tcp_input.c revision a6604471db5e7a33474a7f16c64d6b118fae3e74
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 *		Pedro Roque	:	Fast Retransmit/Recovery.
26 *					Two receive queues.
27 *					Retransmit queue handled by TCP.
28 *					Better retransmit timer handling.
29 *					New congestion avoidance.
30 *					Header prediction.
31 *					Variable renaming.
32 *
33 *		Eric		:	Fast Retransmit.
34 *		Randy Scott	:	MSS option defines.
35 *		Eric Schenk	:	Fixes to slow start algorithm.
36 *		Eric Schenk	:	Yet another double ACK bug.
37 *		Eric Schenk	:	Delayed ACK bug fixes.
38 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39 *		David S. Miller	:	Don't allow zero congestion window.
40 *		Eric Schenk	:	Fix retransmitter so that it sends
41 *					next packet on ack of previous packet.
42 *		Andi Kleen	:	Moved open_request checking here
43 *					and process RSTs for open_requests.
44 *		Andi Kleen	:	Better prune_queue, and other fixes.
45 *		Andrey Savochkin:	Fix RTT measurements in the presence of
46 *					timestamps.
47 *		Andrey Savochkin:	Check sequence numbers correctly when
48 *					removing SACKs due to in sequence incoming
49 *					data segments.
50 *		Andi Kleen:		Make sure we never ack data there is not
51 *					enough room for. Also make this condition
52 *					a fatal error if it might still happen.
53 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54 *					connections with MSS<min(MTU,ann. MSS)
55 *					work without delayed acks.
56 *		Andi Kleen:		Process packets with PSH set in the
57 *					fast path.
58 *		J Hadi Salim:		ECN support
59 *	 	Andrei Gurtov,
60 *		Pasi Sarolahti,
61 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62 *					engine. Lots of bugs are found.
63 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64 */
65
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/dst.h>
70#include <net/tcp.h>
71#include <net/inet_common.h>
72#include <linux/ipsec.h>
73#include <asm/unaligned.h>
74#include <net/netdma.h>
75
76int sysctl_tcp_timestamps __read_mostly = 1;
77int sysctl_tcp_window_scaling __read_mostly = 1;
78int sysctl_tcp_sack __read_mostly = 1;
79int sysctl_tcp_fack __read_mostly = 1;
80int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81int sysctl_tcp_ecn __read_mostly;
82int sysctl_tcp_dsack __read_mostly = 1;
83int sysctl_tcp_app_win __read_mostly = 31;
84int sysctl_tcp_adv_win_scale __read_mostly = 2;
85
86int sysctl_tcp_stdurg __read_mostly;
87int sysctl_tcp_rfc1337 __read_mostly;
88int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
89int sysctl_tcp_frto __read_mostly = 2;
90int sysctl_tcp_frto_response __read_mostly;
91int sysctl_tcp_nometrics_save __read_mostly;
92
93int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
94int sysctl_tcp_abc __read_mostly;
95
96#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
97#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
98#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
99#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
100#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
101#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
102#define FLAG_ECE		0x40 /* ECE in this ACK				*/
103#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
104#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
105#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
106#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
107#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
108#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
109#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
110
111#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
112#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
113#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
114#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
115#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
116
117#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120/* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
122 */
123static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
124{
125	struct inet_connection_sock *icsk = inet_csk(sk);
126	const unsigned int lss = icsk->icsk_ack.last_seg_size;
127	unsigned int len;
128
129	icsk->icsk_ack.last_seg_size = 0;
130
131	/* skb->len may jitter because of SACKs, even if peer
132	 * sends good full-sized frames.
133	 */
134	len = skb_shinfo(skb)->gso_size ? : skb->len;
135	if (len >= icsk->icsk_ack.rcv_mss) {
136		icsk->icsk_ack.rcv_mss = len;
137	} else {
138		/* Otherwise, we make more careful check taking into account,
139		 * that SACKs block is variable.
140		 *
141		 * "len" is invariant segment length, including TCP header.
142		 */
143		len += skb->data - skb_transport_header(skb);
144		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145		    /* If PSH is not set, packet should be
146		     * full sized, provided peer TCP is not badly broken.
147		     * This observation (if it is correct 8)) allows
148		     * to handle super-low mtu links fairly.
149		     */
150		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
152			/* Subtract also invariant (if peer is RFC compliant),
153			 * tcp header plus fixed timestamp option length.
154			 * Resulting "len" is MSS free of SACK jitter.
155			 */
156			len -= tcp_sk(sk)->tcp_header_len;
157			icsk->icsk_ack.last_seg_size = len;
158			if (len == lss) {
159				icsk->icsk_ack.rcv_mss = len;
160				return;
161			}
162		}
163		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
166	}
167}
168
169static void tcp_incr_quickack(struct sock *sk)
170{
171	struct inet_connection_sock *icsk = inet_csk(sk);
172	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173
174	if (quickacks == 0)
175		quickacks = 2;
176	if (quickacks > icsk->icsk_ack.quick)
177		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178}
179
180void tcp_enter_quickack_mode(struct sock *sk)
181{
182	struct inet_connection_sock *icsk = inet_csk(sk);
183	tcp_incr_quickack(sk);
184	icsk->icsk_ack.pingpong = 0;
185	icsk->icsk_ack.ato = TCP_ATO_MIN;
186}
187
188/* Send ACKs quickly, if "quick" count is not exhausted
189 * and the session is not interactive.
190 */
191
192static inline int tcp_in_quickack_mode(const struct sock *sk)
193{
194	const struct inet_connection_sock *icsk = inet_csk(sk);
195	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196}
197
198static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
199{
200	if (tp->ecn_flags & TCP_ECN_OK)
201		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
202}
203
204static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
205{
206	if (tcp_hdr(skb)->cwr)
207		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
208}
209
210static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
211{
212	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213}
214
215static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
216{
217	if (tp->ecn_flags & TCP_ECN_OK) {
218		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
219			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
220		/* Funny extension: if ECT is not set on a segment,
221		 * it is surely retransmit. It is not in ECN RFC,
222		 * but Linux follows this rule. */
223		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
224			tcp_enter_quickack_mode((struct sock *)tp);
225	}
226}
227
228static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
229{
230	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
231		tp->ecn_flags &= ~TCP_ECN_OK;
232}
233
234static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
235{
236	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
237		tp->ecn_flags &= ~TCP_ECN_OK;
238}
239
240static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
241{
242	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
243		return 1;
244	return 0;
245}
246
247/* Buffer size and advertised window tuning.
248 *
249 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
250 */
251
252static void tcp_fixup_sndbuf(struct sock *sk)
253{
254	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
255		     sizeof(struct sk_buff);
256
257	if (sk->sk_sndbuf < 3 * sndmem)
258		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
259}
260
261/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
262 *
263 * All tcp_full_space() is split to two parts: "network" buffer, allocated
264 * forward and advertised in receiver window (tp->rcv_wnd) and
265 * "application buffer", required to isolate scheduling/application
266 * latencies from network.
267 * window_clamp is maximal advertised window. It can be less than
268 * tcp_full_space(), in this case tcp_full_space() - window_clamp
269 * is reserved for "application" buffer. The less window_clamp is
270 * the smoother our behaviour from viewpoint of network, but the lower
271 * throughput and the higher sensitivity of the connection to losses. 8)
272 *
273 * rcv_ssthresh is more strict window_clamp used at "slow start"
274 * phase to predict further behaviour of this connection.
275 * It is used for two goals:
276 * - to enforce header prediction at sender, even when application
277 *   requires some significant "application buffer". It is check #1.
278 * - to prevent pruning of receive queue because of misprediction
279 *   of receiver window. Check #2.
280 *
281 * The scheme does not work when sender sends good segments opening
282 * window and then starts to feed us spaghetti. But it should work
283 * in common situations. Otherwise, we have to rely on queue collapsing.
284 */
285
286/* Slow part of check#2. */
287static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
288{
289	struct tcp_sock *tp = tcp_sk(sk);
290	/* Optimize this! */
291	int truesize = tcp_win_from_space(skb->truesize) >> 1;
292	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
293
294	while (tp->rcv_ssthresh <= window) {
295		if (truesize <= skb->len)
296			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
297
298		truesize >>= 1;
299		window >>= 1;
300	}
301	return 0;
302}
303
304static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
305{
306	struct tcp_sock *tp = tcp_sk(sk);
307
308	/* Check #1 */
309	if (tp->rcv_ssthresh < tp->window_clamp &&
310	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
311	    !tcp_memory_pressure) {
312		int incr;
313
314		/* Check #2. Increase window, if skb with such overhead
315		 * will fit to rcvbuf in future.
316		 */
317		if (tcp_win_from_space(skb->truesize) <= skb->len)
318			incr = 2 * tp->advmss;
319		else
320			incr = __tcp_grow_window(sk, skb);
321
322		if (incr) {
323			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
324					       tp->window_clamp);
325			inet_csk(sk)->icsk_ack.quick |= 1;
326		}
327	}
328}
329
330/* 3. Tuning rcvbuf, when connection enters established state. */
331
332static void tcp_fixup_rcvbuf(struct sock *sk)
333{
334	struct tcp_sock *tp = tcp_sk(sk);
335	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
336
337	/* Try to select rcvbuf so that 4 mss-sized segments
338	 * will fit to window and corresponding skbs will fit to our rcvbuf.
339	 * (was 3; 4 is minimum to allow fast retransmit to work.)
340	 */
341	while (tcp_win_from_space(rcvmem) < tp->advmss)
342		rcvmem += 128;
343	if (sk->sk_rcvbuf < 4 * rcvmem)
344		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
345}
346
347/* 4. Try to fixup all. It is made immediately after connection enters
348 *    established state.
349 */
350static void tcp_init_buffer_space(struct sock *sk)
351{
352	struct tcp_sock *tp = tcp_sk(sk);
353	int maxwin;
354
355	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
356		tcp_fixup_rcvbuf(sk);
357	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
358		tcp_fixup_sndbuf(sk);
359
360	tp->rcvq_space.space = tp->rcv_wnd;
361
362	maxwin = tcp_full_space(sk);
363
364	if (tp->window_clamp >= maxwin) {
365		tp->window_clamp = maxwin;
366
367		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
368			tp->window_clamp = max(maxwin -
369					       (maxwin >> sysctl_tcp_app_win),
370					       4 * tp->advmss);
371	}
372
373	/* Force reservation of one segment. */
374	if (sysctl_tcp_app_win &&
375	    tp->window_clamp > 2 * tp->advmss &&
376	    tp->window_clamp + tp->advmss > maxwin)
377		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
378
379	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
380	tp->snd_cwnd_stamp = tcp_time_stamp;
381}
382
383/* 5. Recalculate window clamp after socket hit its memory bounds. */
384static void tcp_clamp_window(struct sock *sk)
385{
386	struct tcp_sock *tp = tcp_sk(sk);
387	struct inet_connection_sock *icsk = inet_csk(sk);
388
389	icsk->icsk_ack.quick = 0;
390
391	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
392	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
393	    !tcp_memory_pressure &&
394	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
395		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
396				    sysctl_tcp_rmem[2]);
397	}
398	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
399		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
400}
401
402/* Initialize RCV_MSS value.
403 * RCV_MSS is an our guess about MSS used by the peer.
404 * We haven't any direct information about the MSS.
405 * It's better to underestimate the RCV_MSS rather than overestimate.
406 * Overestimations make us ACKing less frequently than needed.
407 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
408 */
409void tcp_initialize_rcv_mss(struct sock *sk)
410{
411	struct tcp_sock *tp = tcp_sk(sk);
412	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
413
414	hint = min(hint, tp->rcv_wnd / 2);
415	hint = min(hint, TCP_MIN_RCVMSS);
416	hint = max(hint, TCP_MIN_MSS);
417
418	inet_csk(sk)->icsk_ack.rcv_mss = hint;
419}
420
421/* Receiver "autotuning" code.
422 *
423 * The algorithm for RTT estimation w/o timestamps is based on
424 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
425 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
426 *
427 * More detail on this code can be found at
428 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
429 * though this reference is out of date.  A new paper
430 * is pending.
431 */
432static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
433{
434	u32 new_sample = tp->rcv_rtt_est.rtt;
435	long m = sample;
436
437	if (m == 0)
438		m = 1;
439
440	if (new_sample != 0) {
441		/* If we sample in larger samples in the non-timestamp
442		 * case, we could grossly overestimate the RTT especially
443		 * with chatty applications or bulk transfer apps which
444		 * are stalled on filesystem I/O.
445		 *
446		 * Also, since we are only going for a minimum in the
447		 * non-timestamp case, we do not smooth things out
448		 * else with timestamps disabled convergence takes too
449		 * long.
450		 */
451		if (!win_dep) {
452			m -= (new_sample >> 3);
453			new_sample += m;
454		} else if (m < new_sample)
455			new_sample = m << 3;
456	} else {
457		/* No previous measure. */
458		new_sample = m << 3;
459	}
460
461	if (tp->rcv_rtt_est.rtt != new_sample)
462		tp->rcv_rtt_est.rtt = new_sample;
463}
464
465static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
466{
467	if (tp->rcv_rtt_est.time == 0)
468		goto new_measure;
469	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
470		return;
471	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
472
473new_measure:
474	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
475	tp->rcv_rtt_est.time = tcp_time_stamp;
476}
477
478static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
479					  const struct sk_buff *skb)
480{
481	struct tcp_sock *tp = tcp_sk(sk);
482	if (tp->rx_opt.rcv_tsecr &&
483	    (TCP_SKB_CB(skb)->end_seq -
484	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
485		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
486}
487
488/*
489 * This function should be called every time data is copied to user space.
490 * It calculates the appropriate TCP receive buffer space.
491 */
492void tcp_rcv_space_adjust(struct sock *sk)
493{
494	struct tcp_sock *tp = tcp_sk(sk);
495	int time;
496	int space;
497
498	if (tp->rcvq_space.time == 0)
499		goto new_measure;
500
501	time = tcp_time_stamp - tp->rcvq_space.time;
502	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
503		return;
504
505	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
506
507	space = max(tp->rcvq_space.space, space);
508
509	if (tp->rcvq_space.space != space) {
510		int rcvmem;
511
512		tp->rcvq_space.space = space;
513
514		if (sysctl_tcp_moderate_rcvbuf &&
515		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
516			int new_clamp = space;
517
518			/* Receive space grows, normalize in order to
519			 * take into account packet headers and sk_buff
520			 * structure overhead.
521			 */
522			space /= tp->advmss;
523			if (!space)
524				space = 1;
525			rcvmem = (tp->advmss + MAX_TCP_HEADER +
526				  16 + sizeof(struct sk_buff));
527			while (tcp_win_from_space(rcvmem) < tp->advmss)
528				rcvmem += 128;
529			space *= rcvmem;
530			space = min(space, sysctl_tcp_rmem[2]);
531			if (space > sk->sk_rcvbuf) {
532				sk->sk_rcvbuf = space;
533
534				/* Make the window clamp follow along.  */
535				tp->window_clamp = new_clamp;
536			}
537		}
538	}
539
540new_measure:
541	tp->rcvq_space.seq = tp->copied_seq;
542	tp->rcvq_space.time = tcp_time_stamp;
543}
544
545/* There is something which you must keep in mind when you analyze the
546 * behavior of the tp->ato delayed ack timeout interval.  When a
547 * connection starts up, we want to ack as quickly as possible.  The
548 * problem is that "good" TCP's do slow start at the beginning of data
549 * transmission.  The means that until we send the first few ACK's the
550 * sender will sit on his end and only queue most of his data, because
551 * he can only send snd_cwnd unacked packets at any given time.  For
552 * each ACK we send, he increments snd_cwnd and transmits more of his
553 * queue.  -DaveM
554 */
555static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
556{
557	struct tcp_sock *tp = tcp_sk(sk);
558	struct inet_connection_sock *icsk = inet_csk(sk);
559	u32 now;
560
561	inet_csk_schedule_ack(sk);
562
563	tcp_measure_rcv_mss(sk, skb);
564
565	tcp_rcv_rtt_measure(tp);
566
567	now = tcp_time_stamp;
568
569	if (!icsk->icsk_ack.ato) {
570		/* The _first_ data packet received, initialize
571		 * delayed ACK engine.
572		 */
573		tcp_incr_quickack(sk);
574		icsk->icsk_ack.ato = TCP_ATO_MIN;
575	} else {
576		int m = now - icsk->icsk_ack.lrcvtime;
577
578		if (m <= TCP_ATO_MIN / 2) {
579			/* The fastest case is the first. */
580			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
581		} else if (m < icsk->icsk_ack.ato) {
582			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
583			if (icsk->icsk_ack.ato > icsk->icsk_rto)
584				icsk->icsk_ack.ato = icsk->icsk_rto;
585		} else if (m > icsk->icsk_rto) {
586			/* Too long gap. Apparently sender failed to
587			 * restart window, so that we send ACKs quickly.
588			 */
589			tcp_incr_quickack(sk);
590			sk_mem_reclaim(sk);
591		}
592	}
593	icsk->icsk_ack.lrcvtime = now;
594
595	TCP_ECN_check_ce(tp, skb);
596
597	if (skb->len >= 128)
598		tcp_grow_window(sk, skb);
599}
600
601static u32 tcp_rto_min(struct sock *sk)
602{
603	struct dst_entry *dst = __sk_dst_get(sk);
604	u32 rto_min = TCP_RTO_MIN;
605
606	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
607		rto_min = dst_metric(dst, RTAX_RTO_MIN);
608	return rto_min;
609}
610
611/* Called to compute a smoothed rtt estimate. The data fed to this
612 * routine either comes from timestamps, or from segments that were
613 * known _not_ to have been retransmitted [see Karn/Partridge
614 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
615 * piece by Van Jacobson.
616 * NOTE: the next three routines used to be one big routine.
617 * To save cycles in the RFC 1323 implementation it was better to break
618 * it up into three procedures. -- erics
619 */
620static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
621{
622	struct tcp_sock *tp = tcp_sk(sk);
623	long m = mrtt; /* RTT */
624
625	/*	The following amusing code comes from Jacobson's
626	 *	article in SIGCOMM '88.  Note that rtt and mdev
627	 *	are scaled versions of rtt and mean deviation.
628	 *	This is designed to be as fast as possible
629	 *	m stands for "measurement".
630	 *
631	 *	On a 1990 paper the rto value is changed to:
632	 *	RTO = rtt + 4 * mdev
633	 *
634	 * Funny. This algorithm seems to be very broken.
635	 * These formulae increase RTO, when it should be decreased, increase
636	 * too slowly, when it should be increased quickly, decrease too quickly
637	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
638	 * does not matter how to _calculate_ it. Seems, it was trap
639	 * that VJ failed to avoid. 8)
640	 */
641	if (m == 0)
642		m = 1;
643	if (tp->srtt != 0) {
644		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
645		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
646		if (m < 0) {
647			m = -m;		/* m is now abs(error) */
648			m -= (tp->mdev >> 2);   /* similar update on mdev */
649			/* This is similar to one of Eifel findings.
650			 * Eifel blocks mdev updates when rtt decreases.
651			 * This solution is a bit different: we use finer gain
652			 * for mdev in this case (alpha*beta).
653			 * Like Eifel it also prevents growth of rto,
654			 * but also it limits too fast rto decreases,
655			 * happening in pure Eifel.
656			 */
657			if (m > 0)
658				m >>= 3;
659		} else {
660			m -= (tp->mdev >> 2);   /* similar update on mdev */
661		}
662		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
663		if (tp->mdev > tp->mdev_max) {
664			tp->mdev_max = tp->mdev;
665			if (tp->mdev_max > tp->rttvar)
666				tp->rttvar = tp->mdev_max;
667		}
668		if (after(tp->snd_una, tp->rtt_seq)) {
669			if (tp->mdev_max < tp->rttvar)
670				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
671			tp->rtt_seq = tp->snd_nxt;
672			tp->mdev_max = tcp_rto_min(sk);
673		}
674	} else {
675		/* no previous measure. */
676		tp->srtt = m << 3;	/* take the measured time to be rtt */
677		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
678		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
679		tp->rtt_seq = tp->snd_nxt;
680	}
681}
682
683/* Calculate rto without backoff.  This is the second half of Van Jacobson's
684 * routine referred to above.
685 */
686static inline void tcp_set_rto(struct sock *sk)
687{
688	const struct tcp_sock *tp = tcp_sk(sk);
689	/* Old crap is replaced with new one. 8)
690	 *
691	 * More seriously:
692	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
693	 *    It cannot be less due to utterly erratic ACK generation made
694	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
695	 *    to do with delayed acks, because at cwnd>2 true delack timeout
696	 *    is invisible. Actually, Linux-2.4 also generates erratic
697	 *    ACKs in some circumstances.
698	 */
699	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
700
701	/* 2. Fixups made earlier cannot be right.
702	 *    If we do not estimate RTO correctly without them,
703	 *    all the algo is pure shit and should be replaced
704	 *    with correct one. It is exactly, which we pretend to do.
705	 */
706}
707
708/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
709 * guarantees that rto is higher.
710 */
711static inline void tcp_bound_rto(struct sock *sk)
712{
713	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
714		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
715}
716
717/* Save metrics learned by this TCP session.
