tcp_input.c revision b138338056fc423c61a583d45f8aa64cfad87131
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 *		Pedro Roque	:	Fast Retransmit/Recovery.
24 *					Two receive queues.
25 *					Retransmit queue handled by TCP.
26 *					Better retransmit timer handling.
27 *					New congestion avoidance.
28 *					Header prediction.
29 *					Variable renaming.
30 *
31 *		Eric		:	Fast Retransmit.
32 *		Randy Scott	:	MSS option defines.
33 *		Eric Schenk	:	Fixes to slow start algorithm.
34 *		Eric Schenk	:	Yet another double ACK bug.
35 *		Eric Schenk	:	Delayed ACK bug fixes.
36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37 *		David S. Miller	:	Don't allow zero congestion window.
38 *		Eric Schenk	:	Fix retransmitter so that it sends
39 *					next packet on ack of previous packet.
40 *		Andi Kleen	:	Moved open_request checking here
41 *					and process RSTs for open_requests.
42 *		Andi Kleen	:	Better prune_queue, and other fixes.
43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
44 *					timestamps.
45 *		Andrey Savochkin:	Check sequence numbers correctly when
46 *					removing SACKs due to in sequence incoming
47 *					data segments.
48 *		Andi Kleen:		Make sure we never ack data there is not
49 *					enough room for. Also make this condition
50 *					a fatal error if it might still happen.
51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52 *					connections with MSS<min(MTU,ann. MSS)
53 *					work without delayed acks.
54 *		Andi Kleen:		Process packets with PSH set in the
55 *					fast path.
56 *		J Hadi Salim:		ECN support
57 *	 	Andrei Gurtov,
58 *		Pasi Sarolahti,
59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60 *					engine. Lots of bugs are found.
61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62 */
63
64#include <linux/mm.h>
65#include <linux/module.h>
66#include <linux/sysctl.h>
67#include <linux/kernel.h>
68#include <net/dst.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
73#include <net/netdma.h>
74
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly = 2;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly = 2;
89int sysctl_tcp_frto_response __read_mostly;
90int sysctl_tcp_nometrics_save __read_mostly;
91
92int sysctl_tcp_thin_dupack __read_mostly;
93
94int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
95int sysctl_tcp_abc __read_mostly;
96
97#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
98#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
99#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
100#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
101#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
102#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
103#define FLAG_ECE		0x40 /* ECE in this ACK				*/
104#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
105#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
106#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
107#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
108#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
109#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
110#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
111
112#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
113#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
114#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
115#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
116#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
117
118#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120
121/* Adapt the MSS value used to make delayed ack decision to the
122 * real world.
123 */
124static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
125{
126	struct inet_connection_sock *icsk = inet_csk(sk);
127	const unsigned int lss = icsk->icsk_ack.last_seg_size;
128	unsigned int len;
129
130	icsk->icsk_ack.last_seg_size = 0;
131
132	/* skb->len may jitter because of SACKs, even if peer
133	 * sends good full-sized frames.
134	 */
135	len = skb_shinfo(skb)->gso_size ? : skb->len;
136	if (len >= icsk->icsk_ack.rcv_mss) {
137		icsk->icsk_ack.rcv_mss = len;
138	} else {
139		/* Otherwise, we make more careful check taking into account,
140		 * that SACKs block is variable.
141		 *
142		 * "len" is invariant segment length, including TCP header.
143		 */
144		len += skb->data - skb_transport_header(skb);
145		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
146		    /* If PSH is not set, packet should be
147		     * full sized, provided peer TCP is not badly broken.
148		     * This observation (if it is correct 8)) allows
149		     * to handle super-low mtu links fairly.
150		     */
151		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153			/* Subtract also invariant (if peer is RFC compliant),
154			 * tcp header plus fixed timestamp option length.
155			 * Resulting "len" is MSS free of SACK jitter.
156			 */
157			len -= tcp_sk(sk)->tcp_header_len;
158			icsk->icsk_ack.last_seg_size = len;
159			if (len == lss) {
160				icsk->icsk_ack.rcv_mss = len;
161				return;
162			}
163		}
164		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167	}
168}
169
170static void tcp_incr_quickack(struct sock *sk)
171{
172	struct inet_connection_sock *icsk = inet_csk(sk);
173	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175	if (quickacks == 0)
176		quickacks = 2;
177	if (quickacks > icsk->icsk_ack.quick)
178		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179}
180
181void tcp_enter_quickack_mode(struct sock *sk)
182{
183	struct inet_connection_sock *icsk = inet_csk(sk);
184	tcp_incr_quickack(sk);
185	icsk->icsk_ack.pingpong = 0;
186	icsk->icsk_ack.ato = TCP_ATO_MIN;
187}
188
189/* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
193static inline int tcp_in_quickack_mode(const struct sock *sk)
194{
195	const struct inet_connection_sock *icsk = inet_csk(sk);
196	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197}
198
199static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200{
201	if (tp->ecn_flags & TCP_ECN_OK)
202		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203}
204
205static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206{
207	if (tcp_hdr(skb)->cwr)
208		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209}
210
211static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212{
213	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217{
218	if (tp->ecn_flags & TCP_ECN_OK) {
219		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221		/* Funny extension: if ECT is not set on a segment,
222		 * it is surely retransmit. It is not in ECN RFC,
223		 * but Linux follows this rule. */
224		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225			tcp_enter_quickack_mode((struct sock *)tp);
226	}
227}
228
229static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230{
231	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
232		tp->ecn_flags &= ~TCP_ECN_OK;
233}
234
235static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236{
237	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
238		tp->ecn_flags &= ~TCP_ECN_OK;
239}
240
241static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242{
243	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
244		return 1;
245	return 0;
246}
247
248/* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253static void tcp_fixup_sndbuf(struct sock *sk)
254{
255	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256		     sizeof(struct sk_buff);
257
258	if (sk->sk_sndbuf < 3 * sndmem)
259		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260}
261
262/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 *   requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 *   of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287/* Slow part of check#2. */
288static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289{
290	struct tcp_sock *tp = tcp_sk(sk);
291	/* Optimize this! */
292	int truesize = tcp_win_from_space(skb->truesize) >> 1;
293	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
294
295	while (tp->rcv_ssthresh <= window) {
296		if (truesize <= skb->len)
297			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299		truesize >>= 1;
300		window >>= 1;
301	}
302	return 0;
303}
304
305static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
306{
307	struct tcp_sock *tp = tcp_sk(sk);
308
309	/* Check #1 */
310	if (tp->rcv_ssthresh < tp->window_clamp &&
311	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
312	    !tcp_memory_pressure) {
313		int incr;
314
315		/* Check #2. Increase window, if skb with such overhead
316		 * will fit to rcvbuf in future.
317		 */
318		if (tcp_win_from_space(skb->truesize) <= skb->len)
319			incr = 2 * tp->advmss;
320		else
321			incr = __tcp_grow_window(sk, skb);
322
323		if (incr) {
324			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
325					       tp->window_clamp);
326			inet_csk(sk)->icsk_ack.quick |= 1;
327		}
328	}
329}
330
331/* 3. Tuning rcvbuf, when connection enters established state. */
332
333static void tcp_fixup_rcvbuf(struct sock *sk)
334{
335	struct tcp_sock *tp = tcp_sk(sk);
336	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338	/* Try to select rcvbuf so that 4 mss-sized segments
339	 * will fit to window and corresponding skbs will fit to our rcvbuf.
340	 * (was 3; 4 is minimum to allow fast retransmit to work.)
341	 */
342	while (tcp_win_from_space(rcvmem) < tp->advmss)
343		rcvmem += 128;
344	if (sk->sk_rcvbuf < 4 * rcvmem)
345		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346}
347
348/* 4. Try to fixup all. It is made immediately after connection enters
349 *    established state.
350 */
351static void tcp_init_buffer_space(struct sock *sk)
352{
353	struct tcp_sock *tp = tcp_sk(sk);
354	int maxwin;
355
356	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357		tcp_fixup_rcvbuf(sk);
358	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359		tcp_fixup_sndbuf(sk);
360
361	tp->rcvq_space.space = tp->rcv_wnd;
362
363	maxwin = tcp_full_space(sk);
364
365	if (tp->window_clamp >= maxwin) {
366		tp->window_clamp = maxwin;
367
368		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369			tp->window_clamp = max(maxwin -
370					       (maxwin >> sysctl_tcp_app_win),
371					       4 * tp->advmss);
372	}
373
374	/* Force reservation of one segment. */
375	if (sysctl_tcp_app_win &&
376	    tp->window_clamp > 2 * tp->advmss &&
377	    tp->window_clamp + tp->advmss > maxwin)
378		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381	tp->snd_cwnd_stamp = tcp_time_stamp;
382}
383
384/* 5. Recalculate window clamp after socket hit its memory bounds. */
385static void tcp_clamp_window(struct sock *sk)
386{
387	struct tcp_sock *tp = tcp_sk(sk);
388	struct inet_connection_sock *icsk = inet_csk(sk);
389
390	icsk->icsk_ack.quick = 0;
391
392	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394	    !tcp_memory_pressure &&
395	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397				    sysctl_tcp_rmem[2]);
398	}
399	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
401}
402
403/* Initialize RCV_MSS value.
404 * RCV_MSS is an our guess about MSS used by the peer.
405 * We haven't any direct information about the MSS.
406 * It's better to underestimate the RCV_MSS rather than overestimate.
407 * Overestimations make us ACKing less frequently than needed.
408 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
409 */
410void tcp_initialize_rcv_mss(struct sock *sk)
411{
412	struct tcp_sock *tp = tcp_sk(sk);
413	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
414
415	hint = min(hint, tp->rcv_wnd / 2);
416	hint = min(hint, TCP_MSS_DEFAULT);
417	hint = max(hint, TCP_MIN_MSS);
418
419	inet_csk(sk)->icsk_ack.rcv_mss = hint;
420}
421
422/* Receiver "autotuning" code.
423 *
424 * The algorithm for RTT estimation w/o timestamps is based on
425 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
426 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
427 *
428 * More detail on this code can be found at
429 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
430 * though this reference is out of date.  A new paper
431 * is pending.
432 */
433static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
434{
435	u32 new_sample = tp->rcv_rtt_est.rtt;
436	long m = sample;
437
438	if (m == 0)
439		m = 1;
440
441	if (new_sample != 0) {
442		/* If we sample in larger samples in the non-timestamp
443		 * case, we could grossly overestimate the RTT especially
444		 * with chatty applications or bulk transfer apps which
445		 * are stalled on filesystem I/O.
446		 *
447		 * Also, since we are only going for a minimum in the
448		 * non-timestamp case, we do not smooth things out
449		 * else with timestamps disabled convergence takes too
450		 * long.
451		 */
452		if (!win_dep) {
453			m -= (new_sample >> 3);
454			new_sample += m;
455		} else if (m < new_sample)
456			new_sample = m << 3;
457	} else {
458		/* No previous measure. */
459		new_sample = m << 3;
460	}
461
462	if (tp->rcv_rtt_est.rtt != new_sample)
463		tp->rcv_rtt_est.rtt = new_sample;
464}
465
466static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
467{
468	if (tp->rcv_rtt_est.time == 0)
469		goto new_measure;
470	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
471		return;
472	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
473
474new_measure:
475	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
476	tp->rcv_rtt_est.time = tcp_time_stamp;
477}
478
479static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
480					  const struct sk_buff *skb)
481{
482	struct tcp_sock *tp = tcp_sk(sk);
483	if (tp->rx_opt.rcv_tsecr &&
484	    (TCP_SKB_CB(skb)->end_seq -
485	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
486		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487}
488
489/*
490 * This function should be called every time data is copied to user space.
491 * It calculates the appropriate TCP receive buffer space.
492 */
493void tcp_rcv_space_adjust(struct sock *sk)
494{
495	struct tcp_sock *tp = tcp_sk(sk);
496	int time;
497	int space;
498
499	if (tp->rcvq_space.time == 0)
500		goto new_measure;
501
502	time = tcp_time_stamp - tp->rcvq_space.time;
503	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
504		return;
505
506	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
507
508	space = max(tp->rcvq_space.space, space);
509
510	if (tp->rcvq_space.space != space) {
511		int rcvmem;
512
513		tp->rcvq_space.space = space;
514
515		if (sysctl_tcp_moderate_rcvbuf &&
516		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
517			int new_clamp = space;
518
519			/* Receive space grows, normalize in order to
520			 * take into account packet headers and sk_buff
521			 * structure overhead.
522			 */
523			space /= tp->advmss;
524			if (!space)
525				space = 1;
526			rcvmem = (tp->advmss + MAX_TCP_HEADER +
527				  16 + sizeof(struct sk_buff));
528			while (tcp_win_from_space(rcvmem) < tp->advmss)
529				rcvmem += 128;
530			space *= rcvmem;
531			space = min(space, sysctl_tcp_rmem[2]);
532			if (space > sk->sk_rcvbuf) {
533				sk->sk_rcvbuf = space;
534
535				/* Make the window clamp follow along.  */
536				tp->window_clamp = new_clamp;
537			}
538		}
539	}
540
541new_measure:
542	tp->rcvq_space.seq = tp->copied_seq;
543	tp->rcvq_space.time = tcp_time_stamp;
544}
545
546/* There is something which you must keep in mind when you analyze the
547 * behavior of the tp->ato delayed ack timeout interval.  When a
548 * connection starts up, we want to ack as quickly as possible.  The
549 * problem is that "good" TCP's do slow start at the beginning of data
550 * transmission.  The means that until we send the first few ACK's the
551 * sender will sit on his end and only queue most of his data, because
552 * he can only send snd_cwnd unacked packets at any given time.  For
553 * each ACK we send, he increments snd_cwnd and transmits more of his
554 * queue.  -DaveM
555 */
556static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
557{
558	struct tcp_sock *tp = tcp_sk(sk);
559	struct inet_connection_sock *icsk = inet_csk(sk);
560	u32 now;
561
562	inet_csk_schedule_ack(sk);
563
564	tcp_measure_rcv_mss(sk, skb);
565
566	tcp_rcv_rtt_measure(tp);
567
568	now = tcp_time_stamp;
569
570	if (!icsk->icsk_ack.ato) {
571		/* The _first_ data packet received, initialize
572		 * delayed ACK engine.
573		 */
574		tcp_incr_quickack(sk);
575		icsk->icsk_ack.ato = TCP_ATO_MIN;
576	} else {
577		int m = now - icsk->icsk_ack.lrcvtime;
578
579		if (m <= TCP_ATO_MIN / 2) {
580			/* The fastest case is the first. */
581			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
582		} else if (m < icsk->icsk_ack.ato) {
583			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
584			if (icsk->icsk_ack.ato > icsk->icsk_rto)
585				icsk->icsk_ack.ato = icsk->icsk_rto;
586		} else if (m > icsk->icsk_rto) {
587			/* Too long gap. Apparently sender failed to
588			 * restart window, so that we send ACKs quickly.
589			 */
590			tcp_incr_quickack(sk);
591			sk_mem_reclaim(sk);
592		}
593	}
594	icsk->icsk_ack.lrcvtime = now;
595
596	TCP_ECN_check_ce(tp, skb);
597
598	if (skb->len >= 128)
599		tcp_grow_window(sk, skb);
600}
601
602/* Called to compute a smoothed rtt estimate. The data fed to this
603 * routine either comes from timestamps, or from segments that were
604 * known _not_ to have been retransmitted [see Karn/Partridge
605 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
606 * piece by Van Jacobson.
607 * NOTE: the next three routines used to be one big routine.
608 * To save cycles in the RFC 1323 implementation it was better to break
609 * it up into three procedures. -- erics
610 */
611static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
612{
613	struct tcp_sock *tp = tcp_sk(sk);
614	long m = mrtt; /* RTT */
615
616	/*	The following amusing code comes from Jacobson's
617	 *	article in SIGCOMM '88.  Note that rtt and mdev
618	 *	are scaled versions of rtt and mean deviation.
619	 *	This is designed to be as fast as possible
620	 *	m stands for "measurement".
621	 *
622	 *	On a 1990 paper the rto value is changed to:
623	 *	RTO = rtt + 4 * mdev
624	 *
625	 * Funny. This algorithm seems to be very broken.
626	 * These formulae increase RTO, when it should be decreased, increase
627	 * too slowly, when it should be increased quickly, decrease too quickly
628	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
629	 * does not matter how to _calculate_ it. Seems, it was trap
630	 * that VJ failed to avoid. 8)
631	 */
632	if (m == 0)
633		m = 1;
634	if (tp->srtt != 0) {
635		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
636		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
637		if (m < 0) {
638			m = -m;		/* m is now abs(error) */
639			m -= (tp->mdev >> 2);   /* similar update on mdev */
640			/* This is similar to one of Eifel findings.
641			 * Eifel blocks mdev updates when rtt decreases.
642			 * This solution is a bit different: we use finer gain
643			 * for mdev in this case (alpha*beta).
644			 * Like Eifel it also prevents growth of rto,
645			 * but also it limits too fast rto decreases,
646			 * happening in pure Eifel.
647			 */
648			if (m > 0)
649				m >>= 3;
650		} else {
651			m -= (tp->mdev >> 2);   /* similar update on mdev */
652		}
653		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
654		if (tp->mdev > tp->mdev_max) {
655			tp->mdev_max = tp->mdev;
656			if (tp->mdev_max > tp->rttvar)
657				tp->rttvar = tp->mdev_max;
658		}
659		if (after(tp->snd_una, tp->rtt_seq)) {
660			if (tp->mdev_max < tp->rttvar)
661				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
662			tp->rtt_seq = tp->snd_nxt;
663			tp->mdev_max = tcp_rto_min(sk);
664		}
665	} else {
666		/* no previous measure. */
667		tp->srtt = m << 3;	/* take the measured time to be rtt */
668		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
669		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
670		tp->rtt_seq = tp->snd_nxt;
671	}
672}
673
674/* Calculate rto without backoff.  This is the second half of Van Jacobson's
675 * routine referred to above.
676 */
677static inline void tcp_set_rto(struct sock *sk)
678{
679	const struct tcp_sock *tp = tcp_sk(sk);
680	/* Old crap is replaced with new one. 8)
681	 *
682	 * More seriously:
683	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
684	 *    It cannot be less due to utterly erratic ACK generation made
685	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
686	 *    to do with delayed acks, because at cwnd>2 true delack timeout
687	 *    is invisible. Actually, Linux-2.4 also generates erratic
688	 *    ACKs in some circumstances.
689	 */
690	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
691
692	/* 2. Fixups made earlier cannot be right.
693	 *    If we do not estimate RTO correctly without them,
694	 *    all the algo is pure shit and should be replaced
695	 *    with correct one. It is exactly, which we pretend to do.
696	 */
697
698	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
699	 * guarantees that rto is higher.
700	 */
701	tcp_bound_rto(sk);
702}
703
704/* Save metrics learned by this TCP session.
705   This function is called only, when TCP finishes successfully
706   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
707 */
708void tcp_update_metrics(struct sock *sk)
709{
710	struct tcp_sock *tp = tcp_sk(sk);
711	struct dst_entry *dst = __sk_dst_get(sk);
712
713	if (sysctl_tcp_nometrics_save)
714		return;
715
716	dst_confirm(dst);
717
718	if (dst && (dst->flags & DST_HOST)) {
719		const struct inet_connection_sock *icsk = inet_csk(sk);
720		int m;
721		unsigned long rtt;
722
723		if (icsk->icsk_backoff || !tp->srtt) {
724			/* This session failed to estimate rtt. Why?
725			 * Probably, no packets returned in time.
726			 * Reset our results.
727			 */
728			if (!(dst_metric_locked(dst, RTAX_RTT)))
729				dst->metrics[RTAX_RTT - 1] = 0;
730			return;
731		}
732
733		rtt = dst_metric_rtt(dst, RTAX_RTT);
734		m = rtt - tp->srtt;
735
736		/* If newly calculated rtt larger than stored one,
737		 * store new one. Otherwise, use EWMA. Remember,
738		 * rtt overestimation is always better than underestimation.
739		 */
740		if (!(dst_metric_locked(dst, RTAX_RTT))) {
741			if (m <= 0)
742				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
743			else
744				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
745		}
746
747		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
748			unsigned long var;
749			if (m < 0)
750				m = -m;
751
752			/* Scale deviation to rttvar fixed point */
753			m >>= 1;
754			if (m < tp->mdev)
755				m = tp->mdev;
756
757			var = dst_metric_rtt(dst, RTAX_RTTVAR);
758			if (m >= var)
759				var = m;
760			else
761				var -= (var - m) >> 2;
762
763			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
764		}
765
766		if (tcp_in_initial_slowstart(tp)) {
767			/* Slow start still did not finish. */
768			if (dst_metric(dst, RTAX_SSTHRESH) &&
769			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
770			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
771				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
772			if (!dst_metric_locked(dst, RTAX_CWND) &&
773			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
774				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
775		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
776			   icsk->icsk_ca_state == TCP_CA_Open) {
777			/* Cong. avoidance phase, cwnd is reliable. */
778			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
779				dst->metrics[RTAX_SSTHRESH-1] =
780					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
781			if (!dst_metric_locked(dst, RTAX_CWND))
782				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
783		} else {
784			/* Else slow start did not finish, cwnd is non-sense,
785			   ssthresh may be also invalid.
786			 */
787			if (!dst_metric_locked(dst, RTAX_CWND))
788				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
789			if (dst_metric(dst, RTAX_SSTHRESH) &&
790			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
791			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
792				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
793		}
794
795		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
796			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
797			    tp->reordering != sysctl_tcp_reordering)
798				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
799		}
800	}
801}
802
803/* Numbers are taken from RFC3390.
804 *
805 * John Heffner states:
806 *
807 *	The RFC specifies a window of no more than 4380 bytes
808 *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
809 *	is a bit misleading because they use a clamp at 4380 bytes
810 *	rather than use a multiplier in the relevant range.
