tcp_input.c revision cda42ebd67ee5fdf09d7057b5a4584d36fe8a335
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 *		Pedro Roque	:	Fast Retransmit/Recovery.
24 *					Two receive queues.
25 *					Retransmit queue handled by TCP.
26 *					Better retransmit timer handling.
27 *					New congestion avoidance.
28 *					Header prediction.
29 *					Variable renaming.
30 *
31 *		Eric		:	Fast Retransmit.
32 *		Randy Scott	:	MSS option defines.
33 *		Eric Schenk	:	Fixes to slow start algorithm.
34 *		Eric Schenk	:	Yet another double ACK bug.
35 *		Eric Schenk	:	Delayed ACK bug fixes.
36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37 *		David S. Miller	:	Don't allow zero congestion window.
38 *		Eric Schenk	:	Fix retransmitter so that it sends
39 *					next packet on ack of previous packet.
40 *		Andi Kleen	:	Moved open_request checking here
41 *					and process RSTs for open_requests.
42 *		Andi Kleen	:	Better prune_queue, and other fixes.
43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
44 *					timestamps.
45 *		Andrey Savochkin:	Check sequence numbers correctly when
46 *					removing SACKs due to in sequence incoming
47 *					data segments.
48 *		Andi Kleen:		Make sure we never ack data there is not
49 *					enough room for. Also make this condition
50 *					a fatal error if it might still happen.
51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52 *					connections with MSS<min(MTU,ann. MSS)
53 *					work without delayed acks.
54 *		Andi Kleen:		Process packets with PSH set in the
55 *					fast path.
56 *		J Hadi Salim:		ECN support
57 *	 	Andrei Gurtov,
58 *		Pasi Sarolahti,
59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60 *					engine. Lots of bugs are found.
61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62 */
63
64#include <linux/mm.h>
65#include <linux/module.h>
66#include <linux/sysctl.h>
67#include <linux/kernel.h>
68#include <net/dst.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
73#include <net/netdma.h>
74
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly = 2;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly = 2;
89int sysctl_tcp_frto_response __read_mostly;
90int sysctl_tcp_nometrics_save __read_mostly;
91
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
94
95#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101#define FLAG_ECE		0x40 /* ECE in this ACK				*/
102#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
107#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
108#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
109
110#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
113#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
114#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115
116#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118
119/* Adapt the MSS value used to make delayed ack decision to the
120 * real world.
121 */
122static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
123{
124	struct inet_connection_sock *icsk = inet_csk(sk);
125	const unsigned int lss = icsk->icsk_ack.last_seg_size;
126	unsigned int len;
127
128	icsk->icsk_ack.last_seg_size = 0;
129
130	/* skb->len may jitter because of SACKs, even if peer
131	 * sends good full-sized frames.
132	 */
133	len = skb_shinfo(skb)->gso_size ? : skb->len;
134	if (len >= icsk->icsk_ack.rcv_mss) {
135		icsk->icsk_ack.rcv_mss = len;
136	} else {
137		/* Otherwise, we make more careful check taking into account,
138		 * that SACKs block is variable.
139		 *
140		 * "len" is invariant segment length, including TCP header.
141		 */
142		len += skb->data - skb_transport_header(skb);
143		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
144		    /* If PSH is not set, packet should be
145		     * full sized, provided peer TCP is not badly broken.
146		     * This observation (if it is correct 8)) allows
147		     * to handle super-low mtu links fairly.
148		     */
149		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
150		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
151			/* Subtract also invariant (if peer is RFC compliant),
152			 * tcp header plus fixed timestamp option length.
153			 * Resulting "len" is MSS free of SACK jitter.
154			 */
155			len -= tcp_sk(sk)->tcp_header_len;
156			icsk->icsk_ack.last_seg_size = len;
157			if (len == lss) {
158				icsk->icsk_ack.rcv_mss = len;
159				return;
160			}
161		}
162		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
163			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
164		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
165	}
166}
167
168static void tcp_incr_quickack(struct sock *sk)
169{
170	struct inet_connection_sock *icsk = inet_csk(sk);
171	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
172
173	if (quickacks == 0)
174		quickacks = 2;
175	if (quickacks > icsk->icsk_ack.quick)
176		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
177}
178
179void tcp_enter_quickack_mode(struct sock *sk)
180{
181	struct inet_connection_sock *icsk = inet_csk(sk);
182	tcp_incr_quickack(sk);
183	icsk->icsk_ack.pingpong = 0;
184	icsk->icsk_ack.ato = TCP_ATO_MIN;
185}
186
187/* Send ACKs quickly, if "quick" count is not exhausted
188 * and the session is not interactive.
189 */
190
191static inline int tcp_in_quickack_mode(const struct sock *sk)
192{
193	const struct inet_connection_sock *icsk = inet_csk(sk);
194	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
195}
196
197static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198{
199	if (tp->ecn_flags & TCP_ECN_OK)
200		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
201}
202
203static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204{
205	if (tcp_hdr(skb)->cwr)
206		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
207}
208
209static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210{
211	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212}
213
214static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215{
216	if (tp->ecn_flags & TCP_ECN_OK) {
217		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
218			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
219		/* Funny extension: if ECT is not set on a segment,
220		 * it is surely retransmit. It is not in ECN RFC,
221		 * but Linux follows this rule. */
222		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
223			tcp_enter_quickack_mode((struct sock *)tp);
224	}
225}
226
227static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228{
229	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
230		tp->ecn_flags &= ~TCP_ECN_OK;
231}
232
233static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234{
235	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
236		tp->ecn_flags &= ~TCP_ECN_OK;
237}
238
239static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240{
241	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
242		return 1;
243	return 0;
244}
245
246/* Buffer size and advertised window tuning.
247 *
248 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
249 */
250
251static void tcp_fixup_sndbuf(struct sock *sk)
252{
253	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
254		     sizeof(struct sk_buff);
255
256	if (sk->sk_sndbuf < 3 * sndmem)
257		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
258}
259
260/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261 *
262 * All tcp_full_space() is split to two parts: "network" buffer, allocated
263 * forward and advertised in receiver window (tp->rcv_wnd) and
264 * "application buffer", required to isolate scheduling/application
265 * latencies from network.
266 * window_clamp is maximal advertised window. It can be less than
267 * tcp_full_space(), in this case tcp_full_space() - window_clamp
268 * is reserved for "application" buffer. The less window_clamp is
269 * the smoother our behaviour from viewpoint of network, but the lower
270 * throughput and the higher sensitivity of the connection to losses. 8)
271 *
272 * rcv_ssthresh is more strict window_clamp used at "slow start"
273 * phase to predict further behaviour of this connection.
274 * It is used for two goals:
275 * - to enforce header prediction at sender, even when application
276 *   requires some significant "application buffer". It is check #1.
277 * - to prevent pruning of receive queue because of misprediction
278 *   of receiver window. Check #2.
279 *
280 * The scheme does not work when sender sends good segments opening
281 * window and then starts to feed us spaghetti. But it should work
282 * in common situations. Otherwise, we have to rely on queue collapsing.
283 */
284
285/* Slow part of check#2. */
286static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
287{
288	struct tcp_sock *tp = tcp_sk(sk);
289	/* Optimize this! */
290	int truesize = tcp_win_from_space(skb->truesize) >> 1;
291	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
292
293	while (tp->rcv_ssthresh <= window) {
294		if (truesize <= skb->len)
295			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
296
297		truesize >>= 1;
298		window >>= 1;
299	}
300	return 0;
301}
302
303static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
304{
305	struct tcp_sock *tp = tcp_sk(sk);
306
307	/* Check #1 */
308	if (tp->rcv_ssthresh < tp->window_clamp &&
309	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
310	    !tcp_memory_pressure) {
311		int incr;
312
313		/* Check #2. Increase window, if skb with such overhead
314		 * will fit to rcvbuf in future.
315		 */
316		if (tcp_win_from_space(skb->truesize) <= skb->len)
317			incr = 2 * tp->advmss;
318		else
319			incr = __tcp_grow_window(sk, skb);
320
321		if (incr) {
322			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
323					       tp->window_clamp);
324			inet_csk(sk)->icsk_ack.quick |= 1;
325		}
326	}
327}
328
329/* 3. Tuning rcvbuf, when connection enters established state. */
330
331static void tcp_fixup_rcvbuf(struct sock *sk)
332{
333	struct tcp_sock *tp = tcp_sk(sk);
334	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335
336	/* Try to select rcvbuf so that 4 mss-sized segments
337	 * will fit to window and corresponding skbs will fit to our rcvbuf.
338	 * (was 3; 4 is minimum to allow fast retransmit to work.)
339	 */
340	while (tcp_win_from_space(rcvmem) < tp->advmss)
341		rcvmem += 128;
342	if (sk->sk_rcvbuf < 4 * rcvmem)
343		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
344}
345
346/* 4. Try to fixup all. It is made immediately after connection enters
347 *    established state.
348 */
349static void tcp_init_buffer_space(struct sock *sk)
350{
351	struct tcp_sock *tp = tcp_sk(sk);
352	int maxwin;
353
354	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
355		tcp_fixup_rcvbuf(sk);
356	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
357		tcp_fixup_sndbuf(sk);
358
359	tp->rcvq_space.space = tp->rcv_wnd;
360
361	maxwin = tcp_full_space(sk);
362
363	if (tp->window_clamp >= maxwin) {
364		tp->window_clamp = maxwin;
365
366		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
367			tp->window_clamp = max(maxwin -
368					       (maxwin >> sysctl_tcp_app_win),
369					       4 * tp->advmss);
370	}
371
372	/* Force reservation of one segment. */
373	if (sysctl_tcp_app_win &&
374	    tp->window_clamp > 2 * tp->advmss &&
375	    tp->window_clamp + tp->advmss > maxwin)
376		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377
378	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
379	tp->snd_cwnd_stamp = tcp_time_stamp;
380}
381
382/* 5. Recalculate window clamp after socket hit its memory bounds. */
383static void tcp_clamp_window(struct sock *sk)
384{
385	struct tcp_sock *tp = tcp_sk(sk);
386	struct inet_connection_sock *icsk = inet_csk(sk);
387
388	icsk->icsk_ack.quick = 0;
389
390	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
391	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
392	    !tcp_memory_pressure &&
393	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
394		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
395				    sysctl_tcp_rmem[2]);
396	}
397	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
398		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
399}
400
401/* Initialize RCV_MSS value.
402 * RCV_MSS is an our guess about MSS used by the peer.
403 * We haven't any direct information about the MSS.
404 * It's better to underestimate the RCV_MSS rather than overestimate.
405 * Overestimations make us ACKing less frequently than needed.
406 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407 */
408void tcp_initialize_rcv_mss(struct sock *sk)
409{
410	struct tcp_sock *tp = tcp_sk(sk);
411	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412
413	hint = min(hint, tp->rcv_wnd / 2);
414	hint = min(hint, TCP_MIN_RCVMSS);
415	hint = max(hint, TCP_MIN_MSS);
416
417	inet_csk(sk)->icsk_ack.rcv_mss = hint;
418}
419
420/* Receiver "autotuning" code.
421 *
422 * The algorithm for RTT estimation w/o timestamps is based on
423 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425 *
426 * More detail on this code can be found at
427 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428 * though this reference is out of date.  A new paper
429 * is pending.
430 */
431static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432{
433	u32 new_sample = tp->rcv_rtt_est.rtt;
434	long m = sample;
435
436	if (m == 0)
437		m = 1;
438
439	if (new_sample != 0) {
440		/* If we sample in larger samples in the non-timestamp
441		 * case, we could grossly overestimate the RTT especially
442		 * with chatty applications or bulk transfer apps which
443		 * are stalled on filesystem I/O.
444		 *
445		 * Also, since we are only going for a minimum in the
446		 * non-timestamp case, we do not smooth things out
447		 * else with timestamps disabled convergence takes too
448		 * long.
449		 */
450		if (!win_dep) {
451			m -= (new_sample >> 3);
452			new_sample += m;
453		} else if (m < new_sample)
454			new_sample = m << 3;
455	} else {
456		/* No previous measure. */
457		new_sample = m << 3;
458	}
459
460	if (tp->rcv_rtt_est.rtt != new_sample)
461		tp->rcv_rtt_est.rtt = new_sample;
462}
463
464static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465{
466	if (tp->rcv_rtt_est.time == 0)
467		goto new_measure;
468	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
469		return;
470	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
471
472new_measure:
473	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
474	tp->rcv_rtt_est.time = tcp_time_stamp;
475}
476
477static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
478					  const struct sk_buff *skb)
479{
480	struct tcp_sock *tp = tcp_sk(sk);
481	if (tp->rx_opt.rcv_tsecr &&
482	    (TCP_SKB_CB(skb)->end_seq -
483	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
484		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
485}
486
487/*
488 * This function should be called every time data is copied to user space.
489 * It calculates the appropriate TCP receive buffer space.
490 */
491void tcp_rcv_space_adjust(struct sock *sk)
492{
493	struct tcp_sock *tp = tcp_sk(sk);
494	int time;
495	int space;
496
497	if (tp->rcvq_space.time == 0)
498		goto new_measure;
499
500	time = tcp_time_stamp - tp->rcvq_space.time;
501	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
502		return;
503
504	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505
506	space = max(tp->rcvq_space.space, space);
507
508	if (tp->rcvq_space.space != space) {
509		int rcvmem;
510
511		tp->rcvq_space.space = space;
512
513		if (sysctl_tcp_moderate_rcvbuf &&
514		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
515			int new_clamp = space;
516
517			/* Receive space grows, normalize in order to
518			 * take into account packet headers and sk_buff
519			 * structure overhead.
520			 */
521			space /= tp->advmss;
522			if (!space)
523				space = 1;
524			rcvmem = (tp->advmss + MAX_TCP_HEADER +
525				  16 + sizeof(struct sk_buff));
526			while (tcp_win_from_space(rcvmem) < tp->advmss)
527				rcvmem += 128;
528			space *= rcvmem;
529			space = min(space, sysctl_tcp_rmem[2]);
530			if (space > sk->sk_rcvbuf) {
531				sk->sk_rcvbuf = space;
532
533				/* Make the window clamp follow along.  */
534				tp->window_clamp = new_clamp;
535			}
536		}
537	}
538
539new_measure:
540	tp->rcvq_space.seq = tp->copied_seq;
541	tp->rcvq_space.time = tcp_time_stamp;
542}
543
544/* There is something which you must keep in mind when you analyze the
545 * behavior of the tp->ato delayed ack timeout interval.  When a
546 * connection starts up, we want to ack as quickly as possible.  The
547 * problem is that "good" TCP's do slow start at the beginning of data
548 * transmission.  The means that until we send the first few ACK's the
549 * sender will sit on his end and only queue most of his data, because
550 * he can only send snd_cwnd unacked packets at any given time.  For
551 * each ACK we send, he increments snd_cwnd and transmits more of his
552 * queue.  -DaveM
553 */
554static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
555{
556	struct tcp_sock *tp = tcp_sk(sk);
557	struct inet_connection_sock *icsk = inet_csk(sk);
558	u32 now;
559
560	inet_csk_schedule_ack(sk);
561
562	tcp_measure_rcv_mss(sk, skb);
563
564	tcp_rcv_rtt_measure(tp);
565
566	now = tcp_time_stamp;
567
568	if (!icsk->icsk_ack.ato) {
569		/* The _first_ data packet received, initialize
570		 * delayed ACK engine.
571		 */
572		tcp_incr_quickack(sk);
573		icsk->icsk_ack.ato = TCP_ATO_MIN;
574	} else {
575		int m = now - icsk->icsk_ack.lrcvtime;
576
577		if (m <= TCP_ATO_MIN / 2) {
578			/* The fastest case is the first. */
579			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
580		} else if (m < icsk->icsk_ack.ato) {
581			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
582			if (icsk->icsk_ack.ato > icsk->icsk_rto)
583				icsk->icsk_ack.ato = icsk->icsk_rto;
584		} else if (m > icsk->icsk_rto) {
585			/* Too long gap. Apparently sender failed to
586			 * restart window, so that we send ACKs quickly.
587			 */
588			tcp_incr_quickack(sk);
589			sk_mem_reclaim(sk);
590		}
591	}
592	icsk->icsk_ack.lrcvtime = now;
593
594	TCP_ECN_check_ce(tp, skb);
595
596	if (skb->len >= 128)
597		tcp_grow_window(sk, skb);
598}
599
600/* Called to compute a smoothed rtt estimate. The data fed to this
601 * routine either comes from timestamps, or from segments that were
602 * known _not_ to have been retransmitted [see Karn/Partridge
603 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
604 * piece by Van Jacobson.
605 * NOTE: the next three routines used to be one big routine.
606 * To save cycles in the RFC 1323 implementation it was better to break
607 * it up into three procedures. -- erics
608 */
609static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
610{
611	struct tcp_sock *tp = tcp_sk(sk);
612	long m = mrtt; /* RTT */
613
614	/*	The following amusing code comes from Jacobson's
615	 *	article in SIGCOMM '88.  Note that rtt and mdev
616	 *	are scaled versions of rtt and mean deviation.
617	 *	This is designed to be as fast as possible
618	 *	m stands for "measurement".
619	 *
620	 *	On a 1990 paper the rto value is changed to:
621	 *	RTO = rtt + 4 * mdev
622	 *
623	 * Funny. This algorithm seems to be very broken.
624	 * These formulae increase RTO, when it should be decreased, increase
625	 * too slowly, when it should be increased quickly, decrease too quickly
626	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
627	 * does not matter how to _calculate_ it. Seems, it was trap
628	 * that VJ failed to avoid. 8)
629	 */
630	if (m == 0)
631		m = 1;
632	if (tp->srtt != 0) {
633		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
634		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
635		if (m < 0) {
636			m = -m;		/* m is now abs(error) */
637			m -= (tp->mdev >> 2);   /* similar update on mdev */
638			/* This is similar to one of Eifel findings.
639			 * Eifel blocks mdev updates when rtt decreases.
640			 * This solution is a bit different: we use finer gain
641			 * for mdev in this case (alpha*beta).
642			 * Like Eifel it also prevents growth of rto,
643			 * but also it limits too fast rto decreases,
644			 * happening in pure Eifel.
645			 */
646			if (m > 0)
647				m >>= 3;
648		} else {
649			m -= (tp->mdev >> 2);   /* similar update on mdev */
650		}
651		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
652		if (tp->mdev > tp->mdev_max) {
653			tp->mdev_max = tp->mdev;
654			if (tp->mdev_max > tp->rttvar)
655				tp->rttvar = tp->mdev_max;
656		}
657		if (after(tp->snd_una, tp->rtt_seq)) {
658			if (tp->mdev_max < tp->rttvar)
659				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
660			tp->rtt_seq = tp->snd_nxt;
661			tp->mdev_max = tcp_rto_min(sk);
662		}
663	} else {
664		/* no previous measure. */
665		tp->srtt = m << 3;	/* take the measured time to be rtt */
666		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
667		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
668		tp->rtt_seq = tp->snd_nxt;
669	}
670}
671
672/* Calculate rto without backoff.  This is the second half of Van Jacobson's
673 * routine referred to above.
674 */
675static inline void tcp_set_rto(struct sock *sk)
676{
677	const struct tcp_sock *tp = tcp_sk(sk);
678	/* Old crap is replaced with new one. 8)
679	 *
680	 * More seriously:
681	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
682	 *    It cannot be less due to utterly erratic ACK generation made
683	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
684	 *    to do with delayed acks, because at cwnd>2 true delack timeout
685	 *    is invisible. Actually, Linux-2.4 also generates erratic
686	 *    ACKs in some circumstances.
687	 */
688	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
689
690	/* 2. Fixups made earlier cannot be right.
691	 *    If we do not estimate RTO correctly without them,
692	 *    all the algo is pure shit and should be replaced
693	 *    with correct one. It is exactly, which we pretend to do.
694	 */
695
696	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
697	 * guarantees that rto is higher.
698	 */
699	tcp_bound_rto(sk);
700}
701
702/* Save metrics learned by this TCP session.
703   This function is called only, when TCP finishes successfully
704   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
705 */
706void tcp_update_metrics(struct sock *sk)
707{
708	struct tcp_sock *tp = tcp_sk(sk);
709	struct dst_entry *dst = __sk_dst_get(sk);
710
711	if (sysctl_tcp_nometrics_save)
712		return;
713
714	dst_confirm(dst);
715
716	if (dst && (dst->flags & DST_HOST)) {
717		const struct inet_connection_sock *icsk = inet_csk(sk);
718		int m;
719		unsigned long rtt;
720
721		if (icsk->icsk_backoff || !tp->srtt) {
722			/* This session failed to estimate rtt. Why?
723			 * Probably, no packets returned in time.
724			 * Reset our results.
725			 */
726			if (!(dst_metric_locked(dst, RTAX_RTT)))
727				dst->metrics[RTAX_RTT - 1] = 0;
728			return;
729		}
730
731		rtt = dst_metric_rtt(dst, RTAX_RTT);
732		m = rtt - tp->srtt;
733
734		/* If newly calculated rtt larger than stored one,
735		 * store new one. Otherwise, use EWMA. Remember,
736		 * rtt overestimation is always better than underestimation.
737		 */
738		if (!(dst_metric_locked(dst, RTAX_RTT))) {
739			if (m <= 0)
740				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
741			else
742				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
743		}
744
745		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
746			unsigned long var;
747			if (m < 0)
748				m = -m;
749
750			/* Scale deviation to rttvar fixed point */
751			m >>= 1;
752			if (m < tp->mdev)
753				m = tp->mdev;
754
755			var = dst_metric_rtt(dst, RTAX_RTTVAR);
756			if (m >= var)
757				var = m;
758			else
759				var -= (var - m) >> 2;
760
761			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
762		}
763
764		if (tcp_in_initial_slowstart(tp)) {
765			/* Slow start still did not finish. */
766			if (dst_metric(dst, RTAX_SSTHRESH) &&
767			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
768			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
769				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
770			if (!dst_metric_locked(dst, RTAX_CWND) &&
771			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
772				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
773		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
774			   icsk->icsk_ca_state == TCP_CA_Open) {
775			/* Cong. avoidance phase, cwnd is reliable. */
776			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
777				dst->metrics[RTAX_SSTHRESH-1] =
778					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
779			if (!dst_metric_locked(dst, RTAX_CWND))
780				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
781		} else {
782			/* Else slow start did not finish, cwnd is non-sense,
783			   ssthresh may be also invalid.
