tcp_input.c revision 9ead9a1d385ae2c52a6dcf2828d84ce66be04fc2
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 *		Pedro Roque	:	Fast Retransmit/Recovery.
26 *					Two receive queues.
27 *					Retransmit queue handled by TCP.
28 *					Better retransmit timer handling.
29 *					New congestion avoidance.
30 *					Header prediction.
31 *					Variable renaming.
32 *
33 *		Eric		:	Fast Retransmit.
34 *		Randy Scott	:	MSS option defines.
35 *		Eric Schenk	:	Fixes to slow start algorithm.
36 *		Eric Schenk	:	Yet another double ACK bug.
37 *		Eric Schenk	:	Delayed ACK bug fixes.
38 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39 *		David S. Miller	:	Don't allow zero congestion window.
40 *		Eric Schenk	:	Fix retransmitter so that it sends
41 *					next packet on ack of previous packet.
42 *		Andi Kleen	:	Moved open_request checking here
43 *					and process RSTs for open_requests.
44 *		Andi Kleen	:	Better prune_queue, and other fixes.
45 *		Andrey Savochkin:	Fix RTT measurements in the presence of
46 *					timestamps.
47 *		Andrey Savochkin:	Check sequence numbers correctly when
48 *					removing SACKs due to in sequence incoming
49 *					data segments.
50 *		Andi Kleen:		Make sure we never ack data there is not
51 *					enough room for. Also make this condition
52 *					a fatal error if it might still happen.
53 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54 *					connections with MSS<min(MTU,ann. MSS)
55 *					work without delayed acks.
56 *		Andi Kleen:		Process packets with PSH set in the
57 *					fast path.
58 *		J Hadi Salim:		ECN support
59 *	 	Andrei Gurtov,
60 *		Pasi Sarolahti,
61 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62 *					engine. Lots of bugs are found.
63 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64 */
65
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
73#include <net/netdma.h>
74
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly;
89int sysctl_tcp_nometrics_save __read_mostly;
90
91int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92int sysctl_tcp_abc __read_mostly;
93
94#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
95#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
96#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
97#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
98#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
99#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
100#define FLAG_ECE		0x40 /* ECE in this ACK				*/
101#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
102#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
103
104#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
107#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108
109#define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110#define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111#define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112
113#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114
115/* Adapt the MSS value used to make delayed ack decision to the
116 * real world.
117 */
118static void tcp_measure_rcv_mss(struct sock *sk,
119				const struct sk_buff *skb)
120{
121	struct inet_connection_sock *icsk = inet_csk(sk);
122	const unsigned int lss = icsk->icsk_ack.last_seg_size;
123	unsigned int len;
124
125	icsk->icsk_ack.last_seg_size = 0;
126
127	/* skb->len may jitter because of SACKs, even if peer
128	 * sends good full-sized frames.
129	 */
130	len = skb_shinfo(skb)->gso_size ?: skb->len;
131	if (len >= icsk->icsk_ack.rcv_mss) {
132		icsk->icsk_ack.rcv_mss = len;
133	} else {
134		/* Otherwise, we make more careful check taking into account,
135		 * that SACKs block is variable.
136		 *
137		 * "len" is invariant segment length, including TCP header.
138		 */
139		len += skb->data - skb->h.raw;
140		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141		    /* If PSH is not set, packet should be
142		     * full sized, provided peer TCP is not badly broken.
143		     * This observation (if it is correct 8)) allows
144		     * to handle super-low mtu links fairly.
145		     */
146		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148			/* Subtract also invariant (if peer is RFC compliant),
149			 * tcp header plus fixed timestamp option length.
150			 * Resulting "len" is MSS free of SACK jitter.
151			 */
152			len -= tcp_sk(sk)->tcp_header_len;
153			icsk->icsk_ack.last_seg_size = len;
154			if (len == lss) {
155				icsk->icsk_ack.rcv_mss = len;
156				return;
157			}
158		}
159		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
160			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
161		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
162	}
163}
164
165static void tcp_incr_quickack(struct sock *sk)
166{
167	struct inet_connection_sock *icsk = inet_csk(sk);
168	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
169
170	if (quickacks==0)
171		quickacks=2;
172	if (quickacks > icsk->icsk_ack.quick)
173		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174}
175
176void tcp_enter_quickack_mode(struct sock *sk)
177{
178	struct inet_connection_sock *icsk = inet_csk(sk);
179	tcp_incr_quickack(sk);
180	icsk->icsk_ack.pingpong = 0;
181	icsk->icsk_ack.ato = TCP_ATO_MIN;
182}
183
184/* Send ACKs quickly, if "quick" count is not exhausted
185 * and the session is not interactive.
186 */
187
188static inline int tcp_in_quickack_mode(const struct sock *sk)
189{
190	const struct inet_connection_sock *icsk = inet_csk(sk);
191	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192}
193
194/* Buffer size and advertised window tuning.
195 *
196 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197 */
198
199static void tcp_fixup_sndbuf(struct sock *sk)
200{
201	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
202		     sizeof(struct sk_buff);
203
204	if (sk->sk_sndbuf < 3 * sndmem)
205		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206}
207
208/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209 *
210 * All tcp_full_space() is split to two parts: "network" buffer, allocated
211 * forward and advertised in receiver window (tp->rcv_wnd) and
212 * "application buffer", required to isolate scheduling/application
213 * latencies from network.
214 * window_clamp is maximal advertised window. It can be less than
215 * tcp_full_space(), in this case tcp_full_space() - window_clamp
216 * is reserved for "application" buffer. The less window_clamp is
217 * the smoother our behaviour from viewpoint of network, but the lower
218 * throughput and the higher sensitivity of the connection to losses. 8)
219 *
220 * rcv_ssthresh is more strict window_clamp used at "slow start"
221 * phase to predict further behaviour of this connection.
222 * It is used for two goals:
223 * - to enforce header prediction at sender, even when application
224 *   requires some significant "application buffer". It is check #1.
225 * - to prevent pruning of receive queue because of misprediction
226 *   of receiver window. Check #2.
227 *
228 * The scheme does not work when sender sends good segments opening
229 * window and then starts to feed us spaghetti. But it should work
230 * in common situations. Otherwise, we have to rely on queue collapsing.
231 */
232
233/* Slow part of check#2. */
234static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
235			     const struct sk_buff *skb)
236{
237	/* Optimize this! */
238	int truesize = tcp_win_from_space(skb->truesize)/2;
239	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
240
241	while (tp->rcv_ssthresh <= window) {
242		if (truesize <= skb->len)
243			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
244
245		truesize >>= 1;
246		window >>= 1;
247	}
248	return 0;
249}
250
251static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
252			    struct sk_buff *skb)
253{
254	/* Check #1 */
255	if (tp->rcv_ssthresh < tp->window_clamp &&
256	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
257	    !tcp_memory_pressure) {
258		int incr;
259
260		/* Check #2. Increase window, if skb with such overhead
261		 * will fit to rcvbuf in future.
262		 */
263		if (tcp_win_from_space(skb->truesize) <= skb->len)
264			incr = 2*tp->advmss;
265		else
266			incr = __tcp_grow_window(sk, tp, skb);
267
268		if (incr) {
269			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
270			inet_csk(sk)->icsk_ack.quick |= 1;
271		}
272	}
273}
274
275/* 3. Tuning rcvbuf, when connection enters established state. */
276
277static void tcp_fixup_rcvbuf(struct sock *sk)
278{
279	struct tcp_sock *tp = tcp_sk(sk);
280	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281
282	/* Try to select rcvbuf so that 4 mss-sized segments
283	 * will fit to window and corresponding skbs will fit to our rcvbuf.
284	 * (was 3; 4 is minimum to allow fast retransmit to work.)
285	 */
286	while (tcp_win_from_space(rcvmem) < tp->advmss)
287		rcvmem += 128;
288	if (sk->sk_rcvbuf < 4 * rcvmem)
289		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290}
291
292/* 4. Try to fixup all. It is made immediately after connection enters
293 *    established state.
294 */
295static void tcp_init_buffer_space(struct sock *sk)
296{
297	struct tcp_sock *tp = tcp_sk(sk);
298	int maxwin;
299
300	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
301		tcp_fixup_rcvbuf(sk);
302	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
303		tcp_fixup_sndbuf(sk);
304
305	tp->rcvq_space.space = tp->rcv_wnd;
306
307	maxwin = tcp_full_space(sk);
308
309	if (tp->window_clamp >= maxwin) {
310		tp->window_clamp = maxwin;
311
312		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
313			tp->window_clamp = max(maxwin -
314					       (maxwin >> sysctl_tcp_app_win),
315					       4 * tp->advmss);
316	}
317
318	/* Force reservation of one segment. */
319	if (sysctl_tcp_app_win &&
320	    tp->window_clamp > 2 * tp->advmss &&
321	    tp->window_clamp + tp->advmss > maxwin)
322		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323
324	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
325	tp->snd_cwnd_stamp = tcp_time_stamp;
326}
327
328/* 5. Recalculate window clamp after socket hit its memory bounds. */
329static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330{
331	struct inet_connection_sock *icsk = inet_csk(sk);
332
333	icsk->icsk_ack.quick = 0;
334
335	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
336	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
337	    !tcp_memory_pressure &&
338	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
339		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340				    sysctl_tcp_rmem[2]);
341	}
342	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
343		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
344}
345
346
347/* Initialize RCV_MSS value.
348 * RCV_MSS is an our guess about MSS used by the peer.
349 * We haven't any direct information about the MSS.
350 * It's better to underestimate the RCV_MSS rather than overestimate.
351 * Overestimations make us ACKing less frequently than needed.
352 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353 */
354void tcp_initialize_rcv_mss(struct sock *sk)
355{
356	struct tcp_sock *tp = tcp_sk(sk);
357	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358
359	hint = min(hint, tp->rcv_wnd/2);
360	hint = min(hint, TCP_MIN_RCVMSS);
361	hint = max(hint, TCP_MIN_MSS);
362
363	inet_csk(sk)->icsk_ack.rcv_mss = hint;
364}
365
366/* Receiver "autotuning" code.
367 *
368 * The algorithm for RTT estimation w/o timestamps is based on
369 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371 *
372 * More detail on this code can be found at
373 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374 * though this reference is out of date.  A new paper
375 * is pending.
376 */
377static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378{
379	u32 new_sample = tp->rcv_rtt_est.rtt;
380	long m = sample;
381
382	if (m == 0)
383		m = 1;
384
385	if (new_sample != 0) {
386		/* If we sample in larger samples in the non-timestamp
387		 * case, we could grossly overestimate the RTT especially
388		 * with chatty applications or bulk transfer apps which
389		 * are stalled on filesystem I/O.
390		 *
391		 * Also, since we are only going for a minimum in the
392		 * non-timestamp case, we do not smooth things out
393		 * else with timestamps disabled convergence takes too
394		 * long.
395		 */
396		if (!win_dep) {
397			m -= (new_sample >> 3);
398			new_sample += m;
399		} else if (m < new_sample)
400			new_sample = m << 3;
401	} else {
402		/* No previous measure. */
403		new_sample = m << 3;
404	}
405
406	if (tp->rcv_rtt_est.rtt != new_sample)
407		tp->rcv_rtt_est.rtt = new_sample;
408}
409
410static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411{
412	if (tp->rcv_rtt_est.time == 0)
413		goto new_measure;
414	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
415		return;
416	tcp_rcv_rtt_update(tp,
417			   jiffies - tp->rcv_rtt_est.time,
418			   1);
419
420new_measure:
421	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
422	tp->rcv_rtt_est.time = tcp_time_stamp;
423}
424
425static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
426{
427	struct tcp_sock *tp = tcp_sk(sk);
428	if (tp->rx_opt.rcv_tsecr &&
429	    (TCP_SKB_CB(skb)->end_seq -
430	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
431		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
432}
433
434/*
435 * This function should be called every time data is copied to user space.
436 * It calculates the appropriate TCP receive buffer space.
437 */
438void tcp_rcv_space_adjust(struct sock *sk)
439{
440	struct tcp_sock *tp = tcp_sk(sk);
441	int time;
442	int space;
443
444	if (tp->rcvq_space.time == 0)
445		goto new_measure;
446
447	time = tcp_time_stamp - tp->rcvq_space.time;
448	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
449	    tp->rcv_rtt_est.rtt == 0)
450		return;
451
452	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453
454	space = max(tp->rcvq_space.space, space);
455
456	if (tp->rcvq_space.space != space) {
457		int rcvmem;
458
459		tp->rcvq_space.space = space;
460
461		if (sysctl_tcp_moderate_rcvbuf &&
462		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
463			int new_clamp = space;
464
465			/* Receive space grows, normalize in order to
466			 * take into account packet headers and sk_buff
467			 * structure overhead.
468			 */
469			space /= tp->advmss;
470			if (!space)
471				space = 1;
472			rcvmem = (tp->advmss + MAX_TCP_HEADER +
473				  16 + sizeof(struct sk_buff));
474			while (tcp_win_from_space(rcvmem) < tp->advmss)
475				rcvmem += 128;
476			space *= rcvmem;
477			space = min(space, sysctl_tcp_rmem[2]);
478			if (space > sk->sk_rcvbuf) {
479				sk->sk_rcvbuf = space;
480
481				/* Make the window clamp follow along.  */
482				tp->window_clamp = new_clamp;
483			}
484		}
485	}
486
487new_measure:
488	tp->rcvq_space.seq = tp->copied_seq;
489	tp->rcvq_space.time = tcp_time_stamp;
490}
491
492/* There is something which you must keep in mind when you analyze the
493 * behavior of the tp->ato delayed ack timeout interval.  When a
494 * connection starts up, we want to ack as quickly as possible.  The
495 * problem is that "good" TCP's do slow start at the beginning of data
496 * transmission.  The means that until we send the first few ACK's the
497 * sender will sit on his end and only queue most of his data, because
498 * he can only send snd_cwnd unacked packets at any given time.  For
499 * each ACK we send, he increments snd_cwnd and transmits more of his
500 * queue.  -DaveM
501 */
502static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503{
504	struct inet_connection_sock *icsk = inet_csk(sk);
505	u32 now;
506
507	inet_csk_schedule_ack(sk);
508
509	tcp_measure_rcv_mss(sk, skb);
510
511	tcp_rcv_rtt_measure(tp);
512
513	now = tcp_time_stamp;
514
515	if (!icsk->icsk_ack.ato) {
516		/* The _first_ data packet received, initialize
517		 * delayed ACK engine.
518		 */
519		tcp_incr_quickack(sk);
520		icsk->icsk_ack.ato = TCP_ATO_MIN;
521	} else {
522		int m = now - icsk->icsk_ack.lrcvtime;
523
524		if (m <= TCP_ATO_MIN/2) {
525			/* The fastest case is the first. */
526			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
527		} else if (m < icsk->icsk_ack.ato) {
528			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
529			if (icsk->icsk_ack.ato > icsk->icsk_rto)
530				icsk->icsk_ack.ato = icsk->icsk_rto;
531		} else if (m > icsk->icsk_rto) {
532			/* Too long gap. Apparently sender failed to
533			 * restart window, so that we send ACKs quickly.
534			 */
535			tcp_incr_quickack(sk);
536			sk_stream_mem_reclaim(sk);
537		}
538	}
539	icsk->icsk_ack.lrcvtime = now;
540
541	TCP_ECN_check_ce(tp, skb);
542
543	if (skb->len >= 128)
544		tcp_grow_window(sk, tp, skb);
545}
546
547/* Called to compute a smoothed rtt estimate. The data fed to this
548 * routine either comes from timestamps, or from segments that were
549 * known _not_ to have been retransmitted [see Karn/Partridge
550 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551 * piece by Van Jacobson.
552 * NOTE: the next three routines used to be one big routine.
553 * To save cycles in the RFC 1323 implementation it was better to break
554 * it up into three procedures. -- erics
555 */
556static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
557{
558	struct tcp_sock *tp = tcp_sk(sk);
559	long m = mrtt; /* RTT */
560
561	/*	The following amusing code comes from Jacobson's
562	 *	article in SIGCOMM '88.  Note that rtt and mdev
563	 *	are scaled versions of rtt and mean deviation.
564	 *	This is designed to be as fast as possible
565	 *	m stands for "measurement".
566	 *
567	 *	On a 1990 paper the rto value is changed to:
568	 *	RTO = rtt + 4 * mdev
569	 *
570	 * Funny. This algorithm seems to be very broken.
571	 * These formulae increase RTO, when it should be decreased, increase
572	 * too slowly, when it should be increased quickly, decrease too quickly
573	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574	 * does not matter how to _calculate_ it. Seems, it was trap
575	 * that VJ failed to avoid. 8)
576	 */
577	if(m == 0)
578		m = 1;
579	if (tp->srtt != 0) {
580		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
581		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
582		if (m < 0) {
583			m = -m;		/* m is now abs(error) */
584			m -= (tp->mdev >> 2);   /* similar update on mdev */
585			/* This is similar to one of Eifel findings.
586			 * Eifel blocks mdev updates when rtt decreases.
587			 * This solution is a bit different: we use finer gain
588			 * for mdev in this case (alpha*beta).
589			 * Like Eifel it also prevents growth of rto,
590			 * but also it limits too fast rto decreases,
591			 * happening in pure Eifel.
592			 */
593			if (m > 0)
594				m >>= 3;
595		} else {
596			m -= (tp->mdev >> 2);   /* similar update on mdev */
597		}
598		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
599		if (tp->mdev > tp->mdev_max) {
600			tp->mdev_max = tp->mdev;
601			if (tp->mdev_max > tp->rttvar)
602				tp->rttvar = tp->mdev_max;
603		}
604		if (after(tp->snd_una, tp->rtt_seq)) {
605			if (tp->mdev_max < tp->rttvar)
606				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
607			tp->rtt_seq = tp->snd_nxt;
608			tp->mdev_max = TCP_RTO_MIN;
609		}
610	} else {
611		/* no previous measure. */
612		tp->srtt = m<<3;	/* take the measured time to be rtt */
613		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
614		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
615		tp->rtt_seq = tp->snd_nxt;
616	}
617}
618
619/* Calculate rto without backoff.  This is the second half of Van Jacobson's
620 * routine referred to above.