811 */
812__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
813{
814	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
815
816	if (!cwnd) {
817		if (tp->mss_cache > 1460)
818			cwnd = 2;
819		else
820			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
821	}
822	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
823}
824
825/* Set slow start threshold and cwnd not falling to slow start */
826void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
827{
828	struct tcp_sock *tp = tcp_sk(sk);
829	const struct inet_connection_sock *icsk = inet_csk(sk);
830
831	tp->prior_ssthresh = 0;
832	tp->bytes_acked = 0;
833	if (icsk->icsk_ca_state < TCP_CA_CWR) {
834		tp->undo_marker = 0;
835		if (set_ssthresh)
836			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
837		tp->snd_cwnd = min(tp->snd_cwnd,
838				   tcp_packets_in_flight(tp) + 1U);
839		tp->snd_cwnd_cnt = 0;
840		tp->high_seq = tp->snd_nxt;
841		tp->snd_cwnd_stamp = tcp_time_stamp;
842		TCP_ECN_queue_cwr(tp);
843
844		tcp_set_ca_state(sk, TCP_CA_CWR);
845	}
846}
847
848/*
849 * Packet counting of FACK is based on in-order assumptions, therefore TCP
850 * disables it when reordering is detected
851 */
852static void tcp_disable_fack(struct tcp_sock *tp)
853{
854	/* RFC3517 uses different metric in lost marker => reset on change */
855	if (tcp_is_fack(tp))
856		tp->lost_skb_hint = NULL;
857	tp->rx_opt.sack_ok &= ~2;
858}
859
860/* Take a notice that peer is sending D-SACKs */
861static void tcp_dsack_seen(struct tcp_sock *tp)
862{
863	tp->rx_opt.sack_ok |= 4;
864}
865
866/* Initialize metrics on socket. */
867
868static void tcp_init_metrics(struct sock *sk)
869{
870	struct tcp_sock *tp = tcp_sk(sk);
871	struct dst_entry *dst = __sk_dst_get(sk);
872
873	if (dst == NULL)
874		goto reset;
875
876	dst_confirm(dst);
877
878	if (dst_metric_locked(dst, RTAX_CWND))
879		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
880	if (dst_metric(dst, RTAX_SSTHRESH)) {
881		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
882		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
883			tp->snd_ssthresh = tp->snd_cwnd_clamp;
884	}
885	if (dst_metric(dst, RTAX_REORDERING) &&
886	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
887		tcp_disable_fack(tp);
888		tp->reordering = dst_metric(dst, RTAX_REORDERING);
889	}
890
891	if (dst_metric(dst, RTAX_RTT) == 0)
892		goto reset;
893
894	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
895		goto reset;
896
897	/* Initial rtt is determined from SYN,SYN-ACK.
898	 * The segment is small and rtt may appear much
899	 * less than real one. Use per-dst memory
900	 * to make it more realistic.
901	 *
902	 * A bit of theory. RTT is time passed after "normal" sized packet
903	 * is sent until it is ACKed. In normal circumstances sending small
904	 * packets force peer to delay ACKs and calculation is correct too.
905	 * The algorithm is adaptive and, provided we follow specs, it
906	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
907	 * tricks sort of "quick acks" for time long enough to decrease RTT
908	 * to low value, and then abruptly stops to do it and starts to delay
909	 * ACKs, wait for troubles.
910	 */
911	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
912		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
913		tp->rtt_seq = tp->snd_nxt;
914	}
915	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
916		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
917		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
918	}
919	tcp_set_rto(sk);
920	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
921		goto reset;
922
923cwnd:
924	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
925	tp->snd_cwnd_stamp = tcp_time_stamp;
926	return;
927
928reset:
929	/* Play conservative. If timestamps are not
930	 * supported, TCP will fail to recalculate correct
931	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
932	 */
933	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
934		tp->srtt = 0;
935		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
936		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
937	}
938	goto cwnd;
939}
940
941static void tcp_update_reordering(struct sock *sk, const int metric,
942				  const int ts)
943{
944	struct tcp_sock *tp = tcp_sk(sk);
945	if (metric > tp->reordering) {
946		int mib_idx;
947
948		tp->reordering = min(TCP_MAX_REORDERING, metric);
949
950		/* This exciting event is worth to be remembered. 8) */
951		if (ts)
952			mib_idx = LINUX_MIB_TCPTSREORDER;
953		else if (tcp_is_reno(tp))
954			mib_idx = LINUX_MIB_TCPRENOREORDER;
955		else if (tcp_is_fack(tp))
956			mib_idx = LINUX_MIB_TCPFACKREORDER;
957		else
958			mib_idx = LINUX_MIB_TCPSACKREORDER;
959
960		NET_INC_STATS_BH(sock_net(sk), mib_idx);
961#if FASTRETRANS_DEBUG > 1
962		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
963		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
964		       tp->reordering,
965		       tp->fackets_out,
966		       tp->sacked_out,
967		       tp->undo_marker ? tp->undo_retrans : 0);
968#endif
969		tcp_disable_fack(tp);
970	}
971}
972
973/* This must be called before lost_out is incremented */
974static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
975{
976	if ((tp->retransmit_skb_hint == NULL) ||
977	    before(TCP_SKB_CB(skb)->seq,
978		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
979		tp->retransmit_skb_hint = skb;
980
981	if (!tp->lost_out ||
982	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
983		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
984}
985
986static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
987{
988	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
989		tcp_verify_retransmit_hint(tp, skb);
990
991		tp->lost_out += tcp_skb_pcount(skb);
992		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
993	}
994}
995
996static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
997					    struct sk_buff *skb)
998{
999	tcp_verify_retransmit_hint(tp, skb);
1000
1001	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1002		tp->lost_out += tcp_skb_pcount(skb);
1003		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1004	}
1005}
1006
1007/* This procedure tags the retransmission queue when SACKs arrive.
1008 *
1009 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1010 * Packets in queue with these bits set are counted in variables
1011 * sacked_out, retrans_out and lost_out, correspondingly.
1012 *
1013 * Valid combinations are:
1014 * Tag  InFlight	Description
1015 * 0	1		- orig segment is in flight.
1016 * S	0		- nothing flies, orig reached receiver.
1017 * L	0		- nothing flies, orig lost by net.
1018 * R	2		- both orig and retransmit are in flight.
1019 * L|R	1		- orig is lost, retransmit is in flight.
1020 * S|R  1		- orig reached receiver, retrans is still in flight.
1021 * (L|S|R is logically valid, it could occur when L|R is sacked,
1022 *  but it is equivalent to plain S and code short-curcuits it to S.
1023 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1024 *
1025 * These 6 states form finite state machine, controlled by the following events:
1026 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1027 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1028 * 3. Loss detection event of one of three flavors:
1029 *	A. Scoreboard estimator decided the packet is lost.
1030 *	   A'. Reno "three dupacks" marks head of queue lost.
1031 *	   A''. Its FACK modfication, head until snd.fack is lost.
1032 *	B. SACK arrives sacking data transmitted after never retransmitted
1033 *	   hole was sent out.
1034 *	C. SACK arrives sacking SND.NXT at the moment, when the
1035 *	   segment was retransmitted.
1036 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1037 *
1038 * It is pleasant to note, that state diagram turns out to be commutative,
1039 * so that we are allowed not to be bothered by order of our actions,
1040 * when multiple events arrive simultaneously. (see the function below).
1041 *
1042 * Reordering detection.
1043 * --------------------
1044 * Reordering metric is maximal distance, which a packet can be displaced
1045 * in packet stream. With SACKs we can estimate it:
1046 *
1047 * 1. SACK fills old hole and the corresponding segment was not
1048 *    ever retransmitted -> reordering. Alas, we cannot use it
1049 *    when segment was retransmitted.
1050 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1051 *    for retransmitted and already SACKed segment -> reordering..
1052 * Both of these heuristics are not used in Loss state, when we cannot
1053 * account for retransmits accurately.
1054 *
1055 * SACK block validation.
1056 * ----------------------
1057 *
1058 * SACK block range validation checks that the received SACK block fits to
1059 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1060 * Note that SND.UNA is not included to the range though being valid because
1061 * it means that the receiver is rather inconsistent with itself reporting
1062 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1063 * perfectly valid, however, in light of RFC2018 which explicitly states
1064 * that "SACK block MUST reflect the newest segment.  Even if the newest
1065 * segment is going to be discarded ...", not that it looks very clever
1066 * in case of head skb. Due to potentional receiver driven attacks, we
1067 * choose to avoid immediate execution of a walk in write queue due to
1068 * reneging and defer head skb's loss recovery to standard loss recovery
1069 * procedure that will eventually trigger (nothing forbids us doing this).
1070 *
1071 * Implements also blockage to start_seq wrap-around. Problem lies in the
1072 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1073 * there's no guarantee that it will be before snd_nxt (n). The problem
1074 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1075 * wrap (s_w):
1076 *
1077 *         <- outs wnd ->                          <- wrapzone ->
1078 *         u     e      n                         u_w   e_w  s n_w
1079 *         |     |      |                          |     |   |  |
1080 * |<------------+------+----- TCP seqno space --------------+---------->|
1081 * ...-- <2^31 ->|                                           |<--------...
1082 * ...---- >2^31 ------>|                                    |<--------...
1083 *
1084 * Current code wouldn't be vulnerable but it's better still to discard such
1085 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1086 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1087 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1088 * equal to the ideal case (infinite seqno space without wrap caused issues).
1089 *
1090 * With D-SACK the lower bound is extended to cover sequence space below
1091 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1092 * again, D-SACK block must not to go across snd_una (for the same reason as
1093 * for the normal SACK blocks, explained above). But there all simplicity
1094 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1095 * fully below undo_marker they do not affect behavior in anyway and can
1096 * therefore be safely ignored. In rare cases (which are more or less
1097 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1098 * fragmentation and packet reordering past skb's retransmission. To consider
1099 * them correctly, the acceptable range must be extended even more though
1100 * the exact amount is rather hard to quantify. However, tp->max_window can
1101 * be used as an exaggerated estimate.
1102 */
1103static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1104				  u32 start_seq, u32 end_seq)
1105{
1106	/* Too far in future, or reversed (interpretation is ambiguous) */
1107	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1108		return 0;
1109
1110	/* Nasty start_seq wrap-around check (see comments above) */
1111	if (!before(start_seq, tp->snd_nxt))
1112		return 0;
1113
1114	/* In outstanding window? ...This is valid exit for D-SACKs too.
1115	 * start_seq == snd_una is non-sensical (see comments above)
1116	 */
1117	if (after(start_seq, tp->snd_una))
1118		return 1;
1119
1120	if (!is_dsack || !tp->undo_marker)
1121		return 0;
1122
1123	/* ...Then it's D-SACK, and must reside below snd_una completely */
1124	if (!after(end_seq, tp->snd_una))
1125		return 0;
1126
1127	if (!before(start_seq, tp->undo_marker))
1128		return 1;
1129
1130	/* Too old */
1131	if (!after(end_seq, tp->undo_marker))
1132		return 0;
1133
1134	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1135	 *   start_seq < undo_marker and end_seq >= undo_marker.
1136	 */
1137	return !before(start_seq, end_seq - tp->max_window);
1138}
1139
1140/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1141 * Event "C". Later note: FACK people cheated me again 8), we have to account
1142 * for reordering! Ugly, but should help.
1143 *
1144 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1145 * less than what is now known to be received by the other end (derived from
1146 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1147 * retransmitted skbs to avoid some costly processing per ACKs.
1148 */
1149static void tcp_mark_lost_retrans(struct sock *sk)
1150{
1151	const struct inet_connection_sock *icsk = inet_csk(sk);
1152	struct tcp_sock *tp = tcp_sk(sk);
1153	struct sk_buff *skb;
1154	int cnt = 0;
1155	u32 new_low_seq = tp->snd_nxt;
1156	u32 received_upto = tcp_highest_sack_seq(tp);
1157
1158	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1159	    !after(received_upto, tp->lost_retrans_low) ||
1160	    icsk->icsk_ca_state != TCP_CA_Recovery)
1161		return;
1162
1163	tcp_for_write_queue(skb, sk) {
1164		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1165
1166		if (skb == tcp_send_head(sk))
1167			break;
1168		if (cnt == tp->retrans_out)
1169			break;
1170		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1171			continue;
1172
1173		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1174			continue;
1175
1176		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1177		 * constraint here (see above) but figuring out that at
1178		 * least tp->reordering SACK blocks reside between ack_seq
1179		 * and received_upto is not easy task to do cheaply with
1180		 * the available datastructures.
1181		 *
1182		 * Whether FACK should check here for tp->reordering segs
1183		 * in-between one could argue for either way (it would be
1184		 * rather simple to implement as we could count fack_count
1185		 * during the walk and do tp->fackets_out - fack_count).
1186		 */
1187		if (after(received_upto, ack_seq)) {
1188			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1189			tp->retrans_out -= tcp_skb_pcount(skb);
1190
1191			tcp_skb_mark_lost_uncond_verify(tp, skb);
1192			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1193		} else {
1194			if (before(ack_seq, new_low_seq))
1195				new_low_seq = ack_seq;
1196			cnt += tcp_skb_pcount(skb);
1197		}
1198	}
1199
1200	if (tp->retrans_out)
1201		tp->lost_retrans_low = new_low_seq;
1202}
1203
1204static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1205			   struct tcp_sack_block_wire *sp, int num_sacks,
1206			   u32 prior_snd_una)
1207{
1208	struct tcp_sock *tp = tcp_sk(sk);
1209	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1210	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1211	int dup_sack = 0;
1212
1213	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1214		dup_sack = 1;
1215		tcp_dsack_seen(tp);
1216		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1217	} else if (num_sacks > 1) {
1218		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1219		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1220
1221		if (!after(end_seq_0, end_seq_1) &&
1222		    !before(start_seq_0, start_seq_1)) {
1223			dup_sack = 1;
1224			tcp_dsack_seen(tp);
1225			NET_INC_STATS_BH(sock_net(sk),
1226					LINUX_MIB_TCPDSACKOFORECV);
1227		}
1228	}
1229
1230	/* D-SACK for already forgotten data... Do dumb counting. */
1231	if (dup_sack &&
1232	    !after(end_seq_0, prior_snd_una) &&
1233	    after(end_seq_0, tp->undo_marker))
1234		tp->undo_retrans--;
1235
1236	return dup_sack;
1237}
1238
1239struct tcp_sacktag_state {
1240	int reord;
1241	int fack_count;
1242	int flag;
1243};
1244
1245/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1246 * the incoming SACK may not exactly match but we can find smaller MSS
1247 * aligned portion of it that matches. Therefore we might need to fragment
1248 * which may fail and creates some hassle (caller must handle error case
1249 * returns).
1250 *
1251 * FIXME: this could be merged to shift decision code
1252 */
1253static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1254				 u32 start_seq, u32 end_seq)
1255{
1256	int in_sack, err;
1257	unsigned int pkt_len;
1258	unsigned int mss;
1259
1260	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1261		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1262
1263	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1264	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1265		mss = tcp_skb_mss(skb);
1266		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1267
1268		if (!in_sack) {
1269			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1270			if (pkt_len < mss)
1271				pkt_len = mss;
1272		} else {
1273			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1274			if (pkt_len < mss)
1275				return -EINVAL;
1276		}
1277
1278		/* Round if necessary so that SACKs cover only full MSSes
1279		 * and/or the remaining small portion (if present)
1280		 */
1281		if (pkt_len > mss) {
1282			unsigned int new_len = (pkt_len / mss) * mss;
1283			if (!in_sack && new_len < pkt_len) {
1284				new_len += mss;
1285				if (new_len > skb->len)
1286					return 0;
1287			}
1288			pkt_len = new_len;
1289		}
1290		err = tcp_fragment(sk, skb, pkt_len, mss);
1291		if (err < 0)
1292			return err;
1293	}
1294
1295	return in_sack;
1296}
1297
1298static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1299			  struct tcp_sacktag_state *state,
1300			  int dup_sack, int pcount)
1301{
1302	struct tcp_sock *tp = tcp_sk(sk);
1303	u8 sacked = TCP_SKB_CB(skb)->sacked;
1304	int fack_count = state->fack_count;
1305
1306	/* Account D-SACK for retransmitted packet. */
1307	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1308		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1309			tp->undo_retrans--;
1310		if (sacked & TCPCB_SACKED_ACKED)
1311			state->reord = min(fack_count, state->reord);
1312	}
1313
1314	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1315	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1316		return sacked;
1317
1318	if (!(sacked & TCPCB_SACKED_ACKED)) {
1319		if (sacked & TCPCB_SACKED_RETRANS) {
1320			/* If the segment is not tagged as lost,
1321			 * we do not clear RETRANS, believing
1322			 * that retransmission is still in flight.
1323			 */
1324			if (sacked & TCPCB_LOST) {
1325				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1326				tp->lost_out -= pcount;
1327				tp->retrans_out -= pcount;
1328			}
1329		} else {
1330			if (!(sacked & TCPCB_RETRANS)) {
1331				/* New sack for not retransmitted frame,
1332				 * which was in hole. It is reordering.
1333				 */
1334				if (before(TCP_SKB_CB(skb)->seq,
1335					   tcp_highest_sack_seq(tp)))
1336					state->reord = min(fack_count,
1337							   state->reord);
1338
1339				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1340				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1341					state->flag |= FLAG_ONLY_ORIG_SACKED;
1342			}
1343
1344			if (sacked & TCPCB_LOST) {
1345				sacked &= ~TCPCB_LOST;
1346				tp->lost_out -= pcount;
1347			}
1348		}
1349
1350		sacked |= TCPCB_SACKED_ACKED;
1351		state->flag |= FLAG_DATA_SACKED;
1352		tp->sacked_out += pcount;
1353
1354		fack_count += pcount;
1355
1356		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1357		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1358		    before(TCP_SKB_CB(skb)->seq,
1359			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1360			tp->lost_cnt_hint += pcount;
1361
1362		if (fack_count > tp->fackets_out)
1363			tp->fackets_out = fack_count;
1364	}
1365
1366	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1367	 * frames and clear it. undo_retrans is decreased above, L|R frames
1368	 * are accounted above as well.
1369	 */
1370	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1371		sacked &= ~TCPCB_SACKED_RETRANS;
1372		tp->retrans_out -= pcount;
1373	}
1374
1375	return sacked;
1376}
1377
1378static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1379			   struct tcp_sacktag_state *state,
1380			   unsigned int pcount, int shifted, int mss,
1381			   int dup_sack)
1382{
1383	struct tcp_sock *tp = tcp_sk(sk);
1384	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1385
1386	BUG_ON(!pcount);
1387
1388	/* Tweak before seqno plays */
1389	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1390	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1391		tp->lost_cnt_hint += pcount;
1392
1393	TCP_SKB_CB(prev)->end_seq += shifted;
1394	TCP_SKB_CB(skb)->seq += shifted;
1395
1396	skb_shinfo(prev)->gso_segs += pcount;
1397	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1398	skb_shinfo(skb)->gso_segs -= pcount;
1399
1400	/* When we're adding to gso_segs == 1, gso_size will be zero,
1401	 * in theory this shouldn't be necessary but as long as DSACK
1402	 * code can come after this skb later on it's better to keep
1403	 * setting gso_size to something.
1404	 */
1405	if (!skb_shinfo(prev)->gso_size) {
1406		skb_shinfo(prev)->gso_size = mss;
1407		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1408	}
1409
1410	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1411	if (skb_shinfo(skb)->gso_segs <= 1) {
1412		skb_shinfo(skb)->gso_size = 0;
1413		skb_shinfo(skb)->gso_type = 0;
1414	}
1415
1416	/* We discard results */
1417	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1418
1419	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1420	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1421
1422	if (skb->len > 0) {
1423		BUG_ON(!tcp_skb_pcount(skb));
1424		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1425		return 0;
1426	}
1427
1428	/* Whole SKB was eaten :-) */
1429
1430	if (skb == tp->retransmit_skb_hint)
1431		tp->retransmit_skb_hint = prev;
1432	if (skb == tp->scoreboard_skb_hint)
1433		tp->scoreboard_skb_hint = prev;
1434	if (skb == tp->lost_skb_hint) {
1435		tp->lost_skb_hint = prev;
1436		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1437	}
1438
1439	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1440	if (skb == tcp_highest_sack(sk))
1441		tcp_advance_highest_sack(sk, skb);
1442
1443	tcp_unlink_write_queue(skb, sk);
1444	sk_wmem_free_skb(sk, skb);
1445
1446	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1447
1448	return 1;
1449}
1450
1451/* I wish gso_size would have a bit more sane initialization than
1452 * something-or-zero which complicates things
1453 */
1454static int tcp_skb_seglen(struct sk_buff *skb)
1455{
1456	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1457}
1458
1459/* Shifting pages past head area doesn't work */
1460static int skb_can_shift(struct sk_buff *skb)
1461{
1462	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1463}
1464
1465/* Try collapsing SACK blocks spanning across multiple skbs to a single
1466 * skb.
1467 */
1468static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1469					  struct tcp_sacktag_state *state,
1470					  u32 start_seq, u32 end_seq,
1471					  int dup_sack)
1472{
1473	struct tcp_sock *tp = tcp_sk(sk);
1474	struct sk_buff *prev;
1475	int mss;
1476	int pcount = 0;
1477	int len;
1478	int in_sack;
1479
1480	if (!sk_can_gso(sk))
1481		goto fallback;
1482
1483	/* Normally R but no L won't result in plain S */
1484	if (!dup_sack &&
1485	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1486		goto fallback;
1487	if (!skb_can_shift(skb))
1488		goto fallback;
1489	/* This frame is about to be dropped (was ACKed). */
1490	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1491		goto fallback;
1492
1493	/* Can only happen with delayed DSACK + discard craziness */
1494	if (unlikely(skb == tcp_write_queue_head(sk)))
1495		goto fallback;
1496	prev = tcp_write_queue_prev(sk, skb);
1497
1498	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1499		goto fallback;
1500
1501	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1502		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1503
1504	if (in_sack) {
1505		len = skb->len;
1506		pcount = tcp_skb_pcount(skb);
1507		mss = tcp_skb_seglen(skb);
1508
1509		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1510		 * drop this restriction as unnecessary
1511		 */
1512		if (mss != tcp_skb_seglen(prev))
1513			goto fallback;
1514	} else {
1515		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1516			goto noop;
1517		/* CHECKME: This is non-MSS split case only?, this will
1518		 * cause skipped skbs due to advancing loop btw, original
1519		 * has that feature too
1520		 */
1521		if (tcp_skb_pcount(skb) <= 1)
1522			goto noop;
1523
1524		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1525		if (!in_sack) {
1526			/* TODO: head merge to next could be attempted here
1527			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1528			 * though it might not be worth of the additional hassle
1529			 *
1530			 * ...we can probably just fallback to what was done
1531			 * previously. We could try merging non-SACKed ones
1532			 * as well but it probably isn't going to buy off
1533			 * because later SACKs might again split them, and
1534			 * it would make skb timestamp tracking considerably
1535			 * harder problem.
1536			 */
1537			goto fallback;
1538		}
1539
1540		len = end_seq - TCP_SKB_CB(skb)->seq;
1541		BUG_ON(len < 0);
1542		BUG_ON(len > skb->len);
1543
1544		/* MSS boundaries should be honoured or else pcount will
1545		 * severely break even though it makes things bit trickier.