784			 */
785			if (!dst_metric_locked(dst, RTAX_CWND))
786				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
787			if (dst_metric(dst, RTAX_SSTHRESH) &&
788			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
789			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
790				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
791		}
792
793		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
794			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
795			    tp->reordering != sysctl_tcp_reordering)
796				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
797		}
798	}
799}
800
801/* Numbers are taken from RFC3390.
802 *
803 * John Heffner states:
804 *
805 *	The RFC specifies a window of no more than 4380 bytes
806 *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
807 *	is a bit misleading because they use a clamp at 4380 bytes
808 *	rather than use a multiplier in the relevant range.
809 */
810__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
811{
812	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
813
814	if (!cwnd) {
815		if (tp->mss_cache > 1460)
816			cwnd = 2;
817		else
818			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
819	}
820	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
821}
822
823/* Set slow start threshold and cwnd not falling to slow start */
824void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
825{
826	struct tcp_sock *tp = tcp_sk(sk);
827	const struct inet_connection_sock *icsk = inet_csk(sk);
828
829	tp->prior_ssthresh = 0;
830	tp->bytes_acked = 0;
831	if (icsk->icsk_ca_state < TCP_CA_CWR) {
832		tp->undo_marker = 0;
833		if (set_ssthresh)
834			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
835		tp->snd_cwnd = min(tp->snd_cwnd,
836				   tcp_packets_in_flight(tp) + 1U);
837		tp->snd_cwnd_cnt = 0;
838		tp->high_seq = tp->snd_nxt;
839		tp->snd_cwnd_stamp = tcp_time_stamp;
840		TCP_ECN_queue_cwr(tp);
841
842		tcp_set_ca_state(sk, TCP_CA_CWR);
843	}
844}
845
846/*
847 * Packet counting of FACK is based on in-order assumptions, therefore TCP
848 * disables it when reordering is detected
849 */
850static void tcp_disable_fack(struct tcp_sock *tp)
851{
852	/* RFC3517 uses different metric in lost marker => reset on change */
853	if (tcp_is_fack(tp))
854		tp->lost_skb_hint = NULL;
855	tp->rx_opt.sack_ok &= ~2;
856}
857
858/* Take a notice that peer is sending D-SACKs */
859static void tcp_dsack_seen(struct tcp_sock *tp)
860{
861	tp->rx_opt.sack_ok |= 4;
862}
863
864/* Initialize metrics on socket. */
865
866static void tcp_init_metrics(struct sock *sk)
867{
868	struct tcp_sock *tp = tcp_sk(sk);
869	struct dst_entry *dst = __sk_dst_get(sk);
870
871	if (dst == NULL)
872		goto reset;
873
874	dst_confirm(dst);
875
876	if (dst_metric_locked(dst, RTAX_CWND))
877		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
878	if (dst_metric(dst, RTAX_SSTHRESH)) {
879		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
880		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
881			tp->snd_ssthresh = tp->snd_cwnd_clamp;
882	}
883	if (dst_metric(dst, RTAX_REORDERING) &&
884	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
885		tcp_disable_fack(tp);
886		tp->reordering = dst_metric(dst, RTAX_REORDERING);
887	}
888
889	if (dst_metric(dst, RTAX_RTT) == 0)
890		goto reset;
891
892	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
893		goto reset;
894
895	/* Initial rtt is determined from SYN,SYN-ACK.
896	 * The segment is small and rtt may appear much
897	 * less than real one. Use per-dst memory
898	 * to make it more realistic.
899	 *
900	 * A bit of theory. RTT is time passed after "normal" sized packet
901	 * is sent until it is ACKed. In normal circumstances sending small
902	 * packets force peer to delay ACKs and calculation is correct too.
903	 * The algorithm is adaptive and, provided we follow specs, it
904	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
905	 * tricks sort of "quick acks" for time long enough to decrease RTT
906	 * to low value, and then abruptly stops to do it and starts to delay
907	 * ACKs, wait for troubles.
908	 */
909	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
910		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
911		tp->rtt_seq = tp->snd_nxt;
912	}
913	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
914		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
915		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
916	}
917	tcp_set_rto(sk);
918	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
919		goto reset;
920
921cwnd:
922	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
923	tp->snd_cwnd_stamp = tcp_time_stamp;
924	return;
925
926reset:
927	/* Play conservative. If timestamps are not
928	 * supported, TCP will fail to recalculate correct
929	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
930	 */
931	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
932		tp->srtt = 0;
933		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
934		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
935	}
936	goto cwnd;
937}
938
939static void tcp_update_reordering(struct sock *sk, const int metric,
940				  const int ts)
941{
942	struct tcp_sock *tp = tcp_sk(sk);
943	if (metric > tp->reordering) {
944		int mib_idx;
945
946		tp->reordering = min(TCP_MAX_REORDERING, metric);
947
948		/* This exciting event is worth to be remembered. 8) */
949		if (ts)
950			mib_idx = LINUX_MIB_TCPTSREORDER;
951		else if (tcp_is_reno(tp))
952			mib_idx = LINUX_MIB_TCPRENOREORDER;
953		else if (tcp_is_fack(tp))
954			mib_idx = LINUX_MIB_TCPFACKREORDER;
955		else
956			mib_idx = LINUX_MIB_TCPSACKREORDER;
957
958		NET_INC_STATS_BH(sock_net(sk), mib_idx);
959#if FASTRETRANS_DEBUG > 1
960		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
961		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
962		       tp->reordering,
963		       tp->fackets_out,
964		       tp->sacked_out,
965		       tp->undo_marker ? tp->undo_retrans : 0);
966#endif
967		tcp_disable_fack(tp);
968	}
969}
970
971/* This must be called before lost_out is incremented */
972static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
973{
974	if ((tp->retransmit_skb_hint == NULL) ||
975	    before(TCP_SKB_CB(skb)->seq,
976		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
977		tp->retransmit_skb_hint = skb;
978
979	if (!tp->lost_out ||
980	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
981		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
982}
983
984static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
985{
986	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
987		tcp_verify_retransmit_hint(tp, skb);
988
989		tp->lost_out += tcp_skb_pcount(skb);
990		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
991	}
992}
993
994static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
995					    struct sk_buff *skb)
996{
997	tcp_verify_retransmit_hint(tp, skb);
998
999	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1000		tp->lost_out += tcp_skb_pcount(skb);
1001		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002	}
1003}
1004
1005/* This procedure tags the retransmission queue when SACKs arrive.
1006 *
1007 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1008 * Packets in queue with these bits set are counted in variables
1009 * sacked_out, retrans_out and lost_out, correspondingly.
1010 *
1011 * Valid combinations are:
1012 * Tag  InFlight	Description
1013 * 0	1		- orig segment is in flight.
1014 * S	0		- nothing flies, orig reached receiver.
1015 * L	0		- nothing flies, orig lost by net.
1016 * R	2		- both orig and retransmit are in flight.
1017 * L|R	1		- orig is lost, retransmit is in flight.
1018 * S|R  1		- orig reached receiver, retrans is still in flight.
1019 * (L|S|R is logically valid, it could occur when L|R is sacked,
1020 *  but it is equivalent to plain S and code short-curcuits it to S.
1021 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1022 *
1023 * These 6 states form finite state machine, controlled by the following events:
1024 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1025 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1026 * 3. Loss detection event of one of three flavors:
1027 *	A. Scoreboard estimator decided the packet is lost.
1028 *	   A'. Reno "three dupacks" marks head of queue lost.
1029 *	   A''. Its FACK modfication, head until snd.fack is lost.
1030 *	B. SACK arrives sacking data transmitted after never retransmitted
1031 *	   hole was sent out.
1032 *	C. SACK arrives sacking SND.NXT at the moment, when the
1033 *	   segment was retransmitted.
1034 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1035 *
1036 * It is pleasant to note, that state diagram turns out to be commutative,
1037 * so that we are allowed not to be bothered by order of our actions,
1038 * when multiple events arrive simultaneously. (see the function below).
1039 *
1040 * Reordering detection.
1041 * --------------------
1042 * Reordering metric is maximal distance, which a packet can be displaced
1043 * in packet stream. With SACKs we can estimate it:
1044 *
1045 * 1. SACK fills old hole and the corresponding segment was not
1046 *    ever retransmitted -> reordering. Alas, we cannot use it
1047 *    when segment was retransmitted.
1048 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1049 *    for retransmitted and already SACKed segment -> reordering..
1050 * Both of these heuristics are not used in Loss state, when we cannot
1051 * account for retransmits accurately.
1052 *
1053 * SACK block validation.
1054 * ----------------------
1055 *
1056 * SACK block range validation checks that the received SACK block fits to
1057 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1058 * Note that SND.UNA is not included to the range though being valid because
1059 * it means that the receiver is rather inconsistent with itself reporting
1060 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1061 * perfectly valid, however, in light of RFC2018 which explicitly states
1062 * that "SACK block MUST reflect the newest segment.  Even if the newest
1063 * segment is going to be discarded ...", not that it looks very clever
1064 * in case of head skb. Due to potentional receiver driven attacks, we
1065 * choose to avoid immediate execution of a walk in write queue due to
1066 * reneging and defer head skb's loss recovery to standard loss recovery
1067 * procedure that will eventually trigger (nothing forbids us doing this).
1068 *
1069 * Implements also blockage to start_seq wrap-around. Problem lies in the
1070 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1071 * there's no guarantee that it will be before snd_nxt (n). The problem
1072 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1073 * wrap (s_w):
1074 *
1075 *         <- outs wnd ->                          <- wrapzone ->
1076 *         u     e      n                         u_w   e_w  s n_w
1077 *         |     |      |                          |     |   |  |
1078 * |<------------+------+----- TCP seqno space --------------+---------->|
1079 * ...-- <2^31 ->|                                           |<--------...
1080 * ...---- >2^31 ------>|                                    |<--------...
1081 *
1082 * Current code wouldn't be vulnerable but it's better still to discard such
1083 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1084 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1085 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1086 * equal to the ideal case (infinite seqno space without wrap caused issues).
1087 *
1088 * With D-SACK the lower bound is extended to cover sequence space below
1089 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1090 * again, D-SACK block must not to go across snd_una (for the same reason as
1091 * for the normal SACK blocks, explained above). But there all simplicity
1092 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1093 * fully below undo_marker they do not affect behavior in anyway and can
1094 * therefore be safely ignored. In rare cases (which are more or less
1095 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1096 * fragmentation and packet reordering past skb's retransmission. To consider
1097 * them correctly, the acceptable range must be extended even more though
1098 * the exact amount is rather hard to quantify. However, tp->max_window can
1099 * be used as an exaggerated estimate.
1100 */
1101static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1102				  u32 start_seq, u32 end_seq)
1103{
1104	/* Too far in future, or reversed (interpretation is ambiguous) */
1105	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1106		return 0;
1107
1108	/* Nasty start_seq wrap-around check (see comments above) */
1109	if (!before(start_seq, tp->snd_nxt))
1110		return 0;
1111
1112	/* In outstanding window? ...This is valid exit for D-SACKs too.
1113	 * start_seq == snd_una is non-sensical (see comments above)
1114	 */
1115	if (after(start_seq, tp->snd_una))
1116		return 1;
1117
1118	if (!is_dsack || !tp->undo_marker)
1119		return 0;
1120
1121	/* ...Then it's D-SACK, and must reside below snd_una completely */
1122	if (!after(end_seq, tp->snd_una))
1123		return 0;
1124
1125	if (!before(start_seq, tp->undo_marker))
1126		return 1;
1127
1128	/* Too old */
1129	if (!after(end_seq, tp->undo_marker))
1130		return 0;
1131
1132	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1133	 *   start_seq < undo_marker and end_seq >= undo_marker.
1134	 */
1135	return !before(start_seq, end_seq - tp->max_window);
1136}
1137
1138/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1139 * Event "C". Later note: FACK people cheated me again 8), we have to account
1140 * for reordering! Ugly, but should help.
1141 *
1142 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1143 * less than what is now known to be received by the other end (derived from
1144 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1145 * retransmitted skbs to avoid some costly processing per ACKs.
1146 */
1147static void tcp_mark_lost_retrans(struct sock *sk)
1148{
1149	const struct inet_connection_sock *icsk = inet_csk(sk);
1150	struct tcp_sock *tp = tcp_sk(sk);
1151	struct sk_buff *skb;
1152	int cnt = 0;
1153	u32 new_low_seq = tp->snd_nxt;
1154	u32 received_upto = tcp_highest_sack_seq(tp);
1155
1156	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1157	    !after(received_upto, tp->lost_retrans_low) ||
1158	    icsk->icsk_ca_state != TCP_CA_Recovery)
1159		return;
1160
1161	tcp_for_write_queue(skb, sk) {
1162		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1163
1164		if (skb == tcp_send_head(sk))
1165			break;
1166		if (cnt == tp->retrans_out)
1167			break;
1168		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1169			continue;
1170
1171		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1172			continue;
1173
1174		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1175		 * constraint here (see above) but figuring out that at
1176		 * least tp->reordering SACK blocks reside between ack_seq
1177		 * and received_upto is not easy task to do cheaply with
1178		 * the available datastructures.
1179		 *
1180		 * Whether FACK should check here for tp->reordering segs
1181		 * in-between one could argue for either way (it would be
1182		 * rather simple to implement as we could count fack_count
1183		 * during the walk and do tp->fackets_out - fack_count).
1184		 */
1185		if (after(received_upto, ack_seq)) {
1186			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1187			tp->retrans_out -= tcp_skb_pcount(skb);
1188
1189			tcp_skb_mark_lost_uncond_verify(tp, skb);
1190			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1191		} else {
1192			if (before(ack_seq, new_low_seq))
1193				new_low_seq = ack_seq;
1194			cnt += tcp_skb_pcount(skb);
1195		}
1196	}
1197
1198	if (tp->retrans_out)
1199		tp->lost_retrans_low = new_low_seq;
1200}
1201
1202static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1203			   struct tcp_sack_block_wire *sp, int num_sacks,
1204			   u32 prior_snd_una)
1205{
1206	struct tcp_sock *tp = tcp_sk(sk);
1207	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1208	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1209	int dup_sack = 0;
1210
1211	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1212		dup_sack = 1;
1213		tcp_dsack_seen(tp);
1214		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1215	} else if (num_sacks > 1) {
1216		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1217		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1218
1219		if (!after(end_seq_0, end_seq_1) &&
1220		    !before(start_seq_0, start_seq_1)) {
1221			dup_sack = 1;
1222			tcp_dsack_seen(tp);
1223			NET_INC_STATS_BH(sock_net(sk),
1224					LINUX_MIB_TCPDSACKOFORECV);
1225		}
1226	}
1227
1228	/* D-SACK for already forgotten data... Do dumb counting. */
1229	if (dup_sack &&
1230	    !after(end_seq_0, prior_snd_una) &&
1231	    after(end_seq_0, tp->undo_marker))
1232		tp->undo_retrans--;
1233
1234	return dup_sack;
1235}
1236
1237struct tcp_sacktag_state {
1238	int reord;
1239	int fack_count;
1240	int flag;
1241};
1242
1243/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1244 * the incoming SACK may not exactly match but we can find smaller MSS
1245 * aligned portion of it that matches. Therefore we might need to fragment
1246 * which may fail and creates some hassle (caller must handle error case
1247 * returns).
1248 *
1249 * FIXME: this could be merged to shift decision code
1250 */
1251static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1252				 u32 start_seq, u32 end_seq)
1253{
1254	int in_sack, err;
1255	unsigned int pkt_len;
1256	unsigned int mss;
1257
1258	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1259		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1260
1261	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1262	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1263		mss = tcp_skb_mss(skb);
1264		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1265
1266		if (!in_sack) {
1267			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1268			if (pkt_len < mss)
1269				pkt_len = mss;
1270		} else {
1271			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1272			if (pkt_len < mss)
1273				return -EINVAL;
1274		}
1275
1276		/* Round if necessary so that SACKs cover only full MSSes
1277		 * and/or the remaining small portion (if present)
1278		 */
1279		if (pkt_len > mss) {
1280			unsigned int new_len = (pkt_len / mss) * mss;
1281			if (!in_sack && new_len < pkt_len) {
1282				new_len += mss;
1283				if (new_len > skb->len)
1284					return 0;
1285			}
1286			pkt_len = new_len;
1287		}
1288		err = tcp_fragment(sk, skb, pkt_len, mss);
1289		if (err < 0)
1290			return err;
1291	}
1292
1293	return in_sack;
1294}
1295
1296static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1297			  struct tcp_sacktag_state *state,
1298			  int dup_sack, int pcount)
1299{
1300	struct tcp_sock *tp = tcp_sk(sk);
1301	u8 sacked = TCP_SKB_CB(skb)->sacked;
1302	int fack_count = state->fack_count;
1303
1304	/* Account D-SACK for retransmitted packet. */
1305	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1306		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1307			tp->undo_retrans--;
1308		if (sacked & TCPCB_SACKED_ACKED)
1309			state->reord = min(fack_count, state->reord);
1310	}
1311
1312	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1313	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1314		return sacked;
1315
1316	if (!(sacked & TCPCB_SACKED_ACKED)) {
1317		if (sacked & TCPCB_SACKED_RETRANS) {
1318			/* If the segment is not tagged as lost,
1319			 * we do not clear RETRANS, believing
1320			 * that retransmission is still in flight.
1321			 */
1322			if (sacked & TCPCB_LOST) {
1323				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1324				tp->lost_out -= pcount;
1325				tp->retrans_out -= pcount;
1326			}
1327		} else {
1328			if (!(sacked & TCPCB_RETRANS)) {
1329				/* New sack for not retransmitted frame,
1330				 * which was in hole. It is reordering.
1331				 */
1332				if (before(TCP_SKB_CB(skb)->seq,
1333					   tcp_highest_sack_seq(tp)))
1334					state->reord = min(fack_count,
1335							   state->reord);
1336
1337				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1338				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1339					state->flag |= FLAG_ONLY_ORIG_SACKED;
1340			}
1341
1342			if (sacked & TCPCB_LOST) {
1343				sacked &= ~TCPCB_LOST;
1344				tp->lost_out -= pcount;
1345			}
1346		}
1347
1348		sacked |= TCPCB_SACKED_ACKED;
1349		state->flag |= FLAG_DATA_SACKED;
1350		tp->sacked_out += pcount;
1351
1352		fack_count += pcount;
1353
1354		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1355		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1356		    before(TCP_SKB_CB(skb)->seq,
1357			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1358			tp->lost_cnt_hint += pcount;
1359
1360		if (fack_count > tp->fackets_out)
1361			tp->fackets_out = fack_count;
1362	}
1363
1364	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1365	 * frames and clear it. undo_retrans is decreased above, L|R frames
1366	 * are accounted above as well.
1367	 */
1368	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1369		sacked &= ~TCPCB_SACKED_RETRANS;
1370		tp->retrans_out -= pcount;
1371	}
1372
1373	return sacked;
1374}
1375
1376static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1377			   struct tcp_sacktag_state *state,
1378			   unsigned int pcount, int shifted, int mss,
1379			   int dup_sack)
1380{
1381	struct tcp_sock *tp = tcp_sk(sk);
1382	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1383
1384	BUG_ON(!pcount);
1385
1386	/* Tweak before seqno plays */
1387	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1388	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1389		tp->lost_cnt_hint += pcount;
1390
1391	TCP_SKB_CB(prev)->end_seq += shifted;
1392	TCP_SKB_CB(skb)->seq += shifted;
1393
1394	skb_shinfo(prev)->gso_segs += pcount;
1395	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1396	skb_shinfo(skb)->gso_segs -= pcount;
1397
1398	/* When we're adding to gso_segs == 1, gso_size will be zero,
1399	 * in theory this shouldn't be necessary but as long as DSACK
1400	 * code can come after this skb later on it's better to keep
1401	 * setting gso_size to something.
1402	 */
1403	if (!skb_shinfo(prev)->gso_size) {
1404		skb_shinfo(prev)->gso_size = mss;
1405		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1406	}
1407
1408	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1409	if (skb_shinfo(skb)->gso_segs <= 1) {
1410		skb_shinfo(skb)->gso_size = 0;
1411		skb_shinfo(skb)->gso_type = 0;
1412	}
1413
1414	/* We discard results */
1415	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1416
1417	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1418	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1419
1420	if (skb->len > 0) {
1421		BUG_ON(!tcp_skb_pcount(skb));
1422		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1423		return 0;
1424	}
1425
1426	/* Whole SKB was eaten :-) */
1427
1428	if (skb == tp->retransmit_skb_hint)
1429		tp->retransmit_skb_hint = prev;
1430	if (skb == tp->scoreboard_skb_hint)
1431		tp->scoreboard_skb_hint = prev;
1432	if (skb == tp->lost_skb_hint) {
1433		tp->lost_skb_hint = prev;
1434		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1435	}
1436
1437	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1438	if (skb == tcp_highest_sack(sk))
1439		tcp_advance_highest_sack(sk, skb);
1440
1441	tcp_unlink_write_queue(skb, sk);
1442	sk_wmem_free_skb(sk, skb);
1443
1444	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1445
1446	return 1;
1447}
1448
1449/* I wish gso_size would have a bit more sane initialization than
1450 * something-or-zero which complicates things
1451 */
1452static int tcp_skb_seglen(struct sk_buff *skb)
1453{
1454	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1455}
1456
1457/* Shifting pages past head area doesn't work */
1458static int skb_can_shift(struct sk_buff *skb)
1459{
1460	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1461}
1462
1463/* Try collapsing SACK blocks spanning across multiple skbs to a single
1464 * skb.