621 */
622static inline void tcp_set_rto(struct sock *sk)
623{
624	const struct tcp_sock *tp = tcp_sk(sk);
625	/* Old crap is replaced with new one. 8)
626	 *
627	 * More seriously:
628	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629	 *    It cannot be less due to utterly erratic ACK generation made
630	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631	 *    to do with delayed acks, because at cwnd>2 true delack timeout
632	 *    is invisible. Actually, Linux-2.4 also generates erratic
633	 *    ACKs in some circumstances.
634	 */
635	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
636
637	/* 2. Fixups made earlier cannot be right.
638	 *    If we do not estimate RTO correctly without them,
639	 *    all the algo is pure shit and should be replaced
640	 *    with correct one. It is exactly, which we pretend to do.
641	 */
642}
643
644/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645 * guarantees that rto is higher.
646 */
647static inline void tcp_bound_rto(struct sock *sk)
648{
649	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
650		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
651}
652
653/* Save metrics learned by this TCP session.
654   This function is called only, when TCP finishes successfully
655   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656 */
657void tcp_update_metrics(struct sock *sk)
658{
659	struct tcp_sock *tp = tcp_sk(sk);
660	struct dst_entry *dst = __sk_dst_get(sk);
661
662	if (sysctl_tcp_nometrics_save)
663		return;
664
665	dst_confirm(dst);
666
667	if (dst && (dst->flags&DST_HOST)) {
668		const struct inet_connection_sock *icsk = inet_csk(sk);
669		int m;
670
671		if (icsk->icsk_backoff || !tp->srtt) {
672			/* This session failed to estimate rtt. Why?
673			 * Probably, no packets returned in time.
674			 * Reset our results.
675			 */
676			if (!(dst_metric_locked(dst, RTAX_RTT)))
677				dst->metrics[RTAX_RTT-1] = 0;
678			return;
679		}
680
681		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682
683		/* If newly calculated rtt larger than stored one,
684		 * store new one. Otherwise, use EWMA. Remember,
685		 * rtt overestimation is always better than underestimation.
686		 */
687		if (!(dst_metric_locked(dst, RTAX_RTT))) {
688			if (m <= 0)
689				dst->metrics[RTAX_RTT-1] = tp->srtt;
690			else
691				dst->metrics[RTAX_RTT-1] -= (m>>3);
692		}
693
694		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695			if (m < 0)
696				m = -m;
697
698			/* Scale deviation to rttvar fixed point */
699			m >>= 1;
700			if (m < tp->mdev)
701				m = tp->mdev;
702
703			if (m >= dst_metric(dst, RTAX_RTTVAR))
704				dst->metrics[RTAX_RTTVAR-1] = m;
705			else
706				dst->metrics[RTAX_RTTVAR-1] -=
707					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708		}
709
710		if (tp->snd_ssthresh >= 0xFFFF) {
711			/* Slow start still did not finish. */
712			if (dst_metric(dst, RTAX_SSTHRESH) &&
713			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
714			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
715				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
716			if (!dst_metric_locked(dst, RTAX_CWND) &&
717			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
718				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
719		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
720			   icsk->icsk_ca_state == TCP_CA_Open) {
721			/* Cong. avoidance phase, cwnd is reliable. */
722			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
723				dst->metrics[RTAX_SSTHRESH-1] =
724					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
725			if (!dst_metric_locked(dst, RTAX_CWND))
726				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
727		} else {
728			/* Else slow start did not finish, cwnd is non-sense,
729			   ssthresh may be also invalid.
730			 */
731			if (!dst_metric_locked(dst, RTAX_CWND))
732				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
733			if (dst->metrics[RTAX_SSTHRESH-1] &&
734			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
736				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737		}
738
739		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
740			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
741			    tp->reordering != sysctl_tcp_reordering)
742				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
743		}
744	}
745}
746
747/* Numbers are taken from RFC2414.  */
748__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749{
750	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751
752	if (!cwnd) {
753		if (tp->mss_cache > 1460)
754			cwnd = 2;
755		else
756			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
757	}
758	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759}
760
761/* Set slow start threshold and cwnd not falling to slow start */
762void tcp_enter_cwr(struct sock *sk)
763{
764	struct tcp_sock *tp = tcp_sk(sk);
765
766	tp->prior_ssthresh = 0;
767	tp->bytes_acked = 0;
768	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
769		tp->undo_marker = 0;
770		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
771		tp->snd_cwnd = min(tp->snd_cwnd,
772				   tcp_packets_in_flight(tp) + 1U);
773		tp->snd_cwnd_cnt = 0;
774		tp->high_seq = tp->snd_nxt;
775		tp->snd_cwnd_stamp = tcp_time_stamp;
776		TCP_ECN_queue_cwr(tp);
777
778		tcp_set_ca_state(sk, TCP_CA_CWR);
779	}
780}
781
782/* Initialize metrics on socket. */
783
784static void tcp_init_metrics(struct sock *sk)
785{
786	struct tcp_sock *tp = tcp_sk(sk);
787	struct dst_entry *dst = __sk_dst_get(sk);
788
789	if (dst == NULL)
790		goto reset;
791
792	dst_confirm(dst);
793
794	if (dst_metric_locked(dst, RTAX_CWND))
795		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
796	if (dst_metric(dst, RTAX_SSTHRESH)) {
797		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
798		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
799			tp->snd_ssthresh = tp->snd_cwnd_clamp;
800	}
801	if (dst_metric(dst, RTAX_REORDERING) &&
802	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
803		tp->rx_opt.sack_ok &= ~2;
804		tp->reordering = dst_metric(dst, RTAX_REORDERING);
805	}
806
807	if (dst_metric(dst, RTAX_RTT) == 0)
808		goto reset;
809
810	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
811		goto reset;
812
813	/* Initial rtt is determined from SYN,SYN-ACK.
814	 * The segment is small and rtt may appear much
815	 * less than real one. Use per-dst memory
816	 * to make it more realistic.
817	 *
818	 * A bit of theory. RTT is time passed after "normal" sized packet
819	 * is sent until it is ACKed. In normal circumstances sending small
820	 * packets force peer to delay ACKs and calculation is correct too.
821	 * The algorithm is adaptive and, provided we follow specs, it
822	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823	 * tricks sort of "quick acks" for time long enough to decrease RTT
824	 * to low value, and then abruptly stops to do it and starts to delay
825	 * ACKs, wait for troubles.
826	 */
827	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
828		tp->srtt = dst_metric(dst, RTAX_RTT);
829		tp->rtt_seq = tp->snd_nxt;
830	}
831	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
832		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
833		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834	}
835	tcp_set_rto(sk);
836	tcp_bound_rto(sk);
837	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
838		goto reset;
839	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
840	tp->snd_cwnd_stamp = tcp_time_stamp;
841	return;
842
843reset:
844	/* Play conservative. If timestamps are not
845	 * supported, TCP will fail to recalculate correct
846	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847	 */
848	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
849		tp->srtt = 0;
850		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
851		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
852	}
853}
854
855static void tcp_update_reordering(struct sock *sk, const int metric,
856				  const int ts)
857{
858	struct tcp_sock *tp = tcp_sk(sk);
859	if (metric > tp->reordering) {
860		tp->reordering = min(TCP_MAX_REORDERING, metric);
861
862		/* This exciting event is worth to be remembered. 8) */
863		if (ts)
864			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
865		else if (IsReno(tp))
866			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
867		else if (IsFack(tp))
868			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
869		else
870			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
871#if FASTRETRANS_DEBUG > 1
872		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
873		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874		       tp->reordering,
875		       tp->fackets_out,
876		       tp->sacked_out,
877		       tp->undo_marker ? tp->undo_retrans : 0);
878#endif
879		/* Disable FACK yet. */
880		tp->rx_opt.sack_ok &= ~2;
881	}
882}
883
884/* This procedure tags the retransmission queue when SACKs arrive.
885 *
886 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887 * Packets in queue with these bits set are counted in variables
888 * sacked_out, retrans_out and lost_out, correspondingly.
889 *
890 * Valid combinations are:
891 * Tag  InFlight	Description
892 * 0	1		- orig segment is in flight.
893 * S	0		- nothing flies, orig reached receiver.
894 * L	0		- nothing flies, orig lost by net.
895 * R	2		- both orig and retransmit are in flight.
896 * L|R	1		- orig is lost, retransmit is in flight.
897 * S|R  1		- orig reached receiver, retrans is still in flight.
898 * (L|S|R is logically valid, it could occur when L|R is sacked,
899 *  but it is equivalent to plain S and code short-curcuits it to S.
900 *  L|S is logically invalid, it would mean -1 packet in flight 8))
901 *
902 * These 6 states form finite state machine, controlled by the following events:
903 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905 * 3. Loss detection event of one of three flavors:
906 *	A. Scoreboard estimator decided the packet is lost.
907 *	   A'. Reno "three dupacks" marks head of queue lost.
908 *	   A''. Its FACK modfication, head until snd.fack is lost.
909 *	B. SACK arrives sacking data transmitted after never retransmitted
910 *	   hole was sent out.
911 *	C. SACK arrives sacking SND.NXT at the moment, when the
912 *	   segment was retransmitted.
913 * 4. D-SACK added new rule: D-SACK changes any tag to S.
914 *
915 * It is pleasant to note, that state diagram turns out to be commutative,
916 * so that we are allowed not to be bothered by order of our actions,
917 * when multiple events arrive simultaneously. (see the function below).
918 *
919 * Reordering detection.
920 * --------------------
921 * Reordering metric is maximal distance, which a packet can be displaced
922 * in packet stream. With SACKs we can estimate it:
923 *
924 * 1. SACK fills old hole and the corresponding segment was not
925 *    ever retransmitted -> reordering. Alas, we cannot use it
926 *    when segment was retransmitted.
927 * 2. The last flaw is solved with D-SACK. D-SACK arrives
928 *    for retransmitted and already SACKed segment -> reordering..
929 * Both of these heuristics are not used in Loss state, when we cannot
930 * account for retransmits accurately.
931 */
932static int
933tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934{
935	const struct inet_connection_sock *icsk = inet_csk(sk);
936	struct tcp_sock *tp = tcp_sk(sk);
937	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
938	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
939	struct sk_buff *cached_skb;
940	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
941	int reord = tp->packets_out;
942	int prior_fackets;
943	u32 lost_retrans = 0;
944	int flag = 0;
945	int dup_sack = 0;
946	int cached_fack_count;
947	int i;
948	int first_sack_index;
949
950	if (!tp->sacked_out)
951		tp->fackets_out = 0;
952	prior_fackets = tp->fackets_out;
953
954	/* Check for D-SACK. */
955	if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
956		dup_sack = 1;
957		tp->rx_opt.sack_ok |= 4;
958		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
959	} else if (num_sacks > 1 &&
960			!after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
961			!before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
962		dup_sack = 1;
963		tp->rx_opt.sack_ok |= 4;
964		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
965	}
966
967	/* D-SACK for already forgotten data...
968	 * Do dumb counting. */
969	if (dup_sack &&
970			!after(ntohl(sp[0].end_seq), prior_snd_una) &&
971			after(ntohl(sp[0].end_seq), tp->undo_marker))
972		tp->undo_retrans--;
973
974	/* Eliminate too old ACKs, but take into
975	 * account more or less fresh ones, they can
976	 * contain valid SACK info.
977	 */
978	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
979		return 0;
980
981	/* SACK fastpath:
982	 * if the only SACK change is the increase of the end_seq of
983	 * the first block then only apply that SACK block
984	 * and use retrans queue hinting otherwise slowpath */
985	flag = 1;
986	for (i = 0; i < num_sacks; i++) {
987		__be32 start_seq = sp[i].start_seq;
988		__be32 end_seq = sp[i].end_seq;
989
990		if (i == 0) {
991			if (tp->recv_sack_cache[i].start_seq != start_seq)
992				flag = 0;
993		} else {
994			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
995			    (tp->recv_sack_cache[i].end_seq != end_seq))
996				flag = 0;
997		}
998		tp->recv_sack_cache[i].start_seq = start_seq;
999		tp->recv_sack_cache[i].end_seq = end_seq;
1000	}
1001	/* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1002	for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1003		tp->recv_sack_cache[i].start_seq = 0;
1004		tp->recv_sack_cache[i].end_seq = 0;
1005	}
1006
1007	first_sack_index = 0;
1008	if (flag)
1009		num_sacks = 1;
1010	else {
1011		int j;
1012		tp->fastpath_skb_hint = NULL;
1013
1014		/* order SACK blocks to allow in order walk of the retrans queue */
1015		for (i = num_sacks-1; i > 0; i--) {
1016			for (j = 0; j < i; j++){
1017				if (after(ntohl(sp[j].start_seq),
1018					  ntohl(sp[j+1].start_seq))){
1019					struct tcp_sack_block_wire tmp;
1020
1021					tmp = sp[j];
1022					sp[j] = sp[j+1];
1023					sp[j+1] = tmp;
1024
1025					/* Track where the first SACK block goes to */
1026					if (j == first_sack_index)
1027						first_sack_index = j+1;
1028				}
1029
1030			}
1031		}
1032	}
1033
1034	/* clear flag as used for different purpose in following code */
1035	flag = 0;
1036
1037	/* Use SACK fastpath hint if valid */
1038	cached_skb = tp->fastpath_skb_hint;
1039	cached_fack_count = tp->fastpath_cnt_hint;
1040	if (!cached_skb) {
1041		cached_skb = sk->sk_write_queue.next;
1042		cached_fack_count = 0;
1043	}
1044
1045	for (i=0; i<num_sacks; i++, sp++) {
1046		struct sk_buff *skb;
1047		__u32 start_seq = ntohl(sp->start_seq);
1048		__u32 end_seq = ntohl(sp->end_seq);
1049		int fack_count;
1050
1051		skb = cached_skb;
1052		fack_count = cached_fack_count;
1053
1054		/* Event "B" in the comment above. */
1055		if (after(end_seq, tp->high_seq))
1056			flag |= FLAG_DATA_LOST;
1057
1058		sk_stream_for_retrans_queue_from(skb, sk) {
1059			int in_sack, pcount;
1060			u8 sacked;
1061
1062			cached_skb = skb;
1063			cached_fack_count = fack_count;
1064			if (i == first_sack_index) {
1065				tp->fastpath_skb_hint = skb;
1066				tp->fastpath_cnt_hint = fack_count;
1067			}
1068
1069			/* The retransmission queue is always in order, so
1070			 * we can short-circuit the walk early.
1071			 */
1072			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1073				break;
1074
1075			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1076				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1077
1078			pcount = tcp_skb_pcount(skb);
1079
1080			if (pcount > 1 && !in_sack &&
1081			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1082				unsigned int pkt_len;
1083
1084				in_sack = !after(start_seq,
1085						 TCP_SKB_CB(skb)->seq);
1086
1087				if (!in_sack)
1088					pkt_len = (start_seq -
1089						   TCP_SKB_CB(skb)->seq);
1090				else
1091					pkt_len = (end_seq -
1092						   TCP_SKB_CB(skb)->seq);
1093				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1094					break;
1095				pcount = tcp_skb_pcount(skb);
1096			}
1097
1098			fack_count += pcount;
1099
1100			sacked = TCP_SKB_CB(skb)->sacked;
1101
1102			/* Account D-SACK for retransmitted packet. */
1103			if ((dup_sack && in_sack) &&
1104			    (sacked & TCPCB_RETRANS) &&
1105			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1106				tp->undo_retrans--;
1107
1108			/* The frame is ACKed. */
1109			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1110				if (sacked&TCPCB_RETRANS) {
1111					if ((dup_sack && in_sack) &&
1112					    (sacked&TCPCB_SACKED_ACKED))
1113						reord = min(fack_count, reord);
1114				} else {
1115					/* If it was in a hole, we detected reordering. */
1116					if (fack_count < prior_fackets &&
1117					    !(sacked&TCPCB_SACKED_ACKED))
1118						reord = min(fack_count, reord);
1119				}
1120
1121				/* Nothing to do; acked frame is about to be dropped. */
1122				continue;
1123			}
1124
1125			if ((sacked&TCPCB_SACKED_RETRANS) &&
1126			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1127			    (!lost_retrans || after(end_seq, lost_retrans)))
1128				lost_retrans = end_seq;
1129
1130			if (!in_sack)
1131				continue;
1132
1133			if (!(sacked&TCPCB_SACKED_ACKED)) {
1134				if (sacked & TCPCB_SACKED_RETRANS) {
1135					/* If the segment is not tagged as lost,
1136					 * we do not clear RETRANS, believing
1137					 * that retransmission is still in flight.
1138					 */
1139					if (sacked & TCPCB_LOST) {
1140						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1141						tp->lost_out -= tcp_skb_pcount(skb);
1142						tp->retrans_out -= tcp_skb_pcount(skb);
1143
1144						/* clear lost hint */
1145						tp->retransmit_skb_hint = NULL;
1146					}
1147				} else {
1148					/* New sack for not retransmitted frame,
1149					 * which was in hole. It is reordering.
1150					 */
1151					if (!(sacked & TCPCB_RETRANS) &&
1152					    fack_count < prior_fackets)
1153						reord = min(fack_count, reord);
1154
1155					if (sacked & TCPCB_LOST) {
1156						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1157						tp->lost_out -= tcp_skb_pcount(skb);
1158
1159						/* clear lost hint */
1160						tp->retransmit_skb_hint = NULL;
1161					}
1162				}
1163
1164				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1165				flag |= FLAG_DATA_SACKED;
1166				tp->sacked_out += tcp_skb_pcount(skb);
1167
1168				if (fack_count > tp->fackets_out)
1169					tp->fackets_out = fack_count;
1170			} else {
1171				if (dup_sack && (sacked&TCPCB_RETRANS))
1172					reord = min(fack_count, reord);
1173			}
1174
1175			/* D-SACK. We can detect redundant retransmission
1176			 * in S|R and plain R frames and clear it.
1177			 * undo_retrans is decreased above, L|R frames
1178			 * are accounted above as well.
