tcp_time_stamp;
2263}
2264
2265/* Lower bound on congestion window is slow start threshold
2266 * unless congestion avoidance choice decides to overide it.
2267 */
2268static inline u32 tcp_cwnd_min(const struct sock *sk)
2269{
2270	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2271
2272	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2273}
2274
2275/* Decrease cwnd each second ack. */
2276static void tcp_cwnd_down(struct sock *sk, int flag)
2277{
2278	struct tcp_sock *tp = tcp_sk(sk);
2279	int decr = tp->snd_cwnd_cnt + 1;
2280
2281	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2282	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2283		tp->snd_cwnd_cnt = decr & 1;
2284		decr >>= 1;
2285
2286		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2287			tp->snd_cwnd -= decr;
2288
2289		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2290		tp->snd_cwnd_stamp = tcp_time_stamp;
2291	}
2292}
2293
2294/* Nothing was retransmitted or returned timestamp is less
2295 * than timestamp of the first retransmission.
2296 */
2297static inline int tcp_packet_delayed(struct tcp_sock *tp)
2298{
2299	return !tp->retrans_stamp ||
2300		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2301		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2302}
2303
2304/* Undo procedures. */
2305
2306#if FASTRETRANS_DEBUG > 1
2307static void DBGUNDO(struct sock *sk, const char *msg)
2308{
2309	struct tcp_sock *tp = tcp_sk(sk);
2310	struct inet_sock *inet = inet_sk(sk);
2311
2312	if (sk->sk_family == AF_INET) {
2313		printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2314		       msg,
2315		       NIPQUAD(inet->daddr), ntohs(inet->dport),
2316		       tp->snd_cwnd, tcp_left_out(tp),
2317		       tp->snd_ssthresh, tp->prior_ssthresh,
2318		       tp->packets_out);
2319	}
2320#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2321	else if (sk->sk_family == AF_INET6) {
2322		struct ipv6_pinfo *np = inet6_sk(sk);
2323		printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2324		       msg,
2325		       NIP6(np->daddr), ntohs(inet->dport),
2326		       tp->snd_cwnd, tcp_left_out(tp),
2327		       tp->snd_ssthresh, tp->prior_ssthresh,
2328		       tp->packets_out);
2329	}
2330#endif
2331}
2332#else
2333#define DBGUNDO(x...) do { } while (0)
2334#endif
2335
2336static void tcp_undo_cwr(struct sock *sk, const int undo)
2337{
2338	struct tcp_sock *tp = tcp_sk(sk);
2339
2340	if (tp->prior_ssthresh) {
2341		const struct inet_connection_sock *icsk = inet_csk(sk);
2342
2343		if (icsk->icsk_ca_ops->undo_cwnd)
2344			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2345		else
2346			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2347
2348		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2349			tp->snd_ssthresh = tp->prior_ssthresh;
2350			TCP_ECN_withdraw_cwr(tp);
2351		}
2352	} else {
2353		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2354	}
2355	tcp_moderate_cwnd(tp);
2356	tp->snd_cwnd_stamp = tcp_time_stamp;
2357
2358	/* There is something screwy going on with the retrans hints after
2359	   an undo */
2360	tcp_clear_all_retrans_hints(tp);
2361}
2362
2363static inline int tcp_may_undo(struct tcp_sock *tp)
2364{
2365	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2366}
2367
2368/* People celebrate: "We love our President!" */
2369static int tcp_try_undo_recovery(struct sock *sk)
2370{
2371	struct tcp_sock *tp = tcp_sk(sk);
2372
2373	if (tcp_may_undo(tp)) {
2374		/* Happy end! We did not retransmit anything
2375		 * or our original transmission succeeded.
2376		 */
2377		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2378		tcp_undo_cwr(sk, 1);
2379		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2380			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2381		else
2382			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2383		tp->undo_marker = 0;
2384	}
2385	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2386		/* Hold old state until something *above* high_seq
2387		 * is ACKed. For Reno it is MUST to prevent false
2388		 * fast retransmits (RFC2582). SACK TCP is safe. */
2389		tcp_moderate_cwnd(tp);
2390		return 1;
2391	}
2392	tcp_set_ca_state(sk, TCP_CA_Open);
2393	return 0;
2394}
2395
2396/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2397static void tcp_try_undo_dsack(struct sock *sk)
2398{
2399	struct tcp_sock *tp = tcp_sk(sk);
2400
2401	if (tp->undo_marker && !tp->undo_retrans) {
2402		DBGUNDO(sk, "D-SACK");
2403		tcp_undo_cwr(sk, 1);
2404		tp->undo_marker = 0;
2405		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2406	}
2407}
2408
2409/* Undo during fast recovery after partial ACK. */
2410
2411static int tcp_try_undo_partial(struct sock *sk, int acked)
2412{
2413	struct tcp_sock *tp = tcp_sk(sk);
2414	/* Partial ACK arrived. Force Hoe's retransmit. */
2415	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2416
2417	if (tcp_may_undo(tp)) {
2418		/* Plain luck! Hole if filled with delayed
2419		 * packet, rather than with a retransmit.
2420		 */
2421		if (tp->retrans_out == 0)
2422			tp->retrans_stamp = 0;
2423
2424		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2425
2426		DBGUNDO(sk, "Hoe");
2427		tcp_undo_cwr(sk, 0);
2428		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2429
2430		/* So... Do not make Hoe's retransmit yet.
2431		 * If the first packet was delayed, the rest
2432		 * ones are most probably delayed as well.
2433		 */
2434		failed = 0;
2435	}
2436	return failed;
2437}
2438
2439/* Undo during loss recovery after partial ACK. */
2440static int tcp_try_undo_loss(struct sock *sk)
2441{
2442	struct tcp_sock *tp = tcp_sk(sk);
2443
2444	if (tcp_may_undo(tp)) {
2445		struct sk_buff *skb;
2446		tcp_for_write_queue(skb, sk) {
2447			if (skb == tcp_send_head(sk))
2448				break;
2449			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2450		}
2451
2452		tcp_clear_all_retrans_hints(tp);
2453
2454		DBGUNDO(sk, "partial loss");
2455		tp->lost_out = 0;
2456		tcp_undo_cwr(sk, 1);
2457		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2458		inet_csk(sk)->icsk_retransmits = 0;
2459		tp->undo_marker = 0;
2460		if (tcp_is_sack(tp))
2461			tcp_set_ca_state(sk, TCP_CA_Open);
2462		return 1;
2463	}
2464	return 0;
2465}
2466
2467static inline void tcp_complete_cwr(struct sock *sk)
2468{
2469	struct tcp_sock *tp = tcp_sk(sk);
2470	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2471	tp->snd_cwnd_stamp = tcp_time_stamp;
2472	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2473}
2474
2475static void tcp_try_to_open(struct sock *sk, int flag)
2476{
2477	struct tcp_sock *tp = tcp_sk(sk);
2478
2479	tcp_verify_left_out(tp);
2480
2481	if (tp->retrans_out == 0)
2482		tp->retrans_stamp = 0;
2483
2484	if (flag & FLAG_ECE)
2485		tcp_enter_cwr(sk, 1);
2486
2487	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2488		int state = TCP_CA_Open;
2489
2490		if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2491			state = TCP_CA_Disorder;
2492
2493		if (inet_csk(sk)->icsk_ca_state != state) {
2494			tcp_set_ca_state(sk, state);
2495			tp->high_seq = tp->snd_nxt;
2496		}
2497		tcp_moderate_cwnd(tp);
2498	} else {
2499		tcp_cwnd_down(sk, flag);
2500	}
2501}
2502
2503static void tcp_mtup_probe_failed(struct sock *sk)
2504{
2505	struct inet_connection_sock *icsk = inet_csk(sk);
2506
2507	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2508	icsk->icsk_mtup.probe_size = 0;
2509}
2510
2511static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2512{
2513	struct tcp_sock *tp = tcp_sk(sk);
2514	struct inet_connection_sock *icsk = inet_csk(sk);
2515
2516	/* FIXME: breaks with very large cwnd */
2517	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2518	tp->snd_cwnd = tp->snd_cwnd *
2519		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2520		       icsk->icsk_mtup.probe_size;
2521	tp->snd_cwnd_cnt = 0;
2522	tp->snd_cwnd_stamp = tcp_time_stamp;
2523	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2524
2525	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2526	icsk->icsk_mtup.probe_size = 0;
2527	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2528}
2529
2530/* Process an event, which can update packets-in-flight not trivially.
2531 * Main goal of this function is to calculate new estimate for left_out,
2532 * taking into account both packets sitting in receiver's buffer and
2533 * packets lost by network.
2534 *
2535 * Besides that it does CWND reduction, when packet loss is detected
2536 * and changes state of machine.
2537 *
2538 * It does _not_ decide what to send, it is made in function
2539 * tcp_xmit_retransmit_queue().
2540 */
2541static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2542{
2543	struct inet_connection_sock *icsk = inet_csk(sk);
2544	struct tcp_sock *tp = tcp_sk(sk);
2545	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2546	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2547				    (tcp_fackets_out(tp) > tp->reordering));
2548	int fast_rexmit = 0;
2549
2550	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2551		tp->sacked_out = 0;
2552	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2553		tp->fackets_out = 0;
2554
2555	/* Now state machine starts.
2556	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2557	if (flag & FLAG_ECE)
2558		tp->prior_ssthresh = 0;
2559
2560	/* B. In all the states check for reneging SACKs. */
2561	if (tcp_check_sack_reneging(sk, flag))
2562		return;
2563
2564	/* C. Process data loss notification, provided it is valid. */
2565	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2566	    before(tp->snd_una, tp->high_seq) &&
2567	    icsk->icsk_ca_state != TCP_CA_Open &&
2568	    tp->fackets_out > tp->reordering) {
2569		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2570		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2571	}
2572
2573	/* D. Check consistency of the current state. */
2574	tcp_verify_left_out(tp);
2575
2576	/* E. Check state exit conditions. State can be terminated
2577	 *    when high_seq is ACKed. */
2578	if (icsk->icsk_ca_state == TCP_CA_Open) {
2579		BUG_TRAP(tp->retrans_out == 0);
2580		tp->retrans_stamp = 0;
2581	} else if (!before(tp->snd_una, tp->high_seq)) {
2582		switch (icsk->icsk_ca_state) {
2583		case TCP_CA_Loss:
2584			icsk->icsk_retransmits = 0;
2585			if (tcp_try_undo_recovery(sk))
2586				return;
2587			break;
2588
2589		case TCP_CA_CWR:
2590			/* CWR is to be held something *above* high_seq
2591			 * is ACKed for CWR bit to reach receiver. */
2592			if (tp->snd_una != tp->high_seq) {
2593				tcp_complete_cwr(sk);
2594				tcp_set_ca_state(sk, TCP_CA_Open);
2595			}
2596			break;
2597
2598		case TCP_CA_Disorder:
2599			tcp_try_undo_dsack(sk);
2600			if (!tp->undo_marker ||
2601			    /* For SACK case do not Open to allow to undo
2602			     * catching for all duplicate ACKs. */
2603			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2604				tp->undo_marker = 0;
2605				tcp_set_ca_state(sk, TCP_CA_Open);
2606			}
2607			break;
2608
2609		case TCP_CA_Recovery:
2610			if (tcp_is_reno(tp))
2611				tcp_reset_reno_sack(tp);
2612			if (tcp_try_undo_recovery(sk))
2613				return;
2614			tcp_complete_cwr(sk);
2615			break;
2616		}
2617	}
2618
2619	/* F. Process state. */
2620	switch (icsk->icsk_ca_state) {
2621	case TCP_CA_Recovery:
2622		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2623			if (tcp_is_reno(tp) && is_dupack)
2624				tcp_add_reno_sack(sk);
2625		} else
2626			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2627		break;
2628	case TCP_CA_Loss:
2629		if (flag & FLAG_DATA_ACKED)
2630			icsk->icsk_retransmits = 0;
2631		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2632			tcp_reset_reno_sack(tp);
2633		if (!tcp_try_undo_loss(sk)) {
2634			tcp_moderate_cwnd(tp);
2635			tcp_xmit_retransmit_queue(sk);
2636			return;
2637		}
2638		if (icsk->icsk_ca_state != TCP_CA_Open)
2639			return;
2640		/* Loss is undone; fall through to processing in Open state. */
2641	default:
2642		if (tcp_is_reno(tp)) {
2643			if (flag & FLAG_SND_UNA_ADVANCED)
2644				tcp_reset_reno_sack(tp);
2645			if (is_dupack)
2646				tcp_add_reno_sack(sk);
2647		}
2648
2649		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2650			tcp_try_undo_dsack(sk);
2651
2652		if (!tcp_time_to_recover(sk)) {
2653			tcp_try_to_open(sk, flag);
2654			return;
2655		}
2656
2657		/* MTU probe failure: don't reduce cwnd */
2658		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2659		    icsk->icsk_mtup.probe_size &&
2660		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2661			tcp_mtup_probe_failed(sk);
2662			/* Restores the reduction we did in tcp_mtup_probe() */
2663			tp->snd_cwnd++;
2664			tcp_simple_retransmit(sk);
2665			return;
2666		}
2667
2668		/* Otherwise enter Recovery state */
2669
2670		if (tcp_is_reno(tp))
2671			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2672		else
2673			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2674
2675		tp->high_seq = tp->snd_nxt;
2676		tp->prior_ssthresh = 0;
2677		tp->undo_marker = tp->snd_una;
2678		tp->undo_retrans = tp->retrans_out;
2679
2680		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2681			if (!(flag & FLAG_ECE))
2682				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2683			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2684			TCP_ECN_queue_cwr(tp);
2685		}
2686
2687		tp->bytes_acked = 0;
2688		tp->snd_cwnd_cnt = 0;
2689		tcp_set_ca_state(sk, TCP_CA_Recovery);
2690		fast_rexmit = 1;
2691	}
2692
2693	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2694		tcp_update_scoreboard(sk, fast_rexmit);
2695	tcp_cwnd_down(sk, flag);
2696	tcp_xmit_retransmit_queue(sk);
2697}
2698
2699/* Read draft-ietf-tcplw-high-performance before mucking
2700 * with this code. (Supersedes RFC1323)
2701 */
2702static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2703{
2704	/* RTTM Rule: A TSecr value received in a segment is used to
2705	 * update the averaged RTT measurement only if the segment
2706	 * acknowledges some new data, i.e., only if it advances the
2707	 * left edge of the send window.