1465 */
1466static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1467					  struct tcp_sacktag_state *state,
1468					  u32 start_seq, u32 end_seq,
1469					  int dup_sack)
1470{
1471	struct tcp_sock *tp = tcp_sk(sk);
1472	struct sk_buff *prev;
1473	int mss;
1474	int pcount = 0;
1475	int len;
1476	int in_sack;
1477
1478	if (!sk_can_gso(sk))
1479		goto fallback;
1480
1481	/* Normally R but no L won't result in plain S */
1482	if (!dup_sack &&
1483	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1484		goto fallback;
1485	if (!skb_can_shift(skb))
1486		goto fallback;
1487	/* This frame is about to be dropped (was ACKed). */
1488	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1489		goto fallback;
1490
1491	/* Can only happen with delayed DSACK + discard craziness */
1492	if (unlikely(skb == tcp_write_queue_head(sk)))
1493		goto fallback;
1494	prev = tcp_write_queue_prev(sk, skb);
1495
1496	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1497		goto fallback;
1498
1499	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1500		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1501
1502	if (in_sack) {
1503		len = skb->len;
1504		pcount = tcp_skb_pcount(skb);
1505		mss = tcp_skb_seglen(skb);
1506
1507		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1508		 * drop this restriction as unnecessary
1509		 */
1510		if (mss != tcp_skb_seglen(prev))
1511			goto fallback;
1512	} else {
1513		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1514			goto noop;
1515		/* CHECKME: This is non-MSS split case only?, this will
1516		 * cause skipped skbs due to advancing loop btw, original
1517		 * has that feature too
1518		 */
1519		if (tcp_skb_pcount(skb) <= 1)
1520			goto noop;
1521
1522		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1523		if (!in_sack) {
1524			/* TODO: head merge to next could be attempted here
1525			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1526			 * though it might not be worth of the additional hassle
1527			 *
1528			 * ...we can probably just fallback to what was done
1529			 * previously. We could try merging non-SACKed ones
1530			 * as well but it probably isn't going to buy off
1531			 * because later SACKs might again split them, and
1532			 * it would make skb timestamp tracking considerably
1533			 * harder problem.
1534			 */
1535			goto fallback;
1536		}
1537
1538		len = end_seq - TCP_SKB_CB(skb)->seq;
1539		BUG_ON(len < 0);
1540		BUG_ON(len > skb->len);
1541
1542		/* MSS boundaries should be honoured or else pcount will
1543		 * severely break even though it makes things bit trickier.
1544		 * Optimize common case to avoid most of the divides
1545		 */
1546		mss = tcp_skb_mss(skb);
1547
1548		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1549		 * drop this restriction as unnecessary
1550		 */
1551		if (mss != tcp_skb_seglen(prev))
1552			goto fallback;
1553
1554		if (len == mss) {
1555			pcount = 1;
1556		} else if (len < mss) {
1557			goto noop;
1558		} else {
1559			pcount = len / mss;
1560			len = pcount * mss;
1561		}
1562	}
1563
1564	if (!skb_shift(prev, skb, len))
1565		goto fallback;
1566	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1567		goto out;
1568
1569	/* Hole filled allows collapsing with the next as well, this is very
1570	 * useful when hole on every nth skb pattern happens
1571	 */
1572	if (prev == tcp_write_queue_tail(sk))
1573		goto out;
1574	skb = tcp_write_queue_next(sk, prev);
1575
1576	if (!skb_can_shift(skb) ||
1577	    (skb == tcp_send_head(sk)) ||
1578	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1579	    (mss != tcp_skb_seglen(skb)))
1580		goto out;
1581
1582	len = skb->len;
1583	if (skb_shift(prev, skb, len)) {
1584		pcount += tcp_skb_pcount(skb);
1585		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1586	}
1587
1588out:
1589	state->fack_count += pcount;
1590	return prev;
1591
1592noop:
1593	return skb;
1594
1595fallback:
1596	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1597	return NULL;
1598}
1599
1600static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1601					struct tcp_sack_block *next_dup,
1602					struct tcp_sacktag_state *state,
1603					u32 start_seq, u32 end_seq,
1604					int dup_sack_in)
1605{
1606	struct tcp_sock *tp = tcp_sk(sk);
1607	struct sk_buff *tmp;
1608
1609	tcp_for_write_queue_from(skb, sk) {
1610		int in_sack = 0;
1611		int dup_sack = dup_sack_in;
1612
1613		if (skb == tcp_send_head(sk))
1614			break;
1615
1616		/* queue is in-order => we can short-circuit the walk early */
1617		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1618			break;
1619
1620		if ((next_dup != NULL) &&
1621		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1622			in_sack = tcp_match_skb_to_sack(sk, skb,
1623							next_dup->start_seq,
1624							next_dup->end_seq);
1625			if (in_sack > 0)
1626				dup_sack = 1;
1627		}
1628
1629		/* skb reference here is a bit tricky to get right, since
1630		 * shifting can eat and free both this skb and the next,
1631		 * so not even _safe variant of the loop is enough.
1632		 */
1633		if (in_sack <= 0) {
1634			tmp = tcp_shift_skb_data(sk, skb, state,
1635						 start_seq, end_seq, dup_sack);
1636			if (tmp != NULL) {
1637				if (tmp != skb) {
1638					skb = tmp;
1639					continue;
1640				}
1641
1642				in_sack = 0;
1643			} else {
1644				in_sack = tcp_match_skb_to_sack(sk, skb,
1645								start_seq,
1646								end_seq);
1647			}
1648		}
1649
1650		if (unlikely(in_sack < 0))
1651			break;
1652
1653		if (in_sack) {
1654			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1655								  state,
1656								  dup_sack,
1657								  tcp_skb_pcount(skb));
1658
1659			if (!before(TCP_SKB_CB(skb)->seq,
1660				    tcp_highest_sack_seq(tp)))
1661				tcp_advance_highest_sack(sk, skb);
1662		}
1663
1664		state->fack_count += tcp_skb_pcount(skb);
1665	}
1666	return skb;
1667}
1668
1669/* Avoid all extra work that is being done by sacktag while walking in
1670 * a normal way
1671 */
1672static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1673					struct tcp_sacktag_state *state,
1674					u32 skip_to_seq)
1675{
1676	tcp_for_write_queue_from(skb, sk) {
1677		if (skb == tcp_send_head(sk))
1678			break;
1679
1680		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1681			break;
1682
1683		state->fack_count += tcp_skb_pcount(skb);
1684	}
1685	return skb;
1686}
1687
1688static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1689						struct sock *sk,
1690						struct tcp_sack_block *next_dup,
1691						struct tcp_sacktag_state *state,
1692						u32 skip_to_seq)
1693{
1694	if (next_dup == NULL)
1695		return skb;
1696
1697	if (before(next_dup->start_seq, skip_to_seq)) {
1698		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1699		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1700				       next_dup->start_seq, next_dup->end_seq,
1701				       1);
1702	}
1703
1704	return skb;
1705}
1706
1707static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1708{
1709	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1710}
1711
1712static int
1713tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1714			u32 prior_snd_una)
1715{
1716	const struct inet_connection_sock *icsk = inet_csk(sk);
1717	struct tcp_sock *tp = tcp_sk(sk);
1718	unsigned char *ptr = (skb_transport_header(ack_skb) +
1719			      TCP_SKB_CB(ack_skb)->sacked);
1720	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1721	struct tcp_sack_block sp[TCP_NUM_SACKS];
1722	struct tcp_sack_block *cache;
1723	struct tcp_sacktag_state state;
1724	struct sk_buff *skb;
1725	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1726	int used_sacks;
1727	int found_dup_sack = 0;
1728	int i, j;
1729	int first_sack_index;
1730
1731	state.flag = 0;
1732	state.reord = tp->packets_out;
1733
1734	if (!tp->sacked_out) {
1735		if (WARN_ON(tp->fackets_out))
1736			tp->fackets_out = 0;
1737		tcp_highest_sack_reset(sk);
1738	}
1739
1740	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1741					 num_sacks, prior_snd_una);
1742	if (found_dup_sack)
1743		state.flag |= FLAG_DSACKING_ACK;
1744
1745	/* Eliminate too old ACKs, but take into
1746	 * account more or less fresh ones, they can
1747	 * contain valid SACK info.
1748	 */
1749	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1750		return 0;
1751
1752	if (!tp->packets_out)
1753		goto out;
1754
1755	used_sacks = 0;
1756	first_sack_index = 0;
1757	for (i = 0; i < num_sacks; i++) {
1758		int dup_sack = !i && found_dup_sack;
1759
1760		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1761		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1762
1763		if (!tcp_is_sackblock_valid(tp, dup_sack,
1764					    sp[used_sacks].start_seq,
1765					    sp[used_sacks].end_seq)) {
1766			int mib_idx;
1767
1768			if (dup_sack) {
1769				if (!tp->undo_marker)
1770					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1771				else
1772					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1773			} else {
1774				/* Don't count olds caused by ACK reordering */
1775				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1776				    !after(sp[used_sacks].end_seq, tp->snd_una))
1777					continue;
1778				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1779			}
1780
1781			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1782			if (i == 0)
1783				first_sack_index = -1;
1784			continue;
1785		}
1786
1787		/* Ignore very old stuff early */
1788		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1789			continue;
1790
1791		used_sacks++;
1792	}
1793
1794	/* order SACK blocks to allow in order walk of the retrans queue */
1795	for (i = used_sacks - 1; i > 0; i--) {
1796		for (j = 0; j < i; j++) {
1797			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1798				swap(sp[j], sp[j + 1]);
1799
1800				/* Track where the first SACK block goes to */
1801				if (j == first_sack_index)
1802					first_sack_index = j + 1;
1803			}
1804		}
1805	}
1806
1807	skb = tcp_write_queue_head(sk);
1808	state.fack_count = 0;
1809	i = 0;
1810
1811	if (!tp->sacked_out) {
1812		/* It's already past, so skip checking against it */
1813		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1814	} else {
1815		cache = tp->recv_sack_cache;
1816		/* Skip empty blocks in at head of the cache */
1817		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1818		       !cache->end_seq)
1819			cache++;
1820	}
1821
1822	while (i < used_sacks) {
1823		u32 start_seq = sp[i].start_seq;
1824		u32 end_seq = sp[i].end_seq;
1825		int dup_sack = (found_dup_sack && (i == first_sack_index));
1826		struct tcp_sack_block *next_dup = NULL;
1827
1828		if (found_dup_sack && ((i + 1) == first_sack_index))
1829			next_dup = &sp[i + 1];
1830
1831		/* Event "B" in the comment above. */
1832		if (after(end_seq, tp->high_seq))
1833			state.flag |= FLAG_DATA_LOST;
1834
1835		/* Skip too early cached blocks */
1836		while (tcp_sack_cache_ok(tp, cache) &&
1837		       !before(start_seq, cache->end_seq))
1838			cache++;
1839
1840		/* Can skip some work by looking recv_sack_cache? */
1841		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1842		    after(end_seq, cache->start_seq)) {
1843
1844			/* Head todo? */
1845			if (before(start_seq, cache->start_seq)) {
1846				skb = tcp_sacktag_skip(skb, sk, &state,
1847						       start_seq);
1848				skb = tcp_sacktag_walk(skb, sk, next_dup,
1849						       &state,
1850						       start_seq,
1851						       cache->start_seq,
1852						       dup_sack);
1853			}
1854
1855			/* Rest of the block already fully processed? */
1856			if (!after(end_seq, cache->end_seq))
1857				goto advance_sp;
1858
1859			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1860						       &state,
1861						       cache->end_seq);
1862
1863			/* ...tail remains todo... */
1864			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1865				/* ...but better entrypoint exists! */
1866				skb = tcp_highest_sack(sk);
1867				if (skb == NULL)
1868					break;
1869				state.fack_count = tp->fackets_out;
1870				cache++;
1871				goto walk;
1872			}
1873
1874			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1875			/* Check overlap against next cached too (past this one already) */
1876			cache++;
1877			continue;
1878		}
1879
1880		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1881			skb = tcp_highest_sack(sk);
1882			if (skb == NULL)
1883				break;
1884			state.fack_count = tp->fackets_out;
1885		}
1886		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1887
1888walk:
1889		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1890				       start_seq, end_seq, dup_sack);
1891
1892advance_sp:
1893		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1894		 * due to in-order walk
1895		 */
1896		if (after(end_seq, tp->frto_highmark))
1897			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1898
1899		i++;
1900	}
1901
1902	/* Clear the head of the cache sack blocks so we can skip it next time */
1903	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1904		tp->recv_sack_cache[i].start_seq = 0;
1905		tp->recv_sack_cache[i].end_seq = 0;
1906	}
1907	for (j = 0; j < used_sacks; j++)
1908		tp->recv_sack_cache[i++] = sp[j];
1909
1910	tcp_mark_lost_retrans(sk);
1911
1912	tcp_verify_left_out(tp);
1913
1914	if ((state.reord < tp->fackets_out) &&
1915	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1916	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1917		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1918
1919out:
1920
1921#if FASTRETRANS_DEBUG > 0
1922	WARN_ON((int)tp->sacked_out < 0);
1923	WARN_ON((int)tp->lost_out < 0);
1924	WARN_ON((int)tp->retrans_out < 0);
1925	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1926#endif
1927	return state.flag;
1928}
1929
1930/* Limits sacked_out so that sum with lost_out isn't ever larger than
1931 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1932 */
1933static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1934{
1935	u32 holes;
1936
1937	holes = max(tp->lost_out, 1U);
1938	holes = min(holes, tp->packets_out);
1939
1940	if ((tp->sacked_out + holes) > tp->packets_out) {
1941		tp->sacked_out = tp->packets_out - holes;
1942		return 1;
1943	}
1944	return 0;
1945}
1946
1947/* If we receive more dupacks than we expected counting segments
1948 * in assumption of absent reordering, interpret this as reordering.
1949 * The only another reason could be bug in receiver TCP.
1950 */
1951static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1952{
1953	struct tcp_sock *tp = tcp_sk(sk);
1954	if (tcp_limit_reno_sacked(tp))
1955		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1956}
1957
1958/* Emulate SACKs for SACKless connection: account for a new dupack. */
1959
1960static void tcp_add_reno_sack(struct sock *sk)
1961{
1962	struct tcp_sock *tp = tcp_sk(sk);
1963	tp->sacked_out++;
1964	tcp_check_reno_reordering(sk, 0);
1965	tcp_verify_left_out(tp);
1966}
1967
1968/* Account for ACK, ACKing some data in Reno Recovery phase. */
1969
1970static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1971{
1972	struct tcp_sock *tp = tcp_sk(sk);
1973
1974	if (acked > 0) {
1975		/* One ACK acked hole. The rest eat duplicate ACKs. */
1976		if (acked - 1 >= tp->sacked_out)
1977			tp->sacked_out = 0;
1978		else
1979			tp->sacked_out -= acked - 1;
1980	}
1981	tcp_check_reno_reordering(sk, acked);
1982	tcp_verify_left_out(tp);
1983}
1984
1985static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1986{
1987	tp->sacked_out = 0;
1988}
1989
1990static int tcp_is_sackfrto(const struct tcp_sock *tp)
1991{
1992	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1993}
1994
1995/* F-RTO can only be used if TCP has never retransmitted anything other than
1996 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1997 */
1998int tcp_use_frto(struct sock *sk)
1999{
2000	const struct tcp_sock *tp = tcp_sk(sk);
2001	const struct inet_connection_sock *icsk = inet_csk(sk);
2002	struct sk_buff *skb;
2003
2004	if (!sysctl_tcp_frto)
2005		return 0;
2006
2007	/* MTU probe and F-RTO won't really play nicely along currently */
2008	if (icsk->icsk_mtup.probe_size)
2009		return 0;
2010
2011	if (tcp_is_sackfrto(tp))
2012		return 1;
2013
2014	/* Avoid expensive walking of rexmit queue if possible */
2015	if (tp->retrans_out > 1)
2016		return 0;
2017
2018	skb = tcp_write_queue_head(sk);
2019	if (tcp_skb_is_last(sk, skb))
2020		return 1;
2021	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2022	tcp_for_write_queue_from(skb, sk) {
2023		if (skb == tcp_send_head(sk))
2024			break;
2025		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2026			return 0;
2027		/* Short-circuit when first non-SACKed skb has been checked */
2028		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2029			break;
2030	}
2031	return 1;
2032}
2033
2034/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2035 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2036 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2037 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2038 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2039 * bits are handled if the Loss state is really to be entered (in
2040 * tcp_enter_frto_loss).
2041 *
2042 * Do like tcp_enter_loss() would; when RTO expires the second time it
2043 * does:
2044 *  "Reduce ssthresh if it has not yet been made inside this window."
2045 */
2046void tcp_enter_frto(struct sock *sk)
2047{
2048	const struct inet_connection_sock *icsk = inet_csk(sk);
2049	struct tcp_sock *tp = tcp_sk(sk);
2050	struct sk_buff *skb;
2051
2052	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2053	    tp->snd_una == tp->high_seq ||
2054	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2055	     !icsk->icsk_retransmits)) {
2056		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2057		/* Our state is too optimistic in ssthresh() call because cwnd
2058		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2059		 * recovery has not yet completed. Pattern would be this: RTO,
2060		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2061		 * up here twice).
2062		 * RFC4138 should be more specific on what to do, even though
2063		 * RTO is quite unlikely to occur after the first Cumulative ACK
2064		 * due to back-off and complexity of triggering events ...
2065		 */
2066		if (tp->frto_counter) {
2067			u32 stored_cwnd;
2068			stored_cwnd = tp->snd_cwnd;
2069			tp->snd_cwnd = 2;
2070			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2071			tp->snd_cwnd = stored_cwnd;
2072		} else {
2073			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2074		}
2075		/* ... in theory, cong.control module could do "any tricks" in
2076		 * ssthresh(), which means that ca_state, lost bits and lost_out
2077		 * counter would have to be faked before the call occurs. We
2078		 * consider that too expensive, unlikely and hacky, so modules
2079		 * using these in ssthresh() must deal these incompatibility
2080		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2081		 */
2082		tcp_ca_event(sk, CA_EVENT_FRTO);
2083	}
2084
2085	tp->undo_marker = tp->snd_una;
2086	tp->undo_retrans = 0;
2087
2088	skb = tcp_write_queue_head(sk);
2089	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2090		tp->undo_marker = 0;
2091	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2092		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2093		tp->retrans_out -= tcp_skb_pcount(skb);
2094	}
2095	tcp_verify_left_out(tp);
2096
2097	/* Too bad if TCP was application limited */
2098	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2099
2100	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2101	 * The last condition is necessary at least in tp->frto_counter case.
2102	 */
2103	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2104	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2105	    after(tp->high_seq, tp->snd_una)) {
2106		tp->frto_highmark = tp->high_seq;
2107	} else {
2108		tp->frto_highmark = tp->snd_nxt;
2109	}
2110	tcp_set_ca_state(sk, TCP_CA_Disorder);
2111	tp->high_seq = tp->snd_nxt;
2112	tp->frto_counter = 1;
2113}
2114
2115/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2116 * which indicates that we should follow the traditional RTO recovery,
2117 * i.e. mark everything lost and do go-back-N retransmission.
2118 */
2119static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2120{
2121	struct tcp_sock *tp = tcp_sk(sk);
2122	struct sk_buff *skb;
2123
2124	tp->lost_out = 0;
2125	tp->retrans_out = 0;
2126	if (tcp_is_reno(tp))
2127		tcp_reset_reno_sack(tp);
2128
2129	tcp_for_write_queue(skb, sk) {
2130		if (skb == tcp_send_head(sk))
2131			break;
2132
2133		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2134		/*
2135		 * Count the retransmission made on RTO correctly (only when
2136		 * waiting for the first ACK and did not get it)...
2137		 */
2138		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2139			/* For some reason this R-bit might get cleared? */
2140			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2141				tp->retrans_out += tcp_skb_pcount(skb);
2142			/* ...enter this if branch just for the first segment */
2143			flag |= FLAG_DATA_ACKED;
2144		} else {
2145			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2146				tp->undo_marker = 0;
2147			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2148		}
2149
2150		/* Marking forward transmissions that were made after RTO lost
2151		 * can cause unnecessary retransmissions in some scenarios,
2152		 * SACK blocks will mitigate that in some but not in all cases.
2153		 * We used to not mark them but it was causing break-ups with
2154		 * receivers that do only in-order receival.
2155		 *
2156		 * TODO: we could detect presence of such receiver and select
2157		 * different behavior per flow.
2158		 */
2159		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2160			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2161			tp->lost_out += tcp_skb_pcount(skb);
2162			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2163		}
2164	}
2165	tcp_verify_left_out(tp);
2166
2167	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2168	tp->snd_cwnd_cnt = 0;
2169	tp->snd_cwnd_stamp = tcp_time_stamp;
2170	tp->frto_counter = 0;
2171	tp->bytes_acked = 0;
2172
2173	tp->reordering = min_t(unsigned int, tp->reordering,
2174			       sysctl_tcp_reordering);
2175	tcp_set_ca_state(sk, TCP_CA_Loss);
2176	tp->high_seq = tp->snd_nxt;
2177	TCP_ECN_queue_cwr(tp);
2178
2179	tcp_clear_all_retrans_hints(tp);
2180}
2181
2182static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2183{
2184	tp->retrans_out = 0;
2185	tp->lost_out = 0;
2186
2187	tp->undo_marker = 0;
2188	tp->undo_retrans = 0;
2189}
2190
2191void tcp_clear_retrans(struct tcp_sock *tp)
2192{
2193	tcp_clear_retrans_partial(tp);
2194
2195	tp->fackets_out = 0;
2196	tp->sacked_out = 0;
2197}
2198
2199/* Enter Loss state. If "how" is not zero, forget all SACK information
2200 * and reset tags completely, otherwise preserve SACKs. If receiver
2201 * dropped its ofo queue, we will know this due to reneging detection.
2202 */
2203void tcp_enter_loss(struct sock *sk, int how)
2204{
2205	const struct inet_connection_sock *icsk = inet_csk(sk);
2206	struct tcp_sock *tp = tcp_sk(sk);
2207	struct sk_buff *skb;
2208
2209	/* Reduce ssthresh if it has not yet been made inside this window. */
2210	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2211	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2212		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2213		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2214		tcp_ca_event(sk, CA_EVENT_LOSS);
2215	}
2216	tp->snd_cwnd	   = 1;
2217	tp->snd_cwnd_cnt   = 0;
2218	tp->snd_cwnd_stamp = tcp_time_stamp;
2219
2220	tp->bytes_acked = 0;
2221	tcp_clear_retrans_partial(tp);
2222
2223	if (tcp_is_reno(tp))
2224		tcp_reset_reno_sack(tp);
2225
2226	if (!how) {
2227		/* Push undo marker, if it was plain RTO and nothing
2228		 * was retransmitted. */
2229		tp->undo_marker = tp->snd_una;
2230	} else {
2231		tp->sacked_out = 0;
2232		tp->fackets_out = 0;
2233	}
2234	tcp_clear_all_retrans_hints(tp);
2235
2236	tcp_for_write_queue(skb, sk) {
2237		if (skb == tcp_send_head(sk))
2238			break;
2239
2240		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2241			tp->undo_marker = 0;
2242		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2243		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2244			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2245			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2246			tp->lost_out += tcp_skb_pcount(skb);
2247			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2248		}
2249	}
2250	tcp_verify_left_out(tp);
2251
2252	tp->reordering = min_t(unsigned int, tp->reordering,
2253			       sysctl_tcp_reordering);
2254	tcp_set_ca_state(sk, TCP_CA_Loss);
2255	tp->high_seq = tp->snd_nxt;
2256	TCP_ECN_queue_cwr(tp);
2257	/* Abort F-RTO algorithm if one is in progress */
2258	tp->frto_counter = 0;
2259}
2260
2261/* If ACK arrived pointing to a remembered SACK, it means that our
2262 * remembered SACKs do not reflect real state of receiver i.e.