1546		 * Optimize common case to avoid most of the divides
1547		 */
1548		mss = tcp_skb_mss(skb);
1549
1550		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1551		 * drop this restriction as unnecessary
1552		 */
1553		if (mss != tcp_skb_seglen(prev))
1554			goto fallback;
1555
1556		if (len == mss) {
1557			pcount = 1;
1558		} else if (len < mss) {
1559			goto noop;
1560		} else {
1561			pcount = len / mss;
1562			len = pcount * mss;
1563		}
1564	}
1565
1566	if (!skb_shift(prev, skb, len))
1567		goto fallback;
1568	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1569		goto out;
1570
1571	/* Hole filled allows collapsing with the next as well, this is very
1572	 * useful when hole on every nth skb pattern happens
1573	 */
1574	if (prev == tcp_write_queue_tail(sk))
1575		goto out;
1576	skb = tcp_write_queue_next(sk, prev);
1577
1578	if (!skb_can_shift(skb) ||
1579	    (skb == tcp_send_head(sk)) ||
1580	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1581	    (mss != tcp_skb_seglen(skb)))
1582		goto out;
1583
1584	len = skb->len;
1585	if (skb_shift(prev, skb, len)) {
1586		pcount += tcp_skb_pcount(skb);
1587		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1588	}
1589
1590out:
1591	state->fack_count += pcount;
1592	return prev;
1593
1594noop:
1595	return skb;
1596
1597fallback:
1598	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1599	return NULL;
1600}
1601
1602static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1603					struct tcp_sack_block *next_dup,
1604					struct tcp_sacktag_state *state,
1605					u32 start_seq, u32 end_seq,
1606					int dup_sack_in)
1607{
1608	struct tcp_sock *tp = tcp_sk(sk);
1609	struct sk_buff *tmp;
1610
1611	tcp_for_write_queue_from(skb, sk) {
1612		int in_sack = 0;
1613		int dup_sack = dup_sack_in;
1614
1615		if (skb == tcp_send_head(sk))
1616			break;
1617
1618		/* queue is in-order => we can short-circuit the walk early */
1619		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1620			break;
1621
1622		if ((next_dup != NULL) &&
1623		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1624			in_sack = tcp_match_skb_to_sack(sk, skb,
1625							next_dup->start_seq,
1626							next_dup->end_seq);
1627			if (in_sack > 0)
1628				dup_sack = 1;
1629		}
1630
1631		/* skb reference here is a bit tricky to get right, since
1632		 * shifting can eat and free both this skb and the next,
1633		 * so not even _safe variant of the loop is enough.
1634		 */
1635		if (in_sack <= 0) {
1636			tmp = tcp_shift_skb_data(sk, skb, state,
1637						 start_seq, end_seq, dup_sack);
1638			if (tmp != NULL) {
1639				if (tmp != skb) {
1640					skb = tmp;
1641					continue;
1642				}
1643
1644				in_sack = 0;
1645			} else {
1646				in_sack = tcp_match_skb_to_sack(sk, skb,
1647								start_seq,
1648								end_seq);
1649			}
1650		}
1651
1652		if (unlikely(in_sack < 0))
1653			break;
1654
1655		if (in_sack) {
1656			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1657								  state,
1658								  dup_sack,
1659								  tcp_skb_pcount(skb));
1660
1661			if (!before(TCP_SKB_CB(skb)->seq,
1662				    tcp_highest_sack_seq(tp)))
1663				tcp_advance_highest_sack(sk, skb);
1664		}
1665
1666		state->fack_count += tcp_skb_pcount(skb);
1667	}
1668	return skb;
1669}
1670
1671/* Avoid all extra work that is being done by sacktag while walking in
1672 * a normal way
1673 */
1674static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1675					struct tcp_sacktag_state *state,
1676					u32 skip_to_seq)
1677{
1678	tcp_for_write_queue_from(skb, sk) {
1679		if (skb == tcp_send_head(sk))
1680			break;
1681
1682		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1683			break;
1684
1685		state->fack_count += tcp_skb_pcount(skb);
1686	}
1687	return skb;
1688}
1689
1690static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1691						struct sock *sk,
1692						struct tcp_sack_block *next_dup,
1693						struct tcp_sacktag_state *state,
1694						u32 skip_to_seq)
1695{
1696	if (next_dup == NULL)
1697		return skb;
1698
1699	if (before(next_dup->start_seq, skip_to_seq)) {
1700		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1701		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1702				       next_dup->start_seq, next_dup->end_seq,
1703				       1);
1704	}
1705
1706	return skb;
1707}
1708
1709static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1710{
1711	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1712}
1713
1714static int
1715tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1716			u32 prior_snd_una)
1717{
1718	const struct inet_connection_sock *icsk = inet_csk(sk);
1719	struct tcp_sock *tp = tcp_sk(sk);
1720	unsigned char *ptr = (skb_transport_header(ack_skb) +
1721			      TCP_SKB_CB(ack_skb)->sacked);
1722	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1723	struct tcp_sack_block sp[TCP_NUM_SACKS];
1724	struct tcp_sack_block *cache;
1725	struct tcp_sacktag_state state;
1726	struct sk_buff *skb;
1727	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1728	int used_sacks;
1729	int found_dup_sack = 0;
1730	int i, j;
1731	int first_sack_index;
1732
1733	state.flag = 0;
1734	state.reord = tp->packets_out;
1735
1736	if (!tp->sacked_out) {
1737		if (WARN_ON(tp->fackets_out))
1738			tp->fackets_out = 0;
1739		tcp_highest_sack_reset(sk);
1740	}
1741
1742	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1743					 num_sacks, prior_snd_una);
1744	if (found_dup_sack)
1745		state.flag |= FLAG_DSACKING_ACK;
1746
1747	/* Eliminate too old ACKs, but take into
1748	 * account more or less fresh ones, they can
1749	 * contain valid SACK info.
1750	 */
1751	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1752		return 0;
1753
1754	if (!tp->packets_out)
1755		goto out;
1756
1757	used_sacks = 0;
1758	first_sack_index = 0;
1759	for (i = 0; i < num_sacks; i++) {
1760		int dup_sack = !i && found_dup_sack;
1761
1762		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1763		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1764
1765		if (!tcp_is_sackblock_valid(tp, dup_sack,
1766					    sp[used_sacks].start_seq,
1767					    sp[used_sacks].end_seq)) {
1768			int mib_idx;
1769
1770			if (dup_sack) {
1771				if (!tp->undo_marker)
1772					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1773				else
1774					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1775			} else {
1776				/* Don't count olds caused by ACK reordering */
1777				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1778				    !after(sp[used_sacks].end_seq, tp->snd_una))
1779					continue;
1780				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1781			}
1782
1783			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1784			if (i == 0)
1785				first_sack_index = -1;
1786			continue;
1787		}
1788
1789		/* Ignore very old stuff early */
1790		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1791			continue;
1792
1793		used_sacks++;
1794	}
1795
1796	/* order SACK blocks to allow in order walk of the retrans queue */
1797	for (i = used_sacks - 1; i > 0; i--) {
1798		for (j = 0; j < i; j++) {
1799			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1800				swap(sp[j], sp[j + 1]);
1801
1802				/* Track where the first SACK block goes to */
1803				if (j == first_sack_index)
1804					first_sack_index = j + 1;
1805			}
1806		}
1807	}
1808
1809	skb = tcp_write_queue_head(sk);
1810	state.fack_count = 0;
1811	i = 0;
1812
1813	if (!tp->sacked_out) {
1814		/* It's already past, so skip checking against it */
1815		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1816	} else {
1817		cache = tp->recv_sack_cache;
1818		/* Skip empty blocks in at head of the cache */
1819		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1820		       !cache->end_seq)
1821			cache++;
1822	}
1823
1824	while (i < used_sacks) {
1825		u32 start_seq = sp[i].start_seq;
1826		u32 end_seq = sp[i].end_seq;
1827		int dup_sack = (found_dup_sack && (i == first_sack_index));
1828		struct tcp_sack_block *next_dup = NULL;
1829
1830		if (found_dup_sack && ((i + 1) == first_sack_index))
1831			next_dup = &sp[i + 1];
1832
1833		/* Event "B" in the comment above. */
1834		if (after(end_seq, tp->high_seq))
1835			state.flag |= FLAG_DATA_LOST;
1836
1837		/* Skip too early cached blocks */
1838		while (tcp_sack_cache_ok(tp, cache) &&
1839		       !before(start_seq, cache->end_seq))
1840			cache++;
1841
1842		/* Can skip some work by looking recv_sack_cache? */
1843		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1844		    after(end_seq, cache->start_seq)) {
1845
1846			/* Head todo? */
1847			if (before(start_seq, cache->start_seq)) {
1848				skb = tcp_sacktag_skip(skb, sk, &state,
1849						       start_seq);
1850				skb = tcp_sacktag_walk(skb, sk, next_dup,
1851						       &state,
1852						       start_seq,
1853						       cache->start_seq,
1854						       dup_sack);
1855			}
1856
1857			/* Rest of the block already fully processed? */
1858			if (!after(end_seq, cache->end_seq))
1859				goto advance_sp;
1860
1861			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1862						       &state,
1863						       cache->end_seq);
1864
1865			/* ...tail remains todo... */
1866			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1867				/* ...but better entrypoint exists! */
1868				skb = tcp_highest_sack(sk);
1869				if (skb == NULL)
1870					break;
1871				state.fack_count = tp->fackets_out;
1872				cache++;
1873				goto walk;
1874			}
1875
1876			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1877			/* Check overlap against next cached too (past this one already) */
1878			cache++;
1879			continue;
1880		}
1881
1882		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1883			skb = tcp_highest_sack(sk);
1884			if (skb == NULL)
1885				break;
1886			state.fack_count = tp->fackets_out;
1887		}
1888		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1889
1890walk:
1891		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1892				       start_seq, end_seq, dup_sack);
1893
1894advance_sp:
1895		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1896		 * due to in-order walk
1897		 */
1898		if (after(end_seq, tp->frto_highmark))
1899			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1900
1901		i++;
1902	}
1903
1904	/* Clear the head of the cache sack blocks so we can skip it next time */
1905	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1906		tp->recv_sack_cache[i].start_seq = 0;
1907		tp->recv_sack_cache[i].end_seq = 0;
1908	}
1909	for (j = 0; j < used_sacks; j++)
1910		tp->recv_sack_cache[i++] = sp[j];
1911
1912	tcp_mark_lost_retrans(sk);
1913
1914	tcp_verify_left_out(tp);
1915
1916	if ((state.reord < tp->fackets_out) &&
1917	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1918	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1919		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1920
1921out:
1922
1923#if FASTRETRANS_DEBUG > 0
1924	WARN_ON((int)tp->sacked_out < 0);
1925	WARN_ON((int)tp->lost_out < 0);
1926	WARN_ON((int)tp->retrans_out < 0);
1927	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1928#endif
1929	return state.flag;
1930}
1931
1932/* Limits sacked_out so that sum with lost_out isn't ever larger than
1933 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1934 */
1935static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1936{
1937	u32 holes;
1938
1939	holes = max(tp->lost_out, 1U);
1940	holes = min(holes, tp->packets_out);
1941
1942	if ((tp->sacked_out + holes) > tp->packets_out) {
1943		tp->sacked_out = tp->packets_out - holes;
1944		return 1;
1945	}
1946	return 0;
1947}
1948
1949/* If we receive more dupacks than we expected counting segments
1950 * in assumption of absent reordering, interpret this as reordering.
1951 * The only another reason could be bug in receiver TCP.
1952 */
1953static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1954{
1955	struct tcp_sock *tp = tcp_sk(sk);
1956	if (tcp_limit_reno_sacked(tp))
1957		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1958}
1959
1960/* Emulate SACKs for SACKless connection: account for a new dupack. */
1961
1962static void tcp_add_reno_sack(struct sock *sk)
1963{
1964	struct tcp_sock *tp = tcp_sk(sk);
1965	tp->sacked_out++;
1966	tcp_check_reno_reordering(sk, 0);
1967	tcp_verify_left_out(tp);
1968}
1969
1970/* Account for ACK, ACKing some data in Reno Recovery phase. */
1971
1972static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1973{
1974	struct tcp_sock *tp = tcp_sk(sk);
1975
1976	if (acked > 0) {
1977		/* One ACK acked hole. The rest eat duplicate ACKs. */
1978		if (acked - 1 >= tp->sacked_out)
1979			tp->sacked_out = 0;
1980		else
1981			tp->sacked_out -= acked - 1;
1982	}
1983	tcp_check_reno_reordering(sk, acked);
1984	tcp_verify_left_out(tp);
1985}
1986
1987static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1988{
1989	tp->sacked_out = 0;
1990}
1991
1992static int tcp_is_sackfrto(const struct tcp_sock *tp)
1993{
1994	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1995}
1996
1997/* F-RTO can only be used if TCP has never retransmitted anything other than
1998 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1999 */
2000int tcp_use_frto(struct sock *sk)
2001{
2002	const struct tcp_sock *tp = tcp_sk(sk);
2003	const struct inet_connection_sock *icsk = inet_csk(sk);
2004	struct sk_buff *skb;
2005
2006	if (!sysctl_tcp_frto)
2007		return 0;
2008
2009	/* MTU probe and F-RTO won't really play nicely along currently */
2010	if (icsk->icsk_mtup.probe_size)
2011		return 0;
2012
2013	if (tcp_is_sackfrto(tp))
2014		return 1;
2015
2016	/* Avoid expensive walking of rexmit queue if possible */
2017	if (tp->retrans_out > 1)
2018		return 0;
2019
2020	skb = tcp_write_queue_head(sk);
2021	if (tcp_skb_is_last(sk, skb))
2022		return 1;
2023	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2024	tcp_for_write_queue_from(skb, sk) {
2025		if (skb == tcp_send_head(sk))
2026			break;
2027		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2028			return 0;
2029		/* Short-circuit when first non-SACKed skb has been checked */
2030		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2031			break;
2032	}
2033	return 1;
2034}
2035
2036/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2037 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2038 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2039 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2040 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2041 * bits are handled if the Loss state is really to be entered (in
2042 * tcp_enter_frto_loss).
2043 *
2044 * Do like tcp_enter_loss() would; when RTO expires the second time it
2045 * does:
2046 *  "Reduce ssthresh if it has not yet been made inside this window."
2047 */
2048void tcp_enter_frto(struct sock *sk)
2049{
2050	const struct inet_connection_sock *icsk = inet_csk(sk);
2051	struct tcp_sock *tp = tcp_sk(sk);
2052	struct sk_buff *skb;
2053
2054	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2055	    tp->snd_una == tp->high_seq ||
2056	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2057	     !icsk->icsk_retransmits)) {
2058		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2059		/* Our state is too optimistic in ssthresh() call because cwnd
2060		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2061		 * recovery has not yet completed. Pattern would be this: RTO,
2062		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2063		 * up here twice).
2064		 * RFC4138 should be more specific on what to do, even though
2065		 * RTO is quite unlikely to occur after the first Cumulative ACK
2066		 * due to back-off and complexity of triggering events ...
2067		 */
2068		if (tp->frto_counter) {
2069			u32 stored_cwnd;
2070			stored_cwnd = tp->snd_cwnd;
2071			tp->snd_cwnd = 2;
2072			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2073			tp->snd_cwnd = stored_cwnd;
2074		} else {
2075			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2076		}
2077		/* ... in theory, cong.control module could do "any tricks" in
2078		 * ssthresh(), which means that ca_state, lost bits and lost_out
2079		 * counter would have to be faked before the call occurs. We
2080		 * consider that too expensive, unlikely and hacky, so modules
2081		 * using these in ssthresh() must deal these incompatibility
2082		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2083		 */
2084		tcp_ca_event(sk, CA_EVENT_FRTO);
2085	}
2086
2087	tp->undo_marker = tp->snd_una;
2088	tp->undo_retrans = 0;
2089
2090	skb = tcp_write_queue_head(sk);
2091	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2092		tp->undo_marker = 0;
2093	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2094		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2095		tp->retrans_out -= tcp_skb_pcount(skb);
2096	}
2097	tcp_verify_left_out(tp);
2098
2099	/* Too bad if TCP was application limited */
2100	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2101
2102	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2103	 * The last condition is necessary at least in tp->frto_counter case.
2104	 */
2105	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2106	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2107	    after(tp->high_seq, tp->snd_una)) {
2108		tp->frto_highmark = tp->high_seq;
2109	} else {
2110		tp->frto_highmark = tp->snd_nxt;
2111	}
2112	tcp_set_ca_state(sk, TCP_CA_Disorder);
2113	tp->high_seq = tp->snd_nxt;
2114	tp->frto_counter = 1;
2115}
2116
2117/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2118 * which indicates that we should follow the traditional RTO recovery,
2119 * i.e. mark everything lost and do go-back-N retransmission.
2120 */
2121static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2122{
2123	struct tcp_sock *tp = tcp_sk(sk);
2124	struct sk_buff *skb;
2125
2126	tp->lost_out = 0;
2127	tp->retrans_out = 0;
2128	if (tcp_is_reno(tp))
2129		tcp_reset_reno_sack(tp);
2130
2131	tcp_for_write_queue(skb, sk) {
2132		if (skb == tcp_send_head(sk))
2133			break;
2134
2135		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2136		/*
2137		 * Count the retransmission made on RTO correctly (only when
2138		 * waiting for the first ACK and did not get it)...
2139		 */
2140		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2141			/* For some reason this R-bit might get cleared? */
2142			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2143				tp->retrans_out += tcp_skb_pcount(skb);
2144			/* ...enter this if branch just for the first segment */
2145			flag |= FLAG_DATA_ACKED;
2146		} else {
2147			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2148				tp->undo_marker = 0;
2149			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2150		}
2151
2152		/* Marking forward transmissions that were made after RTO lost
2153		 * can cause unnecessary retransmissions in some scenarios,
2154		 * SACK blocks will mitigate that in some but not in all cases.
2155		 * We used to not mark them but it was causing break-ups with
2156		 * receivers that do only in-order receival.
2157		 *
2158		 * TODO: we could detect presence of such receiver and select
2159		 * different behavior per flow.
2160		 */
2161		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2162			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2163			tp->lost_out += tcp_skb_pcount(skb);
2164			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2165		}
2166	}
2167	tcp_verify_left_out(tp);
2168
2169	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2170	tp->snd_cwnd_cnt = 0;
2171	tp->snd_cwnd_stamp = tcp_time_stamp;
2172	tp->frto_counter = 0;
2173	tp->bytes_acked = 0;
2174
2175	tp->reordering = min_t(unsigned int, tp->reordering,
2176			       sysctl_tcp_reordering);
2177	tcp_set_ca_state(sk, TCP_CA_Loss);
2178	tp->high_seq = tp->snd_nxt;
2179	TCP_ECN_queue_cwr(tp);
2180
2181	tcp_clear_all_retrans_hints(tp);
2182}
2183
2184static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2185{
2186	tp->retrans_out = 0;
2187	tp->lost_out = 0;
2188
2189	tp->undo_marker = 0;
2190	tp->undo_retrans = 0;
2191}
2192
2193void tcp_clear_retrans(struct tcp_sock *tp)
2194{
2195	tcp_clear_retrans_partial(tp);
2196
2197	tp->fackets_out = 0;
2198	tp->sacked_out = 0;
2199}
2200
2201/* Enter Loss state. If "how" is not zero, forget all SACK information
2202 * and reset tags completely, otherwise preserve SACKs. If receiver
2203 * dropped its ofo queue, we will know this due to reneging detection.
2204 */
2205void tcp_enter_loss(struct sock *sk, int how)
2206{
2207	const struct inet_connection_sock *icsk = inet_csk(sk);
2208	struct tcp_sock *tp = tcp_sk(sk);
2209	struct sk_buff *skb;
2210
2211	/* Reduce ssthresh if it has not yet been made inside this window. */
2212	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2213	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2214		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2215		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2216		tcp_ca_event(sk, CA_EVENT_LOSS);
2217	}
2218	tp->snd_cwnd	   = 1;
2219	tp->snd_cwnd_cnt   = 0;
2220	tp->snd_cwnd_stamp = tcp_time_stamp;
2221
2222	tp->bytes_acked = 0;
2223	tcp_clear_retrans_partial(tp);
2224
2225	if (tcp_is_reno(tp))
2226		tcp_reset_reno_sack(tp);
2227
2228	if (!how) {
2229		/* Push undo marker, if it was plain RTO and nothing
2230		 * was retransmitted. */
2231		tp->undo_marker = tp->snd_una;
2232	} else {
2233		tp->sacked_out = 0;
2234		tp->fackets_out = 0;
2235	}
2236	tcp_clear_all_retrans_hints(tp);
2237
2238	tcp_for_write_queue(skb, sk) {
2239		if (skb == tcp_send_head(sk))
2240			break;
2241
2242		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2243			tp->undo_marker = 0;
2244		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2245		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2246			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2247			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2248			tp->lost_out += tcp_skb_pcount(skb);
2249			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2250		}
2251	}
2252	tcp_verify_left_out(tp);
2253
2254	tp->reordering = min_t(unsigned int, tp->reordering,
2255			       sysctl_tcp_reordering);
2256	tcp_set_ca_state(sk, TCP_CA_Loss);
2257	tp->high_seq = tp->snd_nxt;
2258	TCP_ECN_queue_cwr(tp);
2259	/* Abort F-RTO algorithm if one is in progress */
2260	tp->frto_counter = 0;
2261}
2262
2263/* If ACK arrived pointing to a remembered SACK, it means that our
2264 * remembered SACKs do not reflect real state of receiver i.e.
2265 * receiver _host_ is heavily congested (or buggy).
2266 *
2267 * Do processing similar to RTO timeout.
2268 */
2269static int tcp_check_sack_reneging(struct sock *sk, int flag)
2270{
2271	if (flag & FLAG_SACK_RENEGING) {
2272		struct inet_connection_sock *icsk = inet_csk(sk);
2273		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2274
2275		tcp_enter_loss(sk, 1);
2276		icsk->icsk_retransmits++;
2277		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2278		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2279					  icsk->icsk_rto, TCP_RTO_MAX);
2280		return 1;
2281	}
2282	return 0;
2283}
2284
2285static inline int tcp_fackets_out(struct tcp_sock *tp)
2286{
2287	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2288}
2289
2290/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2291 * counter when SACK is enabled (without SACK, sacked_out is used for
2292 * that purpose).