1179			 */
1180			if (dup_sack &&
1181			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1182				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1183				tp->retrans_out -= tcp_skb_pcount(skb);
1184				tp->retransmit_skb_hint = NULL;
1185			}
1186		}
1187	}
1188
1189	/* Check for lost retransmit. This superb idea is
1190	 * borrowed from "ratehalving". Event "C".
1191	 * Later note: FACK people cheated me again 8),
1192	 * we have to account for reordering! Ugly,
1193	 * but should help.
1194	 */
1195	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1196		struct sk_buff *skb;
1197
1198		sk_stream_for_retrans_queue(skb, sk) {
1199			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1200				break;
1201			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1202				continue;
1203			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1204			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1205			    (IsFack(tp) ||
1206			     !before(lost_retrans,
1207				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1208				     tp->mss_cache))) {
1209				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1210				tp->retrans_out -= tcp_skb_pcount(skb);
1211
1212				/* clear lost hint */
1213				tp->retransmit_skb_hint = NULL;
1214
1215				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1216					tp->lost_out += tcp_skb_pcount(skb);
1217					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1218					flag |= FLAG_DATA_SACKED;
1219					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1220				}
1221			}
1222		}
1223	}
1224
1225	tp->left_out = tp->sacked_out + tp->lost_out;
1226
1227	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1228		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1229
1230#if FASTRETRANS_DEBUG > 0
1231	BUG_TRAP((int)tp->sacked_out >= 0);
1232	BUG_TRAP((int)tp->lost_out >= 0);
1233	BUG_TRAP((int)tp->retrans_out >= 0);
1234	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1235#endif
1236	return flag;
1237}
1238
1239/* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1240 * segments to see from the next ACKs whether any data was really missing.
1241 * If the RTO was spurious, new ACKs should arrive.
1242 */
1243void tcp_enter_frto(struct sock *sk)
1244{
1245	const struct inet_connection_sock *icsk = inet_csk(sk);
1246	struct tcp_sock *tp = tcp_sk(sk);
1247	struct sk_buff *skb;
1248
1249	tp->frto_counter = 1;
1250
1251	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1252	    tp->snd_una == tp->high_seq ||
1253	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1254		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1255		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1256		tcp_ca_event(sk, CA_EVENT_FRTO);
1257	}
1258
1259	/* Have to clear retransmission markers here to keep the bookkeeping
1260	 * in shape, even though we are not yet in Loss state.
1261	 * If something was really lost, it is eventually caught up
1262	 * in tcp_enter_frto_loss.
1263	 */
1264	tp->retrans_out = 0;
1265	tp->undo_marker = tp->snd_una;
1266	tp->undo_retrans = 0;
1267
1268	sk_stream_for_retrans_queue(skb, sk) {
1269		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1270	}
1271	tcp_sync_left_out(tp);
1272
1273	tcp_set_ca_state(sk, TCP_CA_Open);
1274	tp->frto_highmark = tp->snd_nxt;
1275}
1276
1277/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1278 * which indicates that we should follow the traditional RTO recovery,
1279 * i.e. mark everything lost and do go-back-N retransmission.
1280 */
1281static void tcp_enter_frto_loss(struct sock *sk)
1282{
1283	struct tcp_sock *tp = tcp_sk(sk);
1284	struct sk_buff *skb;
1285	int cnt = 0;
1286
1287	tp->sacked_out = 0;
1288	tp->lost_out = 0;
1289	tp->fackets_out = 0;
1290
1291	sk_stream_for_retrans_queue(skb, sk) {
1292		cnt += tcp_skb_pcount(skb);
1293		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1294		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1295
1296			/* Do not mark those segments lost that were
1297			 * forward transmitted after RTO
1298			 */
1299			if (!after(TCP_SKB_CB(skb)->end_seq,
1300				   tp->frto_highmark)) {
1301				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1302				tp->lost_out += tcp_skb_pcount(skb);
1303			}
1304		} else {
1305			tp->sacked_out += tcp_skb_pcount(skb);
1306			tp->fackets_out = cnt;
1307		}
1308	}
1309	tcp_sync_left_out(tp);
1310
1311	tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1312	tp->snd_cwnd_cnt = 0;
1313	tp->snd_cwnd_stamp = tcp_time_stamp;
1314	tp->undo_marker = 0;
1315	tp->frto_counter = 0;
1316
1317	tp->reordering = min_t(unsigned int, tp->reordering,
1318					     sysctl_tcp_reordering);
1319	tcp_set_ca_state(sk, TCP_CA_Loss);
1320	tp->high_seq = tp->frto_highmark;
1321	TCP_ECN_queue_cwr(tp);
1322
1323	clear_all_retrans_hints(tp);
1324}
1325
1326void tcp_clear_retrans(struct tcp_sock *tp)
1327{
1328	tp->left_out = 0;
1329	tp->retrans_out = 0;
1330
1331	tp->fackets_out = 0;
1332	tp->sacked_out = 0;
1333	tp->lost_out = 0;
1334
1335	tp->undo_marker = 0;
1336	tp->undo_retrans = 0;
1337}
1338
1339/* Enter Loss state. If "how" is not zero, forget all SACK information
1340 * and reset tags completely, otherwise preserve SACKs. If receiver
1341 * dropped its ofo queue, we will know this due to reneging detection.
1342 */
1343void tcp_enter_loss(struct sock *sk, int how)
1344{
1345	const struct inet_connection_sock *icsk = inet_csk(sk);
1346	struct tcp_sock *tp = tcp_sk(sk);
1347	struct sk_buff *skb;
1348	int cnt = 0;
1349
1350	/* Reduce ssthresh if it has not yet been made inside this window. */
1351	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1352	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1353		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1354		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1355		tcp_ca_event(sk, CA_EVENT_LOSS);
1356	}
1357	tp->snd_cwnd	   = 1;
1358	tp->snd_cwnd_cnt   = 0;
1359	tp->snd_cwnd_stamp = tcp_time_stamp;
1360
1361	tp->bytes_acked = 0;
1362	tcp_clear_retrans(tp);
1363
1364	/* Push undo marker, if it was plain RTO and nothing
1365	 * was retransmitted. */
1366	if (!how)
1367		tp->undo_marker = tp->snd_una;
1368
1369	sk_stream_for_retrans_queue(skb, sk) {
1370		cnt += tcp_skb_pcount(skb);
1371		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1372			tp->undo_marker = 0;
1373		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1374		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1375			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1376			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1377			tp->lost_out += tcp_skb_pcount(skb);
1378		} else {
1379			tp->sacked_out += tcp_skb_pcount(skb);
1380			tp->fackets_out = cnt;
1381		}
1382	}
1383	tcp_sync_left_out(tp);
1384
1385	tp->reordering = min_t(unsigned int, tp->reordering,
1386					     sysctl_tcp_reordering);
1387	tcp_set_ca_state(sk, TCP_CA_Loss);
1388	tp->high_seq = tp->snd_nxt;
1389	TCP_ECN_queue_cwr(tp);
1390
1391	clear_all_retrans_hints(tp);
1392}
1393
1394static int tcp_check_sack_reneging(struct sock *sk)
1395{
1396	struct sk_buff *skb;
1397
1398	/* If ACK arrived pointing to a remembered SACK,
1399	 * it means that our remembered SACKs do not reflect
1400	 * real state of receiver i.e.
1401	 * receiver _host_ is heavily congested (or buggy).
1402	 * Do processing similar to RTO timeout.
1403	 */
1404	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1405	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1406		struct inet_connection_sock *icsk = inet_csk(sk);
1407		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1408
1409		tcp_enter_loss(sk, 1);
1410		icsk->icsk_retransmits++;
1411		tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1412		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1413					  icsk->icsk_rto, TCP_RTO_MAX);
1414		return 1;
1415	}
1416	return 0;
1417}
1418
1419static inline int tcp_fackets_out(struct tcp_sock *tp)
1420{
1421	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1422}
1423
1424static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1425{
1426	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1427}
1428
1429static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1430{
1431	return tp->packets_out &&
1432	       tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1433}
1434
1435/* Linux NewReno/SACK/FACK/ECN state machine.
1436 * --------------------------------------
1437 *
1438 * "Open"	Normal state, no dubious events, fast path.
1439 * "Disorder"   In all the respects it is "Open",
1440 *		but requires a bit more attention. It is entered when
1441 *		we see some SACKs or dupacks. It is split of "Open"
1442 *		mainly to move some processing from fast path to slow one.
1443 * "CWR"	CWND was reduced due to some Congestion Notification event.
1444 *		It can be ECN, ICMP source quench, local device congestion.
1445 * "Recovery"	CWND was reduced, we are fast-retransmitting.
1446 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1447 *
1448 * tcp_fastretrans_alert() is entered:
1449 * - each incoming ACK, if state is not "Open"
1450 * - when arrived ACK is unusual, namely:
1451 *	* SACK
1452 *	* Duplicate ACK.
1453 *	* ECN ECE.
1454 *
1455 * Counting packets in flight is pretty simple.
1456 *
1457 *	in_flight = packets_out - left_out + retrans_out
1458 *
1459 *	packets_out is SND.NXT-SND.UNA counted in packets.
1460 *
1461 *	retrans_out is number of retransmitted segments.
1462 *
1463 *	left_out is number of segments left network, but not ACKed yet.
1464 *
1465 *		left_out = sacked_out + lost_out
1466 *
1467 *     sacked_out: Packets, which arrived to receiver out of order
1468 *		   and hence not ACKed. With SACKs this number is simply
1469 *		   amount of SACKed data. Even without SACKs
1470 *		   it is easy to give pretty reliable estimate of this number,
1471 *		   counting duplicate ACKs.
1472 *
1473 *       lost_out: Packets lost by network. TCP has no explicit
1474 *		   "loss notification" feedback from network (for now).
1475 *		   It means that this number can be only _guessed_.
1476 *		   Actually, it is the heuristics to predict lossage that
1477 *		   distinguishes different algorithms.
1478 *
1479 *	F.e. after RTO, when all the queue is considered as lost,
1480 *	lost_out = packets_out and in_flight = retrans_out.
1481 *
1482 *		Essentially, we have now two algorithms counting
1483 *		lost packets.
1484 *
1485 *		FACK: It is the simplest heuristics. As soon as we decided
1486 *		that something is lost, we decide that _all_ not SACKed
1487 *		packets until the most forward SACK are lost. I.e.
1488 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1489 *		It is absolutely correct estimate, if network does not reorder
1490 *		packets. And it loses any connection to reality when reordering
1491 *		takes place. We use FACK by default until reordering
1492 *		is suspected on the path to this destination.
1493 *
1494 *		NewReno: when Recovery is entered, we assume that one segment
1495 *		is lost (classic Reno). While we are in Recovery and
1496 *		a partial ACK arrives, we assume that one more packet
1497 *		is lost (NewReno). This heuristics are the same in NewReno
1498 *		and SACK.
1499 *
1500 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1501 *  deflation etc. CWND is real congestion window, never inflated, changes
1502 *  only according to classic VJ rules.
1503 *
1504 * Really tricky (and requiring careful tuning) part of algorithm
1505 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1506 * The first determines the moment _when_ we should reduce CWND and,
1507 * hence, slow down forward transmission. In fact, it determines the moment
1508 * when we decide that hole is caused by loss, rather than by a reorder.
1509 *
1510 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1511 * holes, caused by lost packets.
1512 *
1513 * And the most logically complicated part of algorithm is undo
1514 * heuristics. We detect false retransmits due to both too early
1515 * fast retransmit (reordering) and underestimated RTO, analyzing
1516 * timestamps and D-SACKs. When we detect that some segments were
1517 * retransmitted by mistake and CWND reduction was wrong, we undo
1518 * window reduction and abort recovery phase. This logic is hidden
1519 * inside several functions named tcp_try_undo_<something>.
1520 */
1521
1522/* This function decides, when we should leave Disordered state
1523 * and enter Recovery phase, reducing congestion window.
1524 *
1525 * Main question: may we further continue forward transmission
1526 * with the same cwnd?
1527 */
1528static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1529{
1530	__u32 packets_out;
1531
1532	/* Trick#1: The loss is proven. */
1533	if (tp->lost_out)
1534		return 1;
1535
1536	/* Not-A-Trick#2 : Classic rule... */
1537	if (tcp_fackets_out(tp) > tp->reordering)
1538		return 1;
1539
1540	/* Trick#3 : when we use RFC2988 timer restart, fast
1541	 * retransmit can be triggered by timeout of queue head.
1542	 */
1543	if (tcp_head_timedout(sk, tp))
1544		return 1;
1545
1546	/* Trick#4: It is still not OK... But will it be useful to delay
1547	 * recovery more?
1548	 */
1549	packets_out = tp->packets_out;
1550	if (packets_out <= tp->reordering &&
1551	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1552	    !tcp_may_send_now(sk, tp)) {
1553		/* We have nothing to send. This connection is limited
1554		 * either by receiver window or by application.
1555		 */
1556		return 1;
1557	}
1558
1559	return 0;
1560}
1561
1562/* If we receive more dupacks than we expected counting segments
1563 * in assumption of absent reordering, interpret this as reordering.
1564 * The only another reason could be bug in receiver TCP.
1565 */
1566static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1567{
1568	struct tcp_sock *tp = tcp_sk(sk);
1569	u32 holes;
1570
1571	holes = max(tp->lost_out, 1U);
1572	holes = min(holes, tp->packets_out);
1573
1574	if ((tp->sacked_out + holes) > tp->packets_out) {
1575		tp->sacked_out = tp->packets_out - holes;
1576		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1577	}
1578}
1579
1580/* Emulate SACKs for SACKless connection: account for a new dupack. */
1581
1582static void tcp_add_reno_sack(struct sock *sk)
1583{
1584	struct tcp_sock *tp = tcp_sk(sk);
1585	tp->sacked_out++;
1586	tcp_check_reno_reordering(sk, 0);
1587	tcp_sync_left_out(tp);
1588}
1589
1590/* Account for ACK, ACKing some data in Reno Recovery phase. */
1591
1592static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1593{
1594	if (acked > 0) {
1595		/* One ACK acked hole. The rest eat duplicate ACKs. */
1596		if (acked-1 >= tp->sacked_out)
1597			tp->sacked_out = 0;
1598		else
1599			tp->sacked_out -= acked-1;
1600	}
1601	tcp_check_reno_reordering(sk, acked);
1602	tcp_sync_left_out(tp);
1603}
1604
1605static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1606{
1607	tp->sacked_out = 0;
1608	tp->left_out = tp->lost_out;
1609}
1610
1611/* Mark head of queue up as lost. */
1612static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1613			       int packets, u32 high_seq)
1614{
1615	struct sk_buff *skb;
1616	int cnt;
1617
1618	BUG_TRAP(packets <= tp->packets_out);
1619	if (tp->lost_skb_hint) {
1620		skb = tp->lost_skb_hint;
1621		cnt = tp->lost_cnt_hint;
1622	} else {
1623		skb = sk->sk_write_queue.next;
1624		cnt = 0;
1625	}
1626
1627	sk_stream_for_retrans_queue_from(skb, sk) {
1628		/* TODO: do this better */
1629		/* this is not the most efficient way to do this... */
1630		tp->lost_skb_hint = skb;
1631		tp->lost_cnt_hint = cnt;
1632		cnt += tcp_skb_pcount(skb);
1633		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1634			break;
1635		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1636			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1637			tp->lost_out += tcp_skb_pcount(skb);
1638
1639			/* clear xmit_retransmit_queue hints
1640			 *  if this is beyond hint */
1641			if(tp->retransmit_skb_hint != NULL &&
1642			   before(TCP_SKB_CB(skb)->seq,
1643				  TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1644
1645				tp->retransmit_skb_hint = NULL;
1646			}
1647		}
1648	}
1649	tcp_sync_left_out(tp);
1650}
1651
1652/* Account newly detected lost packet(s) */
1653
1654static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1655{
1656	if (IsFack(tp)) {
1657		int lost = tp->fackets_out - tp->reordering;
1658		if (lost <= 0)
1659			lost = 1;
1660		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1661	} else {
1662		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1663	}
1664
1665	/* New heuristics: it is possible only after we switched
1666	 * to restart timer each time when something is ACKed.
1667	 * Hence, we can detect timed out packets during fast
1668	 * retransmit without falling to slow start.
1669	 */
1670	if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1671		struct sk_buff *skb;
1672
1673		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1674			: sk->sk_write_queue.next;
1675
1676		sk_stream_for_retrans_queue_from(skb, sk) {
1677			if (!tcp_skb_timedout(sk, skb))
1678				break;
1679
1680			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1681				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1682				tp->lost_out += tcp_skb_pcount(skb);
1683
1684				/* clear xmit_retrans hint */
1685				if (tp->retransmit_skb_hint &&
1686				    before(TCP_SKB_CB(skb)->seq,
1687					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1688
1689					tp->retransmit_skb_hint = NULL;
1690			}
1691		}
1692
1693		tp->scoreboard_skb_hint = skb;
1694
1695		tcp_sync_left_out(tp);
1696	}
1697}
1698
1699/* CWND moderation, preventing bursts due to too big ACKs
1700 * in dubious situations.
1701 */
1702static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1703{
1704	tp->snd_cwnd = min(tp->snd_cwnd,
1705			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1706	tp->snd_cwnd_stamp = tcp_time_stamp;
1707}
1708
1709/* Lower bound on congestion window is slow start threshold
1710 * unless congestion avoidance choice decides to overide it.
1711 */
1712static inline u32 tcp_cwnd_min(const struct sock *sk)
1713{
1714	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1715
1716	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1717}
1718
1719/* Decrease cwnd each second ack. */
1720static void tcp_cwnd_down(struct sock *sk)
1721{
1722	struct tcp_sock *tp = tcp_sk(sk);
1723	int decr = tp->snd_cwnd_cnt + 1;
1724
1725	tp->snd_cwnd_cnt = decr&1;
1726	decr >>= 1;
1727
1728	if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1729		tp->snd_cwnd -= decr;
1730
1731	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1732	tp->snd_cwnd_stamp = tcp_time_stamp;
1733}
1734
1735/* Nothing was retransmitted or returned timestamp is less
1736 * than timestamp of the first retransmission.