2263 * receiver _host_ is heavily congested (or buggy).
2264 *
2265 * Do processing similar to RTO timeout.
2266 */
2267static int tcp_check_sack_reneging(struct sock *sk, int flag)
2268{
2269	if (flag & FLAG_SACK_RENEGING) {
2270		struct inet_connection_sock *icsk = inet_csk(sk);
2271		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2272
2273		tcp_enter_loss(sk, 1);
2274		icsk->icsk_retransmits++;
2275		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2276		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2277					  icsk->icsk_rto, TCP_RTO_MAX);
2278		return 1;
2279	}
2280	return 0;
2281}
2282
2283static inline int tcp_fackets_out(struct tcp_sock *tp)
2284{
2285	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2286}
2287
2288/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2289 * counter when SACK is enabled (without SACK, sacked_out is used for
2290 * that purpose).
2291 *
2292 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2293 * segments up to the highest received SACK block so far and holes in
2294 * between them.
2295 *
2296 * With reordering, holes may still be in flight, so RFC3517 recovery
2297 * uses pure sacked_out (total number of SACKed segments) even though
2298 * it violates the RFC that uses duplicate ACKs, often these are equal
2299 * but when e.g. out-of-window ACKs or packet duplication occurs,
2300 * they differ. Since neither occurs due to loss, TCP should really
2301 * ignore them.
2302 */
2303static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2304{
2305	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2306}
2307
2308static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2309{
2310	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2311}
2312
2313static inline int tcp_head_timedout(struct sock *sk)
2314{
2315	struct tcp_sock *tp = tcp_sk(sk);
2316
2317	return tp->packets_out &&
2318	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2319}
2320
2321/* Linux NewReno/SACK/FACK/ECN state machine.
2322 * --------------------------------------
2323 *
2324 * "Open"	Normal state, no dubious events, fast path.
2325 * "Disorder"   In all the respects it is "Open",
2326 *		but requires a bit more attention. It is entered when
2327 *		we see some SACKs or dupacks. It is split of "Open"
2328 *		mainly to move some processing from fast path to slow one.
2329 * "CWR"	CWND was reduced due to some Congestion Notification event.
2330 *		It can be ECN, ICMP source quench, local device congestion.
2331 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2332 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2333 *
2334 * tcp_fastretrans_alert() is entered:
2335 * - each incoming ACK, if state is not "Open"
2336 * - when arrived ACK is unusual, namely:
2337 *	* SACK
2338 *	* Duplicate ACK.
2339 *	* ECN ECE.
2340 *
2341 * Counting packets in flight is pretty simple.
2342 *
2343 *	in_flight = packets_out - left_out + retrans_out
2344 *
2345 *	packets_out is SND.NXT-SND.UNA counted in packets.
2346 *
2347 *	retrans_out is number of retransmitted segments.
2348 *
2349 *	left_out is number of segments left network, but not ACKed yet.
2350 *
2351 *		left_out = sacked_out + lost_out
2352 *
2353 *     sacked_out: Packets, which arrived to receiver out of order
2354 *		   and hence not ACKed. With SACKs this number is simply
2355 *		   amount of SACKed data. Even without SACKs
2356 *		   it is easy to give pretty reliable estimate of this number,
2357 *		   counting duplicate ACKs.
2358 *
2359 *       lost_out: Packets lost by network. TCP has no explicit
2360 *		   "loss notification" feedback from network (for now).
2361 *		   It means that this number can be only _guessed_.
2362 *		   Actually, it is the heuristics to predict lossage that
2363 *		   distinguishes different algorithms.
2364 *
2365 *	F.e. after RTO, when all the queue is considered as lost,
2366 *	lost_out = packets_out and in_flight = retrans_out.
2367 *
2368 *		Essentially, we have now two algorithms counting
2369 *		lost packets.
2370 *
2371 *		FACK: It is the simplest heuristics. As soon as we decided
2372 *		that something is lost, we decide that _all_ not SACKed
2373 *		packets until the most forward SACK are lost. I.e.
2374 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2375 *		It is absolutely correct estimate, if network does not reorder
2376 *		packets. And it loses any connection to reality when reordering
2377 *		takes place. We use FACK by default until reordering
2378 *		is suspected on the path to this destination.
2379 *
2380 *		NewReno: when Recovery is entered, we assume that one segment
2381 *		is lost (classic Reno). While we are in Recovery and
2382 *		a partial ACK arrives, we assume that one more packet
2383 *		is lost (NewReno). This heuristics are the same in NewReno
2384 *		and SACK.
2385 *
2386 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2387 *  deflation etc. CWND is real congestion window, never inflated, changes
2388 *  only according to classic VJ rules.
2389 *
2390 * Really tricky (and requiring careful tuning) part of algorithm
2391 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2392 * The first determines the moment _when_ we should reduce CWND and,
2393 * hence, slow down forward transmission. In fact, it determines the moment
2394 * when we decide that hole is caused by loss, rather than by a reorder.
2395 *
2396 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2397 * holes, caused by lost packets.
2398 *
2399 * And the most logically complicated part of algorithm is undo
2400 * heuristics. We detect false retransmits due to both too early
2401 * fast retransmit (reordering) and underestimated RTO, analyzing
2402 * timestamps and D-SACKs. When we detect that some segments were
2403 * retransmitted by mistake and CWND reduction was wrong, we undo
2404 * window reduction and abort recovery phase. This logic is hidden
2405 * inside several functions named tcp_try_undo_<something>.
2406 */
2407
2408/* This function decides, when we should leave Disordered state
2409 * and enter Recovery phase, reducing congestion window.
2410 *
2411 * Main question: may we further continue forward transmission
2412 * with the same cwnd?
2413 */
2414static int tcp_time_to_recover(struct sock *sk)
2415{
2416	struct tcp_sock *tp = tcp_sk(sk);
2417	__u32 packets_out;
2418
2419	/* Do not perform any recovery during F-RTO algorithm */
2420	if (tp->frto_counter)
2421		return 0;
2422
2423	/* Trick#1: The loss is proven. */
2424	if (tp->lost_out)
2425		return 1;
2426
2427	/* Not-A-Trick#2 : Classic rule... */
2428	if (tcp_dupack_heuristics(tp) > tp->reordering)
2429		return 1;
2430
2431	/* Trick#3 : when we use RFC2988 timer restart, fast
2432	 * retransmit can be triggered by timeout of queue head.
2433	 */
2434	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2435		return 1;
2436
2437	/* Trick#4: It is still not OK... But will it be useful to delay
2438	 * recovery more?
2439	 */
2440	packets_out = tp->packets_out;
2441	if (packets_out <= tp->reordering &&
2442	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2443	    !tcp_may_send_now(sk)) {
2444		/* We have nothing to send. This connection is limited
2445		 * either by receiver window or by application.
2446		 */
2447		return 1;
2448	}
2449
2450	return 0;
2451}
2452
2453/* New heuristics: it is possible only after we switched to restart timer
2454 * each time when something is ACKed. Hence, we can detect timed out packets
2455 * during fast retransmit without falling to slow start.
2456 *
2457 * Usefulness of this as is very questionable, since we should know which of
2458 * the segments is the next to timeout which is relatively expensive to find
2459 * in general case unless we add some data structure just for that. The
2460 * current approach certainly won't find the right one too often and when it
2461 * finally does find _something_ it usually marks large part of the window
2462 * right away (because a retransmission with a larger timestamp blocks the
2463 * loop from advancing). -ij
2464 */
2465static void tcp_timeout_skbs(struct sock *sk)
2466{
2467	struct tcp_sock *tp = tcp_sk(sk);
2468	struct sk_buff *skb;
2469
2470	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2471		return;
2472
2473	skb = tp->scoreboard_skb_hint;
2474	if (tp->scoreboard_skb_hint == NULL)
2475		skb = tcp_write_queue_head(sk);
2476
2477	tcp_for_write_queue_from(skb, sk) {
2478		if (skb == tcp_send_head(sk))
2479			break;
2480		if (!tcp_skb_timedout(sk, skb))
2481			break;
2482
2483		tcp_skb_mark_lost(tp, skb);
2484	}
2485
2486	tp->scoreboard_skb_hint = skb;
2487
2488	tcp_verify_left_out(tp);
2489}
2490
2491/* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2492 * is against sacked "cnt", otherwise it's against facked "cnt"
2493 */
2494static void tcp_mark_head_lost(struct sock *sk, int packets)
2495{
2496	struct tcp_sock *tp = tcp_sk(sk);
2497	struct sk_buff *skb;
2498	int cnt, oldcnt;
2499	int err;
2500	unsigned int mss;
2501
2502	WARN_ON(packets > tp->packets_out);
2503	if (tp->lost_skb_hint) {
2504		skb = tp->lost_skb_hint;
2505		cnt = tp->lost_cnt_hint;
2506	} else {
2507		skb = tcp_write_queue_head(sk);
2508		cnt = 0;
2509	}
2510
2511	tcp_for_write_queue_from(skb, sk) {
2512		if (skb == tcp_send_head(sk))
2513			break;
2514		/* TODO: do this better */
2515		/* this is not the most efficient way to do this... */
2516		tp->lost_skb_hint = skb;
2517		tp->lost_cnt_hint = cnt;
2518
2519		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2520			break;
2521
2522		oldcnt = cnt;
2523		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2524		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2525			cnt += tcp_skb_pcount(skb);
2526
2527		if (cnt > packets) {
2528			if (tcp_is_sack(tp) || (oldcnt >= packets))
2529				break;
2530
2531			mss = skb_shinfo(skb)->gso_size;
2532			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2533			if (err < 0)
2534				break;
2535			cnt = packets;
2536		}
2537
2538		tcp_skb_mark_lost(tp, skb);
2539	}
2540	tcp_verify_left_out(tp);
2541}
2542
2543/* Account newly detected lost packet(s) */
2544
2545static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2546{
2547	struct tcp_sock *tp = tcp_sk(sk);
2548
2549	if (tcp_is_reno(tp)) {
2550		tcp_mark_head_lost(sk, 1);
2551	} else if (tcp_is_fack(tp)) {
2552		int lost = tp->fackets_out - tp->reordering;
2553		if (lost <= 0)
2554			lost = 1;
2555		tcp_mark_head_lost(sk, lost);
2556	} else {
2557		int sacked_upto = tp->sacked_out - tp->reordering;
2558		if (sacked_upto < fast_rexmit)
2559			sacked_upto = fast_rexmit;
2560		tcp_mark_head_lost(sk, sacked_upto);
2561	}
2562
2563	tcp_timeout_skbs(sk);
2564}
2565
2566/* CWND moderation, preventing bursts due to too big ACKs
2567 * in dubious situations.
2568 */
2569static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2570{
2571	tp->snd_cwnd = min(tp->snd_cwnd,
2572			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2573	tp->snd_cwnd_stamp = tcp_time_stamp;
2574}
2575
2576/* Lower bound on congestion window is slow start threshold
2577 * unless congestion avoidance choice decides to overide it.
2578 */
2579static inline u32 tcp_cwnd_min(const struct sock *sk)
2580{
2581	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2582
2583	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2584}
2585
2586/* Decrease cwnd each second ack. */
2587static void tcp_cwnd_down(struct sock *sk, int flag)
2588{
2589	struct tcp_sock *tp = tcp_sk(sk);
2590	int decr = tp->snd_cwnd_cnt + 1;
2591
2592	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2593	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2594		tp->snd_cwnd_cnt = decr & 1;
2595		decr >>= 1;
2596
2597		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2598			tp->snd_cwnd -= decr;
2599
2600		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2601		tp->snd_cwnd_stamp = tcp_time_stamp;
2602	}
2603}
2604
2605/* Nothing was retransmitted or returned timestamp is less
2606 * than timestamp of the first retransmission.
2607 */
2608static inline int tcp_packet_delayed(struct tcp_sock *tp)
2609{
2610	return !tp->retrans_stamp ||
2611		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2612		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2613}
2614
2615/* Undo procedures. */
2616
2617#if FASTRETRANS_DEBUG > 1
2618static void DBGUNDO(struct sock *sk, const char *msg)
2619{
2620	struct tcp_sock *tp = tcp_sk(sk);
2621	struct inet_sock *inet = inet_sk(sk);
2622
2623	if (sk->sk_family == AF_INET) {
2624		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2625		       msg,
2626		       &inet->daddr, ntohs(inet->dport),
2627		       tp->snd_cwnd, tcp_left_out(tp),
2628		       tp->snd_ssthresh, tp->prior_ssthresh,
2629		       tp->packets_out);
2630	}
2631#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2632	else if (sk->sk_family == AF_INET6) {
2633		struct ipv6_pinfo *np = inet6_sk(sk);
2634		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2635		       msg,
2636		       &np->daddr, ntohs(inet->dport),
2637		       tp->snd_cwnd, tcp_left_out(tp),
2638		       tp->snd_ssthresh, tp->prior_ssthresh,
2639		       tp->packets_out);
2640	}
2641#endif
2642}
2643#else
2644#define DBGUNDO(x...) do { } while (0)
2645#endif
2646
2647static void tcp_undo_cwr(struct sock *sk, const int undo)
2648{
2649	struct tcp_sock *tp = tcp_sk(sk);
2650
2651	if (tp->prior_ssthresh) {
2652		const struct inet_connection_sock *icsk = inet_csk(sk);
2653
2654		if (icsk->icsk_ca_ops->undo_cwnd)
2655			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2656		else
2657			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2658
2659		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2660			tp->snd_ssthresh = tp->prior_ssthresh;
2661			TCP_ECN_withdraw_cwr(tp);
2662		}
2663	} else {
2664		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2665	}
2666	tcp_moderate_cwnd(tp);
2667	tp->snd_cwnd_stamp = tcp_time_stamp;
2668}
2669
2670static inline int tcp_may_undo(struct tcp_sock *tp)
2671{
2672	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2673}
2674
2675/* People celebrate: "We love our President!" */
2676static int tcp_try_undo_recovery(struct sock *sk)
2677{
2678	struct tcp_sock *tp = tcp_sk(sk);
2679
2680	if (tcp_may_undo(tp)) {
2681		int mib_idx;
2682
2683		/* Happy end! We did not retransmit anything
2684		 * or our original transmission succeeded.
2685		 */
2686		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2687		tcp_undo_cwr(sk, 1);
2688		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2689			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2690		else
2691			mib_idx = LINUX_MIB_TCPFULLUNDO;
2692
2693		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2694		tp->undo_marker = 0;
2695	}
2696	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2697		/* Hold old state until something *above* high_seq
2698		 * is ACKed. For Reno it is MUST to prevent false
2699		 * fast retransmits (RFC2582). SACK TCP is safe. */
2700		tcp_moderate_cwnd(tp);
2701		return 1;
2702	}
2703	tcp_set_ca_state(sk, TCP_CA_Open);
2704	return 0;
2705}
2706
2707/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2708static void tcp_try_undo_dsack(struct sock *sk)
2709{
2710	struct tcp_sock *tp = tcp_sk(sk);
2711
2712	if (tp->undo_marker && !tp->undo_retrans) {
2713		DBGUNDO(sk, "D-SACK");
2714		tcp_undo_cwr(sk, 1);
2715		tp->undo_marker = 0;
2716		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2717	}
2718}
2719
2720/* Undo during fast recovery after partial ACK. */
2721
2722static int tcp_try_undo_partial(struct sock *sk, int acked)
2723{
2724	struct tcp_sock *tp = tcp_sk(sk);
2725	/* Partial ACK arrived. Force Hoe's retransmit. */
2726	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2727
2728	if (tcp_may_undo(tp)) {
2729		/* Plain luck! Hole if filled with delayed
2730		 * packet, rather than with a retransmit.
2731		 */
2732		if (tp->retrans_out == 0)
2733			tp->retrans_stamp = 0;
2734
2735		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2736
2737		DBGUNDO(sk, "Hoe");
2738		tcp_undo_cwr(sk, 0);
2739		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2740
2741		/* So... Do not make Hoe's retransmit yet.
2742		 * If the first packet was delayed, the rest
2743		 * ones are most probably delayed as well.
2744		 */
2745		failed = 0;
2746	}
2747	return failed;
2748}
2749
2750/* Undo during loss recovery after partial ACK. */
2751static int tcp_try_undo_loss(struct sock *sk)
2752{
2753	struct tcp_sock *tp = tcp_sk(sk);
2754
2755	if (tcp_may_undo(tp)) {
2756		struct sk_buff *skb;
2757		tcp_for_write_queue(skb, sk) {
2758			if (skb == tcp_send_head(sk))
2759				break;
2760			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2761		}
2762
2763		tcp_clear_all_retrans_hints(tp);
2764
2765		DBGUNDO(sk, "partial loss");
2766		tp->lost_out = 0;
2767		tcp_undo_cwr(sk, 1);
2768		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2769		inet_csk(sk)->icsk_retransmits = 0;
2770		tp->undo_marker = 0;
2771		if (tcp_is_sack(tp))
2772			tcp_set_ca_state(sk, TCP_CA_Open);
2773		return 1;
2774	}
2775	return 0;
2776}
2777
2778static inline void tcp_complete_cwr(struct sock *sk)
2779{
2780	struct tcp_sock *tp = tcp_sk(sk);
2781	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2782	tp->snd_cwnd_stamp = tcp_time_stamp;
2783	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2784}
2785
2786static void tcp_try_keep_open(struct sock *sk)
2787{
2788	struct tcp_sock *tp = tcp_sk(sk);
2789	int state = TCP_CA_Open;
2790
2791	if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2792		state = TCP_CA_Disorder;
2793
2794	if (inet_csk(sk)->icsk_ca_state != state) {
2795		tcp_set_ca_state(sk, state);
2796		tp->high_seq = tp->snd_nxt;
2797	}
2798}
2799
2800static void tcp_try_to_open(struct sock *sk, int flag)
2801{
2802	struct tcp_sock *tp = tcp_sk(sk);
2803
2804	tcp_verify_left_out(tp);
2805
2806	if (!tp->frto_counter && tp->retrans_out == 0)
2807		tp->retrans_stamp = 0;
2808
2809	if (flag & FLAG_ECE)
2810		tcp_enter_cwr(sk, 1);
2811
2812	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2813		tcp_try_keep_open(sk);
2814		tcp_moderate_cwnd(tp);
2815	} else {
2816		tcp_cwnd_down(sk, flag);
2817	}
2818}
2819
2820static void tcp_mtup_probe_failed(struct sock *sk)
2821{
2822	struct inet_connection_sock *icsk = inet_csk(sk);
2823
2824	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2825	icsk->icsk_mtup.probe_size = 0;
2826}
2827
2828static void tcp_mtup_probe_success(struct sock *sk)
2829{
2830	struct tcp_sock *tp = tcp_sk(sk);
2831	struct inet_connection_sock *icsk = inet_csk(sk);
2832
2833	/* FIXME: breaks with very large cwnd */
2834	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2835	tp->snd_cwnd = tp->snd_cwnd *
2836		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2837		       icsk->icsk_mtup.probe_size;
2838	tp->snd_cwnd_cnt = 0;
2839	tp->snd_cwnd_stamp = tcp_time_stamp;
2840	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2841
2842	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2843	icsk->icsk_mtup.probe_size = 0;
2844	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2845}
2846
2847/* Do a simple retransmit without using the backoff mechanisms in
2848 * tcp_timer. This is used for path mtu discovery.
2849 * The socket is already locked here.
2850 */
2851void tcp_simple_retransmit(struct sock *sk)
2852{
2853	const struct inet_connection_sock *icsk = inet_csk(sk);
2854	struct tcp_sock *tp = tcp_sk(sk);
2855	struct sk_buff *skb;
2856	unsigned int mss = tcp_current_mss(sk);
2857	u32 prior_lost = tp->lost_out;
2858
2859	tcp_for_write_queue(skb, sk) {
2860		if (skb == tcp_send_head(sk))
2861			break;
2862		if (tcp_skb_seglen(skb) > mss &&
2863		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2864			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2865				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2866				tp->retrans_out -= tcp_skb_pcount(skb);
2867			}
2868			tcp_skb_mark_lost_uncond_verify(tp, skb);
2869		}
2870	}
2871
2872	tcp_clear_retrans_hints_partial(tp);
2873
2874	if (prior_lost == tp->lost_out)
2875		return;
2876
2877	if (tcp_is_reno(tp))
2878		tcp_limit_reno_sacked(tp);
2879
2880	tcp_verify_left_out(tp);
2881
2882	/* Don't muck with the congestion window here.
2883	 * Reason is that we do not increase amount of _data_
2884	 * in network, but units changed and effective
2885	 * cwnd/ssthresh really reduced now.
2886	 */
2887	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2888		tp->high_seq = tp->snd_nxt;
2889		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2890		tp->prior_ssthresh = 0;
2891		tp->undo_marker = 0;
2892		tcp_set_ca_state(sk, TCP_CA_Loss);
2893	}
2894	tcp_xmit_retransmit_queue(sk);
2895}
2896
2897/* Process an event, which can update packets-in-flight not trivially.
2898 * Main goal of this function is to calculate new estimate for left_out,
2899 * taking into account both packets sitting in receiver's buffer and
2900 * packets lost by network.
2901 *
2902 * Besides that it does CWND reduction, when packet loss is detected
2903 * and changes state of machine.
2904 *
2905 * It does _not_ decide what to send, it is made in function
2906 * tcp_xmit_retransmit_queue().