718   This function is called only, when TCP finishes successfully
719   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
720 */
721void tcp_update_metrics(struct sock *sk)
722{
723	struct tcp_sock *tp = tcp_sk(sk);
724	struct dst_entry *dst = __sk_dst_get(sk);
725
726	if (sysctl_tcp_nometrics_save)
727		return;
728
729	dst_confirm(dst);
730
731	if (dst && (dst->flags & DST_HOST)) {
732		const struct inet_connection_sock *icsk = inet_csk(sk);
733		int m;
734
735		if (icsk->icsk_backoff || !tp->srtt) {
736			/* This session failed to estimate rtt. Why?
737			 * Probably, no packets returned in time.
738			 * Reset our results.
739			 */
740			if (!(dst_metric_locked(dst, RTAX_RTT)))
741				dst->metrics[RTAX_RTT - 1] = 0;
742			return;
743		}
744
745		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
746
747		/* If newly calculated rtt larger than stored one,
748		 * store new one. Otherwise, use EWMA. Remember,
749		 * rtt overestimation is always better than underestimation.
750		 */
751		if (!(dst_metric_locked(dst, RTAX_RTT))) {
752			if (m <= 0)
753				dst->metrics[RTAX_RTT - 1] = tp->srtt;
754			else
755				dst->metrics[RTAX_RTT - 1] -= (m >> 3);
756		}
757
758		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759			if (m < 0)
760				m = -m;
761
762			/* Scale deviation to rttvar fixed point */
763			m >>= 1;
764			if (m < tp->mdev)
765				m = tp->mdev;
766
767			if (m >= dst_metric(dst, RTAX_RTTVAR))
768				dst->metrics[RTAX_RTTVAR - 1] = m;
769			else
770				dst->metrics[RTAX_RTTVAR-1] -=
771					(dst_metric(dst, RTAX_RTTVAR) - m)>>2;
772		}
773
774		if (tp->snd_ssthresh >= 0xFFFF) {
775			/* Slow start still did not finish. */
776			if (dst_metric(dst, RTAX_SSTHRESH) &&
777			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
780			if (!dst_metric_locked(dst, RTAX_CWND) &&
781			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
783		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
784			   icsk->icsk_ca_state == TCP_CA_Open) {
785			/* Cong. avoidance phase, cwnd is reliable. */
786			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787				dst->metrics[RTAX_SSTHRESH-1] =
788					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
789			if (!dst_metric_locked(dst, RTAX_CWND))
790				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
791		} else {
792			/* Else slow start did not finish, cwnd is non-sense,
793			   ssthresh may be also invalid.
794			 */
795			if (!dst_metric_locked(dst, RTAX_CWND))
796				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
797			if (dst_metric(dst, RTAX_SSTHRESH) &&
798			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
799			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
800				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
801		}
802
803		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
804			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
805			    tp->reordering != sysctl_tcp_reordering)
806				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
807		}
808	}
809}
810
811/* Numbers are taken from RFC3390.
812 *
813 * John Heffner states:
814 *
815 *	The RFC specifies a window of no more than 4380 bytes
816 *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
817 *	is a bit misleading because they use a clamp at 4380 bytes
818 *	rather than use a multiplier in the relevant range.
819 */
820__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
821{
822	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
823
824	if (!cwnd) {
825		if (tp->mss_cache > 1460)
826			cwnd = 2;
827		else
828			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
829	}
830	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831}
832
833/* Set slow start threshold and cwnd not falling to slow start */
834void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
835{
836	struct tcp_sock *tp = tcp_sk(sk);
837	const struct inet_connection_sock *icsk = inet_csk(sk);
838
839	tp->prior_ssthresh = 0;
840	tp->bytes_acked = 0;
841	if (icsk->icsk_ca_state < TCP_CA_CWR) {
842		tp->undo_marker = 0;
843		if (set_ssthresh)
844			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
845		tp->snd_cwnd = min(tp->snd_cwnd,
846				   tcp_packets_in_flight(tp) + 1U);
847		tp->snd_cwnd_cnt = 0;
848		tp->high_seq = tp->snd_nxt;
849		tp->snd_cwnd_stamp = tcp_time_stamp;
850		TCP_ECN_queue_cwr(tp);
851
852		tcp_set_ca_state(sk, TCP_CA_CWR);
853	}
854}
855
856/*
857 * Packet counting of FACK is based on in-order assumptions, therefore TCP
858 * disables it when reordering is detected
859 */
860static void tcp_disable_fack(struct tcp_sock *tp)
861{
862	/* RFC3517 uses different metric in lost marker => reset on change */
863	if (tcp_is_fack(tp))
864		tp->lost_skb_hint = NULL;
865	tp->rx_opt.sack_ok &= ~2;
866}
867
868/* Take a notice that peer is sending D-SACKs */
869static void tcp_dsack_seen(struct tcp_sock *tp)
870{
871	tp->rx_opt.sack_ok |= 4;
872}
873
874/* Initialize metrics on socket. */
875
876static void tcp_init_metrics(struct sock *sk)
877{
878	struct tcp_sock *tp = tcp_sk(sk);
879	struct dst_entry *dst = __sk_dst_get(sk);
880
881	if (dst == NULL)
882		goto reset;
883
884	dst_confirm(dst);
885
886	if (dst_metric_locked(dst, RTAX_CWND))
887		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
888	if (dst_metric(dst, RTAX_SSTHRESH)) {
889		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
890		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
891			tp->snd_ssthresh = tp->snd_cwnd_clamp;
892	}
893	if (dst_metric(dst, RTAX_REORDERING) &&
894	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
895		tcp_disable_fack(tp);
896		tp->reordering = dst_metric(dst, RTAX_REORDERING);
897	}
898
899	if (dst_metric(dst, RTAX_RTT) == 0)
900		goto reset;
901
902	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
903		goto reset;
904
905	/* Initial rtt is determined from SYN,SYN-ACK.
906	 * The segment is small and rtt may appear much
907	 * less than real one. Use per-dst memory
908	 * to make it more realistic.
909	 *
910	 * A bit of theory. RTT is time passed after "normal" sized packet
911	 * is sent until it is ACKed. In normal circumstances sending small
912	 * packets force peer to delay ACKs and calculation is correct too.
913	 * The algorithm is adaptive and, provided we follow specs, it
914	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
915	 * tricks sort of "quick acks" for time long enough to decrease RTT
916	 * to low value, and then abruptly stops to do it and starts to delay
917	 * ACKs, wait for troubles.
918	 */
919	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
920		tp->srtt = dst_metric(dst, RTAX_RTT);
921		tp->rtt_seq = tp->snd_nxt;
922	}
923	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
924		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
925		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
926	}
927	tcp_set_rto(sk);
928	tcp_bound_rto(sk);
929	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
930		goto reset;
931	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932	tp->snd_cwnd_stamp = tcp_time_stamp;
933	return;
934
935reset:
936	/* Play conservative. If timestamps are not
937	 * supported, TCP will fail to recalculate correct
938	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
939	 */
940	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
941		tp->srtt = 0;
942		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
943		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
944	}
945}
946
947static void tcp_update_reordering(struct sock *sk, const int metric,
948				  const int ts)
949{
950	struct tcp_sock *tp = tcp_sk(sk);
951	if (metric > tp->reordering) {
952		tp->reordering = min(TCP_MAX_REORDERING, metric);
953
954		/* This exciting event is worth to be remembered. 8) */
955		if (ts)
956			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
957		else if (tcp_is_reno(tp))
958			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
959		else if (tcp_is_fack(tp))
960			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
961		else
962			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
963#if FASTRETRANS_DEBUG > 1
964		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
965		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
966		       tp->reordering,
967		       tp->fackets_out,
968		       tp->sacked_out,
969		       tp->undo_marker ? tp->undo_retrans : 0);
970#endif
971		tcp_disable_fack(tp);
972	}
973}
974
975/* This procedure tags the retransmission queue when SACKs arrive.
976 *
977 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
978 * Packets in queue with these bits set are counted in variables
979 * sacked_out, retrans_out and lost_out, correspondingly.
980 *
981 * Valid combinations are:
982 * Tag  InFlight	Description
983 * 0	1		- orig segment is in flight.
984 * S	0		- nothing flies, orig reached receiver.
985 * L	0		- nothing flies, orig lost by net.
986 * R	2		- both orig and retransmit are in flight.
987 * L|R	1		- orig is lost, retransmit is in flight.
988 * S|R  1		- orig reached receiver, retrans is still in flight.
989 * (L|S|R is logically valid, it could occur when L|R is sacked,
990 *  but it is equivalent to plain S and code short-curcuits it to S.
991 *  L|S is logically invalid, it would mean -1 packet in flight 8))
992 *
993 * These 6 states form finite state machine, controlled by the following events:
994 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
995 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
996 * 3. Loss detection event of one of three flavors:
997 *	A. Scoreboard estimator decided the packet is lost.
998 *	   A'. Reno "three dupacks" marks head of queue lost.
999 *	   A''. Its FACK modfication, head until snd.fack is lost.
1000 *	B. SACK arrives sacking data transmitted after never retransmitted
1001 *	   hole was sent out.
1002 *	C. SACK arrives sacking SND.NXT at the moment, when the
1003 *	   segment was retransmitted.
1004 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1005 *
1006 * It is pleasant to note, that state diagram turns out to be commutative,
1007 * so that we are allowed not to be bothered by order of our actions,
1008 * when multiple events arrive simultaneously. (see the function below).
1009 *
1010 * Reordering detection.
1011 * --------------------
1012 * Reordering metric is maximal distance, which a packet can be displaced
1013 * in packet stream. With SACKs we can estimate it:
1014 *
1015 * 1. SACK fills old hole and the corresponding segment was not
1016 *    ever retransmitted -> reordering. Alas, we cannot use it
1017 *    when segment was retransmitted.
1018 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1019 *    for retransmitted and already SACKed segment -> reordering..
1020 * Both of these heuristics are not used in Loss state, when we cannot
1021 * account for retransmits accurately.
1022 *
1023 * SACK block validation.
1024 * ----------------------
1025 *
1026 * SACK block range validation checks that the received SACK block fits to
1027 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1028 * Note that SND.UNA is not included to the range though being valid because
1029 * it means that the receiver is rather inconsistent with itself reporting
1030 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1031 * perfectly valid, however, in light of RFC2018 which explicitly states
1032 * that "SACK block MUST reflect the newest segment.  Even if the newest
1033 * segment is going to be discarded ...", not that it looks very clever
1034 * in case of head skb. Due to potentional receiver driven attacks, we
1035 * choose to avoid immediate execution of a walk in write queue due to
1036 * reneging and defer head skb's loss recovery to standard loss recovery
1037 * procedure that will eventually trigger (nothing forbids us doing this).
1038 *
1039 * Implements also blockage to start_seq wrap-around. Problem lies in the
1040 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1041 * there's no guarantee that it will be before snd_nxt (n). The problem
1042 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1043 * wrap (s_w):
1044 *
1045 *         <- outs wnd ->                          <- wrapzone ->
1046 *         u     e      n                         u_w   e_w  s n_w
1047 *         |     |      |                          |     |   |  |
1048 * |<------------+------+----- TCP seqno space --------------+---------->|
1049 * ...-- <2^31 ->|                                           |<--------...
1050 * ...---- >2^31 ------>|                                    |<--------...
1051 *
1052 * Current code wouldn't be vulnerable but it's better still to discard such
1053 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1054 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1055 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1056 * equal to the ideal case (infinite seqno space without wrap caused issues).
1057 *
1058 * With D-SACK the lower bound is extended to cover sequence space below
1059 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1060 * again, D-SACK block must not to go across snd_una (for the same reason as
1061 * for the normal SACK blocks, explained above). But there all simplicity
1062 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1063 * fully below undo_marker they do not affect behavior in anyway and can
1064 * therefore be safely ignored. In rare cases (which are more or less
1065 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1066 * fragmentation and packet reordering past skb's retransmission. To consider
1067 * them correctly, the acceptable range must be extended even more though
1068 * the exact amount is rather hard to quantify. However, tp->max_window can
1069 * be used as an exaggerated estimate.
1070 */
1071static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1072				  u32 start_seq, u32 end_seq)
1073{
1074	/* Too far in future, or reversed (interpretation is ambiguous) */
1075	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1076		return 0;
1077
1078	/* Nasty start_seq wrap-around check (see comments above) */
1079	if (!before(start_seq, tp->snd_nxt))
1080		return 0;
1081
1082	/* In outstanding window? ...This is valid exit for D-SACKs too.
1083	 * start_seq == snd_una is non-sensical (see comments above)
1084	 */
1085	if (after(start_seq, tp->snd_una))
1086		return 1;
1087
1088	if (!is_dsack || !tp->undo_marker)
1089		return 0;
1090
1091	/* ...Then it's D-SACK, and must reside below snd_una completely */
1092	if (!after(end_seq, tp->snd_una))
1093		return 0;
1094
1095	if (!before(start_seq, tp->undo_marker))
1096		return 1;
1097
1098	/* Too old */
1099	if (!after(end_seq, tp->undo_marker))
1100		return 0;
1101
1102	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1103	 *   start_seq < undo_marker and end_seq >= undo_marker.
1104	 */
1105	return !before(start_seq, end_seq - tp->max_window);
1106}
1107
1108/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1109 * Event "C". Later note: FACK people cheated me again 8), we have to account
1110 * for reordering! Ugly, but should help.
1111 *
1112 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1113 * less than what is now known to be received by the other end (derived from
1114 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1115 * retransmitted skbs to avoid some costly processing per ACKs.
1116 */
1117static void tcp_mark_lost_retrans(struct sock *sk)
1118{
1119	const struct inet_connection_sock *icsk = inet_csk(sk);
1120	struct tcp_sock *tp = tcp_sk(sk);
1121	struct sk_buff *skb;
1122	int cnt = 0;
1123	u32 new_low_seq = tp->snd_nxt;
1124	u32 received_upto = tcp_highest_sack_seq(tp);
1125
1126	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1127	    !after(received_upto, tp->lost_retrans_low) ||
1128	    icsk->icsk_ca_state != TCP_CA_Recovery)
1129		return;
1130
1131	tcp_for_write_queue(skb, sk) {
1132		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1133
1134		if (skb == tcp_send_head(sk))
1135			break;
1136		if (cnt == tp->retrans_out)
1137			break;
1138		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1139			continue;
1140
1141		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1142			continue;
1143
1144		if (after(received_upto, ack_seq) &&
1145		    (tcp_is_fack(tp) ||
1146		     !before(received_upto,
1147			     ack_seq + tp->reordering * tp->mss_cache))) {
1148			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1149			tp->retrans_out -= tcp_skb_pcount(skb);
1150
1151			/* clear lost hint */
1152			tp->retransmit_skb_hint = NULL;
1153
1154			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1155				tp->lost_out += tcp_skb_pcount(skb);
1156				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1157			}
1158			NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1159		} else {
1160			if (before(ack_seq, new_low_seq))
1161				new_low_seq = ack_seq;
1162			cnt += tcp_skb_pcount(skb);
1163		}
1164	}
1165
1166	if (tp->retrans_out)
1167		tp->lost_retrans_low = new_low_seq;
1168}
1169
1170static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1171			   struct tcp_sack_block_wire *sp, int num_sacks,
1172			   u32 prior_snd_una)
1173{
1174	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1175	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1176	int dup_sack = 0;
1177
1178	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1179		dup_sack = 1;
1180		tcp_dsack_seen(tp);
1181		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1182	} else if (num_sacks > 1) {
1183		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1184		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1185
1186		if (!after(end_seq_0, end_seq_1) &&
1187		    !before(start_seq_0, start_seq_1)) {
1188			dup_sack = 1;
1189			tcp_dsack_seen(tp);
1190			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1191		}
1192	}
1193
1194	/* D-SACK for already forgotten data... Do dumb counting. */
1195	if (dup_sack &&
1196	    !after(end_seq_0, prior_snd_una) &&
1197	    after(end_seq_0, tp->undo_marker))
1198		tp->undo_retrans--;
1199
1200	return dup_sack;
1201}
1202
1203/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1204 * the incoming SACK may not exactly match but we can find smaller MSS
1205 * aligned portion of it that matches. Therefore we might need to fragment
1206 * which may fail and creates some hassle (caller must handle error case
1207 * returns).
1208 */
1209static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1210				 u32 start_seq, u32 end_seq)
1211{
1212	int in_sack, err;
1213	unsigned int pkt_len;
1214
1215	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1216		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1217
1218	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1219	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1220
1221		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1222
1223		if (!in_sack)
1224			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1225		else
1226			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1227		err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1228		if (err < 0)
1229			return err;
1230	}
1231
1232	return in_sack;
1233}
1234
1235static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1236			   int *reord, int dup_sack, int fack_count)
1237{
1238	struct tcp_sock *tp = tcp_sk(sk);
1239	u8 sacked = TCP_SKB_CB(skb)->sacked;
1240	int flag = 0;
1241
1242	/* Account D-SACK for retransmitted packet. */
1243	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1244		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1245			tp->undo_retrans--;
1246		if (sacked & TCPCB_SACKED_ACKED)
1247			*reord = min(fack_count, *reord);
1248	}
1249
1250	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1251	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1252		return flag;
1253
1254	if (!(sacked & TCPCB_SACKED_ACKED)) {
1255		if (sacked & TCPCB_SACKED_RETRANS) {
1256			/* If the segment is not tagged as lost,
1257			 * we do not clear RETRANS, believing
1258			 * that retransmission is still in flight.
1259			 */
1260			if (sacked & TCPCB_LOST) {
1261				TCP_SKB_CB(skb)->sacked &=
1262					~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1263				tp->lost_out -= tcp_skb_pcount(skb);
1264				tp->retrans_out -= tcp_skb_pcount(skb);
1265
1266				/* clear lost hint */
1267				tp->retransmit_skb_hint = NULL;
1268			}
1269		} else {
1270			if (!(sacked & TCPCB_RETRANS)) {
1271				/* New sack for not retransmitted frame,
1272				 * which was in hole. It is reordering.
1273				 */
1274				if (before(TCP_SKB_CB(skb)->seq,
1275					   tcp_highest_sack_seq(tp)))
1276					*reord = min(fack_count, *reord);
1277
1278				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1279				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1280					flag |= FLAG_ONLY_ORIG_SACKED;
1281			}
1282
1283			if (sacked & TCPCB_LOST) {
1284				TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1285				tp->lost_out -= tcp_skb_pcount(skb);
1286
1287				/* clear lost hint */
1288				tp->retransmit_skb_hint = NULL;
1289			}
1290		}
1291
1292		TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1293		flag |= FLAG_DATA_SACKED;
1294		tp->sacked_out += tcp_skb_pcount(skb);
1295
1296		fack_count += tcp_skb_pcount(skb);
1297
1298		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1299		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1300		    before(TCP_SKB_CB(skb)->seq,
1301			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1302			tp->lost_cnt_hint += tcp_skb_pcount(skb);
1303
1304		if (fack_count > tp->fackets_out)
1305			tp->fackets_out = fack_count;
1306
1307		if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1308			tcp_advance_highest_sack(sk, skb);
1309	}
1310
1311	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1312	 * frames and clear it. undo_retrans is decreased above, L|R frames
1313	 * are accounted above as well.
1314	 */
1315	if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1316		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1317		tp->retrans_out -= tcp_skb_pcount(skb);
1318		tp->retransmit_skb_hint = NULL;
1319	}
1320
1321	return flag;
1322}
1323
1324static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1325					struct tcp_sack_block *next_dup,
1326					u32 start_seq, u32 end_seq,
1327					int dup_sack_in, int *fack_count,
1328					int *reord, int *flag)
1329{
1330	tcp_for_write_queue_from(skb, sk) {
1331		int in_sack = 0;
1332		int dup_sack = dup_sack_in;
1333
1334		if (skb == tcp_send_head(sk))
1335			break;
1336
1337		/* queue is in-order => we can short-circuit the walk early */
1338		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1339			break;
1340
1341		if ((next_dup != NULL) &&
1342		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1343			in_sack = tcp_match_skb_to_sack(sk, skb,
1344							next_dup->start_seq,
1345							next_dup->end_seq);
1346			if (in_sack > 0)
1347				dup_sack = 1;
1348		}
1349
1350		if (in_sack <= 0)
1351			in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1352							end_seq);
1353		if (unlikely(in_sack < 0))
1354			break;
1355
1356		if (in_sack)
1357			*flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1358						 *fack_count);
1359
1360		*fack_count += tcp_skb_pcount(skb);
1361	}
1362	return skb;
1363}
1364
1365/* Avoid all extra work that is being done by sacktag while walking in
1366 * a normal way
1367 */
1368static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1369					u32 skip_to_seq, int *fack_count)
1370{
1371	tcp_for_write_queue_from(skb, sk) {
1372		if (skb == tcp_send_head(sk))
1373			break;
1374
1375		if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1376			break;
1377
1378		*fack_count += tcp_skb_pcount(skb);
1379	}
1380	return skb;
1381}
1382
1383static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1384						struct sock *sk,
1385						struct tcp_sack_block *next_dup,
1386						u32 skip_to_seq,
1387						int *fack_count, int *reord,
1388						int *flag)
1389{
1390	if (next_dup == NULL)
1391		return skb;
1392
1393	if (before(next_dup->start_seq, skip_to_seq)) {
1394		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1395		skb = tcp_sacktag_walk(skb, sk, NULL,
1396				     next_dup->start_seq, next_dup->end_seq,
1397				     1, fack_count, reord, flag);
1398	}
1399
1400	return skb;
1401}
1402
1403static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1404{
1405	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1406}
1407
1408static int
1409tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1410			u32 prior_snd_una)
1411{
1412	const struct inet_connection_sock *icsk = inet_csk(sk);
1413	struct tcp_sock *tp = tcp_sk(sk);
1414	unsigned char *ptr = (skb_transport_header(ack_skb) +
1415			      TCP_SKB_CB(ack_skb)->sacked);
1416	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1417	struct tcp_sack_block sp[4];
1418	struct tcp_sack_block *cache;
1419	struct sk_buff *skb;
1420	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1421	int used_sacks;
1422	int reord = tp->packets_out;
1423	int flag = 0;
1424	int found_dup_sack = 0;
1425	int fack_count;
1426	int i, j;
1427	int first_sack_index;
1428
1429	if (!tp->sacked_out) {
1430		if (WARN_ON(tp->fackets_out))
1431			tp->fackets_out = 0;
1432		tcp_highest_sack_reset(sk);
1433	}
1434
1435	found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1436					 num_sacks, prior_snd_una);
1437	if (found_dup_sack)
1438		flag |= FLAG_DSACKING_ACK;
1439
1440	/* Eliminate too old ACKs, but take into
1441	 * account more or less fresh ones, they can
1442	 * contain valid SACK info.