2293 *
2294 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2295 * segments up to the highest received SACK block so far and holes in
2296 * between them.
2297 *
2298 * With reordering, holes may still be in flight, so RFC3517 recovery
2299 * uses pure sacked_out (total number of SACKed segments) even though
2300 * it violates the RFC that uses duplicate ACKs, often these are equal
2301 * but when e.g. out-of-window ACKs or packet duplication occurs,
2302 * they differ. Since neither occurs due to loss, TCP should really
2303 * ignore them.
2304 */
2305static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2306{
2307	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2308}
2309
2310static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2311{
2312	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2313}
2314
2315static inline int tcp_head_timedout(struct sock *sk)
2316{
2317	struct tcp_sock *tp = tcp_sk(sk);
2318
2319	return tp->packets_out &&
2320	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2321}
2322
2323/* Linux NewReno/SACK/FACK/ECN state machine.
2324 * --------------------------------------
2325 *
2326 * "Open"	Normal state, no dubious events, fast path.
2327 * "Disorder"   In all the respects it is "Open",
2328 *		but requires a bit more attention. It is entered when
2329 *		we see some SACKs or dupacks. It is split of "Open"
2330 *		mainly to move some processing from fast path to slow one.
2331 * "CWR"	CWND was reduced due to some Congestion Notification event.
2332 *		It can be ECN, ICMP source quench, local device congestion.
2333 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2334 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2335 *
2336 * tcp_fastretrans_alert() is entered:
2337 * - each incoming ACK, if state is not "Open"
2338 * - when arrived ACK is unusual, namely:
2339 *	* SACK
2340 *	* Duplicate ACK.
2341 *	* ECN ECE.
2342 *
2343 * Counting packets in flight is pretty simple.
2344 *
2345 *	in_flight = packets_out - left_out + retrans_out
2346 *
2347 *	packets_out is SND.NXT-SND.UNA counted in packets.
2348 *
2349 *	retrans_out is number of retransmitted segments.
2350 *
2351 *	left_out is number of segments left network, but not ACKed yet.
2352 *
2353 *		left_out = sacked_out + lost_out
2354 *
2355 *     sacked_out: Packets, which arrived to receiver out of order
2356 *		   and hence not ACKed. With SACKs this number is simply
2357 *		   amount of SACKed data. Even without SACKs
2358 *		   it is easy to give pretty reliable estimate of this number,
2359 *		   counting duplicate ACKs.
2360 *
2361 *       lost_out: Packets lost by network. TCP has no explicit
2362 *		   "loss notification" feedback from network (for now).
2363 *		   It means that this number can be only _guessed_.
2364 *		   Actually, it is the heuristics to predict lossage that
2365 *		   distinguishes different algorithms.
2366 *
2367 *	F.e. after RTO, when all the queue is considered as lost,
2368 *	lost_out = packets_out and in_flight = retrans_out.
2369 *
2370 *		Essentially, we have now two algorithms counting
2371 *		lost packets.
2372 *
2373 *		FACK: It is the simplest heuristics. As soon as we decided
2374 *		that something is lost, we decide that _all_ not SACKed
2375 *		packets until the most forward SACK are lost. I.e.
2376 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2377 *		It is absolutely correct estimate, if network does not reorder
2378 *		packets. And it loses any connection to reality when reordering
2379 *		takes place. We use FACK by default until reordering
2380 *		is suspected on the path to this destination.
2381 *
2382 *		NewReno: when Recovery is entered, we assume that one segment
2383 *		is lost (classic Reno). While we are in Recovery and
2384 *		a partial ACK arrives, we assume that one more packet
2385 *		is lost (NewReno). This heuristics are the same in NewReno
2386 *		and SACK.
2387 *
2388 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2389 *  deflation etc. CWND is real congestion window, never inflated, changes
2390 *  only according to classic VJ rules.
2391 *
2392 * Really tricky (and requiring careful tuning) part of algorithm
2393 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2394 * The first determines the moment _when_ we should reduce CWND and,
2395 * hence, slow down forward transmission. In fact, it determines the moment
2396 * when we decide that hole is caused by loss, rather than by a reorder.
2397 *
2398 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2399 * holes, caused by lost packets.
2400 *
2401 * And the most logically complicated part of algorithm is undo
2402 * heuristics. We detect false retransmits due to both too early
2403 * fast retransmit (reordering) and underestimated RTO, analyzing
2404 * timestamps and D-SACKs. When we detect that some segments were
2405 * retransmitted by mistake and CWND reduction was wrong, we undo
2406 * window reduction and abort recovery phase. This logic is hidden
2407 * inside several functions named tcp_try_undo_<something>.
2408 */
2409
2410/* This function decides, when we should leave Disordered state
2411 * and enter Recovery phase, reducing congestion window.
2412 *
2413 * Main question: may we further continue forward transmission
2414 * with the same cwnd?
2415 */
2416static int tcp_time_to_recover(struct sock *sk)
2417{
2418	struct tcp_sock *tp = tcp_sk(sk);
2419	__u32 packets_out;
2420
2421	/* Do not perform any recovery during F-RTO algorithm */
2422	if (tp->frto_counter)
2423		return 0;
2424
2425	/* Trick#1: The loss is proven. */
2426	if (tp->lost_out)
2427		return 1;
2428
2429	/* Not-A-Trick#2 : Classic rule... */
2430	if (tcp_dupack_heuristics(tp) > tp->reordering)
2431		return 1;
2432
2433	/* Trick#3 : when we use RFC2988 timer restart, fast
2434	 * retransmit can be triggered by timeout of queue head.
2435	 */
2436	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2437		return 1;
2438
2439	/* Trick#4: It is still not OK... But will it be useful to delay
2440	 * recovery more?
2441	 */
2442	packets_out = tp->packets_out;
2443	if (packets_out <= tp->reordering &&
2444	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2445	    !tcp_may_send_now(sk)) {
2446		/* We have nothing to send. This connection is limited
2447		 * either by receiver window or by application.
2448		 */
2449		return 1;
2450	}
2451
2452	/* If a thin stream is detected, retransmit after first
2453	 * received dupack. Employ only if SACK is supported in order
2454	 * to avoid possible corner-case series of spurious retransmissions
2455	 * Use only if there are no unsent data.
2456	 */
2457	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2458	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2459	    tcp_is_sack(tp) && !tcp_send_head(sk))
2460		return 1;
2461
2462	return 0;
2463}
2464
2465/* New heuristics: it is possible only after we switched to restart timer
2466 * each time when something is ACKed. Hence, we can detect timed out packets
2467 * during fast retransmit without falling to slow start.
2468 *
2469 * Usefulness of this as is very questionable, since we should know which of
2470 * the segments is the next to timeout which is relatively expensive to find
2471 * in general case unless we add some data structure just for that. The
2472 * current approach certainly won't find the right one too often and when it
2473 * finally does find _something_ it usually marks large part of the window
2474 * right away (because a retransmission with a larger timestamp blocks the
2475 * loop from advancing). -ij
2476 */
2477static void tcp_timeout_skbs(struct sock *sk)
2478{
2479	struct tcp_sock *tp = tcp_sk(sk);
2480	struct sk_buff *skb;
2481
2482	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2483		return;
2484
2485	skb = tp->scoreboard_skb_hint;
2486	if (tp->scoreboard_skb_hint == NULL)
2487		skb = tcp_write_queue_head(sk);
2488
2489	tcp_for_write_queue_from(skb, sk) {
2490		if (skb == tcp_send_head(sk))
2491			break;
2492		if (!tcp_skb_timedout(sk, skb))
2493			break;
2494
2495		tcp_skb_mark_lost(tp, skb);
2496	}
2497
2498	tp->scoreboard_skb_hint = skb;
2499
2500	tcp_verify_left_out(tp);
2501}
2502
2503/* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2504 * is against sacked "cnt", otherwise it's against facked "cnt"
2505 */
2506static void tcp_mark_head_lost(struct sock *sk, int packets)
2507{
2508	struct tcp_sock *tp = tcp_sk(sk);
2509	struct sk_buff *skb;
2510	int cnt, oldcnt;
2511	int err;
2512	unsigned int mss;
2513
2514	if (packets == 0)
2515		return;
2516
2517	WARN_ON(packets > tp->packets_out);
2518	if (tp->lost_skb_hint) {
2519		skb = tp->lost_skb_hint;
2520		cnt = tp->lost_cnt_hint;
2521	} else {
2522		skb = tcp_write_queue_head(sk);
2523		cnt = 0;
2524	}
2525
2526	tcp_for_write_queue_from(skb, sk) {
2527		if (skb == tcp_send_head(sk))
2528			break;
2529		/* TODO: do this better */
2530		/* this is not the most efficient way to do this... */
2531		tp->lost_skb_hint = skb;
2532		tp->lost_cnt_hint = cnt;
2533
2534		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2535			break;
2536
2537		oldcnt = cnt;
2538		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2539		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2540			cnt += tcp_skb_pcount(skb);
2541
2542		if (cnt > packets) {
2543			if (tcp_is_sack(tp) || (oldcnt >= packets))
2544				break;
2545
2546			mss = skb_shinfo(skb)->gso_size;
2547			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2548			if (err < 0)
2549				break;
2550			cnt = packets;
2551		}
2552
2553		tcp_skb_mark_lost(tp, skb);
2554	}
2555	tcp_verify_left_out(tp);
2556}
2557
2558/* Account newly detected lost packet(s) */
2559
2560static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2561{
2562	struct tcp_sock *tp = tcp_sk(sk);
2563
2564	if (tcp_is_reno(tp)) {
2565		tcp_mark_head_lost(sk, 1);
2566	} else if (tcp_is_fack(tp)) {
2567		int lost = tp->fackets_out - tp->reordering;
2568		if (lost <= 0)
2569			lost = 1;
2570		tcp_mark_head_lost(sk, lost);
2571	} else {
2572		int sacked_upto = tp->sacked_out - tp->reordering;
2573		if (sacked_upto < fast_rexmit)
2574			sacked_upto = fast_rexmit;
2575		tcp_mark_head_lost(sk, sacked_upto);
2576	}
2577
2578	tcp_timeout_skbs(sk);
2579}
2580
2581/* CWND moderation, preventing bursts due to too big ACKs
2582 * in dubious situations.
2583 */
2584static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2585{
2586	tp->snd_cwnd = min(tp->snd_cwnd,
2587			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2588	tp->snd_cwnd_stamp = tcp_time_stamp;
2589}
2590
2591/* Lower bound on congestion window is slow start threshold
2592 * unless congestion avoidance choice decides to overide it.
2593 */
2594static inline u32 tcp_cwnd_min(const struct sock *sk)
2595{
2596	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2597
2598	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2599}
2600
2601/* Decrease cwnd each second ack. */
2602static void tcp_cwnd_down(struct sock *sk, int flag)
2603{
2604	struct tcp_sock *tp = tcp_sk(sk);
2605	int decr = tp->snd_cwnd_cnt + 1;
2606
2607	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2608	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2609		tp->snd_cwnd_cnt = decr & 1;
2610		decr >>= 1;
2611
2612		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2613			tp->snd_cwnd -= decr;
2614
2615		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2616		tp->snd_cwnd_stamp = tcp_time_stamp;
2617	}
2618}
2619
2620/* Nothing was retransmitted or returned timestamp is less
2621 * than timestamp of the first retransmission.
2622 */
2623static inline int tcp_packet_delayed(struct tcp_sock *tp)
2624{
2625	return !tp->retrans_stamp ||
2626		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2627		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2628}
2629
2630/* Undo procedures. */
2631
2632#if FASTRETRANS_DEBUG > 1
2633static void DBGUNDO(struct sock *sk, const char *msg)
2634{
2635	struct tcp_sock *tp = tcp_sk(sk);
2636	struct inet_sock *inet = inet_sk(sk);
2637
2638	if (sk->sk_family == AF_INET) {
2639		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2640		       msg,
2641		       &inet->daddr, ntohs(inet->dport),
2642		       tp->snd_cwnd, tcp_left_out(tp),
2643		       tp->snd_ssthresh, tp->prior_ssthresh,
2644		       tp->packets_out);
2645	}
2646#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2647	else if (sk->sk_family == AF_INET6) {
2648		struct ipv6_pinfo *np = inet6_sk(sk);
2649		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2650		       msg,
2651		       &np->daddr, ntohs(inet->dport),
2652		       tp->snd_cwnd, tcp_left_out(tp),
2653		       tp->snd_ssthresh, tp->prior_ssthresh,
2654		       tp->packets_out);
2655	}
2656#endif
2657}
2658#else
2659#define DBGUNDO(x...) do { } while (0)
2660#endif
2661
2662static void tcp_undo_cwr(struct sock *sk, const int undo)
2663{
2664	struct tcp_sock *tp = tcp_sk(sk);
2665
2666	if (tp->prior_ssthresh) {
2667		const struct inet_connection_sock *icsk = inet_csk(sk);
2668
2669		if (icsk->icsk_ca_ops->undo_cwnd)
2670			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2671		else
2672			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2673
2674		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2675			tp->snd_ssthresh = tp->prior_ssthresh;
2676			TCP_ECN_withdraw_cwr(tp);
2677		}
2678	} else {
2679		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2680	}
2681	tcp_moderate_cwnd(tp);
2682	tp->snd_cwnd_stamp = tcp_time_stamp;
2683}
2684
2685static inline int tcp_may_undo(struct tcp_sock *tp)
2686{
2687	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2688}
2689
2690/* People celebrate: "We love our President!" */
2691static int tcp_try_undo_recovery(struct sock *sk)
2692{
2693	struct tcp_sock *tp = tcp_sk(sk);
2694
2695	if (tcp_may_undo(tp)) {
2696		int mib_idx;
2697
2698		/* Happy end! We did not retransmit anything
2699		 * or our original transmission succeeded.
2700		 */
2701		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2702		tcp_undo_cwr(sk, 1);
2703		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2704			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2705		else
2706			mib_idx = LINUX_MIB_TCPFULLUNDO;
2707
2708		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2709		tp->undo_marker = 0;
2710	}
2711	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2712		/* Hold old state until something *above* high_seq
2713		 * is ACKed. For Reno it is MUST to prevent false
2714		 * fast retransmits (RFC2582). SACK TCP is safe. */
2715		tcp_moderate_cwnd(tp);
2716		return 1;
2717	}
2718	tcp_set_ca_state(sk, TCP_CA_Open);
2719	return 0;
2720}
2721
2722/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2723static void tcp_try_undo_dsack(struct sock *sk)
2724{
2725	struct tcp_sock *tp = tcp_sk(sk);
2726
2727	if (tp->undo_marker && !tp->undo_retrans) {
2728		DBGUNDO(sk, "D-SACK");
2729		tcp_undo_cwr(sk, 1);
2730		tp->undo_marker = 0;
2731		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2732	}
2733}
2734
2735/* We can clear retrans_stamp when there are no retransmissions in the
2736 * window. It would seem that it is trivially available for us in
2737 * tp->retrans_out, however, that kind of assumptions doesn't consider
2738 * what will happen if errors occur when sending retransmission for the
2739 * second time. ...It could the that such segment has only
2740 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2741 * the head skb is enough except for some reneging corner cases that
2742 * are not worth the effort.
2743 *
2744 * Main reason for all this complexity is the fact that connection dying
2745 * time now depends on the validity of the retrans_stamp, in particular,
2746 * that successive retransmissions of a segment must not advance
2747 * retrans_stamp under any conditions.
2748 */
2749static int tcp_any_retrans_done(struct sock *sk)
2750{
2751	struct tcp_sock *tp = tcp_sk(sk);
2752	struct sk_buff *skb;
2753
2754	if (tp->retrans_out)
2755		return 1;
2756
2757	skb = tcp_write_queue_head(sk);
2758	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2759		return 1;
2760
2761	return 0;
2762}
2763
2764/* Undo during fast recovery after partial ACK. */
2765
2766static int tcp_try_undo_partial(struct sock *sk, int acked)
2767{
2768	struct tcp_sock *tp = tcp_sk(sk);
2769	/* Partial ACK arrived. Force Hoe's retransmit. */
2770	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2771
2772	if (tcp_may_undo(tp)) {
2773		/* Plain luck! Hole if filled with delayed
2774		 * packet, rather than with a retransmit.
2775		 */
2776		if (!tcp_any_retrans_done(sk))
2777			tp->retrans_stamp = 0;
2778
2779		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2780
2781		DBGUNDO(sk, "Hoe");
2782		tcp_undo_cwr(sk, 0);
2783		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2784
2785		/* So... Do not make Hoe's retransmit yet.
2786		 * If the first packet was delayed, the rest
2787		 * ones are most probably delayed as well.
2788		 */
2789		failed = 0;
2790	}
2791	return failed;
2792}
2793
2794/* Undo during loss recovery after partial ACK. */
2795static int tcp_try_undo_loss(struct sock *sk)
2796{
2797	struct tcp_sock *tp = tcp_sk(sk);
2798
2799	if (tcp_may_undo(tp)) {
2800		struct sk_buff *skb;
2801		tcp_for_write_queue(skb, sk) {
2802			if (skb == tcp_send_head(sk))
2803				break;
2804			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2805		}
2806
2807		tcp_clear_all_retrans_hints(tp);
2808
2809		DBGUNDO(sk, "partial loss");
2810		tp->lost_out = 0;
2811		tcp_undo_cwr(sk, 1);
2812		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2813		inet_csk(sk)->icsk_retransmits = 0;
2814		tp->undo_marker = 0;
2815		if (tcp_is_sack(tp))
2816			tcp_set_ca_state(sk, TCP_CA_Open);
2817		return 1;
2818	}
2819	return 0;
2820}
2821
2822static inline void tcp_complete_cwr(struct sock *sk)
2823{
2824	struct tcp_sock *tp = tcp_sk(sk);
2825	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2826	tp->snd_cwnd_stamp = tcp_time_stamp;
2827	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2828}
2829
2830static void tcp_try_keep_open(struct sock *sk)
2831{
2832	struct tcp_sock *tp = tcp_sk(sk);
2833	int state = TCP_CA_Open;
2834
2835	if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2836		state = TCP_CA_Disorder;
2837
2838	if (inet_csk(sk)->icsk_ca_state != state) {
2839		tcp_set_ca_state(sk, state);
2840		tp->high_seq = tp->snd_nxt;
2841	}
2842}
2843
2844static void tcp_try_to_open(struct sock *sk, int flag)
2845{
2846	struct tcp_sock *tp = tcp_sk(sk);
2847
2848	tcp_verify_left_out(tp);
2849
2850	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2851		tp->retrans_stamp = 0;
2852
2853	if (flag & FLAG_ECE)
2854		tcp_enter_cwr(sk, 1);
2855
2856	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2857		tcp_try_keep_open(sk);
2858		tcp_moderate_cwnd(tp);
2859	} else {
2860		tcp_cwnd_down(sk, flag);
2861	}
2862}
2863
2864static void tcp_mtup_probe_failed(struct sock *sk)
2865{
2866	struct inet_connection_sock *icsk = inet_csk(sk);
2867
2868	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2869	icsk->icsk_mtup.probe_size = 0;
2870}
2871
2872static void tcp_mtup_probe_success(struct sock *sk)
2873{
2874	struct tcp_sock *tp = tcp_sk(sk);
2875	struct inet_connection_sock *icsk = inet_csk(sk);
2876
2877	/* FIXME: breaks with very large cwnd */
2878	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2879	tp->snd_cwnd = tp->snd_cwnd *
2880		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2881		       icsk->icsk_mtup.probe_size;
2882	tp->snd_cwnd_cnt = 0;
2883	tp->snd_cwnd_stamp = tcp_time_stamp;
2884	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2885
2886	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2887	icsk->icsk_mtup.probe_size = 0;
2888	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2889}
2890
2891/* Do a simple retransmit without using the backoff mechanisms in
2892 * tcp_timer. This is used for path mtu discovery.
2893 * The socket is already locked here.
2894 */
2895void tcp_simple_retransmit(struct sock *sk)
2896{
2897	const struct inet_connection_sock *icsk = inet_csk(sk);
2898	struct tcp_sock *tp = tcp_sk(sk);
2899	struct sk_buff *skb;
2900	unsigned int mss = tcp_current_mss(sk);
2901	u32 prior_lost = tp->lost_out;
2902
2903	tcp_for_write_queue(skb, sk) {
2904		if (skb == tcp_send_head(sk))
2905			break;
2906		if (tcp_skb_seglen(skb) > mss &&
2907		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2908			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2909				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2910				tp->retrans_out -= tcp_skb_pcount(skb);
2911			}
2912			tcp_skb_mark_lost_uncond_verify(tp, skb);
2913		}
2914	}
2915
2916	tcp_clear_retrans_hints_partial(tp);
2917
2918	if (prior_lost == tp->lost_out)
2919		return;
2920
2921	if (tcp_is_reno(tp))
2922		tcp_limit_reno_sacked(tp);
2923
2924	tcp_verify_left_out(tp);
2925
2926	/* Don't muck with the congestion window here.
2927	 * Reason is that we do not increase amount of _data_
2928	 * in network, but units changed and effective
2929	 * cwnd/ssthresh really reduced now.
2930	 */
2931	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2932		tp->high_seq = tp->snd_nxt;
2933		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2934		tp->prior_ssthresh = 0;
2935		tp->undo_marker = 0;
2936		tcp_set_ca_state(sk, TCP_CA_Loss);
2937	}
2938	tcp_xmit_retransmit_queue(sk);
2939}
2940
2941/* Process an event, which can update packets-in-flight not trivially.
2942 * Main goal of this function is to calculate new estimate for left_out,
2943 * taking into account both packets sitting in receiver's buffer and
2944 * packets lost by network.
2945 *
2946 * Besides that it does CWND reduction, when packet loss is detected
2947 * and changes state of machine.
2948 *
2949 * It does _not_ decide what to send, it is made in function
2950 * tcp_xmit_retransmit_queue().
2951 */
2952static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2953{
2954	struct inet_connection_sock *icsk = inet_csk(sk);
2955	struct tcp_sock *tp = tcp_sk(sk);
2956	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2957	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2958				    (tcp_fackets_out(tp) > tp->reordering));
2959	int fast_rexmit = 0, mib_idx;
2960
2961	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2962		tp->sacked_out = 0;
2963	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2964		tp->fackets_out = 0;
2965
2966	/* Now state machine starts.
