tcp_input.c revision cf533ea53ebfae41be15b103d78e7ebec30b9969
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 *		Pedro Roque	:	Fast Retransmit/Recovery.
24 *					Two receive queues.
25 *					Retransmit queue handled by TCP.
26 *					Better retransmit timer handling.
27 *					New congestion avoidance.
28 *					Header prediction.
29 *					Variable renaming.
30 *
31 *		Eric		:	Fast Retransmit.
32 *		Randy Scott	:	MSS option defines.
33 *		Eric Schenk	:	Fixes to slow start algorithm.
34 *		Eric Schenk	:	Yet another double ACK bug.
35 *		Eric Schenk	:	Delayed ACK bug fixes.
36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37 *		David S. Miller	:	Don't allow zero congestion window.
38 *		Eric Schenk	:	Fix retransmitter so that it sends
39 *					next packet on ack of previous packet.
40 *		Andi Kleen	:	Moved open_request checking here
41 *					and process RSTs for open_requests.
42 *		Andi Kleen	:	Better prune_queue, and other fixes.
43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
44 *					timestamps.
45 *		Andrey Savochkin:	Check sequence numbers correctly when
46 *					removing SACKs due to in sequence incoming
47 *					data segments.
48 *		Andi Kleen:		Make sure we never ack data there is not
49 *					enough room for. Also make this condition
50 *					a fatal error if it might still happen.
51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52 *					connections with MSS<min(MTU,ann. MSS)
53 *					work without delayed acks.
54 *		Andi Kleen:		Process packets with PSH set in the
55 *					fast path.
56 *		J Hadi Salim:		ECN support
57 *	 	Andrei Gurtov,
58 *		Pasi Sarolahti,
59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60 *					engine. Lots of bugs are found.
61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62 */
63
64#include <linux/mm.h>
65#include <linux/slab.h>
66#include <linux/module.h>
67#include <linux/sysctl.h>
68#include <linux/kernel.h>
69#include <net/dst.h>
70#include <net/tcp.h>
71#include <net/inet_common.h>
72#include <linux/ipsec.h>
73#include <asm/unaligned.h>
74#include <net/netdma.h>
75
76int sysctl_tcp_timestamps __read_mostly = 1;
77int sysctl_tcp_window_scaling __read_mostly = 1;
78int sysctl_tcp_sack __read_mostly = 1;
79int sysctl_tcp_fack __read_mostly = 1;
80int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81EXPORT_SYMBOL(sysctl_tcp_reordering);
82int sysctl_tcp_ecn __read_mostly = 2;
83EXPORT_SYMBOL(sysctl_tcp_ecn);
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
86int sysctl_tcp_adv_win_scale __read_mostly = 2;
87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89int sysctl_tcp_stdurg __read_mostly;
90int sysctl_tcp_rfc1337 __read_mostly;
91int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92int sysctl_tcp_frto __read_mostly = 2;
93int sysctl_tcp_frto_response __read_mostly;
94int sysctl_tcp_nometrics_save __read_mostly;
95
96int sysctl_tcp_thin_dupack __read_mostly;
97
98int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99int sysctl_tcp_abc __read_mostly;
100
101#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
102#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
103#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
104#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
105#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
106#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
107#define FLAG_ECE		0x40 /* ECE in this ACK				*/
108#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
109#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
111#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
114#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
115
116#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121
122#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125/* Adapt the MSS value used to make delayed ack decision to the
126 * real world.
127 */
128static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129{
130	struct inet_connection_sock *icsk = inet_csk(sk);
131	const unsigned int lss = icsk->icsk_ack.last_seg_size;
132	unsigned int len;
133
134	icsk->icsk_ack.last_seg_size = 0;
135
136	/* skb->len may jitter because of SACKs, even if peer
137	 * sends good full-sized frames.
138	 */
139	len = skb_shinfo(skb)->gso_size ? : skb->len;
140	if (len >= icsk->icsk_ack.rcv_mss) {
141		icsk->icsk_ack.rcv_mss = len;
142	} else {
143		/* Otherwise, we make more careful check taking into account,
144		 * that SACKs block is variable.
145		 *
146		 * "len" is invariant segment length, including TCP header.
147		 */
148		len += skb->data - skb_transport_header(skb);
149		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150		    /* If PSH is not set, packet should be
151		     * full sized, provided peer TCP is not badly broken.
152		     * This observation (if it is correct 8)) allows
153		     * to handle super-low mtu links fairly.
154		     */
155		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157			/* Subtract also invariant (if peer is RFC compliant),
158			 * tcp header plus fixed timestamp option length.
159			 * Resulting "len" is MSS free of SACK jitter.
160			 */
161			len -= tcp_sk(sk)->tcp_header_len;
162			icsk->icsk_ack.last_seg_size = len;
163			if (len == lss) {
164				icsk->icsk_ack.rcv_mss = len;
165				return;
166			}
167		}
168		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171	}
172}
173
174static void tcp_incr_quickack(struct sock *sk)
175{
176	struct inet_connection_sock *icsk = inet_csk(sk);
177	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179	if (quickacks == 0)
180		quickacks = 2;
181	if (quickacks > icsk->icsk_ack.quick)
182		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183}
184
185static void tcp_enter_quickack_mode(struct sock *sk)
186{
187	struct inet_connection_sock *icsk = inet_csk(sk);
188	tcp_incr_quickack(sk);
189	icsk->icsk_ack.pingpong = 0;
190	icsk->icsk_ack.ato = TCP_ATO_MIN;
191}
192
193/* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
195 */
196
197static inline int tcp_in_quickack_mode(const struct sock *sk)
198{
199	const struct inet_connection_sock *icsk = inet_csk(sk);
200	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201}
202
203static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204{
205	if (tp->ecn_flags & TCP_ECN_OK)
206		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207}
208
209static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210{
211	if (tcp_hdr(skb)->cwr)
212		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213}
214
215static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216{
217	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218}
219
220static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221{
222	if (!(tp->ecn_flags & TCP_ECN_OK))
223		return;
224
225	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226	case INET_ECN_NOT_ECT:
227		/* Funny extension: if ECT is not set on a segment,
228		 * and we already seen ECT on a previous segment,
229		 * it is probably a retransmit.
230		 */
231		if (tp->ecn_flags & TCP_ECN_SEEN)
232			tcp_enter_quickack_mode((struct sock *)tp);
233		break;
234	case INET_ECN_CE:
235		tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
236		/* fallinto */
237	default:
238		tp->ecn_flags |= TCP_ECN_SEEN;
239	}
240}
241
242static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
243{
244	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
245		tp->ecn_flags &= ~TCP_ECN_OK;
246}
247
248static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
249{
250	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
251		tp->ecn_flags &= ~TCP_ECN_OK;
252}
253
254static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
255{
256	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
257		return 1;
258	return 0;
259}
260
261/* Buffer size and advertised window tuning.
262 *
263 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
264 */
265
266static void tcp_fixup_sndbuf(struct sock *sk)
267{
268	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
269
270	sndmem *= TCP_INIT_CWND;
271	if (sk->sk_sndbuf < sndmem)
272		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
273}
274
275/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
276 *
277 * All tcp_full_space() is split to two parts: "network" buffer, allocated
278 * forward and advertised in receiver window (tp->rcv_wnd) and
279 * "application buffer", required to isolate scheduling/application
280 * latencies from network.
281 * window_clamp is maximal advertised window. It can be less than
282 * tcp_full_space(), in this case tcp_full_space() - window_clamp
283 * is reserved for "application" buffer. The less window_clamp is
284 * the smoother our behaviour from viewpoint of network, but the lower
285 * throughput and the higher sensitivity of the connection to losses. 8)
286 *
287 * rcv_ssthresh is more strict window_clamp used at "slow start"
288 * phase to predict further behaviour of this connection.
289 * It is used for two goals:
290 * - to enforce header prediction at sender, even when application
291 *   requires some significant "application buffer". It is check #1.
292 * - to prevent pruning of receive queue because of misprediction
293 *   of receiver window. Check #2.
294 *
295 * The scheme does not work when sender sends good segments opening
296 * window and then starts to feed us spaghetti. But it should work
297 * in common situations. Otherwise, we have to rely on queue collapsing.
298 */
299
300/* Slow part of check#2. */
301static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
302{
303	struct tcp_sock *tp = tcp_sk(sk);
304	/* Optimize this! */
305	int truesize = tcp_win_from_space(skb->truesize) >> 1;
306	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
307
308	while (tp->rcv_ssthresh <= window) {
309		if (truesize <= skb->len)
310			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
311
312		truesize >>= 1;
313		window >>= 1;
314	}
315	return 0;
316}
317
318static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
319{
320	struct tcp_sock *tp = tcp_sk(sk);
321
322	/* Check #1 */
323	if (tp->rcv_ssthresh < tp->window_clamp &&
324	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
325	    !tcp_memory_pressure) {
326		int incr;
327
328		/* Check #2. Increase window, if skb with such overhead
329		 * will fit to rcvbuf in future.
330		 */
331		if (tcp_win_from_space(skb->truesize) <= skb->len)
332			incr = 2 * tp->advmss;
333		else
334			incr = __tcp_grow_window(sk, skb);
335
336		if (incr) {
337			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
338					       tp->window_clamp);
339			inet_csk(sk)->icsk_ack.quick |= 1;
340		}
341	}
342}
343
344/* 3. Tuning rcvbuf, when connection enters established state. */
345
346static void tcp_fixup_rcvbuf(struct sock *sk)
347{
348	u32 mss = tcp_sk(sk)->advmss;
349	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
350	int rcvmem;
351
352	/* Limit to 10 segments if mss <= 1460,
353	 * or 14600/mss segments, with a minimum of two segments.
354	 */
355	if (mss > 1460)
356		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
357
358	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
359	while (tcp_win_from_space(rcvmem) < mss)
360		rcvmem += 128;
361
362	rcvmem *= icwnd;
363
364	if (sk->sk_rcvbuf < rcvmem)
365		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
366}
367
368/* 4. Try to fixup all. It is made immediately after connection enters
369 *    established state.
370 */
371static void tcp_init_buffer_space(struct sock *sk)
372{
373	struct tcp_sock *tp = tcp_sk(sk);
374	int maxwin;
375
376	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
377		tcp_fixup_rcvbuf(sk);
378	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
379		tcp_fixup_sndbuf(sk);
380
381	tp->rcvq_space.space = tp->rcv_wnd;
382
383	maxwin = tcp_full_space(sk);
384
385	if (tp->window_clamp >= maxwin) {
386		tp->window_clamp = maxwin;
387
388		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
389			tp->window_clamp = max(maxwin -
390					       (maxwin >> sysctl_tcp_app_win),
391					       4 * tp->advmss);
392	}
393
394	/* Force reservation of one segment. */
395	if (sysctl_tcp_app_win &&
396	    tp->window_clamp > 2 * tp->advmss &&
397	    tp->window_clamp + tp->advmss > maxwin)
398		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
399
400	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
401	tp->snd_cwnd_stamp = tcp_time_stamp;
402}
403
404/* 5. Recalculate window clamp after socket hit its memory bounds. */
405static void tcp_clamp_window(struct sock *sk)
406{
407	struct tcp_sock *tp = tcp_sk(sk);
408	struct inet_connection_sock *icsk = inet_csk(sk);
409
410	icsk->icsk_ack.quick = 0;
411
412	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
413	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
414	    !tcp_memory_pressure &&
415	    atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
416		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
417				    sysctl_tcp_rmem[2]);
418	}
419	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
420		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
421}
422
423/* Initialize RCV_MSS value.
424 * RCV_MSS is an our guess about MSS used by the peer.
425 * We haven't any direct information about the MSS.
426 * It's better to underestimate the RCV_MSS rather than overestimate.
427 * Overestimations make us ACKing less frequently than needed.
428 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
429 */
430void tcp_initialize_rcv_mss(struct sock *sk)
431{
432	const struct tcp_sock *tp = tcp_sk(sk);
433	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
434
435	hint = min(hint, tp->rcv_wnd / 2);
436	hint = min(hint, TCP_MSS_DEFAULT);
437	hint = max(hint, TCP_MIN_MSS);
438
439	inet_csk(sk)->icsk_ack.rcv_mss = hint;
440}
441EXPORT_SYMBOL(tcp_initialize_rcv_mss);
442
443/* Receiver "autotuning" code.
444 *
445 * The algorithm for RTT estimation w/o timestamps is based on
446 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
447 * <http://public.lanl.gov/radiant/pubs.html#DRS>
448 *
449 * More detail on this code can be found at
450 * <http://staff.psc.edu/jheffner/>,
451 * though this reference is out of date.  A new paper
452 * is pending.
453 */
454static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
455{
456	u32 new_sample = tp->rcv_rtt_est.rtt;
457	long m = sample;
458
459	if (m == 0)
460		m = 1;
461
462	if (new_sample != 0) {
463		/* If we sample in larger samples in the non-timestamp
464		 * case, we could grossly overestimate the RTT especially
465		 * with chatty applications or bulk transfer apps which
466		 * are stalled on filesystem I/O.
467		 *
468		 * Also, since we are only going for a minimum in the
469		 * non-timestamp case, we do not smooth things out
470		 * else with timestamps disabled convergence takes too
471		 * long.
472		 */
473		if (!win_dep) {
474			m -= (new_sample >> 3);
475			new_sample += m;
476		} else if (m < new_sample)
477			new_sample = m << 3;
478	} else {
479		/* No previous measure. */
480		new_sample = m << 3;
481	}
482
483	if (tp->rcv_rtt_est.rtt != new_sample)
484		tp->rcv_rtt_est.rtt = new_sample;
485}
486
487static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
488{
489	if (tp->rcv_rtt_est.time == 0)
490		goto new_measure;
491	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
492		return;
493	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
494
495new_measure:
496	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
497	tp->rcv_rtt_est.time = tcp_time_stamp;
498}
499
500static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
501					  const struct sk_buff *skb)
502{
503	struct tcp_sock *tp = tcp_sk(sk);
504	if (tp->rx_opt.rcv_tsecr &&
505	    (TCP_SKB_CB(skb)->end_seq -
506	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
507		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
508}
509
510/*
511 * This function should be called every time data is copied to user space.
512 * It calculates the appropriate TCP receive buffer space.
513 */
514void tcp_rcv_space_adjust(struct sock *sk)
515{
516	struct tcp_sock *tp = tcp_sk(sk);
517	int time;
518	int space;
519
520	if (tp->rcvq_space.time == 0)
521		goto new_measure;
522
523	time = tcp_time_stamp - tp->rcvq_space.time;
524	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
525		return;
526
527	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
528
529	space = max(tp->rcvq_space.space, space);
530
531	if (tp->rcvq_space.space != space) {
532		int rcvmem;
533
534		tp->rcvq_space.space = space;
535
536		if (sysctl_tcp_moderate_rcvbuf &&
537		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
538			int new_clamp = space;
539
540			/* Receive space grows, normalize in order to
541			 * take into account packet headers and sk_buff
542			 * structure overhead.
543			 */
544			space /= tp->advmss;
545			if (!space)
546				space = 1;
547			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
548			while (tcp_win_from_space(rcvmem) < tp->advmss)
549				rcvmem += 128;
550			space *= rcvmem;
551			space = min(space, sysctl_tcp_rmem[2]);
552			if (space > sk->sk_rcvbuf) {
553				sk->sk_rcvbuf = space;
554
555				/* Make the window clamp follow along.  */
556				tp->window_clamp = new_clamp;
557			}
558		}
559	}
560
561new_measure:
562	tp->rcvq_space.seq = tp->copied_seq;
563	tp->rcvq_space.time = tcp_time_stamp;
564}
565
566/* There is something which you must keep in mind when you analyze the
567 * behavior of the tp->ato delayed ack timeout interval.  When a
568 * connection starts up, we want to ack as quickly as possible.  The
569 * problem is that "good" TCP's do slow start at the beginning of data
570 * transmission.  The means that until we send the first few ACK's the
571 * sender will sit on his end and only queue most of his data, because
572 * he can only send snd_cwnd unacked packets at any given time.  For
573 * each ACK we send, he increments snd_cwnd and transmits more of his
574 * queue.  -DaveM
575 */
576static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
577{
578	struct tcp_sock *tp = tcp_sk(sk);
579	struct inet_connection_sock *icsk = inet_csk(sk);
580	u32 now;
581
582	inet_csk_schedule_ack(sk);
583
584	tcp_measure_rcv_mss(sk, skb);
585
586	tcp_rcv_rtt_measure(tp);
587
588	now = tcp_time_stamp;
589
590	if (!icsk->icsk_ack.ato) {
591		/* The _first_ data packet received, initialize
592		 * delayed ACK engine.