1443	 */
1444	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1445		return 0;
1446
1447	if (!tp->packets_out)
1448		goto out;
1449
1450	used_sacks = 0;
1451	first_sack_index = 0;
1452	for (i = 0; i < num_sacks; i++) {
1453		int dup_sack = !i && found_dup_sack;
1454
1455		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1456		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1457
1458		if (!tcp_is_sackblock_valid(tp, dup_sack,
1459					    sp[used_sacks].start_seq,
1460					    sp[used_sacks].end_seq)) {
1461			if (dup_sack) {
1462				if (!tp->undo_marker)
1463					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1464				else
1465					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1466			} else {
1467				/* Don't count olds caused by ACK reordering */
1468				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1469				    !after(sp[used_sacks].end_seq, tp->snd_una))
1470					continue;
1471				NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1472			}
1473			if (i == 0)
1474				first_sack_index = -1;
1475			continue;
1476		}
1477
1478		/* Ignore very old stuff early */
1479		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1480			continue;
1481
1482		used_sacks++;
1483	}
1484
1485	/* order SACK blocks to allow in order walk of the retrans queue */
1486	for (i = used_sacks - 1; i > 0; i--) {
1487		for (j = 0; j < i; j++) {
1488			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1489				struct tcp_sack_block tmp;
1490
1491				tmp = sp[j];
1492				sp[j] = sp[j + 1];
1493				sp[j + 1] = tmp;
1494
1495				/* Track where the first SACK block goes to */
1496				if (j == first_sack_index)
1497					first_sack_index = j + 1;
1498			}
1499		}
1500	}
1501
1502	skb = tcp_write_queue_head(sk);
1503	fack_count = 0;
1504	i = 0;
1505
1506	if (!tp->sacked_out) {
1507		/* It's already past, so skip checking against it */
1508		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1509	} else {
1510		cache = tp->recv_sack_cache;
1511		/* Skip empty blocks in at head of the cache */
1512		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1513		       !cache->end_seq)
1514			cache++;
1515	}
1516
1517	while (i < used_sacks) {
1518		u32 start_seq = sp[i].start_seq;
1519		u32 end_seq = sp[i].end_seq;
1520		int dup_sack = (found_dup_sack && (i == first_sack_index));
1521		struct tcp_sack_block *next_dup = NULL;
1522
1523		if (found_dup_sack && ((i + 1) == first_sack_index))
1524			next_dup = &sp[i + 1];
1525
1526		/* Event "B" in the comment above. */
1527		if (after(end_seq, tp->high_seq))
1528			flag |= FLAG_DATA_LOST;
1529
1530		/* Skip too early cached blocks */
1531		while (tcp_sack_cache_ok(tp, cache) &&
1532		       !before(start_seq, cache->end_seq))
1533			cache++;
1534
1535		/* Can skip some work by looking recv_sack_cache? */
1536		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1537		    after(end_seq, cache->start_seq)) {
1538
1539			/* Head todo? */
1540			if (before(start_seq, cache->start_seq)) {
1541				skb = tcp_sacktag_skip(skb, sk, start_seq,
1542						       &fack_count);
1543				skb = tcp_sacktag_walk(skb, sk, next_dup,
1544						       start_seq,
1545						       cache->start_seq,
1546						       dup_sack, &fack_count,
1547						       &reord, &flag);
1548			}
1549
1550			/* Rest of the block already fully processed? */
1551			if (!after(end_seq, cache->end_seq))
1552				goto advance_sp;
1553
1554			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1555						       cache->end_seq,
1556						       &fack_count, &reord,
1557						       &flag);
1558
1559			/* ...tail remains todo... */
1560			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1561				/* ...but better entrypoint exists! */
1562				skb = tcp_highest_sack(sk);
1563				if (skb == NULL)
1564					break;
1565				fack_count = tp->fackets_out;
1566				cache++;
1567				goto walk;
1568			}
1569
1570			skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1571					       &fack_count);
1572			/* Check overlap against next cached too (past this one already) */
1573			cache++;
1574			continue;
1575		}
1576
1577		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1578			skb = tcp_highest_sack(sk);
1579			if (skb == NULL)
1580				break;
1581			fack_count = tp->fackets_out;
1582		}
1583		skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1584
1585walk:
1586		skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1587				       dup_sack, &fack_count, &reord, &flag);
1588
1589advance_sp:
1590		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1591		 * due to in-order walk
1592		 */
1593		if (after(end_seq, tp->frto_highmark))
1594			flag &= ~FLAG_ONLY_ORIG_SACKED;
1595
1596		i++;
1597	}
1598
1599	/* Clear the head of the cache sack blocks so we can skip it next time */
1600	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1601		tp->recv_sack_cache[i].start_seq = 0;
1602		tp->recv_sack_cache[i].end_seq = 0;
1603	}
1604	for (j = 0; j < used_sacks; j++)
1605		tp->recv_sack_cache[i++] = sp[j];
1606
1607	tcp_mark_lost_retrans(sk);
1608
1609	tcp_verify_left_out(tp);
1610
1611	if ((reord < tp->fackets_out) &&
1612	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1613	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1614		tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1615
1616out:
1617
1618#if FASTRETRANS_DEBUG > 0
1619	BUG_TRAP((int)tp->sacked_out >= 0);
1620	BUG_TRAP((int)tp->lost_out >= 0);
1621	BUG_TRAP((int)tp->retrans_out >= 0);
1622	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1623#endif
1624	return flag;
1625}
1626
1627/* Limits sacked_out so that sum with lost_out isn't ever larger than
1628 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1629 */
1630int tcp_limit_reno_sacked(struct tcp_sock *tp)
1631{
1632	u32 holes;
1633
1634	holes = max(tp->lost_out, 1U);
1635	holes = min(holes, tp->packets_out);
1636
1637	if ((tp->sacked_out + holes) > tp->packets_out) {
1638		tp->sacked_out = tp->packets_out - holes;
1639		return 1;
1640	}
1641	return 0;
1642}
1643
1644/* If we receive more dupacks than we expected counting segments
1645 * in assumption of absent reordering, interpret this as reordering.
1646 * The only another reason could be bug in receiver TCP.
1647 */
1648static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1649{
1650	struct tcp_sock *tp = tcp_sk(sk);
1651	if (tcp_limit_reno_sacked(tp))
1652		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1653}
1654
1655/* Emulate SACKs for SACKless connection: account for a new dupack. */
1656
1657static void tcp_add_reno_sack(struct sock *sk)
1658{
1659	struct tcp_sock *tp = tcp_sk(sk);
1660	tp->sacked_out++;
1661	tcp_check_reno_reordering(sk, 0);
1662	tcp_verify_left_out(tp);
1663}
1664
1665/* Account for ACK, ACKing some data in Reno Recovery phase. */
1666
1667static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1668{
1669	struct tcp_sock *tp = tcp_sk(sk);
1670
1671	if (acked > 0) {
1672		/* One ACK acked hole. The rest eat duplicate ACKs. */
1673		if (acked - 1 >= tp->sacked_out)
1674			tp->sacked_out = 0;
1675		else
1676			tp->sacked_out -= acked - 1;
1677	}
1678	tcp_check_reno_reordering(sk, acked);
1679	tcp_verify_left_out(tp);
1680}
1681
1682static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1683{
1684	tp->sacked_out = 0;
1685}
1686
1687static int tcp_is_sackfrto(const struct tcp_sock *tp)
1688{
1689	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1690}
1691
1692/* F-RTO can only be used if TCP has never retransmitted anything other than
1693 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1694 */
1695int tcp_use_frto(struct sock *sk)
1696{
1697	const struct tcp_sock *tp = tcp_sk(sk);
1698	const struct inet_connection_sock *icsk = inet_csk(sk);
1699	struct sk_buff *skb;
1700
1701	if (!sysctl_tcp_frto)
1702		return 0;
1703
1704	/* MTU probe and F-RTO won't really play nicely along currently */
1705	if (icsk->icsk_mtup.probe_size)
1706		return 0;
1707
1708	if (tcp_is_sackfrto(tp))
1709		return 1;
1710
1711	/* Avoid expensive walking of rexmit queue if possible */
1712	if (tp->retrans_out > 1)
1713		return 0;
1714
1715	skb = tcp_write_queue_head(sk);
1716	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1717	tcp_for_write_queue_from(skb, sk) {
1718		if (skb == tcp_send_head(sk))
1719			break;
1720		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1721			return 0;
1722		/* Short-circuit when first non-SACKed skb has been checked */
1723		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1724			break;
1725	}
1726	return 1;
1727}
1728
1729/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1730 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1731 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1732 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1733 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1734 * bits are handled if the Loss state is really to be entered (in
1735 * tcp_enter_frto_loss).
1736 *
1737 * Do like tcp_enter_loss() would; when RTO expires the second time it
1738 * does:
1739 *  "Reduce ssthresh if it has not yet been made inside this window."
1740 */
1741void tcp_enter_frto(struct sock *sk)
1742{
1743	const struct inet_connection_sock *icsk = inet_csk(sk);
1744	struct tcp_sock *tp = tcp_sk(sk);
1745	struct sk_buff *skb;
1746
1747	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1748	    tp->snd_una == tp->high_seq ||
1749	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1750	     !icsk->icsk_retransmits)) {
1751		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1752		/* Our state is too optimistic in ssthresh() call because cwnd
1753		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1754		 * recovery has not yet completed. Pattern would be this: RTO,
1755		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1756		 * up here twice).
1757		 * RFC4138 should be more specific on what to do, even though
1758		 * RTO is quite unlikely to occur after the first Cumulative ACK
1759		 * due to back-off and complexity of triggering events ...
1760		 */
1761		if (tp->frto_counter) {
1762			u32 stored_cwnd;
1763			stored_cwnd = tp->snd_cwnd;
1764			tp->snd_cwnd = 2;
1765			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1766			tp->snd_cwnd = stored_cwnd;
1767		} else {
1768			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1769		}
1770		/* ... in theory, cong.control module could do "any tricks" in
1771		 * ssthresh(), which means that ca_state, lost bits and lost_out
1772		 * counter would have to be faked before the call occurs. We
1773		 * consider that too expensive, unlikely and hacky, so modules
1774		 * using these in ssthresh() must deal these incompatibility
1775		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1776		 */
1777		tcp_ca_event(sk, CA_EVENT_FRTO);
1778	}
1779
1780	tp->undo_marker = tp->snd_una;
1781	tp->undo_retrans = 0;
1782
1783	skb = tcp_write_queue_head(sk);
1784	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1785		tp->undo_marker = 0;
1786	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1787		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1788		tp->retrans_out -= tcp_skb_pcount(skb);
1789	}
1790	tcp_verify_left_out(tp);
1791
1792	/* Too bad if TCP was application limited */
1793	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1794
1795	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1796	 * The last condition is necessary at least in tp->frto_counter case.
1797	 */
1798	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1799	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1800	    after(tp->high_seq, tp->snd_una)) {
1801		tp->frto_highmark = tp->high_seq;
1802	} else {
1803		tp->frto_highmark = tp->snd_nxt;
1804	}
1805	tcp_set_ca_state(sk, TCP_CA_Disorder);
1806	tp->high_seq = tp->snd_nxt;
1807	tp->frto_counter = 1;
1808}
1809
1810/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1811 * which indicates that we should follow the traditional RTO recovery,
1812 * i.e. mark everything lost and do go-back-N retransmission.
1813 */
1814static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1815{
1816	struct tcp_sock *tp = tcp_sk(sk);
1817	struct sk_buff *skb;
1818
1819	tp->lost_out = 0;
1820	tp->retrans_out = 0;
1821	if (tcp_is_reno(tp))
1822		tcp_reset_reno_sack(tp);
1823
1824	tcp_for_write_queue(skb, sk) {
1825		if (skb == tcp_send_head(sk))
1826			break;
1827
1828		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1829		/*
1830		 * Count the retransmission made on RTO correctly (only when
1831		 * waiting for the first ACK and did not get it)...
1832		 */
1833		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1834			/* For some reason this R-bit might get cleared? */
1835			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1836				tp->retrans_out += tcp_skb_pcount(skb);
1837			/* ...enter this if branch just for the first segment */
1838			flag |= FLAG_DATA_ACKED;
1839		} else {
1840			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1841				tp->undo_marker = 0;
1842			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1843		}
1844
1845		/* Marking forward transmissions that were made after RTO lost
1846		 * can cause unnecessary retransmissions in some scenarios,
1847		 * SACK blocks will mitigate that in some but not in all cases.
1848		 * We used to not mark them but it was causing break-ups with
1849		 * receivers that do only in-order receival.
1850		 *
1851		 * TODO: we could detect presence of such receiver and select
1852		 * different behavior per flow.
1853		 */
1854		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1855			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1856			tp->lost_out += tcp_skb_pcount(skb);
1857		}
1858	}
1859	tcp_verify_left_out(tp);
1860
1861	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1862	tp->snd_cwnd_cnt = 0;
1863	tp->snd_cwnd_stamp = tcp_time_stamp;
1864	tp->frto_counter = 0;
1865	tp->bytes_acked = 0;
1866
1867	tp->reordering = min_t(unsigned int, tp->reordering,
1868			       sysctl_tcp_reordering);
1869	tcp_set_ca_state(sk, TCP_CA_Loss);
1870	tp->high_seq = tp->snd_nxt;
1871	TCP_ECN_queue_cwr(tp);
1872
1873	tcp_clear_retrans_hints_partial(tp);
1874}
1875
1876static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1877{
1878	tp->retrans_out = 0;
1879	tp->lost_out = 0;
1880
1881	tp->undo_marker = 0;
1882	tp->undo_retrans = 0;
1883}
1884
1885void tcp_clear_retrans(struct tcp_sock *tp)
1886{
1887	tcp_clear_retrans_partial(tp);
1888
1889	tp->fackets_out = 0;
1890	tp->sacked_out = 0;
1891}
1892
1893/* Enter Loss state. If "how" is not zero, forget all SACK information
1894 * and reset tags completely, otherwise preserve SACKs. If receiver
1895 * dropped its ofo queue, we will know this due to reneging detection.
1896 */
1897void tcp_enter_loss(struct sock *sk, int how)
1898{
1899	const struct inet_connection_sock *icsk = inet_csk(sk);
1900	struct tcp_sock *tp = tcp_sk(sk);
1901	struct sk_buff *skb;
1902
1903	/* Reduce ssthresh if it has not yet been made inside this window. */
1904	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1905	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1906		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1907		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1908		tcp_ca_event(sk, CA_EVENT_LOSS);
1909	}
1910	tp->snd_cwnd	   = 1;
1911	tp->snd_cwnd_cnt   = 0;
1912	tp->snd_cwnd_stamp = tcp_time_stamp;
1913
1914	tp->bytes_acked = 0;
1915	tcp_clear_retrans_partial(tp);
1916
1917	if (tcp_is_reno(tp))
1918		tcp_reset_reno_sack(tp);
1919
1920	if (!how) {
1921		/* Push undo marker, if it was plain RTO and nothing
1922		 * was retransmitted. */
1923		tp->undo_marker = tp->snd_una;
1924		tcp_clear_retrans_hints_partial(tp);
1925	} else {
1926		tp->sacked_out = 0;
1927		tp->fackets_out = 0;
1928		tcp_clear_all_retrans_hints(tp);
1929	}
1930
1931	tcp_for_write_queue(skb, sk) {
1932		if (skb == tcp_send_head(sk))
1933			break;
1934
1935		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1936			tp->undo_marker = 0;
1937		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1938		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1939			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1940			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1941			tp->lost_out += tcp_skb_pcount(skb);
1942		}
1943	}
1944	tcp_verify_left_out(tp);
1945
1946	tp->reordering = min_t(unsigned int, tp->reordering,
1947			       sysctl_tcp_reordering);
1948	tcp_set_ca_state(sk, TCP_CA_Loss);
1949	tp->high_seq = tp->snd_nxt;
1950	TCP_ECN_queue_cwr(tp);
1951	/* Abort F-RTO algorithm if one is in progress */
1952	tp->frto_counter = 0;
1953}
1954
1955/* If ACK arrived pointing to a remembered SACK, it means that our
1956 * remembered SACKs do not reflect real state of receiver i.e.
1957 * receiver _host_ is heavily congested (or buggy).
1958 *
1959 * Do processing similar to RTO timeout.
1960 */
1961static int tcp_check_sack_reneging(struct sock *sk, int flag)
1962{
1963	if (flag & FLAG_SACK_RENEGING) {
1964		struct inet_connection_sock *icsk = inet_csk(sk);
1965		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1966
1967		tcp_enter_loss(sk, 1);
1968		icsk->icsk_retransmits++;
1969		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1970		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1971					  icsk->icsk_rto, TCP_RTO_MAX);
1972		return 1;
1973	}
1974	return 0;
1975}
1976
1977static inline int tcp_fackets_out(struct tcp_sock *tp)
1978{
1979	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1980}
1981
1982/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1983 * counter when SACK is enabled (without SACK, sacked_out is used for
1984 * that purpose).
1985 *
1986 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1987 * segments up to the highest received SACK block so far and holes in
1988 * between them.
1989 *
1990 * With reordering, holes may still be in flight, so RFC3517 recovery
1991 * uses pure sacked_out (total number of SACKed segments) even though
1992 * it violates the RFC that uses duplicate ACKs, often these are equal
1993 * but when e.g. out-of-window ACKs or packet duplication occurs,
1994 * they differ. Since neither occurs due to loss, TCP should really
1995 * ignore them.
1996 */
1997static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1998{
1999	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2000}
2001
2002static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2003{
2004	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2005}
2006
2007static inline int tcp_head_timedout(struct sock *sk)
2008{
2009	struct tcp_sock *tp = tcp_sk(sk);
2010
2011	return tp->packets_out &&
2012	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2013}
2014
2015/* Linux NewReno/SACK/FACK/ECN state machine.
2016 * --------------------------------------
2017 *
2018 * "Open"	Normal state, no dubious events, fast path.
2019 * "Disorder"   In all the respects it is "Open",
2020 *		but requires a bit more attention. It is entered when
2021 *		we see some SACKs or dupacks. It is split of "Open"
2022 *		mainly to move some processing from fast path to slow one.
2023 * "CWR"	CWND was reduced due to some Congestion Notification event.
2024 *		It can be ECN, ICMP source quench, local device congestion.
2025 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2026 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2027 *
2028 * tcp_fastretrans_alert() is entered:
2029 * - each incoming ACK, if state is not "Open"
2030 * - when arrived ACK is unusual, namely:
2031 *	* SACK
2032 *	* Duplicate ACK.
2033 *	* ECN ECE.
2034 *
2035 * Counting packets in flight is pretty simple.
2036 *
2037 *	in_flight = packets_out - left_out + retrans_out
2038 *
2039 *	packets_out is SND.NXT-SND.UNA counted in packets.
2040 *
2041 *	retrans_out is number of retransmitted segments.
2042 *
2043 *	left_out is number of segments left network, but not ACKed yet.
2044 *
2045 *		left_out = sacked_out + lost_out
2046 *
2047 *     sacked_out: Packets, which arrived to receiver out of order
2048 *		   and hence not ACKed. With SACKs this number is simply
2049 *		   amount of SACKed data. Even without SACKs
2050 *		   it is easy to give pretty reliable estimate of this number,
2051 *		   counting duplicate ACKs.
2052 *
2053 *       lost_out: Packets lost by network. TCP has no explicit
2054 *		   "loss notification" feedback from network (for now).