1737 */
1738static inline int tcp_packet_delayed(struct tcp_sock *tp)
1739{
1740	return !tp->retrans_stamp ||
1741		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1742		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1743}
1744
1745/* Undo procedures. */
1746
1747#if FASTRETRANS_DEBUG > 1
1748static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1749{
1750	struct inet_sock *inet = inet_sk(sk);
1751	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1752	       msg,
1753	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1754	       tp->snd_cwnd, tp->left_out,
1755	       tp->snd_ssthresh, tp->prior_ssthresh,
1756	       tp->packets_out);
1757}
1758#else
1759#define DBGUNDO(x...) do { } while (0)
1760#endif
1761
1762static void tcp_undo_cwr(struct sock *sk, const int undo)
1763{
1764	struct tcp_sock *tp = tcp_sk(sk);
1765
1766	if (tp->prior_ssthresh) {
1767		const struct inet_connection_sock *icsk = inet_csk(sk);
1768
1769		if (icsk->icsk_ca_ops->undo_cwnd)
1770			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1771		else
1772			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1773
1774		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1775			tp->snd_ssthresh = tp->prior_ssthresh;
1776			TCP_ECN_withdraw_cwr(tp);
1777		}
1778	} else {
1779		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1780	}
1781	tcp_moderate_cwnd(tp);
1782	tp->snd_cwnd_stamp = tcp_time_stamp;
1783
1784	/* There is something screwy going on with the retrans hints after
1785	   an undo */
1786	clear_all_retrans_hints(tp);
1787}
1788
1789static inline int tcp_may_undo(struct tcp_sock *tp)
1790{
1791	return tp->undo_marker &&
1792		(!tp->undo_retrans || tcp_packet_delayed(tp));
1793}
1794
1795/* People celebrate: "We love our President!" */
1796static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1797{
1798	if (tcp_may_undo(tp)) {
1799		/* Happy end! We did not retransmit anything
1800		 * or our original transmission succeeded.
1801		 */
1802		DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1803		tcp_undo_cwr(sk, 1);
1804		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1805			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1806		else
1807			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1808		tp->undo_marker = 0;
1809	}
1810	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1811		/* Hold old state until something *above* high_seq
1812		 * is ACKed. For Reno it is MUST to prevent false
1813		 * fast retransmits (RFC2582). SACK TCP is safe. */
1814		tcp_moderate_cwnd(tp);
1815		return 1;
1816	}
1817	tcp_set_ca_state(sk, TCP_CA_Open);
1818	return 0;
1819}
1820
1821/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1822static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1823{
1824	if (tp->undo_marker && !tp->undo_retrans) {
1825		DBGUNDO(sk, tp, "D-SACK");
1826		tcp_undo_cwr(sk, 1);
1827		tp->undo_marker = 0;
1828		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1829	}
1830}
1831
1832/* Undo during fast recovery after partial ACK. */
1833
1834static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1835				int acked)
1836{
1837	/* Partial ACK arrived. Force Hoe's retransmit. */
1838	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1839
1840	if (tcp_may_undo(tp)) {
1841		/* Plain luck! Hole if filled with delayed
1842		 * packet, rather than with a retransmit.
1843		 */
1844		if (tp->retrans_out == 0)
1845			tp->retrans_stamp = 0;
1846
1847		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1848
1849		DBGUNDO(sk, tp, "Hoe");
1850		tcp_undo_cwr(sk, 0);
1851		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1852
1853		/* So... Do not make Hoe's retransmit yet.
1854		 * If the first packet was delayed, the rest
1855		 * ones are most probably delayed as well.
1856		 */
1857		failed = 0;
1858	}
1859	return failed;
1860}
1861
1862/* Undo during loss recovery after partial ACK. */
1863static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1864{
1865	if (tcp_may_undo(tp)) {
1866		struct sk_buff *skb;
1867		sk_stream_for_retrans_queue(skb, sk) {
1868			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1869		}
1870
1871		clear_all_retrans_hints(tp);
1872
1873		DBGUNDO(sk, tp, "partial loss");
1874		tp->lost_out = 0;
1875		tp->left_out = tp->sacked_out;
1876		tcp_undo_cwr(sk, 1);
1877		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1878		inet_csk(sk)->icsk_retransmits = 0;
1879		tp->undo_marker = 0;
1880		if (!IsReno(tp))
1881			tcp_set_ca_state(sk, TCP_CA_Open);
1882		return 1;
1883	}
1884	return 0;
1885}
1886
1887static inline void tcp_complete_cwr(struct sock *sk)
1888{
1889	struct tcp_sock *tp = tcp_sk(sk);
1890	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1891	tp->snd_cwnd_stamp = tcp_time_stamp;
1892	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1893}
1894
1895static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1896{
1897	tp->left_out = tp->sacked_out;
1898
1899	if (tp->retrans_out == 0)
1900		tp->retrans_stamp = 0;
1901
1902	if (flag&FLAG_ECE)
1903		tcp_enter_cwr(sk);
1904
1905	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1906		int state = TCP_CA_Open;
1907
1908		if (tp->left_out || tp->retrans_out || tp->undo_marker)
1909			state = TCP_CA_Disorder;
1910
1911		if (inet_csk(sk)->icsk_ca_state != state) {
1912			tcp_set_ca_state(sk, state);
1913			tp->high_seq = tp->snd_nxt;
1914		}
1915		tcp_moderate_cwnd(tp);
1916	} else {
1917		tcp_cwnd_down(sk);
1918	}
1919}
1920
1921static void tcp_mtup_probe_failed(struct sock *sk)
1922{
1923	struct inet_connection_sock *icsk = inet_csk(sk);
1924
1925	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1926	icsk->icsk_mtup.probe_size = 0;
1927}
1928
1929static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1930{
1931	struct tcp_sock *tp = tcp_sk(sk);
1932	struct inet_connection_sock *icsk = inet_csk(sk);
1933
1934	/* FIXME: breaks with very large cwnd */
1935	tp->prior_ssthresh = tcp_current_ssthresh(sk);
1936	tp->snd_cwnd = tp->snd_cwnd *
1937		       tcp_mss_to_mtu(sk, tp->mss_cache) /
1938		       icsk->icsk_mtup.probe_size;
1939	tp->snd_cwnd_cnt = 0;
1940	tp->snd_cwnd_stamp = tcp_time_stamp;
1941	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1942
1943	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1944	icsk->icsk_mtup.probe_size = 0;
1945	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1946}
1947
1948
1949/* Process an event, which can update packets-in-flight not trivially.
1950 * Main goal of this function is to calculate new estimate for left_out,
1951 * taking into account both packets sitting in receiver's buffer and
1952 * packets lost by network.
1953 *
1954 * Besides that it does CWND reduction, when packet loss is detected
1955 * and changes state of machine.
1956 *
1957 * It does _not_ decide what to send, it is made in function
1958 * tcp_xmit_retransmit_queue().
1959 */
1960static void
1961tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1962		      int prior_packets, int flag)
1963{
1964	struct inet_connection_sock *icsk = inet_csk(sk);
1965	struct tcp_sock *tp = tcp_sk(sk);
1966	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1967
1968	/* Some technical things:
1969	 * 1. Reno does not count dupacks (sacked_out) automatically. */
1970	if (!tp->packets_out)
1971		tp->sacked_out = 0;
1972	/* 2. SACK counts snd_fack in packets inaccurately. */
1973	if (tp->sacked_out == 0)
1974		tp->fackets_out = 0;
1975
1976	/* Now state machine starts.
1977	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1978	if (flag&FLAG_ECE)
1979		tp->prior_ssthresh = 0;
1980
1981	/* B. In all the states check for reneging SACKs. */
1982	if (tp->sacked_out && tcp_check_sack_reneging(sk))
1983		return;
1984
1985	/* C. Process data loss notification, provided it is valid. */
1986	if ((flag&FLAG_DATA_LOST) &&
1987	    before(tp->snd_una, tp->high_seq) &&
1988	    icsk->icsk_ca_state != TCP_CA_Open &&
1989	    tp->fackets_out > tp->reordering) {
1990		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1991		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1992	}
1993
1994	/* D. Synchronize left_out to current state. */
1995	tcp_sync_left_out(tp);
1996
1997	/* E. Check state exit conditions. State can be terminated
1998	 *    when high_seq is ACKed. */
1999	if (icsk->icsk_ca_state == TCP_CA_Open) {
2000		if (!sysctl_tcp_frto)
2001			BUG_TRAP(tp->retrans_out == 0);
2002		tp->retrans_stamp = 0;
2003	} else if (!before(tp->snd_una, tp->high_seq)) {
2004		switch (icsk->icsk_ca_state) {
2005		case TCP_CA_Loss:
2006			icsk->icsk_retransmits = 0;
2007			if (tcp_try_undo_recovery(sk, tp))
2008				return;
2009			break;
2010
2011		case TCP_CA_CWR:
2012			/* CWR is to be held something *above* high_seq
2013			 * is ACKed for CWR bit to reach receiver. */
2014			if (tp->snd_una != tp->high_seq) {
2015				tcp_complete_cwr(sk);
2016				tcp_set_ca_state(sk, TCP_CA_Open);
2017			}
2018			break;
2019
2020		case TCP_CA_Disorder:
2021			tcp_try_undo_dsack(sk, tp);
2022			if (!tp->undo_marker ||
2023			    /* For SACK case do not Open to allow to undo
2024			     * catching for all duplicate ACKs. */
2025			    IsReno(tp) || tp->snd_una != tp->high_seq) {
2026				tp->undo_marker = 0;
2027				tcp_set_ca_state(sk, TCP_CA_Open);
2028			}
2029			break;
2030
2031		case TCP_CA_Recovery:
2032			if (IsReno(tp))
2033				tcp_reset_reno_sack(tp);
2034			if (tcp_try_undo_recovery(sk, tp))
2035				return;
2036			tcp_complete_cwr(sk);
2037			break;
2038		}
2039	}
2040
2041	/* F. Process state. */
2042	switch (icsk->icsk_ca_state) {
2043	case TCP_CA_Recovery:
2044		if (prior_snd_una == tp->snd_una) {
2045			if (IsReno(tp) && is_dupack)
2046				tcp_add_reno_sack(sk);
2047		} else {
2048			int acked = prior_packets - tp->packets_out;
2049			if (IsReno(tp))
2050				tcp_remove_reno_sacks(sk, tp, acked);
2051			is_dupack = tcp_try_undo_partial(sk, tp, acked);
2052		}
2053		break;
2054	case TCP_CA_Loss:
2055		if (flag&FLAG_DATA_ACKED)
2056			icsk->icsk_retransmits = 0;
2057		if (!tcp_try_undo_loss(sk, tp)) {
2058			tcp_moderate_cwnd(tp);
2059			tcp_xmit_retransmit_queue(sk);
2060			return;
2061		}
2062		if (icsk->icsk_ca_state != TCP_CA_Open)
2063			return;
2064		/* Loss is undone; fall through to processing in Open state. */
2065	default:
2066		if (IsReno(tp)) {
2067			if (tp->snd_una != prior_snd_una)
2068				tcp_reset_reno_sack(tp);
2069			if (is_dupack)
2070				tcp_add_reno_sack(sk);
2071		}
2072
2073		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2074			tcp_try_undo_dsack(sk, tp);
2075
2076		if (!tcp_time_to_recover(sk, tp)) {
2077			tcp_try_to_open(sk, tp, flag);
2078			return;
2079		}
2080
2081		/* MTU probe failure: don't reduce cwnd */
2082		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2083		    icsk->icsk_mtup.probe_size &&
2084		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2085			tcp_mtup_probe_failed(sk);
2086			/* Restores the reduction we did in tcp_mtup_probe() */
2087			tp->snd_cwnd++;
2088			tcp_simple_retransmit(sk);
2089			return;
2090		}
2091
2092		/* Otherwise enter Recovery state */
2093
2094		if (IsReno(tp))
2095			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2096		else
2097			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2098
2099		tp->high_seq = tp->snd_nxt;
2100		tp->prior_ssthresh = 0;
2101		tp->undo_marker = tp->snd_una;
2102		tp->undo_retrans = tp->retrans_out;
2103
2104		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2105			if (!(flag&FLAG_ECE))
2106				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2107			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2108			TCP_ECN_queue_cwr(tp);
2109		}
2110
2111		tp->bytes_acked = 0;
2112		tp->snd_cwnd_cnt = 0;
2113		tcp_set_ca_state(sk, TCP_CA_Recovery);
2114	}
2115
2116	if (is_dupack || tcp_head_timedout(sk, tp))
2117		tcp_update_scoreboard(sk, tp);
2118	tcp_cwnd_down(sk);
2119	tcp_xmit_retransmit_queue(sk);
2120}
2121
2122/* Read draft-ietf-tcplw-high-performance before mucking
2123 * with this code. (Supersedes RFC1323)
2124 */
2125static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2126{
2127	/* RTTM Rule: A TSecr value received in a segment is used to
2128	 * update the averaged RTT measurement only if the segment
2129	 * acknowledges some new data, i.e., only if it advances the
2130	 * left edge of the send window.
2131	 *
2132	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2133	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2134	 *
2135	 * Changed: reset backoff as soon as we see the first valid sample.
2136	 * If we do not, we get strongly overestimated rto. With timestamps
2137	 * samples are accepted even from very old segments: f.e., when rtt=1
2138	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2139	 * answer arrives rto becomes 120 seconds! If at least one of segments
2140	 * in window is lost... Voila.	 			--ANK (010210)
2141	 */
2142	struct tcp_sock *tp = tcp_sk(sk);
2143	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2144	tcp_rtt_estimator(sk, seq_rtt);
2145	tcp_set_rto(sk);
2146	inet_csk(sk)->icsk_backoff = 0;
2147	tcp_bound_rto(sk);
2148}
2149
2150static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2151{
2152	/* We don't have a timestamp. Can only use
2153	 * packets that are not retransmitted to determine
2154	 * rtt estimates. Also, we must not reset the
2155	 * backoff for rto until we get a non-retransmitted
2156	 * packet. This allows us to deal with a situation
2157	 * where the network delay has increased suddenly.
2158	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2159	 */
2160
2161	if (flag & FLAG_RETRANS_DATA_ACKED)
2162		return;
2163
2164	tcp_rtt_estimator(sk, seq_rtt);
2165	tcp_set_rto(sk);
2166	inet_csk(sk)->icsk_backoff = 0;
2167	tcp_bound_rto(sk);
2168}
2169
2170static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2171				      const s32 seq_rtt)
2172{
2173	const struct tcp_sock *tp = tcp_sk(sk);
2174	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2175	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2176		tcp_ack_saw_tstamp(sk, flag);
2177	else if (seq_rtt >= 0)
2178		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2179}
2180
2181static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2182			   u32 in_flight, int good)
2183{
2184	const struct inet_connection_sock *icsk = inet_csk(sk);
2185	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2186	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2187}
2188
2189/* Restart timer after forward progress on connection.
2190 * RFC2988 recommends to restart timer to now+rto.
2191 */
2192
2193static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2194{
2195	if (!tp->packets_out) {
2196		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2197	} else {
2198		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2199	}
2200}
2201
2202static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2203			 __u32 now, __s32 *seq_rtt)
2204{
2205	struct tcp_sock *tp = tcp_sk(sk);
2206	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2207	__u32 seq = tp->snd_una;
2208	__u32 packets_acked;
2209	int acked = 0;
2210
2211	/* If we get here, the whole TSO packet has not been
2212	 * acked.
2213	 */
2214	BUG_ON(!after(scb->end_seq, seq));
2215
2216	packets_acked = tcp_skb_pcount(skb);
2217	if (tcp_trim_head(sk, skb, seq - scb->seq))
2218		return 0;
2219	packets_acked -= tcp_skb_pcount(skb);
2220
2221	if (packets_acked) {
2222		__u8 sacked = scb->sacked;
2223
2224		acked |= FLAG_DATA_ACKED;
2225		if (sacked) {
2226			if (sacked & TCPCB_RETRANS) {
2227				if (sacked & TCPCB_SACKED_RETRANS)
2228					tp->retrans_out -= packets_acked;
2229				acked |= FLAG_RETRANS_DATA_ACKED;
2230				*seq_rtt = -1;
2231			} else if (*seq_rtt < 0)
2232				*seq_rtt = now - scb->when;
2233			if (sacked & TCPCB_SACKED_ACKED)
2234				tp->sacked_out -= packets_acked;
2235			if (sacked & TCPCB_LOST)
2236				tp->lost_out -= packets_acked;
2237			if (sacked & TCPCB_URG) {
2238				if (tp->urg_mode &&
2239				    !before(seq, tp->snd_up))
2240					tp->urg_mode = 0;
2241			}
2242		} else if (*seq_rtt < 0)
2243			*seq_rtt = now - scb->when;
2244
2245		if (tp->fackets_out) {
2246			__u32 dval = min(tp->fackets_out, packets_acked);
2247			tp->fackets_out -= dval;
2248		}
2249		tp->packets_out -= packets_acked;
2250
2251		BUG_ON(tcp_skb_pcount(skb) == 0);
2252		BUG_ON(!before(scb->seq, scb->end_seq));
2253	}
2254
2255	return acked;
2256}
2257
2258static u32 tcp_usrtt(struct timeval *tv)
2259{
2260	struct timeval now;
2261
2262	do_gettimeofday(&now);
2263	return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2264}
2265
2266/* Remove acknowledged frames from the retransmission queue. */
2267static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2268{
2269	struct tcp_sock *tp = tcp_sk(sk);
2270	const struct inet_connection_sock *icsk = inet_csk(sk);
2271	struct sk_buff *skb;
2272	__u32 now = tcp_time_stamp;
2273	int acked = 0;
2274	__s32 seq_rtt = -1;
2275	u32 pkts_acked = 0;
2276	void (*rtt_sample)(struct sock *sk, u32 usrtt)
2277		= icsk->icsk_ca_ops->rtt_sample;
2278	struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2279
2280	while ((skb = skb_peek(&sk->sk_write_queue)) &&
2281	       skb != sk->sk_send_head) {
2282		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2283		__u8 sacked = scb->sacked;
2284
2285		/* If our packet is before the ack sequence we can
2286		 * discard it as it's confirmed to have arrived at
2287		 * the other end.