593		 */
594		tcp_incr_quickack(sk);
595		icsk->icsk_ack.ato = TCP_ATO_MIN;
596	} else {
597		int m = now - icsk->icsk_ack.lrcvtime;
598
599		if (m <= TCP_ATO_MIN / 2) {
600			/* The fastest case is the first. */
601			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
602		} else if (m < icsk->icsk_ack.ato) {
603			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
604			if (icsk->icsk_ack.ato > icsk->icsk_rto)
605				icsk->icsk_ack.ato = icsk->icsk_rto;
606		} else if (m > icsk->icsk_rto) {
607			/* Too long gap. Apparently sender failed to
608			 * restart window, so that we send ACKs quickly.
609			 */
610			tcp_incr_quickack(sk);
611			sk_mem_reclaim(sk);
612		}
613	}
614	icsk->icsk_ack.lrcvtime = now;
615
616	TCP_ECN_check_ce(tp, skb);
617
618	if (skb->len >= 128)
619		tcp_grow_window(sk, skb);
620}
621
622/* Called to compute a smoothed rtt estimate. The data fed to this
623 * routine either comes from timestamps, or from segments that were
624 * known _not_ to have been retransmitted [see Karn/Partridge
625 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
626 * piece by Van Jacobson.
627 * NOTE: the next three routines used to be one big routine.
628 * To save cycles in the RFC 1323 implementation it was better to break
629 * it up into three procedures. -- erics
630 */
631static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
632{
633	struct tcp_sock *tp = tcp_sk(sk);
634	long m = mrtt; /* RTT */
635
636	/*	The following amusing code comes from Jacobson's
637	 *	article in SIGCOMM '88.  Note that rtt and mdev
638	 *	are scaled versions of rtt and mean deviation.
639	 *	This is designed to be as fast as possible
640	 *	m stands for "measurement".
641	 *
642	 *	On a 1990 paper the rto value is changed to:
643	 *	RTO = rtt + 4 * mdev
644	 *
645	 * Funny. This algorithm seems to be very broken.
646	 * These formulae increase RTO, when it should be decreased, increase
647	 * too slowly, when it should be increased quickly, decrease too quickly
648	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
649	 * does not matter how to _calculate_ it. Seems, it was trap
650	 * that VJ failed to avoid. 8)
651	 */
652	if (m == 0)
653		m = 1;
654	if (tp->srtt != 0) {
655		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
656		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
657		if (m < 0) {
658			m = -m;		/* m is now abs(error) */
659			m -= (tp->mdev >> 2);   /* similar update on mdev */
660			/* This is similar to one of Eifel findings.
661			 * Eifel blocks mdev updates when rtt decreases.
662			 * This solution is a bit different: we use finer gain
663			 * for mdev in this case (alpha*beta).
664			 * Like Eifel it also prevents growth of rto,
665			 * but also it limits too fast rto decreases,
666			 * happening in pure Eifel.
667			 */
668			if (m > 0)
669				m >>= 3;
670		} else {
671			m -= (tp->mdev >> 2);   /* similar update on mdev */
672		}
673		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
674		if (tp->mdev > tp->mdev_max) {
675			tp->mdev_max = tp->mdev;
676			if (tp->mdev_max > tp->rttvar)
677				tp->rttvar = tp->mdev_max;
678		}
679		if (after(tp->snd_una, tp->rtt_seq)) {
680			if (tp->mdev_max < tp->rttvar)
681				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
682			tp->rtt_seq = tp->snd_nxt;
683			tp->mdev_max = tcp_rto_min(sk);
684		}
685	} else {
686		/* no previous measure. */
687		tp->srtt = m << 3;	/* take the measured time to be rtt */
688		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
689		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
690		tp->rtt_seq = tp->snd_nxt;
691	}
692}
693
694/* Calculate rto without backoff.  This is the second half of Van Jacobson's
695 * routine referred to above.
696 */
697static inline void tcp_set_rto(struct sock *sk)
698{
699	const struct tcp_sock *tp = tcp_sk(sk);
700	/* Old crap is replaced with new one. 8)
701	 *
702	 * More seriously:
703	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
704	 *    It cannot be less due to utterly erratic ACK generation made
705	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
706	 *    to do with delayed acks, because at cwnd>2 true delack timeout
707	 *    is invisible. Actually, Linux-2.4 also generates erratic
708	 *    ACKs in some circumstances.
709	 */
710	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
711
712	/* 2. Fixups made earlier cannot be right.
713	 *    If we do not estimate RTO correctly without them,
714	 *    all the algo is pure shit and should be replaced
715	 *    with correct one. It is exactly, which we pretend to do.
716	 */
717
718	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
719	 * guarantees that rto is higher.
720	 */
721	tcp_bound_rto(sk);
722}
723
724/* Save metrics learned by this TCP session.
725   This function is called only, when TCP finishes successfully
726   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
727 */
728void tcp_update_metrics(struct sock *sk)
729{
730	struct tcp_sock *tp = tcp_sk(sk);
731	struct dst_entry *dst = __sk_dst_get(sk);
732
733	if (sysctl_tcp_nometrics_save)
734		return;
735
736	dst_confirm(dst);
737
738	if (dst && (dst->flags & DST_HOST)) {
739		const struct inet_connection_sock *icsk = inet_csk(sk);
740		int m;
741		unsigned long rtt;
742
743		if (icsk->icsk_backoff || !tp->srtt) {
744			/* This session failed to estimate rtt. Why?
745			 * Probably, no packets returned in time.
746			 * Reset our results.
747			 */
748			if (!(dst_metric_locked(dst, RTAX_RTT)))
749				dst_metric_set(dst, RTAX_RTT, 0);
750			return;
751		}
752
753		rtt = dst_metric_rtt(dst, RTAX_RTT);
754		m = rtt - tp->srtt;
755
756		/* If newly calculated rtt larger than stored one,
757		 * store new one. Otherwise, use EWMA. Remember,
758		 * rtt overestimation is always better than underestimation.
759		 */
760		if (!(dst_metric_locked(dst, RTAX_RTT))) {
761			if (m <= 0)
762				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
763			else
764				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
765		}
766
767		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
768			unsigned long var;
769			if (m < 0)
770				m = -m;
771
772			/* Scale deviation to rttvar fixed point */
773			m >>= 1;
774			if (m < tp->mdev)
775				m = tp->mdev;
776
777			var = dst_metric_rtt(dst, RTAX_RTTVAR);
778			if (m >= var)
779				var = m;
780			else
781				var -= (var - m) >> 2;
782
783			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
784		}
785
786		if (tcp_in_initial_slowstart(tp)) {
787			/* Slow start still did not finish. */
788			if (dst_metric(dst, RTAX_SSTHRESH) &&
789			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
790			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
791				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
792			if (!dst_metric_locked(dst, RTAX_CWND) &&
793			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
794				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
795		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
796			   icsk->icsk_ca_state == TCP_CA_Open) {
797			/* Cong. avoidance phase, cwnd is reliable. */
798			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
799				dst_metric_set(dst, RTAX_SSTHRESH,
800					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
801			if (!dst_metric_locked(dst, RTAX_CWND))
802				dst_metric_set(dst, RTAX_CWND,
803					       (dst_metric(dst, RTAX_CWND) +
804						tp->snd_cwnd) >> 1);
805		} else {
806			/* Else slow start did not finish, cwnd is non-sense,
807			   ssthresh may be also invalid.
808			 */
809			if (!dst_metric_locked(dst, RTAX_CWND))
810				dst_metric_set(dst, RTAX_CWND,
811					       (dst_metric(dst, RTAX_CWND) +
812						tp->snd_ssthresh) >> 1);
813			if (dst_metric(dst, RTAX_SSTHRESH) &&
814			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
815			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
816				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
817		}
818
819		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
820			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
821			    tp->reordering != sysctl_tcp_reordering)
822				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
823		}
824	}
825}
826
827__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
828{
829	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
830
831	if (!cwnd)
832		cwnd = TCP_INIT_CWND;
833	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834}
835
836/* Set slow start threshold and cwnd not falling to slow start */
837void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838{
839	struct tcp_sock *tp = tcp_sk(sk);
840	const struct inet_connection_sock *icsk = inet_csk(sk);
841
842	tp->prior_ssthresh = 0;
843	tp->bytes_acked = 0;
844	if (icsk->icsk_ca_state < TCP_CA_CWR) {
845		tp->undo_marker = 0;
846		if (set_ssthresh)
847			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848		tp->snd_cwnd = min(tp->snd_cwnd,
849				   tcp_packets_in_flight(tp) + 1U);
850		tp->snd_cwnd_cnt = 0;
851		tp->high_seq = tp->snd_nxt;
852		tp->snd_cwnd_stamp = tcp_time_stamp;
853		TCP_ECN_queue_cwr(tp);
854
855		tcp_set_ca_state(sk, TCP_CA_CWR);
856	}
857}
858
859/*
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
862 */
863static void tcp_disable_fack(struct tcp_sock *tp)
864{
865	/* RFC3517 uses different metric in lost marker => reset on change */
866	if (tcp_is_fack(tp))
867		tp->lost_skb_hint = NULL;
868	tp->rx_opt.sack_ok &= ~2;
869}
870
871/* Take a notice that peer is sending D-SACKs */
872static void tcp_dsack_seen(struct tcp_sock *tp)
873{
874	tp->rx_opt.sack_ok |= 4;
875}
876
877/* Initialize metrics on socket. */
878
879static void tcp_init_metrics(struct sock *sk)
880{
881	struct tcp_sock *tp = tcp_sk(sk);
882	struct dst_entry *dst = __sk_dst_get(sk);
883
884	if (dst == NULL)
885		goto reset;
886
887	dst_confirm(dst);
888
889	if (dst_metric_locked(dst, RTAX_CWND))
890		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891	if (dst_metric(dst, RTAX_SSTHRESH)) {
892		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894			tp->snd_ssthresh = tp->snd_cwnd_clamp;
895	} else {
896		/* ssthresh may have been reduced unnecessarily during.
897		 * 3WHS. Restore it back to its initial default.
898		 */
899		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
900	}
901	if (dst_metric(dst, RTAX_REORDERING) &&
902	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
903		tcp_disable_fack(tp);
904		tp->reordering = dst_metric(dst, RTAX_REORDERING);
905	}
906
907	if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
908		goto reset;
909
910	/* Initial rtt is determined from SYN,SYN-ACK.
911	 * The segment is small and rtt may appear much
912	 * less than real one. Use per-dst memory
913	 * to make it more realistic.
914	 *
915	 * A bit of theory. RTT is time passed after "normal" sized packet
916	 * is sent until it is ACKed. In normal circumstances sending small
917	 * packets force peer to delay ACKs and calculation is correct too.
918	 * The algorithm is adaptive and, provided we follow specs, it
919	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
920	 * tricks sort of "quick acks" for time long enough to decrease RTT
921	 * to low value, and then abruptly stops to do it and starts to delay
922	 * ACKs, wait for troubles.
923	 */
924	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
925		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
926		tp->rtt_seq = tp->snd_nxt;
927	}
928	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
929		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
930		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
931	}
932	tcp_set_rto(sk);
933reset:
934	if (tp->srtt == 0) {
935		/* RFC2988bis: We've failed to get a valid RTT sample from
936		 * 3WHS. This is most likely due to retransmission,
937		 * including spurious one. Reset the RTO back to 3secs
938		 * from the more aggressive 1sec to avoid more spurious
939		 * retransmission.
940		 */
941		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
942		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
943	}
944	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
945	 * retransmitted. In light of RFC2988bis' more aggressive 1sec
946	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
947	 * retransmission has occurred.
948	 */
949	if (tp->total_retrans > 1)
950		tp->snd_cwnd = 1;
951	else
952		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
953	tp->snd_cwnd_stamp = tcp_time_stamp;
954}
955
956static void tcp_update_reordering(struct sock *sk, const int metric,
957				  const int ts)
958{
959	struct tcp_sock *tp = tcp_sk(sk);
960	if (metric > tp->reordering) {
961		int mib_idx;
962
963		tp->reordering = min(TCP_MAX_REORDERING, metric);
964
965		/* This exciting event is worth to be remembered. 8) */
966		if (ts)
967			mib_idx = LINUX_MIB_TCPTSREORDER;
968		else if (tcp_is_reno(tp))
969			mib_idx = LINUX_MIB_TCPRENOREORDER;
970		else if (tcp_is_fack(tp))
971			mib_idx = LINUX_MIB_TCPFACKREORDER;
972		else
973			mib_idx = LINUX_MIB_TCPSACKREORDER;
974
975		NET_INC_STATS_BH(sock_net(sk), mib_idx);
976#if FASTRETRANS_DEBUG > 1
977		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
978		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
979		       tp->reordering,
980		       tp->fackets_out,
981		       tp->sacked_out,
982		       tp->undo_marker ? tp->undo_retrans : 0);
983#endif
984		tcp_disable_fack(tp);
985	}
986}
987
988/* This must be called before lost_out is incremented */
989static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
990{
991	if ((tp->retransmit_skb_hint == NULL) ||
992	    before(TCP_SKB_CB(skb)->seq,
993		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
994		tp->retransmit_skb_hint = skb;
995
996	if (!tp->lost_out ||
997	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
998		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
999}
1000
1001static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1002{
1003	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1004		tcp_verify_retransmit_hint(tp, skb);
1005
1006		tp->lost_out += tcp_skb_pcount(skb);
1007		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1008	}
1009}
1010
1011static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1012					    struct sk_buff *skb)
1013{
1014	tcp_verify_retransmit_hint(tp, skb);
1015
1016	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1017		tp->lost_out += tcp_skb_pcount(skb);
1018		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1019	}
1020}
1021
1022/* This procedure tags the retransmission queue when SACKs arrive.
1023 *
1024 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1025 * Packets in queue with these bits set are counted in variables
1026 * sacked_out, retrans_out and lost_out, correspondingly.
1027 *
1028 * Valid combinations are:
1029 * Tag  InFlight	Description
1030 * 0	1		- orig segment is in flight.
1031 * S	0		- nothing flies, orig reached receiver.
1032 * L	0		- nothing flies, orig lost by net.
1033 * R	2		- both orig and retransmit are in flight.
1034 * L|R	1		- orig is lost, retransmit is in flight.
1035 * S|R  1		- orig reached receiver, retrans is still in flight.
1036 * (L|S|R is logically valid, it could occur when L|R is sacked,
1037 *  but it is equivalent to plain S and code short-curcuits it to S.
1038 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1039 *
1040 * These 6 states form finite state machine, controlled by the following events:
1041 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1042 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1043 * 3. Loss detection event of one of three flavors:
1044 *	A. Scoreboard estimator decided the packet is lost.
1045 *	   A'. Reno "three dupacks" marks head of queue lost.
1046 *	   A''. Its FACK modfication, head until snd.fack is lost.
1047 *	B. SACK arrives sacking data transmitted after never retransmitted
1048 *	   hole was sent out.
1049 *	C. SACK arrives sacking SND.NXT at the moment, when the
1050 *	   segment was retransmitted.
1051 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1052 *
1053 * It is pleasant to note, that state diagram turns out to be commutative,
1054 * so that we are allowed not to be bothered by order of our actions,
1055 * when multiple events arrive simultaneously. (see the function below).
1056 *
1057 * Reordering detection.
1058 * --------------------
1059 * Reordering metric is maximal distance, which a packet can be displaced
1060 * in packet stream. With SACKs we can estimate it:
1061 *
1062 * 1. SACK fills old hole and the corresponding segment was not
1063 *    ever retransmitted -> reordering. Alas, we cannot use it
1064 *    when segment was retransmitted.
1065 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1066 *    for retransmitted and already SACKed segment -> reordering..
1067 * Both of these heuristics are not used in Loss state, when we cannot
1068 * account for retransmits accurately.
1069 *
1070 * SACK block validation.
1071 * ----------------------
1072 *
1073 * SACK block range validation checks that the received SACK block fits to
1074 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1075 * Note that SND.UNA is not included to the range though being valid because
1076 * it means that the receiver is rather inconsistent with itself reporting
1077 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1078 * perfectly valid, however, in light of RFC2018 which explicitly states
1079 * that "SACK block MUST reflect the newest segment.  Even if the newest
1080 * segment is going to be discarded ...", not that it looks very clever
1081 * in case of head skb. Due to potentional receiver driven attacks, we
1082 * choose to avoid immediate execution of a walk in write queue due to
1083 * reneging and defer head skb's loss recovery to standard loss recovery
1084 * procedure that will eventually trigger (nothing forbids us doing this).
1085 *
1086 * Implements also blockage to start_seq wrap-around. Problem lies in the
1087 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1088 * there's no guarantee that it will be before snd_nxt (n). The problem
1089 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1090 * wrap (s_w):
1091 *
1092 *         <- outs wnd ->                          <- wrapzone ->
1093 *         u     e      n                         u_w   e_w  s n_w
1094 *         |     |      |                          |     |   |  |
1095 * |<------------+------+----- TCP seqno space --------------+---------->|
1096 * ...-- <2^31 ->|                                           |<--------...