2708	 *
2709	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2710	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2711	 *
2712	 * Changed: reset backoff as soon as we see the first valid sample.
2713	 * If we do not, we get strongly overestimated rto. With timestamps
2714	 * samples are accepted even from very old segments: f.e., when rtt=1
2715	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2716	 * answer arrives rto becomes 120 seconds! If at least one of segments
2717	 * in window is lost... Voila.	 			--ANK (010210)
2718	 */
2719	struct tcp_sock *tp = tcp_sk(sk);
2720	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2721	tcp_rtt_estimator(sk, seq_rtt);
2722	tcp_set_rto(sk);
2723	inet_csk(sk)->icsk_backoff = 0;
2724	tcp_bound_rto(sk);
2725}
2726
2727static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2728{
2729	/* We don't have a timestamp. Can only use
2730	 * packets that are not retransmitted to determine
2731	 * rtt estimates. Also, we must not reset the
2732	 * backoff for rto until we get a non-retransmitted
2733	 * packet. This allows us to deal with a situation
2734	 * where the network delay has increased suddenly.
2735	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2736	 */
2737
2738	if (flag & FLAG_RETRANS_DATA_ACKED)
2739		return;
2740
2741	tcp_rtt_estimator(sk, seq_rtt);
2742	tcp_set_rto(sk);
2743	inet_csk(sk)->icsk_backoff = 0;
2744	tcp_bound_rto(sk);
2745}
2746
2747static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2748				      const s32 seq_rtt)
2749{
2750	const struct tcp_sock *tp = tcp_sk(sk);
2751	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2752	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2753		tcp_ack_saw_tstamp(sk, flag);
2754	else if (seq_rtt >= 0)
2755		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2756}
2757
2758static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2759{
2760	const struct inet_connection_sock *icsk = inet_csk(sk);
2761	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2762	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2763}
2764
2765/* Restart timer after forward progress on connection.
2766 * RFC2988 recommends to restart timer to now+rto.
2767 */
2768static void tcp_rearm_rto(struct sock *sk)
2769{
2770	struct tcp_sock *tp = tcp_sk(sk);
2771
2772	if (!tp->packets_out) {
2773		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2774	} else {
2775		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2776					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2777	}
2778}
2779
2780/* If we get here, the whole TSO packet has not been acked. */
2781static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2782{
2783	struct tcp_sock *tp = tcp_sk(sk);
2784	u32 packets_acked;
2785
2786	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2787
2788	packets_acked = tcp_skb_pcount(skb);
2789	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2790		return 0;
2791	packets_acked -= tcp_skb_pcount(skb);
2792
2793	if (packets_acked) {
2794		BUG_ON(tcp_skb_pcount(skb) == 0);
2795		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2796	}
2797
2798	return packets_acked;
2799}
2800
2801/* Remove acknowledged frames from the retransmission queue. If our packet
2802 * is before the ack sequence we can discard it as it's confirmed to have
2803 * arrived at the other end.
2804 */
2805static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2806{
2807	struct tcp_sock *tp = tcp_sk(sk);
2808	const struct inet_connection_sock *icsk = inet_csk(sk);
2809	struct sk_buff *skb;
2810	u32 now = tcp_time_stamp;
2811	int fully_acked = 1;
2812	int flag = 0;
2813	u32 pkts_acked = 0;
2814	u32 reord = tp->packets_out;
2815	s32 seq_rtt = -1;
2816	s32 ca_seq_rtt = -1;
2817	ktime_t last_ackt = net_invalid_timestamp();
2818
2819	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2820		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2821		u32 end_seq;
2822		u32 acked_pcount;
2823		u8 sacked = scb->sacked;
2824
2825		/* Determine how many packets and what bytes were acked, tso and else */
2826		if (after(scb->end_seq, tp->snd_una)) {
2827			if (tcp_skb_pcount(skb) == 1 ||
2828			    !after(tp->snd_una, scb->seq))
2829				break;
2830
2831			acked_pcount = tcp_tso_acked(sk, skb);
2832			if (!acked_pcount)
2833				break;
2834
2835			fully_acked = 0;
2836			end_seq = tp->snd_una;
2837		} else {
2838			acked_pcount = tcp_skb_pcount(skb);
2839			end_seq = scb->end_seq;
2840		}
2841
2842		/* MTU probing checks */
2843		if (fully_acked && icsk->icsk_mtup.probe_size &&
2844		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2845			tcp_mtup_probe_success(sk, skb);
2846		}
2847
2848		if (sacked & TCPCB_RETRANS) {
2849			if (sacked & TCPCB_SACKED_RETRANS)
2850				tp->retrans_out -= acked_pcount;
2851			flag |= FLAG_RETRANS_DATA_ACKED;
2852			ca_seq_rtt = -1;
2853			seq_rtt = -1;
2854			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2855				flag |= FLAG_NONHEAD_RETRANS_ACKED;
2856		} else {
2857			ca_seq_rtt = now - scb->when;
2858			last_ackt = skb->tstamp;
2859			if (seq_rtt < 0) {
2860				seq_rtt = ca_seq_rtt;
2861			}
2862			if (!(sacked & TCPCB_SACKED_ACKED))
2863				reord = min(pkts_acked, reord);
2864		}
2865
2866		if (sacked & TCPCB_SACKED_ACKED)
2867			tp->sacked_out -= acked_pcount;
2868		if (sacked & TCPCB_LOST)
2869			tp->lost_out -= acked_pcount;
2870
2871		if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2872			tp->urg_mode = 0;
2873
2874		tp->packets_out -= acked_pcount;
2875		pkts_acked += acked_pcount;
2876
2877		/* Initial outgoing SYN's get put onto the write_queue
2878		 * just like anything else we transmit.  It is not
2879		 * true data, and if we misinform our callers that
2880		 * this ACK acks real data, we will erroneously exit
2881		 * connection startup slow start one packet too
2882		 * quickly.  This is severely frowned upon behavior.
2883		 */
2884		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2885			flag |= FLAG_DATA_ACKED;
2886		} else {
2887			flag |= FLAG_SYN_ACKED;
2888			tp->retrans_stamp = 0;
2889		}
2890
2891		if (!fully_acked)
2892			break;
2893
2894		tcp_unlink_write_queue(skb, sk);
2895		sk_wmem_free_skb(sk, skb);
2896		tcp_clear_all_retrans_hints(tp);
2897	}
2898
2899	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2900		flag |= FLAG_SACK_RENEGING;
2901
2902	if (flag & FLAG_ACKED) {
2903		const struct tcp_congestion_ops *ca_ops
2904			= inet_csk(sk)->icsk_ca_ops;
2905
2906		tcp_ack_update_rtt(sk, flag, seq_rtt);
2907		tcp_rearm_rto(sk);
2908
2909		if (tcp_is_reno(tp)) {
2910			tcp_remove_reno_sacks(sk, pkts_acked);
2911		} else {
2912			/* Non-retransmitted hole got filled? That's reordering */
2913			if (reord < prior_fackets)
2914				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2915		}
2916
2917		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2918
2919		if (ca_ops->pkts_acked) {
2920			s32 rtt_us = -1;
2921
2922			/* Is the ACK triggering packet unambiguous? */
2923			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2924				/* High resolution needed and available? */
2925				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2926				    !ktime_equal(last_ackt,
2927						 net_invalid_timestamp()))
2928					rtt_us = ktime_us_delta(ktime_get_real(),
2929								last_ackt);
2930				else if (ca_seq_rtt > 0)
2931					rtt_us = jiffies_to_usecs(ca_seq_rtt);
2932			}
2933
2934			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2935		}
2936	}
2937
2938#if FASTRETRANS_DEBUG > 0
2939	BUG_TRAP((int)tp->sacked_out >= 0);
2940	BUG_TRAP((int)tp->lost_out >= 0);
2941	BUG_TRAP((int)tp->retrans_out >= 0);
2942	if (!tp->packets_out && tcp_is_sack(tp)) {
2943		icsk = inet_csk(sk);
2944		if (tp->lost_out) {
2945			printk(KERN_DEBUG "Leak l=%u %d\n",
2946			       tp->lost_out, icsk->icsk_ca_state);
2947			tp->lost_out = 0;
2948		}
2949		if (tp->sacked_out) {
2950			printk(KERN_DEBUG "Leak s=%u %d\n",
2951			       tp->sacked_out, icsk->icsk_ca_state);
2952			tp->sacked_out = 0;
2953		}
2954		if (tp->retrans_out) {
2955			printk(KERN_DEBUG "Leak r=%u %d\n",
2956			       tp->retrans_out, icsk->icsk_ca_state);
2957			tp->retrans_out = 0;
2958		}
2959	}
2960#endif
2961	return flag;
2962}
2963
2964static void tcp_ack_probe(struct sock *sk)
2965{
2966	const struct tcp_sock *tp = tcp_sk(sk);
2967	struct inet_connection_sock *icsk = inet_csk(sk);
2968
2969	/* Was it a usable window open? */
2970
2971	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2972		icsk->icsk_backoff = 0;
2973		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2974		/* Socket must be waked up by subsequent tcp_data_snd_check().
2975		 * This function is not for random using!
2976		 */
2977	} else {
2978		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2979					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2980					  TCP_RTO_MAX);
2981	}
2982}
2983
2984static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2985{
2986	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2987		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2988}
2989
2990static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2991{
2992	const struct tcp_sock *tp = tcp_sk(sk);
2993	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2994		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2995}
2996
2997/* Check that window update is acceptable.
2998 * The function assumes that snd_una<=ack<=snd_next.
2999 */
3000static inline int tcp_may_update_window(const struct tcp_sock *tp,
3001					const u32 ack, const u32 ack_seq,
3002					const u32 nwin)
3003{
3004	return (after(ack, tp->snd_una) ||
3005		after(ack_seq, tp->snd_wl1) ||
3006		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3007}
3008
3009/* Update our send window.
3010 *
3011 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3012 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3013 */
3014static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3015				 u32 ack_seq)
3016{
3017	struct tcp_sock *tp = tcp_sk(sk);
3018	int flag = 0;
3019	u32 nwin = ntohs(tcp_hdr(skb)->window);
3020
3021	if (likely(!tcp_hdr(skb)->syn))
3022		nwin <<= tp->rx_opt.snd_wscale;
3023
3024	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3025		flag |= FLAG_WIN_UPDATE;
3026		tcp_update_wl(tp, ack, ack_seq);
3027
3028		if (tp->snd_wnd != nwin) {
3029			tp->snd_wnd = nwin;
3030
3031			/* Note, it is the only place, where
3032			 * fast path is recovered for sending TCP.