2288		 */
2289		if (after(scb->end_seq, tp->snd_una)) {
2290			if (tcp_skb_pcount(skb) > 1 &&
2291			    after(tp->snd_una, scb->seq))
2292				acked |= tcp_tso_acked(sk, skb,
2293						       now, &seq_rtt);
2294			break;
2295		}
2296
2297		/* Initial outgoing SYN's get put onto the write_queue
2298		 * just like anything else we transmit.  It is not
2299		 * true data, and if we misinform our callers that
2300		 * this ACK acks real data, we will erroneously exit
2301		 * connection startup slow start one packet too
2302		 * quickly.  This is severely frowned upon behavior.
2303		 */
2304		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2305			acked |= FLAG_DATA_ACKED;
2306			++pkts_acked;
2307		} else {
2308			acked |= FLAG_SYN_ACKED;
2309			tp->retrans_stamp = 0;
2310		}
2311
2312		/* MTU probing checks */
2313		if (icsk->icsk_mtup.probe_size) {
2314			if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2315				tcp_mtup_probe_success(sk, skb);
2316			}
2317		}
2318
2319		if (sacked) {
2320			if (sacked & TCPCB_RETRANS) {
2321				if(sacked & TCPCB_SACKED_RETRANS)
2322					tp->retrans_out -= tcp_skb_pcount(skb);
2323				acked |= FLAG_RETRANS_DATA_ACKED;
2324				seq_rtt = -1;
2325			} else if (seq_rtt < 0) {
2326				seq_rtt = now - scb->when;
2327				skb_get_timestamp(skb, &tv);
2328			}
2329			if (sacked & TCPCB_SACKED_ACKED)
2330				tp->sacked_out -= tcp_skb_pcount(skb);
2331			if (sacked & TCPCB_LOST)
2332				tp->lost_out -= tcp_skb_pcount(skb);
2333			if (sacked & TCPCB_URG) {
2334				if (tp->urg_mode &&
2335				    !before(scb->end_seq, tp->snd_up))
2336					tp->urg_mode = 0;
2337			}
2338		} else if (seq_rtt < 0) {
2339			seq_rtt = now - scb->when;
2340			skb_get_timestamp(skb, &tv);
2341		}
2342		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2343		tcp_packets_out_dec(tp, skb);
2344		__skb_unlink(skb, &sk->sk_write_queue);
2345		sk_stream_free_skb(sk, skb);
2346		clear_all_retrans_hints(tp);
2347	}
2348
2349	if (acked&FLAG_ACKED) {
2350		tcp_ack_update_rtt(sk, acked, seq_rtt);
2351		tcp_ack_packets_out(sk, tp);
2352		if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2353			(*rtt_sample)(sk, tcp_usrtt(&tv));
2354
2355		if (icsk->icsk_ca_ops->pkts_acked)
2356			icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2357	}
2358
2359#if FASTRETRANS_DEBUG > 0
2360	BUG_TRAP((int)tp->sacked_out >= 0);
2361	BUG_TRAP((int)tp->lost_out >= 0);
2362	BUG_TRAP((int)tp->retrans_out >= 0);
2363	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2364		const struct inet_connection_sock *icsk = inet_csk(sk);
2365		if (tp->lost_out) {
2366			printk(KERN_DEBUG "Leak l=%u %d\n",
2367			       tp->lost_out, icsk->icsk_ca_state);
2368			tp->lost_out = 0;
2369		}
2370		if (tp->sacked_out) {
2371			printk(KERN_DEBUG "Leak s=%u %d\n",
2372			       tp->sacked_out, icsk->icsk_ca_state);
2373			tp->sacked_out = 0;
2374		}
2375		if (tp->retrans_out) {
2376			printk(KERN_DEBUG "Leak r=%u %d\n",
2377			       tp->retrans_out, icsk->icsk_ca_state);
2378			tp->retrans_out = 0;
2379		}
2380	}
2381#endif
2382	*seq_rtt_p = seq_rtt;
2383	return acked;
2384}
2385
2386static void tcp_ack_probe(struct sock *sk)
2387{
2388	const struct tcp_sock *tp = tcp_sk(sk);
2389	struct inet_connection_sock *icsk = inet_csk(sk);
2390
2391	/* Was it a usable window open? */
2392
2393	if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2394		   tp->snd_una + tp->snd_wnd)) {
2395		icsk->icsk_backoff = 0;
2396		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2397		/* Socket must be waked up by subsequent tcp_data_snd_check().
2398		 * This function is not for random using!
2399		 */
2400	} else {
2401		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2402					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2403					  TCP_RTO_MAX);
2404	}
2405}
2406
2407static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2408{
2409	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2410		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2411}
2412
2413static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2414{
2415	const struct tcp_sock *tp = tcp_sk(sk);
2416	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2417		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2418}
2419
2420/* Check that window update is acceptable.
2421 * The function assumes that snd_una<=ack<=snd_next.
2422 */
2423static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2424					const u32 ack_seq, const u32 nwin)
2425{
2426	return (after(ack, tp->snd_una) ||
2427		after(ack_seq, tp->snd_wl1) ||
2428		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2429}
2430
2431/* Update our send window.
2432 *
2433 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2434 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2435 */
2436static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2437				 struct sk_buff *skb, u32 ack, u32 ack_seq)
2438{
2439	int flag = 0;
2440	u32 nwin = ntohs(skb->h.th->window);
2441
2442	if (likely(!skb->h.th->syn))
2443		nwin <<= tp->rx_opt.snd_wscale;
2444
2445	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2446		flag |= FLAG_WIN_UPDATE;
2447		tcp_update_wl(tp, ack, ack_seq);
2448
2449		if (tp->snd_wnd != nwin) {
2450			tp->snd_wnd = nwin;
2451
2452			/* Note, it is the only place, where
2453			 * fast path is recovered for sending TCP.
2454			 */
2455			tp->pred_flags = 0;
2456			tcp_fast_path_check(sk, tp);
2457
2458			if (nwin > tp->max_window) {
2459				tp->max_window = nwin;
2460				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2461			}
2462		}
2463	}
2464
2465	tp->snd_una = ack;
2466
2467	return flag;
2468}
2469
2470/* A very conservative spurious RTO response algorithm: reduce cwnd and
2471 * continue in congestion avoidance.
2472 */
2473static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2474{
2475	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2476	tcp_moderate_cwnd(tp);
2477}
2478
2479static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2480{
2481	struct tcp_sock *tp = tcp_sk(sk);
2482
2483	tcp_sync_left_out(tp);
2484
2485	if (tp->snd_una == prior_snd_una ||
2486	    !before(tp->snd_una, tp->frto_highmark)) {
2487		/* RTO was caused by loss, start retransmitting in
2488		 * go-back-N slow start
2489		 */
2490		tcp_enter_frto_loss(sk);
2491		return;
2492	}
2493
2494	if (tp->frto_counter == 1) {
2495		/* First ACK after RTO advances the window: allow two new
2496		 * segments out.
2497		 */
2498		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2499	} else {
2500		tcp_conservative_spur_to_response(tp);
2501	}
2502
2503	/* F-RTO affects on two new ACKs following RTO.
2504	 * At latest on third ACK the TCP behavior is back to normal.
2505	 */
2506	tp->frto_counter = (tp->frto_counter + 1) % 3;
2507}
2508
2509/* This routine deals with incoming acks, but not outgoing ones. */
2510static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2511{
2512	struct inet_connection_sock *icsk = inet_csk(sk);
2513	struct tcp_sock *tp = tcp_sk(sk);
2514	u32 prior_snd_una = tp->snd_una;
2515	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2516	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2517	u32 prior_in_flight;
2518	s32 seq_rtt;
2519	int prior_packets;
2520
2521	/* If the ack is newer than sent or older than previous acks
2522	 * then we can probably ignore it.
2523	 */
2524	if (after(ack, tp->snd_nxt))
2525		goto uninteresting_ack;
2526
2527	if (before(ack, prior_snd_una))
2528		goto old_ack;
2529
2530	if (sysctl_tcp_abc) {
2531		if (icsk->icsk_ca_state < TCP_CA_CWR)
2532			tp->bytes_acked += ack - prior_snd_una;
2533		else if (icsk->icsk_ca_state == TCP_CA_Loss)
2534			/* we assume just one segment left network */
2535			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2536	}
2537
2538	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2539		/* Window is constant, pure forward advance.
2540		 * No more checks are required.
2541		 * Note, we use the fact that SND.UNA>=SND.WL2.
2542		 */
2543		tcp_update_wl(tp, ack, ack_seq);
2544		tp->snd_una = ack;
2545		flag |= FLAG_WIN_UPDATE;
2546
2547		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2548
2549		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2550	} else {
2551		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2552			flag |= FLAG_DATA;
2553		else
2554			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2555
2556		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2557
2558		if (TCP_SKB_CB(skb)->sacked)
2559			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2560
2561		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2562			flag |= FLAG_ECE;
2563
2564		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2565	}
2566
2567	/* We passed data and got it acked, remove any soft error
2568	 * log. Something worked...
2569	 */
2570	sk->sk_err_soft = 0;
2571	tp->rcv_tstamp = tcp_time_stamp;
2572	prior_packets = tp->packets_out;
2573	if (!prior_packets)
2574		goto no_queue;
2575
2576	prior_in_flight = tcp_packets_in_flight(tp);
2577
2578	/* See if we can take anything off of the retransmit queue. */
2579	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2580
2581	if (tp->frto_counter)
2582		tcp_process_frto(sk, prior_snd_una);
2583
2584	if (tcp_ack_is_dubious(sk, flag)) {
2585		/* Advance CWND, if state allows this. */
2586		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2587			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2588		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2589	} else {
2590		if ((flag & FLAG_DATA_ACKED))
2591			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2592	}
2593
2594	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2595		dst_confirm(sk->sk_dst_cache);
2596
2597	return 1;
2598
2599no_queue:
2600	icsk->icsk_probes_out = 0;
2601
2602	/* If this ack opens up a zero window, clear backoff.  It was
2603	 * being used to time the probes, and is probably far higher than
2604	 * it needs to be for normal retransmission.
2605	 */
2606	if (sk->sk_send_head)
2607		tcp_ack_probe(sk);
2608	return 1;
2609
2610old_ack:
2611	if (TCP_SKB_CB(skb)->sacked)
2612		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2613
2614uninteresting_ack:
2615	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2616	return 0;
2617}
2618
2619
2620/* Look for tcp options. Normally only called on SYN and SYNACK packets.
2621 * But, this can also be called on packets in the established flow when
2622 * the fast version below fails.
2623 */
2624void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2625{
2626	unsigned char *ptr;
2627	struct tcphdr *th = skb->h.th;
2628	int length=(th->doff*4)-sizeof(struct tcphdr);
2629
2630	ptr = (unsigned char *)(th + 1);
2631	opt_rx->saw_tstamp = 0;
2632
2633	while(length>0) {
2634		int opcode=*ptr++;
2635		int opsize;
2636
2637		switch (opcode) {
2638			case TCPOPT_EOL:
2639				return;
2640			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2641				length--;
2642				continue;
2643			default:
2644				opsize=*ptr++;
2645				if (opsize < 2) /* "silly options" */
2646					return;
2647				if (opsize > length)
2648					return;	/* don't parse partial options */
2649				switch(opcode) {
2650				case TCPOPT_MSS:
2651					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2652						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2653						if (in_mss) {
2654							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2655								in_mss = opt_rx->user_mss;
2656							opt_rx->mss_clamp = in_mss;
2657						}
2658					}
2659					break;
2660				case TCPOPT_WINDOW:
2661					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2662						if (sysctl_tcp_window_scaling) {
2663							__u8 snd_wscale = *(__u8 *) ptr;
2664							opt_rx->wscale_ok = 1;
2665							if (snd_wscale > 14) {
2666								if(net_ratelimit())
2667									printk(KERN_INFO "tcp_parse_options: Illegal window "
2668									       "scaling value %d >14 received.\n",
2669									       snd_wscale);
2670								snd_wscale = 14;
2671							}
2672							opt_rx->snd_wscale = snd_wscale;
2673						}
2674					break;
2675				case TCPOPT_TIMESTAMP:
2676					if(opsize==TCPOLEN_TIMESTAMP) {
2677						if ((estab && opt_rx->tstamp_ok) ||
2678						    (!estab && sysctl_tcp_timestamps)) {
2679							opt_rx->saw_tstamp = 1;
2680							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2681							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2682						}
2683					}
2684					break;
2685				case TCPOPT_SACK_PERM:
2686					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2687						if (sysctl_tcp_sack) {
2688							opt_rx->sack_ok = 1;
2689							tcp_sack_reset(opt_rx);
2690						}
2691					}
2692					break;
2693
2694				case TCPOPT_SACK:
2695					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2696					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2697					   opt_rx->sack_ok) {
2698						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2699					}
2700#ifdef CONFIG_TCP_MD5SIG
2701				case TCPOPT_MD5SIG:
2702					/*
2703					 * The MD5 Hash has already been
2704					 * checked (see tcp_v{4,6}_do_rcv()).
2705					 */
2706					break;
2707#endif
2708				};
2709				ptr+=opsize-2;
2710				length-=opsize;
2711		};
2712	}
2713}
2714
2715/* Fast parse options. This hopes to only see timestamps.
2716 * If it is wrong it falls back on tcp_parse_options().
2717 */
2718static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2719				  struct tcp_sock *tp)
2720{
2721	if (th->doff == sizeof(struct tcphdr)>>2) {
2722		tp->rx_opt.saw_tstamp = 0;
2723		return 0;
2724	} else if (tp->rx_opt.tstamp_ok &&
2725		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2726		__be32 *ptr = (__be32 *)(th + 1);
2727		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2728				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2729			tp->rx_opt.saw_tstamp = 1;
2730			++ptr;
2731			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2732			++ptr;
2733			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2734			return 1;
2735		}
2736	}
2737	tcp_parse_options(skb, &tp->rx_opt, 1);
2738	return 1;
2739}
2740
2741static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2742{
2743	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2744	tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2745}
2746
2747static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2748{
2749	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2750		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2751		 * extra check below makes sure this can only happen
2752		 * for pure ACK frames.  -DaveM
2753		 *
2754		 * Not only, also it occurs for expired timestamps.
2755		 */
2756
2757		if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2758		   xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2759			tcp_store_ts_recent(tp);
2760	}
2761}
2762
2763/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2764 *
2765 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2766 * it can pass through stack. So, the following predicate verifies that
2767 * this segment is not used for anything but congestion avoidance or
2768 * fast retransmit. Moreover, we even are able to eliminate most of such
2769 * second order effects, if we apply some small "replay" window (~RTO)
2770 * to timestamp space.
2771 *
2772 * All these measures still do not guarantee that we reject wrapped ACKs
2773 * on networks with high bandwidth, when sequence space is recycled fastly,
2774 * but it guarantees that such events will be very rare and do not affect
2775 * connection seriously. This doesn't look nice, but alas, PAWS is really
2776 * buggy extension.
2777 *
2778 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2779 * states that events when retransmit arrives after original data are rare.
2780 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2781 * the biggest problem on large power networks even with minor reordering.
2782 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2783 * up to bandwidth of 18Gigabit/sec. 8) ]
2784 */
2785
2786static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2787{
2788	struct tcp_sock *tp = tcp_sk(sk);
2789	struct tcphdr *th = skb->h.th;
2790	u32 seq = TCP_SKB_CB(skb)->seq;
2791	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2792
2793	return (/* 1. Pure ACK with correct sequence number. */
2794		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2795
2796		/* 2. ... and duplicate ACK. */
2797		ack == tp->snd_una &&
2798
2799		/* 3. ... and does not update window. */
2800		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2801
2802		/* 4. ... and sits in replay window. */
2803		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2804}
2805
2806static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2807{
2808	const struct tcp_sock *tp = tcp_sk(sk);
2809	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2810		xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2811		!tcp_disordered_ack(sk, skb));
2812}
2813
2814/* Check segment sequence number for validity.
2815 *
2816 * Segment controls are considered valid, if the segment
2817 * fits to the window after truncation to the window. Acceptability
2818 * of data (and SYN, FIN, of course) is checked separately.
2819 * See tcp_data_queue(), for example.
2820 *
2821 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2822 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2823 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2824 * (borrowed from freebsd)
2825 */
2826
2827static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2828{
2829	return	!before(end_seq, tp->rcv_wup) &&
2830		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2831}
2832
2833/* When we get a reset we do this. */
2834static void tcp_reset(struct sock *sk)
2835{
2836	/* We want the right error as BSD sees it (and indeed as we do). */
2837	switch (sk->sk_state) {
2838		case TCP_SYN_SENT:
2839			sk->sk_err = ECONNREFUSED;
2840			break;
2841		case TCP_CLOSE_WAIT:
2842			sk->sk_err = EPIPE;
2843			break;
2844		case TCP_CLOSE:
2845			return;
2846		default:
2847			sk->sk_err = ECONNRESET;
2848	}
2849
2850	if (!sock_flag(sk, SOCK_DEAD))
2851		sk->sk_error_report(sk);
2852
2853	tcp_done(sk);
2854}
2855
2856/*
2857 * 	Process the FIN bit. This now behaves as it is supposed to work
2858 *	and the FIN takes effect when it is validly part of sequence
2859 *	space. Not before when we get holes.
2860 *
2861 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2862 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
2863 *	TIME-WAIT)
2864 *
2865 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
2866 *	close and we go into CLOSING (and later onto TIME-WAIT)
2867 *
2868 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2869 */
2870static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2871{
2872	struct tcp_sock *tp = tcp_sk(sk);
2873
2874	inet_csk_schedule_ack(sk);
2875
2876	sk->sk_shutdown |= RCV_SHUTDOWN;
2877	sock_set_flag(sk, SOCK_DONE);
2878
2879	switch (sk->sk_state) {
2880		case TCP_SYN_RECV:
2881		case TCP_ESTABLISHED:
2882			/* Move to CLOSE_WAIT */
2883			tcp_set_state(sk, TCP_CLOSE_WAIT);
2884			inet_csk(sk)->icsk_ack.pingpong = 1;
2885			break;
2886
2887		case TCP_CLOSE_WAIT:
2888		case TCP_CLOSING:
2889			/* Received a retransmission of the FIN, do
2890			 * nothing.