1097 * ...---- >2^31 ------>|                                    |<--------...
1098 *
1099 * Current code wouldn't be vulnerable but it's better still to discard such
1100 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1101 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1102 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1103 * equal to the ideal case (infinite seqno space without wrap caused issues).
1104 *
1105 * With D-SACK the lower bound is extended to cover sequence space below
1106 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1107 * again, D-SACK block must not to go across snd_una (for the same reason as
1108 * for the normal SACK blocks, explained above). But there all simplicity
1109 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1110 * fully below undo_marker they do not affect behavior in anyway and can
1111 * therefore be safely ignored. In rare cases (which are more or less
1112 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1113 * fragmentation and packet reordering past skb's retransmission. To consider
1114 * them correctly, the acceptable range must be extended even more though
1115 * the exact amount is rather hard to quantify. However, tp->max_window can
1116 * be used as an exaggerated estimate.
1117 */
1118static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1119				  u32 start_seq, u32 end_seq)
1120{
1121	/* Too far in future, or reversed (interpretation is ambiguous) */
1122	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1123		return 0;
1124
1125	/* Nasty start_seq wrap-around check (see comments above) */
1126	if (!before(start_seq, tp->snd_nxt))
1127		return 0;
1128
1129	/* In outstanding window? ...This is valid exit for D-SACKs too.
1130	 * start_seq == snd_una is non-sensical (see comments above)
1131	 */
1132	if (after(start_seq, tp->snd_una))
1133		return 1;
1134
1135	if (!is_dsack || !tp->undo_marker)
1136		return 0;
1137
1138	/* ...Then it's D-SACK, and must reside below snd_una completely */
1139	if (after(end_seq, tp->snd_una))
1140		return 0;
1141
1142	if (!before(start_seq, tp->undo_marker))
1143		return 1;
1144
1145	/* Too old */
1146	if (!after(end_seq, tp->undo_marker))
1147		return 0;
1148
1149	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1150	 *   start_seq < undo_marker and end_seq >= undo_marker.
1151	 */
1152	return !before(start_seq, end_seq - tp->max_window);
1153}
1154
1155/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1156 * Event "C". Later note: FACK people cheated me again 8), we have to account
1157 * for reordering! Ugly, but should help.
1158 *
1159 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1160 * less than what is now known to be received by the other end (derived from
1161 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1162 * retransmitted skbs to avoid some costly processing per ACKs.
1163 */
1164static void tcp_mark_lost_retrans(struct sock *sk)
1165{
1166	const struct inet_connection_sock *icsk = inet_csk(sk);
1167	struct tcp_sock *tp = tcp_sk(sk);
1168	struct sk_buff *skb;
1169	int cnt = 0;
1170	u32 new_low_seq = tp->snd_nxt;
1171	u32 received_upto = tcp_highest_sack_seq(tp);
1172
1173	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1174	    !after(received_upto, tp->lost_retrans_low) ||
1175	    icsk->icsk_ca_state != TCP_CA_Recovery)
1176		return;
1177
1178	tcp_for_write_queue(skb, sk) {
1179		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1180
1181		if (skb == tcp_send_head(sk))
1182			break;
1183		if (cnt == tp->retrans_out)
1184			break;
1185		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1186			continue;
1187
1188		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1189			continue;
1190
1191		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1192		 * constraint here (see above) but figuring out that at
1193		 * least tp->reordering SACK blocks reside between ack_seq
1194		 * and received_upto is not easy task to do cheaply with
1195		 * the available datastructures.
1196		 *
1197		 * Whether FACK should check here for tp->reordering segs
1198		 * in-between one could argue for either way (it would be
1199		 * rather simple to implement as we could count fack_count
1200		 * during the walk and do tp->fackets_out - fack_count).
1201		 */
1202		if (after(received_upto, ack_seq)) {
1203			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1204			tp->retrans_out -= tcp_skb_pcount(skb);
1205
1206			tcp_skb_mark_lost_uncond_verify(tp, skb);
1207			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1208		} else {
1209			if (before(ack_seq, new_low_seq))
1210				new_low_seq = ack_seq;
1211			cnt += tcp_skb_pcount(skb);
1212		}
1213	}
1214
1215	if (tp->retrans_out)
1216		tp->lost_retrans_low = new_low_seq;
1217}
1218
1219static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1220			   struct tcp_sack_block_wire *sp, int num_sacks,
1221			   u32 prior_snd_una)
1222{
1223	struct tcp_sock *tp = tcp_sk(sk);
1224	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1225	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1226	int dup_sack = 0;
1227
1228	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1229		dup_sack = 1;
1230		tcp_dsack_seen(tp);
1231		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1232	} else if (num_sacks > 1) {
1233		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1234		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1235
1236		if (!after(end_seq_0, end_seq_1) &&
1237		    !before(start_seq_0, start_seq_1)) {
1238			dup_sack = 1;
1239			tcp_dsack_seen(tp);
1240			NET_INC_STATS_BH(sock_net(sk),
1241					LINUX_MIB_TCPDSACKOFORECV);
1242		}
1243	}
1244
1245	/* D-SACK for already forgotten data... Do dumb counting. */
1246	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1247	    !after(end_seq_0, prior_snd_una) &&
1248	    after(end_seq_0, tp->undo_marker))
1249		tp->undo_retrans--;
1250
1251	return dup_sack;
1252}
1253
1254struct tcp_sacktag_state {
1255	int reord;
1256	int fack_count;
1257	int flag;
1258};
1259
1260/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1261 * the incoming SACK may not exactly match but we can find smaller MSS
1262 * aligned portion of it that matches. Therefore we might need to fragment
1263 * which may fail and creates some hassle (caller must handle error case
1264 * returns).
1265 *
1266 * FIXME: this could be merged to shift decision code
1267 */
1268static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1269				 u32 start_seq, u32 end_seq)
1270{
1271	int in_sack, err;
1272	unsigned int pkt_len;
1273	unsigned int mss;
1274
1275	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1276		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1277
1278	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1279	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1280		mss = tcp_skb_mss(skb);
1281		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1282
1283		if (!in_sack) {
1284			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1285			if (pkt_len < mss)
1286				pkt_len = mss;
1287		} else {
1288			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1289			if (pkt_len < mss)
1290				return -EINVAL;
1291		}
1292
1293		/* Round if necessary so that SACKs cover only full MSSes
1294		 * and/or the remaining small portion (if present)
1295		 */
1296		if (pkt_len > mss) {
1297			unsigned int new_len = (pkt_len / mss) * mss;
1298			if (!in_sack && new_len < pkt_len) {
1299				new_len += mss;
1300				if (new_len > skb->len)
1301					return 0;
1302			}
1303			pkt_len = new_len;
1304		}
1305		err = tcp_fragment(sk, skb, pkt_len, mss);
1306		if (err < 0)
1307			return err;
1308	}
1309
1310	return in_sack;
1311}
1312
1313static u8 tcp_sacktag_one(const struct sk_buff *skb, struct sock *sk,
1314			  struct tcp_sacktag_state *state,
1315			  int dup_sack, int pcount)
1316{
1317	struct tcp_sock *tp = tcp_sk(sk);
1318	u8 sacked = TCP_SKB_CB(skb)->sacked;
1319	int fack_count = state->fack_count;
1320
1321	/* Account D-SACK for retransmitted packet. */
1322	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1323		if (tp->undo_marker && tp->undo_retrans &&
1324		    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1325			tp->undo_retrans--;
1326		if (sacked & TCPCB_SACKED_ACKED)
1327			state->reord = min(fack_count, state->reord);
1328	}
1329
1330	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1331	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1332		return sacked;
1333
1334	if (!(sacked & TCPCB_SACKED_ACKED)) {
1335		if (sacked & TCPCB_SACKED_RETRANS) {
1336			/* If the segment is not tagged as lost,
1337			 * we do not clear RETRANS, believing
1338			 * that retransmission is still in flight.
1339			 */
1340			if (sacked & TCPCB_LOST) {
1341				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1342				tp->lost_out -= pcount;
1343				tp->retrans_out -= pcount;
1344			}
1345		} else {
1346			if (!(sacked & TCPCB_RETRANS)) {
1347				/* New sack for not retransmitted frame,
1348				 * which was in hole. It is reordering.
1349				 */
1350				if (before(TCP_SKB_CB(skb)->seq,
1351					   tcp_highest_sack_seq(tp)))
1352					state->reord = min(fack_count,
1353							   state->reord);
1354
1355				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1356				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1357					state->flag |= FLAG_ONLY_ORIG_SACKED;
1358			}
1359
1360			if (sacked & TCPCB_LOST) {
1361				sacked &= ~TCPCB_LOST;
1362				tp->lost_out -= pcount;
1363			}
1364		}
1365
1366		sacked |= TCPCB_SACKED_ACKED;
1367		state->flag |= FLAG_DATA_SACKED;
1368		tp->sacked_out += pcount;
1369
1370		fack_count += pcount;
1371
1372		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1373		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1374		    before(TCP_SKB_CB(skb)->seq,
1375			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1376			tp->lost_cnt_hint += pcount;
1377
1378		if (fack_count > tp->fackets_out)
1379			tp->fackets_out = fack_count;
1380	}
1381
1382	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1383	 * frames and clear it. undo_retrans is decreased above, L|R frames
1384	 * are accounted above as well.
1385	 */
1386	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1387		sacked &= ~TCPCB_SACKED_RETRANS;
1388		tp->retrans_out -= pcount;
1389	}
1390
1391	return sacked;
1392}
1393
1394static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1395			   struct tcp_sacktag_state *state,
1396			   unsigned int pcount, int shifted, int mss,
1397			   int dup_sack)
1398{
1399	struct tcp_sock *tp = tcp_sk(sk);
1400	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1401
1402	BUG_ON(!pcount);
1403
1404	if (skb == tp->lost_skb_hint)
1405		tp->lost_cnt_hint += pcount;
1406
1407	TCP_SKB_CB(prev)->end_seq += shifted;
1408	TCP_SKB_CB(skb)->seq += shifted;
1409
1410	skb_shinfo(prev)->gso_segs += pcount;
1411	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1412	skb_shinfo(skb)->gso_segs -= pcount;
1413
1414	/* When we're adding to gso_segs == 1, gso_size will be zero,
1415	 * in theory this shouldn't be necessary but as long as DSACK
1416	 * code can come after this skb later on it's better to keep
1417	 * setting gso_size to something.
1418	 */
1419	if (!skb_shinfo(prev)->gso_size) {
1420		skb_shinfo(prev)->gso_size = mss;
1421		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1422	}
1423
1424	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1425	if (skb_shinfo(skb)->gso_segs <= 1) {
1426		skb_shinfo(skb)->gso_size = 0;
1427		skb_shinfo(skb)->gso_type = 0;
1428	}
1429
1430	/* We discard results */
1431	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1432
1433	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1434	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1435
1436	if (skb->len > 0) {
1437		BUG_ON(!tcp_skb_pcount(skb));
1438		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1439		return 0;
1440	}
1441
1442	/* Whole SKB was eaten :-) */
1443
1444	if (skb == tp->retransmit_skb_hint)
1445		tp->retransmit_skb_hint = prev;
1446	if (skb == tp->scoreboard_skb_hint)
1447		tp->scoreboard_skb_hint = prev;
1448	if (skb == tp->lost_skb_hint) {
1449		tp->lost_skb_hint = prev;
1450		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1451	}
1452
1453	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1454	if (skb == tcp_highest_sack(sk))
1455		tcp_advance_highest_sack(sk, skb);
1456
1457	tcp_unlink_write_queue(skb, sk);
1458	sk_wmem_free_skb(sk, skb);
1459
1460	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1461
1462	return 1;
1463}
1464
1465/* I wish gso_size would have a bit more sane initialization than
1466 * something-or-zero which complicates things
1467 */
1468static int tcp_skb_seglen(const struct sk_buff *skb)
1469{
1470	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1471}
1472
1473/* Shifting pages past head area doesn't work */
1474static int skb_can_shift(const struct sk_buff *skb)
1475{
1476	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1477}
1478
1479/* Try collapsing SACK blocks spanning across multiple skbs to a single
1480 * skb.
1481 */
1482static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1483					  struct tcp_sacktag_state *state,
1484					  u32 start_seq, u32 end_seq,
1485					  int dup_sack)
1486{
1487	struct tcp_sock *tp = tcp_sk(sk);
1488	struct sk_buff *prev;
1489	int mss;
1490	int pcount = 0;
1491	int len;
1492	int in_sack;
1493
1494	if (!sk_can_gso(sk))
1495		goto fallback;
1496
1497	/* Normally R but no L won't result in plain S */
1498	if (!dup_sack &&
1499	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1500		goto fallback;
1501	if (!skb_can_shift(skb))
1502		goto fallback;
1503	/* This frame is about to be dropped (was ACKed). */
1504	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1505		goto fallback;
1506
1507	/* Can only happen with delayed DSACK + discard craziness */
1508	if (unlikely(skb == tcp_write_queue_head(sk)))
1509		goto fallback;
1510	prev = tcp_write_queue_prev(sk, skb);
1511
1512	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1513		goto fallback;
1514
1515	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1516		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1517
1518	if (in_sack) {
1519		len = skb->len;
1520		pcount = tcp_skb_pcount(skb);
1521		mss = tcp_skb_seglen(skb);
1522
1523		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1524		 * drop this restriction as unnecessary
1525		 */
1526		if (mss != tcp_skb_seglen(prev))
1527			goto fallback;
1528	} else {
1529		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1530			goto noop;
1531		/* CHECKME: This is non-MSS split case only?, this will
1532		 * cause skipped skbs due to advancing loop btw, original
1533		 * has that feature too
1534		 */
1535		if (tcp_skb_pcount(skb) <= 1)
1536			goto noop;
1537
1538		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1539		if (!in_sack) {
1540			/* TODO: head merge to next could be attempted here
1541			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1542			 * though it might not be worth of the additional hassle
1543			 *
1544			 * ...we can probably just fallback to what was done
1545			 * previously. We could try merging non-SACKed ones
1546			 * as well but it probably isn't going to buy off
1547			 * because later SACKs might again split them, and
1548			 * it would make skb timestamp tracking considerably
1549			 * harder problem.
1550			 */
1551			goto fallback;
1552		}
1553
1554		len = end_seq - TCP_SKB_CB(skb)->seq;
1555		BUG_ON(len < 0);
1556		BUG_ON(len > skb->len);
1557
1558		/* MSS boundaries should be honoured or else pcount will
1559		 * severely break even though it makes things bit trickier.
1560		 * Optimize common case to avoid most of the divides
1561		 */
1562		mss = tcp_skb_mss(skb);
1563
1564		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1565		 * drop this restriction as unnecessary
1566		 */
1567		if (mss != tcp_skb_seglen(prev))
1568			goto fallback;
1569
1570		if (len == mss) {
1571			pcount = 1;
1572		} else if (len < mss) {
1573			goto noop;
1574		} else {
1575			pcount = len / mss;
1576			len = pcount * mss;
1577		}
1578	}
1579
1580	if (!skb_shift(prev, skb, len))
1581		goto fallback;
1582	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1583		goto out;
1584
1585	/* Hole filled allows collapsing with the next as well, this is very
1586	 * useful when hole on every nth skb pattern happens
1587	 */
1588	if (prev == tcp_write_queue_tail(sk))
1589		goto out;
1590	skb = tcp_write_queue_next(sk, prev);
1591
1592	if (!skb_can_shift(skb) ||
1593	    (skb == tcp_send_head(sk)) ||
1594	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1595	    (mss != tcp_skb_seglen(skb)))
1596		goto out;
1597
1598	len = skb->len;
1599	if (skb_shift(prev, skb, len)) {
1600		pcount += tcp_skb_pcount(skb);
1601		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1602	}
1603
1604out:
1605	state->fack_count += pcount;
1606	return prev;
1607
1608noop:
1609	return skb;
1610
1611fallback:
1612	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1613	return NULL;
1614}
1615
1616static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1617					struct tcp_sack_block *next_dup,
1618					struct tcp_sacktag_state *state,
1619					u32 start_seq, u32 end_seq,
1620					int dup_sack_in)
1621{
1622	struct tcp_sock *tp = tcp_sk(sk);
1623	struct sk_buff *tmp;
1624
1625	tcp_for_write_queue_from(skb, sk) {
1626		int in_sack = 0;
1627		int dup_sack = dup_sack_in;
1628
1629		if (skb == tcp_send_head(sk))
1630			break;
1631
1632		/* queue is in-order => we can short-circuit the walk early */
1633		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1634			break;
1635
1636		if ((next_dup != NULL) &&
1637		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1638			in_sack = tcp_match_skb_to_sack(sk, skb,
1639							next_dup->start_seq,
1640							next_dup->end_seq);
1641			if (in_sack > 0)
1642				dup_sack = 1;
1643		}
1644
1645		/* skb reference here is a bit tricky to get right, since
1646		 * shifting can eat and free both this skb and the next,
1647		 * so not even _safe variant of the loop is enough.