3033			 */
3034			tp->pred_flags = 0;
3035			tcp_fast_path_check(sk);
3036
3037			if (nwin > tp->max_window) {
3038				tp->max_window = nwin;
3039				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3040			}
3041		}
3042	}
3043
3044	tp->snd_una = ack;
3045
3046	return flag;
3047}
3048
3049/* A very conservative spurious RTO response algorithm: reduce cwnd and
3050 * continue in congestion avoidance.
3051 */
3052static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3053{
3054	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3055	tp->snd_cwnd_cnt = 0;
3056	tp->bytes_acked = 0;
3057	TCP_ECN_queue_cwr(tp);
3058	tcp_moderate_cwnd(tp);
3059}
3060
3061/* A conservative spurious RTO response algorithm: reduce cwnd using
3062 * rate halving and continue in congestion avoidance.
3063 */
3064static void tcp_ratehalving_spur_to_response(struct sock *sk)
3065{
3066	tcp_enter_cwr(sk, 0);
3067}
3068
3069static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3070{
3071	if (flag & FLAG_ECE)
3072		tcp_ratehalving_spur_to_response(sk);
3073	else
3074		tcp_undo_cwr(sk, 1);
3075}
3076
3077/* F-RTO spurious RTO detection algorithm (RFC4138)
3078 *
3079 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3080 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3081 * window (but not to or beyond highest sequence sent before RTO):
3082 *   On First ACK,  send two new segments out.
3083 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3084 *                  algorithm is not part of the F-RTO detection algorithm
3085 *                  given in RFC4138 but can be selected separately).
3086 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3087 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3088 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3089 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3090 *
3091 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3092 * original window even after we transmit two new data segments.
3093 *
3094 * SACK version:
3095 *   on first step, wait until first cumulative ACK arrives, then move to
3096 *   the second step. In second step, the next ACK decides.
3097 *
3098 * F-RTO is implemented (mainly) in four functions:
3099 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3100 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3101 *     called when tcp_use_frto() showed green light
3102 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3103 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3104 *     to prove that the RTO is indeed spurious. It transfers the control
3105 *     from F-RTO to the conventional RTO recovery
3106 */
3107static int tcp_process_frto(struct sock *sk, int flag)
3108{
3109	struct tcp_sock *tp = tcp_sk(sk);
3110
3111	tcp_verify_left_out(tp);
3112
3113	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3114	if (flag & FLAG_DATA_ACKED)
3115		inet_csk(sk)->icsk_retransmits = 0;
3116
3117	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3118	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3119		tp->undo_marker = 0;
3120
3121	if (!before(tp->snd_una, tp->frto_highmark)) {
3122		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3123		return 1;
3124	}
3125
3126	if (!IsSackFrto() || tcp_is_reno(tp)) {
3127		/* RFC4138 shortcoming in step 2; should also have case c):
3128		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3129		 * data, winupdate
3130		 */
3131		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3132			return 1;
3133
3134		if (!(flag & FLAG_DATA_ACKED)) {
3135			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3136					    flag);
3137			return 1;
3138		}
3139	} else {
3140		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3141			/* Prevent sending of new data. */
3142			tp->snd_cwnd = min(tp->snd_cwnd,
3143					   tcp_packets_in_flight(tp));
3144			return 1;
3145		}
3146
3147		if ((tp->frto_counter >= 2) &&
3148		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3149		     ((flag & FLAG_DATA_SACKED) &&
3150		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3151			/* RFC4138 shortcoming (see comment above) */
3152			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3153			    (flag & FLAG_NOT_DUP))
3154				return 1;
3155
3156			tcp_enter_frto_loss(sk, 3, flag);
3157			return 1;
3158		}
3159	}
3160
3161	if (tp->frto_counter == 1) {
3162		/* tcp_may_send_now needs to see updated state */
3163		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3164		tp->frto_counter = 2;
3165
3166		if (!tcp_may_send_now(sk))
3167			tcp_enter_frto_loss(sk, 2, flag);
3168
3169		return 1;
3170	} else {
3171		switch (sysctl_tcp_frto_response) {
3172		case 2:
3173			tcp_undo_spur_to_response(sk, flag);
3174			break;
3175		case 1:
3176			tcp_conservative_spur_to_response(tp);
3177			break;
3178		default:
3179			tcp_ratehalving_spur_to_response(sk);
3180			break;
3181		}
3182		tp->frto_counter = 0;
3183		tp->undo_marker = 0;
3184		NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3185	}
3186	return 0;
3187}
3188
3189/* This routine deals with incoming acks, but not outgoing ones. */
3190static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3191{
3192	struct inet_connection_sock *icsk = inet_csk(sk);
3193	struct tcp_sock *tp = tcp_sk(sk);
3194	u32 prior_snd_una = tp->snd_una;
3195	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3196	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3197	u32 prior_in_flight;
3198	u32 prior_fackets;
3199	int prior_packets;
3200	int frto_cwnd = 0;
3201
3202	/* If the ack is newer than sent or older than previous acks
3203	 * then we can probably ignore it.
3204	 */
3205	if (after(ack, tp->snd_nxt))
3206		goto uninteresting_ack;
3207
3208	if (before(ack, prior_snd_una))
3209		goto old_ack;
3210
3211	if (after(ack, prior_snd_una))
3212		flag |= FLAG_SND_UNA_ADVANCED;
3213
3214	if (sysctl_tcp_abc) {
3215		if (icsk->icsk_ca_state < TCP_CA_CWR)
3216			tp->bytes_acked += ack - prior_snd_una;
3217		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3218			/* we assume just one segment left network */
3219			tp->bytes_acked += min(ack - prior_snd_una,
3220					       tp->mss_cache);
3221	}
3222
3223	prior_fackets = tp->fackets_out;
3224	prior_in_flight = tcp_packets_in_flight(tp);
3225
3226	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3227		/* Window is constant, pure forward advance.
3228		 * No more checks are required.
3229		 * Note, we use the fact that SND.UNA>=SND.WL2.
3230		 */
3231		tcp_update_wl(tp, ack, ack_seq);
3232		tp->snd_una = ack;
3233		flag |= FLAG_WIN_UPDATE;
3234
3235		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3236
3237		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3238	} else {
3239		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3240			flag |= FLAG_DATA;
3241		else
3242			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3243
3244		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3245
3246		if (TCP_SKB_CB(skb)->sacked)
3247			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3248
3249		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3250			flag |= FLAG_ECE;
3251
3252		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3253	}
3254
3255	/* We passed data and got it acked, remove any soft error
3256	 * log. Something worked...
3257	 */
3258	sk->sk_err_soft = 0;
3259	tp->rcv_tstamp = tcp_time_stamp;
3260	prior_packets = tp->packets_out;
3261	if (!prior_packets)
3262		goto no_queue;
3263
3264	/* See if we can take anything off of the retransmit queue. */
3265	flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3266
3267	if (tp->frto_counter)
3268		frto_cwnd = tcp_process_frto(sk, flag);
3269	/* Guarantee sacktag reordering detection against wrap-arounds */
3270	if (before(tp->frto_highmark, tp->snd_una))
3271		tp->frto_highmark = 0;
3272
3273	if (tcp_ack_is_dubious(sk, flag)) {
3274		/* Advance CWND, if state allows this. */
3275		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3276		    tcp_may_raise_cwnd(sk, flag))
3277			tcp_cong_avoid(sk, ack, prior_in_flight);
3278		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3279				      flag);
3280	} else {
3281		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3282			tcp_cong_avoid(sk, ack, prior_in_flight);
3283	}
3284
3285	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3286		dst_confirm(sk->sk_dst_cache);
3287
3288	return 1;
3289
3290no_queue:
3291	icsk->icsk_probes_out = 0;
3292
3293	/* If this ack opens up a zero window, clear backoff.  It was
3294	 * being used to time the probes, and is probably far higher than
3295	 * it needs to be for normal retransmission.
3296	 */
3297	if (tcp_send_head(sk))
3298		tcp_ack_probe(sk);
3299	return 1;
3300
3301old_ack:
3302	if (TCP_SKB_CB(skb)->sacked)
3303		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3304
3305uninteresting_ack:
3306	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3307	return 0;
3308}
3309
3310/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3311 * But, this can also be called on packets in the established flow when
3312 * the fast version below fails.
3313 */
3314void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3315		       int estab)
3316{
3317	unsigned char *ptr;
3318	struct tcphdr *th = tcp_hdr(skb);
3319	int length = (th->doff * 4) - sizeof(struct tcphdr);
3320
3321	ptr = (unsigned char *)(th + 1);
3322	opt_rx->saw_tstamp = 0;
3323
3324	while (length > 0) {
3325		int opcode = *ptr++;
3326		int opsize;
3327
3328		switch (opcode) {
3329		case TCPOPT_EOL:
3330			return;
3331		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3332			length--;
3333			continue;
3334		default:
3335			opsize = *ptr++;
3336			if (opsize < 2) /* "silly options" */
3337				return;
3338			if (opsize > length)
3339				return;	/* don't parse partial options */
3340			switch (opcode) {
3341			case TCPOPT_MSS:
3342				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3343					u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3344					if (in_mss) {
3345						if (opt_rx->user_mss &&
3346						    opt_rx->user_mss < in_mss)
3347							in_mss = opt_rx->user_mss;
3348						opt_rx->mss_clamp = in_mss;
3349					}
3350				}
3351				break;
3352			case TCPOPT_WINDOW:
3353				if (opsize == TCPOLEN_WINDOW && th->syn &&
3354				    !estab && sysctl_tcp_window_scaling) {
3355					__u8 snd_wscale = *(__u8 *)ptr;
3356					opt_rx->wscale_ok = 1;
3357					if (snd_wscale > 14) {
3358						if (net_ratelimit())
3359							printk(KERN_INFO "tcp_parse_options: Illegal window "
3360							       "scaling value %d >14 received.\n",
3361							       snd_wscale);
3362						snd_wscale = 14;
3363					}
3364					opt_rx->snd_wscale = snd_wscale;
3365				}
3366				break;
3367			case TCPOPT_TIMESTAMP:
3368				if ((opsize == TCPOLEN_TIMESTAMP) &&
3369				    ((estab && opt_rx->tstamp_ok) ||
3370				     (!estab && sysctl_tcp_timestamps))) {
3371					opt_rx->saw_tstamp = 1;
3372					opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3373					opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3374				}
3375				break;
3376			case TCPOPT_SACK_PERM:
3377				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3378				    !estab && sysctl_tcp_sack) {
3379					opt_rx->sack_ok = 1;
3380					tcp_sack_reset(opt_rx);
3381				}
3382				break;
3383
3384			case TCPOPT_SACK:
3385				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3386				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3387				   opt_rx->sack_ok) {
3388					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3389				}
3390				break;
3391#ifdef CONFIG_TCP_MD5SIG
3392			case TCPOPT_MD5SIG:
3393				/*
3394				 * The MD5 Hash has already been
3395				 * checked (see tcp_v{4,6}_do_rcv()).
3396				 */
3397				break;
3398#endif
3399			}
3400
3401			ptr += opsize-2;
3402			length -= opsize;
3403		}
3404	}
3405}
3406
3407/* Fast parse options. This hopes to only see timestamps.
3408 * If it is wrong it falls back on tcp_parse_options().
3409 */
3410static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3411				  struct tcp_sock *tp)
3412{
3413	if (th->doff == sizeof(struct tcphdr) >> 2) {
3414		tp->rx_opt.saw_tstamp = 0;
3415		return 0;
3416	} else if (tp->rx_opt.tstamp_ok &&
3417		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3418		__be32 *ptr = (__be32 *)(th + 1);
3419		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3420				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3421			tp->rx_opt.saw_tstamp = 1;
3422			++ptr;
3423			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3424			++ptr;
3425			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3426			return 1;
3427		}
3428	}
3429	tcp_parse_options(skb, &tp->rx_opt, 1);
3430	return 1;
3431}
3432
3433static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3434{
3435	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3436	tp->rx_opt.ts_recent_stamp = get_seconds();
3437}
3438
3439static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3440{
3441	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3442		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3443		 * extra check below makes sure this can only happen
3444		 * for pure ACK frames.  -DaveM
3445		 *
3446		 * Not only, also it occurs for expired timestamps.