2967	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2968	if (flag & FLAG_ECE)
2969		tp->prior_ssthresh = 0;
2970
2971	/* B. In all the states check for reneging SACKs. */
2972	if (tcp_check_sack_reneging(sk, flag))
2973		return;
2974
2975	/* C. Process data loss notification, provided it is valid. */
2976	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2977	    before(tp->snd_una, tp->high_seq) &&
2978	    icsk->icsk_ca_state != TCP_CA_Open &&
2979	    tp->fackets_out > tp->reordering) {
2980		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2981		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2982	}
2983
2984	/* D. Check consistency of the current state. */
2985	tcp_verify_left_out(tp);
2986
2987	/* E. Check state exit conditions. State can be terminated
2988	 *    when high_seq is ACKed. */
2989	if (icsk->icsk_ca_state == TCP_CA_Open) {
2990		WARN_ON(tp->retrans_out != 0);
2991		tp->retrans_stamp = 0;
2992	} else if (!before(tp->snd_una, tp->high_seq)) {
2993		switch (icsk->icsk_ca_state) {
2994		case TCP_CA_Loss:
2995			icsk->icsk_retransmits = 0;
2996			if (tcp_try_undo_recovery(sk))
2997				return;
2998			break;
2999
3000		case TCP_CA_CWR:
3001			/* CWR is to be held something *above* high_seq
3002			 * is ACKed for CWR bit to reach receiver. */
3003			if (tp->snd_una != tp->high_seq) {
3004				tcp_complete_cwr(sk);
3005				tcp_set_ca_state(sk, TCP_CA_Open);
3006			}
3007			break;
3008
3009		case TCP_CA_Disorder:
3010			tcp_try_undo_dsack(sk);
3011			if (!tp->undo_marker ||
3012			    /* For SACK case do not Open to allow to undo
3013			     * catching for all duplicate ACKs. */
3014			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3015				tp->undo_marker = 0;
3016				tcp_set_ca_state(sk, TCP_CA_Open);
3017			}
3018			break;
3019
3020		case TCP_CA_Recovery:
3021			if (tcp_is_reno(tp))
3022				tcp_reset_reno_sack(tp);
3023			if (tcp_try_undo_recovery(sk))
3024				return;
3025			tcp_complete_cwr(sk);
3026			break;
3027		}
3028	}
3029
3030	/* F. Process state. */
3031	switch (icsk->icsk_ca_state) {
3032	case TCP_CA_Recovery:
3033		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3034			if (tcp_is_reno(tp) && is_dupack)
3035				tcp_add_reno_sack(sk);
3036		} else
3037			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3038		break;
3039	case TCP_CA_Loss:
3040		if (flag & FLAG_DATA_ACKED)
3041			icsk->icsk_retransmits = 0;
3042		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3043			tcp_reset_reno_sack(tp);
3044		if (!tcp_try_undo_loss(sk)) {
3045			tcp_moderate_cwnd(tp);
3046			tcp_xmit_retransmit_queue(sk);
3047			return;
3048		}
3049		if (icsk->icsk_ca_state != TCP_CA_Open)
3050			return;
3051		/* Loss is undone; fall through to processing in Open state. */
3052	default:
3053		if (tcp_is_reno(tp)) {
3054			if (flag & FLAG_SND_UNA_ADVANCED)
3055				tcp_reset_reno_sack(tp);
3056			if (is_dupack)
3057				tcp_add_reno_sack(sk);
3058		}
3059
3060		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3061			tcp_try_undo_dsack(sk);
3062
3063		if (!tcp_time_to_recover(sk)) {
3064			tcp_try_to_open(sk, flag);
3065			return;
3066		}
3067
3068		/* MTU probe failure: don't reduce cwnd */
3069		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3070		    icsk->icsk_mtup.probe_size &&
3071		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3072			tcp_mtup_probe_failed(sk);
3073			/* Restores the reduction we did in tcp_mtup_probe() */
3074			tp->snd_cwnd++;
3075			tcp_simple_retransmit(sk);
3076			return;
3077		}
3078
3079		/* Otherwise enter Recovery state */
3080
3081		if (tcp_is_reno(tp))
3082			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3083		else
3084			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3085
3086		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3087
3088		tp->high_seq = tp->snd_nxt;
3089		tp->prior_ssthresh = 0;
3090		tp->undo_marker = tp->snd_una;
3091		tp->undo_retrans = tp->retrans_out;
3092
3093		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3094			if (!(flag & FLAG_ECE))
3095				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3096			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3097			TCP_ECN_queue_cwr(tp);
3098		}
3099
3100		tp->bytes_acked = 0;
3101		tp->snd_cwnd_cnt = 0;
3102		tcp_set_ca_state(sk, TCP_CA_Recovery);
3103		fast_rexmit = 1;
3104	}
3105
3106	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3107		tcp_update_scoreboard(sk, fast_rexmit);
3108	tcp_cwnd_down(sk, flag);
3109	tcp_xmit_retransmit_queue(sk);
3110}
3111
3112static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3113{
3114	tcp_rtt_estimator(sk, seq_rtt);
3115	tcp_set_rto(sk);
3116	inet_csk(sk)->icsk_backoff = 0;
3117}
3118
3119/* Read draft-ietf-tcplw-high-performance before mucking
3120 * with this code. (Supersedes RFC1323)
3121 */
3122static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3123{
3124	/* RTTM Rule: A TSecr value received in a segment is used to
3125	 * update the averaged RTT measurement only if the segment
3126	 * acknowledges some new data, i.e., only if it advances the
3127	 * left edge of the send window.
3128	 *
3129	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3130	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3131	 *
3132	 * Changed: reset backoff as soon as we see the first valid sample.
3133	 * If we do not, we get strongly overestimated rto. With timestamps
3134	 * samples are accepted even from very old segments: f.e., when rtt=1
3135	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3136	 * answer arrives rto becomes 120 seconds! If at least one of segments
3137	 * in window is lost... Voila.	 			--ANK (010210)
3138	 */
3139	struct tcp_sock *tp = tcp_sk(sk);
3140
3141	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3142}
3143
3144static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3145{
3146	/* We don't have a timestamp. Can only use
3147	 * packets that are not retransmitted to determine
3148	 * rtt estimates. Also, we must not reset the
3149	 * backoff for rto until we get a non-retransmitted
3150	 * packet. This allows us to deal with a situation
3151	 * where the network delay has increased suddenly.
3152	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3153	 */
3154
3155	if (flag & FLAG_RETRANS_DATA_ACKED)
3156		return;
3157
3158	tcp_valid_rtt_meas(sk, seq_rtt);
3159}
3160
3161static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3162				      const s32 seq_rtt)
3163{
3164	const struct tcp_sock *tp = tcp_sk(sk);
3165	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3166	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3167		tcp_ack_saw_tstamp(sk, flag);
3168	else if (seq_rtt >= 0)
3169		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3170}
3171
3172static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3173{
3174	const struct inet_connection_sock *icsk = inet_csk(sk);
3175	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3176	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3177}
3178
3179/* Restart timer after forward progress on connection.
3180 * RFC2988 recommends to restart timer to now+rto.
3181 */
3182static void tcp_rearm_rto(struct sock *sk)
3183{
3184	struct tcp_sock *tp = tcp_sk(sk);
3185
3186	if (!tp->packets_out) {
3187		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3188	} else {
3189		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3190					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3191	}
3192}
3193
3194/* If we get here, the whole TSO packet has not been acked. */
3195static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3196{
3197	struct tcp_sock *tp = tcp_sk(sk);
3198	u32 packets_acked;
3199
3200	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3201
3202	packets_acked = tcp_skb_pcount(skb);
3203	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3204		return 0;
3205	packets_acked -= tcp_skb_pcount(skb);
3206
3207	if (packets_acked) {
3208		BUG_ON(tcp_skb_pcount(skb) == 0);
3209		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3210	}
3211
3212	return packets_acked;
3213}
3214
3215/* Remove acknowledged frames from the retransmission queue. If our packet
3216 * is before the ack sequence we can discard it as it's confirmed to have
3217 * arrived at the other end.
3218 */
3219static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3220			       u32 prior_snd_una)
3221{
3222	struct tcp_sock *tp = tcp_sk(sk);
3223	const struct inet_connection_sock *icsk = inet_csk(sk);
3224	struct sk_buff *skb;
3225	u32 now = tcp_time_stamp;
3226	int fully_acked = 1;
3227	int flag = 0;
3228	u32 pkts_acked = 0;
3229	u32 reord = tp->packets_out;
3230	u32 prior_sacked = tp->sacked_out;
3231	s32 seq_rtt = -1;
3232	s32 ca_seq_rtt = -1;
3233	ktime_t last_ackt = net_invalid_timestamp();
3234
3235	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3236		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3237		u32 acked_pcount;
3238		u8 sacked = scb->sacked;
3239
3240		/* Determine how many packets and what bytes were acked, tso and else */
3241		if (after(scb->end_seq, tp->snd_una)) {
3242			if (tcp_skb_pcount(skb) == 1 ||
3243			    !after(tp->snd_una, scb->seq))
3244				break;
3245
3246			acked_pcount = tcp_tso_acked(sk, skb);
3247			if (!acked_pcount)
3248				break;
3249
3250			fully_acked = 0;
3251		} else {
3252			acked_pcount = tcp_skb_pcount(skb);
3253		}
3254
3255		if (sacked & TCPCB_RETRANS) {
3256			if (sacked & TCPCB_SACKED_RETRANS)
3257				tp->retrans_out -= acked_pcount;
3258			flag |= FLAG_RETRANS_DATA_ACKED;
3259			ca_seq_rtt = -1;
3260			seq_rtt = -1;
3261			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3262				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3263		} else {
3264			ca_seq_rtt = now - scb->when;
3265			last_ackt = skb->tstamp;
3266			if (seq_rtt < 0) {
3267				seq_rtt = ca_seq_rtt;
3268			}
3269			if (!(sacked & TCPCB_SACKED_ACKED))
3270				reord = min(pkts_acked, reord);
3271		}
3272
3273		if (sacked & TCPCB_SACKED_ACKED)
3274			tp->sacked_out -= acked_pcount;
3275		if (sacked & TCPCB_LOST)
3276			tp->lost_out -= acked_pcount;
3277
3278		tp->packets_out -= acked_pcount;
3279		pkts_acked += acked_pcount;
3280
3281		/* Initial outgoing SYN's get put onto the write_queue
3282		 * just like anything else we transmit.  It is not
3283		 * true data, and if we misinform our callers that
3284		 * this ACK acks real data, we will erroneously exit
3285		 * connection startup slow start one packet too
3286		 * quickly.  This is severely frowned upon behavior.
3287		 */
3288		if (!(scb->flags & TCPCB_FLAG_SYN)) {
3289			flag |= FLAG_DATA_ACKED;
3290		} else {
3291			flag |= FLAG_SYN_ACKED;
3292			tp->retrans_stamp = 0;
3293		}
3294
3295		if (!fully_acked)
3296			break;
3297
3298		tcp_unlink_write_queue(skb, sk);
3299		sk_wmem_free_skb(sk, skb);
3300		tp->scoreboard_skb_hint = NULL;
3301		if (skb == tp->retransmit_skb_hint)
3302			tp->retransmit_skb_hint = NULL;
3303		if (skb == tp->lost_skb_hint)
3304			tp->lost_skb_hint = NULL;
3305	}
3306
3307	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3308		tp->snd_up = tp->snd_una;
3309
3310	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3311		flag |= FLAG_SACK_RENEGING;
3312
3313	if (flag & FLAG_ACKED) {
3314		const struct tcp_congestion_ops *ca_ops
3315			= inet_csk(sk)->icsk_ca_ops;
3316
3317		if (unlikely(icsk->icsk_mtup.probe_size &&
3318			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3319			tcp_mtup_probe_success(sk);
3320		}
3321
3322		tcp_ack_update_rtt(sk, flag, seq_rtt);
3323		tcp_rearm_rto(sk);
3324
3325		if (tcp_is_reno(tp)) {
3326			tcp_remove_reno_sacks(sk, pkts_acked);
3327		} else {
3328			int delta;
3329
3330			/* Non-retransmitted hole got filled? That's reordering */
3331			if (reord < prior_fackets)
3332				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3333
3334			delta = tcp_is_fack(tp) ? pkts_acked :
3335						  prior_sacked - tp->sacked_out;
3336			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3337		}
3338
3339		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3340
3341		if (ca_ops->pkts_acked) {
3342			s32 rtt_us = -1;
3343
3344			/* Is the ACK triggering packet unambiguous? */
3345			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3346				/* High resolution needed and available? */
3347				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3348				    !ktime_equal(last_ackt,
3349						 net_invalid_timestamp()))
3350					rtt_us = ktime_us_delta(ktime_get_real(),
3351								last_ackt);
3352				else if (ca_seq_rtt > 0)
3353					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3354			}
3355
3356			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3357		}
3358	}
3359
3360#if FASTRETRANS_DEBUG > 0
3361	WARN_ON((int)tp->sacked_out < 0);
3362	WARN_ON((int)tp->lost_out < 0);
3363	WARN_ON((int)tp->retrans_out < 0);
3364	if (!tp->packets_out && tcp_is_sack(tp)) {
3365		icsk = inet_csk(sk);
3366		if (tp->lost_out) {
3367			printk(KERN_DEBUG "Leak l=%u %d\n",
3368			       tp->lost_out, icsk->icsk_ca_state);
3369			tp->lost_out = 0;
3370		}
3371		if (tp->sacked_out) {
3372			printk(KERN_DEBUG "Leak s=%u %d\n",
3373			       tp->sacked_out, icsk->icsk_ca_state);
3374			tp->sacked_out = 0;
3375		}
3376		if (tp->retrans_out) {
3377			printk(KERN_DEBUG "Leak r=%u %d\n",
3378			       tp->retrans_out, icsk->icsk_ca_state);
3379			tp->retrans_out = 0;
3380		}
3381	}
3382#endif
3383	return flag;
3384}
3385
3386static void tcp_ack_probe(struct sock *sk)
3387{
3388	const struct tcp_sock *tp = tcp_sk(sk);
3389	struct inet_connection_sock *icsk = inet_csk(sk);
3390
3391	/* Was it a usable window open? */
3392
3393	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3394		icsk->icsk_backoff = 0;
3395		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3396		/* Socket must be waked up by subsequent tcp_data_snd_check().
3397		 * This function is not for random using!
3398		 */
3399	} else {
3400		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3401					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3402					  TCP_RTO_MAX);
3403	}
3404}
3405
3406static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3407{
3408	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3409		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3410}
3411
3412static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3413{
3414	const struct tcp_sock *tp = tcp_sk(sk);
3415	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3416		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3417}
3418
3419/* Check that window update is acceptable.
3420 * The function assumes that snd_una<=ack<=snd_next.
3421 */
3422static inline int tcp_may_update_window(const struct tcp_sock *tp,
3423					const u32 ack, const u32 ack_seq,
3424					const u32 nwin)
3425{
3426	return (after(ack, tp->snd_una) ||
3427		after(ack_seq, tp->snd_wl1) ||
3428		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3429}
3430
3431/* Update our send window.
3432 *
3433 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3434 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3435 */
3436static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3437				 u32 ack_seq)
3438{
3439	struct tcp_sock *tp = tcp_sk(sk);
3440	int flag = 0;
3441	u32 nwin = ntohs(tcp_hdr(skb)->window);
3442
3443	if (likely(!tcp_hdr(skb)->syn))
3444		nwin <<= tp->rx_opt.snd_wscale;
3445
3446	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3447		flag |= FLAG_WIN_UPDATE;
3448		tcp_update_wl(tp, ack_seq);
3449
3450		if (tp->snd_wnd != nwin) {
3451			tp->snd_wnd = nwin;
3452
3453			/* Note, it is the only place, where
3454			 * fast path is recovered for sending TCP.
3455			 */
3456			tp->pred_flags = 0;
3457			tcp_fast_path_check(sk);
3458
3459			if (nwin > tp->max_window) {
3460				tp->max_window = nwin;
3461				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3462			}
3463		}
3464	}
3465
3466	tp->snd_una = ack;
3467
3468	return flag;
3469}
3470
3471/* A very conservative spurious RTO response algorithm: reduce cwnd and
3472 * continue in congestion avoidance.
3473 */
3474static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3475{
3476	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3477	tp->snd_cwnd_cnt = 0;
3478	tp->bytes_acked = 0;
3479	TCP_ECN_queue_cwr(tp);
3480	tcp_moderate_cwnd(tp);
3481}
3482
3483/* A conservative spurious RTO response algorithm: reduce cwnd using
3484 * rate halving and continue in congestion avoidance.
3485 */
3486static void tcp_ratehalving_spur_to_response(struct sock *sk)
3487{
3488	tcp_enter_cwr(sk, 0);
3489}
3490
3491static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3492{
3493	if (flag & FLAG_ECE)
3494		tcp_ratehalving_spur_to_response(sk);
3495	else
3496		tcp_undo_cwr(sk, 1);
3497}
3498
3499/* F-RTO spurious RTO detection algorithm (RFC4138)
3500 *
3501 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3502 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3503 * window (but not to or beyond highest sequence sent before RTO):
3504 *   On First ACK,  send two new segments out.
3505 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3506 *                  algorithm is not part of the F-RTO detection algorithm
3507 *                  given in RFC4138 but can be selected separately).
3508 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3509 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3510 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3511 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3512 *
3513 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3514 * original window even after we transmit two new data segments.
3515 *
3516 * SACK version:
3517 *   on first step, wait until first cumulative ACK arrives, then move to
3518 *   the second step. In second step, the next ACK decides.
3519 *
3520 * F-RTO is implemented (mainly) in four functions:
3521 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3522 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3523 *     called when tcp_use_frto() showed green light
3524 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3525 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3526 *     to prove that the RTO is indeed spurious. It transfers the control
3527 *     from F-RTO to the conventional RTO recovery
3528 */
3529static int tcp_process_frto(struct sock *sk, int flag)
3530{
3531	struct tcp_sock *tp = tcp_sk(sk);
3532
3533	tcp_verify_left_out(tp);
3534
3535	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3536	if (flag & FLAG_DATA_ACKED)
3537		inet_csk(sk)->icsk_retransmits = 0;
3538
3539	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3540	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3541		tp->undo_marker = 0;
3542
3543	if (!before(tp->snd_una, tp->frto_highmark)) {
3544		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3545		return 1;
3546	}
3547
3548	if (!tcp_is_sackfrto(tp)) {
3549		/* RFC4138 shortcoming in step 2; should also have case c):
3550		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3551		 * data, winupdate
3552		 */
3553		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3554			return 1;
3555
3556		if (!(flag & FLAG_DATA_ACKED)) {
3557			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3558					    flag);
3559			return 1;
3560		}
3561	} else {
3562		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3563			/* Prevent sending of new data. */
3564			tp->snd_cwnd = min(tp->snd_cwnd,
3565					   tcp_packets_in_flight(tp));
3566			return 1;
3567		}
3568
3569		if ((tp->frto_counter >= 2) &&
3570		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3571		     ((flag & FLAG_DATA_SACKED) &&
3572		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3573			/* RFC4138 shortcoming (see comment above) */
3574			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3575			    (flag & FLAG_NOT_DUP))
3576				return 1;
3577
3578			tcp_enter_frto_loss(sk, 3, flag);
3579			return 1;
3580		}
3581	}
3582
3583	if (tp->frto_counter == 1) {
3584		/* tcp_may_send_now needs to see updated state */
3585		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3586		tp->frto_counter = 2;
3587
3588		if (!tcp_may_send_now(sk))
3589			tcp_enter_frto_loss(sk, 2, flag);
3590
3591		return 1;
3592	} else {
3593		switch (sysctl_tcp_frto_response) {
3594		case 2:
3595			tcp_undo_spur_to_response(sk, flag);
3596			break;
3597		case 1:
3598			tcp_conservative_spur_to_response(tp);
3599			break;
3600		default:
3601			tcp_ratehalving_spur_to_response(sk);
3602			break;
3603		}
3604		tp->frto_counter = 0;
3605		tp->undo_marker = 0;
3606		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3607	}
3608	return 0;
3609}
3610
3611/* This routine deals with incoming acks, but not outgoing ones. */
3612static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3613{
3614	struct inet_connection_sock *icsk = inet_csk(sk);
3615	struct tcp_sock *tp = tcp_sk(sk);
3616	u32 prior_snd_una = tp->snd_una;
3617	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3618	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3619	u32 prior_in_flight;
3620	u32 prior_fackets;
3621	int prior_packets;
3622	int frto_cwnd = 0;
3623
3624	/* If the ack is older than previous acks
3625	 * then we can probably ignore it.
3626	 */
3627	if (before(ack, prior_snd_una))
3628		goto old_ack;
3629
3630	/* If the ack includes data we haven't sent yet, discard
3631	 * this segment (RFC793 Section 3.9).
3632	 */
3633	if (after(ack, tp->snd_nxt))
3634		goto invalid_ack;
3635
3636	if (after(ack, prior_snd_una))
3637		flag |= FLAG_SND_UNA_ADVANCED;
3638
3639	if (sysctl_tcp_abc) {
3640		if (icsk->icsk_ca_state < TCP_CA_CWR)
3641			tp->bytes_acked += ack - prior_snd_una;
3642		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3643			/* we assume just one segment left network */
3644			tp->bytes_acked += min(ack - prior_snd_una,
3645					       tp->mss_cache);
3646	}
3647
3648	prior_fackets = tp->fackets_out;
3649	prior_in_flight = tcp_packets_in_flight(tp);
3650
3651	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3652		/* Window is constant, pure forward advance.
3653		 * No more checks are required.
3654		 * Note, we use the fact that SND.UNA>=SND.WL2.
3655		 */
3656		tcp_update_wl(tp, ack_seq);
3657		tp->snd_una = ack;
3658		flag |= FLAG_WIN_UPDATE;
3659
3660		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3661
3662		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3663	} else {
3664		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3665			flag |= FLAG_DATA;
3666		else
3667			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3668
3669		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3670
3671		if (TCP_SKB_CB(skb)->sacked)
3672			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3673
3674		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3675			flag |= FLAG_ECE;
3676
3677		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3678	}
3679
3680	/* We passed data and got it acked, remove any soft error
3681	 * log. Something worked...