1648		 */
1649		if (in_sack <= 0) {
1650			tmp = tcp_shift_skb_data(sk, skb, state,
1651						 start_seq, end_seq, dup_sack);
1652			if (tmp != NULL) {
1653				if (tmp != skb) {
1654					skb = tmp;
1655					continue;
1656				}
1657
1658				in_sack = 0;
1659			} else {
1660				in_sack = tcp_match_skb_to_sack(sk, skb,
1661								start_seq,
1662								end_seq);
1663			}
1664		}
1665
1666		if (unlikely(in_sack < 0))
1667			break;
1668
1669		if (in_sack) {
1670			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1671								  state,
1672								  dup_sack,
1673								  tcp_skb_pcount(skb));
1674
1675			if (!before(TCP_SKB_CB(skb)->seq,
1676				    tcp_highest_sack_seq(tp)))
1677				tcp_advance_highest_sack(sk, skb);
1678		}
1679
1680		state->fack_count += tcp_skb_pcount(skb);
1681	}
1682	return skb;
1683}
1684
1685/* Avoid all extra work that is being done by sacktag while walking in
1686 * a normal way
1687 */
1688static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1689					struct tcp_sacktag_state *state,
1690					u32 skip_to_seq)
1691{
1692	tcp_for_write_queue_from(skb, sk) {
1693		if (skb == tcp_send_head(sk))
1694			break;
1695
1696		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1697			break;
1698
1699		state->fack_count += tcp_skb_pcount(skb);
1700	}
1701	return skb;
1702}
1703
1704static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1705						struct sock *sk,
1706						struct tcp_sack_block *next_dup,
1707						struct tcp_sacktag_state *state,
1708						u32 skip_to_seq)
1709{
1710	if (next_dup == NULL)
1711		return skb;
1712
1713	if (before(next_dup->start_seq, skip_to_seq)) {
1714		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1715		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1716				       next_dup->start_seq, next_dup->end_seq,
1717				       1);
1718	}
1719
1720	return skb;
1721}
1722
1723static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1724{
1725	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1726}
1727
1728static int
1729tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1730			u32 prior_snd_una)
1731{
1732	const struct inet_connection_sock *icsk = inet_csk(sk);
1733	struct tcp_sock *tp = tcp_sk(sk);
1734	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1735				    TCP_SKB_CB(ack_skb)->sacked);
1736	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1737	struct tcp_sack_block sp[TCP_NUM_SACKS];
1738	struct tcp_sack_block *cache;
1739	struct tcp_sacktag_state state;
1740	struct sk_buff *skb;
1741	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1742	int used_sacks;
1743	int found_dup_sack = 0;
1744	int i, j;
1745	int first_sack_index;
1746
1747	state.flag = 0;
1748	state.reord = tp->packets_out;
1749
1750	if (!tp->sacked_out) {
1751		if (WARN_ON(tp->fackets_out))
1752			tp->fackets_out = 0;
1753		tcp_highest_sack_reset(sk);
1754	}
1755
1756	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1757					 num_sacks, prior_snd_una);
1758	if (found_dup_sack)
1759		state.flag |= FLAG_DSACKING_ACK;
1760
1761	/* Eliminate too old ACKs, but take into
1762	 * account more or less fresh ones, they can
1763	 * contain valid SACK info.
1764	 */
1765	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1766		return 0;
1767
1768	if (!tp->packets_out)
1769		goto out;
1770
1771	used_sacks = 0;
1772	first_sack_index = 0;
1773	for (i = 0; i < num_sacks; i++) {
1774		int dup_sack = !i && found_dup_sack;
1775
1776		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1777		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1778
1779		if (!tcp_is_sackblock_valid(tp, dup_sack,
1780					    sp[used_sacks].start_seq,
1781					    sp[used_sacks].end_seq)) {
1782			int mib_idx;
1783
1784			if (dup_sack) {
1785				if (!tp->undo_marker)
1786					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1787				else
1788					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1789			} else {
1790				/* Don't count olds caused by ACK reordering */
1791				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1792				    !after(sp[used_sacks].end_seq, tp->snd_una))
1793					continue;
1794				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1795			}
1796
1797			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1798			if (i == 0)
1799				first_sack_index = -1;
1800			continue;
1801		}
1802
1803		/* Ignore very old stuff early */
1804		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1805			continue;
1806
1807		used_sacks++;
1808	}
1809
1810	/* order SACK blocks to allow in order walk of the retrans queue */
1811	for (i = used_sacks - 1; i > 0; i--) {
1812		for (j = 0; j < i; j++) {
1813			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1814				swap(sp[j], sp[j + 1]);
1815
1816				/* Track where the first SACK block goes to */
1817				if (j == first_sack_index)
1818					first_sack_index = j + 1;
1819			}
1820		}
1821	}
1822
1823	skb = tcp_write_queue_head(sk);
1824	state.fack_count = 0;
1825	i = 0;
1826
1827	if (!tp->sacked_out) {
1828		/* It's already past, so skip checking against it */
1829		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1830	} else {
1831		cache = tp->recv_sack_cache;
1832		/* Skip empty blocks in at head of the cache */
1833		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1834		       !cache->end_seq)
1835			cache++;
1836	}
1837
1838	while (i < used_sacks) {
1839		u32 start_seq = sp[i].start_seq;
1840		u32 end_seq = sp[i].end_seq;
1841		int dup_sack = (found_dup_sack && (i == first_sack_index));
1842		struct tcp_sack_block *next_dup = NULL;
1843
1844		if (found_dup_sack && ((i + 1) == first_sack_index))
1845			next_dup = &sp[i + 1];
1846
1847		/* Event "B" in the comment above. */
1848		if (after(end_seq, tp->high_seq))
1849			state.flag |= FLAG_DATA_LOST;
1850
1851		/* Skip too early cached blocks */
1852		while (tcp_sack_cache_ok(tp, cache) &&
1853		       !before(start_seq, cache->end_seq))
1854			cache++;
1855
1856		/* Can skip some work by looking recv_sack_cache? */
1857		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1858		    after(end_seq, cache->start_seq)) {
1859
1860			/* Head todo? */
1861			if (before(start_seq, cache->start_seq)) {
1862				skb = tcp_sacktag_skip(skb, sk, &state,
1863						       start_seq);
1864				skb = tcp_sacktag_walk(skb, sk, next_dup,
1865						       &state,
1866						       start_seq,
1867						       cache->start_seq,
1868						       dup_sack);
1869			}
1870
1871			/* Rest of the block already fully processed? */
1872			if (!after(end_seq, cache->end_seq))
1873				goto advance_sp;
1874
1875			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1876						       &state,
1877						       cache->end_seq);
1878
1879			/* ...tail remains todo... */
1880			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1881				/* ...but better entrypoint exists! */
1882				skb = tcp_highest_sack(sk);
1883				if (skb == NULL)
1884					break;
1885				state.fack_count = tp->fackets_out;
1886				cache++;
1887				goto walk;
1888			}
1889
1890			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1891			/* Check overlap against next cached too (past this one already) */
1892			cache++;
1893			continue;
1894		}
1895
1896		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1897			skb = tcp_highest_sack(sk);
1898			if (skb == NULL)
1899				break;
1900			state.fack_count = tp->fackets_out;
1901		}
1902		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1903
1904walk:
1905		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1906				       start_seq, end_seq, dup_sack);
1907
1908advance_sp:
1909		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1910		 * due to in-order walk
1911		 */
1912		if (after(end_seq, tp->frto_highmark))
1913			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1914
1915		i++;
1916	}
1917
1918	/* Clear the head of the cache sack blocks so we can skip it next time */
1919	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1920		tp->recv_sack_cache[i].start_seq = 0;
1921		tp->recv_sack_cache[i].end_seq = 0;
1922	}
1923	for (j = 0; j < used_sacks; j++)
1924		tp->recv_sack_cache[i++] = sp[j];
1925
1926	tcp_mark_lost_retrans(sk);
1927
1928	tcp_verify_left_out(tp);
1929
1930	if ((state.reord < tp->fackets_out) &&
1931	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1932	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1933		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1934
1935out:
1936
1937#if FASTRETRANS_DEBUG > 0
1938	WARN_ON((int)tp->sacked_out < 0);
1939	WARN_ON((int)tp->lost_out < 0);
1940	WARN_ON((int)tp->retrans_out < 0);
1941	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1942#endif
1943	return state.flag;
1944}
1945
1946/* Limits sacked_out so that sum with lost_out isn't ever larger than
1947 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1948 */
1949static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1950{
1951	u32 holes;
1952
1953	holes = max(tp->lost_out, 1U);
1954	holes = min(holes, tp->packets_out);
1955
1956	if ((tp->sacked_out + holes) > tp->packets_out) {
1957		tp->sacked_out = tp->packets_out - holes;
1958		return 1;
1959	}
1960	return 0;
1961}
1962
1963/* If we receive more dupacks than we expected counting segments
1964 * in assumption of absent reordering, interpret this as reordering.
1965 * The only another reason could be bug in receiver TCP.
1966 */
1967static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1968{
1969	struct tcp_sock *tp = tcp_sk(sk);
1970	if (tcp_limit_reno_sacked(tp))
1971		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1972}
1973
1974/* Emulate SACKs for SACKless connection: account for a new dupack. */
1975
1976static void tcp_add_reno_sack(struct sock *sk)
1977{
1978	struct tcp_sock *tp = tcp_sk(sk);
1979	tp->sacked_out++;
1980	tcp_check_reno_reordering(sk, 0);
1981	tcp_verify_left_out(tp);
1982}
1983
1984/* Account for ACK, ACKing some data in Reno Recovery phase. */
1985
1986static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1987{
1988	struct tcp_sock *tp = tcp_sk(sk);
1989
1990	if (acked > 0) {
1991		/* One ACK acked hole. The rest eat duplicate ACKs. */
1992		if (acked - 1 >= tp->sacked_out)
1993			tp->sacked_out = 0;
1994		else
1995			tp->sacked_out -= acked - 1;
1996	}
1997	tcp_check_reno_reordering(sk, acked);
1998	tcp_verify_left_out(tp);
1999}
2000
2001static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2002{
2003	tp->sacked_out = 0;
2004}
2005
2006static int tcp_is_sackfrto(const struct tcp_sock *tp)
2007{
2008	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2009}
2010
2011/* F-RTO can only be used if TCP has never retransmitted anything other than
2012 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2013 */
2014int tcp_use_frto(struct sock *sk)
2015{
2016	const struct tcp_sock *tp = tcp_sk(sk);
2017	const struct inet_connection_sock *icsk = inet_csk(sk);
2018	struct sk_buff *skb;
2019
2020	if (!sysctl_tcp_frto)
2021		return 0;
2022
2023	/* MTU probe and F-RTO won't really play nicely along currently */
2024	if (icsk->icsk_mtup.probe_size)
2025		return 0;
2026
2027	if (tcp_is_sackfrto(tp))
2028		return 1;
2029
2030	/* Avoid expensive walking of rexmit queue if possible */
2031	if (tp->retrans_out > 1)
2032		return 0;
2033
2034	skb = tcp_write_queue_head(sk);
2035	if (tcp_skb_is_last(sk, skb))
2036		return 1;
2037	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2038	tcp_for_write_queue_from(skb, sk) {
2039		if (skb == tcp_send_head(sk))
2040			break;
2041		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2042			return 0;
2043		/* Short-circuit when first non-SACKed skb has been checked */
2044		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2045			break;
2046	}
2047	return 1;
2048}
2049
2050/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2051 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2052 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2053 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2054 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2055 * bits are handled if the Loss state is really to be entered (in
2056 * tcp_enter_frto_loss).
2057 *
2058 * Do like tcp_enter_loss() would; when RTO expires the second time it
2059 * does:
2060 *  "Reduce ssthresh if it has not yet been made inside this window."
2061 */
2062void tcp_enter_frto(struct sock *sk)
2063{
2064	const struct inet_connection_sock *icsk = inet_csk(sk);
2065	struct tcp_sock *tp = tcp_sk(sk);
2066	struct sk_buff *skb;
2067
2068	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2069	    tp->snd_una == tp->high_seq ||
2070	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2071	     !icsk->icsk_retransmits)) {
2072		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2073		/* Our state is too optimistic in ssthresh() call because cwnd
2074		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2075		 * recovery has not yet completed. Pattern would be this: RTO,
2076		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2077		 * up here twice).
2078		 * RFC4138 should be more specific on what to do, even though
2079		 * RTO is quite unlikely to occur after the first Cumulative ACK
2080		 * due to back-off and complexity of triggering events ...
2081		 */
2082		if (tp->frto_counter) {
2083			u32 stored_cwnd;
2084			stored_cwnd = tp->snd_cwnd;
2085			tp->snd_cwnd = 2;
2086			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2087			tp->snd_cwnd = stored_cwnd;
2088		} else {
2089			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2090		}
2091		/* ... in theory, cong.control module could do "any tricks" in
2092		 * ssthresh(), which means that ca_state, lost bits and lost_out
2093		 * counter would have to be faked before the call occurs. We
2094		 * consider that too expensive, unlikely and hacky, so modules
2095		 * using these in ssthresh() must deal these incompatibility
2096		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2097		 */
2098		tcp_ca_event(sk, CA_EVENT_FRTO);
2099	}
2100
2101	tp->undo_marker = tp->snd_una;
2102	tp->undo_retrans = 0;
2103
2104	skb = tcp_write_queue_head(sk);
2105	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2106		tp->undo_marker = 0;
2107	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2108		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2109		tp->retrans_out -= tcp_skb_pcount(skb);
2110	}
2111	tcp_verify_left_out(tp);
2112
2113	/* Too bad if TCP was application limited */
2114	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2115
2116	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2117	 * The last condition is necessary at least in tp->frto_counter case.
2118	 */
2119	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2120	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2121	    after(tp->high_seq, tp->snd_una)) {
2122		tp->frto_highmark = tp->high_seq;
2123	} else {
2124		tp->frto_highmark = tp->snd_nxt;
2125	}
2126	tcp_set_ca_state(sk, TCP_CA_Disorder);
2127	tp->high_seq = tp->snd_nxt;
2128	tp->frto_counter = 1;
2129}
2130
2131/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2132 * which indicates that we should follow the traditional RTO recovery,
2133 * i.e. mark everything lost and do go-back-N retransmission.
2134 */
2135static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2136{
2137	struct tcp_sock *tp = tcp_sk(sk);
2138	struct sk_buff *skb;
2139
2140	tp->lost_out = 0;
2141	tp->retrans_out = 0;
2142	if (tcp_is_reno(tp))
2143		tcp_reset_reno_sack(tp);
2144
2145	tcp_for_write_queue(skb, sk) {
2146		if (skb == tcp_send_head(sk))
2147			break;
2148
2149		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2150		/*
2151		 * Count the retransmission made on RTO correctly (only when
2152		 * waiting for the first ACK and did not get it)...
2153		 */
2154		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2155			/* For some reason this R-bit might get cleared? */
2156			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2157				tp->retrans_out += tcp_skb_pcount(skb);
2158			/* ...enter this if branch just for the first segment */
2159			flag |= FLAG_DATA_ACKED;
2160		} else {
2161			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2162				tp->undo_marker = 0;
2163			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2164		}
2165
2166		/* Marking forward transmissions that were made after RTO lost
2167		 * can cause unnecessary retransmissions in some scenarios,
2168		 * SACK blocks will mitigate that in some but not in all cases.
2169		 * We used to not mark them but it was causing break-ups with
2170		 * receivers that do only in-order receival.
2171		 *
2172		 * TODO: we could detect presence of such receiver and select
2173		 * different behavior per flow.