2055 *		   It means that this number can be only _guessed_.
2056 *		   Actually, it is the heuristics to predict lossage that
2057 *		   distinguishes different algorithms.
2058 *
2059 *	F.e. after RTO, when all the queue is considered as lost,
2060 *	lost_out = packets_out and in_flight = retrans_out.
2061 *
2062 *		Essentially, we have now two algorithms counting
2063 *		lost packets.
2064 *
2065 *		FACK: It is the simplest heuristics. As soon as we decided
2066 *		that something is lost, we decide that _all_ not SACKed
2067 *		packets until the most forward SACK are lost. I.e.
2068 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2069 *		It is absolutely correct estimate, if network does not reorder
2070 *		packets. And it loses any connection to reality when reordering
2071 *		takes place. We use FACK by default until reordering
2072 *		is suspected on the path to this destination.
2073 *
2074 *		NewReno: when Recovery is entered, we assume that one segment
2075 *		is lost (classic Reno). While we are in Recovery and
2076 *		a partial ACK arrives, we assume that one more packet
2077 *		is lost (NewReno). This heuristics are the same in NewReno
2078 *		and SACK.
2079 *
2080 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2081 *  deflation etc. CWND is real congestion window, never inflated, changes
2082 *  only according to classic VJ rules.
2083 *
2084 * Really tricky (and requiring careful tuning) part of algorithm
2085 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2086 * The first determines the moment _when_ we should reduce CWND and,
2087 * hence, slow down forward transmission. In fact, it determines the moment
2088 * when we decide that hole is caused by loss, rather than by a reorder.
2089 *
2090 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2091 * holes, caused by lost packets.
2092 *
2093 * And the most logically complicated part of algorithm is undo
2094 * heuristics. We detect false retransmits due to both too early
2095 * fast retransmit (reordering) and underestimated RTO, analyzing
2096 * timestamps and D-SACKs. When we detect that some segments were
2097 * retransmitted by mistake and CWND reduction was wrong, we undo
2098 * window reduction and abort recovery phase. This logic is hidden
2099 * inside several functions named tcp_try_undo_<something>.
2100 */
2101
2102/* This function decides, when we should leave Disordered state
2103 * and enter Recovery phase, reducing congestion window.
2104 *
2105 * Main question: may we further continue forward transmission
2106 * with the same cwnd?
2107 */
2108static int tcp_time_to_recover(struct sock *sk)
2109{
2110	struct tcp_sock *tp = tcp_sk(sk);
2111	__u32 packets_out;
2112
2113	/* Do not perform any recovery during F-RTO algorithm */
2114	if (tp->frto_counter)
2115		return 0;
2116
2117	/* Trick#1: The loss is proven. */
2118	if (tp->lost_out)
2119		return 1;
2120
2121	/* Not-A-Trick#2 : Classic rule... */
2122	if (tcp_dupack_heurestics(tp) > tp->reordering)
2123		return 1;
2124
2125	/* Trick#3 : when we use RFC2988 timer restart, fast
2126	 * retransmit can be triggered by timeout of queue head.
2127	 */
2128	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2129		return 1;
2130
2131	/* Trick#4: It is still not OK... But will it be useful to delay
2132	 * recovery more?
2133	 */
2134	packets_out = tp->packets_out;
2135	if (packets_out <= tp->reordering &&
2136	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2137	    !tcp_may_send_now(sk)) {
2138		/* We have nothing to send. This connection is limited
2139		 * either by receiver window or by application.
2140		 */
2141		return 1;
2142	}
2143
2144	return 0;
2145}
2146
2147/* RFC: This is from the original, I doubt that this is necessary at all:
2148 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2149 * retransmitted past LOST markings in the first place? I'm not fully sure
2150 * about undo and end of connection cases, which can cause R without L?
2151 */
2152static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2153{
2154	if ((tp->retransmit_skb_hint != NULL) &&
2155	    before(TCP_SKB_CB(skb)->seq,
2156		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2157		tp->retransmit_skb_hint = NULL;
2158}
2159
2160/* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2161 * is against sacked "cnt", otherwise it's against facked "cnt"
2162 */
2163static void tcp_mark_head_lost(struct sock *sk, int packets)
2164{
2165	struct tcp_sock *tp = tcp_sk(sk);
2166	struct sk_buff *skb;
2167	int cnt, oldcnt;
2168	int err;
2169	unsigned int mss;
2170
2171	BUG_TRAP(packets <= tp->packets_out);
2172	if (tp->lost_skb_hint) {
2173		skb = tp->lost_skb_hint;
2174		cnt = tp->lost_cnt_hint;
2175	} else {
2176		skb = tcp_write_queue_head(sk);
2177		cnt = 0;
2178	}
2179
2180	tcp_for_write_queue_from(skb, sk) {
2181		if (skb == tcp_send_head(sk))
2182			break;
2183		/* TODO: do this better */
2184		/* this is not the most efficient way to do this... */
2185		tp->lost_skb_hint = skb;
2186		tp->lost_cnt_hint = cnt;
2187
2188		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2189			break;
2190
2191		oldcnt = cnt;
2192		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2193		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2194			cnt += tcp_skb_pcount(skb);
2195
2196		if (cnt > packets) {
2197			if (tcp_is_sack(tp) || (oldcnt >= packets))
2198				break;
2199
2200			mss = skb_shinfo(skb)->gso_size;
2201			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2202			if (err < 0)
2203				break;
2204			cnt = packets;
2205		}
2206
2207		if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2208			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2209			tp->lost_out += tcp_skb_pcount(skb);
2210			tcp_verify_retransmit_hint(tp, skb);
2211		}
2212	}
2213	tcp_verify_left_out(tp);
2214}
2215
2216/* Account newly detected lost packet(s) */
2217
2218static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2219{
2220	struct tcp_sock *tp = tcp_sk(sk);
2221
2222	if (tcp_is_reno(tp)) {
2223		tcp_mark_head_lost(sk, 1);
2224	} else if (tcp_is_fack(tp)) {
2225		int lost = tp->fackets_out - tp->reordering;
2226		if (lost <= 0)
2227			lost = 1;
2228		tcp_mark_head_lost(sk, lost);
2229	} else {
2230		int sacked_upto = tp->sacked_out - tp->reordering;
2231		if (sacked_upto < fast_rexmit)
2232			sacked_upto = fast_rexmit;
2233		tcp_mark_head_lost(sk, sacked_upto);
2234	}
2235
2236	/* New heuristics: it is possible only after we switched
2237	 * to restart timer each time when something is ACKed.
2238	 * Hence, we can detect timed out packets during fast
2239	 * retransmit without falling to slow start.
2240	 */
2241	if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2242		struct sk_buff *skb;
2243
2244		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2245			: tcp_write_queue_head(sk);
2246
2247		tcp_for_write_queue_from(skb, sk) {
2248			if (skb == tcp_send_head(sk))
2249				break;
2250			if (!tcp_skb_timedout(sk, skb))
2251				break;
2252
2253			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2254				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2255				tp->lost_out += tcp_skb_pcount(skb);
2256				tcp_verify_retransmit_hint(tp, skb);
2257			}
2258		}
2259
2260		tp->scoreboard_skb_hint = skb;
2261
2262		tcp_verify_left_out(tp);
2263	}
2264}
2265
2266/* CWND moderation, preventing bursts due to too big ACKs
2267 * in dubious situations.
2268 */
2269static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2270{
2271	tp->snd_cwnd = min(tp->snd_cwnd,
2272			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2273	tp->snd_cwnd_stamp = tcp_time_stamp;
2274}
2275
2276/* Lower bound on congestion window is slow start threshold
2277 * unless congestion avoidance choice decides to overide it.
2278 */
2279static inline u32 tcp_cwnd_min(const struct sock *sk)
2280{
2281	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2282
2283	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2284}
2285
2286/* Decrease cwnd each second ack. */
2287static void tcp_cwnd_down(struct sock *sk, int flag)
2288{
2289	struct tcp_sock *tp = tcp_sk(sk);
2290	int decr = tp->snd_cwnd_cnt + 1;
2291
2292	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2293	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2294		tp->snd_cwnd_cnt = decr & 1;
2295		decr >>= 1;
2296
2297		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2298			tp->snd_cwnd -= decr;
2299
2300		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2301		tp->snd_cwnd_stamp = tcp_time_stamp;
2302	}
2303}
2304
2305/* Nothing was retransmitted or returned timestamp is less
2306 * than timestamp of the first retransmission.
2307 */
2308static inline int tcp_packet_delayed(struct tcp_sock *tp)
2309{
2310	return !tp->retrans_stamp ||
2311		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2312		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2313}
2314
2315/* Undo procedures. */
2316
2317#if FASTRETRANS_DEBUG > 1
2318static void DBGUNDO(struct sock *sk, const char *msg)
2319{
2320	struct tcp_sock *tp = tcp_sk(sk);
2321	struct inet_sock *inet = inet_sk(sk);
2322
2323	if (sk->sk_family == AF_INET) {
2324		printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2325		       msg,
2326		       NIPQUAD(inet->daddr), ntohs(inet->dport),
2327		       tp->snd_cwnd, tcp_left_out(tp),
2328		       tp->snd_ssthresh, tp->prior_ssthresh,
2329		       tp->packets_out);
2330	}
2331#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2332	else if (sk->sk_family == AF_INET6) {
2333		struct ipv6_pinfo *np = inet6_sk(sk);
2334		printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2335		       msg,
2336		       NIP6(np->daddr), ntohs(inet->dport),
2337		       tp->snd_cwnd, tcp_left_out(tp),
2338		       tp->snd_ssthresh, tp->prior_ssthresh,
2339		       tp->packets_out);
2340	}
2341#endif
2342}
2343#else
2344#define DBGUNDO(x...) do { } while (0)
2345#endif
2346
2347static void tcp_undo_cwr(struct sock *sk, const int undo)
2348{
2349	struct tcp_sock *tp = tcp_sk(sk);
2350
2351	if (tp->prior_ssthresh) {
2352		const struct inet_connection_sock *icsk = inet_csk(sk);
2353
2354		if (icsk->icsk_ca_ops->undo_cwnd)
2355			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2356		else
2357			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2358
2359		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2360			tp->snd_ssthresh = tp->prior_ssthresh;
2361			TCP_ECN_withdraw_cwr(tp);
2362		}
2363	} else {
2364		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2365	}
2366	tcp_moderate_cwnd(tp);
2367	tp->snd_cwnd_stamp = tcp_time_stamp;
2368
2369	/* There is something screwy going on with the retrans hints after
2370	   an undo */
2371	tcp_clear_all_retrans_hints(tp);
2372}
2373
2374static inline int tcp_may_undo(struct tcp_sock *tp)
2375{
2376	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2377}
2378
2379/* People celebrate: "We love our President!" */
2380static int tcp_try_undo_recovery(struct sock *sk)
2381{
2382	struct tcp_sock *tp = tcp_sk(sk);
2383
2384	if (tcp_may_undo(tp)) {
2385		/* Happy end! We did not retransmit anything
2386		 * or our original transmission succeeded.
2387		 */
2388		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2389		tcp_undo_cwr(sk, 1);
2390		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2391			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2392		else
2393			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2394		tp->undo_marker = 0;
2395	}
2396	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2397		/* Hold old state until something *above* high_seq
2398		 * is ACKed. For Reno it is MUST to prevent false
2399		 * fast retransmits (RFC2582). SACK TCP is safe. */
2400		tcp_moderate_cwnd(tp);
2401		return 1;
2402	}
2403	tcp_set_ca_state(sk, TCP_CA_Open);
2404	return 0;
2405}
2406
2407/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2408static void tcp_try_undo_dsack(struct sock *sk)
2409{
2410	struct tcp_sock *tp = tcp_sk(sk);
2411
2412	if (tp->undo_marker && !tp->undo_retrans) {
2413		DBGUNDO(sk, "D-SACK");
2414		tcp_undo_cwr(sk, 1);
2415		tp->undo_marker = 0;
2416		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2417	}
2418}
2419
2420/* Undo during fast recovery after partial ACK. */
2421
2422static int tcp_try_undo_partial(struct sock *sk, int acked)
2423{
2424	struct tcp_sock *tp = tcp_sk(sk);
2425	/* Partial ACK arrived. Force Hoe's retransmit. */
2426	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2427
2428	if (tcp_may_undo(tp)) {
2429		/* Plain luck! Hole if filled with delayed
2430		 * packet, rather than with a retransmit.
2431		 */
2432		if (tp->retrans_out == 0)
2433			tp->retrans_stamp = 0;
2434
2435		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2436
2437		DBGUNDO(sk, "Hoe");
2438		tcp_undo_cwr(sk, 0);
2439		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2440
2441		/* So... Do not make Hoe's retransmit yet.
2442		 * If the first packet was delayed, the rest
2443		 * ones are most probably delayed as well.
2444		 */
2445		failed = 0;
2446	}
2447	return failed;
2448}
2449
2450/* Undo during loss recovery after partial ACK. */
2451static int tcp_try_undo_loss(struct sock *sk)
2452{
2453	struct tcp_sock *tp = tcp_sk(sk);
2454
2455	if (tcp_may_undo(tp)) {
2456		struct sk_buff *skb;
2457		tcp_for_write_queue(skb, sk) {
2458			if (skb == tcp_send_head(sk))
2459				break;
2460			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2461		}
2462
2463		tcp_clear_all_retrans_hints(tp);
2464
2465		DBGUNDO(sk, "partial loss");
2466		tp->lost_out = 0;
2467		tcp_undo_cwr(sk, 1);
2468		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2469		inet_csk(sk)->icsk_retransmits = 0;
2470		tp->undo_marker = 0;
2471		if (tcp_is_sack(tp))
2472			tcp_set_ca_state(sk, TCP_CA_Open);
2473		return 1;
2474	}
2475	return 0;
2476}
2477
2478static inline void tcp_complete_cwr(struct sock *sk)
2479{
2480	struct tcp_sock *tp = tcp_sk(sk);
2481	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2482	tp->snd_cwnd_stamp = tcp_time_stamp;
2483	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2484}
2485
2486static void tcp_try_keep_open(struct sock *sk)
2487{
2488	struct tcp_sock *tp = tcp_sk(sk);
2489	int state = TCP_CA_Open;
2490
2491	if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2492		state = TCP_CA_Disorder;
2493
2494	if (inet_csk(sk)->icsk_ca_state != state) {
2495		tcp_set_ca_state(sk, state);
2496		tp->high_seq = tp->snd_nxt;
2497	}
2498}
2499
2500static void tcp_try_to_open(struct sock *sk, int flag)
2501{
2502	struct tcp_sock *tp = tcp_sk(sk);
2503
2504	tcp_verify_left_out(tp);
2505
2506	if (!tp->frto_counter && tp->retrans_out == 0)
2507		tp->retrans_stamp = 0;
2508
2509	if (flag & FLAG_ECE)
2510		tcp_enter_cwr(sk, 1);
2511
2512	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2513		tcp_try_keep_open(sk);
2514		tcp_moderate_cwnd(tp);
2515	} else {
2516		tcp_cwnd_down(sk, flag);
2517	}
2518}
2519
2520static void tcp_mtup_probe_failed(struct sock *sk)
2521{
2522	struct inet_connection_sock *icsk = inet_csk(sk);
2523
2524	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2525	icsk->icsk_mtup.probe_size = 0;
2526}
2527
2528static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2529{
2530	struct tcp_sock *tp = tcp_sk(sk);
2531	struct inet_connection_sock *icsk = inet_csk(sk);
2532
2533	/* FIXME: breaks with very large cwnd */
2534	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2535	tp->snd_cwnd = tp->snd_cwnd *
2536		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2537		       icsk->icsk_mtup.probe_size;
2538	tp->snd_cwnd_cnt = 0;
2539	tp->snd_cwnd_stamp = tcp_time_stamp;
2540	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2541
2542	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2543	icsk->icsk_mtup.probe_size = 0;
2544	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2545}
2546
2547/* Process an event, which can update packets-in-flight not trivially.
2548 * Main goal of this function is to calculate new estimate for left_out,
2549 * taking into account both packets sitting in receiver's buffer and
2550 * packets lost by network.
2551 *
2552 * Besides that it does CWND reduction, when packet loss is detected
2553 * and changes state of machine.
2554 *
2555 * It does _not_ decide what to send, it is made in function
2556 * tcp_xmit_retransmit_queue().
2557 */
2558static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2559{
2560	struct inet_connection_sock *icsk = inet_csk(sk);
2561	struct tcp_sock *tp = tcp_sk(sk);
2562	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2563	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2564				    (tcp_fackets_out(tp) > tp->reordering));
2565	int fast_rexmit = 0;
2566
2567	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2568		tp->sacked_out = 0;
2569	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2570		tp->fackets_out = 0;
2571
2572	/* Now state machine starts.
2573	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2574	if (flag & FLAG_ECE)
2575		tp->prior_ssthresh = 0;
2576
2577	/* B. In all the states check for reneging SACKs. */
2578	if (tcp_check_sack_reneging(sk, flag))
2579		return;
2580
2581	/* C. Process data loss notification, provided it is valid. */
2582	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2583	    before(tp->snd_una, tp->high_seq) &&
2584	    icsk->icsk_ca_state != TCP_CA_Open &&
2585	    tp->fackets_out > tp->reordering) {
2586		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2587		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2588	}
2589
2590	/* D. Check consistency of the current state. */
2591	tcp_verify_left_out(tp);
2592
2593	/* E. Check state exit conditions. State can be terminated
2594	 *    when high_seq is ACKed. */
2595	if (icsk->icsk_ca_state == TCP_CA_Open) {
2596		BUG_TRAP(tp->retrans_out == 0);
2597		tp->retrans_stamp = 0;
2598	} else if (!before(tp->snd_una, tp->high_seq)) {
2599		switch (icsk->icsk_ca_state) {
2600		case TCP_CA_Loss:
2601			icsk->icsk_retransmits = 0;
2602			if (tcp_try_undo_recovery(sk))
2603				return;
2604			break;
2605
2606		case TCP_CA_CWR:
2607			/* CWR is to be held something *above* high_seq
2608			 * is ACKed for CWR bit to reach receiver. */
2609			if (tp->snd_una != tp->high_seq) {
2610				tcp_complete_cwr(sk);
2611				tcp_set_ca_state(sk, TCP_CA_Open);
2612			}
2613			break;
2614
2615		case TCP_CA_Disorder:
2616			tcp_try_undo_dsack(sk);
2617			if (!tp->undo_marker ||
2618			    /* For SACK case do not Open to allow to undo
2619			     * catching for all duplicate ACKs. */
2620			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2621				tp->undo_marker = 0;
2622				tcp_set_ca_state(sk, TCP_CA_Open);
2623			}
2624			break;
2625
2626		case TCP_CA_Recovery:
2627			if (tcp_is_reno(tp))
2628				tcp_reset_reno_sack(tp);
2629			if (tcp_try_undo_recovery(sk))
2630				return;
2631			tcp_complete_cwr(sk);
2632			break;
2633		}
2634	}
2635
2636	/* F. Process state. */
2637	switch (icsk->icsk_ca_state) {
2638	case TCP_CA_Recovery:
2639		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2640			if (tcp_is_reno(tp) && is_dupack)
2641				tcp_add_reno_sack(sk);
2642		} else
2643			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2644		break;
2645	case TCP_CA_Loss:
2646		if (flag & FLAG_DATA_ACKED)
2647			icsk->icsk_retransmits = 0;
2648		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2649			tcp_reset_reno_sack(tp);
2650		if (!tcp_try_undo_loss(sk)) {
2651			tcp_moderate_cwnd(tp);
2652			tcp_xmit_retransmit_queue(sk);
2653			return;
2654		}
2655		if (icsk->icsk_ca_state != TCP_CA_Open)
2656			return;
2657		/* Loss is undone; fall through to processing in Open state. */
2658	default:
2659		if (tcp_is_reno(tp)) {
2660			if (flag & FLAG_SND_UNA_ADVANCED)
2661				tcp_reset_reno_sack(tp);
2662			if (is_dupack)
2663				tcp_add_reno_sack(sk);
2664		}
2665
2666		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2667			tcp_try_undo_dsack(sk);
2668
2669		if (!tcp_time_to_recover(sk)) {
2670			tcp_try_to_open(sk, flag);
2671			return;
2672		}
2673
2674		/* MTU probe failure: don't reduce cwnd */
2675		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2676		    icsk->icsk_mtup.probe_size &&
2677		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2678			tcp_mtup_probe_failed(sk);
2679			/* Restores the reduction we did in tcp_mtup_probe() */
2680			tp->snd_cwnd++;
2681			tcp_simple_retransmit(sk);
2682			return;
2683		}
2684
2685		/* Otherwise enter Recovery state */
2686
2687		if (tcp_is_reno(tp))
2688			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2689		else
2690			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2691
2692		tp->high_seq = tp->snd_nxt;
2693		tp->prior_ssthresh = 0;
2694		tp->undo_marker = tp->snd_una;
2695		tp->undo_retrans = tp->retrans_out;
2696
2697		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2698			if (!(flag & FLAG_ECE))
2699				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2700			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2701			TCP_ECN_queue_cwr(tp);
2702		}
2703
2704		tp->bytes_acked = 0;
2705		tp->snd_cwnd_cnt = 0;
2706		tcp_set_ca_state(sk, TCP_CA_Recovery);
2707		fast_rexmit = 1;
2708	}
2709
2710	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2711		tcp_update_scoreboard(sk, fast_rexmit);
2712	tcp_cwnd_down(sk, flag);
2713	tcp_xmit_retransmit_queue(sk);
2714}
2715
2716/* Read draft-ietf-tcplw-high-performance before mucking
2717 * with this code. (Supersedes RFC1323)
2718 */
2719static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2720{
2721	/* RTTM Rule: A TSecr value received in a segment is used to
2722	 * update the averaged RTT measurement only if the segment
2723	 * acknowledges some new data, i.e., only if it advances the
2724	 * left edge of the send window.