3447		 */
3448
3449		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3450		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3451			tcp_store_ts_recent(tp);
3452	}
3453}
3454
3455/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3456 *
3457 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3458 * it can pass through stack. So, the following predicate verifies that
3459 * this segment is not used for anything but congestion avoidance or
3460 * fast retransmit. Moreover, we even are able to eliminate most of such
3461 * second order effects, if we apply some small "replay" window (~RTO)
3462 * to timestamp space.
3463 *
3464 * All these measures still do not guarantee that we reject wrapped ACKs
3465 * on networks with high bandwidth, when sequence space is recycled fastly,
3466 * but it guarantees that such events will be very rare and do not affect
3467 * connection seriously. This doesn't look nice, but alas, PAWS is really
3468 * buggy extension.
3469 *
3470 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3471 * states that events when retransmit arrives after original data are rare.
3472 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3473 * the biggest problem on large power networks even with minor reordering.
3474 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3475 * up to bandwidth of 18Gigabit/sec. 8) ]
3476 */
3477
3478static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3479{
3480	struct tcp_sock *tp = tcp_sk(sk);
3481	struct tcphdr *th = tcp_hdr(skb);
3482	u32 seq = TCP_SKB_CB(skb)->seq;
3483	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3484
3485	return (/* 1. Pure ACK with correct sequence number. */
3486		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3487
3488		/* 2. ... and duplicate ACK. */
3489		ack == tp->snd_una &&
3490
3491		/* 3. ... and does not update window. */
3492		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3493
3494		/* 4. ... and sits in replay window. */
3495		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3496}
3497
3498static inline int tcp_paws_discard(const struct sock *sk,
3499				   const struct sk_buff *skb)
3500{
3501	const struct tcp_sock *tp = tcp_sk(sk);
3502	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3503		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3504		!tcp_disordered_ack(sk, skb));
3505}
3506
3507/* Check segment sequence number for validity.
3508 *
3509 * Segment controls are considered valid, if the segment
3510 * fits to the window after truncation to the window. Acceptability
3511 * of data (and SYN, FIN, of course) is checked separately.
3512 * See tcp_data_queue(), for example.
3513 *
3514 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3515 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3516 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3517 * (borrowed from freebsd)
3518 */
3519
3520static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3521{
3522	return	!before(end_seq, tp->rcv_wup) &&
3523		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3524}
3525
3526/* When we get a reset we do this. */
3527static void tcp_reset(struct sock *sk)
3528{
3529	/* We want the right error as BSD sees it (and indeed as we do). */
3530	switch (sk->sk_state) {
3531	case TCP_SYN_SENT:
3532		sk->sk_err = ECONNREFUSED;
3533		break;
3534	case TCP_CLOSE_WAIT:
3535		sk->sk_err = EPIPE;
3536		break;
3537	case TCP_CLOSE:
3538		return;
3539	default:
3540		sk->sk_err = ECONNRESET;
3541	}
3542
3543	if (!sock_flag(sk, SOCK_DEAD))
3544		sk->sk_error_report(sk);
3545
3546	tcp_done(sk);
3547}
3548
3549/*
3550 * 	Process the FIN bit. This now behaves as it is supposed to work
3551 *	and the FIN takes effect when it is validly part of sequence
3552 *	space. Not before when we get holes.
3553 *
3554 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3555 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3556 *	TIME-WAIT)
3557 *
3558 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3559 *	close and we go into CLOSING (and later onto TIME-WAIT)
3560 *
3561 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3562 */
3563static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3564{
3565	struct tcp_sock *tp = tcp_sk(sk);
3566
3567	inet_csk_schedule_ack(sk);
3568
3569	sk->sk_shutdown |= RCV_SHUTDOWN;
3570	sock_set_flag(sk, SOCK_DONE);
3571
3572	switch (sk->sk_state) {
3573	case TCP_SYN_RECV:
3574	case TCP_ESTABLISHED:
3575		/* Move to CLOSE_WAIT */
3576		tcp_set_state(sk, TCP_CLOSE_WAIT);
3577		inet_csk(sk)->icsk_ack.pingpong = 1;
3578		break;
3579
3580	case TCP_CLOSE_WAIT:
3581	case TCP_CLOSING:
3582		/* Received a retransmission of the FIN, do
3583		 * nothing.
3584		 */
3585		break;
3586	case TCP_LAST_ACK:
3587		/* RFC793: Remain in the LAST-ACK state. */
3588		break;
3589
3590	case TCP_FIN_WAIT1:
3591		/* This case occurs when a simultaneous close
3592		 * happens, we must ack the received FIN and
3593		 * enter the CLOSING state.
3594		 */
3595		tcp_send_ack(sk);
3596		tcp_set_state(sk, TCP_CLOSING);
3597		break;
3598	case TCP_FIN_WAIT2:
3599		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3600		tcp_send_ack(sk);
3601		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3602		break;
3603	default:
3604		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3605		 * cases we should never reach this piece of code.
3606		 */
3607		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3608		       __func__, sk->sk_state);
3609		break;
3610	}
3611
3612	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3613	 * Probably, we should reset in this case. For now drop them.
3614	 */
3615	__skb_queue_purge(&tp->out_of_order_queue);
3616	if (tcp_is_sack(tp))
3617		tcp_sack_reset(&tp->rx_opt);
3618	sk_mem_reclaim(sk);
3619
3620	if (!sock_flag(sk, SOCK_DEAD)) {
3621		sk->sk_state_change(sk);
3622
3623		/* Do not send POLL_HUP for half duplex close. */
3624		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3625		    sk->sk_state == TCP_CLOSE)
3626			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3627		else
3628			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3629	}
3630}
3631
3632static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3633				  u32 end_seq)
3634{
3635	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3636		if (before(seq, sp->start_seq))
3637			sp->start_seq = seq;
3638		if (after(end_seq, sp->end_seq))
3639			sp->end_seq = end_seq;
3640		return 1;
3641	}
3642	return 0;
3643}
3644
3645static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3646{
3647	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3648		if (before(seq, tp->rcv_nxt))
3649			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3650		else
3651			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3652
3653		tp->rx_opt.dsack = 1;
3654		tp->duplicate_sack[0].start_seq = seq;
3655		tp->duplicate_sack[0].end_seq = end_seq;
3656		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3657					   4 - tp->rx_opt.tstamp_ok);
3658	}
3659}
3660
3661static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3662{
3663	if (!tp->rx_opt.dsack)
3664		tcp_dsack_set(tp, seq, end_seq);
3665	else
3666		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3667}
3668
3669static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3670{
3671	struct tcp_sock *tp = tcp_sk(sk);
3672
3673	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3674	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3675		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3676		tcp_enter_quickack_mode(sk);
3677
3678		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3679			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3680
3681			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3682				end_seq = tp->rcv_nxt;
3683			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3684		}
3685	}
3686
3687	tcp_send_ack(sk);
3688}
3689
3690/* These routines update the SACK block as out-of-order packets arrive or
3691 * in-order packets close up the sequence space.
3692 */
3693static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3694{
3695	int this_sack;
3696	struct tcp_sack_block *sp = &tp->selective_acks[0];
3697	struct tcp_sack_block *swalk = sp + 1;
3698
3699	/* See if the recent change to the first SACK eats into
3700	 * or hits the sequence space of other SACK blocks, if so coalesce.
3701	 */
3702	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3703		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3704			int i;
3705
3706			/* Zap SWALK, by moving every further SACK up by one slot.
3707			 * Decrease num_sacks.
3708			 */
3709			tp->rx_opt.num_sacks--;
3710			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3711						   tp->rx_opt.dsack,
3712						   4 - tp->rx_opt.tstamp_ok);
3713			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3714				sp[i] = sp[i + 1];
3715			continue;
3716		}
3717		this_sack++, swalk++;
3718	}
3719}
3720
3721static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3722				 struct tcp_sack_block *sack2)
3723{
3724	__u32 tmp;
3725
3726	tmp = sack1->start_seq;
3727	sack1->start_seq = sack2->start_seq;
3728	sack2->start_seq = tmp;
3729
3730	tmp = sack1->end_seq;
3731	sack1->end_seq = sack2->end_seq;
3732	sack2->end_seq = tmp;
3733}
3734
3735static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3736{
3737	struct tcp_sock *tp = tcp_sk(sk);
3738	struct tcp_sack_block *sp = &tp->selective_acks[0];
3739	int cur_sacks = tp->rx_opt.num_sacks;
3740	int this_sack;
3741
3742	if (!cur_sacks)
3743		goto new_sack;
3744
3745	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3746		if (tcp_sack_extend(sp, seq, end_seq)) {
3747			/* Rotate this_sack to the first one. */
3748			for (; this_sack > 0; this_sack--, sp--)
3749				tcp_sack_swap(sp, sp - 1);
3750			if (cur_sacks > 1)
3751				tcp_sack_maybe_coalesce(tp);
3752			return;
3753		}
3754	}
3755
3756	/* Could not find an adjacent existing SACK, build a new one,
3757	 * put it at the front, and shift everyone else down.  We
3758	 * always know there is at least one SACK present already here.
3759	 *
3760	 * If the sack array is full, forget about the last one.
3761	 */
3762	if (this_sack >= 4) {
3763		this_sack--;
3764		tp->rx_opt.num_sacks--;
3765		sp--;
3766	}
3767	for (; this_sack > 0; this_sack--, sp--)
3768		*sp = *(sp - 1);
3769
3770new_sack:
3771	/* Build the new head SACK, and we're done. */
3772	sp->start_seq = seq;
3773	sp->end_seq = end_seq;
3774	tp->rx_opt.num_sacks++;
3775	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3776				   4 - tp->rx_opt.tstamp_ok);
3777}
3778
3779/* RCV.NXT advances, some SACKs should be eaten. */
3780
3781static void tcp_sack_remove(struct tcp_sock *tp)
3782{
3783	struct tcp_sack_block *sp = &tp->selective_acks[0];
3784	int num_sacks = tp->rx_opt.num_sacks;
3785	int this_sack;
3786
3787	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3788	if (skb_queue_empty(&tp->out_of_order_queue)) {
3789		tp->rx_opt.num_sacks = 0;
3790		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3791		return;
3792	}
3793
3794	for (this_sack = 0; this_sack < num_sacks;) {
3795		/* Check if the start of the sack is covered by RCV.NXT. */
3796		if (!before(tp->rcv_nxt, sp->start_seq)) {
3797			int i;
3798
3799			/* RCV.NXT must cover all the block! */
3800			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3801
3802			/* Zap this SACK, by moving forward any other SACKS. */
3803			for (i=this_sack+1; i < num_sacks; i++)
3804				tp->selective_acks[i-1] = tp->selective_acks[i];
3805			num_sacks--;
3806			continue;
3807		}
3808		this_sack++;
3809		sp++;
3810	}
3811	if (num_sacks != tp->rx_opt.num_sacks) {
3812		tp->rx_opt.num_sacks = num_sacks;
3813		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3814					   tp->rx_opt.dsack,
3815					   4 - tp->rx_opt.tstamp_ok);
3816	}
3817}
3818
3819/* This one checks to see if we can put data from the
3820 * out_of_order queue into the receive_queue.