2174		 */
2175		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2176			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2177			tp->lost_out += tcp_skb_pcount(skb);
2178			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2179		}
2180	}
2181	tcp_verify_left_out(tp);
2182
2183	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2184	tp->snd_cwnd_cnt = 0;
2185	tp->snd_cwnd_stamp = tcp_time_stamp;
2186	tp->frto_counter = 0;
2187	tp->bytes_acked = 0;
2188
2189	tp->reordering = min_t(unsigned int, tp->reordering,
2190			       sysctl_tcp_reordering);
2191	tcp_set_ca_state(sk, TCP_CA_Loss);
2192	tp->high_seq = tp->snd_nxt;
2193	TCP_ECN_queue_cwr(tp);
2194
2195	tcp_clear_all_retrans_hints(tp);
2196}
2197
2198static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2199{
2200	tp->retrans_out = 0;
2201	tp->lost_out = 0;
2202
2203	tp->undo_marker = 0;
2204	tp->undo_retrans = 0;
2205}
2206
2207void tcp_clear_retrans(struct tcp_sock *tp)
2208{
2209	tcp_clear_retrans_partial(tp);
2210
2211	tp->fackets_out = 0;
2212	tp->sacked_out = 0;
2213}
2214
2215/* Enter Loss state. If "how" is not zero, forget all SACK information
2216 * and reset tags completely, otherwise preserve SACKs. If receiver
2217 * dropped its ofo queue, we will know this due to reneging detection.
2218 */
2219void tcp_enter_loss(struct sock *sk, int how)
2220{
2221	const struct inet_connection_sock *icsk = inet_csk(sk);
2222	struct tcp_sock *tp = tcp_sk(sk);
2223	struct sk_buff *skb;
2224
2225	/* Reduce ssthresh if it has not yet been made inside this window. */
2226	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2227	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2228		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2229		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2230		tcp_ca_event(sk, CA_EVENT_LOSS);
2231	}
2232	tp->snd_cwnd	   = 1;
2233	tp->snd_cwnd_cnt   = 0;
2234	tp->snd_cwnd_stamp = tcp_time_stamp;
2235
2236	tp->bytes_acked = 0;
2237	tcp_clear_retrans_partial(tp);
2238
2239	if (tcp_is_reno(tp))
2240		tcp_reset_reno_sack(tp);
2241
2242	if (!how) {
2243		/* Push undo marker, if it was plain RTO and nothing
2244		 * was retransmitted. */
2245		tp->undo_marker = tp->snd_una;
2246	} else {
2247		tp->sacked_out = 0;
2248		tp->fackets_out = 0;
2249	}
2250	tcp_clear_all_retrans_hints(tp);
2251
2252	tcp_for_write_queue(skb, sk) {
2253		if (skb == tcp_send_head(sk))
2254			break;
2255
2256		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2257			tp->undo_marker = 0;
2258		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2259		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2260			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2261			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2262			tp->lost_out += tcp_skb_pcount(skb);
2263			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2264		}
2265	}
2266	tcp_verify_left_out(tp);
2267
2268	tp->reordering = min_t(unsigned int, tp->reordering,
2269			       sysctl_tcp_reordering);
2270	tcp_set_ca_state(sk, TCP_CA_Loss);
2271	tp->high_seq = tp->snd_nxt;
2272	TCP_ECN_queue_cwr(tp);
2273	/* Abort F-RTO algorithm if one is in progress */
2274	tp->frto_counter = 0;
2275}
2276
2277/* If ACK arrived pointing to a remembered SACK, it means that our
2278 * remembered SACKs do not reflect real state of receiver i.e.
2279 * receiver _host_ is heavily congested (or buggy).
2280 *
2281 * Do processing similar to RTO timeout.
2282 */
2283static int tcp_check_sack_reneging(struct sock *sk, int flag)
2284{
2285	if (flag & FLAG_SACK_RENEGING) {
2286		struct inet_connection_sock *icsk = inet_csk(sk);
2287		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2288
2289		tcp_enter_loss(sk, 1);
2290		icsk->icsk_retransmits++;
2291		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2292		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2293					  icsk->icsk_rto, TCP_RTO_MAX);
2294		return 1;
2295	}
2296	return 0;
2297}
2298
2299static inline int tcp_fackets_out(const struct tcp_sock *tp)
2300{
2301	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2302}
2303
2304/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2305 * counter when SACK is enabled (without SACK, sacked_out is used for
2306 * that purpose).
2307 *
2308 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2309 * segments up to the highest received SACK block so far and holes in
2310 * between them.
2311 *
2312 * With reordering, holes may still be in flight, so RFC3517 recovery
2313 * uses pure sacked_out (total number of SACKed segments) even though
2314 * it violates the RFC that uses duplicate ACKs, often these are equal
2315 * but when e.g. out-of-window ACKs or packet duplication occurs,
2316 * they differ. Since neither occurs due to loss, TCP should really
2317 * ignore them.
2318 */
2319static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2320{
2321	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2322}
2323
2324static inline int tcp_skb_timedout(const struct sock *sk,
2325				   const struct sk_buff *skb)
2326{
2327	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2328}
2329
2330static inline int tcp_head_timedout(const struct sock *sk)
2331{
2332	const struct tcp_sock *tp = tcp_sk(sk);
2333
2334	return tp->packets_out &&
2335	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2336}
2337
2338/* Linux NewReno/SACK/FACK/ECN state machine.
2339 * --------------------------------------
2340 *
2341 * "Open"	Normal state, no dubious events, fast path.
2342 * "Disorder"   In all the respects it is "Open",
2343 *		but requires a bit more attention. It is entered when
2344 *		we see some SACKs or dupacks. It is split of "Open"
2345 *		mainly to move some processing from fast path to slow one.
2346 * "CWR"	CWND was reduced due to some Congestion Notification event.
2347 *		It can be ECN, ICMP source quench, local device congestion.
2348 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2349 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2350 *
2351 * tcp_fastretrans_alert() is entered:
2352 * - each incoming ACK, if state is not "Open"
2353 * - when arrived ACK is unusual, namely:
2354 *	* SACK
2355 *	* Duplicate ACK.
2356 *	* ECN ECE.
2357 *
2358 * Counting packets in flight is pretty simple.
2359 *
2360 *	in_flight = packets_out - left_out + retrans_out
2361 *
2362 *	packets_out is SND.NXT-SND.UNA counted in packets.
2363 *
2364 *	retrans_out is number of retransmitted segments.
2365 *
2366 *	left_out is number of segments left network, but not ACKed yet.
2367 *
2368 *		left_out = sacked_out + lost_out
2369 *
2370 *     sacked_out: Packets, which arrived to receiver out of order
2371 *		   and hence not ACKed. With SACKs this number is simply
2372 *		   amount of SACKed data. Even without SACKs
2373 *		   it is easy to give pretty reliable estimate of this number,
2374 *		   counting duplicate ACKs.
2375 *
2376 *       lost_out: Packets lost by network. TCP has no explicit
2377 *		   "loss notification" feedback from network (for now).
2378 *		   It means that this number can be only _guessed_.
2379 *		   Actually, it is the heuristics to predict lossage that
2380 *		   distinguishes different algorithms.
2381 *
2382 *	F.e. after RTO, when all the queue is considered as lost,
2383 *	lost_out = packets_out and in_flight = retrans_out.
2384 *
2385 *		Essentially, we have now two algorithms counting
2386 *		lost packets.
2387 *
2388 *		FACK: It is the simplest heuristics. As soon as we decided
2389 *		that something is lost, we decide that _all_ not SACKed
2390 *		packets until the most forward SACK are lost. I.e.
2391 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2392 *		It is absolutely correct estimate, if network does not reorder
2393 *		packets. And it loses any connection to reality when reordering
2394 *		takes place. We use FACK by default until reordering
2395 *		is suspected on the path to this destination.
2396 *
2397 *		NewReno: when Recovery is entered, we assume that one segment
2398 *		is lost (classic Reno). While we are in Recovery and
2399 *		a partial ACK arrives, we assume that one more packet
2400 *		is lost (NewReno). This heuristics are the same in NewReno
2401 *		and SACK.
2402 *
2403 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2404 *  deflation etc. CWND is real congestion window, never inflated, changes
2405 *  only according to classic VJ rules.
2406 *
2407 * Really tricky (and requiring careful tuning) part of algorithm
2408 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2409 * The first determines the moment _when_ we should reduce CWND and,
2410 * hence, slow down forward transmission. In fact, it determines the moment
2411 * when we decide that hole is caused by loss, rather than by a reorder.
2412 *
2413 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2414 * holes, caused by lost packets.
2415 *
2416 * And the most logically complicated part of algorithm is undo
2417 * heuristics. We detect false retransmits due to both too early
2418 * fast retransmit (reordering) and underestimated RTO, analyzing
2419 * timestamps and D-SACKs. When we detect that some segments were
2420 * retransmitted by mistake and CWND reduction was wrong, we undo
2421 * window reduction and abort recovery phase. This logic is hidden
2422 * inside several functions named tcp_try_undo_<something>.
2423 */
2424
2425/* This function decides, when we should leave Disordered state
2426 * and enter Recovery phase, reducing congestion window.
2427 *
2428 * Main question: may we further continue forward transmission
2429 * with the same cwnd?
2430 */
2431static int tcp_time_to_recover(struct sock *sk)
2432{
2433	struct tcp_sock *tp = tcp_sk(sk);
2434	__u32 packets_out;
2435
2436	/* Do not perform any recovery during F-RTO algorithm */
2437	if (tp->frto_counter)
2438		return 0;
2439
2440	/* Trick#1: The loss is proven. */
2441	if (tp->lost_out)
2442		return 1;
2443
2444	/* Not-A-Trick#2 : Classic rule... */
2445	if (tcp_dupack_heuristics(tp) > tp->reordering)
2446		return 1;
2447
2448	/* Trick#3 : when we use RFC2988 timer restart, fast
2449	 * retransmit can be triggered by timeout of queue head.
2450	 */
2451	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2452		return 1;
2453
2454	/* Trick#4: It is still not OK... But will it be useful to delay
2455	 * recovery more?
2456	 */
2457	packets_out = tp->packets_out;
2458	if (packets_out <= tp->reordering &&
2459	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2460	    !tcp_may_send_now(sk)) {
2461		/* We have nothing to send. This connection is limited
2462		 * either by receiver window or by application.
2463		 */
2464		return 1;
2465	}
2466
2467	/* If a thin stream is detected, retransmit after first
2468	 * received dupack. Employ only if SACK is supported in order
2469	 * to avoid possible corner-case series of spurious retransmissions
2470	 * Use only if there are no unsent data.
2471	 */
2472	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2473	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2474	    tcp_is_sack(tp) && !tcp_send_head(sk))
2475		return 1;
2476
2477	return 0;
2478}
2479
2480/* New heuristics: it is possible only after we switched to restart timer
2481 * each time when something is ACKed. Hence, we can detect timed out packets
2482 * during fast retransmit without falling to slow start.
2483 *
2484 * Usefulness of this as is very questionable, since we should know which of
2485 * the segments is the next to timeout which is relatively expensive to find
2486 * in general case unless we add some data structure just for that. The
2487 * current approach certainly won't find the right one too often and when it
2488 * finally does find _something_ it usually marks large part of the window
2489 * right away (because a retransmission with a larger timestamp blocks the
2490 * loop from advancing). -ij
2491 */
2492static void tcp_timeout_skbs(struct sock *sk)
2493{
2494	struct tcp_sock *tp = tcp_sk(sk);
2495	struct sk_buff *skb;
2496
2497	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2498		return;
2499
2500	skb = tp->scoreboard_skb_hint;
2501	if (tp->scoreboard_skb_hint == NULL)
2502		skb = tcp_write_queue_head(sk);
2503
2504	tcp_for_write_queue_from(skb, sk) {
2505		if (skb == tcp_send_head(sk))
2506			break;
2507		if (!tcp_skb_timedout(sk, skb))
2508			break;
2509
2510		tcp_skb_mark_lost(tp, skb);
2511	}
2512
2513	tp->scoreboard_skb_hint = skb;
2514
2515	tcp_verify_left_out(tp);
2516}
2517
2518/* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2519 * is against sacked "cnt", otherwise it's against facked "cnt"
2520 */
2521static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2522{
2523	struct tcp_sock *tp = tcp_sk(sk);
2524	struct sk_buff *skb;
2525	int cnt, oldcnt;
2526	int err;
2527	unsigned int mss;
2528
2529	WARN_ON(packets > tp->packets_out);
2530	if (tp->lost_skb_hint) {
2531		skb = tp->lost_skb_hint;
2532		cnt = tp->lost_cnt_hint;
2533		/* Head already handled? */
2534		if (mark_head && skb != tcp_write_queue_head(sk))
2535			return;
2536	} else {
2537		skb = tcp_write_queue_head(sk);
2538		cnt = 0;
2539	}
2540
2541	tcp_for_write_queue_from(skb, sk) {
2542		if (skb == tcp_send_head(sk))
2543			break;
2544		/* TODO: do this better */
2545		/* this is not the most efficient way to do this... */
2546		tp->lost_skb_hint = skb;
2547		tp->lost_cnt_hint = cnt;
2548
2549		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2550			break;
2551
2552		oldcnt = cnt;
2553		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2554		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2555			cnt += tcp_skb_pcount(skb);
2556
2557		if (cnt > packets) {
2558			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2559			    (oldcnt >= packets))
2560				break;
2561
2562			mss = skb_shinfo(skb)->gso_size;
2563			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2564			if (err < 0)
2565				break;
2566			cnt = packets;
2567		}
2568
2569		tcp_skb_mark_lost(tp, skb);
2570
2571		if (mark_head)
2572			break;
2573	}
2574	tcp_verify_left_out(tp);
2575}
2576
2577/* Account newly detected lost packet(s) */
2578
2579static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2580{
2581	struct tcp_sock *tp = tcp_sk(sk);
2582
2583	if (tcp_is_reno(tp)) {
2584		tcp_mark_head_lost(sk, 1, 1);
2585	} else if (tcp_is_fack(tp)) {
2586		int lost = tp->fackets_out - tp->reordering;
2587		if (lost <= 0)
2588			lost = 1;
2589		tcp_mark_head_lost(sk, lost, 0);
2590	} else {
2591		int sacked_upto = tp->sacked_out - tp->reordering;
2592		if (sacked_upto >= 0)
2593			tcp_mark_head_lost(sk, sacked_upto, 0);
2594		else if (fast_rexmit)
2595			tcp_mark_head_lost(sk, 1, 1);
2596	}
2597
2598	tcp_timeout_skbs(sk);
2599}
2600
2601/* CWND moderation, preventing bursts due to too big ACKs
2602 * in dubious situations.
2603 */
2604static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2605{
2606	tp->snd_cwnd = min(tp->snd_cwnd,
2607			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2608	tp->snd_cwnd_stamp = tcp_time_stamp;
2609}
2610
2611/* Lower bound on congestion window is slow start threshold
2612 * unless congestion avoidance choice decides to overide it.
2613 */
2614static inline u32 tcp_cwnd_min(const struct sock *sk)
2615{
2616	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2617
2618	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2619}
2620
2621/* Decrease cwnd each second ack. */
2622static void tcp_cwnd_down(struct sock *sk, int flag)
2623{
2624	struct tcp_sock *tp = tcp_sk(sk);
2625	int decr = tp->snd_cwnd_cnt + 1;
2626
2627	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2628	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2629		tp->snd_cwnd_cnt = decr & 1;
2630		decr >>= 1;
2631
2632		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2633			tp->snd_cwnd -= decr;
2634
2635		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2636		tp->snd_cwnd_stamp = tcp_time_stamp;
2637	}
2638}
2639
2640/* Nothing was retransmitted or returned timestamp is less
2641 * than timestamp of the first retransmission.
2642 */
2643static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2644{
2645	return !tp->retrans_stamp ||
2646		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2647		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2648}
2649
2650/* Undo procedures. */
2651
2652#if FASTRETRANS_DEBUG > 1
2653static void DBGUNDO(struct sock *sk, const char *msg)
2654{
2655	struct tcp_sock *tp = tcp_sk(sk);
2656	struct inet_sock *inet = inet_sk(sk);
2657
2658	if (sk->sk_family == AF_INET) {
2659		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2660		       msg,
2661		       &inet->inet_daddr, ntohs(inet->inet_dport),
2662		       tp->snd_cwnd, tcp_left_out(tp),
2663		       tp->snd_ssthresh, tp->prior_ssthresh,
2664		       tp->packets_out);
2665	}
2666#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2667	else if (sk->sk_family == AF_INET6) {
2668		struct ipv6_pinfo *np = inet6_sk(sk);
2669		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2670		       msg,
2671		       &np->daddr, ntohs(inet->inet_dport),
2672		       tp->snd_cwnd, tcp_left_out(tp),
2673		       tp->snd_ssthresh, tp->prior_ssthresh,
2674		       tp->packets_out);
2675	}
2676#endif
2677}
2678#else
2679#define DBGUNDO(x...) do { } while (0)
2680#endif
2681
2682static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2683{
2684	struct tcp_sock *tp = tcp_sk(sk);
2685
2686	if (tp->prior_ssthresh) {
2687		const struct inet_connection_sock *icsk = inet_csk(sk);
2688
2689		if (icsk->icsk_ca_ops->undo_cwnd)
2690			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2691		else
2692			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2693
2694		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2695			tp->snd_ssthresh = tp->prior_ssthresh;
2696			TCP_ECN_withdraw_cwr(tp);
2697		}
2698	} else {
2699		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2700	}
2701	tp->snd_cwnd_stamp = tcp_time_stamp;
2702}
2703
2704static inline int tcp_may_undo(const struct tcp_sock *tp)
2705{
2706	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2707}
2708
2709/* People celebrate: "We love our President!" */
2710static int tcp_try_undo_recovery(struct sock *sk)
2711{
2712	struct tcp_sock *tp = tcp_sk(sk);
2713
2714	if (tcp_may_undo(tp)) {
2715		int mib_idx;
2716
2717		/* Happy end! We did not retransmit anything
2718		 * or our original transmission succeeded.