2891			 */
2892			break;
2893		case TCP_LAST_ACK:
2894			/* RFC793: Remain in the LAST-ACK state. */
2895			break;
2896
2897		case TCP_FIN_WAIT1:
2898			/* This case occurs when a simultaneous close
2899			 * happens, we must ack the received FIN and
2900			 * enter the CLOSING state.
2901			 */
2902			tcp_send_ack(sk);
2903			tcp_set_state(sk, TCP_CLOSING);
2904			break;
2905		case TCP_FIN_WAIT2:
2906			/* Received a FIN -- send ACK and enter TIME_WAIT. */
2907			tcp_send_ack(sk);
2908			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2909			break;
2910		default:
2911			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
2912			 * cases we should never reach this piece of code.
2913			 */
2914			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2915			       __FUNCTION__, sk->sk_state);
2916			break;
2917	};
2918
2919	/* It _is_ possible, that we have something out-of-order _after_ FIN.
2920	 * Probably, we should reset in this case. For now drop them.
2921	 */
2922	__skb_queue_purge(&tp->out_of_order_queue);
2923	if (tp->rx_opt.sack_ok)
2924		tcp_sack_reset(&tp->rx_opt);
2925	sk_stream_mem_reclaim(sk);
2926
2927	if (!sock_flag(sk, SOCK_DEAD)) {
2928		sk->sk_state_change(sk);
2929
2930		/* Do not send POLL_HUP for half duplex close. */
2931		if (sk->sk_shutdown == SHUTDOWN_MASK ||
2932		    sk->sk_state == TCP_CLOSE)
2933			sk_wake_async(sk, 1, POLL_HUP);
2934		else
2935			sk_wake_async(sk, 1, POLL_IN);
2936	}
2937}
2938
2939static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2940{
2941	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2942		if (before(seq, sp->start_seq))
2943			sp->start_seq = seq;
2944		if (after(end_seq, sp->end_seq))
2945			sp->end_seq = end_seq;
2946		return 1;
2947	}
2948	return 0;
2949}
2950
2951static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2952{
2953	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2954		if (before(seq, tp->rcv_nxt))
2955			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2956		else
2957			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2958
2959		tp->rx_opt.dsack = 1;
2960		tp->duplicate_sack[0].start_seq = seq;
2961		tp->duplicate_sack[0].end_seq = end_seq;
2962		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2963	}
2964}
2965
2966static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2967{
2968	if (!tp->rx_opt.dsack)
2969		tcp_dsack_set(tp, seq, end_seq);
2970	else
2971		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2972}
2973
2974static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2975{
2976	struct tcp_sock *tp = tcp_sk(sk);
2977
2978	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2979	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2980		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2981		tcp_enter_quickack_mode(sk);
2982
2983		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2984			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2985
2986			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2987				end_seq = tp->rcv_nxt;
2988			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2989		}
2990	}
2991
2992	tcp_send_ack(sk);
2993}
2994
2995/* These routines update the SACK block as out-of-order packets arrive or
2996 * in-order packets close up the sequence space.
2997 */
2998static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2999{
3000	int this_sack;
3001	struct tcp_sack_block *sp = &tp->selective_acks[0];
3002	struct tcp_sack_block *swalk = sp+1;
3003
3004	/* See if the recent change to the first SACK eats into
3005	 * or hits the sequence space of other SACK blocks, if so coalesce.
3006	 */
3007	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3008		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3009			int i;
3010
3011			/* Zap SWALK, by moving every further SACK up by one slot.
3012			 * Decrease num_sacks.
3013			 */
3014			tp->rx_opt.num_sacks--;
3015			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3016			for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
3017				sp[i] = sp[i+1];
3018			continue;
3019		}
3020		this_sack++, swalk++;
3021	}
3022}
3023
3024static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3025{
3026	__u32 tmp;
3027
3028	tmp = sack1->start_seq;
3029	sack1->start_seq = sack2->start_seq;
3030	sack2->start_seq = tmp;
3031
3032	tmp = sack1->end_seq;
3033	sack1->end_seq = sack2->end_seq;
3034	sack2->end_seq = tmp;
3035}
3036
3037static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3038{
3039	struct tcp_sock *tp = tcp_sk(sk);
3040	struct tcp_sack_block *sp = &tp->selective_acks[0];
3041	int cur_sacks = tp->rx_opt.num_sacks;
3042	int this_sack;
3043
3044	if (!cur_sacks)
3045		goto new_sack;
3046
3047	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3048		if (tcp_sack_extend(sp, seq, end_seq)) {
3049			/* Rotate this_sack to the first one. */
3050			for (; this_sack>0; this_sack--, sp--)
3051				tcp_sack_swap(sp, sp-1);
3052			if (cur_sacks > 1)
3053				tcp_sack_maybe_coalesce(tp);
3054			return;
3055		}
3056	}
3057
3058	/* Could not find an adjacent existing SACK, build a new one,
3059	 * put it at the front, and shift everyone else down.  We
3060	 * always know there is at least one SACK present already here.
3061	 *
3062	 * If the sack array is full, forget about the last one.
3063	 */
3064	if (this_sack >= 4) {
3065		this_sack--;
3066		tp->rx_opt.num_sacks--;
3067		sp--;
3068	}
3069	for(; this_sack > 0; this_sack--, sp--)
3070		*sp = *(sp-1);
3071
3072new_sack:
3073	/* Build the new head SACK, and we're done. */
3074	sp->start_seq = seq;
3075	sp->end_seq = end_seq;
3076	tp->rx_opt.num_sacks++;
3077	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3078}
3079
3080/* RCV.NXT advances, some SACKs should be eaten. */
3081
3082static void tcp_sack_remove(struct tcp_sock *tp)
3083{
3084	struct tcp_sack_block *sp = &tp->selective_acks[0];
3085	int num_sacks = tp->rx_opt.num_sacks;
3086	int this_sack;
3087
3088	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3089	if (skb_queue_empty(&tp->out_of_order_queue)) {
3090		tp->rx_opt.num_sacks = 0;
3091		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3092		return;
3093	}
3094
3095	for(this_sack = 0; this_sack < num_sacks; ) {
3096		/* Check if the start of the sack is covered by RCV.NXT. */
3097		if (!before(tp->rcv_nxt, sp->start_seq)) {
3098			int i;
3099
3100			/* RCV.NXT must cover all the block! */
3101			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3102
3103			/* Zap this SACK, by moving forward any other SACKS. */
3104			for (i=this_sack+1; i < num_sacks; i++)
3105				tp->selective_acks[i-1] = tp->selective_acks[i];
3106			num_sacks--;
3107			continue;
3108		}
3109		this_sack++;
3110		sp++;
3111	}
3112	if (num_sacks != tp->rx_opt.num_sacks) {
3113		tp->rx_opt.num_sacks = num_sacks;
3114		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3115	}
3116}
3117
3118/* This one checks to see if we can put data from the
3119 * out_of_order queue into the receive_queue.
3120 */
3121static void tcp_ofo_queue(struct sock *sk)
3122{
3123	struct tcp_sock *tp = tcp_sk(sk);
3124	__u32 dsack_high = tp->rcv_nxt;
3125	struct sk_buff *skb;
3126
3127	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3128		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3129			break;
3130
3131		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3132			__u32 dsack = dsack_high;
3133			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3134				dsack_high = TCP_SKB_CB(skb)->end_seq;
3135			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3136		}
3137
3138		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3139			SOCK_DEBUG(sk, "ofo packet was already received \n");
3140			__skb_unlink(skb, &tp->out_of_order_queue);
3141			__kfree_skb(skb);
3142			continue;
3143		}
3144		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3145			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3146			   TCP_SKB_CB(skb)->end_seq);
3147
3148		__skb_unlink(skb, &tp->out_of_order_queue);
3149		__skb_queue_tail(&sk->sk_receive_queue, skb);
3150		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3151		if(skb->h.th->fin)
3152			tcp_fin(skb, sk, skb->h.th);
3153	}
3154}
3155
3156static int tcp_prune_queue(struct sock *sk);
3157
3158static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3159{
3160	struct tcphdr *th = skb->h.th;
3161	struct tcp_sock *tp = tcp_sk(sk);
3162	int eaten = -1;
3163
3164	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3165		goto drop;
3166
3167	__skb_pull(skb, th->doff*4);
3168
3169	TCP_ECN_accept_cwr(tp, skb);
3170
3171	if (tp->rx_opt.dsack) {
3172		tp->rx_opt.dsack = 0;
3173		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3174						    4 - tp->rx_opt.tstamp_ok);
3175	}
3176
3177	/*  Queue data for delivery to the user.
3178	 *  Packets in sequence go to the receive queue.
3179	 *  Out of sequence packets to the out_of_order_queue.
3180	 */
3181	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3182		if (tcp_receive_window(tp) == 0)
3183			goto out_of_window;
3184
3185		/* Ok. In sequence. In window. */
3186		if (tp->ucopy.task == current &&
3187		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3188		    sock_owned_by_user(sk) && !tp->urg_data) {
3189			int chunk = min_t(unsigned int, skb->len,
3190							tp->ucopy.len);
3191
3192			__set_current_state(TASK_RUNNING);
3193
3194			local_bh_enable();
3195			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3196				tp->ucopy.len -= chunk;
3197				tp->copied_seq += chunk;
3198				eaten = (chunk == skb->len && !th->fin);
3199				tcp_rcv_space_adjust(sk);
3200			}
3201			local_bh_disable();
3202		}
3203
3204		if (eaten <= 0) {
3205queue_and_out:
3206			if (eaten < 0 &&
3207			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3208			     !sk_stream_rmem_schedule(sk, skb))) {
3209				if (tcp_prune_queue(sk) < 0 ||
3210				    !sk_stream_rmem_schedule(sk, skb))
3211					goto drop;
3212			}
3213			sk_stream_set_owner_r(skb, sk);
3214			__skb_queue_tail(&sk->sk_receive_queue, skb);
3215		}
3216		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3217		if(skb->len)
3218			tcp_event_data_recv(sk, tp, skb);
3219		if(th->fin)
3220			tcp_fin(skb, sk, th);
3221
3222		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3223			tcp_ofo_queue(sk);
3224
3225			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3226			 * gap in queue is filled.
3227			 */
3228			if (skb_queue_empty(&tp->out_of_order_queue))
3229				inet_csk(sk)->icsk_ack.pingpong = 0;
3230		}
3231
3232		if (tp->rx_opt.num_sacks)
3233			tcp_sack_remove(tp);
3234
3235		tcp_fast_path_check(sk, tp);
3236
3237		if (eaten > 0)
3238			__kfree_skb(skb);
3239		else if (!sock_flag(sk, SOCK_DEAD))
3240			sk->sk_data_ready(sk, 0);
3241		return;
3242	}
3243
3244	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3245		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3246		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3247		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3248
3249out_of_window:
3250		tcp_enter_quickack_mode(sk);
3251		inet_csk_schedule_ack(sk);
3252drop:
3253		__kfree_skb(skb);
3254		return;
3255	}
3256
3257	/* Out of window. F.e. zero window probe. */
3258	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3259		goto out_of_window;
3260
3261	tcp_enter_quickack_mode(sk);
3262
3263	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3264		/* Partial packet, seq < rcv_next < end_seq */
3265		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3266			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3267			   TCP_SKB_CB(skb)->end_seq);
3268
3269		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3270
3271		/* If window is closed, drop tail of packet. But after
3272		 * remembering D-SACK for its head made in previous line.
3273		 */
3274		if (!tcp_receive_window(tp))
3275			goto out_of_window;
3276		goto queue_and_out;
3277	}
3278
3279	TCP_ECN_check_ce(tp, skb);
3280
3281	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3282	    !sk_stream_rmem_schedule(sk, skb)) {
3283		if (tcp_prune_queue(sk) < 0 ||
3284		    !sk_stream_rmem_schedule(sk, skb))
3285			goto drop;
3286	}
3287
3288	/* Disable header prediction. */
3289	tp->pred_flags = 0;
3290	inet_csk_schedule_ack(sk);
3291
3292	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3293		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3294
3295	sk_stream_set_owner_r(skb, sk);
3296
3297	if (!skb_peek(&tp->out_of_order_queue)) {
3298		/* Initial out of order segment, build 1 SACK. */
3299		if (tp->rx_opt.sack_ok) {
3300			tp->rx_opt.num_sacks = 1;
3301			tp->rx_opt.dsack     = 0;
3302			tp->rx_opt.eff_sacks = 1;
3303			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3304			tp->selective_acks[0].end_seq =
3305						TCP_SKB_CB(skb)->end_seq;
3306		}
3307		__skb_queue_head(&tp->out_of_order_queue,skb);
3308	} else {
3309		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3310		u32 seq = TCP_SKB_CB(skb)->seq;
3311		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3312
3313		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3314			__skb_append(skb1, skb, &tp->out_of_order_queue);
3315
3316			if (!tp->rx_opt.num_sacks ||
3317			    tp->selective_acks[0].end_seq != seq)
3318				goto add_sack;
3319
3320			/* Common case: data arrive in order after hole. */
3321			tp->selective_acks[0].end_seq = end_seq;
3322			return;
3323		}
3324
3325		/* Find place to insert this segment. */
3326		do {
3327			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3328				break;
3329		} while ((skb1 = skb1->prev) !=
3330			 (struct sk_buff*)&tp->out_of_order_queue);
3331
3332		/* Do skb overlap to previous one? */
3333		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3334		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3335			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3336				/* All the bits are present. Drop. */
3337				__kfree_skb(skb);
3338				tcp_dsack_set(tp, seq, end_seq);
3339				goto add_sack;
3340			}
3341			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3342				/* Partial overlap. */
3343				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3344			} else {
3345				skb1 = skb1->prev;
3346			}
3347		}
3348		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3349
3350		/* And clean segments covered by new one as whole. */
3351		while ((skb1 = skb->next) !=
3352		       (struct sk_buff*)&tp->out_of_order_queue &&
3353		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3354		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3355			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3356			       break;
3357		       }
3358		       __skb_unlink(skb1, &tp->out_of_order_queue);
3359		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3360		       __kfree_skb(skb1);
3361		}
3362
3363add_sack:
3364		if (tp->rx_opt.sack_ok)
3365			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3366	}
3367}
3368
3369/* Collapse contiguous sequence of skbs head..tail with
3370 * sequence numbers start..end.
3371 * Segments with FIN/SYN are not collapsed (only because this
3372 * simplifies code)
3373 */
3374static void
3375tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3376	     struct sk_buff *head, struct sk_buff *tail,
3377	     u32 start, u32 end)
3378{
3379	struct sk_buff *skb;
3380
3381	/* First, check that queue is collapsible and find
3382	 * the point where collapsing can be useful. */
3383	for (skb = head; skb != tail; ) {
3384		/* No new bits? It is possible on ofo queue. */
3385		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3386			struct sk_buff *next = skb->next;
3387			__skb_unlink(skb, list);
3388			__kfree_skb(skb);
3389			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3390			skb = next;
3391			continue;
3392		}
3393
3394		/* The first skb to collapse is:
3395		 * - not SYN/FIN and
3396		 * - bloated or contains data before "start" or
3397		 *   overlaps to the next one.
3398		 */
3399		if (!skb->h.th->syn && !skb->h.th->fin &&
3400		    (tcp_win_from_space(skb->truesize) > skb->len ||
3401		     before(TCP_SKB_CB(skb)->seq, start) ||
3402		     (skb->next != tail &&
3403		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3404			break;
3405
3406		/* Decided to skip this, advance start seq. */
3407		start = TCP_SKB_CB(skb)->end_seq;
3408		skb = skb->next;
3409	}
3410	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3411		return;
3412
3413	while (before(start, end)) {
3414		struct sk_buff *nskb;
3415		int header = skb_headroom(skb);
3416		int copy = SKB_MAX_ORDER(header, 0);
3417
3418		/* Too big header? This can happen with IPv6. */
3419		if (copy < 0)
3420			return;
3421		if (end-start < copy)
3422			copy = end-start;
3423		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3424		if (!nskb)
3425			return;
3426		skb_reserve(nskb, header);
3427		memcpy(nskb->head, skb->head, header);
3428		nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3429		nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3430		nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3431		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3432		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3433		__skb_insert(nskb, skb->prev, skb, list);
3434		sk_stream_set_owner_r(nskb, sk);
3435
3436		/* Copy data, releasing collapsed skbs. */
3437		while (copy > 0) {
3438			int offset = start - TCP_SKB_CB(skb)->seq;
3439			int size = TCP_SKB_CB(skb)->end_seq - start;
3440
3441			BUG_ON(offset < 0);
3442			if (size > 0) {
3443				size = min(copy, size);
3444				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3445					BUG();
3446				TCP_SKB_CB(nskb)->end_seq += size;
3447				copy -= size;
3448				start += size;
3449			}
3450			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3451				struct sk_buff *next = skb->next;
3452				__skb_unlink(skb, list);
3453				__kfree_skb(skb);
3454				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3455				skb = next;
3456				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3457					return;
3458			}
3459		}
3460	}
3461}
3462
3463/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3464 * and tcp_collapse() them until all the queue is collapsed.