2725	 *
2726	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2727	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2728	 *
2729	 * Changed: reset backoff as soon as we see the first valid sample.
2730	 * If we do not, we get strongly overestimated rto. With timestamps
2731	 * samples are accepted even from very old segments: f.e., when rtt=1
2732	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2733	 * answer arrives rto becomes 120 seconds! If at least one of segments
2734	 * in window is lost... Voila.	 			--ANK (010210)
2735	 */
2736	struct tcp_sock *tp = tcp_sk(sk);
2737	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2738	tcp_rtt_estimator(sk, seq_rtt);
2739	tcp_set_rto(sk);
2740	inet_csk(sk)->icsk_backoff = 0;
2741	tcp_bound_rto(sk);
2742}
2743
2744static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2745{
2746	/* We don't have a timestamp. Can only use
2747	 * packets that are not retransmitted to determine
2748	 * rtt estimates. Also, we must not reset the
2749	 * backoff for rto until we get a non-retransmitted
2750	 * packet. This allows us to deal with a situation
2751	 * where the network delay has increased suddenly.
2752	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2753	 */
2754
2755	if (flag & FLAG_RETRANS_DATA_ACKED)
2756		return;
2757
2758	tcp_rtt_estimator(sk, seq_rtt);
2759	tcp_set_rto(sk);
2760	inet_csk(sk)->icsk_backoff = 0;
2761	tcp_bound_rto(sk);
2762}
2763
2764static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2765				      const s32 seq_rtt)
2766{
2767	const struct tcp_sock *tp = tcp_sk(sk);
2768	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2769	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2770		tcp_ack_saw_tstamp(sk, flag);
2771	else if (seq_rtt >= 0)
2772		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2773}
2774
2775static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2776{
2777	const struct inet_connection_sock *icsk = inet_csk(sk);
2778	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2779	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2780}
2781
2782/* Restart timer after forward progress on connection.
2783 * RFC2988 recommends to restart timer to now+rto.
2784 */
2785static void tcp_rearm_rto(struct sock *sk)
2786{
2787	struct tcp_sock *tp = tcp_sk(sk);
2788
2789	if (!tp->packets_out) {
2790		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2791	} else {
2792		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2793					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2794	}
2795}
2796
2797/* If we get here, the whole TSO packet has not been acked. */
2798static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2799{
2800	struct tcp_sock *tp = tcp_sk(sk);
2801	u32 packets_acked;
2802
2803	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2804
2805	packets_acked = tcp_skb_pcount(skb);
2806	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2807		return 0;
2808	packets_acked -= tcp_skb_pcount(skb);
2809
2810	if (packets_acked) {
2811		BUG_ON(tcp_skb_pcount(skb) == 0);
2812		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2813	}
2814
2815	return packets_acked;
2816}
2817
2818/* Remove acknowledged frames from the retransmission queue. If our packet
2819 * is before the ack sequence we can discard it as it's confirmed to have
2820 * arrived at the other end.
2821 */
2822static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2823{
2824	struct tcp_sock *tp = tcp_sk(sk);
2825	const struct inet_connection_sock *icsk = inet_csk(sk);
2826	struct sk_buff *skb;
2827	u32 now = tcp_time_stamp;
2828	int fully_acked = 1;
2829	int flag = 0;
2830	u32 pkts_acked = 0;
2831	u32 reord = tp->packets_out;
2832	s32 seq_rtt = -1;
2833	s32 ca_seq_rtt = -1;
2834	ktime_t last_ackt = net_invalid_timestamp();
2835
2836	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2837		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2838		u32 end_seq;
2839		u32 acked_pcount;
2840		u8 sacked = scb->sacked;
2841
2842		/* Determine how many packets and what bytes were acked, tso and else */
2843		if (after(scb->end_seq, tp->snd_una)) {
2844			if (tcp_skb_pcount(skb) == 1 ||
2845			    !after(tp->snd_una, scb->seq))
2846				break;
2847
2848			acked_pcount = tcp_tso_acked(sk, skb);
2849			if (!acked_pcount)
2850				break;
2851
2852			fully_acked = 0;
2853			end_seq = tp->snd_una;
2854		} else {
2855			acked_pcount = tcp_skb_pcount(skb);
2856			end_seq = scb->end_seq;
2857		}
2858
2859		/* MTU probing checks */
2860		if (fully_acked && icsk->icsk_mtup.probe_size &&
2861		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2862			tcp_mtup_probe_success(sk, skb);
2863		}
2864
2865		if (sacked & TCPCB_RETRANS) {
2866			if (sacked & TCPCB_SACKED_RETRANS)
2867				tp->retrans_out -= acked_pcount;
2868			flag |= FLAG_RETRANS_DATA_ACKED;
2869			ca_seq_rtt = -1;
2870			seq_rtt = -1;
2871			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2872				flag |= FLAG_NONHEAD_RETRANS_ACKED;
2873		} else {
2874			ca_seq_rtt = now - scb->when;
2875			last_ackt = skb->tstamp;
2876			if (seq_rtt < 0) {
2877				seq_rtt = ca_seq_rtt;
2878			}
2879			if (!(sacked & TCPCB_SACKED_ACKED))
2880				reord = min(pkts_acked, reord);
2881		}
2882
2883		if (sacked & TCPCB_SACKED_ACKED)
2884			tp->sacked_out -= acked_pcount;
2885		if (sacked & TCPCB_LOST)
2886			tp->lost_out -= acked_pcount;
2887
2888		if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2889			tp->urg_mode = 0;
2890
2891		tp->packets_out -= acked_pcount;
2892		pkts_acked += acked_pcount;
2893
2894		/* Initial outgoing SYN's get put onto the write_queue
2895		 * just like anything else we transmit.  It is not
2896		 * true data, and if we misinform our callers that
2897		 * this ACK acks real data, we will erroneously exit
2898		 * connection startup slow start one packet too
2899		 * quickly.  This is severely frowned upon behavior.
2900		 */
2901		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2902			flag |= FLAG_DATA_ACKED;
2903		} else {
2904			flag |= FLAG_SYN_ACKED;
2905			tp->retrans_stamp = 0;
2906		}
2907
2908		if (!fully_acked)
2909			break;
2910
2911		tcp_unlink_write_queue(skb, sk);
2912		sk_wmem_free_skb(sk, skb);
2913		tcp_clear_all_retrans_hints(tp);
2914	}
2915
2916	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2917		flag |= FLAG_SACK_RENEGING;
2918
2919	if (flag & FLAG_ACKED) {
2920		const struct tcp_congestion_ops *ca_ops
2921			= inet_csk(sk)->icsk_ca_ops;
2922
2923		tcp_ack_update_rtt(sk, flag, seq_rtt);
2924		tcp_rearm_rto(sk);
2925
2926		if (tcp_is_reno(tp)) {
2927			tcp_remove_reno_sacks(sk, pkts_acked);
2928		} else {
2929			/* Non-retransmitted hole got filled? That's reordering */
2930			if (reord < prior_fackets)
2931				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2932		}
2933
2934		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2935
2936		if (ca_ops->pkts_acked) {
2937			s32 rtt_us = -1;
2938
2939			/* Is the ACK triggering packet unambiguous? */
2940			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2941				/* High resolution needed and available? */
2942				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2943				    !ktime_equal(last_ackt,
2944						 net_invalid_timestamp()))
2945					rtt_us = ktime_us_delta(ktime_get_real(),
2946								last_ackt);
2947				else if (ca_seq_rtt > 0)
2948					rtt_us = jiffies_to_usecs(ca_seq_rtt);
2949			}
2950
2951			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2952		}
2953	}
2954
2955#if FASTRETRANS_DEBUG > 0
2956	BUG_TRAP((int)tp->sacked_out >= 0);
2957	BUG_TRAP((int)tp->lost_out >= 0);
2958	BUG_TRAP((int)tp->retrans_out >= 0);
2959	if (!tp->packets_out && tcp_is_sack(tp)) {
2960		icsk = inet_csk(sk);
2961		if (tp->lost_out) {
2962			printk(KERN_DEBUG "Leak l=%u %d\n",
2963			       tp->lost_out, icsk->icsk_ca_state);
2964			tp->lost_out = 0;
2965		}
2966		if (tp->sacked_out) {
2967			printk(KERN_DEBUG "Leak s=%u %d\n",
2968			       tp->sacked_out, icsk->icsk_ca_state);
2969			tp->sacked_out = 0;
2970		}
2971		if (tp->retrans_out) {
2972			printk(KERN_DEBUG "Leak r=%u %d\n",
2973			       tp->retrans_out, icsk->icsk_ca_state);
2974			tp->retrans_out = 0;
2975		}
2976	}
2977#endif
2978	return flag;
2979}
2980
2981static void tcp_ack_probe(struct sock *sk)
2982{
2983	const struct tcp_sock *tp = tcp_sk(sk);
2984	struct inet_connection_sock *icsk = inet_csk(sk);
2985
2986	/* Was it a usable window open? */
2987
2988	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2989		icsk->icsk_backoff = 0;
2990		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2991		/* Socket must be waked up by subsequent tcp_data_snd_check().
2992		 * This function is not for random using!
2993		 */
2994	} else {
2995		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2996					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2997					  TCP_RTO_MAX);
2998	}
2999}
3000
3001static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3002{
3003	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3004		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3005}
3006
3007static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3008{
3009	const struct tcp_sock *tp = tcp_sk(sk);
3010	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3011		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3012}
3013
3014/* Check that window update is acceptable.
3015 * The function assumes that snd_una<=ack<=snd_next.
3016 */
3017static inline int tcp_may_update_window(const struct tcp_sock *tp,
3018					const u32 ack, const u32 ack_seq,
3019					const u32 nwin)
3020{
3021	return (after(ack, tp->snd_una) ||
3022		after(ack_seq, tp->snd_wl1) ||
3023		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3024}
3025
3026/* Update our send window.
3027 *
3028 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3029 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3030 */
3031static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3032				 u32 ack_seq)
3033{
3034	struct tcp_sock *tp = tcp_sk(sk);
3035	int flag = 0;
3036	u32 nwin = ntohs(tcp_hdr(skb)->window);
3037
3038	if (likely(!tcp_hdr(skb)->syn))
3039		nwin <<= tp->rx_opt.snd_wscale;
3040
3041	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3042		flag |= FLAG_WIN_UPDATE;
3043		tcp_update_wl(tp, ack, ack_seq);
3044
3045		if (tp->snd_wnd != nwin) {
3046			tp->snd_wnd = nwin;
3047
3048			/* Note, it is the only place, where
3049			 * fast path is recovered for sending TCP.
3050			 */
3051			tp->pred_flags = 0;
3052			tcp_fast_path_check(sk);
3053
3054			if (nwin > tp->max_window) {
3055				tp->max_window = nwin;
3056				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3057			}
3058		}
3059	}
3060
3061	tp->snd_una = ack;
3062
3063	return flag;
3064}
3065
3066/* A very conservative spurious RTO response algorithm: reduce cwnd and
3067 * continue in congestion avoidance.
3068 */
3069static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3070{
3071	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3072	tp->snd_cwnd_cnt = 0;
3073	tp->bytes_acked = 0;
3074	TCP_ECN_queue_cwr(tp);
3075	tcp_moderate_cwnd(tp);
3076}
3077
3078/* A conservative spurious RTO response algorithm: reduce cwnd using
3079 * rate halving and continue in congestion avoidance.
3080 */
3081static void tcp_ratehalving_spur_to_response(struct sock *sk)
3082{
3083	tcp_enter_cwr(sk, 0);
3084}
3085
3086static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3087{
3088	if (flag & FLAG_ECE)
3089		tcp_ratehalving_spur_to_response(sk);
3090	else
3091		tcp_undo_cwr(sk, 1);
3092}
3093
3094/* F-RTO spurious RTO detection algorithm (RFC4138)
3095 *
3096 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3097 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3098 * window (but not to or beyond highest sequence sent before RTO):
3099 *   On First ACK,  send two new segments out.
3100 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3101 *                  algorithm is not part of the F-RTO detection algorithm
3102 *                  given in RFC4138 but can be selected separately).
3103 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3104 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3105 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3106 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3107 *
3108 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3109 * original window even after we transmit two new data segments.
3110 *
3111 * SACK version:
3112 *   on first step, wait until first cumulative ACK arrives, then move to
3113 *   the second step. In second step, the next ACK decides.
3114 *
3115 * F-RTO is implemented (mainly) in four functions:
3116 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3117 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3118 *     called when tcp_use_frto() showed green light
3119 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3120 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3121 *     to prove that the RTO is indeed spurious. It transfers the control
3122 *     from F-RTO to the conventional RTO recovery
3123 */
3124static int tcp_process_frto(struct sock *sk, int flag)
3125{
3126	struct tcp_sock *tp = tcp_sk(sk);
3127
3128	tcp_verify_left_out(tp);
3129
3130	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3131	if (flag & FLAG_DATA_ACKED)
3132		inet_csk(sk)->icsk_retransmits = 0;
3133
3134	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3135	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3136		tp->undo_marker = 0;
3137
3138	if (!before(tp->snd_una, tp->frto_highmark)) {
3139		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3140		return 1;
3141	}
3142
3143	if (!tcp_is_sackfrto(tp)) {
3144		/* RFC4138 shortcoming in step 2; should also have case c):
3145		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3146		 * data, winupdate
3147		 */
3148		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3149			return 1;
3150
3151		if (!(flag & FLAG_DATA_ACKED)) {
3152			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3153					    flag);
3154			return 1;
3155		}
3156	} else {
3157		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3158			/* Prevent sending of new data. */
3159			tp->snd_cwnd = min(tp->snd_cwnd,
3160					   tcp_packets_in_flight(tp));
3161			return 1;
3162		}
3163
3164		if ((tp->frto_counter >= 2) &&
3165		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3166		     ((flag & FLAG_DATA_SACKED) &&
3167		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3168			/* RFC4138 shortcoming (see comment above) */
3169			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3170			    (flag & FLAG_NOT_DUP))
3171				return 1;
3172
3173			tcp_enter_frto_loss(sk, 3, flag);
3174			return 1;
3175		}
3176	}
3177
3178	if (tp->frto_counter == 1) {
3179		/* tcp_may_send_now needs to see updated state */
3180		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3181		tp->frto_counter = 2;
3182
3183		if (!tcp_may_send_now(sk))
3184			tcp_enter_frto_loss(sk, 2, flag);
3185
3186		return 1;
3187	} else {
3188		switch (sysctl_tcp_frto_response) {
3189		case 2:
3190			tcp_undo_spur_to_response(sk, flag);
3191			break;
3192		case 1:
3193			tcp_conservative_spur_to_response(tp);
3194			break;
3195		default:
3196			tcp_ratehalving_spur_to_response(sk);
3197			break;
3198		}
3199		tp->frto_counter = 0;
3200		tp->undo_marker = 0;
3201		NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3202	}
3203	return 0;
3204}
3205
3206/* This routine deals with incoming acks, but not outgoing ones. */
3207static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3208{
3209	struct inet_connection_sock *icsk = inet_csk(sk);
3210	struct tcp_sock *tp = tcp_sk(sk);
3211	u32 prior_snd_una = tp->snd_una;
3212	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3213	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3214	u32 prior_in_flight;
3215	u32 prior_fackets;
3216	int prior_packets;
3217	int frto_cwnd = 0;
3218
3219	/* If the ack is newer than sent or older than previous acks
3220	 * then we can probably ignore it.
3221	 */
3222	if (after(ack, tp->snd_nxt))
3223		goto uninteresting_ack;
3224
3225	if (before(ack, prior_snd_una))
3226		goto old_ack;
3227
3228	if (after(ack, prior_snd_una))
3229		flag |= FLAG_SND_UNA_ADVANCED;
3230
3231	if (sysctl_tcp_abc) {
3232		if (icsk->icsk_ca_state < TCP_CA_CWR)
3233			tp->bytes_acked += ack - prior_snd_una;
3234		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3235			/* we assume just one segment left network */
3236			tp->bytes_acked += min(ack - prior_snd_una,
3237					       tp->mss_cache);
3238	}
3239
3240	prior_fackets = tp->fackets_out;
3241	prior_in_flight = tcp_packets_in_flight(tp);
3242
3243	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3244		/* Window is constant, pure forward advance.
3245		 * No more checks are required.
3246		 * Note, we use the fact that SND.UNA>=SND.WL2.
3247		 */
3248		tcp_update_wl(tp, ack, ack_seq);
3249		tp->snd_una = ack;
3250		flag |= FLAG_WIN_UPDATE;
3251
3252		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3253
3254		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3255	} else {
3256		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3257			flag |= FLAG_DATA;
3258		else
3259			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3260
3261		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3262
3263		if (TCP_SKB_CB(skb)->sacked)
3264			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3265
3266		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3267			flag |= FLAG_ECE;
3268
3269		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3270	}
3271
3272	/* We passed data and got it acked, remove any soft error
3273	 * log. Something worked...
3274	 */
3275	sk->sk_err_soft = 0;
3276	tp->rcv_tstamp = tcp_time_stamp;
3277	prior_packets = tp->packets_out;
3278	if (!prior_packets)
3279		goto no_queue;
3280
3281	/* See if we can take anything off of the retransmit queue. */
3282	flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3283
3284	if (tp->frto_counter)
3285		frto_cwnd = tcp_process_frto(sk, flag);
3286	/* Guarantee sacktag reordering detection against wrap-arounds */
3287	if (before(tp->frto_highmark, tp->snd_una))
3288		tp->frto_highmark = 0;
3289
3290	if (tcp_ack_is_dubious(sk, flag)) {
3291		/* Advance CWND, if state allows this. */
3292		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3293		    tcp_may_raise_cwnd(sk, flag))
3294			tcp_cong_avoid(sk, ack, prior_in_flight);
3295		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3296				      flag);
3297	} else {
3298		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3299			tcp_cong_avoid(sk, ack, prior_in_flight);
3300	}
3301
3302	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3303		dst_confirm(sk->sk_dst_cache);
3304
3305	return 1;
3306
3307no_queue:
3308	icsk->icsk_probes_out = 0;
3309
3310	/* If this ack opens up a zero window, clear backoff.  It was
3311	 * being used to time the probes, and is probably far higher than
3312	 * it needs to be for normal retransmission.
3313	 */
3314	if (tcp_send_head(sk))
3315		tcp_ack_probe(sk);
3316	return 1;
3317
3318old_ack:
3319	if (TCP_SKB_CB(skb)->sacked) {
3320		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3321		if (icsk->icsk_ca_state == TCP_CA_Open)
3322			tcp_try_keep_open(sk);
3323	}
3324
3325uninteresting_ack:
3326	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3327	return 0;
3328}
3329
3330/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3331 * But, this can also be called on packets in the established flow when
3332 * the fast version below fails.
3333 */
3334void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3335		       int estab)
3336{
3337	unsigned char *ptr;
3338	struct tcphdr *th = tcp_hdr(skb);
3339	int length = (th->doff * 4) - sizeof(struct tcphdr);
3340
3341	ptr = (unsigned char *)(th + 1);
3342	opt_rx->saw_tstamp = 0;
3343
3344	while (length > 0) {
3345		int opcode = *ptr++;
3346		int opsize;
3347
3348		switch (opcode) {
3349		case TCPOPT_EOL:
3350			return;
3351		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3352			length--;
3353			continue;
3354		default:
3355			opsize = *ptr++;
3356			if (opsize < 2) /* "silly options" */
3357				return;
3358			if (opsize > length)
3359				return;	/* don't parse partial options */
3360			switch (opcode) {
3361			case TCPOPT_MSS:
3362				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3363					u16 in_mss = get_unaligned_be16(ptr);
3364					if (in_mss) {
3365						if (opt_rx->user_mss &&
3366						    opt_rx->user_mss < in_mss)
3367							in_mss = opt_rx->user_mss;
3368						opt_rx->mss_clamp = in_mss;
3369					}
3370				}
3371				break;
3372			case TCPOPT_WINDOW:
3373				if (opsize == TCPOLEN_WINDOW && th->syn &&
3374				    !estab && sysctl_tcp_window_scaling) {
3375					__u8 snd_wscale = *(__u8 *)ptr;
3376					opt_rx->wscale_ok = 1;
3377					if (snd_wscale > 14) {
3378						if (net_ratelimit())
3379							printk(KERN_INFO "tcp_parse_options: Illegal window "
3380							       "scaling value %d >14 received.\n",
3381							       snd_wscale);
3382						snd_wscale = 14;
3383					}
3384					opt_rx->snd_wscale = snd_wscale;
3385				}
3386				break;
3387			case TCPOPT_TIMESTAMP:
3388				if ((opsize == TCPOLEN_TIMESTAMP) &&
3389				    ((estab && opt_rx->tstamp_ok) ||
3390				     (!estab && sysctl_tcp_timestamps))) {
3391					opt_rx->saw_tstamp = 1;
3392					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3393					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3394				}
3395				break;
3396			case TCPOPT_SACK_PERM:
3397				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3398				    !estab && sysctl_tcp_sack) {
3399					opt_rx->sack_ok = 1;
3400					tcp_sack_reset(opt_rx);
3401				}
3402				break;
3403
3404			case TCPOPT_SACK:
3405				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3406				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3407				   opt_rx->sack_ok) {
3408					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3409				}
3410				break;
3411#ifdef CONFIG_TCP_MD5SIG
3412			case TCPOPT_MD5SIG:
3413				/*
3414				 * The MD5 Hash has already been
3415				 * checked (see tcp_v{4,6}_do_rcv()).