2719		 */
2720		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2721		tcp_undo_cwr(sk, true);
2722		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2723			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2724		else
2725			mib_idx = LINUX_MIB_TCPFULLUNDO;
2726
2727		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2728		tp->undo_marker = 0;
2729	}
2730	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2731		/* Hold old state until something *above* high_seq
2732		 * is ACKed. For Reno it is MUST to prevent false
2733		 * fast retransmits (RFC2582). SACK TCP is safe. */
2734		tcp_moderate_cwnd(tp);
2735		return 1;
2736	}
2737	tcp_set_ca_state(sk, TCP_CA_Open);
2738	return 0;
2739}
2740
2741/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2742static void tcp_try_undo_dsack(struct sock *sk)
2743{
2744	struct tcp_sock *tp = tcp_sk(sk);
2745
2746	if (tp->undo_marker && !tp->undo_retrans) {
2747		DBGUNDO(sk, "D-SACK");
2748		tcp_undo_cwr(sk, true);
2749		tp->undo_marker = 0;
2750		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2751	}
2752}
2753
2754/* We can clear retrans_stamp when there are no retransmissions in the
2755 * window. It would seem that it is trivially available for us in
2756 * tp->retrans_out, however, that kind of assumptions doesn't consider
2757 * what will happen if errors occur when sending retransmission for the
2758 * second time. ...It could the that such segment has only
2759 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2760 * the head skb is enough except for some reneging corner cases that
2761 * are not worth the effort.
2762 *
2763 * Main reason for all this complexity is the fact that connection dying
2764 * time now depends on the validity of the retrans_stamp, in particular,
2765 * that successive retransmissions of a segment must not advance
2766 * retrans_stamp under any conditions.
2767 */
2768static int tcp_any_retrans_done(const struct sock *sk)
2769{
2770	const struct tcp_sock *tp = tcp_sk(sk);
2771	struct sk_buff *skb;
2772
2773	if (tp->retrans_out)
2774		return 1;
2775
2776	skb = tcp_write_queue_head(sk);
2777	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2778		return 1;
2779
2780	return 0;
2781}
2782
2783/* Undo during fast recovery after partial ACK. */
2784
2785static int tcp_try_undo_partial(struct sock *sk, int acked)
2786{
2787	struct tcp_sock *tp = tcp_sk(sk);
2788	/* Partial ACK arrived. Force Hoe's retransmit. */
2789	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2790
2791	if (tcp_may_undo(tp)) {
2792		/* Plain luck! Hole if filled with delayed
2793		 * packet, rather than with a retransmit.
2794		 */
2795		if (!tcp_any_retrans_done(sk))
2796			tp->retrans_stamp = 0;
2797
2798		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2799
2800		DBGUNDO(sk, "Hoe");
2801		tcp_undo_cwr(sk, false);
2802		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2803
2804		/* So... Do not make Hoe's retransmit yet.
2805		 * If the first packet was delayed, the rest
2806		 * ones are most probably delayed as well.
2807		 */
2808		failed = 0;
2809	}
2810	return failed;
2811}
2812
2813/* Undo during loss recovery after partial ACK. */
2814static int tcp_try_undo_loss(struct sock *sk)
2815{
2816	struct tcp_sock *tp = tcp_sk(sk);
2817
2818	if (tcp_may_undo(tp)) {
2819		struct sk_buff *skb;
2820		tcp_for_write_queue(skb, sk) {
2821			if (skb == tcp_send_head(sk))
2822				break;
2823			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2824		}
2825
2826		tcp_clear_all_retrans_hints(tp);
2827
2828		DBGUNDO(sk, "partial loss");
2829		tp->lost_out = 0;
2830		tcp_undo_cwr(sk, true);
2831		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2832		inet_csk(sk)->icsk_retransmits = 0;
2833		tp->undo_marker = 0;
2834		if (tcp_is_sack(tp))
2835			tcp_set_ca_state(sk, TCP_CA_Open);
2836		return 1;
2837	}
2838	return 0;
2839}
2840
2841static inline void tcp_complete_cwr(struct sock *sk)
2842{
2843	struct tcp_sock *tp = tcp_sk(sk);
2844
2845	/* Do not moderate cwnd if it's already undone in cwr or recovery. */
2846	if (tp->undo_marker) {
2847		if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2848			tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2849		else /* PRR */
2850			tp->snd_cwnd = tp->snd_ssthresh;
2851		tp->snd_cwnd_stamp = tcp_time_stamp;
2852	}
2853	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2854}
2855
2856static void tcp_try_keep_open(struct sock *sk)
2857{
2858	struct tcp_sock *tp = tcp_sk(sk);
2859	int state = TCP_CA_Open;
2860
2861	if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2862		state = TCP_CA_Disorder;
2863
2864	if (inet_csk(sk)->icsk_ca_state != state) {
2865		tcp_set_ca_state(sk, state);
2866		tp->high_seq = tp->snd_nxt;
2867	}
2868}
2869
2870static void tcp_try_to_open(struct sock *sk, int flag)
2871{
2872	struct tcp_sock *tp = tcp_sk(sk);
2873
2874	tcp_verify_left_out(tp);
2875
2876	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2877		tp->retrans_stamp = 0;
2878
2879	if (flag & FLAG_ECE)
2880		tcp_enter_cwr(sk, 1);
2881
2882	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2883		tcp_try_keep_open(sk);
2884		tcp_moderate_cwnd(tp);
2885	} else {
2886		tcp_cwnd_down(sk, flag);
2887	}
2888}
2889
2890static void tcp_mtup_probe_failed(struct sock *sk)
2891{
2892	struct inet_connection_sock *icsk = inet_csk(sk);
2893
2894	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2895	icsk->icsk_mtup.probe_size = 0;
2896}
2897
2898static void tcp_mtup_probe_success(struct sock *sk)
2899{
2900	struct tcp_sock *tp = tcp_sk(sk);
2901	struct inet_connection_sock *icsk = inet_csk(sk);
2902
2903	/* FIXME: breaks with very large cwnd */
2904	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2905	tp->snd_cwnd = tp->snd_cwnd *
2906		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2907		       icsk->icsk_mtup.probe_size;
2908	tp->snd_cwnd_cnt = 0;
2909	tp->snd_cwnd_stamp = tcp_time_stamp;
2910	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2911
2912	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2913	icsk->icsk_mtup.probe_size = 0;
2914	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2915}
2916
2917/* Do a simple retransmit without using the backoff mechanisms in
2918 * tcp_timer. This is used for path mtu discovery.
2919 * The socket is already locked here.
2920 */
2921void tcp_simple_retransmit(struct sock *sk)
2922{
2923	const struct inet_connection_sock *icsk = inet_csk(sk);
2924	struct tcp_sock *tp = tcp_sk(sk);
2925	struct sk_buff *skb;
2926	unsigned int mss = tcp_current_mss(sk);
2927	u32 prior_lost = tp->lost_out;
2928
2929	tcp_for_write_queue(skb, sk) {
2930		if (skb == tcp_send_head(sk))
2931			break;
2932		if (tcp_skb_seglen(skb) > mss &&
2933		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2934			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2935				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2936				tp->retrans_out -= tcp_skb_pcount(skb);
2937			}
2938			tcp_skb_mark_lost_uncond_verify(tp, skb);
2939		}
2940	}
2941
2942	tcp_clear_retrans_hints_partial(tp);
2943
2944	if (prior_lost == tp->lost_out)
2945		return;
2946
2947	if (tcp_is_reno(tp))
2948		tcp_limit_reno_sacked(tp);
2949
2950	tcp_verify_left_out(tp);
2951
2952	/* Don't muck with the congestion window here.
2953	 * Reason is that we do not increase amount of _data_
2954	 * in network, but units changed and effective
2955	 * cwnd/ssthresh really reduced now.
2956	 */
2957	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2958		tp->high_seq = tp->snd_nxt;
2959		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2960		tp->prior_ssthresh = 0;
2961		tp->undo_marker = 0;
2962		tcp_set_ca_state(sk, TCP_CA_Loss);
2963	}
2964	tcp_xmit_retransmit_queue(sk);
2965}
2966EXPORT_SYMBOL(tcp_simple_retransmit);
2967
2968/* This function implements the PRR algorithm, specifcally the PRR-SSRB
2969 * (proportional rate reduction with slow start reduction bound) as described in
2970 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2971 * It computes the number of packets to send (sndcnt) based on packets newly
2972 * delivered:
2973 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2974 *	cwnd reductions across a full RTT.
2975 *   2) If packets in flight is lower than ssthresh (such as due to excess
2976 *	losses and/or application stalls), do not perform any further cwnd
2977 *	reductions, but instead slow start up to ssthresh.
2978 */
2979static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2980					int fast_rexmit, int flag)
2981{
2982	struct tcp_sock *tp = tcp_sk(sk);
2983	int sndcnt = 0;
2984	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2985
2986	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2987		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2988			       tp->prior_cwnd - 1;
2989		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2990	} else {
2991		sndcnt = min_t(int, delta,
2992			       max_t(int, tp->prr_delivered - tp->prr_out,
2993				     newly_acked_sacked) + 1);
2994	}
2995
2996	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2997	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2998}
2999
3000/* Process an event, which can update packets-in-flight not trivially.
3001 * Main goal of this function is to calculate new estimate for left_out,
3002 * taking into account both packets sitting in receiver's buffer and
3003 * packets lost by network.
3004 *
3005 * Besides that it does CWND reduction, when packet loss is detected
3006 * and changes state of machine.
3007 *
3008 * It does _not_ decide what to send, it is made in function
3009 * tcp_xmit_retransmit_queue().
3010 */
3011static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3012				  int newly_acked_sacked, int flag)
3013{
3014	struct inet_connection_sock *icsk = inet_csk(sk);
3015	struct tcp_sock *tp = tcp_sk(sk);
3016	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3017	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3018				    (tcp_fackets_out(tp) > tp->reordering));
3019	int fast_rexmit = 0, mib_idx;
3020
3021	if (WARN_ON(!tp->packets_out && tp->sacked_out))
3022		tp->sacked_out = 0;
3023	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3024		tp->fackets_out = 0;
3025
3026	/* Now state machine starts.
3027	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3028	if (flag & FLAG_ECE)
3029		tp->prior_ssthresh = 0;
3030
3031	/* B. In all the states check for reneging SACKs. */
3032	if (tcp_check_sack_reneging(sk, flag))
3033		return;
3034
3035	/* C. Process data loss notification, provided it is valid. */
3036	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
3037	    before(tp->snd_una, tp->high_seq) &&
3038	    icsk->icsk_ca_state != TCP_CA_Open &&
3039	    tp->fackets_out > tp->reordering) {
3040		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
3041		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
3042	}
3043
3044	/* D. Check consistency of the current state. */
3045	tcp_verify_left_out(tp);
3046
3047	/* E. Check state exit conditions. State can be terminated
3048	 *    when high_seq is ACKed. */
3049	if (icsk->icsk_ca_state == TCP_CA_Open) {
3050		WARN_ON(tp->retrans_out != 0);
3051		tp->retrans_stamp = 0;
3052	} else if (!before(tp->snd_una, tp->high_seq)) {
3053		switch (icsk->icsk_ca_state) {
3054		case TCP_CA_Loss:
3055			icsk->icsk_retransmits = 0;
3056			if (tcp_try_undo_recovery(sk))
3057				return;
3058			break;
3059
3060		case TCP_CA_CWR:
3061			/* CWR is to be held something *above* high_seq
3062			 * is ACKed for CWR bit to reach receiver. */
3063			if (tp->snd_una != tp->high_seq) {
3064				tcp_complete_cwr(sk);
3065				tcp_set_ca_state(sk, TCP_CA_Open);
3066			}
3067			break;
3068
3069		case TCP_CA_Disorder:
3070			tcp_try_undo_dsack(sk);
3071			if (!tp->undo_marker ||
3072			    /* For SACK case do not Open to allow to undo
3073			     * catching for all duplicate ACKs. */
3074			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3075				tp->undo_marker = 0;
3076				tcp_set_ca_state(sk, TCP_CA_Open);
3077			}
3078			break;
3079
3080		case TCP_CA_Recovery:
3081			if (tcp_is_reno(tp))
3082				tcp_reset_reno_sack(tp);
3083			if (tcp_try_undo_recovery(sk))
3084				return;
3085			tcp_complete_cwr(sk);
3086			break;
3087		}
3088	}
3089
3090	/* F. Process state. */
3091	switch (icsk->icsk_ca_state) {
3092	case TCP_CA_Recovery:
3093		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3094			if (tcp_is_reno(tp) && is_dupack)
3095				tcp_add_reno_sack(sk);
3096		} else
3097			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3098		break;
3099	case TCP_CA_Loss:
3100		if (flag & FLAG_DATA_ACKED)
3101			icsk->icsk_retransmits = 0;
3102		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3103			tcp_reset_reno_sack(tp);
3104		if (!tcp_try_undo_loss(sk)) {
3105			tcp_moderate_cwnd(tp);
3106			tcp_xmit_retransmit_queue(sk);
3107			return;
3108		}
3109		if (icsk->icsk_ca_state != TCP_CA_Open)
3110			return;
3111		/* Loss is undone; fall through to processing in Open state. */
3112	default:
3113		if (tcp_is_reno(tp)) {
3114			if (flag & FLAG_SND_UNA_ADVANCED)
3115				tcp_reset_reno_sack(tp);
3116			if (is_dupack)
3117				tcp_add_reno_sack(sk);
3118		}
3119
3120		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3121			tcp_try_undo_dsack(sk);
3122
3123		if (!tcp_time_to_recover(sk)) {
3124			tcp_try_to_open(sk, flag);
3125			return;
3126		}
3127
3128		/* MTU probe failure: don't reduce cwnd */
3129		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3130		    icsk->icsk_mtup.probe_size &&
3131		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3132			tcp_mtup_probe_failed(sk);
3133			/* Restores the reduction we did in tcp_mtup_probe() */
3134			tp->snd_cwnd++;
3135			tcp_simple_retransmit(sk);
3136			return;
3137		}
3138
3139		/* Otherwise enter Recovery state */
3140
3141		if (tcp_is_reno(tp))
3142			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3143		else
3144			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3145
3146		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3147
3148		tp->high_seq = tp->snd_nxt;
3149		tp->prior_ssthresh = 0;
3150		tp->undo_marker = tp->snd_una;
3151		tp->undo_retrans = tp->retrans_out;
3152
3153		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3154			if (!(flag & FLAG_ECE))
3155				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3156			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3157			TCP_ECN_queue_cwr(tp);
3158		}
3159
3160		tp->bytes_acked = 0;
3161		tp->snd_cwnd_cnt = 0;
3162		tp->prior_cwnd = tp->snd_cwnd;
3163		tp->prr_delivered = 0;
3164		tp->prr_out = 0;
3165		tcp_set_ca_state(sk, TCP_CA_Recovery);
3166		fast_rexmit = 1;
3167	}
3168
3169	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3170		tcp_update_scoreboard(sk, fast_rexmit);
3171	tp->prr_delivered += newly_acked_sacked;
3172	tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3173	tcp_xmit_retransmit_queue(sk);
3174}
3175
3176void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3177{
3178	tcp_rtt_estimator(sk, seq_rtt);
3179	tcp_set_rto(sk);
3180	inet_csk(sk)->icsk_backoff = 0;
3181}
3182EXPORT_SYMBOL(tcp_valid_rtt_meas);
3183
3184/* Read draft-ietf-tcplw-high-performance before mucking
3185 * with this code. (Supersedes RFC1323)
3186 */
3187static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3188{
3189	/* RTTM Rule: A TSecr value received in a segment is used to
3190	 * update the averaged RTT measurement only if the segment
3191	 * acknowledges some new data, i.e., only if it advances the
3192	 * left edge of the send window.
3193	 *
3194	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3195	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3196	 *
3197	 * Changed: reset backoff as soon as we see the first valid sample.