3821 */
3822static void tcp_ofo_queue(struct sock *sk)
3823{
3824	struct tcp_sock *tp = tcp_sk(sk);
3825	__u32 dsack_high = tp->rcv_nxt;
3826	struct sk_buff *skb;
3827
3828	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3829		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3830			break;
3831
3832		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3833			__u32 dsack = dsack_high;
3834			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3835				dsack_high = TCP_SKB_CB(skb)->end_seq;
3836			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3837		}
3838
3839		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3840			SOCK_DEBUG(sk, "ofo packet was already received \n");
3841			__skb_unlink(skb, &tp->out_of_order_queue);
3842			__kfree_skb(skb);
3843			continue;
3844		}
3845		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3846			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3847			   TCP_SKB_CB(skb)->end_seq);
3848
3849		__skb_unlink(skb, &tp->out_of_order_queue);
3850		__skb_queue_tail(&sk->sk_receive_queue, skb);
3851		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3852		if (tcp_hdr(skb)->fin)
3853			tcp_fin(skb, sk, tcp_hdr(skb));
3854	}
3855}
3856
3857static int tcp_prune_ofo_queue(struct sock *sk);
3858static int tcp_prune_queue(struct sock *sk);
3859
3860static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3861{
3862	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3863	    !sk_rmem_schedule(sk, size)) {
3864
3865		if (tcp_prune_queue(sk) < 0)
3866			return -1;
3867
3868		if (!sk_rmem_schedule(sk, size)) {
3869			if (!tcp_prune_ofo_queue(sk))
3870				return -1;
3871
3872			if (!sk_rmem_schedule(sk, size))
3873				return -1;
3874		}
3875	}
3876	return 0;
3877}
3878
3879static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3880{
3881	struct tcphdr *th = tcp_hdr(skb);
3882	struct tcp_sock *tp = tcp_sk(sk);
3883	int eaten = -1;
3884
3885	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3886		goto drop;
3887
3888	__skb_pull(skb, th->doff * 4);
3889
3890	TCP_ECN_accept_cwr(tp, skb);
3891
3892	if (tp->rx_opt.dsack) {
3893		tp->rx_opt.dsack = 0;
3894		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3895					     4 - tp->rx_opt.tstamp_ok);
3896	}
3897
3898	/*  Queue data for delivery to the user.
3899	 *  Packets in sequence go to the receive queue.
3900	 *  Out of sequence packets to the out_of_order_queue.
3901	 */
3902	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3903		if (tcp_receive_window(tp) == 0)
3904			goto out_of_window;
3905
3906		/* Ok. In sequence. In window. */
3907		if (tp->ucopy.task == current &&
3908		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3909		    sock_owned_by_user(sk) && !tp->urg_data) {
3910			int chunk = min_t(unsigned int, skb->len,
3911					  tp->ucopy.len);
3912
3913			__set_current_state(TASK_RUNNING);
3914
3915			local_bh_enable();
3916			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3917				tp->ucopy.len -= chunk;
3918				tp->copied_seq += chunk;
3919				eaten = (chunk == skb->len && !th->fin);
3920				tcp_rcv_space_adjust(sk);
3921			}
3922			local_bh_disable();
3923		}
3924
3925		if (eaten <= 0) {
3926queue_and_out:
3927			if (eaten < 0 &&
3928			    tcp_try_rmem_schedule(sk, skb->truesize))
3929				goto drop;
3930
3931			skb_set_owner_r(skb, sk);
3932			__skb_queue_tail(&sk->sk_receive_queue, skb);
3933		}
3934		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3935		if (skb->len)
3936			tcp_event_data_recv(sk, skb);
3937		if (th->fin)
3938			tcp_fin(skb, sk, th);
3939
3940		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3941			tcp_ofo_queue(sk);
3942
3943			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3944			 * gap in queue is filled.
3945			 */
3946			if (skb_queue_empty(&tp->out_of_order_queue))
3947				inet_csk(sk)->icsk_ack.pingpong = 0;
3948		}
3949
3950		if (tp->rx_opt.num_sacks)
3951			tcp_sack_remove(tp);
3952
3953		tcp_fast_path_check(sk);
3954
3955		if (eaten > 0)
3956			__kfree_skb(skb);
3957		else if (!sock_flag(sk, SOCK_DEAD))
3958			sk->sk_data_ready(sk, 0);
3959		return;
3960	}
3961
3962	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3963		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3964		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3965		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3966
3967out_of_window:
3968		tcp_enter_quickack_mode(sk);
3969		inet_csk_schedule_ack(sk);
3970drop:
3971		__kfree_skb(skb);
3972		return;
3973	}
3974
3975	/* Out of window. F.e. zero window probe. */
3976	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3977		goto out_of_window;
3978
3979	tcp_enter_quickack_mode(sk);
3980
3981	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3982		/* Partial packet, seq < rcv_next < end_seq */
3983		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3984			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3985			   TCP_SKB_CB(skb)->end_seq);
3986
3987		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3988
3989		/* If window is closed, drop tail of packet. But after
3990		 * remembering D-SACK for its head made in previous line.
3991		 */
3992		if (!tcp_receive_window(tp))
3993			goto out_of_window;
3994		goto queue_and_out;
3995	}
3996
3997	TCP_ECN_check_ce(tp, skb);
3998
3999	if (tcp_try_rmem_schedule(sk, skb->truesize))
4000		goto drop;
4001
4002	/* Disable header prediction. */
4003	tp->pred_flags = 0;
4004	inet_csk_schedule_ack(sk);
4005
4006	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4007		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4008
4009	skb_set_owner_r(skb, sk);
4010
4011	if (!skb_peek(&tp->out_of_order_queue)) {
4012		/* Initial out of order segment, build 1 SACK. */
4013		if (tcp_is_sack(tp)) {
4014			tp->rx_opt.num_sacks = 1;
4015			tp->rx_opt.dsack     = 0;
4016			tp->rx_opt.eff_sacks = 1;
4017			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4018			tp->selective_acks[0].end_seq =
4019						TCP_SKB_CB(skb)->end_seq;
4020		}
4021		__skb_queue_head(&tp->out_of_order_queue, skb);
4022	} else {
4023		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4024		u32 seq = TCP_SKB_CB(skb)->seq;
4025		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4026
4027		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4028			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4029
4030			if (!tp->rx_opt.num_sacks ||
4031			    tp->selective_acks[0].end_seq != seq)
4032				goto add_sack;
4033
4034			/* Common case: data arrive in order after hole. */
4035			tp->selective_acks[0].end_seq = end_seq;
4036			return;
4037		}
4038
4039		/* Find place to insert this segment. */
4040		do {
4041			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4042				break;
4043		} while ((skb1 = skb1->prev) !=
4044			 (struct sk_buff *)&tp->out_of_order_queue);
4045
4046		/* Do skb overlap to previous one? */
4047		if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4048		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4049			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4050				/* All the bits are present. Drop. */
4051				__kfree_skb(skb);
4052				tcp_dsack_set(tp, seq, end_seq);
4053				goto add_sack;
4054			}
4055			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4056				/* Partial overlap. */
4057				tcp_dsack_set(tp, seq,
4058					      TCP_SKB_CB(skb1)->end_seq);
4059			} else {
4060				skb1 = skb1->prev;
4061			}
4062		}
4063		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4064
4065		/* And clean segments covered by new one as whole. */
4066		while ((skb1 = skb->next) !=
4067		       (struct sk_buff *)&tp->out_of_order_queue &&
4068		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4069			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4070				tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4071						 end_seq);
4072				break;
4073			}
4074			__skb_unlink(skb1, &tp->out_of_order_queue);
4075			tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4076					 TCP_SKB_CB(skb1)->end_seq);
4077			__kfree_skb(skb1);
4078		}
4079
4080add_sack:
4081		if (tcp_is_sack(tp))
4082			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4083	}
4084}
4085
4086/* Collapse contiguous sequence of skbs head..tail with
4087 * sequence numbers start..end.
4088 * Segments with FIN/SYN are not collapsed (only because this
4089 * simplifies code)
4090 */
4091static void
4092tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4093	     struct sk_buff *head, struct sk_buff *tail,
4094	     u32 start, u32 end)
4095{
4096	struct sk_buff *skb;
4097
4098	/* First, check that queue is collapsible and find
4099	 * the point where collapsing can be useful. */
4100	for (skb = head; skb != tail;) {
4101		/* No new bits? It is possible on ofo queue. */
4102		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4103			struct sk_buff *next = skb->next;
4104			__skb_unlink(skb, list);
4105			__kfree_skb(skb);
4106			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4107			skb = next;
4108			continue;
4109		}
4110
4111		/* The first skb to collapse is:
4112		 * - not SYN/FIN and
4113		 * - bloated or contains data before "start" or
4114		 *   overlaps to the next one.
4115		 */
4116		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4117		    (tcp_win_from_space(skb->truesize) > skb->len ||
4118		     before(TCP_SKB_CB(skb)->seq, start) ||
4119		     (skb->next != tail &&
4120		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4121			break;
4122
4123		/* Decided to skip this, advance start seq. */
4124		start = TCP_SKB_CB(skb)->end_seq;
4125		skb = skb->next;
4126	}
4127	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4128		return;
4129
4130	while (before(start, end)) {
4131		struct sk_buff *nskb;
4132		unsigned int header = skb_headroom(skb);
4133		int copy = SKB_MAX_ORDER(header, 0);
4134
4135		/* Too big header? This can happen with IPv6. */
4136		if (copy < 0)
4137			return;
4138		if (end - start < copy)
4139			copy = end - start;
4140		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4141		if (!nskb)
4142			return;
4143
4144		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4145		skb_set_network_header(nskb, (skb_network_header(skb) -
4146					      skb->head));
4147		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4148						skb->head));
4149		skb_reserve(nskb, header);
4150		memcpy(nskb->head, skb->head, header);
4151		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4152		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4153		__skb_insert(nskb, skb->prev, skb, list);
4154		skb_set_owner_r(nskb, sk);
4155
4156		/* Copy data, releasing collapsed skbs. */
4157		while (copy > 0) {
4158			int offset = start - TCP_SKB_CB(skb)->seq;
4159			int size = TCP_SKB_CB(skb)->end_seq - start;
4160
4161			BUG_ON(offset < 0);
4162			if (size > 0) {
4163				size = min(copy, size);
4164				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4165					BUG();
4166				TCP_SKB_CB(nskb)->end_seq += size;
4167				copy -= size;
4168				start += size;
4169			}
4170			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4171				struct sk_buff *next = skb->next;
4172				__skb_unlink(skb, list);
4173				__kfree_skb(skb);
4174				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4175				skb = next;
4176				if (skb == tail ||
4177				    tcp_hdr(skb)->syn ||
4178				    tcp_hdr(skb)->fin)
4179					return;
4180			}
4181		}
4182	}
4183}
4184
4185/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4186 * and tcp_collapse() them until all the queue is collapsed.
4187 */
4188static void tcp_collapse_ofo_queue(struct sock *sk)
4189{
4190	struct tcp_sock *tp = tcp_sk(sk);
4191	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4192	struct sk_buff *head;
4193	u32 start, end;
4194
4195	if (skb == NULL)
4196		return;
4197
4198	start = TCP_SKB_CB(skb)->seq;
4199	end = TCP_SKB_CB(skb)->end_seq;
4200	head = skb;
4201
4202	for (;;) {
4203		skb = skb->next;
4204
4205		/* Segment is terminated when we see gap or when
4206		 * we are at the end of all the queue. */
4207		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4208		    after(TCP_SKB_CB(skb)->seq, end) ||
4209		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4210			tcp_collapse(sk, &tp->out_of_order_queue,
4211				     head, skb, start, end);
4212			head = skb;
4213			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4214				break;
4215			/* Start new segment */
4216			start = TCP_SKB_CB(skb)->seq;
4217			end = TCP_SKB_CB(skb)->end_seq;
4218		} else {
4219			if (before(TCP_SKB_CB(skb)->seq, start))
4220				start = TCP_SKB_CB(skb)->seq;
4221			if (after(TCP_SKB_CB(skb)->end_seq, end))
4222				end = TCP_SKB_CB(skb)->end_seq;
4223		}
4224	}
4225}
4226
4227/*
4228 * Purge the out-of-order queue.
4229 * Return true if queue was pruned.
4230 */
4231static int tcp_prune_ofo_queue(struct sock *sk)
4232{
4233	struct tcp_sock *tp = tcp_sk(sk);
4234	int res = 0;
4235
4236	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4237		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4238		__skb_queue_purge(&tp->out_of_order_queue);
4239
4240		/* Reset SACK state.  A conforming SACK implementation will
4241		 * do the same at a timeout based retransmit.  When a connection
4242		 * is in a sad state like this, we care only about integrity
4243		 * of the connection not performance.
4244		 */
4245		if (tp->rx_opt.sack_ok)
4246			tcp_sack_reset(&tp->rx_opt);
4247		sk_mem_reclaim(sk);
4248		res = 1;
4249	}
4250	return res;
4251}
4252
4253/* Reduce allocated memory if we can, trying to get
4254 * the socket within its memory limits again.
4255 *
4256 * Return less than zero if we should start dropping frames
4257 * until the socket owning process reads some of the data
4258 * to stabilize the situation.