3416				 */
3417				break;
3418#endif
3419			}
3420
3421			ptr += opsize-2;
3422			length -= opsize;
3423		}
3424	}
3425}
3426
3427/* Fast parse options. This hopes to only see timestamps.
3428 * If it is wrong it falls back on tcp_parse_options().
3429 */
3430static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3431				  struct tcp_sock *tp)
3432{
3433	if (th->doff == sizeof(struct tcphdr) >> 2) {
3434		tp->rx_opt.saw_tstamp = 0;
3435		return 0;
3436	} else if (tp->rx_opt.tstamp_ok &&
3437		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3438		__be32 *ptr = (__be32 *)(th + 1);
3439		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3440				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3441			tp->rx_opt.saw_tstamp = 1;
3442			++ptr;
3443			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3444			++ptr;
3445			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3446			return 1;
3447		}
3448	}
3449	tcp_parse_options(skb, &tp->rx_opt, 1);
3450	return 1;
3451}
3452
3453static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3454{
3455	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3456	tp->rx_opt.ts_recent_stamp = get_seconds();
3457}
3458
3459static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3460{
3461	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3462		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3463		 * extra check below makes sure this can only happen
3464		 * for pure ACK frames.  -DaveM
3465		 *
3466		 * Not only, also it occurs for expired timestamps.
3467		 */
3468
3469		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3470		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3471			tcp_store_ts_recent(tp);
3472	}
3473}
3474
3475/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3476 *
3477 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3478 * it can pass through stack. So, the following predicate verifies that
3479 * this segment is not used for anything but congestion avoidance or
3480 * fast retransmit. Moreover, we even are able to eliminate most of such
3481 * second order effects, if we apply some small "replay" window (~RTO)
3482 * to timestamp space.
3483 *
3484 * All these measures still do not guarantee that we reject wrapped ACKs
3485 * on networks with high bandwidth, when sequence space is recycled fastly,
3486 * but it guarantees that such events will be very rare and do not affect
3487 * connection seriously. This doesn't look nice, but alas, PAWS is really
3488 * buggy extension.
3489 *
3490 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3491 * states that events when retransmit arrives after original data are rare.
3492 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3493 * the biggest problem on large power networks even with minor reordering.
3494 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3495 * up to bandwidth of 18Gigabit/sec. 8) ]
3496 */
3497
3498static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3499{
3500	struct tcp_sock *tp = tcp_sk(sk);
3501	struct tcphdr *th = tcp_hdr(skb);
3502	u32 seq = TCP_SKB_CB(skb)->seq;
3503	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3504
3505	return (/* 1. Pure ACK with correct sequence number. */
3506		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3507
3508		/* 2. ... and duplicate ACK. */
3509		ack == tp->snd_una &&
3510
3511		/* 3. ... and does not update window. */
3512		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3513
3514		/* 4. ... and sits in replay window. */
3515		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3516}
3517
3518static inline int tcp_paws_discard(const struct sock *sk,
3519				   const struct sk_buff *skb)
3520{
3521	const struct tcp_sock *tp = tcp_sk(sk);
3522	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3523		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3524		!tcp_disordered_ack(sk, skb));
3525}
3526
3527/* Check segment sequence number for validity.
3528 *
3529 * Segment controls are considered valid, if the segment
3530 * fits to the window after truncation to the window. Acceptability
3531 * of data (and SYN, FIN, of course) is checked separately.
3532 * See tcp_data_queue(), for example.
3533 *
3534 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3535 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3536 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3537 * (borrowed from freebsd)
3538 */
3539
3540static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3541{
3542	return	!before(end_seq, tp->rcv_wup) &&
3543		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3544}
3545
3546/* When we get a reset we do this. */
3547static void tcp_reset(struct sock *sk)
3548{
3549	/* We want the right error as BSD sees it (and indeed as we do). */
3550	switch (sk->sk_state) {
3551	case TCP_SYN_SENT:
3552		sk->sk_err = ECONNREFUSED;
3553		break;
3554	case TCP_CLOSE_WAIT:
3555		sk->sk_err = EPIPE;
3556		break;
3557	case TCP_CLOSE:
3558		return;
3559	default:
3560		sk->sk_err = ECONNRESET;
3561	}
3562
3563	if (!sock_flag(sk, SOCK_DEAD))
3564		sk->sk_error_report(sk);
3565
3566	tcp_done(sk);
3567}
3568
3569/*
3570 * 	Process the FIN bit. This now behaves as it is supposed to work
3571 *	and the FIN takes effect when it is validly part of sequence
3572 *	space. Not before when we get holes.
3573 *
3574 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3575 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3576 *	TIME-WAIT)
3577 *
3578 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3579 *	close and we go into CLOSING (and later onto TIME-WAIT)
3580 *
3581 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3582 */
3583static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3584{
3585	struct tcp_sock *tp = tcp_sk(sk);
3586
3587	inet_csk_schedule_ack(sk);
3588
3589	sk->sk_shutdown |= RCV_SHUTDOWN;
3590	sock_set_flag(sk, SOCK_DONE);
3591
3592	switch (sk->sk_state) {
3593	case TCP_SYN_RECV:
3594	case TCP_ESTABLISHED:
3595		/* Move to CLOSE_WAIT */
3596		tcp_set_state(sk, TCP_CLOSE_WAIT);
3597		inet_csk(sk)->icsk_ack.pingpong = 1;
3598		break;
3599
3600	case TCP_CLOSE_WAIT:
3601	case TCP_CLOSING:
3602		/* Received a retransmission of the FIN, do
3603		 * nothing.
3604		 */
3605		break;
3606	case TCP_LAST_ACK:
3607		/* RFC793: Remain in the LAST-ACK state. */
3608		break;
3609
3610	case TCP_FIN_WAIT1:
3611		/* This case occurs when a simultaneous close
3612		 * happens, we must ack the received FIN and
3613		 * enter the CLOSING state.
3614		 */
3615		tcp_send_ack(sk);
3616		tcp_set_state(sk, TCP_CLOSING);
3617		break;
3618	case TCP_FIN_WAIT2:
3619		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3620		tcp_send_ack(sk);
3621		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3622		break;
3623	default:
3624		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3625		 * cases we should never reach this piece of code.
3626		 */
3627		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3628		       __func__, sk->sk_state);
3629		break;
3630	}
3631
3632	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3633	 * Probably, we should reset in this case. For now drop them.
3634	 */
3635	__skb_queue_purge(&tp->out_of_order_queue);
3636	if (tcp_is_sack(tp))
3637		tcp_sack_reset(&tp->rx_opt);
3638	sk_mem_reclaim(sk);
3639
3640	if (!sock_flag(sk, SOCK_DEAD)) {
3641		sk->sk_state_change(sk);
3642
3643		/* Do not send POLL_HUP for half duplex close. */
3644		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3645		    sk->sk_state == TCP_CLOSE)
3646			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3647		else
3648			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3649	}
3650}
3651
3652static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3653				  u32 end_seq)
3654{
3655	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3656		if (before(seq, sp->start_seq))
3657			sp->start_seq = seq;
3658		if (after(end_seq, sp->end_seq))
3659			sp->end_seq = end_seq;
3660		return 1;
3661	}
3662	return 0;
3663}
3664
3665static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3666{
3667	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3668		if (before(seq, tp->rcv_nxt))
3669			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3670		else
3671			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3672
3673		tp->rx_opt.dsack = 1;
3674		tp->duplicate_sack[0].start_seq = seq;
3675		tp->duplicate_sack[0].end_seq = end_seq;
3676		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3677					   4 - tp->rx_opt.tstamp_ok);
3678	}
3679}
3680
3681static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3682{
3683	if (!tp->rx_opt.dsack)
3684		tcp_dsack_set(tp, seq, end_seq);
3685	else
3686		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3687}
3688
3689static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3690{
3691	struct tcp_sock *tp = tcp_sk(sk);
3692
3693	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3694	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3695		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3696		tcp_enter_quickack_mode(sk);
3697
3698		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3699			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3700
3701			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3702				end_seq = tp->rcv_nxt;
3703			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3704		}
3705	}
3706
3707	tcp_send_ack(sk);
3708}
3709
3710/* These routines update the SACK block as out-of-order packets arrive or
3711 * in-order packets close up the sequence space.
3712 */
3713static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3714{
3715	int this_sack;
3716	struct tcp_sack_block *sp = &tp->selective_acks[0];
3717	struct tcp_sack_block *swalk = sp + 1;
3718
3719	/* See if the recent change to the first SACK eats into
3720	 * or hits the sequence space of other SACK blocks, if so coalesce.
3721	 */
3722	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3723		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3724			int i;
3725
3726			/* Zap SWALK, by moving every further SACK up by one slot.
3727			 * Decrease num_sacks.
3728			 */
3729			tp->rx_opt.num_sacks--;
3730			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3731						   tp->rx_opt.dsack,
3732						   4 - tp->rx_opt.tstamp_ok);
3733			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3734				sp[i] = sp[i + 1];
3735			continue;
3736		}
3737		this_sack++, swalk++;
3738	}
3739}
3740
3741static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3742				 struct tcp_sack_block *sack2)
3743{
3744	__u32 tmp;
3745
3746	tmp = sack1->start_seq;
3747	sack1->start_seq = sack2->start_seq;
3748	sack2->start_seq = tmp;
3749
3750	tmp = sack1->end_seq;
3751	sack1->end_seq = sack2->end_seq;
3752	sack2->end_seq = tmp;
3753}
3754
3755static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3756{
3757	struct tcp_sock *tp = tcp_sk(sk);
3758	struct tcp_sack_block *sp = &tp->selective_acks[0];
3759	int cur_sacks = tp->rx_opt.num_sacks;
3760	int this_sack;
3761
3762	if (!cur_sacks)
3763		goto new_sack;
3764
3765	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3766		if (tcp_sack_extend(sp, seq, end_seq)) {
3767			/* Rotate this_sack to the first one. */
3768			for (; this_sack > 0; this_sack--, sp--)
3769				tcp_sack_swap(sp, sp - 1);
3770			if (cur_sacks > 1)
3771				tcp_sack_maybe_coalesce(tp);
3772			return;
3773		}
3774	}
3775
3776	/* Could not find an adjacent existing SACK, build a new one,
3777	 * put it at the front, and shift everyone else down.  We
3778	 * always know there is at least one SACK present already here.
3779	 *
3780	 * If the sack array is full, forget about the last one.
3781	 */
3782	if (this_sack >= 4) {
3783		this_sack--;
3784		tp->rx_opt.num_sacks--;
3785		sp--;
3786	}
3787	for (; this_sack > 0; this_sack--, sp--)
3788		*sp = *(sp - 1);
3789
3790new_sack:
3791	/* Build the new head SACK, and we're done. */
3792	sp->start_seq = seq;
3793	sp->end_seq = end_seq;
3794	tp->rx_opt.num_sacks++;
3795	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3796				   4 - tp->rx_opt.tstamp_ok);
3797}
3798
3799/* RCV.NXT advances, some SACKs should be eaten. */
3800
3801static void tcp_sack_remove(struct tcp_sock *tp)
3802{
3803	struct tcp_sack_block *sp = &tp->selective_acks[0];
3804	int num_sacks = tp->rx_opt.num_sacks;
3805	int this_sack;
3806
3807	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3808	if (skb_queue_empty(&tp->out_of_order_queue)) {
3809		tp->rx_opt.num_sacks = 0;
3810		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3811		return;
3812	}
3813
3814	for (this_sack = 0; this_sack < num_sacks;) {
3815		/* Check if the start of the sack is covered by RCV.NXT. */
3816		if (!before(tp->rcv_nxt, sp->start_seq)) {
3817			int i;
3818
3819			/* RCV.NXT must cover all the block! */
3820			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3821
3822			/* Zap this SACK, by moving forward any other SACKS. */
3823			for (i=this_sack+1; i < num_sacks; i++)
3824				tp->selective_acks[i-1] = tp->selective_acks[i];
3825			num_sacks--;
3826			continue;
3827		}
3828		this_sack++;
3829		sp++;
3830	}
3831	if (num_sacks != tp->rx_opt.num_sacks) {
3832		tp->rx_opt.num_sacks = num_sacks;
3833		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3834					   tp->rx_opt.dsack,
3835					   4 - tp->rx_opt.tstamp_ok);
3836	}
3837}
3838
3839/* This one checks to see if we can put data from the
3840 * out_of_order queue into the receive_queue.
3841 */
3842static void tcp_ofo_queue(struct sock *sk)
3843{
3844	struct tcp_sock *tp = tcp_sk(sk);
3845	__u32 dsack_high = tp->rcv_nxt;
3846	struct sk_buff *skb;
3847
3848	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3849		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3850			break;
3851
3852		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3853			__u32 dsack = dsack_high;
3854			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3855				dsack_high = TCP_SKB_CB(skb)->end_seq;
3856			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3857		}
3858
3859		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3860			SOCK_DEBUG(sk, "ofo packet was already received \n");
3861			__skb_unlink(skb, &tp->out_of_order_queue);
3862			__kfree_skb(skb);
3863			continue;
3864		}
3865		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3866			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3867			   TCP_SKB_CB(skb)->end_seq);
3868
3869		__skb_unlink(skb, &tp->out_of_order_queue);
3870		__skb_queue_tail(&sk->sk_receive_queue, skb);
3871		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3872		if (tcp_hdr(skb)->fin)
3873			tcp_fin(skb, sk, tcp_hdr(skb));
3874	}
3875}
3876
3877static int tcp_prune_ofo_queue(struct sock *sk);
3878static int tcp_prune_queue(struct sock *sk);
3879
3880static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3881{
3882	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3883	    !sk_rmem_schedule(sk, size)) {
3884
3885		if (tcp_prune_queue(sk) < 0)
3886			return -1;
3887
3888		if (!sk_rmem_schedule(sk, size)) {
3889			if (!tcp_prune_ofo_queue(sk))
3890				return -1;
3891
3892			if (!sk_rmem_schedule(sk, size))
3893				return -1;
3894		}
3895	}
3896	return 0;
3897}
3898
3899static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3900{
3901	struct tcphdr *th = tcp_hdr(skb);
3902	struct tcp_sock *tp = tcp_sk(sk);
3903	int eaten = -1;
3904
3905	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3906		goto drop;
3907
3908	__skb_pull(skb, th->doff * 4);
3909
3910	TCP_ECN_accept_cwr(tp, skb);
3911
3912	if (tp->rx_opt.dsack) {
3913		tp->rx_opt.dsack = 0;
3914		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3915					     4 - tp->rx_opt.tstamp_ok);
3916	}
3917
3918	/*  Queue data for delivery to the user.
3919	 *  Packets in sequence go to the receive queue.
3920	 *  Out of sequence packets to the out_of_order_queue.
3921	 */
3922	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3923		if (tcp_receive_window(tp) == 0)
3924			goto out_of_window;
3925
3926		/* Ok. In sequence. In window. */
3927		if (tp->ucopy.task == current &&
3928		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3929		    sock_owned_by_user(sk) && !tp->urg_data) {
3930			int chunk = min_t(unsigned int, skb->len,
3931					  tp->ucopy.len);
3932
3933			__set_current_state(TASK_RUNNING);
3934
3935			local_bh_enable();
3936			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3937				tp->ucopy.len -= chunk;
3938				tp->copied_seq += chunk;
3939				eaten = (chunk == skb->len && !th->fin);
3940				tcp_rcv_space_adjust(sk);
3941			}
3942			local_bh_disable();
3943		}
3944
3945		if (eaten <= 0) {
3946queue_and_out:
3947			if (eaten < 0 &&
3948			    tcp_try_rmem_schedule(sk, skb->truesize))
3949				goto drop;
3950
3951			skb_set_owner_r(skb, sk);
3952			__skb_queue_tail(&sk->sk_receive_queue, skb);
3953		}
3954		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3955		if (skb->len)
3956			tcp_event_data_recv(sk, skb);
3957		if (th->fin)
3958			tcp_fin(skb, sk, th);
3959
3960		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3961			tcp_ofo_queue(sk);
3962
3963			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3964			 * gap in queue is filled.
3965			 */
3966			if (skb_queue_empty(&tp->out_of_order_queue))
3967				inet_csk(sk)->icsk_ack.pingpong = 0;
3968		}
3969
3970		if (tp->rx_opt.num_sacks)
3971			tcp_sack_remove(tp);
3972
3973		tcp_fast_path_check(sk);
3974
3975		if (eaten > 0)
3976			__kfree_skb(skb);
3977		else if (!sock_flag(sk, SOCK_DEAD))
3978			sk->sk_data_ready(sk, 0);
3979		return;
3980	}
3981
3982	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3983		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3984		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3985		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3986
3987out_of_window:
3988		tcp_enter_quickack_mode(sk);
3989		inet_csk_schedule_ack(sk);
3990drop:
3991		__kfree_skb(skb);
3992		return;
3993	}
3994
3995	/* Out of window. F.e. zero window probe. */
3996	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3997		goto out_of_window;
3998
3999	tcp_enter_quickack_mode(sk);
4000
4001	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4002		/* Partial packet, seq < rcv_next < end_seq */
4003		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4004			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4005			   TCP_SKB_CB(skb)->end_seq);
4006
4007		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4008
4009		/* If window is closed, drop tail of packet. But after
4010		 * remembering D-SACK for its head made in previous line.
4011		 */
4012		if (!tcp_receive_window(tp))
4013			goto out_of_window;
4014		goto queue_and_out;
4015	}
4016
4017	TCP_ECN_check_ce(tp, skb);
4018
4019	if (tcp_try_rmem_schedule(sk, skb->truesize))
4020		goto drop;
4021
4022	/* Disable header prediction. */
4023	tp->pred_flags = 0;
4024	inet_csk_schedule_ack(sk);
4025
4026	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4027		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4028
4029	skb_set_owner_r(skb, sk);
4030
4031	if (!skb_peek(&tp->out_of_order_queue)) {
4032		/* Initial out of order segment, build 1 SACK. */
4033		if (tcp_is_sack(tp)) {
4034			tp->rx_opt.num_sacks = 1;
4035			tp->rx_opt.dsack     = 0;
4036			tp->rx_opt.eff_sacks = 1;
4037			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4038			tp->selective_acks[0].end_seq =
4039						TCP_SKB_CB(skb)->end_seq;
4040		}
4041		__skb_queue_head(&tp->out_of_order_queue, skb);
4042	} else {
4043		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4044		u32 seq = TCP_SKB_CB(skb)->seq;
4045		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4046
4047		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4048			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4049
4050			if (!tp->rx_opt.num_sacks ||
4051			    tp->selective_acks[0].end_seq != seq)
4052				goto add_sack;
4053
4054			/* Common case: data arrive in order after hole. */
4055			tp->selective_acks[0].end_seq = end_seq;
4056			return;
4057		}
4058
4059		/* Find place to insert this segment. */
4060		do {
4061			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4062				break;
4063		} while ((skb1 = skb1->prev) !=
4064			 (struct sk_buff *)&tp->out_of_order_queue);
4065
4066		/* Do skb overlap to previous one? */
4067		if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4068		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4069			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4070				/* All the bits are present. Drop. */
4071				__kfree_skb(skb);
4072				tcp_dsack_set(tp, seq, end_seq);
4073				goto add_sack;
4074			}
4075			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4076				/* Partial overlap. */
4077				tcp_dsack_set(tp, seq,
4078					      TCP_SKB_CB(skb1)->end_seq);
4079			} else {
4080				skb1 = skb1->prev;
4081			}
4082		}
4083		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4084
4085		/* And clean segments covered by new one as whole. */
4086		while ((skb1 = skb->next) !=
4087		       (struct sk_buff *)&tp->out_of_order_queue &&
4088		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4089			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4090				tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4091						 end_seq);
4092				break;
4093			}
4094			__skb_unlink(skb1, &tp->out_of_order_queue);
4095			tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4096					 TCP_SKB_CB(skb1)->end_seq);
4097			__kfree_skb(skb1);
4098		}
4099
4100add_sack:
4101		if (tcp_is_sack(tp))
4102			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4103	}
4104}
4105
4106/* Collapse contiguous sequence of skbs head..tail with
4107 * sequence numbers start..end.