3198	 * If we do not, we get strongly overestimated rto. With timestamps
3199	 * samples are accepted even from very old segments: f.e., when rtt=1
3200	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3201	 * answer arrives rto becomes 120 seconds! If at least one of segments
3202	 * in window is lost... Voila.	 			--ANK (010210)
3203	 */
3204	struct tcp_sock *tp = tcp_sk(sk);
3205
3206	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3207}
3208
3209static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3210{
3211	/* We don't have a timestamp. Can only use
3212	 * packets that are not retransmitted to determine
3213	 * rtt estimates. Also, we must not reset the
3214	 * backoff for rto until we get a non-retransmitted
3215	 * packet. This allows us to deal with a situation
3216	 * where the network delay has increased suddenly.
3217	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3218	 */
3219
3220	if (flag & FLAG_RETRANS_DATA_ACKED)
3221		return;
3222
3223	tcp_valid_rtt_meas(sk, seq_rtt);
3224}
3225
3226static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3227				      const s32 seq_rtt)
3228{
3229	const struct tcp_sock *tp = tcp_sk(sk);
3230	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3231	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3232		tcp_ack_saw_tstamp(sk, flag);
3233	else if (seq_rtt >= 0)
3234		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3235}
3236
3237static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3238{
3239	const struct inet_connection_sock *icsk = inet_csk(sk);
3240	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3241	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3242}
3243
3244/* Restart timer after forward progress on connection.
3245 * RFC2988 recommends to restart timer to now+rto.
3246 */
3247static void tcp_rearm_rto(struct sock *sk)
3248{
3249	const struct tcp_sock *tp = tcp_sk(sk);
3250
3251	if (!tp->packets_out) {
3252		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3253	} else {
3254		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3255					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3256	}
3257}
3258
3259/* If we get here, the whole TSO packet has not been acked. */
3260static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3261{
3262	struct tcp_sock *tp = tcp_sk(sk);
3263	u32 packets_acked;
3264
3265	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3266
3267	packets_acked = tcp_skb_pcount(skb);
3268	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3269		return 0;
3270	packets_acked -= tcp_skb_pcount(skb);
3271
3272	if (packets_acked) {
3273		BUG_ON(tcp_skb_pcount(skb) == 0);
3274		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3275	}
3276
3277	return packets_acked;
3278}
3279
3280/* Remove acknowledged frames from the retransmission queue. If our packet
3281 * is before the ack sequence we can discard it as it's confirmed to have
3282 * arrived at the other end.
3283 */
3284static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3285			       u32 prior_snd_una)
3286{
3287	struct tcp_sock *tp = tcp_sk(sk);
3288	const struct inet_connection_sock *icsk = inet_csk(sk);
3289	struct sk_buff *skb;
3290	u32 now = tcp_time_stamp;
3291	int fully_acked = 1;
3292	int flag = 0;
3293	u32 pkts_acked = 0;
3294	u32 reord = tp->packets_out;
3295	u32 prior_sacked = tp->sacked_out;
3296	s32 seq_rtt = -1;
3297	s32 ca_seq_rtt = -1;
3298	ktime_t last_ackt = net_invalid_timestamp();
3299
3300	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3301		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3302		u32 acked_pcount;
3303		u8 sacked = scb->sacked;
3304
3305		/* Determine how many packets and what bytes were acked, tso and else */
3306		if (after(scb->end_seq, tp->snd_una)) {
3307			if (tcp_skb_pcount(skb) == 1 ||
3308			    !after(tp->snd_una, scb->seq))
3309				break;
3310
3311			acked_pcount = tcp_tso_acked(sk, skb);
3312			if (!acked_pcount)
3313				break;
3314
3315			fully_acked = 0;
3316		} else {
3317			acked_pcount = tcp_skb_pcount(skb);
3318		}
3319
3320		if (sacked & TCPCB_RETRANS) {
3321			if (sacked & TCPCB_SACKED_RETRANS)
3322				tp->retrans_out -= acked_pcount;
3323			flag |= FLAG_RETRANS_DATA_ACKED;
3324			ca_seq_rtt = -1;
3325			seq_rtt = -1;
3326			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3327				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3328		} else {
3329			ca_seq_rtt = now - scb->when;
3330			last_ackt = skb->tstamp;
3331			if (seq_rtt < 0) {
3332				seq_rtt = ca_seq_rtt;
3333			}
3334			if (!(sacked & TCPCB_SACKED_ACKED))
3335				reord = min(pkts_acked, reord);
3336		}
3337
3338		if (sacked & TCPCB_SACKED_ACKED)
3339			tp->sacked_out -= acked_pcount;
3340		if (sacked & TCPCB_LOST)
3341			tp->lost_out -= acked_pcount;
3342
3343		tp->packets_out -= acked_pcount;
3344		pkts_acked += acked_pcount;
3345
3346		/* Initial outgoing SYN's get put onto the write_queue
3347		 * just like anything else we transmit.  It is not
3348		 * true data, and if we misinform our callers that
3349		 * this ACK acks real data, we will erroneously exit
3350		 * connection startup slow start one packet too
3351		 * quickly.  This is severely frowned upon behavior.
3352		 */
3353		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3354			flag |= FLAG_DATA_ACKED;
3355		} else {
3356			flag |= FLAG_SYN_ACKED;
3357			tp->retrans_stamp = 0;
3358		}
3359
3360		if (!fully_acked)
3361			break;
3362
3363		tcp_unlink_write_queue(skb, sk);
3364		sk_wmem_free_skb(sk, skb);
3365		tp->scoreboard_skb_hint = NULL;
3366		if (skb == tp->retransmit_skb_hint)
3367			tp->retransmit_skb_hint = NULL;
3368		if (skb == tp->lost_skb_hint)
3369			tp->lost_skb_hint = NULL;
3370	}
3371
3372	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3373		tp->snd_up = tp->snd_una;
3374
3375	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3376		flag |= FLAG_SACK_RENEGING;
3377
3378	if (flag & FLAG_ACKED) {
3379		const struct tcp_congestion_ops *ca_ops
3380			= inet_csk(sk)->icsk_ca_ops;
3381
3382		if (unlikely(icsk->icsk_mtup.probe_size &&
3383			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3384			tcp_mtup_probe_success(sk);
3385		}
3386
3387		tcp_ack_update_rtt(sk, flag, seq_rtt);
3388		tcp_rearm_rto(sk);
3389
3390		if (tcp_is_reno(tp)) {
3391			tcp_remove_reno_sacks(sk, pkts_acked);
3392		} else {
3393			int delta;
3394
3395			/* Non-retransmitted hole got filled? That's reordering */
3396			if (reord < prior_fackets)
3397				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3398
3399			delta = tcp_is_fack(tp) ? pkts_acked :
3400						  prior_sacked - tp->sacked_out;
3401			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3402		}
3403
3404		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3405
3406		if (ca_ops->pkts_acked) {
3407			s32 rtt_us = -1;
3408
3409			/* Is the ACK triggering packet unambiguous? */
3410			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3411				/* High resolution needed and available? */
3412				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3413				    !ktime_equal(last_ackt,
3414						 net_invalid_timestamp()))
3415					rtt_us = ktime_us_delta(ktime_get_real(),
3416								last_ackt);
3417				else if (ca_seq_rtt >= 0)
3418					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3419			}
3420
3421			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3422		}
3423	}
3424
3425#if FASTRETRANS_DEBUG > 0
3426	WARN_ON((int)tp->sacked_out < 0);
3427	WARN_ON((int)tp->lost_out < 0);
3428	WARN_ON((int)tp->retrans_out < 0);
3429	if (!tp->packets_out && tcp_is_sack(tp)) {
3430		icsk = inet_csk(sk);
3431		if (tp->lost_out) {
3432			printk(KERN_DEBUG "Leak l=%u %d\n",
3433			       tp->lost_out, icsk->icsk_ca_state);
3434			tp->lost_out = 0;
3435		}
3436		if (tp->sacked_out) {
3437			printk(KERN_DEBUG "Leak s=%u %d\n",
3438			       tp->sacked_out, icsk->icsk_ca_state);
3439			tp->sacked_out = 0;
3440		}
3441		if (tp->retrans_out) {
3442			printk(KERN_DEBUG "Leak r=%u %d\n",
3443			       tp->retrans_out, icsk->icsk_ca_state);
3444			tp->retrans_out = 0;
3445		}
3446	}
3447#endif
3448	return flag;
3449}
3450
3451static void tcp_ack_probe(struct sock *sk)
3452{
3453	const struct tcp_sock *tp = tcp_sk(sk);
3454	struct inet_connection_sock *icsk = inet_csk(sk);
3455
3456	/* Was it a usable window open? */
3457
3458	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3459		icsk->icsk_backoff = 0;
3460		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3461		/* Socket must be waked up by subsequent tcp_data_snd_check().
3462		 * This function is not for random using!
3463		 */
3464	} else {
3465		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3466					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3467					  TCP_RTO_MAX);
3468	}
3469}
3470
3471static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3472{
3473	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3474		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3475}
3476
3477static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3478{
3479	const struct tcp_sock *tp = tcp_sk(sk);
3480	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3481		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3482}
3483
3484/* Check that window update is acceptable.
3485 * The function assumes that snd_una<=ack<=snd_next.
3486 */
3487static inline int tcp_may_update_window(const struct tcp_sock *tp,
3488					const u32 ack, const u32 ack_seq,
3489					const u32 nwin)
3490{
3491	return	after(ack, tp->snd_una) ||
3492		after(ack_seq, tp->snd_wl1) ||
3493		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3494}
3495
3496/* Update our send window.
3497 *
3498 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3499 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3500 */
3501static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3502				 u32 ack_seq)
3503{
3504	struct tcp_sock *tp = tcp_sk(sk);
3505	int flag = 0;
3506	u32 nwin = ntohs(tcp_hdr(skb)->window);
3507
3508	if (likely(!tcp_hdr(skb)->syn))
3509		nwin <<= tp->rx_opt.snd_wscale;
3510
3511	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3512		flag |= FLAG_WIN_UPDATE;
3513		tcp_update_wl(tp, ack_seq);
3514
3515		if (tp->snd_wnd != nwin) {
3516			tp->snd_wnd = nwin;
3517
3518			/* Note, it is the only place, where
3519			 * fast path is recovered for sending TCP.
3520			 */
3521			tp->pred_flags = 0;
3522			tcp_fast_path_check(sk);
3523
3524			if (nwin > tp->max_window) {
3525				tp->max_window = nwin;
3526				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3527			}
3528		}
3529	}
3530
3531	tp->snd_una = ack;
3532
3533	return flag;
3534}
3535
3536/* A very conservative spurious RTO response algorithm: reduce cwnd and
3537 * continue in congestion avoidance.
3538 */
3539static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3540{
3541	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3542	tp->snd_cwnd_cnt = 0;
3543	tp->bytes_acked = 0;
3544	TCP_ECN_queue_cwr(tp);
3545	tcp_moderate_cwnd(tp);
3546}
3547
3548/* A conservative spurious RTO response algorithm: reduce cwnd using
3549 * rate halving and continue in congestion avoidance.
3550 */
3551static void tcp_ratehalving_spur_to_response(struct sock *sk)
3552{
3553	tcp_enter_cwr(sk, 0);
3554}
3555
3556static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3557{
3558	if (flag & FLAG_ECE)
3559		tcp_ratehalving_spur_to_response(sk);
3560	else
3561		tcp_undo_cwr(sk, true);
3562}
3563
3564/* F-RTO spurious RTO detection algorithm (RFC4138)
3565 *
3566 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3567 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3568 * window (but not to or beyond highest sequence sent before RTO):
3569 *   On First ACK,  send two new segments out.
3570 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3571 *                  algorithm is not part of the F-RTO detection algorithm
3572 *                  given in RFC4138 but can be selected separately).
3573 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3574 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3575 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3576 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3577 *
3578 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3579 * original window even after we transmit two new data segments.
3580 *
3581 * SACK version:
3582 *   on first step, wait until first cumulative ACK arrives, then move to
3583 *   the second step. In second step, the next ACK decides.
3584 *
3585 * F-RTO is implemented (mainly) in four functions:
3586 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3587 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3588 *     called when tcp_use_frto() showed green light
3589 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3590 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3591 *     to prove that the RTO is indeed spurious. It transfers the control
3592 *     from F-RTO to the conventional RTO recovery
3593 */
3594static int tcp_process_frto(struct sock *sk, int flag)
3595{
3596	struct tcp_sock *tp = tcp_sk(sk);
3597
3598	tcp_verify_left_out(tp);
3599
3600	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3601	if (flag & FLAG_DATA_ACKED)
3602		inet_csk(sk)->icsk_retransmits = 0;
3603
3604	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3605	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3606		tp->undo_marker = 0;
3607
3608	if (!before(tp->snd_una, tp->frto_highmark)) {
3609		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3610		return 1;
3611	}
3612
3613	if (!tcp_is_sackfrto(tp)) {
3614		/* RFC4138 shortcoming in step 2; should also have case c):
3615		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3616		 * data, winupdate
3617		 */
3618		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3619			return 1;
3620
3621		if (!(flag & FLAG_DATA_ACKED)) {
3622			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3623					    flag);
3624			return 1;
3625		}
3626	} else {
3627		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3628			/* Prevent sending of new data. */
3629			tp->snd_cwnd = min(tp->snd_cwnd,
3630					   tcp_packets_in_flight(tp));
3631			return 1;
3632		}
3633
3634		if ((tp->frto_counter >= 2) &&
3635		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3636		     ((flag & FLAG_DATA_SACKED) &&
3637		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3638			/* RFC4138 shortcoming (see comment above) */
3639			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3640			    (flag & FLAG_NOT_DUP))
3641				return 1;
3642
3643			tcp_enter_frto_loss(sk, 3, flag);
3644			return 1;
3645		}
3646	}
3647
3648	if (tp->frto_counter == 1) {
3649		/* tcp_may_send_now needs to see updated state */
3650		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3651		tp->frto_counter = 2;
3652
3653		if (!tcp_may_send_now(sk))
3654			tcp_enter_frto_loss(sk, 2, flag);
3655
3656		return 1;
3657	} else {
3658		switch (sysctl_tcp_frto_response) {
3659		case 2:
3660			tcp_undo_spur_to_response(sk, flag);
3661			break;
3662		case 1:
3663			tcp_conservative_spur_to_response(tp);
3664			break;
3665		default:
3666			tcp_ratehalving_spur_to_response(sk);
3667			break;
3668		}
3669		tp->frto_counter = 0;
3670		tp->undo_marker = 0;
3671		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3672	}
3673	return 0;
3674}
3675
3676/* This routine deals with incoming acks, but not outgoing ones. */
3677static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3678{
3679	struct inet_connection_sock *icsk = inet_csk(sk);
3680	struct tcp_sock *tp = tcp_sk(sk);
3681	u32 prior_snd_una = tp->snd_una;
3682	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3683	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3684	u32 prior_in_flight;
3685	u32 prior_fackets;
3686	int prior_packets;
3687	int prior_sacked = tp->sacked_out;
3688	int newly_acked_sacked = 0;
3689	int frto_cwnd = 0;
3690
3691	/* If the ack is older than previous acks
3692	 * then we can probably ignore it.
3693	 */
3694	if (before(ack, prior_snd_una))
3695		goto old_ack;
3696
3697	/* If the ack includes data we haven't sent yet, discard
3698	 * this segment (RFC793 Section 3.9).
3699	 */
3700	if (after(ack, tp->snd_nxt))
3701		goto invalid_ack;
3702
3703	if (after(ack, prior_snd_una))
3704		flag |= FLAG_SND_UNA_ADVANCED;
3705
3706	if (sysctl_tcp_abc) {
3707		if (icsk->icsk_ca_state < TCP_CA_CWR)
3708			tp->bytes_acked += ack - prior_snd_una;
3709		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3710			/* we assume just one segment left network */
3711			tp->bytes_acked += min(ack - prior_snd_una,
3712					       tp->mss_cache);
3713	}
3714
3715	prior_fackets = tp->fackets_out;
3716	prior_in_flight = tcp_packets_in_flight(tp);
3717
3718	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3719		/* Window is constant, pure forward advance.
3720		 * No more checks are required.
3721		 * Note, we use the fact that SND.UNA>=SND.WL2.
3722		 */
3723		tcp_update_wl(tp, ack_seq);
3724		tp->snd_una = ack;
3725		flag |= FLAG_WIN_UPDATE;
3726
3727		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3728
3729		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3730	} else {
3731		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3732			flag |= FLAG_DATA;
3733		else
3734			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3735
3736		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3737
3738		if (TCP_SKB_CB(skb)->sacked)
3739			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3740
3741		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3742			flag |= FLAG_ECE;
3743
3744		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3745	}
3746
3747	/* We passed data and got it acked, remove any soft error
3748	 * log. Something worked...