4259 */
4260static int tcp_prune_queue(struct sock *sk)
4261{
4262	struct tcp_sock *tp = tcp_sk(sk);
4263
4264	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4265
4266	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4267
4268	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4269		tcp_clamp_window(sk);
4270	else if (tcp_memory_pressure)
4271		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4272
4273	tcp_collapse_ofo_queue(sk);
4274	tcp_collapse(sk, &sk->sk_receive_queue,
4275		     sk->sk_receive_queue.next,
4276		     (struct sk_buff *)&sk->sk_receive_queue,
4277		     tp->copied_seq, tp->rcv_nxt);
4278	sk_mem_reclaim(sk);
4279
4280	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4281		return 0;
4282
4283	/* Collapsing did not help, destructive actions follow.
4284	 * This must not ever occur. */
4285
4286	tcp_prune_ofo_queue(sk);
4287
4288	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4289		return 0;
4290
4291	/* If we are really being abused, tell the caller to silently
4292	 * drop receive data on the floor.  It will get retransmitted
4293	 * and hopefully then we'll have sufficient space.
4294	 */
4295	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4296
4297	/* Massive buffer overcommit. */
4298	tp->pred_flags = 0;
4299	return -1;
4300}
4301
4302/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4303 * As additional protections, we do not touch cwnd in retransmission phases,
4304 * and if application hit its sndbuf limit recently.
4305 */
4306void tcp_cwnd_application_limited(struct sock *sk)
4307{
4308	struct tcp_sock *tp = tcp_sk(sk);
4309
4310	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4311	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4312		/* Limited by application or receiver window. */
4313		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4314		u32 win_used = max(tp->snd_cwnd_used, init_win);
4315		if (win_used < tp->snd_cwnd) {
4316			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4317			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4318		}
4319		tp->snd_cwnd_used = 0;
4320	}
4321	tp->snd_cwnd_stamp = tcp_time_stamp;
4322}
4323
4324static int tcp_should_expand_sndbuf(struct sock *sk)
4325{
4326	struct tcp_sock *tp = tcp_sk(sk);
4327
4328	/* If the user specified a specific send buffer setting, do
4329	 * not modify it.
4330	 */
4331	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4332		return 0;
4333
4334	/* If we are under global TCP memory pressure, do not expand.  */
4335	if (tcp_memory_pressure)
4336		return 0;
4337
4338	/* If we are under soft global TCP memory pressure, do not expand.  */
4339	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4340		return 0;
4341
4342	/* If we filled the congestion window, do not expand.  */
4343	if (tp->packets_out >= tp->snd_cwnd)
4344		return 0;
4345
4346	return 1;
4347}
4348
4349/* When incoming ACK allowed to free some skb from write_queue,
4350 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4351 * on the exit from tcp input handler.
4352 *
4353 * PROBLEM: sndbuf expansion does not work well with largesend.
4354 */
4355static void tcp_new_space(struct sock *sk)
4356{
4357	struct tcp_sock *tp = tcp_sk(sk);
4358
4359	if (tcp_should_expand_sndbuf(sk)) {
4360		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4361			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4362		    demanded = max_t(unsigned int, tp->snd_cwnd,
4363				     tp->reordering + 1);
4364		sndmem *= 2 * demanded;
4365		if (sndmem > sk->sk_sndbuf)
4366			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4367		tp->snd_cwnd_stamp = tcp_time_stamp;
4368	}
4369
4370	sk->sk_write_space(sk);
4371}
4372
4373static void tcp_check_space(struct sock *sk)
4374{
4375	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4376		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4377		if (sk->sk_socket &&
4378		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4379			tcp_new_space(sk);
4380	}
4381}
4382
4383static inline void tcp_data_snd_check(struct sock *sk)
4384{
4385	tcp_push_pending_frames(sk);
4386	tcp_check_space(sk);
4387}
4388
4389/*
4390 * Check if sending an ack is needed.
4391 */
4392static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4393{
4394	struct tcp_sock *tp = tcp_sk(sk);
4395
4396	    /* More than one full frame received... */
4397	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4398	     /* ... and right edge of window advances far enough.
4399	      * (tcp_recvmsg() will send ACK otherwise). Or...
4400	      */
4401	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4402	    /* We ACK each frame or... */
4403	    tcp_in_quickack_mode(sk) ||
4404	    /* We have out of order data. */
4405	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4406		/* Then ack it now */
4407		tcp_send_ack(sk);
4408	} else {
4409		/* Else, send delayed ack. */
4410		tcp_send_delayed_ack(sk);
4411	}
4412}
4413
4414static inline void tcp_ack_snd_check(struct sock *sk)
4415{
4416	if (!inet_csk_ack_scheduled(sk)) {
4417		/* We sent a data segment already. */
4418		return;
4419	}
4420	__tcp_ack_snd_check(sk, 1);
4421}
4422
4423/*
4424 *	This routine is only called when we have urgent data
4425 *	signaled. Its the 'slow' part of tcp_urg. It could be
4426 *	moved inline now as tcp_urg is only called from one
4427 *	place. We handle URGent data wrong. We have to - as
4428 *	BSD still doesn't use the correction from RFC961.
4429 *	For 1003.1g we should support a new option TCP_STDURG to permit
4430 *	either form (or just set the sysctl tcp_stdurg).
4431 */
4432
4433static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4434{
4435	struct tcp_sock *tp = tcp_sk(sk);
4436	u32 ptr = ntohs(th->urg_ptr);
4437
4438	if (ptr && !sysctl_tcp_stdurg)
4439		ptr--;
4440	ptr += ntohl(th->seq);
4441
4442	/* Ignore urgent data that we've already seen and read. */
4443	if (after(tp->copied_seq, ptr))
4444		return;
4445
4446	/* Do not replay urg ptr.
4447	 *
4448	 * NOTE: interesting situation not covered by specs.
4449	 * Misbehaving sender may send urg ptr, pointing to segment,
4450	 * which we already have in ofo queue. We are not able to fetch
4451	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4452	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4453	 * situations. But it is worth to think about possibility of some
4454	 * DoSes using some hypothetical application level deadlock.
4455	 */
4456	if (before(ptr, tp->rcv_nxt))
4457		return;
4458
4459	/* Do we already have a newer (or duplicate) urgent pointer? */
4460	if (tp->urg_data && !after(ptr, tp->urg_seq))
4461		return;
4462
4463	/* Tell the world about our new urgent pointer. */
4464	sk_send_sigurg(sk);
4465
4466	/* We may be adding urgent data when the last byte read was
4467	 * urgent. To do this requires some care. We cannot just ignore
4468	 * tp->copied_seq since we would read the last urgent byte again
4469	 * as data, nor can we alter copied_seq until this data arrives
4470	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4471	 *
4472	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4473	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4474	 * and expect that both A and B disappear from stream. This is _wrong_.
4475	 * Though this happens in BSD with high probability, this is occasional.
4476	 * Any application relying on this is buggy. Note also, that fix "works"
4477	 * only in this artificial test. Insert some normal data between A and B and we will
4478	 * decline of BSD again. Verdict: it is better to remove to trap
4479	 * buggy users.
4480	 */
4481	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4482	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4483		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4484		tp->copied_seq++;
4485		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4486			__skb_unlink(skb, &sk->sk_receive_queue);
4487			__kfree_skb(skb);
4488		}
4489	}
4490
4491	tp->urg_data = TCP_URG_NOTYET;
4492	tp->urg_seq = ptr;
4493
4494	/* Disable header prediction. */
4495	tp->pred_flags = 0;
4496}
4497
4498/* This is the 'fast' part of urgent handling. */
4499static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4500{
4501	struct tcp_sock *tp = tcp_sk(sk);
4502
4503	/* Check if we get a new urgent pointer - normally not. */
4504	if (th->urg)
4505		tcp_check_urg(sk, th);
4506
4507	/* Do we wait for any urgent data? - normally not... */
4508	if (tp->urg_data == TCP_URG_NOTYET) {
4509		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4510			  th->syn;
4511
4512		/* Is the urgent pointer pointing into this packet? */
4513		if (ptr < skb->len) {
4514			u8 tmp;
4515			if (skb_copy_bits(skb, ptr, &tmp, 1))
4516				BUG();
4517			tp->urg_data = TCP_URG_VALID | tmp;
4518			if (!sock_flag(sk, SOCK_DEAD))
4519				sk->sk_data_ready(sk, 0);
4520		}
4521	}
4522}
4523
4524static int tcp_defer_accept_check(struct sock *sk)
4525{
4526	struct tcp_sock *tp = tcp_sk(sk);
4527
4528	if (tp->defer_tcp_accept.request) {
4529		int queued_data =  tp->rcv_nxt - tp->copied_seq;
4530		int hasfin =  !skb_queue_empty(&sk->sk_receive_queue) ?
4531			tcp_hdr((struct sk_buff *)
4532				sk->sk_receive_queue.prev)->fin : 0;
4533
4534		if (queued_data && hasfin)
4535			queued_data--;
4536
4537		if (queued_data &&
4538		    tp->defer_tcp_accept.listen_sk->sk_state == TCP_LISTEN) {
4539			if (sock_flag(sk, SOCK_KEEPOPEN)) {
4540				inet_csk_reset_keepalive_timer(sk,
4541							       keepalive_time_when(tp));
4542			} else {
4543				inet_csk_delete_keepalive_timer(sk);
4544			}
4545
4546			inet_csk_reqsk_queue_add(
4547				tp->defer_tcp_accept.listen_sk,
4548				tp->defer_tcp_accept.request,
4549				sk);
4550
4551			tp->defer_tcp_accept.listen_sk->sk_data_ready(
4552				tp->defer_tcp_accept.listen_sk, 0);
4553
4554			sock_put(tp->defer_tcp_accept.listen_sk);
4555			sock_put(sk);
4556			tp->defer_tcp_accept.listen_sk = NULL;
4557			tp->defer_tcp_accept.request = NULL;
4558		} else if (hasfin ||
4559			   tp->defer_tcp_accept.listen_sk->sk_state != TCP_LISTEN) {
4560			tcp_reset(sk);
4561			return -1;
4562		}
4563	}
4564	return 0;
4565}
4566
4567static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4568{
4569	struct tcp_sock *tp = tcp_sk(sk);
4570	int chunk = skb->len - hlen;
4571	int err;
4572
4573	local_bh_enable();
4574	if (skb_csum_unnecessary(skb))
4575		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4576	else
4577		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4578						       tp->ucopy.iov);
4579
4580	if (!err) {
4581		tp->ucopy.len -= chunk;
4582		tp->copied_seq += chunk;
4583		tcp_rcv_space_adjust(sk);
4584	}
4585
4586	local_bh_disable();
4587	return err;
4588}
4589
4590static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4591					    struct sk_buff *skb)
4592{
4593	__sum16 result;
4594
4595	if (sock_owned_by_user(sk)) {
4596		local_bh_enable();
4597		result = __tcp_checksum_complete(skb);
4598		local_bh_disable();
4599	} else {
4600		result = __tcp_checksum_complete(skb);
4601	}
4602	return result;
4603}
4604
4605static inline int tcp_checksum_complete_user(struct sock *sk,
4606					     struct sk_buff *skb)
4607{
4608	return !skb_csum_unnecessary(skb) &&
4609	       __tcp_checksum_complete_user(sk, skb);
4610}
4611
4612#ifdef CONFIG_NET_DMA
4613static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4614				  int hlen)
4615{
4616	struct tcp_sock *tp = tcp_sk(sk);
4617	int chunk = skb->len - hlen;
4618	int dma_cookie;
4619	int copied_early = 0;
4620
4621	if (tp->ucopy.wakeup)
4622		return 0;
4623
4624	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4625		tp->ucopy.dma_chan = get_softnet_dma();
4626
4627	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4628
4629		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4630							 skb, hlen,
4631							 tp->ucopy.iov, chunk,
4632							 tp->ucopy.pinned_list);
4633
4634		if (dma_cookie < 0)
4635			goto out;
4636
4637		tp->ucopy.dma_cookie = dma_cookie;
4638		copied_early = 1;
4639
4640		tp->ucopy.len -= chunk;
4641		tp->copied_seq += chunk;
4642		tcp_rcv_space_adjust(sk);
4643
4644		if ((tp->ucopy.len == 0) ||
4645		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4646		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4647			tp->ucopy.wakeup = 1;
4648			sk->sk_data_ready(sk, 0);
4649		}
4650	} else if (chunk > 0) {
4651		tp->ucopy.wakeup = 1;
4652		sk->sk_data_ready(sk, 0);
4653	}
4654out:
4655	return copied_early;
4656}
4657#endif /* CONFIG_NET_DMA */
4658
4659/*
4660 *	TCP receive function for the ESTABLISHED state.