3465 */
3466static void tcp_collapse_ofo_queue(struct sock *sk)
3467{
3468	struct tcp_sock *tp = tcp_sk(sk);
3469	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3470	struct sk_buff *head;
3471	u32 start, end;
3472
3473	if (skb == NULL)
3474		return;
3475
3476	start = TCP_SKB_CB(skb)->seq;
3477	end = TCP_SKB_CB(skb)->end_seq;
3478	head = skb;
3479
3480	for (;;) {
3481		skb = skb->next;
3482
3483		/* Segment is terminated when we see gap or when
3484		 * we are at the end of all the queue. */
3485		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3486		    after(TCP_SKB_CB(skb)->seq, end) ||
3487		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3488			tcp_collapse(sk, &tp->out_of_order_queue,
3489				     head, skb, start, end);
3490			head = skb;
3491			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3492				break;
3493			/* Start new segment */
3494			start = TCP_SKB_CB(skb)->seq;
3495			end = TCP_SKB_CB(skb)->end_seq;
3496		} else {
3497			if (before(TCP_SKB_CB(skb)->seq, start))
3498				start = TCP_SKB_CB(skb)->seq;
3499			if (after(TCP_SKB_CB(skb)->end_seq, end))
3500				end = TCP_SKB_CB(skb)->end_seq;
3501		}
3502	}
3503}
3504
3505/* Reduce allocated memory if we can, trying to get
3506 * the socket within its memory limits again.
3507 *
3508 * Return less than zero if we should start dropping frames
3509 * until the socket owning process reads some of the data
3510 * to stabilize the situation.
3511 */
3512static int tcp_prune_queue(struct sock *sk)
3513{
3514	struct tcp_sock *tp = tcp_sk(sk);
3515
3516	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3517
3518	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3519
3520	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3521		tcp_clamp_window(sk, tp);
3522	else if (tcp_memory_pressure)
3523		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3524
3525	tcp_collapse_ofo_queue(sk);
3526	tcp_collapse(sk, &sk->sk_receive_queue,
3527		     sk->sk_receive_queue.next,
3528		     (struct sk_buff*)&sk->sk_receive_queue,
3529		     tp->copied_seq, tp->rcv_nxt);
3530	sk_stream_mem_reclaim(sk);
3531
3532	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3533		return 0;
3534
3535	/* Collapsing did not help, destructive actions follow.
3536	 * This must not ever occur. */
3537
3538	/* First, purge the out_of_order queue. */
3539	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3540		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3541		__skb_queue_purge(&tp->out_of_order_queue);
3542
3543		/* Reset SACK state.  A conforming SACK implementation will
3544		 * do the same at a timeout based retransmit.  When a connection
3545		 * is in a sad state like this, we care only about integrity
3546		 * of the connection not performance.
3547		 */
3548		if (tp->rx_opt.sack_ok)
3549			tcp_sack_reset(&tp->rx_opt);
3550		sk_stream_mem_reclaim(sk);
3551	}
3552
3553	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3554		return 0;
3555
3556	/* If we are really being abused, tell the caller to silently
3557	 * drop receive data on the floor.  It will get retransmitted
3558	 * and hopefully then we'll have sufficient space.
3559	 */
3560	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3561
3562	/* Massive buffer overcommit. */
3563	tp->pred_flags = 0;
3564	return -1;
3565}
3566
3567
3568/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3569 * As additional protections, we do not touch cwnd in retransmission phases,
3570 * and if application hit its sndbuf limit recently.
3571 */
3572void tcp_cwnd_application_limited(struct sock *sk)
3573{
3574	struct tcp_sock *tp = tcp_sk(sk);
3575
3576	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3577	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3578		/* Limited by application or receiver window. */
3579		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3580		u32 win_used = max(tp->snd_cwnd_used, init_win);
3581		if (win_used < tp->snd_cwnd) {
3582			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3583			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3584		}
3585		tp->snd_cwnd_used = 0;
3586	}
3587	tp->snd_cwnd_stamp = tcp_time_stamp;
3588}
3589
3590static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3591{
3592	/* If the user specified a specific send buffer setting, do
3593	 * not modify it.
3594	 */
3595	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3596		return 0;
3597
3598	/* If we are under global TCP memory pressure, do not expand.  */
3599	if (tcp_memory_pressure)
3600		return 0;
3601
3602	/* If we are under soft global TCP memory pressure, do not expand.  */
3603	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3604		return 0;
3605
3606	/* If we filled the congestion window, do not expand.  */
3607	if (tp->packets_out >= tp->snd_cwnd)
3608		return 0;
3609
3610	return 1;
3611}
3612
3613/* When incoming ACK allowed to free some skb from write_queue,
3614 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3615 * on the exit from tcp input handler.
3616 *
3617 * PROBLEM: sndbuf expansion does not work well with largesend.
3618 */
3619static void tcp_new_space(struct sock *sk)
3620{
3621	struct tcp_sock *tp = tcp_sk(sk);
3622
3623	if (tcp_should_expand_sndbuf(sk, tp)) {
3624		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3625			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3626		    demanded = max_t(unsigned int, tp->snd_cwnd,
3627						   tp->reordering + 1);
3628		sndmem *= 2*demanded;
3629		if (sndmem > sk->sk_sndbuf)
3630			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3631		tp->snd_cwnd_stamp = tcp_time_stamp;
3632	}
3633
3634	sk->sk_write_space(sk);
3635}
3636
3637static void tcp_check_space(struct sock *sk)
3638{
3639	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3640		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3641		if (sk->sk_socket &&
3642		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3643			tcp_new_space(sk);
3644	}
3645}
3646
3647static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3648{
3649	tcp_push_pending_frames(sk, tp);
3650	tcp_check_space(sk);
3651}
3652
3653/*
3654 * Check if sending an ack is needed.
3655 */
3656static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3657{
3658	struct tcp_sock *tp = tcp_sk(sk);
3659
3660	    /* More than one full frame received... */
3661	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3662	     /* ... and right edge of window advances far enough.
3663	      * (tcp_recvmsg() will send ACK otherwise). Or...
3664	      */
3665	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3666	    /* We ACK each frame or... */
3667	    tcp_in_quickack_mode(sk) ||
3668	    /* We have out of order data. */
3669	    (ofo_possible &&
3670	     skb_peek(&tp->out_of_order_queue))) {
3671		/* Then ack it now */
3672		tcp_send_ack(sk);
3673	} else {
3674		/* Else, send delayed ack. */
3675		tcp_send_delayed_ack(sk);
3676	}
3677}
3678
3679static inline void tcp_ack_snd_check(struct sock *sk)
3680{
3681	if (!inet_csk_ack_scheduled(sk)) {
3682		/* We sent a data segment already. */
3683		return;
3684	}
3685	__tcp_ack_snd_check(sk, 1);
3686}
3687
3688/*
3689 *	This routine is only called when we have urgent data
3690 *	signaled. Its the 'slow' part of tcp_urg. It could be
3691 *	moved inline now as tcp_urg is only called from one
3692 *	place. We handle URGent data wrong. We have to - as
3693 *	BSD still doesn't use the correction from RFC961.
3694 *	For 1003.1g we should support a new option TCP_STDURG to permit
3695 *	either form (or just set the sysctl tcp_stdurg).
3696 */
3697
3698static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3699{
3700	struct tcp_sock *tp = tcp_sk(sk);
3701	u32 ptr = ntohs(th->urg_ptr);
3702
3703	if (ptr && !sysctl_tcp_stdurg)
3704		ptr--;
3705	ptr += ntohl(th->seq);
3706
3707	/* Ignore urgent data that we've already seen and read. */
3708	if (after(tp->copied_seq, ptr))
3709		return;
3710
3711	/* Do not replay urg ptr.
3712	 *
3713	 * NOTE: interesting situation not covered by specs.
3714	 * Misbehaving sender may send urg ptr, pointing to segment,
3715	 * which we already have in ofo queue. We are not able to fetch
3716	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3717	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3718	 * situations. But it is worth to think about possibility of some
3719	 * DoSes using some hypothetical application level deadlock.
3720	 */
3721	if (before(ptr, tp->rcv_nxt))
3722		return;
3723
3724	/* Do we already have a newer (or duplicate) urgent pointer? */
3725	if (tp->urg_data && !after(ptr, tp->urg_seq))
3726		return;
3727
3728	/* Tell the world about our new urgent pointer. */
3729	sk_send_sigurg(sk);
3730
3731	/* We may be adding urgent data when the last byte read was
3732	 * urgent. To do this requires some care. We cannot just ignore
3733	 * tp->copied_seq since we would read the last urgent byte again
3734	 * as data, nor can we alter copied_seq until this data arrives
3735	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3736	 *
3737	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3738	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3739	 * and expect that both A and B disappear from stream. This is _wrong_.
3740	 * Though this happens in BSD with high probability, this is occasional.
3741	 * Any application relying on this is buggy. Note also, that fix "works"
3742	 * only in this artificial test. Insert some normal data between A and B and we will
3743	 * decline of BSD again. Verdict: it is better to remove to trap
3744	 * buggy users.
3745	 */
3746	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3747	    !sock_flag(sk, SOCK_URGINLINE) &&
3748	    tp->copied_seq != tp->rcv_nxt) {
3749		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3750		tp->copied_seq++;
3751		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3752			__skb_unlink(skb, &sk->sk_receive_queue);
3753			__kfree_skb(skb);
3754		}
3755	}
3756
3757	tp->urg_data   = TCP_URG_NOTYET;
3758	tp->urg_seq    = ptr;
3759
3760	/* Disable header prediction. */
3761	tp->pred_flags = 0;
3762}
3763
3764/* This is the 'fast' part of urgent handling. */
3765static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3766{
3767	struct tcp_sock *tp = tcp_sk(sk);
3768
3769	/* Check if we get a new urgent pointer - normally not. */
3770	if (th->urg)
3771		tcp_check_urg(sk,th);
3772
3773	/* Do we wait for any urgent data? - normally not... */
3774	if (tp->urg_data == TCP_URG_NOTYET) {
3775		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3776			  th->syn;
3777
3778		/* Is the urgent pointer pointing into this packet? */
3779		if (ptr < skb->len) {
3780			u8 tmp;
3781			if (skb_copy_bits(skb, ptr, &tmp, 1))
3782				BUG();
3783			tp->urg_data = TCP_URG_VALID | tmp;
3784			if (!sock_flag(sk, SOCK_DEAD))
3785				sk->sk_data_ready(sk, 0);
3786		}
3787	}
3788}
3789
3790static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3791{
3792	struct tcp_sock *tp = tcp_sk(sk);
3793	int chunk = skb->len - hlen;
3794	int err;
3795
3796	local_bh_enable();
3797	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3798		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3799	else
3800		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3801						       tp->ucopy.iov);
3802
3803	if (!err) {
3804		tp->ucopy.len -= chunk;
3805		tp->copied_seq += chunk;
3806		tcp_rcv_space_adjust(sk);
3807	}
3808
3809	local_bh_disable();
3810	return err;
3811}
3812
3813static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3814{
3815	__sum16 result;
3816
3817	if (sock_owned_by_user(sk)) {
3818		local_bh_enable();
3819		result = __tcp_checksum_complete(skb);
3820		local_bh_disable();
3821	} else {
3822		result = __tcp_checksum_complete(skb);
3823	}
3824	return result;
3825}
3826
3827static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3828{
3829	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3830		__tcp_checksum_complete_user(sk, skb);
3831}
3832
3833#ifdef CONFIG_NET_DMA
3834static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3835{
3836	struct tcp_sock *tp = tcp_sk(sk);
3837	int chunk = skb->len - hlen;
3838	int dma_cookie;
3839	int copied_early = 0;
3840
3841	if (tp->ucopy.wakeup)
3842		return 0;
3843
3844	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3845		tp->ucopy.dma_chan = get_softnet_dma();
3846
3847	if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3848
3849		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3850			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3851
3852		if (dma_cookie < 0)
3853			goto out;
3854
3855		tp->ucopy.dma_cookie = dma_cookie;
3856		copied_early = 1;
3857
3858		tp->ucopy.len -= chunk;
3859		tp->copied_seq += chunk;
3860		tcp_rcv_space_adjust(sk);
3861
3862		if ((tp->ucopy.len == 0) ||
3863		    (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3864		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3865			tp->ucopy.wakeup = 1;
3866			sk->sk_data_ready(sk, 0);
3867		}
3868	} else if (chunk > 0) {
3869		tp->ucopy.wakeup = 1;
3870		sk->sk_data_ready(sk, 0);
3871	}
3872out:
3873	return copied_early;
3874}
3875#endif /* CONFIG_NET_DMA */
3876
3877/*
3878 *	TCP receive function for the ESTABLISHED state.
3879 *
3880 *	It is split into a fast path and a slow path. The fast path is
3881 * 	disabled when:
3882 *	- A zero window was announced from us - zero window probing
3883 *        is only handled properly in the slow path.
3884 *	- Out of order segments arrived.
3885 *	- Urgent data is expected.
3886 *	- There is no buffer space left
3887 *	- Unexpected TCP flags/window values/header lengths are received
3888 *	  (detected by checking the TCP header against pred_flags)
3889 *	- Data is sent in both directions. Fast path only supports pure senders
3890 *	  or pure receivers (this means either the sequence number or the ack
3891 *	  value must stay constant)
3892 *	- Unexpected TCP option.
3893 *
3894 *	When these conditions are not satisfied it drops into a standard
3895 *	receive procedure patterned after RFC793 to handle all cases.
3896 *	The first three cases are guaranteed by proper pred_flags setting,
3897 *	the rest is checked inline. Fast processing is turned on in
3898 *	tcp_data_queue when everything is OK.
3899 */
3900int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3901			struct tcphdr *th, unsigned len)
3902{
3903	struct tcp_sock *tp = tcp_sk(sk);
3904
3905	/*
3906	 *	Header prediction.
3907	 *	The code loosely follows the one in the famous
3908	 *	"30 instruction TCP receive" Van Jacobson mail.
3909	 *
3910	 *	Van's trick is to deposit buffers into socket queue
3911	 *	on a device interrupt, to call tcp_recv function
3912	 *	on the receive process context and checksum and copy
3913	 *	the buffer to user space. smart...
3914	 *
3915	 *	Our current scheme is not silly either but we take the
3916	 *	extra cost of the net_bh soft interrupt processing...
3917	 *	We do checksum and copy also but from device to kernel.
3918	 */
3919
3920	tp->rx_opt.saw_tstamp = 0;
3921
3922	/*	pred_flags is 0xS?10 << 16 + snd_wnd
3923	 *	if header_prediction is to be made
3924	 *	'S' will always be tp->tcp_header_len >> 2
3925	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
3926	 *  turn it off	(when there are holes in the receive
3927	 *	 space for instance)
3928	 *	PSH flag is ignored.
3929	 */
3930
3931	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3932		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3933		int tcp_header_len = tp->tcp_header_len;
3934
3935		/* Timestamp header prediction: tcp_header_len
3936		 * is automatically equal to th->doff*4 due to pred_flags
3937		 * match.
3938		 */
3939
3940		/* Check timestamp */
3941		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3942			__be32 *ptr = (__be32 *)(th + 1);
3943
3944			/* No? Slow path! */
3945			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3946					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3947				goto slow_path;
3948
3949			tp->rx_opt.saw_tstamp = 1;
3950			++ptr;
3951			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3952			++ptr;
3953			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3954
3955			/* If PAWS failed, check it more carefully in slow path */
3956			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3957				goto slow_path;
3958
3959			/* DO NOT update ts_recent here, if checksum fails
3960			 * and timestamp was corrupted part, it will result
3961			 * in a hung connection since we will drop all
3962			 * future packets due to the PAWS test.
3963			 */
3964		}
3965
3966		if (len <= tcp_header_len) {
3967			/* Bulk data transfer: sender */
3968			if (len == tcp_header_len) {
3969				/* Predicted packet is in window by definition.
3970				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3971				 * Hence, check seq<=rcv_wup reduces to:
3972				 */
3973				if (tcp_header_len ==
3974				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3975				    tp->rcv_nxt == tp->rcv_wup)
3976					tcp_store_ts_recent(tp);
3977
3978				/* We know that such packets are checksummed
3979				 * on entry.
3980				 */
3981				tcp_ack(sk, skb, 0);
3982				__kfree_skb(skb);
3983				tcp_data_snd_check(sk, tp);
3984				return 0;
3985			} else { /* Header too small */
3986				TCP_INC_STATS_BH(TCP_MIB_INERRS);
3987				goto discard;
3988			}
3989		} else {
3990			int eaten = 0;
3991			int copied_early = 0;
3992
3993			if (tp->copied_seq == tp->rcv_nxt &&
3994			    len - tcp_header_len <= tp->ucopy.len) {
3995#ifdef CONFIG_NET_DMA
3996				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
3997					copied_early = 1;
3998					eaten = 1;
3999				}
4000#endif
4001				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4002					__set_current_state(TASK_RUNNING);
4003
4004					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4005						eaten = 1;
4006				}
4007				if (eaten) {
4008					/* Predicted packet is in window by definition.
4009					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4010					 * Hence, check seq<=rcv_wup reduces to:
4011					 */
4012					if (tcp_header_len ==
4013					    (sizeof(struct tcphdr) +
4014					     TCPOLEN_TSTAMP_ALIGNED) &&
4015					    tp->rcv_nxt == tp->rcv_wup)
4016						tcp_store_ts_recent(tp);
4017
4018					tcp_rcv_rtt_measure_ts(sk, skb);
4019
4020					__skb_pull(skb, tcp_header_len);
4021					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4022					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4023				}
4024				if (copied_early)
4025					tcp_cleanup_rbuf(sk, skb->len);
4026			}
4027			if (!eaten) {
4028				if (tcp_checksum_complete_user(sk, skb))
4029					goto csum_error;
4030
4031				/* Predicted packet is in window by definition.
4032				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4033				 * Hence, check seq<=rcv_wup reduces to:
4034				 */
4035				if (tcp_header_len ==
4036				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4037				    tp->rcv_nxt == tp->rcv_wup)
4038					tcp_store_ts_recent(tp);
4039
4040				tcp_rcv_rtt_measure_ts(sk, skb);
4041
4042				if ((int)skb->truesize > sk->sk_forward_alloc)
4043					goto step5;
4044
4045				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4046
4047				/* Bulk data transfer: receiver */
4048				__skb_pull(skb,tcp_header_len);
4049				__skb_queue_tail(&sk->sk_receive_queue, skb);
4050				sk_stream_set_owner_r(skb, sk);
4051				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4052			}
4053
4054			tcp_event_data_recv(sk, tp, skb);
4055
4056			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4057				/* Well, only one small jumplet in fast path... */
4058				tcp_ack(sk, skb, FLAG_DATA);
4059				tcp_data_snd_check(sk, tp);
4060				if (!inet_csk_ack_scheduled(sk))
4061					goto no_ack;
4062			}
4063
4064			__tcp_ack_snd_check(sk, 0);
4065no_ack:
4066#ifdef CONFIG_NET_DMA
4067			if (copied_early)
4068				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4069			else
4070#endif
4071			if (eaten)
4072				__kfree_skb(skb);
4073			else
4074				sk->sk_data_ready(sk, 0);
4075			return 0;
4076		}
4077	}
4078
4079slow_path:
4080	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4081		goto csum_error;
4082
4083	/*
4084	 * RFC1323: H1. Apply PAWS check first.