2907 */
2908static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2909{
2910	struct inet_connection_sock *icsk = inet_csk(sk);
2911	struct tcp_sock *tp = tcp_sk(sk);
2912	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2913	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2914				    (tcp_fackets_out(tp) > tp->reordering));
2915	int fast_rexmit = 0, mib_idx;
2916
2917	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2918		tp->sacked_out = 0;
2919	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2920		tp->fackets_out = 0;
2921
2922	/* Now state machine starts.
2923	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2924	if (flag & FLAG_ECE)
2925		tp->prior_ssthresh = 0;
2926
2927	/* B. In all the states check for reneging SACKs. */
2928	if (tcp_check_sack_reneging(sk, flag))
2929		return;
2930
2931	/* C. Process data loss notification, provided it is valid. */
2932	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2933	    before(tp->snd_una, tp->high_seq) &&
2934	    icsk->icsk_ca_state != TCP_CA_Open &&
2935	    tp->fackets_out > tp->reordering) {
2936		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2937		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2938	}
2939
2940	/* D. Check consistency of the current state. */
2941	tcp_verify_left_out(tp);
2942
2943	/* E. Check state exit conditions. State can be terminated
2944	 *    when high_seq is ACKed. */
2945	if (icsk->icsk_ca_state == TCP_CA_Open) {
2946		WARN_ON(tp->retrans_out != 0);
2947		tp->retrans_stamp = 0;
2948	} else if (!before(tp->snd_una, tp->high_seq)) {
2949		switch (icsk->icsk_ca_state) {
2950		case TCP_CA_Loss:
2951			icsk->icsk_retransmits = 0;
2952			if (tcp_try_undo_recovery(sk))
2953				return;
2954			break;
2955
2956		case TCP_CA_CWR:
2957			/* CWR is to be held something *above* high_seq
2958			 * is ACKed for CWR bit to reach receiver. */
2959			if (tp->snd_una != tp->high_seq) {
2960				tcp_complete_cwr(sk);
2961				tcp_set_ca_state(sk, TCP_CA_Open);
2962			}
2963			break;
2964
2965		case TCP_CA_Disorder:
2966			tcp_try_undo_dsack(sk);
2967			if (!tp->undo_marker ||
2968			    /* For SACK case do not Open to allow to undo
2969			     * catching for all duplicate ACKs. */
2970			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2971				tp->undo_marker = 0;
2972				tcp_set_ca_state(sk, TCP_CA_Open);
2973			}
2974			break;
2975
2976		case TCP_CA_Recovery:
2977			if (tcp_is_reno(tp))
2978				tcp_reset_reno_sack(tp);
2979			if (tcp_try_undo_recovery(sk))
2980				return;
2981			tcp_complete_cwr(sk);
2982			break;
2983		}
2984	}
2985
2986	/* F. Process state. */
2987	switch (icsk->icsk_ca_state) {
2988	case TCP_CA_Recovery:
2989		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2990			if (tcp_is_reno(tp) && is_dupack)
2991				tcp_add_reno_sack(sk);
2992		} else
2993			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2994		break;
2995	case TCP_CA_Loss:
2996		if (flag & FLAG_DATA_ACKED)
2997			icsk->icsk_retransmits = 0;
2998		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2999			tcp_reset_reno_sack(tp);
3000		if (!tcp_try_undo_loss(sk)) {
3001			tcp_moderate_cwnd(tp);
3002			tcp_xmit_retransmit_queue(sk);
3003			return;
3004		}
3005		if (icsk->icsk_ca_state != TCP_CA_Open)
3006			return;
3007		/* Loss is undone; fall through to processing in Open state. */
3008	default:
3009		if (tcp_is_reno(tp)) {
3010			if (flag & FLAG_SND_UNA_ADVANCED)
3011				tcp_reset_reno_sack(tp);
3012			if (is_dupack)
3013				tcp_add_reno_sack(sk);
3014		}
3015
3016		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3017			tcp_try_undo_dsack(sk);
3018
3019		if (!tcp_time_to_recover(sk)) {
3020			tcp_try_to_open(sk, flag);
3021			return;
3022		}
3023
3024		/* MTU probe failure: don't reduce cwnd */
3025		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3026		    icsk->icsk_mtup.probe_size &&
3027		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3028			tcp_mtup_probe_failed(sk);
3029			/* Restores the reduction we did in tcp_mtup_probe() */
3030			tp->snd_cwnd++;
3031			tcp_simple_retransmit(sk);
3032			return;
3033		}
3034
3035		/* Otherwise enter Recovery state */
3036
3037		if (tcp_is_reno(tp))
3038			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3039		else
3040			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3041
3042		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3043
3044		tp->high_seq = tp->snd_nxt;
3045		tp->prior_ssthresh = 0;
3046		tp->undo_marker = tp->snd_una;
3047		tp->undo_retrans = tp->retrans_out;
3048
3049		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3050			if (!(flag & FLAG_ECE))
3051				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3052			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3053			TCP_ECN_queue_cwr(tp);
3054		}
3055
3056		tp->bytes_acked = 0;
3057		tp->snd_cwnd_cnt = 0;
3058		tcp_set_ca_state(sk, TCP_CA_Recovery);
3059		fast_rexmit = 1;
3060	}
3061
3062	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3063		tcp_update_scoreboard(sk, fast_rexmit);
3064	tcp_cwnd_down(sk, flag);
3065	tcp_xmit_retransmit_queue(sk);
3066}
3067
3068static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3069{
3070	tcp_rtt_estimator(sk, seq_rtt);
3071	tcp_set_rto(sk);
3072	inet_csk(sk)->icsk_backoff = 0;
3073}
3074
3075/* Read draft-ietf-tcplw-high-performance before mucking
3076 * with this code. (Supersedes RFC1323)
3077 */
3078static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3079{
3080	/* RTTM Rule: A TSecr value received in a segment is used to
3081	 * update the averaged RTT measurement only if the segment
3082	 * acknowledges some new data, i.e., only if it advances the
3083	 * left edge of the send window.
3084	 *
3085	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3086	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3087	 *
3088	 * Changed: reset backoff as soon as we see the first valid sample.
3089	 * If we do not, we get strongly overestimated rto. With timestamps
3090	 * samples are accepted even from very old segments: f.e., when rtt=1
3091	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3092	 * answer arrives rto becomes 120 seconds! If at least one of segments
3093	 * in window is lost... Voila.	 			--ANK (010210)
3094	 */
3095	struct tcp_sock *tp = tcp_sk(sk);
3096
3097	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3098}
3099
3100static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3101{
3102	/* We don't have a timestamp. Can only use
3103	 * packets that are not retransmitted to determine
3104	 * rtt estimates. Also, we must not reset the
3105	 * backoff for rto until we get a non-retransmitted
3106	 * packet. This allows us to deal with a situation
3107	 * where the network delay has increased suddenly.
3108	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3109	 */
3110
3111	if (flag & FLAG_RETRANS_DATA_ACKED)
3112		return;
3113
3114	tcp_valid_rtt_meas(sk, seq_rtt);
3115}
3116
3117static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3118				      const s32 seq_rtt)
3119{
3120	const struct tcp_sock *tp = tcp_sk(sk);
3121	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3122	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3123		tcp_ack_saw_tstamp(sk, flag);
3124	else if (seq_rtt >= 0)
3125		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3126}
3127
3128static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3129{
3130	const struct inet_connection_sock *icsk = inet_csk(sk);
3131	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3132	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3133}
3134
3135/* Restart timer after forward progress on connection.
3136 * RFC2988 recommends to restart timer to now+rto.
3137 */
3138static void tcp_rearm_rto(struct sock *sk)
3139{
3140	struct tcp_sock *tp = tcp_sk(sk);
3141
3142	if (!tp->packets_out) {
3143		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3144	} else {
3145		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3146					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3147	}
3148}
3149
3150/* If we get here, the whole TSO packet has not been acked. */
3151static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3152{
3153	struct tcp_sock *tp = tcp_sk(sk);
3154	u32 packets_acked;
3155
3156	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3157
3158	packets_acked = tcp_skb_pcount(skb);
3159	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3160		return 0;
3161	packets_acked -= tcp_skb_pcount(skb);
3162
3163	if (packets_acked) {
3164		BUG_ON(tcp_skb_pcount(skb) == 0);
3165		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3166	}
3167
3168	return packets_acked;
3169}
3170
3171/* Remove acknowledged frames from the retransmission queue. If our packet
3172 * is before the ack sequence we can discard it as it's confirmed to have
3173 * arrived at the other end.
3174 */
3175static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3176			       u32 prior_snd_una)
3177{
3178	struct tcp_sock *tp = tcp_sk(sk);
3179	const struct inet_connection_sock *icsk = inet_csk(sk);
3180	struct sk_buff *skb;
3181	u32 now = tcp_time_stamp;
3182	int fully_acked = 1;
3183	int flag = 0;
3184	u32 pkts_acked = 0;
3185	u32 reord = tp->packets_out;
3186	u32 prior_sacked = tp->sacked_out;
3187	s32 seq_rtt = -1;
3188	s32 ca_seq_rtt = -1;
3189	ktime_t last_ackt = net_invalid_timestamp();
3190
3191	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3192		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3193		u32 acked_pcount;
3194		u8 sacked = scb->sacked;
3195
3196		/* Determine how many packets and what bytes were acked, tso and else */
3197		if (after(scb->end_seq, tp->snd_una)) {
3198			if (tcp_skb_pcount(skb) == 1 ||
3199			    !after(tp->snd_una, scb->seq))
3200				break;
3201
3202			acked_pcount = tcp_tso_acked(sk, skb);
3203			if (!acked_pcount)
3204				break;
3205
3206			fully_acked = 0;
3207		} else {
3208			acked_pcount = tcp_skb_pcount(skb);
3209		}
3210
3211		if (sacked & TCPCB_RETRANS) {
3212			if (sacked & TCPCB_SACKED_RETRANS)
3213				tp->retrans_out -= acked_pcount;
3214			flag |= FLAG_RETRANS_DATA_ACKED;
3215			ca_seq_rtt = -1;
3216			seq_rtt = -1;
3217			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3218				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3219		} else {
3220			ca_seq_rtt = now - scb->when;
3221			last_ackt = skb->tstamp;
3222			if (seq_rtt < 0) {
3223				seq_rtt = ca_seq_rtt;
3224			}
3225			if (!(sacked & TCPCB_SACKED_ACKED))
3226				reord = min(pkts_acked, reord);
3227		}
3228
3229		if (sacked & TCPCB_SACKED_ACKED)
3230			tp->sacked_out -= acked_pcount;
3231		if (sacked & TCPCB_LOST)
3232			tp->lost_out -= acked_pcount;
3233
3234		tp->packets_out -= acked_pcount;
3235		pkts_acked += acked_pcount;
3236
3237		/* Initial outgoing SYN's get put onto the write_queue
3238		 * just like anything else we transmit.  It is not
3239		 * true data, and if we misinform our callers that
3240		 * this ACK acks real data, we will erroneously exit
3241		 * connection startup slow start one packet too
3242		 * quickly.  This is severely frowned upon behavior.
3243		 */
3244		if (!(scb->flags & TCPCB_FLAG_SYN)) {
3245			flag |= FLAG_DATA_ACKED;
3246		} else {
3247			flag |= FLAG_SYN_ACKED;
3248			tp->retrans_stamp = 0;
3249		}
3250
3251		if (!fully_acked)
3252			break;
3253
3254		tcp_unlink_write_queue(skb, sk);
3255		sk_wmem_free_skb(sk, skb);
3256		tp->scoreboard_skb_hint = NULL;
3257		if (skb == tp->retransmit_skb_hint)
3258			tp->retransmit_skb_hint = NULL;
3259		if (skb == tp->lost_skb_hint)
3260			tp->lost_skb_hint = NULL;
3261	}
3262
3263	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3264		tp->snd_up = tp->snd_una;
3265
3266	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3267		flag |= FLAG_SACK_RENEGING;
3268
3269	if (flag & FLAG_ACKED) {
3270		const struct tcp_congestion_ops *ca_ops
3271			= inet_csk(sk)->icsk_ca_ops;
3272
3273		if (unlikely(icsk->icsk_mtup.probe_size &&
3274			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3275			tcp_mtup_probe_success(sk);
3276		}
3277
3278		tcp_ack_update_rtt(sk, flag, seq_rtt);
3279		tcp_rearm_rto(sk);
3280
3281		if (tcp_is_reno(tp)) {
3282			tcp_remove_reno_sacks(sk, pkts_acked);
3283		} else {
3284			int delta;
3285
3286			/* Non-retransmitted hole got filled? That's reordering */
3287			if (reord < prior_fackets)
3288				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3289
3290			delta = tcp_is_fack(tp) ? pkts_acked :
3291						  prior_sacked - tp->sacked_out;
3292			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3293		}
3294
3295		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3296
3297		if (ca_ops->pkts_acked) {
3298			s32 rtt_us = -1;
3299
3300			/* Is the ACK triggering packet unambiguous? */
3301			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3302				/* High resolution needed and available? */
3303				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3304				    !ktime_equal(last_ackt,
3305						 net_invalid_timestamp()))
3306					rtt_us = ktime_us_delta(ktime_get_real(),
3307								last_ackt);
3308				else if (ca_seq_rtt > 0)
3309					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3310			}
3311
3312			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3313		}
3314	}
3315
3316#if FASTRETRANS_DEBUG > 0
3317	WARN_ON((int)tp->sacked_out < 0);
3318	WARN_ON((int)tp->lost_out < 0);
3319	WARN_ON((int)tp->retrans_out < 0);
3320	if (!tp->packets_out && tcp_is_sack(tp)) {
3321		icsk = inet_csk(sk);
3322		if (tp->lost_out) {
3323			printk(KERN_DEBUG "Leak l=%u %d\n",
3324			       tp->lost_out, icsk->icsk_ca_state);
3325			tp->lost_out = 0;
3326		}
3327		if (tp->sacked_out) {
3328			printk(KERN_DEBUG "Leak s=%u %d\n",
3329			       tp->sacked_out, icsk->icsk_ca_state);
3330			tp->sacked_out = 0;
3331		}
3332		if (tp->retrans_out) {
3333			printk(KERN_DEBUG "Leak r=%u %d\n",
3334			       tp->retrans_out, icsk->icsk_ca_state);
3335			tp->retrans_out = 0;
3336		}
3337	}
3338#endif
3339	return flag;
3340}
3341
3342static void tcp_ack_probe(struct sock *sk)
3343{
3344	const struct tcp_sock *tp = tcp_sk(sk);
3345	struct inet_connection_sock *icsk = inet_csk(sk);
3346
3347	/* Was it a usable window open? */
3348
3349	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3350		icsk->icsk_backoff = 0;
3351		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3352		/* Socket must be waked up by subsequent tcp_data_snd_check().
3353		 * This function is not for random using!
3354		 */
3355	} else {
3356		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3357					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3358					  TCP_RTO_MAX);
3359	}
3360}
3361
3362static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3363{
3364	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3365		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3366}
3367
3368static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3369{
3370	const struct tcp_sock *tp = tcp_sk(sk);
3371	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3372		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3373}
3374
3375/* Check that window update is acceptable.
3376 * The function assumes that snd_una<=ack<=snd_next.
3377 */
3378static inline int tcp_may_update_window(const struct tcp_sock *tp,
3379					const u32 ack, const u32 ack_seq,
3380					const u32 nwin)
3381{
3382	return (after(ack, tp->snd_una) ||
3383		after(ack_seq, tp->snd_wl1) ||
3384		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3385}
3386
3387/* Update our send window.
3388 *
3389 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3390 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3391 */
3392static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3393				 u32 ack_seq)
3394{
3395	struct tcp_sock *tp = tcp_sk(sk);
3396	int flag = 0;
3397	u32 nwin = ntohs(tcp_hdr(skb)->window);
3398
3399	if (likely(!tcp_hdr(skb)->syn))
3400		nwin <<= tp->rx_opt.snd_wscale;
3401
3402	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3403		flag |= FLAG_WIN_UPDATE;
3404		tcp_update_wl(tp, ack_seq);
3405
3406		if (tp->snd_wnd != nwin) {
3407			tp->snd_wnd = nwin;
3408
3409			/* Note, it is the only place, where
3410			 * fast path is recovered for sending TCP.
3411			 */
3412			tp->pred_flags = 0;
3413			tcp_fast_path_check(sk);
3414
3415			if (nwin > tp->max_window) {
3416				tp->max_window = nwin;
3417				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3418			}
3419		}
3420	}
3421
3422	tp->snd_una = ack;
3423
3424	return flag;
3425}
3426
3427/* A very conservative spurious RTO response algorithm: reduce cwnd and
3428 * continue in congestion avoidance.
3429 */
3430static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3431{
3432	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3433	tp->snd_cwnd_cnt = 0;
3434	tp->bytes_acked = 0;
3435	TCP_ECN_queue_cwr(tp);
3436	tcp_moderate_cwnd(tp);
3437}
3438
3439/* A conservative spurious RTO response algorithm: reduce cwnd using
3440 * rate halving and continue in congestion avoidance.
3441 */
3442static void tcp_ratehalving_spur_to_response(struct sock *sk)
3443{
3444	tcp_enter_cwr(sk, 0);
3445}
3446
3447static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3448{
3449	if (flag & FLAG_ECE)
3450		tcp_ratehalving_spur_to_response(sk);
3451	else
3452		tcp_undo_cwr(sk, 1);
3453}
3454
3455/* F-RTO spurious RTO detection algorithm (RFC4138)
3456 *
3457 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3458 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3459 * window (but not to or beyond highest sequence sent before RTO):
3460 *   On First ACK,  send two new segments out.
3461 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3462 *                  algorithm is not part of the F-RTO detection algorithm
3463 *                  given in RFC4138 but can be selected separately).
3464 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3465 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3466 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3467 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3468 *
3469 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3470 * original window even after we transmit two new data segments.
3471 *
3472 * SACK version:
3473 *   on first step, wait until first cumulative ACK arrives, then move to
3474 *   the second step. In second step, the next ACK decides.
3475 *
3476 * F-RTO is implemented (mainly) in four functions:
3477 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3478 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3479 *     called when tcp_use_frto() showed green light
3480 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3481 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3482 *     to prove that the RTO is indeed spurious. It transfers the control
3483 *     from F-RTO to the conventional RTO recovery
3484 */
3485static int tcp_process_frto(struct sock *sk, int flag)
3486{
3487	struct tcp_sock *tp = tcp_sk(sk);
3488
3489	tcp_verify_left_out(tp);
3490
3491	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3492	if (flag & FLAG_DATA_ACKED)
3493		inet_csk(sk)->icsk_retransmits = 0;
3494
3495	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3496	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3497		tp->undo_marker = 0;
3498
3499	if (!before(tp->snd_una, tp->frto_highmark)) {
3500		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3501		return 1;
3502	}
3503
3504	if (!tcp_is_sackfrto(tp)) {
3505		/* RFC4138 shortcoming in step 2; should also have case c):
3506		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3507		 * data, winupdate
3508		 */
3509		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3510			return 1;
3511
3512		if (!(flag & FLAG_DATA_ACKED)) {
3513			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3514					    flag);
3515			return 1;
3516		}
3517	} else {
3518		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3519			/* Prevent sending of new data. */
3520			tp->snd_cwnd = min(tp->snd_cwnd,
3521					   tcp_packets_in_flight(tp));
3522			return 1;
3523		}
3524
3525		if ((tp->frto_counter >= 2) &&
3526		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3527		     ((flag & FLAG_DATA_SACKED) &&
3528		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3529			/* RFC4138 shortcoming (see comment above) */
3530			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3531			    (flag & FLAG_NOT_DUP))
3532				return 1;
3533
3534			tcp_enter_frto_loss(sk, 3, flag);
3535			return 1;
3536		}
3537	}
3538
3539	if (tp->frto_counter == 1) {
3540		/* tcp_may_send_now needs to see updated state */
3541		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3542		tp->frto_counter = 2;
3543
3544		if (!tcp_may_send_now(sk))
3545			tcp_enter_frto_loss(sk, 2, flag);
3546
3547		return 1;
3548	} else {
3549		switch (sysctl_tcp_frto_response) {
3550		case 2:
3551			tcp_undo_spur_to_response(sk, flag);
3552			break;
3553		case 1:
3554			tcp_conservative_spur_to_response(tp);
3555			break;
3556		default:
3557			tcp_ratehalving_spur_to_response(sk);
3558			break;
3559		}
3560		tp->frto_counter = 0;
3561		tp->undo_marker = 0;
3562		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3563	}
3564	return 0;
3565}
3566
3567/* This routine deals with incoming acks, but not outgoing ones. */
3568static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3569{
3570	struct inet_connection_sock *icsk = inet_csk(sk);
3571	struct tcp_sock *tp = tcp_sk(sk);
3572	u32 prior_snd_una = tp->snd_una;
3573	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3574	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3575	u32 prior_in_flight;
3576	u32 prior_fackets;
3577	int prior_packets;
3578	int frto_cwnd = 0;
3579
3580	/* If the ack is older than previous acks
3581	 * then we can probably ignore it.
3582	 */
3583	if (before(ack, prior_snd_una))
3584		goto old_ack;
3585
3586	/* If the ack includes data we haven't sent yet, discard
3587	 * this segment (RFC793 Section 3.9).
3588	 */
3589	if (after(ack, tp->snd_nxt))
3590		goto invalid_ack;
3591
3592	if (after(ack, prior_snd_una))
3593		flag |= FLAG_SND_UNA_ADVANCED;
3594
3595	if (sysctl_tcp_abc) {
3596		if (icsk->icsk_ca_state < TCP_CA_CWR)
3597			tp->bytes_acked += ack - prior_snd_una;
3598		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3599			/* we assume just one segment left network */
3600			tp->bytes_acked += min(ack - prior_snd_una,
3601					       tp->mss_cache);
3602	}
3603
3604	prior_fackets = tp->fackets_out;
3605	prior_in_flight = tcp_packets_in_flight(tp);
3606
3607	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3608		/* Window is constant, pure forward advance.
3609		 * No more checks are required.
3610		 * Note, we use the fact that SND.UNA>=SND.WL2.