3682	 */
3683	sk->sk_err_soft = 0;
3684	icsk->icsk_probes_out = 0;
3685	tp->rcv_tstamp = tcp_time_stamp;
3686	prior_packets = tp->packets_out;
3687	if (!prior_packets)
3688		goto no_queue;
3689
3690	/* See if we can take anything off of the retransmit queue. */
3691	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3692
3693	if (tp->frto_counter)
3694		frto_cwnd = tcp_process_frto(sk, flag);
3695	/* Guarantee sacktag reordering detection against wrap-arounds */
3696	if (before(tp->frto_highmark, tp->snd_una))
3697		tp->frto_highmark = 0;
3698
3699	if (tcp_ack_is_dubious(sk, flag)) {
3700		/* Advance CWND, if state allows this. */
3701		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3702		    tcp_may_raise_cwnd(sk, flag))
3703			tcp_cong_avoid(sk, ack, prior_in_flight);
3704		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3705				      flag);
3706	} else {
3707		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3708			tcp_cong_avoid(sk, ack, prior_in_flight);
3709	}
3710
3711	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3712		dst_confirm(sk->sk_dst_cache);
3713
3714	return 1;
3715
3716no_queue:
3717	/* If this ack opens up a zero window, clear backoff.  It was
3718	 * being used to time the probes, and is probably far higher than
3719	 * it needs to be for normal retransmission.
3720	 */
3721	if (tcp_send_head(sk))
3722		tcp_ack_probe(sk);
3723	return 1;
3724
3725invalid_ack:
3726	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3727	return -1;
3728
3729old_ack:
3730	if (TCP_SKB_CB(skb)->sacked) {
3731		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3732		if (icsk->icsk_ca_state == TCP_CA_Open)
3733			tcp_try_keep_open(sk);
3734	}
3735
3736	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3737	return 0;
3738}
3739
3740/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3741 * But, this can also be called on packets in the established flow when
3742 * the fast version below fails.
3743 */
3744void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3745		       u8 **hvpp, int estab)
3746{
3747	unsigned char *ptr;
3748	struct tcphdr *th = tcp_hdr(skb);
3749	int length = (th->doff * 4) - sizeof(struct tcphdr);
3750
3751	ptr = (unsigned char *)(th + 1);
3752	opt_rx->saw_tstamp = 0;
3753
3754	while (length > 0) {
3755		int opcode = *ptr++;
3756		int opsize;
3757
3758		switch (opcode) {
3759		case TCPOPT_EOL:
3760			return;
3761		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3762			length--;
3763			continue;
3764		default:
3765			opsize = *ptr++;
3766			if (opsize < 2) /* "silly options" */
3767				return;
3768			if (opsize > length)
3769				return;	/* don't parse partial options */
3770			switch (opcode) {
3771			case TCPOPT_MSS:
3772				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3773					u16 in_mss = get_unaligned_be16(ptr);
3774					if (in_mss) {
3775						if (opt_rx->user_mss &&
3776						    opt_rx->user_mss < in_mss)
3777							in_mss = opt_rx->user_mss;
3778						opt_rx->mss_clamp = in_mss;
3779					}
3780				}
3781				break;
3782			case TCPOPT_WINDOW:
3783				if (opsize == TCPOLEN_WINDOW && th->syn &&
3784				    !estab && sysctl_tcp_window_scaling) {
3785					__u8 snd_wscale = *(__u8 *)ptr;
3786					opt_rx->wscale_ok = 1;
3787					if (snd_wscale > 14) {
3788						if (net_ratelimit())
3789							printk(KERN_INFO "tcp_parse_options: Illegal window "
3790							       "scaling value %d >14 received.\n",
3791							       snd_wscale);
3792						snd_wscale = 14;
3793					}
3794					opt_rx->snd_wscale = snd_wscale;
3795				}
3796				break;
3797			case TCPOPT_TIMESTAMP:
3798				if ((opsize == TCPOLEN_TIMESTAMP) &&
3799				    ((estab && opt_rx->tstamp_ok) ||
3800				     (!estab && sysctl_tcp_timestamps))) {
3801					opt_rx->saw_tstamp = 1;
3802					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3803					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3804				}
3805				break;
3806			case TCPOPT_SACK_PERM:
3807				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3808				    !estab && sysctl_tcp_sack) {
3809					opt_rx->sack_ok = 1;
3810					tcp_sack_reset(opt_rx);
3811				}
3812				break;
3813
3814			case TCPOPT_SACK:
3815				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3816				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3817				   opt_rx->sack_ok) {
3818					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3819				}
3820				break;
3821#ifdef CONFIG_TCP_MD5SIG
3822			case TCPOPT_MD5SIG:
3823				/*
3824				 * The MD5 Hash has already been
3825				 * checked (see tcp_v{4,6}_do_rcv()).
3826				 */
3827				break;
3828#endif
3829			case TCPOPT_COOKIE:
3830				/* This option is variable length.
3831				 */
3832				switch (opsize) {
3833				case TCPOLEN_COOKIE_BASE:
3834					/* not yet implemented */
3835					break;
3836				case TCPOLEN_COOKIE_PAIR:
3837					/* not yet implemented */
3838					break;
3839				case TCPOLEN_COOKIE_MIN+0:
3840				case TCPOLEN_COOKIE_MIN+2:
3841				case TCPOLEN_COOKIE_MIN+4:
3842				case TCPOLEN_COOKIE_MIN+6:
3843				case TCPOLEN_COOKIE_MAX:
3844					/* 16-bit multiple */
3845					opt_rx->cookie_plus = opsize;
3846					*hvpp = ptr;
3847				default:
3848					/* ignore option */
3849					break;
3850				};
3851				break;
3852			};
3853
3854			ptr += opsize-2;
3855			length -= opsize;
3856		}
3857	}
3858}
3859
3860static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3861{
3862	__be32 *ptr = (__be32 *)(th + 1);
3863
3864	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3865			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3866		tp->rx_opt.saw_tstamp = 1;
3867		++ptr;
3868		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3869		++ptr;
3870		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3871		return 1;
3872	}
3873	return 0;
3874}
3875
3876/* Fast parse options. This hopes to only see timestamps.
3877 * If it is wrong it falls back on tcp_parse_options().
3878 */
3879static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3880				  struct tcp_sock *tp, u8 **hvpp)
3881{
3882	/* In the spirit of fast parsing, compare doff directly to constant
3883	 * values.  Because equality is used, short doff can be ignored here.
3884	 */
3885	if (th->doff == (sizeof(*th) / 4)) {
3886		tp->rx_opt.saw_tstamp = 0;
3887		return 0;
3888	} else if (tp->rx_opt.tstamp_ok &&
3889		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3890		if (tcp_parse_aligned_timestamp(tp, th))
3891			return 1;
3892	}
3893	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3894	return 1;
3895}
3896
3897#ifdef CONFIG_TCP_MD5SIG
3898/*
3899 * Parse MD5 Signature option
3900 */
3901u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3902{
3903	int length = (th->doff << 2) - sizeof (*th);
3904	u8 *ptr = (u8*)(th + 1);
3905
3906	/* If the TCP option is too short, we can short cut */
3907	if (length < TCPOLEN_MD5SIG)
3908		return NULL;
3909
3910	while (length > 0) {
3911		int opcode = *ptr++;
3912		int opsize;
3913
3914		switch(opcode) {
3915		case TCPOPT_EOL:
3916			return NULL;
3917		case TCPOPT_NOP:
3918			length--;
3919			continue;
3920		default:
3921			opsize = *ptr++;
3922			if (opsize < 2 || opsize > length)
3923				return NULL;
3924			if (opcode == TCPOPT_MD5SIG)
3925				return ptr;
3926		}
3927		ptr += opsize - 2;
3928		length -= opsize;
3929	}
3930	return NULL;
3931}
3932#endif
3933
3934static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3935{
3936	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3937	tp->rx_opt.ts_recent_stamp = get_seconds();
3938}
3939
3940static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3941{
3942	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3943		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3944		 * extra check below makes sure this can only happen
3945		 * for pure ACK frames.  -DaveM
3946		 *
3947		 * Not only, also it occurs for expired timestamps.
3948		 */
3949
3950		if (tcp_paws_check(&tp->rx_opt, 0))
3951			tcp_store_ts_recent(tp);
3952	}
3953}
3954
3955/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3956 *
3957 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3958 * it can pass through stack. So, the following predicate verifies that
3959 * this segment is not used for anything but congestion avoidance or
3960 * fast retransmit. Moreover, we even are able to eliminate most of such
3961 * second order effects, if we apply some small "replay" window (~RTO)
3962 * to timestamp space.
3963 *
3964 * All these measures still do not guarantee that we reject wrapped ACKs
3965 * on networks with high bandwidth, when sequence space is recycled fastly,
3966 * but it guarantees that such events will be very rare and do not affect
3967 * connection seriously. This doesn't look nice, but alas, PAWS is really
3968 * buggy extension.
3969 *
3970 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3971 * states that events when retransmit arrives after original data are rare.
3972 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3973 * the biggest problem on large power networks even with minor reordering.
3974 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3975 * up to bandwidth of 18Gigabit/sec. 8) ]
3976 */
3977
3978static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3979{
3980	struct tcp_sock *tp = tcp_sk(sk);
3981	struct tcphdr *th = tcp_hdr(skb);
3982	u32 seq = TCP_SKB_CB(skb)->seq;
3983	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3984
3985	return (/* 1. Pure ACK with correct sequence number. */
3986		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3987
3988		/* 2. ... and duplicate ACK. */
3989		ack == tp->snd_una &&
3990
3991		/* 3. ... and does not update window. */
3992		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3993
3994		/* 4. ... and sits in replay window. */
3995		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3996}
3997
3998static inline int tcp_paws_discard(const struct sock *sk,
3999				   const struct sk_buff *skb)
4000{
4001	const struct tcp_sock *tp = tcp_sk(sk);
4002
4003	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4004	       !tcp_disordered_ack(sk, skb);
4005}
4006
4007/* Check segment sequence number for validity.
4008 *
4009 * Segment controls are considered valid, if the segment
4010 * fits to the window after truncation to the window. Acceptability
4011 * of data (and SYN, FIN, of course) is checked separately.
4012 * See tcp_data_queue(), for example.
4013 *
4014 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4015 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4016 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4017 * (borrowed from freebsd)
4018 */
4019
4020static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4021{
4022	return	!before(end_seq, tp->rcv_wup) &&
4023		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4024}
4025
4026/* When we get a reset we do this. */
4027static void tcp_reset(struct sock *sk)
4028{
4029	/* We want the right error as BSD sees it (and indeed as we do). */
4030	switch (sk->sk_state) {
4031	case TCP_SYN_SENT:
4032		sk->sk_err = ECONNREFUSED;
4033		break;
4034	case TCP_CLOSE_WAIT:
4035		sk->sk_err = EPIPE;
4036		break;
4037	case TCP_CLOSE:
4038		return;
4039	default:
4040		sk->sk_err = ECONNRESET;
4041	}
4042
4043	if (!sock_flag(sk, SOCK_DEAD))
4044		sk->sk_error_report(sk);
4045
4046	tcp_done(sk);
4047}
4048
4049/*
4050 * 	Process the FIN bit. This now behaves as it is supposed to work
4051 *	and the FIN takes effect when it is validly part of sequence
4052 *	space. Not before when we get holes.
4053 *
4054 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4055 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4056 *	TIME-WAIT)
4057 *
4058 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4059 *	close and we go into CLOSING (and later onto TIME-WAIT)
4060 *
4061 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4062 */
4063static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4064{
4065	struct tcp_sock *tp = tcp_sk(sk);
4066
4067	inet_csk_schedule_ack(sk);
4068
4069	sk->sk_shutdown |= RCV_SHUTDOWN;
4070	sock_set_flag(sk, SOCK_DONE);
4071
4072	switch (sk->sk_state) {
4073	case TCP_SYN_RECV:
4074	case TCP_ESTABLISHED:
4075		/* Move to CLOSE_WAIT */
4076		tcp_set_state(sk, TCP_CLOSE_WAIT);
4077		inet_csk(sk)->icsk_ack.pingpong = 1;
4078		break;
4079
4080	case TCP_CLOSE_WAIT:
4081	case TCP_CLOSING:
4082		/* Received a retransmission of the FIN, do
4083		 * nothing.
4084		 */
4085		break;
4086	case TCP_LAST_ACK:
4087		/* RFC793: Remain in the LAST-ACK state. */
4088		break;
4089
4090	case TCP_FIN_WAIT1:
4091		/* This case occurs when a simultaneous close
4092		 * happens, we must ack the received FIN and
4093		 * enter the CLOSING state.
4094		 */
4095		tcp_send_ack(sk);
4096		tcp_set_state(sk, TCP_CLOSING);
4097		break;
4098	case TCP_FIN_WAIT2:
4099		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4100		tcp_send_ack(sk);
4101		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4102		break;
4103	default:
4104		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4105		 * cases we should never reach this piece of code.
4106		 */
4107		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4108		       __func__, sk->sk_state);
4109		break;
4110	}
4111
4112	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4113	 * Probably, we should reset in this case. For now drop them.
4114	 */
4115	__skb_queue_purge(&tp->out_of_order_queue);
4116	if (tcp_is_sack(tp))
4117		tcp_sack_reset(&tp->rx_opt);
4118	sk_mem_reclaim(sk);
4119
4120	if (!sock_flag(sk, SOCK_DEAD)) {
4121		sk->sk_state_change(sk);
4122
4123		/* Do not send POLL_HUP for half duplex close. */
4124		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4125		    sk->sk_state == TCP_CLOSE)
4126			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4127		else
4128			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4129	}
4130}
4131
4132static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4133				  u32 end_seq)
4134{
4135	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4136		if (before(seq, sp->start_seq))
4137			sp->start_seq = seq;
4138		if (after(end_seq, sp->end_seq))
4139			sp->end_seq = end_seq;
4140		return 1;
4141	}
4142	return 0;
4143}
4144
4145static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4146{
4147	struct tcp_sock *tp = tcp_sk(sk);
4148
4149	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4150		int mib_idx;
4151
4152		if (before(seq, tp->rcv_nxt))
4153			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4154		else
4155			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4156
4157		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4158
4159		tp->rx_opt.dsack = 1;
4160		tp->duplicate_sack[0].start_seq = seq;
4161		tp->duplicate_sack[0].end_seq = end_seq;
4162	}
4163}
4164
4165static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4166{
4167	struct tcp_sock *tp = tcp_sk(sk);
4168
4169	if (!tp->rx_opt.dsack)
4170		tcp_dsack_set(sk, seq, end_seq);
4171	else
4172		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4173}
4174
4175static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4176{
4177	struct tcp_sock *tp = tcp_sk(sk);
4178
4179	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4180	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4181		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4182		tcp_enter_quickack_mode(sk);
4183
4184		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4185			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4186
4187			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4188				end_seq = tp->rcv_nxt;
4189			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4190		}
4191	}
4192
4193	tcp_send_ack(sk);
4194}
4195
4196/* These routines update the SACK block as out-of-order packets arrive or
4197 * in-order packets close up the sequence space.
4198 */
4199static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4200{
4201	int this_sack;
4202	struct tcp_sack_block *sp = &tp->selective_acks[0];
4203	struct tcp_sack_block *swalk = sp + 1;
4204
4205	/* See if the recent change to the first SACK eats into
4206	 * or hits the sequence space of other SACK blocks, if so coalesce.
4207	 */
4208	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4209		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4210			int i;
4211
4212			/* Zap SWALK, by moving every further SACK up by one slot.
4213			 * Decrease num_sacks.
4214			 */
4215			tp->rx_opt.num_sacks--;
4216			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4217				sp[i] = sp[i + 1];
4218			continue;
4219		}
4220		this_sack++, swalk++;
4221	}
4222}
4223
4224static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4225{
4226	struct tcp_sock *tp = tcp_sk(sk);
4227	struct tcp_sack_block *sp = &tp->selective_acks[0];
4228	int cur_sacks = tp->rx_opt.num_sacks;
4229	int this_sack;
4230
4231	if (!cur_sacks)
4232		goto new_sack;
4233
4234	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4235		if (tcp_sack_extend(sp, seq, end_seq)) {
4236			/* Rotate this_sack to the first one. */
4237			for (; this_sack > 0; this_sack--, sp--)
4238				swap(*sp, *(sp - 1));
4239			if (cur_sacks > 1)
4240				tcp_sack_maybe_coalesce(tp);
4241			return;
4242		}
4243	}
4244
4245	/* Could not find an adjacent existing SACK, build a new one,
4246	 * put it at the front, and shift everyone else down.  We
4247	 * always know there is at least one SACK present already here.
4248	 *
4249	 * If the sack array is full, forget about the last one.
4250	 */
4251	if (this_sack >= TCP_NUM_SACKS) {
4252		this_sack--;
4253		tp->rx_opt.num_sacks--;
4254		sp--;
4255	}
4256	for (; this_sack > 0; this_sack--, sp--)
4257		*sp = *(sp - 1);
4258
4259new_sack:
4260	/* Build the new head SACK, and we're done. */
4261	sp->start_seq = seq;
4262	sp->end_seq = end_seq;
4263	tp->rx_opt.num_sacks++;
4264}
4265
4266/* RCV.NXT advances, some SACKs should be eaten. */
4267
4268static void tcp_sack_remove(struct tcp_sock *tp)
4269{
4270	struct tcp_sack_block *sp = &tp->selective_acks[0];
4271	int num_sacks = tp->rx_opt.num_sacks;
4272	int this_sack;
4273
4274	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4275	if (skb_queue_empty(&tp->out_of_order_queue)) {
4276		tp->rx_opt.num_sacks = 0;
4277		return;
4278	}
4279
4280	for (this_sack = 0; this_sack < num_sacks;) {
4281		/* Check if the start of the sack is covered by RCV.NXT. */
4282		if (!before(tp->rcv_nxt, sp->start_seq)) {
4283			int i;
4284
4285			/* RCV.NXT must cover all the block! */
4286			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4287
4288			/* Zap this SACK, by moving forward any other SACKS. */
4289			for (i=this_sack+1; i < num_sacks; i++)
4290				tp->selective_acks[i-1] = tp->selective_acks[i];
4291			num_sacks--;
4292			continue;
4293		}
4294		this_sack++;
4295		sp++;
4296	}
4297	tp->rx_opt.num_sacks = num_sacks;
4298}
4299
4300/* This one checks to see if we can put data from the
4301 * out_of_order queue into the receive_queue.
4302 */
4303static void tcp_ofo_queue(struct sock *sk)
4304{
4305	struct tcp_sock *tp = tcp_sk(sk);
4306	__u32 dsack_high = tp->rcv_nxt;
4307	struct sk_buff *skb;
4308
4309	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4310		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4311			break;
4312
4313		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4314			__u32 dsack = dsack_high;
4315			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4316				dsack_high = TCP_SKB_CB(skb)->end_seq;
4317			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4318		}
4319
4320		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4321			SOCK_DEBUG(sk, "ofo packet was already received\n");
4322			__skb_unlink(skb, &tp->out_of_order_queue);
4323			__kfree_skb(skb);
4324			continue;
4325		}
4326		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4327			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4328			   TCP_SKB_CB(skb)->end_seq);
4329
4330		__skb_unlink(skb, &tp->out_of_order_queue);
4331		__skb_queue_tail(&sk->sk_receive_queue, skb);
4332		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4333		if (tcp_hdr(skb)->fin)
4334			tcp_fin(skb, sk, tcp_hdr(skb));
4335	}
4336}
4337
4338static int tcp_prune_ofo_queue(struct sock *sk);
4339static int tcp_prune_queue(struct sock *sk);
4340
4341static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4342{
4343	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4344	    !sk_rmem_schedule(sk, size)) {
4345
4346		if (tcp_prune_queue(sk) < 0)
4347			return -1;
4348
4349		if (!sk_rmem_schedule(sk, size)) {
4350			if (!tcp_prune_ofo_queue(sk))
4351				return -1;
4352
4353			if (!sk_rmem_schedule(sk, size))
4354				return -1;
4355		}
4356	}
4357	return 0;
4358}
4359
4360static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4361{
4362	struct tcphdr *th = tcp_hdr(skb);
4363	struct tcp_sock *tp = tcp_sk(sk);
4364	int eaten = -1;
4365
4366	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4367		goto drop;
4368
4369	__skb_pull(skb, th->doff * 4);
4370
4371	TCP_ECN_accept_cwr(tp, skb);
4372
4373	tp->rx_opt.dsack = 0;
4374
4375	/*  Queue data for delivery to the user.
4376	 *  Packets in sequence go to the receive queue.
4377	 *  Out of sequence packets to the out_of_order_queue.
4378	 */
4379	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4380		if (tcp_receive_window(tp) == 0)
4381			goto out_of_window;
4382
4383		/* Ok. In sequence. In window. */
4384		if (tp->ucopy.task == current &&
4385		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4386		    sock_owned_by_user(sk) && !tp->urg_data) {
4387			int chunk = min_t(unsigned int, skb->len,
4388					  tp->ucopy.len);
4389
4390			__set_current_state(TASK_RUNNING);
4391
4392			local_bh_enable();
4393			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4394				tp->ucopy.len -= chunk;
4395				tp->copied_seq += chunk;
4396				eaten = (chunk == skb->len && !th->fin);
4397				tcp_rcv_space_adjust(sk);
4398			}
4399			local_bh_disable();
4400		}
4401
4402		if (eaten <= 0) {
4403queue_and_out:
4404			if (eaten < 0 &&
4405			    tcp_try_rmem_schedule(sk, skb->truesize))
4406				goto drop;
4407
4408			skb_set_owner_r(skb, sk);
4409			__skb_queue_tail(&sk->sk_receive_queue, skb);
4410		}
4411		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4412		if (skb->len)
4413			tcp_event_data_recv(sk, skb);
4414		if (th->fin)
4415			tcp_fin(skb, sk, th);
4416
4417		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4418			tcp_ofo_queue(sk);
4419
4420			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4421			 * gap in queue is filled.
4422			 */
4423			if (skb_queue_empty(&tp->out_of_order_queue))
4424				inet_csk(sk)->icsk_ack.pingpong = 0;
4425		}
4426
4427		if (tp->rx_opt.num_sacks)
4428			tcp_sack_remove(tp);
4429
4430		tcp_fast_path_check(sk);
4431
4432		if (eaten > 0)
4433			__kfree_skb(skb);
4434		else if (!sock_flag(sk, SOCK_DEAD))
4435			sk->sk_data_ready(sk, 0);
4436		return;
4437	}
4438
4439	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4440		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4441		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4442		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4443
4444out_of_window:
4445		tcp_enter_quickack_mode(sk);
4446		inet_csk_schedule_ack(sk);
4447drop:
4448		__kfree_skb(skb);
4449		return;
4450	}
4451
4452	/* Out of window. F.e. zero window probe. */
4453	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4454		goto out_of_window;
4455
4456	tcp_enter_quickack_mode(sk);
4457
4458	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4459		/* Partial packet, seq < rcv_next < end_seq */
4460		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4461			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4462			   TCP_SKB_CB(skb)->end_seq);
4463
4464		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4465
4466		/* If window is closed, drop tail of packet. But after
4467		 * remembering D-SACK for its head made in previous line.