4108 * Segments with FIN/SYN are not collapsed (only because this
4109 * simplifies code)
4110 */
4111static void
4112tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4113	     struct sk_buff *head, struct sk_buff *tail,
4114	     u32 start, u32 end)
4115{
4116	struct sk_buff *skb;
4117
4118	/* First, check that queue is collapsible and find
4119	 * the point where collapsing can be useful. */
4120	for (skb = head; skb != tail;) {
4121		/* No new bits? It is possible on ofo queue. */
4122		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4123			struct sk_buff *next = skb->next;
4124			__skb_unlink(skb, list);
4125			__kfree_skb(skb);
4126			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4127			skb = next;
4128			continue;
4129		}
4130
4131		/* The first skb to collapse is:
4132		 * - not SYN/FIN and
4133		 * - bloated or contains data before "start" or
4134		 *   overlaps to the next one.
4135		 */
4136		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4137		    (tcp_win_from_space(skb->truesize) > skb->len ||
4138		     before(TCP_SKB_CB(skb)->seq, start) ||
4139		     (skb->next != tail &&
4140		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4141			break;
4142
4143		/* Decided to skip this, advance start seq. */
4144		start = TCP_SKB_CB(skb)->end_seq;
4145		skb = skb->next;
4146	}
4147	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4148		return;
4149
4150	while (before(start, end)) {
4151		struct sk_buff *nskb;
4152		unsigned int header = skb_headroom(skb);
4153		int copy = SKB_MAX_ORDER(header, 0);
4154
4155		/* Too big header? This can happen with IPv6. */
4156		if (copy < 0)
4157			return;
4158		if (end - start < copy)
4159			copy = end - start;
4160		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4161		if (!nskb)
4162			return;
4163
4164		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4165		skb_set_network_header(nskb, (skb_network_header(skb) -
4166					      skb->head));
4167		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4168						skb->head));
4169		skb_reserve(nskb, header);
4170		memcpy(nskb->head, skb->head, header);
4171		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4172		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4173		__skb_insert(nskb, skb->prev, skb, list);
4174		skb_set_owner_r(nskb, sk);
4175
4176		/* Copy data, releasing collapsed skbs. */
4177		while (copy > 0) {
4178			int offset = start - TCP_SKB_CB(skb)->seq;
4179			int size = TCP_SKB_CB(skb)->end_seq - start;
4180
4181			BUG_ON(offset < 0);
4182			if (size > 0) {
4183				size = min(copy, size);
4184				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4185					BUG();
4186				TCP_SKB_CB(nskb)->end_seq += size;
4187				copy -= size;
4188				start += size;
4189			}
4190			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4191				struct sk_buff *next = skb->next;
4192				__skb_unlink(skb, list);
4193				__kfree_skb(skb);
4194				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4195				skb = next;
4196				if (skb == tail ||
4197				    tcp_hdr(skb)->syn ||
4198				    tcp_hdr(skb)->fin)
4199					return;
4200			}
4201		}
4202	}
4203}
4204
4205/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4206 * and tcp_collapse() them until all the queue is collapsed.
4207 */
4208static void tcp_collapse_ofo_queue(struct sock *sk)
4209{
4210	struct tcp_sock *tp = tcp_sk(sk);
4211	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4212	struct sk_buff *head;
4213	u32 start, end;
4214
4215	if (skb == NULL)
4216		return;
4217
4218	start = TCP_SKB_CB(skb)->seq;
4219	end = TCP_SKB_CB(skb)->end_seq;
4220	head = skb;
4221
4222	for (;;) {
4223		skb = skb->next;
4224
4225		/* Segment is terminated when we see gap or when
4226		 * we are at the end of all the queue. */
4227		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4228		    after(TCP_SKB_CB(skb)->seq, end) ||
4229		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4230			tcp_collapse(sk, &tp->out_of_order_queue,
4231				     head, skb, start, end);
4232			head = skb;
4233			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4234				break;
4235			/* Start new segment */
4236			start = TCP_SKB_CB(skb)->seq;
4237			end = TCP_SKB_CB(skb)->end_seq;
4238		} else {
4239			if (before(TCP_SKB_CB(skb)->seq, start))
4240				start = TCP_SKB_CB(skb)->seq;
4241			if (after(TCP_SKB_CB(skb)->end_seq, end))
4242				end = TCP_SKB_CB(skb)->end_seq;
4243		}
4244	}
4245}
4246
4247/*
4248 * Purge the out-of-order queue.
4249 * Return true if queue was pruned.
4250 */
4251static int tcp_prune_ofo_queue(struct sock *sk)
4252{
4253	struct tcp_sock *tp = tcp_sk(sk);
4254	int res = 0;
4255
4256	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4257		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4258		__skb_queue_purge(&tp->out_of_order_queue);
4259
4260		/* Reset SACK state.  A conforming SACK implementation will
4261		 * do the same at a timeout based retransmit.  When a connection
4262		 * is in a sad state like this, we care only about integrity
4263		 * of the connection not performance.
4264		 */
4265		if (tp->rx_opt.sack_ok)
4266			tcp_sack_reset(&tp->rx_opt);
4267		sk_mem_reclaim(sk);
4268		res = 1;
4269	}
4270	return res;
4271}
4272
4273/* Reduce allocated memory if we can, trying to get
4274 * the socket within its memory limits again.
4275 *
4276 * Return less than zero if we should start dropping frames
4277 * until the socket owning process reads some of the data
4278 * to stabilize the situation.
4279 */
4280static int tcp_prune_queue(struct sock *sk)
4281{
4282	struct tcp_sock *tp = tcp_sk(sk);
4283
4284	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4285
4286	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4287
4288	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4289		tcp_clamp_window(sk);
4290	else if (tcp_memory_pressure)
4291		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4292
4293	tcp_collapse_ofo_queue(sk);
4294	tcp_collapse(sk, &sk->sk_receive_queue,
4295		     sk->sk_receive_queue.next,
4296		     (struct sk_buff *)&sk->sk_receive_queue,
4297		     tp->copied_seq, tp->rcv_nxt);
4298	sk_mem_reclaim(sk);
4299
4300	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4301		return 0;
4302
4303	/* Collapsing did not help, destructive actions follow.
4304	 * This must not ever occur. */
4305
4306	tcp_prune_ofo_queue(sk);
4307
4308	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4309		return 0;
4310
4311	/* If we are really being abused, tell the caller to silently
4312	 * drop receive data on the floor.  It will get retransmitted
4313	 * and hopefully then we'll have sufficient space.
4314	 */
4315	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4316
4317	/* Massive buffer overcommit. */
4318	tp->pred_flags = 0;
4319	return -1;
4320}
4321
4322/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4323 * As additional protections, we do not touch cwnd in retransmission phases,
4324 * and if application hit its sndbuf limit recently.
4325 */
4326void tcp_cwnd_application_limited(struct sock *sk)
4327{
4328	struct tcp_sock *tp = tcp_sk(sk);
4329
4330	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4331	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4332		/* Limited by application or receiver window. */
4333		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4334		u32 win_used = max(tp->snd_cwnd_used, init_win);
4335		if (win_used < tp->snd_cwnd) {
4336			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4337			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4338		}
4339		tp->snd_cwnd_used = 0;
4340	}
4341	tp->snd_cwnd_stamp = tcp_time_stamp;
4342}
4343
4344static int tcp_should_expand_sndbuf(struct sock *sk)
4345{
4346	struct tcp_sock *tp = tcp_sk(sk);
4347
4348	/* If the user specified a specific send buffer setting, do
4349	 * not modify it.
4350	 */
4351	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4352		return 0;
4353
4354	/* If we are under global TCP memory pressure, do not expand.  */
4355	if (tcp_memory_pressure)
4356		return 0;
4357
4358	/* If we are under soft global TCP memory pressure, do not expand.  */
4359	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4360		return 0;
4361
4362	/* If we filled the congestion window, do not expand.  */
4363	if (tp->packets_out >= tp->snd_cwnd)
4364		return 0;
4365
4366	return 1;
4367}
4368
4369/* When incoming ACK allowed to free some skb from write_queue,
4370 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4371 * on the exit from tcp input handler.
4372 *
4373 * PROBLEM: sndbuf expansion does not work well with largesend.
4374 */
4375static void tcp_new_space(struct sock *sk)
4376{
4377	struct tcp_sock *tp = tcp_sk(sk);
4378
4379	if (tcp_should_expand_sndbuf(sk)) {
4380		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4381			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4382		    demanded = max_t(unsigned int, tp->snd_cwnd,
4383				     tp->reordering + 1);
4384		sndmem *= 2 * demanded;
4385		if (sndmem > sk->sk_sndbuf)
4386			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4387		tp->snd_cwnd_stamp = tcp_time_stamp;
4388	}
4389
4390	sk->sk_write_space(sk);
4391}
4392
4393static void tcp_check_space(struct sock *sk)
4394{
4395	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4396		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4397		if (sk->sk_socket &&
4398		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4399			tcp_new_space(sk);
4400	}
4401}
4402
4403static inline void tcp_data_snd_check(struct sock *sk)
4404{
4405	tcp_push_pending_frames(sk);
4406	tcp_check_space(sk);
4407}
4408
4409/*
4410 * Check if sending an ack is needed.
4411 */
4412static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4413{
4414	struct tcp_sock *tp = tcp_sk(sk);
4415
4416	    /* More than one full frame received... */
4417	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4418	     /* ... and right edge of window advances far enough.
4419	      * (tcp_recvmsg() will send ACK otherwise). Or...
4420	      */
4421	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4422	    /* We ACK each frame or... */
4423	    tcp_in_quickack_mode(sk) ||
4424	    /* We have out of order data. */
4425	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4426		/* Then ack it now */
4427		tcp_send_ack(sk);
4428	} else {
4429		/* Else, send delayed ack. */
4430		tcp_send_delayed_ack(sk);
4431	}
4432}
4433
4434static inline void tcp_ack_snd_check(struct sock *sk)
4435{
4436	if (!inet_csk_ack_scheduled(sk)) {
4437		/* We sent a data segment already. */
4438		return;
4439	}
4440	__tcp_ack_snd_check(sk, 1);
4441}
4442
4443/*
4444 *	This routine is only called when we have urgent data
4445 *	signaled. Its the 'slow' part of tcp_urg. It could be
4446 *	moved inline now as tcp_urg is only called from one
4447 *	place. We handle URGent data wrong. We have to - as
4448 *	BSD still doesn't use the correction from RFC961.
4449 *	For 1003.1g we should support a new option TCP_STDURG to permit
4450 *	either form (or just set the sysctl tcp_stdurg).
4451 */
4452
4453static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4454{
4455	struct tcp_sock *tp = tcp_sk(sk);
4456	u32 ptr = ntohs(th->urg_ptr);
4457
4458	if (ptr && !sysctl_tcp_stdurg)
4459		ptr--;
4460	ptr += ntohl(th->seq);
4461
4462	/* Ignore urgent data that we've already seen and read. */
4463	if (after(tp->copied_seq, ptr))
4464		return;
4465
4466	/* Do not replay urg ptr.
4467	 *
4468	 * NOTE: interesting situation not covered by specs.
4469	 * Misbehaving sender may send urg ptr, pointing to segment,
4470	 * which we already have in ofo queue. We are not able to fetch
4471	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4472	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4473	 * situations. But it is worth to think about possibility of some
4474	 * DoSes using some hypothetical application level deadlock.
4475	 */
4476	if (before(ptr, tp->rcv_nxt))
4477		return;
4478
4479	/* Do we already have a newer (or duplicate) urgent pointer? */
4480	if (tp->urg_data && !after(ptr, tp->urg_seq))
4481		return;
4482
4483	/* Tell the world about our new urgent pointer. */
4484	sk_send_sigurg(sk);
4485
4486	/* We may be adding urgent data when the last byte read was
4487	 * urgent. To do this requires some care. We cannot just ignore
4488	 * tp->copied_seq since we would read the last urgent byte again
4489	 * as data, nor can we alter copied_seq until this data arrives
4490	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4491	 *
4492	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4493	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4494	 * and expect that both A and B disappear from stream. This is _wrong_.
4495	 * Though this happens in BSD with high probability, this is occasional.
4496	 * Any application relying on this is buggy. Note also, that fix "works"
4497	 * only in this artificial test. Insert some normal data between A and B and we will
4498	 * decline of BSD again. Verdict: it is better to remove to trap
4499	 * buggy users.
4500	 */
4501	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4502	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4503		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4504		tp->copied_seq++;
4505		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4506			__skb_unlink(skb, &sk->sk_receive_queue);
4507			__kfree_skb(skb);
4508		}
4509	}
4510
4511	tp->urg_data = TCP_URG_NOTYET;
4512	tp->urg_seq = ptr;
4513
4514	/* Disable header prediction. */
4515	tp->pred_flags = 0;
4516}
4517
4518/* This is the 'fast' part of urgent handling. */
4519static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4520{
4521	struct tcp_sock *tp = tcp_sk(sk);
4522
4523	/* Check if we get a new urgent pointer - normally not. */
4524	if (th->urg)
4525		tcp_check_urg(sk, th);
4526
4527	/* Do we wait for any urgent data? - normally not... */
4528	if (tp->urg_data == TCP_URG_NOTYET) {
4529		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4530			  th->syn;
4531
4532		/* Is the urgent pointer pointing into this packet? */
4533		if (ptr < skb->len) {
4534			u8 tmp;
4535			if (skb_copy_bits(skb, ptr, &tmp, 1))
4536				BUG();
4537			tp->urg_data = TCP_URG_VALID | tmp;
4538			if (!sock_flag(sk, SOCK_DEAD))
4539				sk->sk_data_ready(sk, 0);
4540		}
4541	}
4542}
4543
4544static int tcp_defer_accept_check(struct sock *sk)
4545{
4546	struct tcp_sock *tp = tcp_sk(sk);
4547
4548	if (tp->defer_tcp_accept.request) {
4549		int queued_data =  tp->rcv_nxt - tp->copied_seq;
4550		int hasfin =  !skb_queue_empty(&sk->sk_receive_queue) ?
4551			tcp_hdr((struct sk_buff *)
4552				sk->sk_receive_queue.prev)->fin : 0;
4553
4554		if (queued_data && hasfin)
4555			queued_data--;
4556
4557		if (queued_data &&
4558		    tp->defer_tcp_accept.listen_sk->sk_state == TCP_LISTEN) {
4559			if (sock_flag(sk, SOCK_KEEPOPEN)) {
4560				inet_csk_reset_keepalive_timer(sk,
4561							       keepalive_time_when(tp));
4562			} else {
4563				inet_csk_delete_keepalive_timer(sk);
4564			}
4565
4566			inet_csk_reqsk_queue_add(
4567				tp->defer_tcp_accept.listen_sk,
4568				tp->defer_tcp_accept.request,
4569				sk);
4570
4571			tp->defer_tcp_accept.listen_sk->sk_data_ready(
4572				tp->defer_tcp_accept.listen_sk, 0);
4573
4574			sock_put(tp->defer_tcp_accept.listen_sk);
4575			sock_put(sk);
4576			tp->defer_tcp_accept.listen_sk = NULL;
4577			tp->defer_tcp_accept.request = NULL;
4578		} else if (hasfin ||
4579			   tp->defer_tcp_accept.listen_sk->sk_state != TCP_LISTEN) {
4580			tcp_reset(sk);
4581			return -1;
4582		}
4583	}
4584	return 0;
4585}
4586
4587static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4588{
4589	struct tcp_sock *tp = tcp_sk(sk);
4590	int chunk = skb->len - hlen;
4591	int err;
4592
4593	local_bh_enable();
4594	if (skb_csum_unnecessary(skb))
4595		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4596	else
4597		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4598						       tp->ucopy.iov);
4599
4600	if (!err) {
4601		tp->ucopy.len -= chunk;
4602		tp->copied_seq += chunk;
4603		tcp_rcv_space_adjust(sk);
4604	}
4605
4606	local_bh_disable();
4607	return err;
4608}
4609
4610static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4611					    struct sk_buff *skb)
4612{
4613	__sum16 result;
4614
4615	if (sock_owned_by_user(sk)) {
4616		local_bh_enable();
4617		result = __tcp_checksum_complete(skb);
4618		local_bh_disable();
4619	} else {
4620		result = __tcp_checksum_complete(skb);
4621	}
4622	return result;
4623}
4624
4625static inline int tcp_checksum_complete_user(struct sock *sk,
4626					     struct sk_buff *skb)
4627{
4628	return !skb_csum_unnecessary(skb) &&
4629	       __tcp_checksum_complete_user(sk, skb);
4630}
4631
4632#ifdef CONFIG_NET_DMA
4633static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4634				  int hlen)
4635{
4636	struct tcp_sock *tp = tcp_sk(sk);
4637	int chunk = skb->len - hlen;
4638	int dma_cookie;
4639	int copied_early = 0;
4640
4641	if (tp->ucopy.wakeup)
4642		return 0;
4643
4644	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4645		tp->ucopy.dma_chan = get_softnet_dma();
4646
4647	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4648
4649		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4650							 skb, hlen,
4651							 tp->ucopy.iov, chunk,
4652							 tp->ucopy.pinned_list);
4653
4654		if (dma_cookie < 0)
4655			goto out;
4656
4657		tp->ucopy.dma_cookie = dma_cookie;
4658		copied_early = 1;
4659
4660		tp->ucopy.len -= chunk;
4661		tp->copied_seq += chunk;
4662		tcp_rcv_space_adjust(sk);
4663
4664		if ((tp->ucopy.len == 0) ||
4665		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4666		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4667			tp->ucopy.wakeup = 1;
4668			sk->sk_data_ready(sk, 0);
4669		}
4670	} else if (chunk > 0) {
4671		tp->ucopy.wakeup = 1;
4672		sk->sk_data_ready(sk, 0);
4673	}
4674out:
4675	return copied_early;
4676}
4677#endif /* CONFIG_NET_DMA */
4678
4679/*
4680 *	TCP receive function for the ESTABLISHED state.
4681 *
4682 *	It is split into a fast path and a slow path. The fast path is
4683 * 	disabled when:
4684 *	- A zero window was announced from us - zero window probing
4685 *        is only handled properly in the slow path.
4686 *	- Out of order segments arrived.
4687 *	- Urgent data is expected.
4688 *	- There is no buffer space left
4689 *	- Unexpected TCP flags/window values/header lengths are received
4690 *	  (detected by checking the TCP header against pred_flags)
4691 *	- Data is sent in both directions. Fast path only supports pure senders
4692 *	  or pure receivers (this means either the sequence number or the ack
4693 *	  value must stay constant)
4694 *	- Unexpected TCP option.
4695 *
4696 *	When these conditions are not satisfied it drops into a standard
4697 *	receive procedure patterned after RFC793 to handle all cases.
4698 *	The first three cases are guaranteed by proper pred_flags setting,
4699 *	the rest is checked inline. Fast processing is turned on in
4700 *	tcp_data_queue when everything is OK.
4701 */
4702int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4703			struct tcphdr *th, unsigned len)
4704{
4705	struct tcp_sock *tp = tcp_sk(sk);
4706
4707	/*
4708	 *	Header prediction.
4709	 *	The code loosely follows the one in the famous
4710	 *	"30 instruction TCP receive" Van Jacobson mail.
4711	 *
4712	 *	Van's trick is to deposit buffers into socket queue
4713	 *	on a device interrupt, to call tcp_recv function
4714	 *	on the receive process context and checksum and copy
4715	 *	the buffer to user space. smart...
4716	 *
4717	 *	Our current scheme is not silly either but we take the
4718	 *	extra cost of the net_bh soft interrupt processing...
4719	 *	We do checksum and copy also but from device to kernel.
4720	 */
4721
4722	tp->rx_opt.saw_tstamp = 0;
4723
4724	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4725	 *	if header_prediction is to be made
4726	 *	'S' will always be tp->tcp_header_len >> 2
4727	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4728	 *  turn it off	(when there are holes in the receive
4729	 *	 space for instance)
4730	 *	PSH flag is ignored.
4731	 */
4732
4733	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4734	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4735		int tcp_header_len = tp->tcp_header_len;
4736
4737		/* Timestamp header prediction: tcp_header_len
4738		 * is automatically equal to th->doff*4 due to pred_flags
4739		 * match.
4740		 */
4741
4742		/* Check timestamp */
4743		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4744			__be32 *ptr = (__be32 *)(th + 1);
4745
4746			/* No? Slow path! */
4747			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4748					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4749				goto slow_path;
4750
4751			tp->rx_opt.saw_tstamp = 1;
4752			++ptr;
4753			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4754			++ptr;
4755			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4756
4757			/* If PAWS failed, check it more carefully in slow path */
4758			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4759				goto slow_path;
4760
4761			/* DO NOT update ts_recent here, if checksum fails
4762			 * and timestamp was corrupted part, it will result
4763			 * in a hung connection since we will drop all
4764			 * future packets due to the PAWS test.