4661 *
4662 *	It is split into a fast path and a slow path. The fast path is
4663 * 	disabled when:
4664 *	- A zero window was announced from us - zero window probing
4665 *        is only handled properly in the slow path.
4666 *	- Out of order segments arrived.
4667 *	- Urgent data is expected.
4668 *	- There is no buffer space left
4669 *	- Unexpected TCP flags/window values/header lengths are received
4670 *	  (detected by checking the TCP header against pred_flags)
4671 *	- Data is sent in both directions. Fast path only supports pure senders
4672 *	  or pure receivers (this means either the sequence number or the ack
4673 *	  value must stay constant)
4674 *	- Unexpected TCP option.
4675 *
4676 *	When these conditions are not satisfied it drops into a standard
4677 *	receive procedure patterned after RFC793 to handle all cases.
4678 *	The first three cases are guaranteed by proper pred_flags setting,
4679 *	the rest is checked inline. Fast processing is turned on in
4680 *	tcp_data_queue when everything is OK.
4681 */
4682int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4683			struct tcphdr *th, unsigned len)
4684{
4685	struct tcp_sock *tp = tcp_sk(sk);
4686
4687	/*
4688	 *	Header prediction.
4689	 *	The code loosely follows the one in the famous
4690	 *	"30 instruction TCP receive" Van Jacobson mail.
4691	 *
4692	 *	Van's trick is to deposit buffers into socket queue
4693	 *	on a device interrupt, to call tcp_recv function
4694	 *	on the receive process context and checksum and copy
4695	 *	the buffer to user space. smart...
4696	 *
4697	 *	Our current scheme is not silly either but we take the
4698	 *	extra cost of the net_bh soft interrupt processing...
4699	 *	We do checksum and copy also but from device to kernel.
4700	 */
4701
4702	tp->rx_opt.saw_tstamp = 0;
4703
4704	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4705	 *	if header_prediction is to be made
4706	 *	'S' will always be tp->tcp_header_len >> 2
4707	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4708	 *  turn it off	(when there are holes in the receive
4709	 *	 space for instance)
4710	 *	PSH flag is ignored.
4711	 */
4712
4713	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4714	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4715		int tcp_header_len = tp->tcp_header_len;
4716
4717		/* Timestamp header prediction: tcp_header_len
4718		 * is automatically equal to th->doff*4 due to pred_flags
4719		 * match.
4720		 */
4721
4722		/* Check timestamp */
4723		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4724			__be32 *ptr = (__be32 *)(th + 1);
4725
4726			/* No? Slow path! */
4727			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4728					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4729				goto slow_path;
4730
4731			tp->rx_opt.saw_tstamp = 1;
4732			++ptr;
4733			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4734			++ptr;
4735			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4736
4737			/* If PAWS failed, check it more carefully in slow path */
4738			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4739				goto slow_path;
4740
4741			/* DO NOT update ts_recent here, if checksum fails
4742			 * and timestamp was corrupted part, it will result
4743			 * in a hung connection since we will drop all
4744			 * future packets due to the PAWS test.
4745			 */
4746		}
4747
4748		if (len <= tcp_header_len) {
4749			/* Bulk data transfer: sender */
4750			if (len == tcp_header_len) {
4751				/* Predicted packet is in window by definition.
4752				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4753				 * Hence, check seq<=rcv_wup reduces to:
4754				 */
4755				if (tcp_header_len ==
4756				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4757				    tp->rcv_nxt == tp->rcv_wup)
4758					tcp_store_ts_recent(tp);
4759
4760				/* We know that such packets are checksummed
4761				 * on entry.
4762				 */
4763				tcp_ack(sk, skb, 0);
4764				__kfree_skb(skb);
4765				tcp_data_snd_check(sk);
4766				return 0;
4767			} else { /* Header too small */
4768				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4769				goto discard;
4770			}
4771		} else {
4772			int eaten = 0;
4773			int copied_early = 0;
4774
4775			if (tp->copied_seq == tp->rcv_nxt &&
4776			    len - tcp_header_len <= tp->ucopy.len) {
4777#ifdef CONFIG_NET_DMA
4778				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4779					copied_early = 1;
4780					eaten = 1;
4781				}
4782#endif
4783				if (tp->ucopy.task == current &&
4784				    sock_owned_by_user(sk) && !copied_early) {
4785					__set_current_state(TASK_RUNNING);
4786
4787					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4788						eaten = 1;
4789				}
4790				if (eaten) {
4791					/* Predicted packet is in window by definition.
4792					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4793					 * Hence, check seq<=rcv_wup reduces to:
4794					 */
4795					if (tcp_header_len ==
4796					    (sizeof(struct tcphdr) +
4797					     TCPOLEN_TSTAMP_ALIGNED) &&
4798					    tp->rcv_nxt == tp->rcv_wup)
4799						tcp_store_ts_recent(tp);
4800
4801					tcp_rcv_rtt_measure_ts(sk, skb);
4802
4803					__skb_pull(skb, tcp_header_len);
4804					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4805					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4806				}
4807				if (copied_early)
4808					tcp_cleanup_rbuf(sk, skb->len);
4809			}
4810			if (!eaten) {
4811				if (tcp_checksum_complete_user(sk, skb))
4812					goto csum_error;
4813
4814				/* Predicted packet is in window by definition.
4815				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4816				 * Hence, check seq<=rcv_wup reduces to:
4817				 */
4818				if (tcp_header_len ==
4819				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4820				    tp->rcv_nxt == tp->rcv_wup)
4821					tcp_store_ts_recent(tp);
4822
4823				tcp_rcv_rtt_measure_ts(sk, skb);
4824
4825				if ((int)skb->truesize > sk->sk_forward_alloc)
4826					goto step5;
4827
4828				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4829
4830				/* Bulk data transfer: receiver */
4831				__skb_pull(skb, tcp_header_len);
4832				__skb_queue_tail(&sk->sk_receive_queue, skb);
4833				skb_set_owner_r(skb, sk);
4834				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4835			}
4836
4837			tcp_event_data_recv(sk, skb);
4838
4839			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4840				/* Well, only one small jumplet in fast path... */
4841				tcp_ack(sk, skb, FLAG_DATA);
4842				tcp_data_snd_check(sk);
4843				if (!inet_csk_ack_scheduled(sk))
4844					goto no_ack;
4845			}
4846
4847			__tcp_ack_snd_check(sk, 0);
4848no_ack:
4849#ifdef CONFIG_NET_DMA
4850			if (copied_early)
4851				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4852			else
4853#endif
4854			if (eaten)
4855				__kfree_skb(skb);
4856			else
4857				sk->sk_data_ready(sk, 0);
4858			return 0;
4859		}
4860	}
4861
4862slow_path:
4863	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4864		goto csum_error;
4865
4866	/*
4867	 * RFC1323: H1. Apply PAWS check first.
4868	 */
4869	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4870	    tcp_paws_discard(sk, skb)) {
4871		if (!th->rst) {
4872			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4873			tcp_send_dupack(sk, skb);
4874			goto discard;
4875		}
4876		/* Resets are accepted even if PAWS failed.
4877
4878		   ts_recent update must be made after we are sure
4879		   that the packet is in window.
4880		 */
4881	}
4882
4883	/*
4884	 *	Standard slow path.
4885	 */
4886
4887	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4888		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4889		 * (RST) segments are validated by checking their SEQ-fields."
4890		 * And page 69: "If an incoming segment is not acceptable,
4891		 * an acknowledgment should be sent in reply (unless the RST bit
4892		 * is set, if so drop the segment and return)".
4893		 */
4894		if (!th->rst)
4895			tcp_send_dupack(sk, skb);
4896		goto discard;
4897	}
4898
4899	if (th->rst) {
4900		tcp_reset(sk);
4901		goto discard;
4902	}
4903
4904	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4905
4906	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4907		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4908		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4909		tcp_reset(sk);
4910		return 1;
4911	}
4912
4913step5:
4914	if (th->ack)
4915		tcp_ack(sk, skb, FLAG_SLOWPATH);
4916
4917	tcp_rcv_rtt_measure_ts(sk, skb);
4918
4919	/* Process urgent data. */
4920	tcp_urg(sk, skb, th);
4921
4922	/* step 7: process the segment text */
4923	tcp_data_queue(sk, skb);
4924
4925	tcp_data_snd_check(sk);
4926	tcp_ack_snd_check(sk);
4927
4928	tcp_defer_accept_check(sk);
4929	return 0;
4930
4931csum_error:
4932	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4933
4934discard:
4935	__kfree_skb(skb);
4936	return 0;
4937}
4938
4939static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4940					 struct tcphdr *th, unsigned len)
4941{
4942	struct tcp_sock *tp = tcp_sk(sk);
4943	struct inet_connection_sock *icsk = inet_csk(sk);
4944	int saved_clamp = tp->rx_opt.mss_clamp;
4945
4946	tcp_parse_options(skb, &tp->rx_opt, 0);
4947
4948	if (th->ack) {
4949		/* rfc793:
4950		 * "If the state is SYN-SENT then
4951		 *    first check the ACK bit
4952		 *      If the ACK bit is set
4953		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4954		 *        a reset (unless the RST bit is set, if so drop
4955		 *        the segment and return)"
4956		 *
4957		 *  We do not send data with SYN, so that RFC-correct
4958		 *  test reduces to:
4959		 */
4960		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4961			goto reset_and_undo;
4962
4963		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4964		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4965			     tcp_time_stamp)) {
4966			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4967			goto reset_and_undo;
4968		}
4969
4970		/* Now ACK is acceptable.
4971		 *
4972		 * "If the RST bit is set
4973		 *    If the ACK was acceptable then signal the user "error:
4974		 *    connection reset", drop the segment, enter CLOSED state,
4975		 *    delete TCB, and return."
4976		 */
4977
4978		if (th->rst) {
4979			tcp_reset(sk);
4980			goto discard;
4981		}
4982
4983		/* rfc793:
4984		 *   "fifth, if neither of the SYN or RST bits is set then
4985		 *    drop the segment and return."
4986		 *
4987		 *    See note below!
4988		 *                                        --ANK(990513)
4989		 */
4990		if (!th->syn)
4991			goto discard_and_undo;
4992
4993		/* rfc793:
4994		 *   "If the SYN bit is on ...
4995		 *    are acceptable then ...
4996		 *    (our SYN has been ACKed), change the connection
4997		 *    state to ESTABLISHED..."
4998		 */
4999
5000		TCP_ECN_rcv_synack(tp, th);
5001
5002		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5003		tcp_ack(sk, skb, FLAG_SLOWPATH);
5004
5005		/* Ok.. it's good. Set up sequence numbers and
5006		 * move to established.
5007		 */
5008		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5009		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5010
5011		/* RFC1323: The window in SYN & SYN/ACK segments is
5012		 * never scaled.
5013		 */
5014		tp->snd_wnd = ntohs(th->window);
5015		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5016
5017		if (!tp->rx_opt.wscale_ok) {
5018			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5019			tp->window_clamp = min(tp->window_clamp, 65535U);
5020		}
5021
5022		if (tp->rx_opt.saw_tstamp) {
5023			tp->rx_opt.tstamp_ok	   = 1;
5024			tp->tcp_header_len =
5025				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5026			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5027			tcp_store_ts_recent(tp);
5028		} else {
5029			tp->tcp_header_len = sizeof(struct tcphdr);
5030		}
5031
5032		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5033			tcp_enable_fack(tp);
5034
5035		tcp_mtup_init(sk);
5036		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5037		tcp_initialize_rcv_mss(sk);
5038
5039		/* Remember, tcp_poll() does not lock socket!
5040		 * Change state from SYN-SENT only after copied_seq
5041		 * is initialized. */
5042		tp->copied_seq = tp->rcv_nxt;
5043		smp_mb();
5044		tcp_set_state(sk, TCP_ESTABLISHED);
5045
5046		security_inet_conn_established(sk, skb);
5047
5048		/* Make sure socket is routed, for correct metrics.  */
5049		icsk->icsk_af_ops->rebuild_header(sk);
5050
5051		tcp_init_metrics(sk);
5052
5053		tcp_init_congestion_control(sk);
5054
5055		/* Prevent spurious tcp_cwnd_restart() on first data
5056		 * packet.