3611		 */
3612		tcp_update_wl(tp, ack_seq);
3613		tp->snd_una = ack;
3614		flag |= FLAG_WIN_UPDATE;
3615
3616		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3617
3618		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3619	} else {
3620		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3621			flag |= FLAG_DATA;
3622		else
3623			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3624
3625		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3626
3627		if (TCP_SKB_CB(skb)->sacked)
3628			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3629
3630		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3631			flag |= FLAG_ECE;
3632
3633		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3634	}
3635
3636	/* We passed data and got it acked, remove any soft error
3637	 * log. Something worked...
3638	 */
3639	sk->sk_err_soft = 0;
3640	icsk->icsk_probes_out = 0;
3641	tp->rcv_tstamp = tcp_time_stamp;
3642	prior_packets = tp->packets_out;
3643	if (!prior_packets)
3644		goto no_queue;
3645
3646	/* See if we can take anything off of the retransmit queue. */
3647	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3648
3649	if (tp->frto_counter)
3650		frto_cwnd = tcp_process_frto(sk, flag);
3651	/* Guarantee sacktag reordering detection against wrap-arounds */
3652	if (before(tp->frto_highmark, tp->snd_una))
3653		tp->frto_highmark = 0;
3654
3655	if (tcp_ack_is_dubious(sk, flag)) {
3656		/* Advance CWND, if state allows this. */
3657		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3658		    tcp_may_raise_cwnd(sk, flag))
3659			tcp_cong_avoid(sk, ack, prior_in_flight);
3660		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3661				      flag);
3662	} else {
3663		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3664			tcp_cong_avoid(sk, ack, prior_in_flight);
3665	}
3666
3667	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3668		dst_confirm(sk->sk_dst_cache);
3669
3670	return 1;
3671
3672no_queue:
3673	/* If this ack opens up a zero window, clear backoff.  It was
3674	 * being used to time the probes, and is probably far higher than
3675	 * it needs to be for normal retransmission.
3676	 */
3677	if (tcp_send_head(sk))
3678		tcp_ack_probe(sk);
3679	return 1;
3680
3681invalid_ack:
3682	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3683	return -1;
3684
3685old_ack:
3686	if (TCP_SKB_CB(skb)->sacked) {
3687		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3688		if (icsk->icsk_ca_state == TCP_CA_Open)
3689			tcp_try_keep_open(sk);
3690	}
3691
3692	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3693	return 0;
3694}
3695
3696/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3697 * But, this can also be called on packets in the established flow when
3698 * the fast version below fails.
3699 */
3700void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3701		       int estab,  struct dst_entry *dst)
3702{
3703	unsigned char *ptr;
3704	struct tcphdr *th = tcp_hdr(skb);
3705	int length = (th->doff * 4) - sizeof(struct tcphdr);
3706
3707	BUG_ON(!estab && !dst);
3708
3709	ptr = (unsigned char *)(th + 1);
3710	opt_rx->saw_tstamp = 0;
3711
3712	while (length > 0) {
3713		int opcode = *ptr++;
3714		int opsize;
3715
3716		switch (opcode) {
3717		case TCPOPT_EOL:
3718			return;
3719		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3720			length--;
3721			continue;
3722		default:
3723			opsize = *ptr++;
3724			if (opsize < 2) /* "silly options" */
3725				return;
3726			if (opsize > length)
3727				return;	/* don't parse partial options */
3728			switch (opcode) {
3729			case TCPOPT_MSS:
3730				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3731					u16 in_mss = get_unaligned_be16(ptr);
3732					if (in_mss) {
3733						if (opt_rx->user_mss &&
3734						    opt_rx->user_mss < in_mss)
3735							in_mss = opt_rx->user_mss;
3736						opt_rx->mss_clamp = in_mss;
3737					}
3738				}
3739				break;
3740			case TCPOPT_WINDOW:
3741				if (opsize == TCPOLEN_WINDOW && th->syn &&
3742				    !estab && sysctl_tcp_window_scaling) {
3743					__u8 snd_wscale = *(__u8 *)ptr;
3744					opt_rx->wscale_ok = 1;
3745					if (snd_wscale > 14) {
3746						if (net_ratelimit())
3747							printk(KERN_INFO "tcp_parse_options: Illegal window "
3748							       "scaling value %d >14 received.\n",
3749							       snd_wscale);
3750						snd_wscale = 14;
3751					}
3752					opt_rx->snd_wscale = snd_wscale;
3753				}
3754				break;
3755			case TCPOPT_TIMESTAMP:
3756				if ((opsize == TCPOLEN_TIMESTAMP) &&
3757				    ((estab && opt_rx->tstamp_ok) ||
3758				     (!estab && sysctl_tcp_timestamps &&
3759				      !dst_feature(dst, RTAX_FEATURE_NO_TSTAMP)))) {
3760					opt_rx->saw_tstamp = 1;
3761					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3762					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3763				}
3764				break;
3765			case TCPOPT_SACK_PERM:
3766				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3767				    !estab && sysctl_tcp_sack &&
3768				    !dst_feature(dst, RTAX_FEATURE_NO_SACK)) {
3769					opt_rx->sack_ok = 1;
3770					tcp_sack_reset(opt_rx);
3771				}
3772				break;
3773
3774			case TCPOPT_SACK:
3775				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3776				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3777				   opt_rx->sack_ok) {
3778					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3779				}
3780				break;
3781#ifdef CONFIG_TCP_MD5SIG
3782			case TCPOPT_MD5SIG:
3783				/*
3784				 * The MD5 Hash has already been
3785				 * checked (see tcp_v{4,6}_do_rcv()).
3786				 */
3787				break;
3788#endif
3789			}
3790
3791			ptr += opsize-2;
3792			length -= opsize;
3793		}
3794	}
3795}
3796
3797static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3798{
3799	__be32 *ptr = (__be32 *)(th + 1);
3800
3801	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3802			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3803		tp->rx_opt.saw_tstamp = 1;
3804		++ptr;
3805		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3806		++ptr;
3807		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3808		return 1;
3809	}
3810	return 0;
3811}
3812
3813/* Fast parse options. This hopes to only see timestamps.
3814 * If it is wrong it falls back on tcp_parse_options().
3815 */
3816static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3817				  struct tcp_sock *tp)
3818{
3819	if (th->doff == sizeof(struct tcphdr) >> 2) {
3820		tp->rx_opt.saw_tstamp = 0;
3821		return 0;
3822	} else if (tp->rx_opt.tstamp_ok &&
3823		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3824		if (tcp_parse_aligned_timestamp(tp, th))
3825			return 1;
3826	}
3827	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3828	return 1;
3829}
3830
3831#ifdef CONFIG_TCP_MD5SIG
3832/*
3833 * Parse MD5 Signature option
3834 */
3835u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3836{
3837	int length = (th->doff << 2) - sizeof (*th);
3838	u8 *ptr = (u8*)(th + 1);
3839
3840	/* If the TCP option is too short, we can short cut */
3841	if (length < TCPOLEN_MD5SIG)
3842		return NULL;
3843
3844	while (length > 0) {
3845		int opcode = *ptr++;
3846		int opsize;
3847
3848		switch(opcode) {
3849		case TCPOPT_EOL:
3850			return NULL;
3851		case TCPOPT_NOP:
3852			length--;
3853			continue;
3854		default:
3855			opsize = *ptr++;
3856			if (opsize < 2 || opsize > length)
3857				return NULL;
3858			if (opcode == TCPOPT_MD5SIG)
3859				return ptr;
3860		}
3861		ptr += opsize - 2;
3862		length -= opsize;
3863	}
3864	return NULL;
3865}
3866#endif
3867
3868static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3869{
3870	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3871	tp->rx_opt.ts_recent_stamp = get_seconds();
3872}
3873
3874static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3875{
3876	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3877		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3878		 * extra check below makes sure this can only happen
3879		 * for pure ACK frames.  -DaveM
3880		 *
3881		 * Not only, also it occurs for expired timestamps.
3882		 */
3883
3884		if (tcp_paws_check(&tp->rx_opt, 0))
3885			tcp_store_ts_recent(tp);
3886	}
3887}
3888
3889/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3890 *
3891 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3892 * it can pass through stack. So, the following predicate verifies that
3893 * this segment is not used for anything but congestion avoidance or
3894 * fast retransmit. Moreover, we even are able to eliminate most of such
3895 * second order effects, if we apply some small "replay" window (~RTO)
3896 * to timestamp space.
3897 *
3898 * All these measures still do not guarantee that we reject wrapped ACKs
3899 * on networks with high bandwidth, when sequence space is recycled fastly,
3900 * but it guarantees that such events will be very rare and do not affect
3901 * connection seriously. This doesn't look nice, but alas, PAWS is really
3902 * buggy extension.
3903 *
3904 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3905 * states that events when retransmit arrives after original data are rare.
3906 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3907 * the biggest problem on large power networks even with minor reordering.
3908 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3909 * up to bandwidth of 18Gigabit/sec. 8) ]
3910 */
3911
3912static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3913{
3914	struct tcp_sock *tp = tcp_sk(sk);
3915	struct tcphdr *th = tcp_hdr(skb);
3916	u32 seq = TCP_SKB_CB(skb)->seq;
3917	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3918
3919	return (/* 1. Pure ACK with correct sequence number. */
3920		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3921
3922		/* 2. ... and duplicate ACK. */
3923		ack == tp->snd_una &&
3924
3925		/* 3. ... and does not update window. */
3926		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3927
3928		/* 4. ... and sits in replay window. */
3929		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3930}
3931
3932static inline int tcp_paws_discard(const struct sock *sk,
3933				   const struct sk_buff *skb)
3934{
3935	const struct tcp_sock *tp = tcp_sk(sk);
3936
3937	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3938	       !tcp_disordered_ack(sk, skb);
3939}
3940
3941/* Check segment sequence number for validity.
3942 *
3943 * Segment controls are considered valid, if the segment
3944 * fits to the window after truncation to the window. Acceptability
3945 * of data (and SYN, FIN, of course) is checked separately.
3946 * See tcp_data_queue(), for example.
3947 *
3948 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3949 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3950 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3951 * (borrowed from freebsd)
3952 */
3953
3954static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3955{
3956	return	!before(end_seq, tp->rcv_wup) &&
3957		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3958}
3959
3960/* When we get a reset we do this. */
3961static void tcp_reset(struct sock *sk)
3962{
3963	/* We want the right error as BSD sees it (and indeed as we do). */
3964	switch (sk->sk_state) {
3965	case TCP_SYN_SENT:
3966		sk->sk_err = ECONNREFUSED;
3967		break;
3968	case TCP_CLOSE_WAIT:
3969		sk->sk_err = EPIPE;
3970		break;
3971	case TCP_CLOSE:
3972		return;
3973	default:
3974		sk->sk_err = ECONNRESET;
3975	}
3976
3977	if (!sock_flag(sk, SOCK_DEAD))
3978		sk->sk_error_report(sk);
3979
3980	tcp_done(sk);
3981}
3982
3983/*
3984 * 	Process the FIN bit. This now behaves as it is supposed to work
3985 *	and the FIN takes effect when it is validly part of sequence
3986 *	space. Not before when we get holes.
3987 *
3988 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3989 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3990 *	TIME-WAIT)
3991 *
3992 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3993 *	close and we go into CLOSING (and later onto TIME-WAIT)
3994 *
3995 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3996 */
3997static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3998{
3999	struct tcp_sock *tp = tcp_sk(sk);
4000
4001	inet_csk_schedule_ack(sk);
4002
4003	sk->sk_shutdown |= RCV_SHUTDOWN;
4004	sock_set_flag(sk, SOCK_DONE);
4005
4006	switch (sk->sk_state) {
4007	case TCP_SYN_RECV:
4008	case TCP_ESTABLISHED:
4009		/* Move to CLOSE_WAIT */
4010		tcp_set_state(sk, TCP_CLOSE_WAIT);
4011		inet_csk(sk)->icsk_ack.pingpong = 1;
4012		break;
4013
4014	case TCP_CLOSE_WAIT:
4015	case TCP_CLOSING:
4016		/* Received a retransmission of the FIN, do
4017		 * nothing.
4018		 */
4019		break;
4020	case TCP_LAST_ACK:
4021		/* RFC793: Remain in the LAST-ACK state. */
4022		break;
4023
4024	case TCP_FIN_WAIT1:
4025		/* This case occurs when a simultaneous close
4026		 * happens, we must ack the received FIN and
4027		 * enter the CLOSING state.
4028		 */
4029		tcp_send_ack(sk);
4030		tcp_set_state(sk, TCP_CLOSING);
4031		break;
4032	case TCP_FIN_WAIT2:
4033		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4034		tcp_send_ack(sk);
4035		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4036		break;
4037	default:
4038		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4039		 * cases we should never reach this piece of code.
4040		 */
4041		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4042		       __func__, sk->sk_state);
4043		break;
4044	}
4045
4046	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4047	 * Probably, we should reset in this case. For now drop them.
4048	 */
4049	__skb_queue_purge(&tp->out_of_order_queue);
4050	if (tcp_is_sack(tp))
4051		tcp_sack_reset(&tp->rx_opt);
4052	sk_mem_reclaim(sk);
4053
4054	if (!sock_flag(sk, SOCK_DEAD)) {
4055		sk->sk_state_change(sk);
4056
4057		/* Do not send POLL_HUP for half duplex close. */
4058		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4059		    sk->sk_state == TCP_CLOSE)
4060			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4061		else
4062			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4063	}
4064}
4065
4066static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4067				  u32 end_seq)
4068{
4069	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4070		if (before(seq, sp->start_seq))
4071			sp->start_seq = seq;
4072		if (after(end_seq, sp->end_seq))
4073			sp->end_seq = end_seq;
4074		return 1;
4075	}
4076	return 0;
4077}
4078
4079static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4080{
4081	struct tcp_sock *tp = tcp_sk(sk);
4082
4083	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4084		int mib_idx;
4085
4086		if (before(seq, tp->rcv_nxt))
4087			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4088		else
4089			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4090
4091		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4092
4093		tp->rx_opt.dsack = 1;
4094		tp->duplicate_sack[0].start_seq = seq;
4095		tp->duplicate_sack[0].end_seq = end_seq;
4096	}
4097}
4098
4099static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4100{
4101	struct tcp_sock *tp = tcp_sk(sk);
4102
4103	if (!tp->rx_opt.dsack)
4104		tcp_dsack_set(sk, seq, end_seq);
4105	else
4106		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4107}
4108
4109static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4110{
4111	struct tcp_sock *tp = tcp_sk(sk);
4112
4113	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4114	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4115		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4116		tcp_enter_quickack_mode(sk);
4117
4118		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4119			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4120
4121			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4122				end_seq = tp->rcv_nxt;
4123			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4124		}
4125	}
4126
4127	tcp_send_ack(sk);
4128}
4129
4130/* These routines update the SACK block as out-of-order packets arrive or
4131 * in-order packets close up the sequence space.
4132 */
4133static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4134{
4135	int this_sack;
4136	struct tcp_sack_block *sp = &tp->selective_acks[0];
4137	struct tcp_sack_block *swalk = sp + 1;
4138
4139	/* See if the recent change to the first SACK eats into
4140	 * or hits the sequence space of other SACK blocks, if so coalesce.
4141	 */
4142	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4143		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4144			int i;
4145
4146			/* Zap SWALK, by moving every further SACK up by one slot.
4147			 * Decrease num_sacks.
4148			 */
4149			tp->rx_opt.num_sacks--;
4150			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4151				sp[i] = sp[i + 1];
4152			continue;
4153		}
4154		this_sack++, swalk++;
4155	}
4156}
4157
4158static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4159{
4160	struct tcp_sock *tp = tcp_sk(sk);
4161	struct tcp_sack_block *sp = &tp->selective_acks[0];
4162	int cur_sacks = tp->rx_opt.num_sacks;
4163	int this_sack;
4164
4165	if (!cur_sacks)
4166		goto new_sack;
4167
4168	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4169		if (tcp_sack_extend(sp, seq, end_seq)) {
4170			/* Rotate this_sack to the first one. */
4171			for (; this_sack > 0; this_sack--, sp--)
4172				swap(*sp, *(sp - 1));
4173			if (cur_sacks > 1)
4174				tcp_sack_maybe_coalesce(tp);
4175			return;
4176		}
4177	}
4178
4179	/* Could not find an adjacent existing SACK, build a new one,
4180	 * put it at the front, and shift everyone else down.  We
4181	 * always know there is at least one SACK present already here.
4182	 *
4183	 * If the sack array is full, forget about the last one.
4184	 */
4185	if (this_sack >= TCP_NUM_SACKS) {
4186		this_sack--;
4187		tp->rx_opt.num_sacks--;
4188		sp--;
4189	}
4190	for (; this_sack > 0; this_sack--, sp--)
4191		*sp = *(sp - 1);
4192
4193new_sack:
4194	/* Build the new head SACK, and we're done. */
4195	sp->start_seq = seq;
4196	sp->end_seq = end_seq;
4197	tp->rx_opt.num_sacks++;
4198}
4199
4200/* RCV.NXT advances, some SACKs should be eaten. */
4201
4202static void tcp_sack_remove(struct tcp_sock *tp)
4203{
4204	struct tcp_sack_block *sp = &tp->selective_acks[0];
4205	int num_sacks = tp->rx_opt.num_sacks;
4206	int this_sack;
4207
4208	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4209	if (skb_queue_empty(&tp->out_of_order_queue)) {
4210		tp->rx_opt.num_sacks = 0;
4211		return;
4212	}
4213
4214	for (this_sack = 0; this_sack < num_sacks;) {
4215		/* Check if the start of the sack is covered by RCV.NXT. */
4216		if (!before(tp->rcv_nxt, sp->start_seq)) {
4217			int i;
4218
4219			/* RCV.NXT must cover all the block! */
4220			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4221
4222			/* Zap this SACK, by moving forward any other SACKS. */
4223			for (i=this_sack+1; i < num_sacks; i++)
4224				tp->selective_acks[i-1] = tp->selective_acks[i];
4225			num_sacks--;
4226			continue;
4227		}
4228		this_sack++;
4229		sp++;
4230	}
4231	tp->rx_opt.num_sacks = num_sacks;
4232}
4233
4234/* This one checks to see if we can put data from the
4235 * out_of_order queue into the receive_queue.
4236 */
4237static void tcp_ofo_queue(struct sock *sk)
4238{
4239	struct tcp_sock *tp = tcp_sk(sk);
4240	__u32 dsack_high = tp->rcv_nxt;
4241	struct sk_buff *skb;
4242
4243	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4244		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4245			break;
4246
4247		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4248			__u32 dsack = dsack_high;
4249			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4250				dsack_high = TCP_SKB_CB(skb)->end_seq;
4251			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4252		}
4253
4254		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4255			SOCK_DEBUG(sk, "ofo packet was already received \n");
4256			__skb_unlink(skb, &tp->out_of_order_queue);
4257			__kfree_skb(skb);
4258			continue;
4259		}
4260		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4261			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4262			   TCP_SKB_CB(skb)->end_seq);
4263
4264		__skb_unlink(skb, &tp->out_of_order_queue);
4265		__skb_queue_tail(&sk->sk_receive_queue, skb);
4266		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4267		if (tcp_hdr(skb)->fin)
4268			tcp_fin(skb, sk, tcp_hdr(skb));
4269	}
4270}
4271
4272static int tcp_prune_ofo_queue(struct sock *sk);
4273static int tcp_prune_queue(struct sock *sk);
4274
4275static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4276{
4277	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4278	    !sk_rmem_schedule(sk, size)) {
4279
4280		if (tcp_prune_queue(sk) < 0)
4281			return -1;
4282
4283		if (!sk_rmem_schedule(sk, size)) {
4284			if (!tcp_prune_ofo_queue(sk))
4285				return -1;
4286
4287			if (!sk_rmem_schedule(sk, size))
4288				return -1;
4289		}
4290	}
4291	return 0;
4292}
4293
4294static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4295{
4296	struct tcphdr *th = tcp_hdr(skb);
4297	struct tcp_sock *tp = tcp_sk(sk);
4298	int eaten = -1;
4299
4300	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4301		goto drop;
4302
4303	__skb_pull(skb, th->doff * 4);
4304
4305	TCP_ECN_accept_cwr(tp, skb);
4306
4307	tp->rx_opt.dsack = 0;
4308
4309	/*  Queue data for delivery to the user.
4310	 *  Packets in sequence go to the receive queue.
4311	 *  Out of sequence packets to the out_of_order_queue.
4312	 */
4313	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4314		if (tcp_receive_window(tp) == 0)
4315			goto out_of_window;
4316
4317		/* Ok. In sequence. In window. */
4318		if (tp->ucopy.task == current &&
4319		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4320		    sock_owned_by_user(sk) && !tp->urg_data) {
4321			int chunk = min_t(unsigned int, skb->len,
4322					  tp->ucopy.len);
4323
4324			__set_current_state(TASK_RUNNING);
4325
4326			local_bh_enable();
4327			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4328				tp->ucopy.len -= chunk;
4329				tp->copied_seq += chunk;
4330				eaten = (chunk == skb->len && !th->fin);
4331				tcp_rcv_space_adjust(sk);
4332			}
4333			local_bh_disable();
4334		}
4335
4336		if (eaten <= 0) {
4337queue_and_out:
4338			if (eaten < 0 &&
4339			    tcp_try_rmem_schedule(sk, skb->truesize))
4340				goto drop;
4341
4342			skb_set_owner_r(skb, sk);
4343			__skb_queue_tail(&sk->sk_receive_queue, skb);
4344		}
4345		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4346		if (skb->len)
4347			tcp_event_data_recv(sk, skb);
4348		if (th->fin)
4349			tcp_fin(skb, sk, th);
4350
4351		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4352			tcp_ofo_queue(sk);
4353
4354			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4355			 * gap in queue is filled.