4085	 */
4086	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4087	    tcp_paws_discard(sk, skb)) {
4088		if (!th->rst) {
4089			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4090			tcp_send_dupack(sk, skb);
4091			goto discard;
4092		}
4093		/* Resets are accepted even if PAWS failed.
4094
4095		   ts_recent update must be made after we are sure
4096		   that the packet is in window.
4097		 */
4098	}
4099
4100	/*
4101	 *	Standard slow path.
4102	 */
4103
4104	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4105		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4106		 * (RST) segments are validated by checking their SEQ-fields."
4107		 * And page 69: "If an incoming segment is not acceptable,
4108		 * an acknowledgment should be sent in reply (unless the RST bit
4109		 * is set, if so drop the segment and return)".
4110		 */
4111		if (!th->rst)
4112			tcp_send_dupack(sk, skb);
4113		goto discard;
4114	}
4115
4116	if(th->rst) {
4117		tcp_reset(sk);
4118		goto discard;
4119	}
4120
4121	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4122
4123	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4124		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4125		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4126		tcp_reset(sk);
4127		return 1;
4128	}
4129
4130step5:
4131	if(th->ack)
4132		tcp_ack(sk, skb, FLAG_SLOWPATH);
4133
4134	tcp_rcv_rtt_measure_ts(sk, skb);
4135
4136	/* Process urgent data. */
4137	tcp_urg(sk, skb, th);
4138
4139	/* step 7: process the segment text */
4140	tcp_data_queue(sk, skb);
4141
4142	tcp_data_snd_check(sk, tp);
4143	tcp_ack_snd_check(sk);
4144	return 0;
4145
4146csum_error:
4147	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4148
4149discard:
4150	__kfree_skb(skb);
4151	return 0;
4152}
4153
4154static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4155					 struct tcphdr *th, unsigned len)
4156{
4157	struct tcp_sock *tp = tcp_sk(sk);
4158	struct inet_connection_sock *icsk = inet_csk(sk);
4159	int saved_clamp = tp->rx_opt.mss_clamp;
4160
4161	tcp_parse_options(skb, &tp->rx_opt, 0);
4162
4163	if (th->ack) {
4164		/* rfc793:
4165		 * "If the state is SYN-SENT then
4166		 *    first check the ACK bit
4167		 *      If the ACK bit is set
4168		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4169		 *        a reset (unless the RST bit is set, if so drop
4170		 *        the segment and return)"
4171		 *
4172		 *  We do not send data with SYN, so that RFC-correct
4173		 *  test reduces to:
4174		 */
4175		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4176			goto reset_and_undo;
4177
4178		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4179		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4180			     tcp_time_stamp)) {
4181			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4182			goto reset_and_undo;
4183		}
4184
4185		/* Now ACK is acceptable.
4186		 *
4187		 * "If the RST bit is set
4188		 *    If the ACK was acceptable then signal the user "error:
4189		 *    connection reset", drop the segment, enter CLOSED state,
4190		 *    delete TCB, and return."
4191		 */
4192
4193		if (th->rst) {
4194			tcp_reset(sk);
4195			goto discard;
4196		}
4197
4198		/* rfc793:
4199		 *   "fifth, if neither of the SYN or RST bits is set then
4200		 *    drop the segment and return."
4201		 *
4202		 *    See note below!
4203		 *                                        --ANK(990513)
4204		 */
4205		if (!th->syn)
4206			goto discard_and_undo;
4207
4208		/* rfc793:
4209		 *   "If the SYN bit is on ...
4210		 *    are acceptable then ...
4211		 *    (our SYN has been ACKed), change the connection
4212		 *    state to ESTABLISHED..."
4213		 */
4214
4215		TCP_ECN_rcv_synack(tp, th);
4216
4217		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4218		tcp_ack(sk, skb, FLAG_SLOWPATH);
4219
4220		/* Ok.. it's good. Set up sequence numbers and
4221		 * move to established.
4222		 */
4223		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4224		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4225
4226		/* RFC1323: The window in SYN & SYN/ACK segments is
4227		 * never scaled.
4228		 */
4229		tp->snd_wnd = ntohs(th->window);
4230		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4231
4232		if (!tp->rx_opt.wscale_ok) {
4233			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4234			tp->window_clamp = min(tp->window_clamp, 65535U);
4235		}
4236
4237		if (tp->rx_opt.saw_tstamp) {
4238			tp->rx_opt.tstamp_ok	   = 1;
4239			tp->tcp_header_len =
4240				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4241			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4242			tcp_store_ts_recent(tp);
4243		} else {
4244			tp->tcp_header_len = sizeof(struct tcphdr);
4245		}
4246
4247		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4248			tp->rx_opt.sack_ok |= 2;
4249
4250		tcp_mtup_init(sk);
4251		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4252		tcp_initialize_rcv_mss(sk);
4253
4254		/* Remember, tcp_poll() does not lock socket!
4255		 * Change state from SYN-SENT only after copied_seq
4256		 * is initialized. */
4257		tp->copied_seq = tp->rcv_nxt;
4258		smp_mb();
4259		tcp_set_state(sk, TCP_ESTABLISHED);
4260
4261		security_inet_conn_established(sk, skb);
4262
4263		/* Make sure socket is routed, for correct metrics.  */
4264		icsk->icsk_af_ops->rebuild_header(sk);
4265
4266		tcp_init_metrics(sk);
4267
4268		tcp_init_congestion_control(sk);
4269
4270		/* Prevent spurious tcp_cwnd_restart() on first data
4271		 * packet.
4272		 */
4273		tp->lsndtime = tcp_time_stamp;
4274
4275		tcp_init_buffer_space(sk);
4276
4277		if (sock_flag(sk, SOCK_KEEPOPEN))
4278			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4279
4280		if (!tp->rx_opt.snd_wscale)
4281			__tcp_fast_path_on(tp, tp->snd_wnd);
4282		else
4283			tp->pred_flags = 0;
4284
4285		if (!sock_flag(sk, SOCK_DEAD)) {
4286			sk->sk_state_change(sk);
4287			sk_wake_async(sk, 0, POLL_OUT);
4288		}
4289
4290		if (sk->sk_write_pending ||
4291		    icsk->icsk_accept_queue.rskq_defer_accept ||
4292		    icsk->icsk_ack.pingpong) {
4293			/* Save one ACK. Data will be ready after
4294			 * several ticks, if write_pending is set.
4295			 *
4296			 * It may be deleted, but with this feature tcpdumps
4297			 * look so _wonderfully_ clever, that I was not able
4298			 * to stand against the temptation 8)     --ANK
4299			 */
4300			inet_csk_schedule_ack(sk);
4301			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4302			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4303			tcp_incr_quickack(sk);
4304			tcp_enter_quickack_mode(sk);
4305			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4306						  TCP_DELACK_MAX, TCP_RTO_MAX);
4307
4308discard:
4309			__kfree_skb(skb);
4310			return 0;
4311		} else {
4312			tcp_send_ack(sk);
4313		}
4314		return -1;
4315	}
4316
4317	/* No ACK in the segment */
4318
4319	if (th->rst) {
4320		/* rfc793:
4321		 * "If the RST bit is set
4322		 *
4323		 *      Otherwise (no ACK) drop the segment and return."
4324		 */
4325
4326		goto discard_and_undo;
4327	}
4328
4329	/* PAWS check. */
4330	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4331		goto discard_and_undo;
4332
4333	if (th->syn) {
4334		/* We see SYN without ACK. It is attempt of
4335		 * simultaneous connect with crossed SYNs.
4336		 * Particularly, it can be connect to self.
4337		 */
4338		tcp_set_state(sk, TCP_SYN_RECV);
4339
4340		if (tp->rx_opt.saw_tstamp) {
4341			tp->rx_opt.tstamp_ok = 1;
4342			tcp_store_ts_recent(tp);
4343			tp->tcp_header_len =
4344				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4345		} else {
4346			tp->tcp_header_len = sizeof(struct tcphdr);
4347		}
4348
4349		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4350		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4351
4352		/* RFC1323: The window in SYN & SYN/ACK segments is
4353		 * never scaled.
4354		 */
4355		tp->snd_wnd    = ntohs(th->window);
4356		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4357		tp->max_window = tp->snd_wnd;
4358
4359		TCP_ECN_rcv_syn(tp, th);
4360
4361		tcp_mtup_init(sk);
4362		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4363		tcp_initialize_rcv_mss(sk);
4364
4365
4366		tcp_send_synack(sk);
4367#if 0
4368		/* Note, we could accept data and URG from this segment.
4369		 * There are no obstacles to make this.
4370		 *
4371		 * However, if we ignore data in ACKless segments sometimes,
4372		 * we have no reasons to accept it sometimes.
4373		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4374		 * is not flawless. So, discard packet for sanity.
4375		 * Uncomment this return to process the data.
4376		 */
4377		return -1;
4378#else
4379		goto discard;
4380#endif
4381	}
4382	/* "fifth, if neither of the SYN or RST bits is set then
4383	 * drop the segment and return."
4384	 */
4385
4386discard_and_undo:
4387	tcp_clear_options(&tp->rx_opt);
4388	tp->rx_opt.mss_clamp = saved_clamp;
4389	goto discard;
4390
4391reset_and_undo:
4392	tcp_clear_options(&tp->rx_opt);
4393	tp->rx_opt.mss_clamp = saved_clamp;
4394	return 1;
4395}
4396
4397
4398/*
4399 *	This function implements the receiving procedure of RFC 793 for
4400 *	all states except ESTABLISHED and TIME_WAIT.
4401 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4402 *	address independent.
4403 */
4404
4405int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4406			  struct tcphdr *th, unsigned len)
4407{
4408	struct tcp_sock *tp = tcp_sk(sk);
4409	struct inet_connection_sock *icsk = inet_csk(sk);
4410	int queued = 0;
4411
4412	tp->rx_opt.saw_tstamp = 0;
4413
4414	switch (sk->sk_state) {
4415	case TCP_CLOSE:
4416		goto discard;
4417
4418	case TCP_LISTEN:
4419		if(th->ack)
4420			return 1;
4421
4422		if(th->rst)
4423			goto discard;
4424
4425		if(th->syn) {
4426			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4427				return 1;
4428
4429			/* Now we have several options: In theory there is
4430			 * nothing else in the frame. KA9Q has an option to
4431			 * send data with the syn, BSD accepts data with the
4432			 * syn up to the [to be] advertised window and
4433			 * Solaris 2.1 gives you a protocol error. For now
4434			 * we just ignore it, that fits the spec precisely
4435			 * and avoids incompatibilities. It would be nice in
4436			 * future to drop through and process the data.
4437			 *
4438			 * Now that TTCP is starting to be used we ought to
4439			 * queue this data.
4440			 * But, this leaves one open to an easy denial of
4441			 * service attack, and SYN cookies can't defend
4442			 * against this problem. So, we drop the data
4443			 * in the interest of security over speed unless
4444			 * it's still in use.
4445			 */
4446			kfree_skb(skb);
4447			return 0;
4448		}
4449		goto discard;
4450
4451	case TCP_SYN_SENT:
4452		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4453		if (queued >= 0)
4454			return queued;
4455
4456		/* Do step6 onward by hand. */
4457		tcp_urg(sk, skb, th);
4458		__kfree_skb(skb);
4459		tcp_data_snd_check(sk, tp);
4460		return 0;
4461	}
4462
4463	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4464	    tcp_paws_discard(sk, skb)) {
4465		if (!th->rst) {
4466			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4467			tcp_send_dupack(sk, skb);
4468			goto discard;
4469		}
4470		/* Reset is accepted even if it did not pass PAWS. */
4471	}
4472
4473	/* step 1: check sequence number */
4474	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4475		if (!th->rst)
4476			tcp_send_dupack(sk, skb);
4477		goto discard;
4478	}
4479
4480	/* step 2: check RST bit */
4481	if(th->rst) {
4482		tcp_reset(sk);
4483		goto discard;
4484	}
4485
4486	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4487
4488	/* step 3: check security and precedence [ignored] */
4489
4490	/*	step 4:
4491	 *
4492	 *	Check for a SYN in window.
4493	 */
4494	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4495		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4496		tcp_reset(sk);
4497		return 1;
4498	}
4499
4500	/* step 5: check the ACK field */
4501	if (th->ack) {
4502		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4503
4504		switch(sk->sk_state) {
4505		case TCP_SYN_RECV:
4506			if (acceptable) {
4507				tp->copied_seq = tp->rcv_nxt;
4508				smp_mb();
4509				tcp_set_state(sk, TCP_ESTABLISHED);
4510				sk->sk_state_change(sk);
4511
4512				/* Note, that this wakeup is only for marginal
4513				 * crossed SYN case. Passively open sockets
4514				 * are not waked up, because sk->sk_sleep ==
4515				 * NULL and sk->sk_socket == NULL.
4516				 */
4517				if (sk->sk_socket) {
4518					sk_wake_async(sk,0,POLL_OUT);
4519				}
4520
4521				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4522				tp->snd_wnd = ntohs(th->window) <<
4523					      tp->rx_opt.snd_wscale;
4524				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4525					    TCP_SKB_CB(skb)->seq);
4526
4527				/* tcp_ack considers this ACK as duplicate
4528				 * and does not calculate rtt.
4529				 * Fix it at least with timestamps.
4530				 */
4531				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4532				    !tp->srtt)
4533					tcp_ack_saw_tstamp(sk, 0);
4534
4535				if (tp->rx_opt.tstamp_ok)
4536					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4537
4538				/* Make sure socket is routed, for
4539				 * correct metrics.
4540				 */
4541				icsk->icsk_af_ops->rebuild_header(sk);
4542
4543				tcp_init_metrics(sk);
4544
4545				tcp_init_congestion_control(sk);
4546
4547				/* Prevent spurious tcp_cwnd_restart() on
4548				 * first data packet.
4549				 */
4550				tp->lsndtime = tcp_time_stamp;
4551
4552				tcp_mtup_init(sk);
4553				tcp_initialize_rcv_mss(sk);
4554				tcp_init_buffer_space(sk);
4555				tcp_fast_path_on(tp);
4556			} else {
4557				return 1;
4558			}
4559			break;
4560
4561		case TCP_FIN_WAIT1:
4562			if (tp->snd_una == tp->write_seq) {
4563				tcp_set_state(sk, TCP_FIN_WAIT2);
4564				sk->sk_shutdown |= SEND_SHUTDOWN;
4565				dst_confirm(sk->sk_dst_cache);
4566
4567				if (!sock_flag(sk, SOCK_DEAD))
4568					/* Wake up lingering close() */
4569					sk->sk_state_change(sk);
4570				else {
4571					int tmo;
4572
4573					if (tp->linger2 < 0 ||
4574					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4575					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4576						tcp_done(sk);
4577						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4578						return 1;
4579					}
4580
4581					tmo = tcp_fin_time(sk);
4582					if (tmo > TCP_TIMEWAIT_LEN) {
4583						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4584					} else if (th->fin || sock_owned_by_user(sk)) {
4585						/* Bad case. We could lose such FIN otherwise.
4586						 * It is not a big problem, but it looks confusing
4587						 * and not so rare event. We still can lose it now,
4588						 * if it spins in bh_lock_sock(), but it is really
4589						 * marginal case.
4590						 */
4591						inet_csk_reset_keepalive_timer(sk, tmo);
4592					} else {
4593						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4594						goto discard;
4595					}
4596				}
4597			}
4598			break;
4599
4600		case TCP_CLOSING:
4601			if (tp->snd_una == tp->write_seq) {
4602				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4603				goto discard;
4604			}
4605			break;
4606
4607		case TCP_LAST_ACK:
4608			if (tp->snd_una == tp->write_seq) {
4609				tcp_update_metrics(sk);
4610				tcp_done(sk);
4611				goto discard;
4612			}
4613			break;
4614		}
4615	} else
4616		goto discard;
4617
4618	/* step 6: check the URG bit */
4619	tcp_urg(sk, skb, th);
4620
4621	/* step 7: process the segment text */
4622	switch (sk->sk_state) {
4623	case TCP_CLOSE_WAIT:
4624	case TCP_CLOSING:
4625	case TCP_LAST_ACK:
4626		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4627			break;
4628	case TCP_FIN_WAIT1:
4629	case TCP_FIN_WAIT2:
4630		/* RFC 793 says to queue data in these states,
4631		 * RFC 1122 says we MUST send a reset.
4632		 * BSD 4.4 also does reset.
4633		 */
4634		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4635			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4636			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4637				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4638				tcp_reset(sk);
4639				return 1;
4640			}
4641		}
4642		/* Fall through */
4643	case TCP_ESTABLISHED:
4644		tcp_data_queue(sk, skb);
4645		queued = 1;
4646		break;
4647	}
4648
4649	/* tcp_data could move socket to TIME-WAIT */
4650	if (sk->sk_state != TCP_CLOSE) {
4651		tcp_data_snd_check(sk, tp);
4652		tcp_ack_snd_check(sk);
4653	}
4654
4655	if (!queued) {
4656discard:
4657		__kfree_skb(skb);
4658	}
4659	return 0;
4660}
4661
4662EXPORT_SYMBOL(sysctl_tcp_ecn);
4663EXPORT_SYMBOL(sysctl_tcp_reordering);
4664EXPORT_SYMBOL(tcp_parse_options);
4665EXPORT_SYMBOL(tcp_rcv_established);
4666EXPORT_SYMBOL(tcp_rcv_state_process);
4667EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4668