4468		 */
4469		if (!tcp_receive_window(tp))
4470			goto out_of_window;
4471		goto queue_and_out;
4472	}
4473
4474	TCP_ECN_check_ce(tp, skb);
4475
4476	if (tcp_try_rmem_schedule(sk, skb->truesize))
4477		goto drop;
4478
4479	/* Disable header prediction. */
4480	tp->pred_flags = 0;
4481	inet_csk_schedule_ack(sk);
4482
4483	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4484		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4485
4486	skb_set_owner_r(skb, sk);
4487
4488	if (!skb_peek(&tp->out_of_order_queue)) {
4489		/* Initial out of order segment, build 1 SACK. */
4490		if (tcp_is_sack(tp)) {
4491			tp->rx_opt.num_sacks = 1;
4492			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4493			tp->selective_acks[0].end_seq =
4494						TCP_SKB_CB(skb)->end_seq;
4495		}
4496		__skb_queue_head(&tp->out_of_order_queue, skb);
4497	} else {
4498		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4499		u32 seq = TCP_SKB_CB(skb)->seq;
4500		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4501
4502		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4503			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4504
4505			if (!tp->rx_opt.num_sacks ||
4506			    tp->selective_acks[0].end_seq != seq)
4507				goto add_sack;
4508
4509			/* Common case: data arrive in order after hole. */
4510			tp->selective_acks[0].end_seq = end_seq;
4511			return;
4512		}
4513
4514		/* Find place to insert this segment. */
4515		while (1) {
4516			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4517				break;
4518			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4519				skb1 = NULL;
4520				break;
4521			}
4522			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4523		}
4524
4525		/* Do skb overlap to previous one? */
4526		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4527			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4528				/* All the bits are present. Drop. */
4529				__kfree_skb(skb);
4530				tcp_dsack_set(sk, seq, end_seq);
4531				goto add_sack;
4532			}
4533			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4534				/* Partial overlap. */
4535				tcp_dsack_set(sk, seq,
4536					      TCP_SKB_CB(skb1)->end_seq);
4537			} else {
4538				if (skb_queue_is_first(&tp->out_of_order_queue,
4539						       skb1))
4540					skb1 = NULL;
4541				else
4542					skb1 = skb_queue_prev(
4543						&tp->out_of_order_queue,
4544						skb1);
4545			}
4546		}
4547		if (!skb1)
4548			__skb_queue_head(&tp->out_of_order_queue, skb);
4549		else
4550			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4551
4552		/* And clean segments covered by new one as whole. */
4553		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4554			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4555
4556			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4557				break;
4558			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4559				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4560						 end_seq);
4561				break;
4562			}
4563			__skb_unlink(skb1, &tp->out_of_order_queue);
4564			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4565					 TCP_SKB_CB(skb1)->end_seq);
4566			__kfree_skb(skb1);
4567		}
4568
4569add_sack:
4570		if (tcp_is_sack(tp))
4571			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4572	}
4573}
4574
4575static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4576					struct sk_buff_head *list)
4577{
4578	struct sk_buff *next = NULL;
4579
4580	if (!skb_queue_is_last(list, skb))
4581		next = skb_queue_next(list, skb);
4582
4583	__skb_unlink(skb, list);
4584	__kfree_skb(skb);
4585	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4586
4587	return next;
4588}
4589
4590/* Collapse contiguous sequence of skbs head..tail with
4591 * sequence numbers start..end.
4592 *
4593 * If tail is NULL, this means until the end of the list.
4594 *
4595 * Segments with FIN/SYN are not collapsed (only because this
4596 * simplifies code)
4597 */
4598static void
4599tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4600	     struct sk_buff *head, struct sk_buff *tail,
4601	     u32 start, u32 end)
4602{
4603	struct sk_buff *skb, *n;
4604	bool end_of_skbs;
4605
4606	/* First, check that queue is collapsible and find
4607	 * the point where collapsing can be useful. */
4608	skb = head;
4609restart:
4610	end_of_skbs = true;
4611	skb_queue_walk_from_safe(list, skb, n) {
4612		if (skb == tail)
4613			break;
4614		/* No new bits? It is possible on ofo queue. */
4615		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4616			skb = tcp_collapse_one(sk, skb, list);
4617			if (!skb)
4618				break;
4619			goto restart;
4620		}
4621
4622		/* The first skb to collapse is:
4623		 * - not SYN/FIN and
4624		 * - bloated or contains data before "start" or
4625		 *   overlaps to the next one.
4626		 */
4627		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4628		    (tcp_win_from_space(skb->truesize) > skb->len ||
4629		     before(TCP_SKB_CB(skb)->seq, start))) {
4630			end_of_skbs = false;
4631			break;
4632		}
4633
4634		if (!skb_queue_is_last(list, skb)) {
4635			struct sk_buff *next = skb_queue_next(list, skb);
4636			if (next != tail &&
4637			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4638				end_of_skbs = false;
4639				break;
4640			}
4641		}
4642
4643		/* Decided to skip this, advance start seq. */
4644		start = TCP_SKB_CB(skb)->end_seq;
4645	}
4646	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4647		return;
4648
4649	while (before(start, end)) {
4650		struct sk_buff *nskb;
4651		unsigned int header = skb_headroom(skb);
4652		int copy = SKB_MAX_ORDER(header, 0);
4653
4654		/* Too big header? This can happen with IPv6. */
4655		if (copy < 0)
4656			return;
4657		if (end - start < copy)
4658			copy = end - start;
4659		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4660		if (!nskb)
4661			return;
4662
4663		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4664		skb_set_network_header(nskb, (skb_network_header(skb) -
4665					      skb->head));
4666		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4667						skb->head));
4668		skb_reserve(nskb, header);
4669		memcpy(nskb->head, skb->head, header);
4670		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4671		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4672		__skb_queue_before(list, skb, nskb);
4673		skb_set_owner_r(nskb, sk);
4674
4675		/* Copy data, releasing collapsed skbs. */
4676		while (copy > 0) {
4677			int offset = start - TCP_SKB_CB(skb)->seq;
4678			int size = TCP_SKB_CB(skb)->end_seq - start;
4679
4680			BUG_ON(offset < 0);
4681			if (size > 0) {
4682				size = min(copy, size);
4683				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4684					BUG();
4685				TCP_SKB_CB(nskb)->end_seq += size;
4686				copy -= size;
4687				start += size;
4688			}
4689			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4690				skb = tcp_collapse_one(sk, skb, list);
4691				if (!skb ||
4692				    skb == tail ||
4693				    tcp_hdr(skb)->syn ||
4694				    tcp_hdr(skb)->fin)
4695					return;
4696			}
4697		}
4698	}
4699}
4700
4701/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4702 * and tcp_collapse() them until all the queue is collapsed.
4703 */
4704static void tcp_collapse_ofo_queue(struct sock *sk)
4705{
4706	struct tcp_sock *tp = tcp_sk(sk);
4707	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4708	struct sk_buff *head;
4709	u32 start, end;
4710
4711	if (skb == NULL)
4712		return;
4713
4714	start = TCP_SKB_CB(skb)->seq;
4715	end = TCP_SKB_CB(skb)->end_seq;
4716	head = skb;
4717
4718	for (;;) {
4719		struct sk_buff *next = NULL;
4720
4721		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4722			next = skb_queue_next(&tp->out_of_order_queue, skb);
4723		skb = next;
4724
4725		/* Segment is terminated when we see gap or when
4726		 * we are at the end of all the queue. */
4727		if (!skb ||
4728		    after(TCP_SKB_CB(skb)->seq, end) ||
4729		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4730			tcp_collapse(sk, &tp->out_of_order_queue,
4731				     head, skb, start, end);
4732			head = skb;
4733			if (!skb)
4734				break;
4735			/* Start new segment */
4736			start = TCP_SKB_CB(skb)->seq;
4737			end = TCP_SKB_CB(skb)->end_seq;
4738		} else {
4739			if (before(TCP_SKB_CB(skb)->seq, start))
4740				start = TCP_SKB_CB(skb)->seq;
4741			if (after(TCP_SKB_CB(skb)->end_seq, end))
4742				end = TCP_SKB_CB(skb)->end_seq;
4743		}
4744	}
4745}
4746
4747/*
4748 * Purge the out-of-order queue.
4749 * Return true if queue was pruned.
4750 */
4751static int tcp_prune_ofo_queue(struct sock *sk)
4752{
4753	struct tcp_sock *tp = tcp_sk(sk);
4754	int res = 0;
4755
4756	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4757		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4758		__skb_queue_purge(&tp->out_of_order_queue);
4759
4760		/* Reset SACK state.  A conforming SACK implementation will
4761		 * do the same at a timeout based retransmit.  When a connection
4762		 * is in a sad state like this, we care only about integrity
4763		 * of the connection not performance.
4764		 */
4765		if (tp->rx_opt.sack_ok)
4766			tcp_sack_reset(&tp->rx_opt);
4767		sk_mem_reclaim(sk);
4768		res = 1;
4769	}
4770	return res;
4771}
4772
4773/* Reduce allocated memory if we can, trying to get
4774 * the socket within its memory limits again.
4775 *
4776 * Return less than zero if we should start dropping frames
4777 * until the socket owning process reads some of the data
4778 * to stabilize the situation.
4779 */
4780static int tcp_prune_queue(struct sock *sk)
4781{
4782	struct tcp_sock *tp = tcp_sk(sk);
4783
4784	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4785
4786	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4787
4788	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4789		tcp_clamp_window(sk);
4790	else if (tcp_memory_pressure)
4791		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4792
4793	tcp_collapse_ofo_queue(sk);
4794	if (!skb_queue_empty(&sk->sk_receive_queue))
4795		tcp_collapse(sk, &sk->sk_receive_queue,
4796			     skb_peek(&sk->sk_receive_queue),
4797			     NULL,
4798			     tp->copied_seq, tp->rcv_nxt);
4799	sk_mem_reclaim(sk);
4800
4801	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4802		return 0;
4803
4804	/* Collapsing did not help, destructive actions follow.
4805	 * This must not ever occur. */
4806
4807	tcp_prune_ofo_queue(sk);
4808
4809	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4810		return 0;
4811
4812	/* If we are really being abused, tell the caller to silently
4813	 * drop receive data on the floor.  It will get retransmitted
4814	 * and hopefully then we'll have sufficient space.
4815	 */
4816	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4817
4818	/* Massive buffer overcommit. */
4819	tp->pred_flags = 0;
4820	return -1;
4821}
4822
4823/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4824 * As additional protections, we do not touch cwnd in retransmission phases,
4825 * and if application hit its sndbuf limit recently.
4826 */
4827void tcp_cwnd_application_limited(struct sock *sk)
4828{
4829	struct tcp_sock *tp = tcp_sk(sk);
4830
4831	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4832	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4833		/* Limited by application or receiver window. */
4834		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4835		u32 win_used = max(tp->snd_cwnd_used, init_win);
4836		if (win_used < tp->snd_cwnd) {
4837			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4838			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4839		}
4840		tp->snd_cwnd_used = 0;
4841	}
4842	tp->snd_cwnd_stamp = tcp_time_stamp;
4843}
4844
4845static int tcp_should_expand_sndbuf(struct sock *sk)
4846{
4847	struct tcp_sock *tp = tcp_sk(sk);
4848
4849	/* If the user specified a specific send buffer setting, do
4850	 * not modify it.
4851	 */
4852	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4853		return 0;
4854
4855	/* If we are under global TCP memory pressure, do not expand.  */
4856	if (tcp_memory_pressure)
4857		return 0;
4858
4859	/* If we are under soft global TCP memory pressure, do not expand.  */
4860	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4861		return 0;
4862
4863	/* If we filled the congestion window, do not expand.  */
4864	if (tp->packets_out >= tp->snd_cwnd)
4865		return 0;
4866
4867	return 1;
4868}
4869
4870/* When incoming ACK allowed to free some skb from write_queue,
4871 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4872 * on the exit from tcp input handler.
4873 *
4874 * PROBLEM: sndbuf expansion does not work well with largesend.
4875 */
4876static void tcp_new_space(struct sock *sk)
4877{
4878	struct tcp_sock *tp = tcp_sk(sk);
4879
4880	if (tcp_should_expand_sndbuf(sk)) {
4881		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4882			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4883		int demanded = max_t(unsigned int, tp->snd_cwnd,
4884				     tp->reordering + 1);
4885		sndmem *= 2 * demanded;
4886		if (sndmem > sk->sk_sndbuf)
4887			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4888		tp->snd_cwnd_stamp = tcp_time_stamp;
4889	}
4890
4891	sk->sk_write_space(sk);
4892}
4893
4894static void tcp_check_space(struct sock *sk)
4895{
4896	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4897		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4898		if (sk->sk_socket &&
4899		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4900			tcp_new_space(sk);
4901	}
4902}
4903
4904static inline void tcp_data_snd_check(struct sock *sk)
4905{
4906	tcp_push_pending_frames(sk);
4907	tcp_check_space(sk);
4908}
4909
4910/*
4911 * Check if sending an ack is needed.
4912 */
4913static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4914{
4915	struct tcp_sock *tp = tcp_sk(sk);
4916
4917	    /* More than one full frame received... */
4918	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4919	     /* ... and right edge of window advances far enough.
4920	      * (tcp_recvmsg() will send ACK otherwise). Or...
4921	      */
4922	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4923	    /* We ACK each frame or... */
4924	    tcp_in_quickack_mode(sk) ||
4925	    /* We have out of order data. */
4926	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4927		/* Then ack it now */
4928		tcp_send_ack(sk);
4929	} else {
4930		/* Else, send delayed ack. */
4931		tcp_send_delayed_ack(sk);
4932	}
4933}
4934
4935static inline void tcp_ack_snd_check(struct sock *sk)
4936{
4937	if (!inet_csk_ack_scheduled(sk)) {
4938		/* We sent a data segment already. */
4939		return;
4940	}
4941	__tcp_ack_snd_check(sk, 1);
4942}
4943
4944/*
4945 *	This routine is only called when we have urgent data
4946 *	signaled. Its the 'slow' part of tcp_urg. It could be
4947 *	moved inline now as tcp_urg is only called from one
4948 *	place. We handle URGent data wrong. We have to - as
4949 *	BSD still doesn't use the correction from RFC961.
4950 *	For 1003.1g we should support a new option TCP_STDURG to permit
4951 *	either form (or just set the sysctl tcp_stdurg).
4952 */
4953
4954static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4955{
4956	struct tcp_sock *tp = tcp_sk(sk);
4957	u32 ptr = ntohs(th->urg_ptr);
4958
4959	if (ptr && !sysctl_tcp_stdurg)
4960		ptr--;
4961	ptr += ntohl(th->seq);
4962
4963	/* Ignore urgent data that we've already seen and read. */
4964	if (after(tp->copied_seq, ptr))
4965		return;
4966
4967	/* Do not replay urg ptr.
4968	 *
4969	 * NOTE: interesting situation not covered by specs.
4970	 * Misbehaving sender may send urg ptr, pointing to segment,
4971	 * which we already have in ofo queue. We are not able to fetch
4972	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4973	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4974	 * situations. But it is worth to think about possibility of some
4975	 * DoSes using some hypothetical application level deadlock.
4976	 */
4977	if (before(ptr, tp->rcv_nxt))
4978		return;
4979
4980	/* Do we already have a newer (or duplicate) urgent pointer? */
4981	if (tp->urg_data && !after(ptr, tp->urg_seq))
4982		return;
4983
4984	/* Tell the world about our new urgent pointer. */
4985	sk_send_sigurg(sk);
4986
4987	/* We may be adding urgent data when the last byte read was
4988	 * urgent. To do this requires some care. We cannot just ignore
4989	 * tp->copied_seq since we would read the last urgent byte again
4990	 * as data, nor can we alter copied_seq until this data arrives
4991	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4992	 *
4993	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4994	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4995	 * and expect that both A and B disappear from stream. This is _wrong_.
4996	 * Though this happens in BSD with high probability, this is occasional.
4997	 * Any application relying on this is buggy. Note also, that fix "works"
4998	 * only in this artificial test. Insert some normal data between A and B and we will
4999	 * decline of BSD again. Verdict: it is better to remove to trap
5000	 * buggy users.
5001	 */
5002	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5003	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5004		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5005		tp->copied_seq++;
5006		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5007			__skb_unlink(skb, &sk->sk_receive_queue);
5008			__kfree_skb(skb);
5009		}
5010	}
5011
5012	tp->urg_data = TCP_URG_NOTYET;
5013	tp->urg_seq = ptr;
5014
5015	/* Disable header prediction. */
5016	tp->pred_flags = 0;
5017}
5018
5019/* This is the 'fast' part of urgent handling. */
5020static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5021{
5022	struct tcp_sock *tp = tcp_sk(sk);
5023
5024	/* Check if we get a new urgent pointer - normally not. */
5025	if (th->urg)
5026		tcp_check_urg(sk, th);
5027
5028	/* Do we wait for any urgent data? - normally not... */
5029	if (tp->urg_data == TCP_URG_NOTYET) {
5030		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5031			  th->syn;
5032
5033		/* Is the urgent pointer pointing into this packet? */
5034		if (ptr < skb->len) {
5035			u8 tmp;
5036			if (skb_copy_bits(skb, ptr, &tmp, 1))
5037				BUG();
5038			tp->urg_data = TCP_URG_VALID | tmp;
5039			if (!sock_flag(sk, SOCK_DEAD))
5040				sk->sk_data_ready(sk, 0);
5041		}
5042	}
5043}
5044
5045static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5046{
5047	struct tcp_sock *tp = tcp_sk(sk);
5048	int chunk = skb->len - hlen;
5049	int err;
5050
5051	local_bh_enable();
5052	if (skb_csum_unnecessary(skb))
5053		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5054	else
5055		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5056						       tp->ucopy.iov);
5057
5058	if (!err) {
5059		tp->ucopy.len -= chunk;
5060		tp->copied_seq += chunk;
5061		tcp_rcv_space_adjust(sk);
5062	}
5063
5064	local_bh_disable();
5065	return err;
5066}
5067
5068static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5069					    struct sk_buff *skb)
5070{
5071	__sum16 result;
5072
5073	if (sock_owned_by_user(sk)) {
5074		local_bh_enable();
5075		result = __tcp_checksum_complete(skb);
5076		local_bh_disable();
5077	} else {
5078		result = __tcp_checksum_complete(skb);
5079	}
5080	return result;
5081}
5082
5083static inline int tcp_checksum_complete_user(struct sock *sk,
5084					     struct sk_buff *skb)
5085{
5086	return !skb_csum_unnecessary(skb) &&
5087	       __tcp_checksum_complete_user(sk, skb);
5088}
5089
5090#ifdef CONFIG_NET_DMA
5091static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5092				  int hlen)
5093{
5094	struct tcp_sock *tp = tcp_sk(sk);
5095	int chunk = skb->len - hlen;
5096	int dma_cookie;
5097	int copied_early = 0;
5098
5099	if (tp->ucopy.wakeup)
5100		return 0;
5101
5102	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5103		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5104
5105	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5106
5107		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5108							 skb, hlen,
5109							 tp->ucopy.iov, chunk,
5110							 tp->ucopy.pinned_list);
5111
5112		if (dma_cookie < 0)
5113			goto out;
5114
5115		tp->ucopy.dma_cookie = dma_cookie;
5116		copied_early = 1;
5117
5118		tp->ucopy.len -= chunk;
5119		tp->copied_seq += chunk;
5120		tcp_rcv_space_adjust(sk);
5121
5122		if ((tp->ucopy.len == 0) ||
5123		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5124		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5125			tp->ucopy.wakeup = 1;
5126			sk->sk_data_ready(sk, 0);
5127		}
5128	} else if (chunk > 0) {
5129		tp->ucopy.wakeup = 1;
5130		sk->sk_data_ready(sk, 0);
5131	}
5132out:
5133	return copied_early;
5134}
5135#endif /* CONFIG_NET_DMA */
5136
5137/* Does PAWS and seqno based validation of an incoming segment, flags will
5138 * play significant role here.
5139 */
5140static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5141			      struct tcphdr *th, int syn_inerr)
5142{
5143	u8 *hash_location;
5144	struct tcp_sock *tp = tcp_sk(sk);
5145
5146	/* RFC1323: H1. Apply PAWS check first. */
5147	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5148	    tp->rx_opt.saw_tstamp &&
5149	    tcp_paws_discard(sk, skb)) {
5150		if (!th->rst) {
5151			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5152			tcp_send_dupack(sk, skb);
5153			goto discard;
5154		}
5155		/* Reset is accepted even if it did not pass PAWS. */
5156	}
5157
5158	/* Step 1: check sequence number */
5159	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5160		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5161		 * (RST) segments are validated by checking their SEQ-fields."
5162		 * And page 69: "If an incoming segment is not acceptable,
5163		 * an acknowledgment should be sent in reply (unless the RST
5164		 * bit is set, if so drop the segment and return)".
5165		 */
5166		if (!th->rst)
5167			tcp_send_dupack(sk, skb);
5168		goto discard;
5169	}
5170
5171	/* Step 2: check RST bit */
5172	if (th->rst) {
5173		tcp_reset(sk);
5174		goto discard;
5175	}
5176
5177	/* ts_recent update must be made after we are sure that the packet
5178	 * is in window.
5179	 */
5180	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5181
5182	/* step 3: check security and precedence [ignored] */
5183
5184	/* step 4: Check for a SYN in window. */
5185	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5186		if (syn_inerr)
5187			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5188		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5189		tcp_reset(sk);
5190		return -1;
5191	}
5192
5193	return 1;
5194
5195discard:
5196	__kfree_skb(skb);
5197	return 0;
5198}
5199
5200/*
5201 *	TCP receive function for the ESTABLISHED state.
5202 *
5203 *	It is split into a fast path and a slow path. The fast path is
5204 * 	disabled when:
5205 *	- A zero window was announced from us - zero window probing
5206 *        is only handled properly in the slow path.
5207 *	- Out of order segments arrived.
5208 *	- Urgent data is expected.
5209 *	- There is no buffer space left
5210 *	- Unexpected TCP flags/window values/header lengths are received
5211 *	  (detected by checking the TCP header against pred_flags)
5212 *	- Data is sent in both directions. Fast path only supports pure senders
5213 *	  or pure receivers (this means either the sequence number or the ack
5214 *	  value must stay constant)
5215 *	- Unexpected TCP option.