4356			 */
4357			if (skb_queue_empty(&tp->out_of_order_queue))
4358				inet_csk(sk)->icsk_ack.pingpong = 0;
4359		}
4360
4361		if (tp->rx_opt.num_sacks)
4362			tcp_sack_remove(tp);
4363
4364		tcp_fast_path_check(sk);
4365
4366		if (eaten > 0)
4367			__kfree_skb(skb);
4368		else if (!sock_flag(sk, SOCK_DEAD))
4369			sk->sk_data_ready(sk, 0);
4370		return;
4371	}
4372
4373	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4374		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4375		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4376		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4377
4378out_of_window:
4379		tcp_enter_quickack_mode(sk);
4380		inet_csk_schedule_ack(sk);
4381drop:
4382		__kfree_skb(skb);
4383		return;
4384	}
4385
4386	/* Out of window. F.e. zero window probe. */
4387	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4388		goto out_of_window;
4389
4390	tcp_enter_quickack_mode(sk);
4391
4392	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4393		/* Partial packet, seq < rcv_next < end_seq */
4394		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4395			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4396			   TCP_SKB_CB(skb)->end_seq);
4397
4398		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4399
4400		/* If window is closed, drop tail of packet. But after
4401		 * remembering D-SACK for its head made in previous line.
4402		 */
4403		if (!tcp_receive_window(tp))
4404			goto out_of_window;
4405		goto queue_and_out;
4406	}
4407
4408	TCP_ECN_check_ce(tp, skb);
4409
4410	if (tcp_try_rmem_schedule(sk, skb->truesize))
4411		goto drop;
4412
4413	/* Disable header prediction. */
4414	tp->pred_flags = 0;
4415	inet_csk_schedule_ack(sk);
4416
4417	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4418		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4419
4420	skb_set_owner_r(skb, sk);
4421
4422	if (!skb_peek(&tp->out_of_order_queue)) {
4423		/* Initial out of order segment, build 1 SACK. */
4424		if (tcp_is_sack(tp)) {
4425			tp->rx_opt.num_sacks = 1;
4426			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4427			tp->selective_acks[0].end_seq =
4428						TCP_SKB_CB(skb)->end_seq;
4429		}
4430		__skb_queue_head(&tp->out_of_order_queue, skb);
4431	} else {
4432		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4433		u32 seq = TCP_SKB_CB(skb)->seq;
4434		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4435
4436		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4437			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4438
4439			if (!tp->rx_opt.num_sacks ||
4440			    tp->selective_acks[0].end_seq != seq)
4441				goto add_sack;
4442
4443			/* Common case: data arrive in order after hole. */
4444			tp->selective_acks[0].end_seq = end_seq;
4445			return;
4446		}
4447
4448		/* Find place to insert this segment. */
4449		while (1) {
4450			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4451				break;
4452			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4453				skb1 = NULL;
4454				break;
4455			}
4456			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4457		}
4458
4459		/* Do skb overlap to previous one? */
4460		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4461			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4462				/* All the bits are present. Drop. */
4463				__kfree_skb(skb);
4464				tcp_dsack_set(sk, seq, end_seq);
4465				goto add_sack;
4466			}
4467			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4468				/* Partial overlap. */
4469				tcp_dsack_set(sk, seq,
4470					      TCP_SKB_CB(skb1)->end_seq);
4471			} else {
4472				if (skb_queue_is_first(&tp->out_of_order_queue,
4473						       skb1))
4474					skb1 = NULL;
4475				else
4476					skb1 = skb_queue_prev(
4477						&tp->out_of_order_queue,
4478						skb1);
4479			}
4480		}
4481		if (!skb1)
4482			__skb_queue_head(&tp->out_of_order_queue, skb);
4483		else
4484			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4485
4486		/* And clean segments covered by new one as whole. */
4487		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4488			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4489
4490			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4491				break;
4492			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4493				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4494						 end_seq);
4495				break;
4496			}
4497			__skb_unlink(skb1, &tp->out_of_order_queue);
4498			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4499					 TCP_SKB_CB(skb1)->end_seq);
4500			__kfree_skb(skb1);
4501		}
4502
4503add_sack:
4504		if (tcp_is_sack(tp))
4505			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4506	}
4507}
4508
4509static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4510					struct sk_buff_head *list)
4511{
4512	struct sk_buff *next = NULL;
4513
4514	if (!skb_queue_is_last(list, skb))
4515		next = skb_queue_next(list, skb);
4516
4517	__skb_unlink(skb, list);
4518	__kfree_skb(skb);
4519	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4520
4521	return next;
4522}
4523
4524/* Collapse contiguous sequence of skbs head..tail with
4525 * sequence numbers start..end.
4526 *
4527 * If tail is NULL, this means until the end of the list.
4528 *
4529 * Segments with FIN/SYN are not collapsed (only because this
4530 * simplifies code)
4531 */
4532static void
4533tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4534	     struct sk_buff *head, struct sk_buff *tail,
4535	     u32 start, u32 end)
4536{
4537	struct sk_buff *skb, *n;
4538	bool end_of_skbs;
4539
4540	/* First, check that queue is collapsible and find
4541	 * the point where collapsing can be useful. */
4542	skb = head;
4543restart:
4544	end_of_skbs = true;
4545	skb_queue_walk_from_safe(list, skb, n) {
4546		if (skb == tail)
4547			break;
4548		/* No new bits? It is possible on ofo queue. */
4549		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4550			skb = tcp_collapse_one(sk, skb, list);
4551			if (!skb)
4552				break;
4553			goto restart;
4554		}
4555
4556		/* The first skb to collapse is:
4557		 * - not SYN/FIN and
4558		 * - bloated or contains data before "start" or
4559		 *   overlaps to the next one.
4560		 */
4561		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4562		    (tcp_win_from_space(skb->truesize) > skb->len ||
4563		     before(TCP_SKB_CB(skb)->seq, start))) {
4564			end_of_skbs = false;
4565			break;
4566		}
4567
4568		if (!skb_queue_is_last(list, skb)) {
4569			struct sk_buff *next = skb_queue_next(list, skb);
4570			if (next != tail &&
4571			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4572				end_of_skbs = false;
4573				break;
4574			}
4575		}
4576
4577		/* Decided to skip this, advance start seq. */
4578		start = TCP_SKB_CB(skb)->end_seq;
4579	}
4580	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4581		return;
4582
4583	while (before(start, end)) {
4584		struct sk_buff *nskb;
4585		unsigned int header = skb_headroom(skb);
4586		int copy = SKB_MAX_ORDER(header, 0);
4587
4588		/* Too big header? This can happen with IPv6. */
4589		if (copy < 0)
4590			return;
4591		if (end - start < copy)
4592			copy = end - start;
4593		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4594		if (!nskb)
4595			return;
4596
4597		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4598		skb_set_network_header(nskb, (skb_network_header(skb) -
4599					      skb->head));
4600		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4601						skb->head));
4602		skb_reserve(nskb, header);
4603		memcpy(nskb->head, skb->head, header);
4604		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4605		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4606		__skb_queue_before(list, skb, nskb);
4607		skb_set_owner_r(nskb, sk);
4608
4609		/* Copy data, releasing collapsed skbs. */
4610		while (copy > 0) {
4611			int offset = start - TCP_SKB_CB(skb)->seq;
4612			int size = TCP_SKB_CB(skb)->end_seq - start;
4613
4614			BUG_ON(offset < 0);
4615			if (size > 0) {
4616				size = min(copy, size);
4617				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4618					BUG();
4619				TCP_SKB_CB(nskb)->end_seq += size;
4620				copy -= size;
4621				start += size;
4622			}
4623			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4624				skb = tcp_collapse_one(sk, skb, list);
4625				if (!skb ||
4626				    skb == tail ||
4627				    tcp_hdr(skb)->syn ||
4628				    tcp_hdr(skb)->fin)
4629					return;
4630			}
4631		}
4632	}
4633}
4634
4635/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4636 * and tcp_collapse() them until all the queue is collapsed.
4637 */
4638static void tcp_collapse_ofo_queue(struct sock *sk)
4639{
4640	struct tcp_sock *tp = tcp_sk(sk);
4641	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4642	struct sk_buff *head;
4643	u32 start, end;
4644
4645	if (skb == NULL)
4646		return;
4647
4648	start = TCP_SKB_CB(skb)->seq;
4649	end = TCP_SKB_CB(skb)->end_seq;
4650	head = skb;
4651
4652	for (;;) {
4653		struct sk_buff *next = NULL;
4654
4655		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4656			next = skb_queue_next(&tp->out_of_order_queue, skb);
4657		skb = next;
4658
4659		/* Segment is terminated when we see gap or when
4660		 * we are at the end of all the queue. */
4661		if (!skb ||
4662		    after(TCP_SKB_CB(skb)->seq, end) ||
4663		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4664			tcp_collapse(sk, &tp->out_of_order_queue,
4665				     head, skb, start, end);
4666			head = skb;
4667			if (!skb)
4668				break;
4669			/* Start new segment */
4670			start = TCP_SKB_CB(skb)->seq;
4671			end = TCP_SKB_CB(skb)->end_seq;
4672		} else {
4673			if (before(TCP_SKB_CB(skb)->seq, start))
4674				start = TCP_SKB_CB(skb)->seq;
4675			if (after(TCP_SKB_CB(skb)->end_seq, end))
4676				end = TCP_SKB_CB(skb)->end_seq;
4677		}
4678	}
4679}
4680
4681/*
4682 * Purge the out-of-order queue.
4683 * Return true if queue was pruned.
4684 */
4685static int tcp_prune_ofo_queue(struct sock *sk)
4686{
4687	struct tcp_sock *tp = tcp_sk(sk);
4688	int res = 0;
4689
4690	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4691		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4692		__skb_queue_purge(&tp->out_of_order_queue);
4693
4694		/* Reset SACK state.  A conforming SACK implementation will
4695		 * do the same at a timeout based retransmit.  When a connection
4696		 * is in a sad state like this, we care only about integrity
4697		 * of the connection not performance.
4698		 */
4699		if (tp->rx_opt.sack_ok)
4700			tcp_sack_reset(&tp->rx_opt);
4701		sk_mem_reclaim(sk);
4702		res = 1;
4703	}
4704	return res;
4705}
4706
4707/* Reduce allocated memory if we can, trying to get
4708 * the socket within its memory limits again.
4709 *
4710 * Return less than zero if we should start dropping frames
4711 * until the socket owning process reads some of the data
4712 * to stabilize the situation.
4713 */
4714static int tcp_prune_queue(struct sock *sk)
4715{
4716	struct tcp_sock *tp = tcp_sk(sk);
4717
4718	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4719
4720	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4721
4722	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4723		tcp_clamp_window(sk);
4724	else if (tcp_memory_pressure)
4725		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4726
4727	tcp_collapse_ofo_queue(sk);
4728	if (!skb_queue_empty(&sk->sk_receive_queue))
4729		tcp_collapse(sk, &sk->sk_receive_queue,
4730			     skb_peek(&sk->sk_receive_queue),
4731			     NULL,
4732			     tp->copied_seq, tp->rcv_nxt);
4733	sk_mem_reclaim(sk);
4734
4735	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4736		return 0;
4737
4738	/* Collapsing did not help, destructive actions follow.
4739	 * This must not ever occur. */
4740
4741	tcp_prune_ofo_queue(sk);
4742
4743	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4744		return 0;
4745
4746	/* If we are really being abused, tell the caller to silently
4747	 * drop receive data on the floor.  It will get retransmitted
4748	 * and hopefully then we'll have sufficient space.
4749	 */
4750	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4751
4752	/* Massive buffer overcommit. */
4753	tp->pred_flags = 0;
4754	return -1;
4755}
4756
4757/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4758 * As additional protections, we do not touch cwnd in retransmission phases,
4759 * and if application hit its sndbuf limit recently.
4760 */
4761void tcp_cwnd_application_limited(struct sock *sk)
4762{
4763	struct tcp_sock *tp = tcp_sk(sk);
4764
4765	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4766	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4767		/* Limited by application or receiver window. */
4768		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4769		u32 win_used = max(tp->snd_cwnd_used, init_win);
4770		if (win_used < tp->snd_cwnd) {
4771			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4772			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4773		}
4774		tp->snd_cwnd_used = 0;
4775	}
4776	tp->snd_cwnd_stamp = tcp_time_stamp;
4777}
4778
4779static int tcp_should_expand_sndbuf(struct sock *sk)
4780{
4781	struct tcp_sock *tp = tcp_sk(sk);
4782
4783	/* If the user specified a specific send buffer setting, do
4784	 * not modify it.
4785	 */
4786	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4787		return 0;
4788
4789	/* If we are under global TCP memory pressure, do not expand.  */
4790	if (tcp_memory_pressure)
4791		return 0;
4792
4793	/* If we are under soft global TCP memory pressure, do not expand.  */
4794	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4795		return 0;
4796
4797	/* If we filled the congestion window, do not expand.  */
4798	if (tp->packets_out >= tp->snd_cwnd)
4799		return 0;
4800
4801	return 1;
4802}
4803
4804/* When incoming ACK allowed to free some skb from write_queue,
4805 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4806 * on the exit from tcp input handler.
4807 *
4808 * PROBLEM: sndbuf expansion does not work well with largesend.
4809 */
4810static void tcp_new_space(struct sock *sk)
4811{
4812	struct tcp_sock *tp = tcp_sk(sk);
4813
4814	if (tcp_should_expand_sndbuf(sk)) {
4815		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4816			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4817		int demanded = max_t(unsigned int, tp->snd_cwnd,
4818				     tp->reordering + 1);
4819		sndmem *= 2 * demanded;
4820		if (sndmem > sk->sk_sndbuf)
4821			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4822		tp->snd_cwnd_stamp = tcp_time_stamp;
4823	}
4824
4825	sk->sk_write_space(sk);
4826}
4827
4828static void tcp_check_space(struct sock *sk)
4829{
4830	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4831		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4832		if (sk->sk_socket &&
4833		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4834			tcp_new_space(sk);
4835	}
4836}
4837
4838static inline void tcp_data_snd_check(struct sock *sk)
4839{
4840	tcp_push_pending_frames(sk);
4841	tcp_check_space(sk);
4842}
4843
4844/*
4845 * Check if sending an ack is needed.
4846 */
4847static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4848{
4849	struct tcp_sock *tp = tcp_sk(sk);
4850
4851	    /* More than one full frame received... */
4852	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4853	     /* ... and right edge of window advances far enough.
4854	      * (tcp_recvmsg() will send ACK otherwise). Or...
4855	      */
4856	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4857	    /* We ACK each frame or... */
4858	    tcp_in_quickack_mode(sk) ||
4859	    /* We have out of order data. */
4860	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4861		/* Then ack it now */
4862		tcp_send_ack(sk);
4863	} else {
4864		/* Else, send delayed ack. */
4865		tcp_send_delayed_ack(sk);
4866	}
4867}
4868
4869static inline void tcp_ack_snd_check(struct sock *sk)
4870{
4871	if (!inet_csk_ack_scheduled(sk)) {
4872		/* We sent a data segment already. */
4873		return;
4874	}
4875	__tcp_ack_snd_check(sk, 1);
4876}
4877
4878/*
4879 *	This routine is only called when we have urgent data
4880 *	signaled. Its the 'slow' part of tcp_urg. It could be
4881 *	moved inline now as tcp_urg is only called from one
4882 *	place. We handle URGent data wrong. We have to - as
4883 *	BSD still doesn't use the correction from RFC961.
4884 *	For 1003.1g we should support a new option TCP_STDURG to permit
4885 *	either form (or just set the sysctl tcp_stdurg).
4886 */
4887
4888static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4889{
4890	struct tcp_sock *tp = tcp_sk(sk);
4891	u32 ptr = ntohs(th->urg_ptr);
4892
4893	if (ptr && !sysctl_tcp_stdurg)
4894		ptr--;
4895	ptr += ntohl(th->seq);
4896
4897	/* Ignore urgent data that we've already seen and read. */
4898	if (after(tp->copied_seq, ptr))
4899		return;
4900
4901	/* Do not replay urg ptr.
4902	 *
4903	 * NOTE: interesting situation not covered by specs.
4904	 * Misbehaving sender may send urg ptr, pointing to segment,
4905	 * which we already have in ofo queue. We are not able to fetch
4906	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4907	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4908	 * situations. But it is worth to think about possibility of some
4909	 * DoSes using some hypothetical application level deadlock.
4910	 */
4911	if (before(ptr, tp->rcv_nxt))
4912		return;
4913
4914	/* Do we already have a newer (or duplicate) urgent pointer? */
4915	if (tp->urg_data && !after(ptr, tp->urg_seq))
4916		return;
4917
4918	/* Tell the world about our new urgent pointer. */
4919	sk_send_sigurg(sk);
4920
4921	/* We may be adding urgent data when the last byte read was
4922	 * urgent. To do this requires some care. We cannot just ignore
4923	 * tp->copied_seq since we would read the last urgent byte again
4924	 * as data, nor can we alter copied_seq until this data arrives
4925	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4926	 *
4927	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4928	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4929	 * and expect that both A and B disappear from stream. This is _wrong_.
4930	 * Though this happens in BSD with high probability, this is occasional.
4931	 * Any application relying on this is buggy. Note also, that fix "works"
4932	 * only in this artificial test. Insert some normal data between A and B and we will
4933	 * decline of BSD again. Verdict: it is better to remove to trap
4934	 * buggy users.
4935	 */
4936	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4937	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4938		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4939		tp->copied_seq++;
4940		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4941			__skb_unlink(skb, &sk->sk_receive_queue);
4942			__kfree_skb(skb);
4943		}
4944	}
4945
4946	tp->urg_data = TCP_URG_NOTYET;
4947	tp->urg_seq = ptr;
4948
4949	/* Disable header prediction. */
4950	tp->pred_flags = 0;
4951}
4952
4953/* This is the 'fast' part of urgent handling. */
4954static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4955{
4956	struct tcp_sock *tp = tcp_sk(sk);
4957
4958	/* Check if we get a new urgent pointer - normally not. */
4959	if (th->urg)
4960		tcp_check_urg(sk, th);
4961
4962	/* Do we wait for any urgent data? - normally not... */
4963	if (tp->urg_data == TCP_URG_NOTYET) {
4964		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4965			  th->syn;
4966
4967		/* Is the urgent pointer pointing into this packet? */
4968		if (ptr < skb->len) {
4969			u8 tmp;
4970			if (skb_copy_bits(skb, ptr, &tmp, 1))
4971				BUG();
4972			tp->urg_data = TCP_URG_VALID | tmp;
4973			if (!sock_flag(sk, SOCK_DEAD))
4974				sk->sk_data_ready(sk, 0);
4975		}
4976	}
4977}
4978
4979static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4980{
4981	struct tcp_sock *tp = tcp_sk(sk);
4982	int chunk = skb->len - hlen;
4983	int err;
4984
4985	local_bh_enable();
4986	if (skb_csum_unnecessary(skb))
4987		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4988	else
4989		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4990						       tp->ucopy.iov);
4991
4992	if (!err) {
4993		tp->ucopy.len -= chunk;
4994		tp->copied_seq += chunk;
4995		tcp_rcv_space_adjust(sk);
4996	}
4997
4998	local_bh_disable();
4999	return err;
5000}
5001
5002static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5003					    struct sk_buff *skb)
5004{
5005	__sum16 result;
5006
5007	if (sock_owned_by_user(sk)) {
5008		local_bh_enable();
5009		result = __tcp_checksum_complete(skb);
5010		local_bh_disable();
5011	} else {
5012		result = __tcp_checksum_complete(skb);
5013	}
5014	return result;
5015}
5016
5017static inline int tcp_checksum_complete_user(struct sock *sk,
5018					     struct sk_buff *skb)
5019{
5020	return !skb_csum_unnecessary(skb) &&
5021	       __tcp_checksum_complete_user(sk, skb);
5022}
5023
5024#ifdef CONFIG_NET_DMA
5025static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5026				  int hlen)
5027{
5028	struct tcp_sock *tp = tcp_sk(sk);
5029	int chunk = skb->len - hlen;
5030	int dma_cookie;
5031	int copied_early = 0;
5032
5033	if (tp->ucopy.wakeup)
5034		return 0;
5035
5036	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5037		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5038
5039	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5040
5041		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5042							 skb, hlen,
5043							 tp->ucopy.iov, chunk,
5044							 tp->ucopy.pinned_list);
5045
5046		if (dma_cookie < 0)
5047			goto out;
5048
5049		tp->ucopy.dma_cookie = dma_cookie;
5050		copied_early = 1;
5051
5052		tp->ucopy.len -= chunk;
5053		tp->copied_seq += chunk;
5054		tcp_rcv_space_adjust(sk);
5055
5056		if ((tp->ucopy.len == 0) ||
5057		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5058		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5059			tp->ucopy.wakeup = 1;
5060			sk->sk_data_ready(sk, 0);
5061		}
5062	} else if (chunk > 0) {
5063		tp->ucopy.wakeup = 1;
5064		sk->sk_data_ready(sk, 0);
5065	}
5066out:
5067	return copied_early;
5068}
5069#endif /* CONFIG_NET_DMA */
5070
5071/* Does PAWS and seqno based validation of an incoming segment, flags will
5072 * play significant role here.
5073 */
5074static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5075			      struct tcphdr *th, int syn_inerr)
5076{
5077	struct tcp_sock *tp = tcp_sk(sk);
5078
5079	/* RFC1323: H1. Apply PAWS check first. */
5080	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5081	    tcp_paws_discard(sk, skb)) {
5082		if (!th->rst) {
5083			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5084			tcp_send_dupack(sk, skb);
5085			goto discard;
5086		}
5087		/* Reset is accepted even if it did not pass PAWS. */
5088	}
5089
5090	/* Step 1: check sequence number */
5091	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5092		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5093		 * (RST) segments are validated by checking their SEQ-fields."
5094		 * And page 69: "If an incoming segment is not acceptable,
5095		 * an acknowledgment should be sent in reply (unless the RST
5096		 * bit is set, if so drop the segment and return)".
5097		 */
5098		if (!th->rst)
5099			tcp_send_dupack(sk, skb);
5100		goto discard;
5101	}
5102
5103	/* Step 2: check RST bit */
5104	if (th->rst) {
5105		tcp_reset(sk);
5106		goto discard;
5107	}
5108
5109	/* ts_recent update must be made after we are sure that the packet
5110	 * is in window.
5111	 */
5112	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5113
5114	/* step 3: check security and precedence [ignored] */
5115
5116	/* step 4: Check for a SYN in window. */
5117	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5118		if (syn_inerr)
5119			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5120		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5121		tcp_reset(sk);
5122		return -1;
5123	}
5124
5125	return 1;
5126
5127discard:
5128	__kfree_skb(skb);
5129	return 0;
5130}
5131
5132/*
5133 *	TCP receive function for the ESTABLISHED state.