4765			 */
4766		}
4767
4768		if (len <= tcp_header_len) {
4769			/* Bulk data transfer: sender */
4770			if (len == tcp_header_len) {
4771				/* Predicted packet is in window by definition.
4772				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4773				 * Hence, check seq<=rcv_wup reduces to:
4774				 */
4775				if (tcp_header_len ==
4776				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4777				    tp->rcv_nxt == tp->rcv_wup)
4778					tcp_store_ts_recent(tp);
4779
4780				/* We know that such packets are checksummed
4781				 * on entry.
4782				 */
4783				tcp_ack(sk, skb, 0);
4784				__kfree_skb(skb);
4785				tcp_data_snd_check(sk);
4786				return 0;
4787			} else { /* Header too small */
4788				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4789				goto discard;
4790			}
4791		} else {
4792			int eaten = 0;
4793			int copied_early = 0;
4794
4795			if (tp->copied_seq == tp->rcv_nxt &&
4796			    len - tcp_header_len <= tp->ucopy.len) {
4797#ifdef CONFIG_NET_DMA
4798				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4799					copied_early = 1;
4800					eaten = 1;
4801				}
4802#endif
4803				if (tp->ucopy.task == current &&
4804				    sock_owned_by_user(sk) && !copied_early) {
4805					__set_current_state(TASK_RUNNING);
4806
4807					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4808						eaten = 1;
4809				}
4810				if (eaten) {
4811					/* Predicted packet is in window by definition.
4812					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4813					 * Hence, check seq<=rcv_wup reduces to:
4814					 */
4815					if (tcp_header_len ==
4816					    (sizeof(struct tcphdr) +
4817					     TCPOLEN_TSTAMP_ALIGNED) &&
4818					    tp->rcv_nxt == tp->rcv_wup)
4819						tcp_store_ts_recent(tp);
4820
4821					tcp_rcv_rtt_measure_ts(sk, skb);
4822
4823					__skb_pull(skb, tcp_header_len);
4824					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4825					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4826				}
4827				if (copied_early)
4828					tcp_cleanup_rbuf(sk, skb->len);
4829			}
4830			if (!eaten) {
4831				if (tcp_checksum_complete_user(sk, skb))
4832					goto csum_error;
4833
4834				/* Predicted packet is in window by definition.
4835				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4836				 * Hence, check seq<=rcv_wup reduces to:
4837				 */
4838				if (tcp_header_len ==
4839				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4840				    tp->rcv_nxt == tp->rcv_wup)
4841					tcp_store_ts_recent(tp);
4842
4843				tcp_rcv_rtt_measure_ts(sk, skb);
4844
4845				if ((int)skb->truesize > sk->sk_forward_alloc)
4846					goto step5;
4847
4848				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4849
4850				/* Bulk data transfer: receiver */
4851				__skb_pull(skb, tcp_header_len);
4852				__skb_queue_tail(&sk->sk_receive_queue, skb);
4853				skb_set_owner_r(skb, sk);
4854				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4855			}
4856
4857			tcp_event_data_recv(sk, skb);
4858
4859			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4860				/* Well, only one small jumplet in fast path... */
4861				tcp_ack(sk, skb, FLAG_DATA);
4862				tcp_data_snd_check(sk);
4863				if (!inet_csk_ack_scheduled(sk))
4864					goto no_ack;
4865			}
4866
4867			__tcp_ack_snd_check(sk, 0);
4868no_ack:
4869#ifdef CONFIG_NET_DMA
4870			if (copied_early)
4871				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4872			else
4873#endif
4874			if (eaten)
4875				__kfree_skb(skb);
4876			else
4877				sk->sk_data_ready(sk, 0);
4878			return 0;
4879		}
4880	}
4881
4882slow_path:
4883	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4884		goto csum_error;
4885
4886	/*
4887	 * RFC1323: H1. Apply PAWS check first.
4888	 */
4889	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4890	    tcp_paws_discard(sk, skb)) {
4891		if (!th->rst) {
4892			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4893			tcp_send_dupack(sk, skb);
4894			goto discard;
4895		}
4896		/* Resets are accepted even if PAWS failed.
4897
4898		   ts_recent update must be made after we are sure
4899		   that the packet is in window.
4900		 */
4901	}
4902
4903	/*
4904	 *	Standard slow path.
4905	 */
4906
4907	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4908		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4909		 * (RST) segments are validated by checking their SEQ-fields."
4910		 * And page 69: "If an incoming segment is not acceptable,
4911		 * an acknowledgment should be sent in reply (unless the RST bit
4912		 * is set, if so drop the segment and return)".
4913		 */
4914		if (!th->rst)
4915			tcp_send_dupack(sk, skb);
4916		goto discard;
4917	}
4918
4919	if (th->rst) {
4920		tcp_reset(sk);
4921		goto discard;
4922	}
4923
4924	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4925
4926	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4927		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4928		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4929		tcp_reset(sk);
4930		return 1;
4931	}
4932
4933step5:
4934	if (th->ack)
4935		tcp_ack(sk, skb, FLAG_SLOWPATH);
4936
4937	tcp_rcv_rtt_measure_ts(sk, skb);
4938
4939	/* Process urgent data. */
4940	tcp_urg(sk, skb, th);
4941
4942	/* step 7: process the segment text */
4943	tcp_data_queue(sk, skb);
4944
4945	tcp_data_snd_check(sk);
4946	tcp_ack_snd_check(sk);
4947
4948	tcp_defer_accept_check(sk);
4949	return 0;
4950
4951csum_error:
4952	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4953
4954discard:
4955	__kfree_skb(skb);
4956	return 0;
4957}
4958
4959static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4960					 struct tcphdr *th, unsigned len)
4961{
4962	struct tcp_sock *tp = tcp_sk(sk);
4963	struct inet_connection_sock *icsk = inet_csk(sk);
4964	int saved_clamp = tp->rx_opt.mss_clamp;
4965
4966	tcp_parse_options(skb, &tp->rx_opt, 0);
4967
4968	if (th->ack) {
4969		/* rfc793:
4970		 * "If the state is SYN-SENT then
4971		 *    first check the ACK bit
4972		 *      If the ACK bit is set
4973		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4974		 *        a reset (unless the RST bit is set, if so drop
4975		 *        the segment and return)"
4976		 *
4977		 *  We do not send data with SYN, so that RFC-correct
4978		 *  test reduces to:
4979		 */
4980		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4981			goto reset_and_undo;
4982
4983		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4984		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4985			     tcp_time_stamp)) {
4986			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4987			goto reset_and_undo;
4988		}
4989
4990		/* Now ACK is acceptable.
4991		 *
4992		 * "If the RST bit is set
4993		 *    If the ACK was acceptable then signal the user "error:
4994		 *    connection reset", drop the segment, enter CLOSED state,
4995		 *    delete TCB, and return."
4996		 */
4997
4998		if (th->rst) {
4999			tcp_reset(sk);
5000			goto discard;
5001		}
5002
5003		/* rfc793:
5004		 *   "fifth, if neither of the SYN or RST bits is set then
5005		 *    drop the segment and return."
5006		 *
5007		 *    See note below!
5008		 *                                        --ANK(990513)
5009		 */
5010		if (!th->syn)
5011			goto discard_and_undo;
5012
5013		/* rfc793:
5014		 *   "If the SYN bit is on ...
5015		 *    are acceptable then ...
5016		 *    (our SYN has been ACKed), change the connection
5017		 *    state to ESTABLISHED..."
5018		 */
5019
5020		TCP_ECN_rcv_synack(tp, th);
5021
5022		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5023		tcp_ack(sk, skb, FLAG_SLOWPATH);
5024
5025		/* Ok.. it's good. Set up sequence numbers and
5026		 * move to established.
5027		 */
5028		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5029		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5030
5031		/* RFC1323: The window in SYN & SYN/ACK segments is
5032		 * never scaled.
5033		 */
5034		tp->snd_wnd = ntohs(th->window);
5035		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5036
5037		if (!tp->rx_opt.wscale_ok) {
5038			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5039			tp->window_clamp = min(tp->window_clamp, 65535U);
5040		}
5041
5042		if (tp->rx_opt.saw_tstamp) {
5043			tp->rx_opt.tstamp_ok	   = 1;
5044			tp->tcp_header_len =
5045				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5046			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5047			tcp_store_ts_recent(tp);
5048		} else {
5049			tp->tcp_header_len = sizeof(struct tcphdr);
5050		}
5051
5052		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5053			tcp_enable_fack(tp);
5054
5055		tcp_mtup_init(sk);
5056		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5057		tcp_initialize_rcv_mss(sk);
5058
5059		/* Remember, tcp_poll() does not lock socket!
5060		 * Change state from SYN-SENT only after copied_seq
5061		 * is initialized. */
5062		tp->copied_seq = tp->rcv_nxt;
5063		smp_mb();
5064		tcp_set_state(sk, TCP_ESTABLISHED);
5065
5066		security_inet_conn_established(sk, skb);
5067
5068		/* Make sure socket is routed, for correct metrics.  */
5069		icsk->icsk_af_ops->rebuild_header(sk);
5070
5071		tcp_init_metrics(sk);
5072
5073		tcp_init_congestion_control(sk);
5074
5075		/* Prevent spurious tcp_cwnd_restart() on first data
5076		 * packet.
5077		 */
5078		tp->lsndtime = tcp_time_stamp;
5079
5080		tcp_init_buffer_space(sk);
5081
5082		if (sock_flag(sk, SOCK_KEEPOPEN))
5083			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5084
5085		if (!tp->rx_opt.snd_wscale)
5086			__tcp_fast_path_on(tp, tp->snd_wnd);
5087		else
5088			tp->pred_flags = 0;
5089
5090		if (!sock_flag(sk, SOCK_DEAD)) {
5091			sk->sk_state_change(sk);
5092			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5093		}
5094
5095		if (sk->sk_write_pending ||
5096		    icsk->icsk_accept_queue.rskq_defer_accept ||
5097		    icsk->icsk_ack.pingpong) {
5098			/* Save one ACK. Data will be ready after
5099			 * several ticks, if write_pending is set.
5100			 *
5101			 * It may be deleted, but with this feature tcpdumps
5102			 * look so _wonderfully_ clever, that I was not able
5103			 * to stand against the temptation 8)     --ANK
5104			 */
5105			inet_csk_schedule_ack(sk);
5106			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5107			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5108			tcp_incr_quickack(sk);
5109			tcp_enter_quickack_mode(sk);
5110			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5111						  TCP_DELACK_MAX, TCP_RTO_MAX);
5112
5113discard:
5114			__kfree_skb(skb);
5115			return 0;
5116		} else {
5117			tcp_send_ack(sk);
5118		}
5119		return -1;
5120	}
5121
5122	/* No ACK in the segment */
5123
5124	if (th->rst) {
5125		/* rfc793:
5126		 * "If the RST bit is set
5127		 *
5128		 *      Otherwise (no ACK) drop the segment and return."
5129		 */
5130
5131		goto discard_and_undo;
5132	}
5133
5134	/* PAWS check. */
5135	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5136	    tcp_paws_check(&tp->rx_opt, 0))
5137		goto discard_and_undo;
5138
5139	if (th->syn) {
5140		/* We see SYN without ACK. It is attempt of
5141		 * simultaneous connect with crossed SYNs.
5142		 * Particularly, it can be connect to self.
5143		 */
5144		tcp_set_state(sk, TCP_SYN_RECV);
5145
5146		if (tp->rx_opt.saw_tstamp) {
5147			tp->rx_opt.tstamp_ok = 1;
5148			tcp_store_ts_recent(tp);
5149			tp->tcp_header_len =
5150				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5151		} else {
5152			tp->tcp_header_len = sizeof(struct tcphdr);
5153		}
5154
5155		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5156		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5157
5158		/* RFC1323: The window in SYN & SYN/ACK segments is
5159		 * never scaled.
5160		 */
5161		tp->snd_wnd    = ntohs(th->window);
5162		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5163		tp->max_window = tp->snd_wnd;
5164
5165		TCP_ECN_rcv_syn(tp, th);
5166
5167		tcp_mtup_init(sk);
5168		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5169		tcp_initialize_rcv_mss(sk);
5170
5171		tcp_send_synack(sk);
5172#if 0
5173		/* Note, we could accept data and URG from this segment.
5174		 * There are no obstacles to make this.
5175		 *
5176		 * However, if we ignore data in ACKless segments sometimes,
5177		 * we have no reasons to accept it sometimes.
5178		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5179		 * is not flawless. So, discard packet for sanity.
5180		 * Uncomment this return to process the data.
5181		 */
5182		return -1;
5183#else
5184		goto discard;
5185#endif
5186	}
5187	/* "fifth, if neither of the SYN or RST bits is set then
5188	 * drop the segment and return."
5189	 */
5190
5191discard_and_undo:
5192	tcp_clear_options(&tp->rx_opt);
5193	tp->rx_opt.mss_clamp = saved_clamp;
5194	goto discard;
5195
5196reset_and_undo:
5197	tcp_clear_options(&tp->rx_opt);
5198	tp->rx_opt.mss_clamp = saved_clamp;
5199	return 1;
5200}
5201
5202/*
5203 *	This function implements the receiving procedure of RFC 793 for
5204 *	all states except ESTABLISHED and TIME_WAIT.
5205 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5206 *	address independent.
5207 */
5208
5209int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5210			  struct tcphdr *th, unsigned len)
5211{
5212	struct tcp_sock *tp = tcp_sk(sk);
5213	struct inet_connection_sock *icsk = inet_csk(sk);
5214	int queued = 0;
5215
5216	tp->rx_opt.saw_tstamp = 0;
5217
5218	switch (sk->sk_state) {
5219	case TCP_CLOSE:
5220		goto discard;
5221
5222	case TCP_LISTEN:
5223		if (th->ack)
5224			return 1;
5225
5226		if (th->rst)
5227			goto discard;
5228
5229		if (th->syn) {
5230			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5231				return 1;
5232
5233			/* Now we have several options: In theory there is
5234			 * nothing else in the frame. KA9Q has an option to
5235			 * send data with the syn, BSD accepts data with the
5236			 * syn up to the [to be] advertised window and
5237			 * Solaris 2.1 gives you a protocol error. For now
5238			 * we just ignore it, that fits the spec precisely
5239			 * and avoids incompatibilities. It would be nice in
5240			 * future to drop through and process the data.
5241			 *
5242			 * Now that TTCP is starting to be used we ought to
5243			 * queue this data.
5244			 * But, this leaves one open to an easy denial of
5245			 * service attack, and SYN cookies can't defend
5246			 * against this problem. So, we drop the data
5247			 * in the interest of security over speed unless
5248			 * it's still in use.
5249			 */
5250			kfree_skb(skb);
5251			return 0;
5252		}
5253		goto discard;
5254
5255	case TCP_SYN_SENT:
5256		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5257		if (queued >= 0)
5258			return queued;
5259
5260		/* Do step6 onward by hand. */
5261		tcp_urg(sk, skb, th);
5262		__kfree_skb(skb);
5263		tcp_data_snd_check(sk);
5264		return 0;
5265	}
5266
5267	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5268	    tcp_paws_discard(sk, skb)) {
5269		if (!th->rst) {
5270			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5271			tcp_send_dupack(sk, skb);
5272			goto discard;
5273		}
5274		/* Reset is accepted even if it did not pass PAWS. */
5275	}
5276
5277	/* step 1: check sequence number */
5278	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5279		if (!th->rst)
5280			tcp_send_dupack(sk, skb);
5281		goto discard;
5282	}
5283
5284	/* step 2: check RST bit */
5285	if (th->rst) {
5286		tcp_reset(sk);
5287		goto discard;
5288	}
5289
5290	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5291
5292	/* step 3: check security and precedence [ignored] */
5293
5294	/*	step 4:
5295	 *
5296	 *	Check for a SYN in window.
5297	 */
5298	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5299		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5300		tcp_reset(sk);
5301		return 1;
5302	}
5303
5304	/* step 5: check the ACK field */
5305	if (th->ack) {
5306		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5307
5308		switch (sk->sk_state) {
5309		case TCP_SYN_RECV:
5310			if (acceptable) {
5311				tp->copied_seq = tp->rcv_nxt;
5312				smp_mb();
5313				tcp_set_state(sk, TCP_ESTABLISHED);
5314				sk->sk_state_change(sk);
5315
5316				/* Note, that this wakeup is only for marginal
5317				 * crossed SYN case. Passively open sockets
5318				 * are not waked up, because sk->sk_sleep ==
5319				 * NULL and sk->sk_socket == NULL.
5320				 */
5321				if (sk->sk_socket)
5322					sk_wake_async(sk,
5323						      SOCK_WAKE_IO, POLL_OUT);
5324
5325				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5326				tp->snd_wnd = ntohs(th->window) <<
5327					      tp->rx_opt.snd_wscale;
5328				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5329					    TCP_SKB_CB(skb)->seq);
5330
5331				/* tcp_ack considers this ACK as duplicate
5332				 * and does not calculate rtt.
5333				 * Fix it at least with timestamps.
5334				 */
5335				if (tp->rx_opt.saw_tstamp &&
5336				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5337					tcp_ack_saw_tstamp(sk, 0);
5338
5339				if (tp->rx_opt.tstamp_ok)
5340					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5341
5342				/* Make sure socket is routed, for
5343				 * correct metrics.
5344				 */
5345				icsk->icsk_af_ops->rebuild_header(sk);
5346
5347				tcp_init_metrics(sk);
5348
5349				tcp_init_congestion_control(sk);
5350
5351				/* Prevent spurious tcp_cwnd_restart() on
5352				 * first data packet.
5353				 */
5354				tp->lsndtime = tcp_time_stamp;
5355
5356				tcp_mtup_init(sk);
5357				tcp_initialize_rcv_mss(sk);
5358				tcp_init_buffer_space(sk);
5359				tcp_fast_path_on(tp);
5360			} else {
5361				return 1;
5362			}
5363			break;
5364
5365		case TCP_FIN_WAIT1:
5366			if (tp->snd_una == tp->write_seq) {
5367				tcp_set_state(sk, TCP_FIN_WAIT2);
5368				sk->sk_shutdown |= SEND_SHUTDOWN;
5369				dst_confirm(sk->sk_dst_cache);
5370
5371				if (!sock_flag(sk, SOCK_DEAD))
5372					/* Wake up lingering close() */
5373					sk->sk_state_change(sk);
5374				else {
5375					int tmo;
5376
5377					if (tp->linger2 < 0 ||
5378					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5379					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5380						tcp_done(sk);
5381						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5382						return 1;
5383					}
5384
5385					tmo = tcp_fin_time(sk);
5386					if (tmo > TCP_TIMEWAIT_LEN) {
5387						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5388					} else if (th->fin || sock_owned_by_user(sk)) {
5389						/* Bad case. We could lose such FIN otherwise.
5390						 * It is not a big problem, but it looks confusing
5391						 * and not so rare event. We still can lose it now,
5392						 * if it spins in bh_lock_sock(), but it is really
5393						 * marginal case.
5394						 */
5395						inet_csk_reset_keepalive_timer(sk, tmo);
5396					} else {
5397						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5398						goto discard;
5399					}
5400				}
5401			}
5402			break;
5403
5404		case TCP_CLOSING:
5405			if (tp->snd_una == tp->write_seq) {
5406				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5407				goto discard;
5408			}
5409			break;
5410
5411		case TCP_LAST_ACK:
5412			if (tp->snd_una == tp->write_seq) {
5413				tcp_update_metrics(sk);
5414				tcp_done(sk);
5415				goto discard;
5416			}
5417			break;
5418		}
5419	} else
5420		goto discard;
5421
5422	/* step 6: check the URG bit */
5423	tcp_urg(sk, skb, th);
5424
5425	/* step 7: process the segment text */
5426	switch (sk->sk_state) {
5427	case TCP_CLOSE_WAIT:
5428	case TCP_CLOSING:
5429	case TCP_LAST_ACK:
5430		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5431			break;
5432	case TCP_FIN_WAIT1:
5433	case TCP_FIN_WAIT2:
5434		/* RFC 793 says to queue data in these states,
5435		 * RFC 1122 says we MUST send a reset.
5436		 * BSD 4.4 also does reset.
5437		 */
5438		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5439			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5440			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5441				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5442				tcp_reset(sk);
5443				return 1;
5444			}
5445		}
5446		/* Fall through */
5447	case TCP_ESTABLISHED:
5448		tcp_data_queue(sk, skb);
5449		queued = 1;
5450		break;
5451	}
5452
5453	/* tcp_data could move socket to TIME-WAIT */
5454	if (sk->sk_state != TCP_CLOSE) {
5455		tcp_data_snd_check(sk);
5456		tcp_ack_snd_check(sk);
5457	}
5458
5459	if (!queued) {
5460discard:
5461		__kfree_skb(skb);
5462	}
5463	return 0;
5464}
5465
5466EXPORT_SYMBOL(sysctl_tcp_ecn);
5467EXPORT_SYMBOL(sysctl_tcp_reordering);
5468EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5469EXPORT_SYMBOL(tcp_parse_options);
5470EXPORT_SYMBOL(tcp_rcv_established);
5471EXPORT_SYMBOL(tcp_rcv_state_process);
5472EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5473