5216 *
5217 *	When these conditions are not satisfied it drops into a standard
5218 *	receive procedure patterned after RFC793 to handle all cases.
5219 *	The first three cases are guaranteed by proper pred_flags setting,
5220 *	the rest is checked inline. Fast processing is turned on in
5221 *	tcp_data_queue when everything is OK.
5222 */
5223int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5224			struct tcphdr *th, unsigned len)
5225{
5226	struct tcp_sock *tp = tcp_sk(sk);
5227	int res;
5228
5229	/*
5230	 *	Header prediction.
5231	 *	The code loosely follows the one in the famous
5232	 *	"30 instruction TCP receive" Van Jacobson mail.
5233	 *
5234	 *	Van's trick is to deposit buffers into socket queue
5235	 *	on a device interrupt, to call tcp_recv function
5236	 *	on the receive process context and checksum and copy
5237	 *	the buffer to user space. smart...
5238	 *
5239	 *	Our current scheme is not silly either but we take the
5240	 *	extra cost of the net_bh soft interrupt processing...
5241	 *	We do checksum and copy also but from device to kernel.
5242	 */
5243
5244	tp->rx_opt.saw_tstamp = 0;
5245
5246	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5247	 *	if header_prediction is to be made
5248	 *	'S' will always be tp->tcp_header_len >> 2
5249	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5250	 *  turn it off	(when there are holes in the receive
5251	 *	 space for instance)
5252	 *	PSH flag is ignored.
5253	 */
5254
5255	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5256	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5257	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5258		int tcp_header_len = tp->tcp_header_len;
5259
5260		/* Timestamp header prediction: tcp_header_len
5261		 * is automatically equal to th->doff*4 due to pred_flags
5262		 * match.
5263		 */
5264
5265		/* Check timestamp */
5266		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5267			/* No? Slow path! */
5268			if (!tcp_parse_aligned_timestamp(tp, th))
5269				goto slow_path;
5270
5271			/* If PAWS failed, check it more carefully in slow path */
5272			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5273				goto slow_path;
5274
5275			/* DO NOT update ts_recent here, if checksum fails
5276			 * and timestamp was corrupted part, it will result
5277			 * in a hung connection since we will drop all
5278			 * future packets due to the PAWS test.
5279			 */
5280		}
5281
5282		if (len <= tcp_header_len) {
5283			/* Bulk data transfer: sender */
5284			if (len == tcp_header_len) {
5285				/* Predicted packet is in window by definition.
5286				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5287				 * Hence, check seq<=rcv_wup reduces to:
5288				 */
5289				if (tcp_header_len ==
5290				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5291				    tp->rcv_nxt == tp->rcv_wup)
5292					tcp_store_ts_recent(tp);
5293
5294				/* We know that such packets are checksummed
5295				 * on entry.
5296				 */
5297				tcp_ack(sk, skb, 0);
5298				__kfree_skb(skb);
5299				tcp_data_snd_check(sk);
5300				return 0;
5301			} else { /* Header too small */
5302				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5303				goto discard;
5304			}
5305		} else {
5306			int eaten = 0;
5307			int copied_early = 0;
5308
5309			if (tp->copied_seq == tp->rcv_nxt &&
5310			    len - tcp_header_len <= tp->ucopy.len) {
5311#ifdef CONFIG_NET_DMA
5312				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5313					copied_early = 1;
5314					eaten = 1;
5315				}
5316#endif
5317				if (tp->ucopy.task == current &&
5318				    sock_owned_by_user(sk) && !copied_early) {
5319					__set_current_state(TASK_RUNNING);
5320
5321					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5322						eaten = 1;
5323				}
5324				if (eaten) {
5325					/* Predicted packet is in window by definition.
5326					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5327					 * Hence, check seq<=rcv_wup reduces to:
5328					 */
5329					if (tcp_header_len ==
5330					    (sizeof(struct tcphdr) +
5331					     TCPOLEN_TSTAMP_ALIGNED) &&
5332					    tp->rcv_nxt == tp->rcv_wup)
5333						tcp_store_ts_recent(tp);
5334
5335					tcp_rcv_rtt_measure_ts(sk, skb);
5336
5337					__skb_pull(skb, tcp_header_len);
5338					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5339					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5340				}
5341				if (copied_early)
5342					tcp_cleanup_rbuf(sk, skb->len);
5343			}
5344			if (!eaten) {
5345				if (tcp_checksum_complete_user(sk, skb))
5346					goto csum_error;
5347
5348				/* Predicted packet is in window by definition.
5349				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5350				 * Hence, check seq<=rcv_wup reduces to:
5351				 */
5352				if (tcp_header_len ==
5353				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5354				    tp->rcv_nxt == tp->rcv_wup)
5355					tcp_store_ts_recent(tp);
5356
5357				tcp_rcv_rtt_measure_ts(sk, skb);
5358
5359				if ((int)skb->truesize > sk->sk_forward_alloc)
5360					goto step5;
5361
5362				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5363
5364				/* Bulk data transfer: receiver */
5365				__skb_pull(skb, tcp_header_len);
5366				__skb_queue_tail(&sk->sk_receive_queue, skb);
5367				skb_set_owner_r(skb, sk);
5368				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5369			}
5370
5371			tcp_event_data_recv(sk, skb);
5372
5373			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5374				/* Well, only one small jumplet in fast path... */
5375				tcp_ack(sk, skb, FLAG_DATA);
5376				tcp_data_snd_check(sk);
5377				if (!inet_csk_ack_scheduled(sk))
5378					goto no_ack;
5379			}
5380
5381			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5382				__tcp_ack_snd_check(sk, 0);
5383no_ack:
5384#ifdef CONFIG_NET_DMA
5385			if (copied_early)
5386				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5387			else
5388#endif
5389			if (eaten)
5390				__kfree_skb(skb);
5391			else
5392				sk->sk_data_ready(sk, 0);
5393			return 0;
5394		}
5395	}
5396
5397slow_path:
5398	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5399		goto csum_error;
5400
5401	/*
5402	 *	Standard slow path.
5403	 */
5404
5405	res = tcp_validate_incoming(sk, skb, th, 1);
5406	if (res <= 0)
5407		return -res;
5408
5409step5:
5410	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5411		goto discard;
5412
5413	tcp_rcv_rtt_measure_ts(sk, skb);
5414
5415	/* Process urgent data. */
5416	tcp_urg(sk, skb, th);
5417
5418	/* step 7: process the segment text */
5419	tcp_data_queue(sk, skb);
5420
5421	tcp_data_snd_check(sk);
5422	tcp_ack_snd_check(sk);
5423	return 0;
5424
5425csum_error:
5426	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5427
5428discard:
5429	__kfree_skb(skb);
5430	return 0;
5431}
5432
5433static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5434					 struct tcphdr *th, unsigned len)
5435{
5436	u8 *hash_location;
5437	struct inet_connection_sock *icsk = inet_csk(sk);
5438	struct tcp_sock *tp = tcp_sk(sk);
5439	struct tcp_cookie_values *cvp = tp->cookie_values;
5440	int saved_clamp = tp->rx_opt.mss_clamp;
5441
5442	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5443
5444	if (th->ack) {
5445		/* rfc793:
5446		 * "If the state is SYN-SENT then
5447		 *    first check the ACK bit
5448		 *      If the ACK bit is set
5449		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5450		 *        a reset (unless the RST bit is set, if so drop
5451		 *        the segment and return)"
5452		 *
5453		 *  We do not send data with SYN, so that RFC-correct
5454		 *  test reduces to:
5455		 */
5456		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5457			goto reset_and_undo;
5458
5459		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5460		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5461			     tcp_time_stamp)) {
5462			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5463			goto reset_and_undo;
5464		}
5465
5466		/* Now ACK is acceptable.
5467		 *
5468		 * "If the RST bit is set
5469		 *    If the ACK was acceptable then signal the user "error:
5470		 *    connection reset", drop the segment, enter CLOSED state,
5471		 *    delete TCB, and return."
5472		 */
5473
5474		if (th->rst) {
5475			tcp_reset(sk);
5476			goto discard;
5477		}
5478
5479		/* rfc793:
5480		 *   "fifth, if neither of the SYN or RST bits is set then
5481		 *    drop the segment and return."
5482		 *
5483		 *    See note below!
5484		 *                                        --ANK(990513)
5485		 */
5486		if (!th->syn)
5487			goto discard_and_undo;
5488
5489		/* rfc793:
5490		 *   "If the SYN bit is on ...
5491		 *    are acceptable then ...
5492		 *    (our SYN has been ACKed), change the connection
5493		 *    state to ESTABLISHED..."
5494		 */
5495
5496		TCP_ECN_rcv_synack(tp, th);
5497
5498		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5499		tcp_ack(sk, skb, FLAG_SLOWPATH);
5500
5501		/* Ok.. it's good. Set up sequence numbers and
5502		 * move to established.
5503		 */
5504		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5505		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5506
5507		/* RFC1323: The window in SYN & SYN/ACK segments is
5508		 * never scaled.
5509		 */
5510		tp->snd_wnd = ntohs(th->window);
5511		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5512
5513		if (!tp->rx_opt.wscale_ok) {
5514			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5515			tp->window_clamp = min(tp->window_clamp, 65535U);
5516		}
5517
5518		if (tp->rx_opt.saw_tstamp) {
5519			tp->rx_opt.tstamp_ok	   = 1;
5520			tp->tcp_header_len =
5521				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5522			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5523			tcp_store_ts_recent(tp);
5524		} else {
5525			tp->tcp_header_len = sizeof(struct tcphdr);
5526		}
5527
5528		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5529			tcp_enable_fack(tp);
5530
5531		tcp_mtup_init(sk);
5532		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5533		tcp_initialize_rcv_mss(sk);
5534
5535		/* Remember, tcp_poll() does not lock socket!
5536		 * Change state from SYN-SENT only after copied_seq
5537		 * is initialized. */
5538		tp->copied_seq = tp->rcv_nxt;
5539
5540		if (cvp != NULL &&
5541		    cvp->cookie_pair_size > 0 &&
5542		    tp->rx_opt.cookie_plus > 0) {
5543			int cookie_size = tp->rx_opt.cookie_plus
5544					- TCPOLEN_COOKIE_BASE;
5545			int cookie_pair_size = cookie_size
5546					     + cvp->cookie_desired;
5547
5548			/* A cookie extension option was sent and returned.
5549			 * Note that each incoming SYNACK replaces the
5550			 * Responder cookie.  The initial exchange is most
5551			 * fragile, as protection against spoofing relies
5552			 * entirely upon the sequence and timestamp (above).
5553			 * This replacement strategy allows the correct pair to
5554			 * pass through, while any others will be filtered via
5555			 * Responder verification later.
5556			 */
5557			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5558				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5559				       hash_location, cookie_size);
5560				cvp->cookie_pair_size = cookie_pair_size;
5561			}
5562		}
5563
5564		smp_mb();
5565		tcp_set_state(sk, TCP_ESTABLISHED);
5566
5567		security_inet_conn_established(sk, skb);
5568
5569		/* Make sure socket is routed, for correct metrics.  */
5570		icsk->icsk_af_ops->rebuild_header(sk);
5571
5572		tcp_init_metrics(sk);
5573
5574		tcp_init_congestion_control(sk);
5575
5576		/* Prevent spurious tcp_cwnd_restart() on first data
5577		 * packet.
5578		 */
5579		tp->lsndtime = tcp_time_stamp;
5580
5581		tcp_init_buffer_space(sk);
5582
5583		if (sock_flag(sk, SOCK_KEEPOPEN))
5584			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5585
5586		if (!tp->rx_opt.snd_wscale)
5587			__tcp_fast_path_on(tp, tp->snd_wnd);
5588		else
5589			tp->pred_flags = 0;
5590
5591		if (!sock_flag(sk, SOCK_DEAD)) {
5592			sk->sk_state_change(sk);
5593			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5594		}
5595
5596		if (sk->sk_write_pending ||
5597		    icsk->icsk_accept_queue.rskq_defer_accept ||
5598		    icsk->icsk_ack.pingpong) {
5599			/* Save one ACK. Data will be ready after
5600			 * several ticks, if write_pending is set.
5601			 *
5602			 * It may be deleted, but with this feature tcpdumps
5603			 * look so _wonderfully_ clever, that I was not able
5604			 * to stand against the temptation 8)     --ANK
5605			 */
5606			inet_csk_schedule_ack(sk);
5607			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5608			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5609			tcp_incr_quickack(sk);
5610			tcp_enter_quickack_mode(sk);
5611			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5612						  TCP_DELACK_MAX, TCP_RTO_MAX);
5613
5614discard:
5615			__kfree_skb(skb);
5616			return 0;
5617		} else {
5618			tcp_send_ack(sk);
5619		}
5620		return -1;
5621	}
5622
5623	/* No ACK in the segment */
5624
5625	if (th->rst) {
5626		/* rfc793:
5627		 * "If the RST bit is set
5628		 *
5629		 *      Otherwise (no ACK) drop the segment and return."
5630		 */
5631
5632		goto discard_and_undo;
5633	}
5634
5635	/* PAWS check. */
5636	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5637	    tcp_paws_reject(&tp->rx_opt, 0))
5638		goto discard_and_undo;
5639
5640	if (th->syn) {
5641		/* We see SYN without ACK. It is attempt of
5642		 * simultaneous connect with crossed SYNs.
5643		 * Particularly, it can be connect to self.
5644		 */
5645		tcp_set_state(sk, TCP_SYN_RECV);
5646
5647		if (tp->rx_opt.saw_tstamp) {
5648			tp->rx_opt.tstamp_ok = 1;
5649			tcp_store_ts_recent(tp);
5650			tp->tcp_header_len =
5651				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5652		} else {
5653			tp->tcp_header_len = sizeof(struct tcphdr);
5654		}
5655
5656		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5657		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5658
5659		/* RFC1323: The window in SYN & SYN/ACK segments is
5660		 * never scaled.
5661		 */
5662		tp->snd_wnd    = ntohs(th->window);
5663		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5664		tp->max_window = tp->snd_wnd;
5665
5666		TCP_ECN_rcv_syn(tp, th);
5667
5668		tcp_mtup_init(sk);
5669		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5670		tcp_initialize_rcv_mss(sk);
5671
5672		tcp_send_synack(sk);
5673#if 0
5674		/* Note, we could accept data and URG from this segment.
5675		 * There are no obstacles to make this.
5676		 *
5677		 * However, if we ignore data in ACKless segments sometimes,
5678		 * we have no reasons to accept it sometimes.
5679		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5680		 * is not flawless. So, discard packet for sanity.
5681		 * Uncomment this return to process the data.
5682		 */
5683		return -1;
5684#else
5685		goto discard;
5686#endif
5687	}
5688	/* "fifth, if neither of the SYN or RST bits is set then
5689	 * drop the segment and return."
5690	 */
5691
5692discard_and_undo:
5693	tcp_clear_options(&tp->rx_opt);
5694	tp->rx_opt.mss_clamp = saved_clamp;
5695	goto discard;
5696
5697reset_and_undo:
5698	tcp_clear_options(&tp->rx_opt);
5699	tp->rx_opt.mss_clamp = saved_clamp;
5700	return 1;
5701}
5702
5703/*
5704 *	This function implements the receiving procedure of RFC 793 for
5705 *	all states except ESTABLISHED and TIME_WAIT.
5706 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5707 *	address independent.
5708 */
5709
5710int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5711			  struct tcphdr *th, unsigned len)
5712{
5713	struct tcp_sock *tp = tcp_sk(sk);
5714	struct inet_connection_sock *icsk = inet_csk(sk);
5715	int queued = 0;
5716	int res;
5717
5718	tp->rx_opt.saw_tstamp = 0;
5719
5720	switch (sk->sk_state) {
5721	case TCP_CLOSE:
5722		goto discard;
5723
5724	case TCP_LISTEN:
5725		if (th->ack)
5726			return 1;
5727
5728		if (th->rst)
5729			goto discard;
5730
5731		if (th->syn) {
5732			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5733				return 1;
5734
5735			/* Now we have several options: In theory there is
5736			 * nothing else in the frame. KA9Q has an option to
5737			 * send data with the syn, BSD accepts data with the
5738			 * syn up to the [to be] advertised window and
5739			 * Solaris 2.1 gives you a protocol error. For now
5740			 * we just ignore it, that fits the spec precisely
5741			 * and avoids incompatibilities. It would be nice in
5742			 * future to drop through and process the data.
5743			 *
5744			 * Now that TTCP is starting to be used we ought to
5745			 * queue this data.
5746			 * But, this leaves one open to an easy denial of
5747			 * service attack, and SYN cookies can't defend
5748			 * against this problem. So, we drop the data
5749			 * in the interest of security over speed unless
5750			 * it's still in use.
5751			 */
5752			kfree_skb(skb);
5753			return 0;
5754		}
5755		goto discard;
5756
5757	case TCP_SYN_SENT:
5758		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5759		if (queued >= 0)
5760			return queued;
5761
5762		/* Do step6 onward by hand. */
5763		tcp_urg(sk, skb, th);
5764		__kfree_skb(skb);
5765		tcp_data_snd_check(sk);
5766		return 0;
5767	}
5768
5769	res = tcp_validate_incoming(sk, skb, th, 0);
5770	if (res <= 0)
5771		return -res;
5772
5773	/* step 5: check the ACK field */
5774	if (th->ack) {
5775		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5776
5777		switch (sk->sk_state) {
5778		case TCP_SYN_RECV:
5779			if (acceptable) {
5780				tp->copied_seq = tp->rcv_nxt;
5781				smp_mb();
5782				tcp_set_state(sk, TCP_ESTABLISHED);
5783				sk->sk_state_change(sk);
5784
5785				/* Note, that this wakeup is only for marginal
5786				 * crossed SYN case. Passively open sockets
5787				 * are not waked up, because sk->sk_sleep ==
5788				 * NULL and sk->sk_socket == NULL.
5789				 */
5790				if (sk->sk_socket)
5791					sk_wake_async(sk,
5792						      SOCK_WAKE_IO, POLL_OUT);
5793
5794				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5795				tp->snd_wnd = ntohs(th->window) <<
5796					      tp->rx_opt.snd_wscale;
5797				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5798
5799				/* tcp_ack considers this ACK as duplicate
5800				 * and does not calculate rtt.
5801				 * Force it here.
5802				 */
5803				tcp_ack_update_rtt(sk, 0, 0);
5804
5805				if (tp->rx_opt.tstamp_ok)
5806					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5807
5808				/* Make sure socket is routed, for
5809				 * correct metrics.
5810				 */
5811				icsk->icsk_af_ops->rebuild_header(sk);
5812
5813				tcp_init_metrics(sk);
5814
5815				tcp_init_congestion_control(sk);
5816
5817				/* Prevent spurious tcp_cwnd_restart() on
5818				 * first data packet.
5819				 */
5820				tp->lsndtime = tcp_time_stamp;
5821
5822				tcp_mtup_init(sk);
5823				tcp_initialize_rcv_mss(sk);
5824				tcp_init_buffer_space(sk);
5825				tcp_fast_path_on(tp);
5826			} else {
5827				return 1;
5828			}
5829			break;
5830
5831		case TCP_FIN_WAIT1:
5832			if (tp->snd_una == tp->write_seq) {
5833				tcp_set_state(sk, TCP_FIN_WAIT2);
5834				sk->sk_shutdown |= SEND_SHUTDOWN;
5835				dst_confirm(sk->sk_dst_cache);
5836
5837				if (!sock_flag(sk, SOCK_DEAD))
5838					/* Wake up lingering close() */
5839					sk->sk_state_change(sk);
5840				else {
5841					int tmo;
5842
5843					if (tp->linger2 < 0 ||
5844					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5845					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5846						tcp_done(sk);
5847						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5848						return 1;
5849					}
5850
5851					tmo = tcp_fin_time(sk);
5852					if (tmo > TCP_TIMEWAIT_LEN) {
5853						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5854					} else if (th->fin || sock_owned_by_user(sk)) {
5855						/* Bad case. We could lose such FIN otherwise.
5856						 * It is not a big problem, but it looks confusing
5857						 * and not so rare event. We still can lose it now,
5858						 * if it spins in bh_lock_sock(), but it is really
5859						 * marginal case.
5860						 */
5861						inet_csk_reset_keepalive_timer(sk, tmo);
5862					} else {
5863						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5864						goto discard;
5865					}
5866				}
5867			}
5868			break;
5869
5870		case TCP_CLOSING:
5871			if (tp->snd_una == tp->write_seq) {
5872				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5873				goto discard;
5874			}
5875			break;
5876
5877		case TCP_LAST_ACK:
5878			if (tp->snd_una == tp->write_seq) {
5879				tcp_update_metrics(sk);
5880				tcp_done(sk);
5881				goto discard;
5882			}
5883			break;
5884		}
5885	} else
5886		goto discard;
5887
5888	/* step 6: check the URG bit */
5889	tcp_urg(sk, skb, th);
5890
5891	/* step 7: process the segment text */
5892	switch (sk->sk_state) {
5893	case TCP_CLOSE_WAIT:
5894	case TCP_CLOSING:
5895	case TCP_LAST_ACK:
5896		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5897			break;
5898	case TCP_FIN_WAIT1:
5899	case TCP_FIN_WAIT2:
5900		/* RFC 793 says to queue data in these states,
5901		 * RFC 1122 says we MUST send a reset.
5902		 * BSD 4.4 also does reset.
5903		 */
5904		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5905			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5906			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5907				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5908				tcp_reset(sk);
5909				return 1;
5910			}
5911		}
5912		/* Fall through */
5913	case TCP_ESTABLISHED:
5914		tcp_data_queue(sk, skb);
5915		queued = 1;
5916		break;
5917	}
5918
5919	/* tcp_data could move socket to TIME-WAIT */
5920	if (sk->sk_state != TCP_CLOSE) {
5921		tcp_data_snd_check(sk);
5922		tcp_ack_snd_check(sk);
5923	}
5924
5925	if (!queued) {
5926discard:
5927		__kfree_skb(skb);
5928	}
5929	return 0;
5930}
5931
5932EXPORT_SYMBOL(sysctl_tcp_ecn);
5933EXPORT_SYMBOL(sysctl_tcp_reordering);
5934EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5935EXPORT_SYMBOL(tcp_parse_options);
5936#ifdef CONFIG_TCP_MD5SIG
5937EXPORT_SYMBOL(tcp_parse_md5sig_option);
5938#endif
5939EXPORT_SYMBOL(tcp_rcv_established);
5940EXPORT_SYMBOL(tcp_rcv_state_process);
5941EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5942