5134 *
5135 *	It is split into a fast path and a slow path. The fast path is
5136 * 	disabled when:
5137 *	- A zero window was announced from us - zero window probing
5138 *        is only handled properly in the slow path.
5139 *	- Out of order segments arrived.
5140 *	- Urgent data is expected.
5141 *	- There is no buffer space left
5142 *	- Unexpected TCP flags/window values/header lengths are received
5143 *	  (detected by checking the TCP header against pred_flags)
5144 *	- Data is sent in both directions. Fast path only supports pure senders
5145 *	  or pure receivers (this means either the sequence number or the ack
5146 *	  value must stay constant)
5147 *	- Unexpected TCP option.
5148 *
5149 *	When these conditions are not satisfied it drops into a standard
5150 *	receive procedure patterned after RFC793 to handle all cases.
5151 *	The first three cases are guaranteed by proper pred_flags setting,
5152 *	the rest is checked inline. Fast processing is turned on in
5153 *	tcp_data_queue when everything is OK.
5154 */
5155int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5156			struct tcphdr *th, unsigned len)
5157{
5158	struct tcp_sock *tp = tcp_sk(sk);
5159	int res;
5160
5161	/*
5162	 *	Header prediction.
5163	 *	The code loosely follows the one in the famous
5164	 *	"30 instruction TCP receive" Van Jacobson mail.
5165	 *
5166	 *	Van's trick is to deposit buffers into socket queue
5167	 *	on a device interrupt, to call tcp_recv function
5168	 *	on the receive process context and checksum and copy
5169	 *	the buffer to user space. smart...
5170	 *
5171	 *	Our current scheme is not silly either but we take the
5172	 *	extra cost of the net_bh soft interrupt processing...
5173	 *	We do checksum and copy also but from device to kernel.
5174	 */
5175
5176	tp->rx_opt.saw_tstamp = 0;
5177
5178	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5179	 *	if header_prediction is to be made
5180	 *	'S' will always be tp->tcp_header_len >> 2
5181	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5182	 *  turn it off	(when there are holes in the receive
5183	 *	 space for instance)
5184	 *	PSH flag is ignored.
5185	 */
5186
5187	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5188	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5189	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5190		int tcp_header_len = tp->tcp_header_len;
5191
5192		/* Timestamp header prediction: tcp_header_len
5193		 * is automatically equal to th->doff*4 due to pred_flags
5194		 * match.
5195		 */
5196
5197		/* Check timestamp */
5198		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5199			/* No? Slow path! */
5200			if (!tcp_parse_aligned_timestamp(tp, th))
5201				goto slow_path;
5202
5203			/* If PAWS failed, check it more carefully in slow path */
5204			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5205				goto slow_path;
5206
5207			/* DO NOT update ts_recent here, if checksum fails
5208			 * and timestamp was corrupted part, it will result
5209			 * in a hung connection since we will drop all
5210			 * future packets due to the PAWS test.
5211			 */
5212		}
5213
5214		if (len <= tcp_header_len) {
5215			/* Bulk data transfer: sender */
5216			if (len == tcp_header_len) {
5217				/* Predicted packet is in window by definition.
5218				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5219				 * Hence, check seq<=rcv_wup reduces to:
5220				 */
5221				if (tcp_header_len ==
5222				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5223				    tp->rcv_nxt == tp->rcv_wup)
5224					tcp_store_ts_recent(tp);
5225
5226				/* We know that such packets are checksummed
5227				 * on entry.
5228				 */
5229				tcp_ack(sk, skb, 0);
5230				__kfree_skb(skb);
5231				tcp_data_snd_check(sk);
5232				return 0;
5233			} else { /* Header too small */
5234				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5235				goto discard;
5236			}
5237		} else {
5238			int eaten = 0;
5239			int copied_early = 0;
5240
5241			if (tp->copied_seq == tp->rcv_nxt &&
5242			    len - tcp_header_len <= tp->ucopy.len) {
5243#ifdef CONFIG_NET_DMA
5244				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5245					copied_early = 1;
5246					eaten = 1;
5247				}
5248#endif
5249				if (tp->ucopy.task == current &&
5250				    sock_owned_by_user(sk) && !copied_early) {
5251					__set_current_state(TASK_RUNNING);
5252
5253					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5254						eaten = 1;
5255				}
5256				if (eaten) {
5257					/* Predicted packet is in window by definition.
5258					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5259					 * Hence, check seq<=rcv_wup reduces to:
5260					 */
5261					if (tcp_header_len ==
5262					    (sizeof(struct tcphdr) +
5263					     TCPOLEN_TSTAMP_ALIGNED) &&
5264					    tp->rcv_nxt == tp->rcv_wup)
5265						tcp_store_ts_recent(tp);
5266
5267					tcp_rcv_rtt_measure_ts(sk, skb);
5268
5269					__skb_pull(skb, tcp_header_len);
5270					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5271					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5272				}
5273				if (copied_early)
5274					tcp_cleanup_rbuf(sk, skb->len);
5275			}
5276			if (!eaten) {
5277				if (tcp_checksum_complete_user(sk, skb))
5278					goto csum_error;
5279
5280				/* Predicted packet is in window by definition.
5281				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5282				 * Hence, check seq<=rcv_wup reduces to:
5283				 */
5284				if (tcp_header_len ==
5285				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5286				    tp->rcv_nxt == tp->rcv_wup)
5287					tcp_store_ts_recent(tp);
5288
5289				tcp_rcv_rtt_measure_ts(sk, skb);
5290
5291				if ((int)skb->truesize > sk->sk_forward_alloc)
5292					goto step5;
5293
5294				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5295
5296				/* Bulk data transfer: receiver */
5297				__skb_pull(skb, tcp_header_len);
5298				__skb_queue_tail(&sk->sk_receive_queue, skb);
5299				skb_set_owner_r(skb, sk);
5300				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5301			}
5302
5303			tcp_event_data_recv(sk, skb);
5304
5305			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5306				/* Well, only one small jumplet in fast path... */
5307				tcp_ack(sk, skb, FLAG_DATA);
5308				tcp_data_snd_check(sk);
5309				if (!inet_csk_ack_scheduled(sk))
5310					goto no_ack;
5311			}
5312
5313			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5314				__tcp_ack_snd_check(sk, 0);
5315no_ack:
5316#ifdef CONFIG_NET_DMA
5317			if (copied_early)
5318				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5319			else
5320#endif
5321			if (eaten)
5322				__kfree_skb(skb);
5323			else
5324				sk->sk_data_ready(sk, 0);
5325			return 0;
5326		}
5327	}
5328
5329slow_path:
5330	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5331		goto csum_error;
5332
5333	/*
5334	 *	Standard slow path.
5335	 */
5336
5337	res = tcp_validate_incoming(sk, skb, th, 1);
5338	if (res <= 0)
5339		return -res;
5340
5341step5:
5342	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5343		goto discard;
5344
5345	tcp_rcv_rtt_measure_ts(sk, skb);
5346
5347	/* Process urgent data. */
5348	tcp_urg(sk, skb, th);
5349
5350	/* step 7: process the segment text */
5351	tcp_data_queue(sk, skb);
5352
5353	tcp_data_snd_check(sk);
5354	tcp_ack_snd_check(sk);
5355	return 0;
5356
5357csum_error:
5358	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5359
5360discard:
5361	__kfree_skb(skb);
5362	return 0;
5363}
5364
5365static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5366					 struct tcphdr *th, unsigned len)
5367{
5368	struct tcp_sock *tp = tcp_sk(sk);
5369	struct inet_connection_sock *icsk = inet_csk(sk);
5370	int saved_clamp = tp->rx_opt.mss_clamp;
5371	struct dst_entry *dst = __sk_dst_get(sk);
5372
5373	tcp_parse_options(skb, &tp->rx_opt, 0, dst);
5374
5375	if (th->ack) {
5376		/* rfc793:
5377		 * "If the state is SYN-SENT then
5378		 *    first check the ACK bit
5379		 *      If the ACK bit is set
5380		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5381		 *        a reset (unless the RST bit is set, if so drop
5382		 *        the segment and return)"
5383		 *
5384		 *  We do not send data with SYN, so that RFC-correct
5385		 *  test reduces to:
5386		 */
5387		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5388			goto reset_and_undo;
5389
5390		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5391		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5392			     tcp_time_stamp)) {
5393			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5394			goto reset_and_undo;
5395		}
5396
5397		/* Now ACK is acceptable.
5398		 *
5399		 * "If the RST bit is set
5400		 *    If the ACK was acceptable then signal the user "error:
5401		 *    connection reset", drop the segment, enter CLOSED state,
5402		 *    delete TCB, and return."
5403		 */
5404
5405		if (th->rst) {
5406			tcp_reset(sk);
5407			goto discard;
5408		}
5409
5410		/* rfc793:
5411		 *   "fifth, if neither of the SYN or RST bits is set then
5412		 *    drop the segment and return."
5413		 *
5414		 *    See note below!
5415		 *                                        --ANK(990513)
5416		 */
5417		if (!th->syn)
5418			goto discard_and_undo;
5419
5420		/* rfc793:
5421		 *   "If the SYN bit is on ...
5422		 *    are acceptable then ...
5423		 *    (our SYN has been ACKed), change the connection
5424		 *    state to ESTABLISHED..."
5425		 */
5426
5427		TCP_ECN_rcv_synack(tp, th);
5428
5429		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5430		tcp_ack(sk, skb, FLAG_SLOWPATH);
5431
5432		/* Ok.. it's good. Set up sequence numbers and
5433		 * move to established.
5434		 */
5435		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5436		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5437
5438		/* RFC1323: The window in SYN & SYN/ACK segments is
5439		 * never scaled.
5440		 */
5441		tp->snd_wnd = ntohs(th->window);
5442		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5443
5444		if (!tp->rx_opt.wscale_ok) {
5445			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5446			tp->window_clamp = min(tp->window_clamp, 65535U);
5447		}
5448
5449		if (tp->rx_opt.saw_tstamp) {
5450			tp->rx_opt.tstamp_ok	   = 1;
5451			tp->tcp_header_len =
5452				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5453			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5454			tcp_store_ts_recent(tp);
5455		} else {
5456			tp->tcp_header_len = sizeof(struct tcphdr);
5457		}
5458
5459		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5460			tcp_enable_fack(tp);
5461
5462		tcp_mtup_init(sk);
5463		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5464		tcp_initialize_rcv_mss(sk);
5465
5466		/* Remember, tcp_poll() does not lock socket!
5467		 * Change state from SYN-SENT only after copied_seq
5468		 * is initialized. */
5469		tp->copied_seq = tp->rcv_nxt;
5470		smp_mb();
5471		tcp_set_state(sk, TCP_ESTABLISHED);
5472
5473		security_inet_conn_established(sk, skb);
5474
5475		/* Make sure socket is routed, for correct metrics.  */
5476		icsk->icsk_af_ops->rebuild_header(sk);
5477
5478		tcp_init_metrics(sk);
5479
5480		tcp_init_congestion_control(sk);
5481
5482		/* Prevent spurious tcp_cwnd_restart() on first data
5483		 * packet.
5484		 */
5485		tp->lsndtime = tcp_time_stamp;
5486
5487		tcp_init_buffer_space(sk);
5488
5489		if (sock_flag(sk, SOCK_KEEPOPEN))
5490			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5491
5492		if (!tp->rx_opt.snd_wscale)
5493			__tcp_fast_path_on(tp, tp->snd_wnd);
5494		else
5495			tp->pred_flags = 0;
5496
5497		if (!sock_flag(sk, SOCK_DEAD)) {
5498			sk->sk_state_change(sk);
5499			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5500		}
5501
5502		if (sk->sk_write_pending ||
5503		    icsk->icsk_accept_queue.rskq_defer_accept ||
5504		    icsk->icsk_ack.pingpong) {
5505			/* Save one ACK. Data will be ready after
5506			 * several ticks, if write_pending is set.
5507			 *
5508			 * It may be deleted, but with this feature tcpdumps
5509			 * look so _wonderfully_ clever, that I was not able
5510			 * to stand against the temptation 8)     --ANK
5511			 */
5512			inet_csk_schedule_ack(sk);
5513			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5514			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5515			tcp_incr_quickack(sk);
5516			tcp_enter_quickack_mode(sk);
5517			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5518						  TCP_DELACK_MAX, TCP_RTO_MAX);
5519
5520discard:
5521			__kfree_skb(skb);
5522			return 0;
5523		} else {
5524			tcp_send_ack(sk);
5525		}
5526		return -1;
5527	}
5528
5529	/* No ACK in the segment */
5530
5531	if (th->rst) {
5532		/* rfc793:
5533		 * "If the RST bit is set
5534		 *
5535		 *      Otherwise (no ACK) drop the segment and return."
5536		 */
5537
5538		goto discard_and_undo;
5539	}
5540
5541	/* PAWS check. */
5542	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5543	    tcp_paws_reject(&tp->rx_opt, 0))
5544		goto discard_and_undo;
5545
5546	if (th->syn) {
5547		/* We see SYN without ACK. It is attempt of
5548		 * simultaneous connect with crossed SYNs.
5549		 * Particularly, it can be connect to self.
5550		 */
5551		tcp_set_state(sk, TCP_SYN_RECV);
5552
5553		if (tp->rx_opt.saw_tstamp) {
5554			tp->rx_opt.tstamp_ok = 1;
5555			tcp_store_ts_recent(tp);
5556			tp->tcp_header_len =
5557				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5558		} else {
5559			tp->tcp_header_len = sizeof(struct tcphdr);
5560		}
5561
5562		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5563		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5564
5565		/* RFC1323: The window in SYN & SYN/ACK segments is
5566		 * never scaled.
5567		 */
5568		tp->snd_wnd    = ntohs(th->window);
5569		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5570		tp->max_window = tp->snd_wnd;
5571
5572		TCP_ECN_rcv_syn(tp, th);
5573
5574		tcp_mtup_init(sk);
5575		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5576		tcp_initialize_rcv_mss(sk);
5577
5578		tcp_send_synack(sk);
5579#if 0
5580		/* Note, we could accept data and URG from this segment.
5581		 * There are no obstacles to make this.
5582		 *
5583		 * However, if we ignore data in ACKless segments sometimes,
5584		 * we have no reasons to accept it sometimes.
5585		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5586		 * is not flawless. So, discard packet for sanity.
5587		 * Uncomment this return to process the data.
5588		 */
5589		return -1;
5590#else
5591		goto discard;
5592#endif
5593	}
5594	/* "fifth, if neither of the SYN or RST bits is set then
5595	 * drop the segment and return."
5596	 */
5597
5598discard_and_undo:
5599	tcp_clear_options(&tp->rx_opt);
5600	tp->rx_opt.mss_clamp = saved_clamp;
5601	goto discard;
5602
5603reset_and_undo:
5604	tcp_clear_options(&tp->rx_opt);
5605	tp->rx_opt.mss_clamp = saved_clamp;
5606	return 1;
5607}
5608
5609/*
5610 *	This function implements the receiving procedure of RFC 793 for
5611 *	all states except ESTABLISHED and TIME_WAIT.
5612 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5613 *	address independent.
5614 */
5615
5616int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5617			  struct tcphdr *th, unsigned len)
5618{
5619	struct tcp_sock *tp = tcp_sk(sk);
5620	struct inet_connection_sock *icsk = inet_csk(sk);
5621	int queued = 0;
5622	int res;
5623
5624	tp->rx_opt.saw_tstamp = 0;
5625
5626	switch (sk->sk_state) {
5627	case TCP_CLOSE:
5628		goto discard;
5629
5630	case TCP_LISTEN:
5631		if (th->ack)
5632			return 1;
5633
5634		if (th->rst)
5635			goto discard;
5636
5637		if (th->syn) {
5638			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5639				return 1;
5640
5641			/* Now we have several options: In theory there is
5642			 * nothing else in the frame. KA9Q has an option to
5643			 * send data with the syn, BSD accepts data with the
5644			 * syn up to the [to be] advertised window and
5645			 * Solaris 2.1 gives you a protocol error. For now
5646			 * we just ignore it, that fits the spec precisely
5647			 * and avoids incompatibilities. It would be nice in
5648			 * future to drop through and process the data.
5649			 *
5650			 * Now that TTCP is starting to be used we ought to
5651			 * queue this data.
5652			 * But, this leaves one open to an easy denial of
5653			 * service attack, and SYN cookies can't defend
5654			 * against this problem. So, we drop the data
5655			 * in the interest of security over speed unless
5656			 * it's still in use.
5657			 */
5658			kfree_skb(skb);
5659			return 0;
5660		}
5661		goto discard;
5662
5663	case TCP_SYN_SENT:
5664		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5665		if (queued >= 0)
5666			return queued;
5667
5668		/* Do step6 onward by hand. */
5669		tcp_urg(sk, skb, th);
5670		__kfree_skb(skb);
5671		tcp_data_snd_check(sk);
5672		return 0;
5673	}
5674
5675	res = tcp_validate_incoming(sk, skb, th, 0);
5676	if (res <= 0)
5677		return -res;
5678
5679	/* step 5: check the ACK field */
5680	if (th->ack) {
5681		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5682
5683		switch (sk->sk_state) {
5684		case TCP_SYN_RECV:
5685			if (acceptable) {
5686				tp->copied_seq = tp->rcv_nxt;
5687				smp_mb();
5688				tcp_set_state(sk, TCP_ESTABLISHED);
5689				sk->sk_state_change(sk);
5690
5691				/* Note, that this wakeup is only for marginal
5692				 * crossed SYN case. Passively open sockets
5693				 * are not waked up, because sk->sk_sleep ==
5694				 * NULL and sk->sk_socket == NULL.
5695				 */
5696				if (sk->sk_socket)
5697					sk_wake_async(sk,
5698						      SOCK_WAKE_IO, POLL_OUT);
5699
5700				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5701				tp->snd_wnd = ntohs(th->window) <<
5702					      tp->rx_opt.snd_wscale;
5703				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5704
5705				/* tcp_ack considers this ACK as duplicate
5706				 * and does not calculate rtt.
5707				 * Fix it at least with timestamps.
5708				 */
5709				if (tp->rx_opt.saw_tstamp &&
5710				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5711					tcp_ack_saw_tstamp(sk, 0);
5712
5713				if (tp->rx_opt.tstamp_ok)
5714					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5715
5716				/* Make sure socket is routed, for
5717				 * correct metrics.
5718				 */
5719				icsk->icsk_af_ops->rebuild_header(sk);
5720
5721				tcp_init_metrics(sk);
5722
5723				tcp_init_congestion_control(sk);
5724
5725				/* Prevent spurious tcp_cwnd_restart() on
5726				 * first data packet.
5727				 */
5728				tp->lsndtime = tcp_time_stamp;
5729
5730				tcp_mtup_init(sk);
5731				tcp_initialize_rcv_mss(sk);
5732				tcp_init_buffer_space(sk);
5733				tcp_fast_path_on(tp);
5734			} else {
5735				return 1;
5736			}
5737			break;
5738
5739		case TCP_FIN_WAIT1:
5740			if (tp->snd_una == tp->write_seq) {
5741				tcp_set_state(sk, TCP_FIN_WAIT2);
5742				sk->sk_shutdown |= SEND_SHUTDOWN;
5743				dst_confirm(sk->sk_dst_cache);
5744
5745				if (!sock_flag(sk, SOCK_DEAD))
5746					/* Wake up lingering close() */
5747					sk->sk_state_change(sk);
5748				else {
5749					int tmo;
5750
5751					if (tp->linger2 < 0 ||
5752					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5753					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5754						tcp_done(sk);
5755						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5756						return 1;
5757					}
5758
5759					tmo = tcp_fin_time(sk);
5760					if (tmo > TCP_TIMEWAIT_LEN) {
5761						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5762					} else if (th->fin || sock_owned_by_user(sk)) {
5763						/* Bad case. We could lose such FIN otherwise.
5764						 * It is not a big problem, but it looks confusing
5765						 * and not so rare event. We still can lose it now,
5766						 * if it spins in bh_lock_sock(), but it is really
5767						 * marginal case.
5768						 */
5769						inet_csk_reset_keepalive_timer(sk, tmo);
5770					} else {
5771						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5772						goto discard;
5773					}
5774				}
5775			}
5776			break;
5777
5778		case TCP_CLOSING:
5779			if (tp->snd_una == tp->write_seq) {
5780				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5781				goto discard;
5782			}
5783			break;
5784
5785		case TCP_LAST_ACK:
5786			if (tp->snd_una == tp->write_seq) {
5787				tcp_update_metrics(sk);
5788				tcp_done(sk);
5789				goto discard;
5790			}
5791			break;
5792		}
5793	} else
5794		goto discard;
5795
5796	/* step 6: check the URG bit */
5797	tcp_urg(sk, skb, th);
5798
5799	/* step 7: process the segment text */
5800	switch (sk->sk_state) {
5801	case TCP_CLOSE_WAIT:
5802	case TCP_CLOSING:
5803	case TCP_LAST_ACK:
5804		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5805			break;
5806	case TCP_FIN_WAIT1:
5807	case TCP_FIN_WAIT2:
5808		/* RFC 793 says to queue data in these states,
5809		 * RFC 1122 says we MUST send a reset.
5810		 * BSD 4.4 also does reset.
5811		 */
5812		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5813			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5814			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5815				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5816				tcp_reset(sk);
5817				return 1;
5818			}
5819		}
5820		/* Fall through */
5821	case TCP_ESTABLISHED:
5822		tcp_data_queue(sk, skb);
5823		queued = 1;
5824		break;
5825	}
5826
5827	/* tcp_data could move socket to TIME-WAIT */
5828	if (sk->sk_state != TCP_CLOSE) {
5829		tcp_data_snd_check(sk);
5830		tcp_ack_snd_check(sk);
5831	}
5832
5833	if (!queued) {
5834discard:
5835		__kfree_skb(skb);
5836	}
5837	return 0;
5838}
5839
5840EXPORT_SYMBOL(sysctl_tcp_ecn);
5841EXPORT_SYMBOL(sysctl_tcp_reordering);
5842EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5843EXPORT_SYMBOL(tcp_parse_options);
5844#ifdef CONFIG_TCP_MD5SIG
5845EXPORT_SYMBOL(tcp_parse_md5sig_option);
5846#endif
5847EXPORT_SYMBOL(tcp_rcv_established);
5848EXPORT_SYMBOL(tcp_rcv_state_process);
5849EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5850