5057		 */
5058		tp->lsndtime = tcp_time_stamp;
5059
5060		tcp_init_buffer_space(sk);
5061
5062		if (sock_flag(sk, SOCK_KEEPOPEN))
5063			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5064
5065		if (!tp->rx_opt.snd_wscale)
5066			__tcp_fast_path_on(tp, tp->snd_wnd);
5067		else
5068			tp->pred_flags = 0;
5069
5070		if (!sock_flag(sk, SOCK_DEAD)) {
5071			sk->sk_state_change(sk);
5072			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5073		}
5074
5075		if (sk->sk_write_pending ||
5076		    icsk->icsk_accept_queue.rskq_defer_accept ||
5077		    icsk->icsk_ack.pingpong) {
5078			/* Save one ACK. Data will be ready after
5079			 * several ticks, if write_pending is set.
5080			 *
5081			 * It may be deleted, but with this feature tcpdumps
5082			 * look so _wonderfully_ clever, that I was not able
5083			 * to stand against the temptation 8)     --ANK
5084			 */
5085			inet_csk_schedule_ack(sk);
5086			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5087			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5088			tcp_incr_quickack(sk);
5089			tcp_enter_quickack_mode(sk);
5090			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5091						  TCP_DELACK_MAX, TCP_RTO_MAX);
5092
5093discard:
5094			__kfree_skb(skb);
5095			return 0;
5096		} else {
5097			tcp_send_ack(sk);
5098		}
5099		return -1;
5100	}
5101
5102	/* No ACK in the segment */
5103
5104	if (th->rst) {
5105		/* rfc793:
5106		 * "If the RST bit is set
5107		 *
5108		 *      Otherwise (no ACK) drop the segment and return."
5109		 */
5110
5111		goto discard_and_undo;
5112	}
5113
5114	/* PAWS check. */
5115	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5116	    tcp_paws_check(&tp->rx_opt, 0))
5117		goto discard_and_undo;
5118
5119	if (th->syn) {
5120		/* We see SYN without ACK. It is attempt of
5121		 * simultaneous connect with crossed SYNs.
5122		 * Particularly, it can be connect to self.
5123		 */
5124		tcp_set_state(sk, TCP_SYN_RECV);
5125
5126		if (tp->rx_opt.saw_tstamp) {
5127			tp->rx_opt.tstamp_ok = 1;
5128			tcp_store_ts_recent(tp);
5129			tp->tcp_header_len =
5130				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5131		} else {
5132			tp->tcp_header_len = sizeof(struct tcphdr);
5133		}
5134
5135		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5136		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5137
5138		/* RFC1323: The window in SYN & SYN/ACK segments is
5139		 * never scaled.
5140		 */
5141		tp->snd_wnd    = ntohs(th->window);
5142		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5143		tp->max_window = tp->snd_wnd;
5144
5145		TCP_ECN_rcv_syn(tp, th);
5146
5147		tcp_mtup_init(sk);
5148		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5149		tcp_initialize_rcv_mss(sk);
5150
5151		tcp_send_synack(sk);
5152#if 0
5153		/* Note, we could accept data and URG from this segment.
5154		 * There are no obstacles to make this.
5155		 *
5156		 * However, if we ignore data in ACKless segments sometimes,
5157		 * we have no reasons to accept it sometimes.
5158		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5159		 * is not flawless. So, discard packet for sanity.
5160		 * Uncomment this return to process the data.
5161		 */
5162		return -1;
5163#else
5164		goto discard;
5165#endif
5166	}
5167	/* "fifth, if neither of the SYN or RST bits is set then
5168	 * drop the segment and return."
5169	 */
5170
5171discard_and_undo:
5172	tcp_clear_options(&tp->rx_opt);
5173	tp->rx_opt.mss_clamp = saved_clamp;
5174	goto discard;
5175
5176reset_and_undo:
5177	tcp_clear_options(&tp->rx_opt);
5178	tp->rx_opt.mss_clamp = saved_clamp;
5179	return 1;
5180}
5181
5182/*
5183 *	This function implements the receiving procedure of RFC 793 for
5184 *	all states except ESTABLISHED and TIME_WAIT.
5185 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5186 *	address independent.
5187 */
5188
5189int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5190			  struct tcphdr *th, unsigned len)
5191{
5192	struct tcp_sock *tp = tcp_sk(sk);
5193	struct inet_connection_sock *icsk = inet_csk(sk);
5194	int queued = 0;
5195
5196	tp->rx_opt.saw_tstamp = 0;
5197
5198	switch (sk->sk_state) {
5199	case TCP_CLOSE:
5200		goto discard;
5201
5202	case TCP_LISTEN:
5203		if (th->ack)
5204			return 1;
5205
5206		if (th->rst)
5207			goto discard;
5208
5209		if (th->syn) {
5210			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5211				return 1;
5212
5213			/* Now we have several options: In theory there is
5214			 * nothing else in the frame. KA9Q has an option to
5215			 * send data with the syn, BSD accepts data with the
5216			 * syn up to the [to be] advertised window and
5217			 * Solaris 2.1 gives you a protocol error. For now
5218			 * we just ignore it, that fits the spec precisely
5219			 * and avoids incompatibilities. It would be nice in
5220			 * future to drop through and process the data.
5221			 *
5222			 * Now that TTCP is starting to be used we ought to
5223			 * queue this data.
5224			 * But, this leaves one open to an easy denial of
5225			 * service attack, and SYN cookies can't defend
5226			 * against this problem. So, we drop the data
5227			 * in the interest of security over speed unless
5228			 * it's still in use.
5229			 */
5230			kfree_skb(skb);
5231			return 0;
5232		}
5233		goto discard;
5234
5235	case TCP_SYN_SENT:
5236		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5237		if (queued >= 0)
5238			return queued;
5239
5240		/* Do step6 onward by hand. */
5241		tcp_urg(sk, skb, th);
5242		__kfree_skb(skb);
5243		tcp_data_snd_check(sk);
5244		return 0;
5245	}
5246
5247	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5248	    tcp_paws_discard(sk, skb)) {
5249		if (!th->rst) {
5250			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5251			tcp_send_dupack(sk, skb);
5252			goto discard;
5253		}
5254		/* Reset is accepted even if it did not pass PAWS. */
5255	}
5256
5257	/* step 1: check sequence number */
5258	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5259		if (!th->rst)
5260			tcp_send_dupack(sk, skb);
5261		goto discard;
5262	}
5263
5264	/* step 2: check RST bit */
5265	if (th->rst) {
5266		tcp_reset(sk);
5267		goto discard;
5268	}
5269
5270	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5271
5272	/* step 3: check security and precedence [ignored] */
5273
5274	/*	step 4:
5275	 *
5276	 *	Check for a SYN in window.
5277	 */
5278	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5279		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5280		tcp_reset(sk);
5281		return 1;
5282	}
5283
5284	/* step 5: check the ACK field */
5285	if (th->ack) {
5286		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5287
5288		switch (sk->sk_state) {
5289		case TCP_SYN_RECV:
5290			if (acceptable) {
5291				tp->copied_seq = tp->rcv_nxt;
5292				smp_mb();
5293				tcp_set_state(sk, TCP_ESTABLISHED);
5294				sk->sk_state_change(sk);
5295
5296				/* Note, that this wakeup is only for marginal
5297				 * crossed SYN case. Passively open sockets
5298				 * are not waked up, because sk->sk_sleep ==
5299				 * NULL and sk->sk_socket == NULL.
5300				 */
5301				if (sk->sk_socket)
5302					sk_wake_async(sk,
5303						      SOCK_WAKE_IO, POLL_OUT);
5304
5305				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5306				tp->snd_wnd = ntohs(th->window) <<
5307					      tp->rx_opt.snd_wscale;
5308				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5309					    TCP_SKB_CB(skb)->seq);
5310
5311				/* tcp_ack considers this ACK as duplicate
5312				 * and does not calculate rtt.
5313				 * Fix it at least with timestamps.
5314				 */
5315				if (tp->rx_opt.saw_tstamp &&
5316				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5317					tcp_ack_saw_tstamp(sk, 0);
5318
5319				if (tp->rx_opt.tstamp_ok)
5320					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5321
5322				/* Make sure socket is routed, for
5323				 * correct metrics.
5324				 */
5325				icsk->icsk_af_ops->rebuild_header(sk);
5326
5327				tcp_init_metrics(sk);
5328
5329				tcp_init_congestion_control(sk);
5330
5331				/* Prevent spurious tcp_cwnd_restart() on
5332				 * first data packet.
5333				 */
5334				tp->lsndtime = tcp_time_stamp;
5335
5336				tcp_mtup_init(sk);
5337				tcp_initialize_rcv_mss(sk);
5338				tcp_init_buffer_space(sk);
5339				tcp_fast_path_on(tp);
5340			} else {
5341				return 1;
5342			}
5343			break;
5344
5345		case TCP_FIN_WAIT1:
5346			if (tp->snd_una == tp->write_seq) {
5347				tcp_set_state(sk, TCP_FIN_WAIT2);
5348				sk->sk_shutdown |= SEND_SHUTDOWN;
5349				dst_confirm(sk->sk_dst_cache);
5350
5351				if (!sock_flag(sk, SOCK_DEAD))
5352					/* Wake up lingering close() */
5353					sk->sk_state_change(sk);
5354				else {
5355					int tmo;
5356
5357					if (tp->linger2 < 0 ||
5358					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5359					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5360						tcp_done(sk);
5361						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5362						return 1;
5363					}
5364
5365					tmo = tcp_fin_time(sk);
5366					if (tmo > TCP_TIMEWAIT_LEN) {
5367						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5368					} else if (th->fin || sock_owned_by_user(sk)) {
5369						/* Bad case. We could lose such FIN otherwise.
5370						 * It is not a big problem, but it looks confusing
5371						 * and not so rare event. We still can lose it now,
5372						 * if it spins in bh_lock_sock(), but it is really
5373						 * marginal case.
5374						 */
5375						inet_csk_reset_keepalive_timer(sk, tmo);
5376					} else {
5377						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5378						goto discard;
5379					}
5380				}
5381			}
5382			break;
5383
5384		case TCP_CLOSING:
5385			if (tp->snd_una == tp->write_seq) {
5386				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5387				goto discard;
5388			}
5389			break;
5390
5391		case TCP_LAST_ACK:
5392			if (tp->snd_una == tp->write_seq) {
5393				tcp_update_metrics(sk);
5394				tcp_done(sk);
5395				goto discard;
5396			}
5397			break;
5398		}
5399	} else
5400		goto discard;
5401
5402	/* step 6: check the URG bit */
5403	tcp_urg(sk, skb, th);
5404
5405	/* step 7: process the segment text */
5406	switch (sk->sk_state) {
5407	case TCP_CLOSE_WAIT:
5408	case TCP_CLOSING:
5409	case TCP_LAST_ACK:
5410		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5411			break;
5412	case TCP_FIN_WAIT1:
5413	case TCP_FIN_WAIT2:
5414		/* RFC 793 says to queue data in these states,
5415		 * RFC 1122 says we MUST send a reset.
5416		 * BSD 4.4 also does reset.
5417		 */
5418		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5419			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5420			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5421				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5422				tcp_reset(sk);
5423				return 1;
5424			}
5425		}
5426		/* Fall through */
5427	case TCP_ESTABLISHED:
5428		tcp_data_queue(sk, skb);
5429		queued = 1;
5430		break;
5431	}
5432
5433	/* tcp_data could move socket to TIME-WAIT */
5434	if (sk->sk_state != TCP_CLOSE) {
5435		tcp_data_snd_check(sk);
5436		tcp_ack_snd_check(sk);
5437	}
5438
5439	if (!queued) {
5440discard:
5441		__kfree_skb(skb);
5442	}
5443	return 0;
5444}
5445
5446EXPORT_SYMBOL(sysctl_tcp_ecn);
5447EXPORT_SYMBOL(sysctl_tcp_reordering);
5448EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5449EXPORT_SYMBOL(tcp_parse_options);
5450EXPORT_SYMBOL(tcp_rcv_established);
5451EXPORT_SYMBOL(tcp_rcv_state_process);
5452EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5453