3749	 */
3750	sk->sk_err_soft = 0;
3751	icsk->icsk_probes_out = 0;
3752	tp->rcv_tstamp = tcp_time_stamp;
3753	prior_packets = tp->packets_out;
3754	if (!prior_packets)
3755		goto no_queue;
3756
3757	/* See if we can take anything off of the retransmit queue. */
3758	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3759
3760	newly_acked_sacked = (prior_packets - prior_sacked) -
3761			     (tp->packets_out - tp->sacked_out);
3762
3763	if (tp->frto_counter)
3764		frto_cwnd = tcp_process_frto(sk, flag);
3765	/* Guarantee sacktag reordering detection against wrap-arounds */
3766	if (before(tp->frto_highmark, tp->snd_una))
3767		tp->frto_highmark = 0;
3768
3769	if (tcp_ack_is_dubious(sk, flag)) {
3770		/* Advance CWND, if state allows this. */
3771		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3772		    tcp_may_raise_cwnd(sk, flag))
3773			tcp_cong_avoid(sk, ack, prior_in_flight);
3774		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3775				      newly_acked_sacked, flag);
3776	} else {
3777		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3778			tcp_cong_avoid(sk, ack, prior_in_flight);
3779	}
3780
3781	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3782		dst_confirm(__sk_dst_get(sk));
3783
3784	return 1;
3785
3786no_queue:
3787	/* If this ack opens up a zero window, clear backoff.  It was
3788	 * being used to time the probes, and is probably far higher than
3789	 * it needs to be for normal retransmission.
3790	 */
3791	if (tcp_send_head(sk))
3792		tcp_ack_probe(sk);
3793	return 1;
3794
3795invalid_ack:
3796	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3797	return -1;
3798
3799old_ack:
3800	if (TCP_SKB_CB(skb)->sacked) {
3801		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3802		if (icsk->icsk_ca_state == TCP_CA_Open)
3803			tcp_try_keep_open(sk);
3804	}
3805
3806	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3807	return 0;
3808}
3809
3810/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3811 * But, this can also be called on packets in the established flow when
3812 * the fast version below fails.
3813 */
3814void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3815		       const u8 **hvpp, int estab)
3816{
3817	const unsigned char *ptr;
3818	const struct tcphdr *th = tcp_hdr(skb);
3819	int length = (th->doff * 4) - sizeof(struct tcphdr);
3820
3821	ptr = (const unsigned char *)(th + 1);
3822	opt_rx->saw_tstamp = 0;
3823
3824	while (length > 0) {
3825		int opcode = *ptr++;
3826		int opsize;
3827
3828		switch (opcode) {
3829		case TCPOPT_EOL:
3830			return;
3831		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3832			length--;
3833			continue;
3834		default:
3835			opsize = *ptr++;
3836			if (opsize < 2) /* "silly options" */
3837				return;
3838			if (opsize > length)
3839				return;	/* don't parse partial options */
3840			switch (opcode) {
3841			case TCPOPT_MSS:
3842				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3843					u16 in_mss = get_unaligned_be16(ptr);
3844					if (in_mss) {
3845						if (opt_rx->user_mss &&
3846						    opt_rx->user_mss < in_mss)
3847							in_mss = opt_rx->user_mss;
3848						opt_rx->mss_clamp = in_mss;
3849					}
3850				}
3851				break;
3852			case TCPOPT_WINDOW:
3853				if (opsize == TCPOLEN_WINDOW && th->syn &&
3854				    !estab && sysctl_tcp_window_scaling) {
3855					__u8 snd_wscale = *(__u8 *)ptr;
3856					opt_rx->wscale_ok = 1;
3857					if (snd_wscale > 14) {
3858						if (net_ratelimit())
3859							printk(KERN_INFO "tcp_parse_options: Illegal window "
3860							       "scaling value %d >14 received.\n",
3861							       snd_wscale);
3862						snd_wscale = 14;
3863					}
3864					opt_rx->snd_wscale = snd_wscale;
3865				}
3866				break;
3867			case TCPOPT_TIMESTAMP:
3868				if ((opsize == TCPOLEN_TIMESTAMP) &&
3869				    ((estab && opt_rx->tstamp_ok) ||
3870				     (!estab && sysctl_tcp_timestamps))) {
3871					opt_rx->saw_tstamp = 1;
3872					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3873					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3874				}
3875				break;
3876			case TCPOPT_SACK_PERM:
3877				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3878				    !estab && sysctl_tcp_sack) {
3879					opt_rx->sack_ok = 1;
3880					tcp_sack_reset(opt_rx);
3881				}
3882				break;
3883
3884			case TCPOPT_SACK:
3885				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3886				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3887				   opt_rx->sack_ok) {
3888					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3889				}
3890				break;
3891#ifdef CONFIG_TCP_MD5SIG
3892			case TCPOPT_MD5SIG:
3893				/*
3894				 * The MD5 Hash has already been
3895				 * checked (see tcp_v{4,6}_do_rcv()).
3896				 */
3897				break;
3898#endif
3899			case TCPOPT_COOKIE:
3900				/* This option is variable length.
3901				 */
3902				switch (opsize) {
3903				case TCPOLEN_COOKIE_BASE:
3904					/* not yet implemented */
3905					break;
3906				case TCPOLEN_COOKIE_PAIR:
3907					/* not yet implemented */
3908					break;
3909				case TCPOLEN_COOKIE_MIN+0:
3910				case TCPOLEN_COOKIE_MIN+2:
3911				case TCPOLEN_COOKIE_MIN+4:
3912				case TCPOLEN_COOKIE_MIN+6:
3913				case TCPOLEN_COOKIE_MAX:
3914					/* 16-bit multiple */
3915					opt_rx->cookie_plus = opsize;
3916					*hvpp = ptr;
3917					break;
3918				default:
3919					/* ignore option */
3920					break;
3921				}
3922				break;
3923			}
3924
3925			ptr += opsize-2;
3926			length -= opsize;
3927		}
3928	}
3929}
3930EXPORT_SYMBOL(tcp_parse_options);
3931
3932static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3933{
3934	const __be32 *ptr = (const __be32 *)(th + 1);
3935
3936	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3937			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3938		tp->rx_opt.saw_tstamp = 1;
3939		++ptr;
3940		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3941		++ptr;
3942		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3943		return 1;
3944	}
3945	return 0;
3946}
3947
3948/* Fast parse options. This hopes to only see timestamps.
3949 * If it is wrong it falls back on tcp_parse_options().
3950 */
3951static int tcp_fast_parse_options(const struct sk_buff *skb,
3952				  const struct tcphdr *th,
3953				  struct tcp_sock *tp, const u8 **hvpp)
3954{
3955	/* In the spirit of fast parsing, compare doff directly to constant
3956	 * values.  Because equality is used, short doff can be ignored here.
3957	 */
3958	if (th->doff == (sizeof(*th) / 4)) {
3959		tp->rx_opt.saw_tstamp = 0;
3960		return 0;
3961	} else if (tp->rx_opt.tstamp_ok &&
3962		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3963		if (tcp_parse_aligned_timestamp(tp, th))
3964			return 1;
3965	}
3966	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3967	return 1;
3968}
3969
3970#ifdef CONFIG_TCP_MD5SIG
3971/*
3972 * Parse MD5 Signature option
3973 */
3974const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3975{
3976	int length = (th->doff << 2) - sizeof(*th);
3977	const u8 *ptr = (const u8 *)(th + 1);
3978
3979	/* If the TCP option is too short, we can short cut */
3980	if (length < TCPOLEN_MD5SIG)
3981		return NULL;
3982
3983	while (length > 0) {
3984		int opcode = *ptr++;
3985		int opsize;
3986
3987		switch(opcode) {
3988		case TCPOPT_EOL:
3989			return NULL;
3990		case TCPOPT_NOP:
3991			length--;
3992			continue;
3993		default:
3994			opsize = *ptr++;
3995			if (opsize < 2 || opsize > length)
3996				return NULL;
3997			if (opcode == TCPOPT_MD5SIG)
3998				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3999		}
4000		ptr += opsize - 2;
4001		length -= opsize;
4002	}
4003	return NULL;
4004}
4005EXPORT_SYMBOL(tcp_parse_md5sig_option);
4006#endif
4007
4008static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4009{
4010	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4011	tp->rx_opt.ts_recent_stamp = get_seconds();
4012}
4013
4014static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4015{
4016	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4017		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
4018		 * extra check below makes sure this can only happen
4019		 * for pure ACK frames.  -DaveM
4020		 *
4021		 * Not only, also it occurs for expired timestamps.
4022		 */
4023
4024		if (tcp_paws_check(&tp->rx_opt, 0))
4025			tcp_store_ts_recent(tp);
4026	}
4027}
4028
4029/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4030 *
4031 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4032 * it can pass through stack. So, the following predicate verifies that
4033 * this segment is not used for anything but congestion avoidance or
4034 * fast retransmit. Moreover, we even are able to eliminate most of such
4035 * second order effects, if we apply some small "replay" window (~RTO)
4036 * to timestamp space.
4037 *
4038 * All these measures still do not guarantee that we reject wrapped ACKs
4039 * on networks with high bandwidth, when sequence space is recycled fastly,
4040 * but it guarantees that such events will be very rare and do not affect
4041 * connection seriously. This doesn't look nice, but alas, PAWS is really
4042 * buggy extension.
4043 *
4044 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4045 * states that events when retransmit arrives after original data are rare.
4046 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4047 * the biggest problem on large power networks even with minor reordering.
4048 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4049 * up to bandwidth of 18Gigabit/sec. 8) ]
4050 */
4051
4052static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4053{
4054	const struct tcp_sock *tp = tcp_sk(sk);
4055	const struct tcphdr *th = tcp_hdr(skb);
4056	u32 seq = TCP_SKB_CB(skb)->seq;
4057	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4058
4059	return (/* 1. Pure ACK with correct sequence number. */
4060		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4061
4062		/* 2. ... and duplicate ACK. */
4063		ack == tp->snd_una &&
4064
4065		/* 3. ... and does not update window. */
4066		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4067
4068		/* 4. ... and sits in replay window. */
4069		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4070}
4071
4072static inline int tcp_paws_discard(const struct sock *sk,
4073				   const struct sk_buff *skb)
4074{
4075	const struct tcp_sock *tp = tcp_sk(sk);
4076
4077	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4078	       !tcp_disordered_ack(sk, skb);
4079}
4080
4081/* Check segment sequence number for validity.
4082 *
4083 * Segment controls are considered valid, if the segment
4084 * fits to the window after truncation to the window. Acceptability
4085 * of data (and SYN, FIN, of course) is checked separately.
4086 * See tcp_data_queue(), for example.
4087 *
4088 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4089 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4090 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4091 * (borrowed from freebsd)
4092 */
4093
4094static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4095{
4096	return	!before(end_seq, tp->rcv_wup) &&
4097		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4098}
4099
4100/* When we get a reset we do this. */
4101static void tcp_reset(struct sock *sk)
4102{
4103	/* We want the right error as BSD sees it (and indeed as we do). */
4104	switch (sk->sk_state) {
4105	case TCP_SYN_SENT:
4106		sk->sk_err = ECONNREFUSED;
4107		break;
4108	case TCP_CLOSE_WAIT:
4109		sk->sk_err = EPIPE;
4110		break;
4111	case TCP_CLOSE:
4112		return;
4113	default:
4114		sk->sk_err = ECONNRESET;
4115	}
4116	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4117	smp_wmb();
4118
4119	if (!sock_flag(sk, SOCK_DEAD))
4120		sk->sk_error_report(sk);
4121
4122	tcp_done(sk);
4123}
4124
4125/*
4126 * 	Process the FIN bit. This now behaves as it is supposed to work
4127 *	and the FIN takes effect when it is validly part of sequence
4128 *	space. Not before when we get holes.
4129 *
4130 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4131 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4132 *	TIME-WAIT)
4133 *
4134 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4135 *	close and we go into CLOSING (and later onto TIME-WAIT)
4136 *
4137 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4138 */
4139static void tcp_fin(struct sock *sk)
4140{
4141	struct tcp_sock *tp = tcp_sk(sk);
4142
4143	inet_csk_schedule_ack(sk);
4144
4145	sk->sk_shutdown |= RCV_SHUTDOWN;
4146	sock_set_flag(sk, SOCK_DONE);
4147
4148	switch (sk->sk_state) {
4149	case TCP_SYN_RECV:
4150	case TCP_ESTABLISHED:
4151		/* Move to CLOSE_WAIT */
4152		tcp_set_state(sk, TCP_CLOSE_WAIT);
4153		inet_csk(sk)->icsk_ack.pingpong = 1;
4154		break;
4155
4156	case TCP_CLOSE_WAIT:
4157	case TCP_CLOSING:
4158		/* Received a retransmission of the FIN, do
4159		 * nothing.
4160		 */
4161		break;
4162	case TCP_LAST_ACK:
4163		/* RFC793: Remain in the LAST-ACK state. */
4164		break;
4165
4166	case TCP_FIN_WAIT1:
4167		/* This case occurs when a simultaneous close
4168		 * happens, we must ack the received FIN and
4169		 * enter the CLOSING state.
4170		 */
4171		tcp_send_ack(sk);
4172		tcp_set_state(sk, TCP_CLOSING);
4173		break;
4174	case TCP_FIN_WAIT2:
4175		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4176		tcp_send_ack(sk);
4177		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4178		break;
4179	default:
4180		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4181		 * cases we should never reach this piece of code.
4182		 */
4183		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4184		       __func__, sk->sk_state);
4185		break;
4186	}
4187
4188	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4189	 * Probably, we should reset in this case. For now drop them.
4190	 */
4191	__skb_queue_purge(&tp->out_of_order_queue);
4192	if (tcp_is_sack(tp))
4193		tcp_sack_reset(&tp->rx_opt);
4194	sk_mem_reclaim(sk);
4195
4196	if (!sock_flag(sk, SOCK_DEAD)) {
4197		sk->sk_state_change(sk);
4198
4199		/* Do not send POLL_HUP for half duplex close. */
4200		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4201		    sk->sk_state == TCP_CLOSE)
4202			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4203		else
4204			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4205	}
4206}
4207
4208static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4209				  u32 end_seq)
4210{
4211	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4212		if (before(seq, sp->start_seq))
4213			sp->start_seq = seq;
4214		if (after(end_seq, sp->end_seq))
4215			sp->end_seq = end_seq;
4216		return 1;
4217	}
4218	return 0;
4219}
4220
4221static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4222{
4223	struct tcp_sock *tp = tcp_sk(sk);
4224
4225	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4226		int mib_idx;
4227
4228		if (before(seq, tp->rcv_nxt))
4229			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4230		else
4231			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4232
4233		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4234
4235		tp->rx_opt.dsack = 1;
4236		tp->duplicate_sack[0].start_seq = seq;
4237		tp->duplicate_sack[0].end_seq = end_seq;
4238	}
4239}
4240
4241static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4242{
4243	struct tcp_sock *tp = tcp_sk(sk);
4244
4245	if (!tp->rx_opt.dsack)
4246		tcp_dsack_set(sk, seq, end_seq);
4247	else
4248		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4249}
4250
4251static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4252{
4253	struct tcp_sock *tp = tcp_sk(sk);
4254
4255	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4256	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4257		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4258		tcp_enter_quickack_mode(sk);
4259
4260		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4261			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4262
4263			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4264				end_seq = tp->rcv_nxt;
4265			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4266		}
4267	}
4268
4269	tcp_send_ack(sk);
4270}
4271
4272/* These routines update the SACK block as out-of-order packets arrive or
4273 * in-order packets close up the sequence space.
4274 */
4275static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4276{
4277	int this_sack;
4278	struct tcp_sack_block *sp = &tp->selective_acks[0];
4279	struct tcp_sack_block *swalk = sp + 1;
4280
4281	/* See if the recent change to the first SACK eats into
4282	 * or hits the sequence space of other SACK blocks, if so coalesce.
4283	 */
4284	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4285		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4286			int i;
4287
4288			/* Zap SWALK, by moving every further SACK up by one slot.
4289			 * Decrease num_sacks.
4290			 */
4291			tp->rx_opt.num_sacks--;
4292			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4293				sp[i] = sp[i + 1];
4294			continue;
4295		}
4296		this_sack++, swalk++;
4297	}
4298}
4299
4300static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4301{
4302	struct tcp_sock *tp = tcp_sk(sk);
4303	struct tcp_sack_block *sp = &tp->selective_acks[0];
4304	int cur_sacks = tp->rx_opt.num_sacks;
4305	int this_sack;
4306
4307	if (!cur_sacks)
4308		goto new_sack;
4309
4310	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4311		if (tcp_sack_extend(sp, seq, end_seq)) {
4312			/* Rotate this_sack to the first one. */
4313			for (; this_sack > 0; this_sack--, sp--)
4314				swap(*sp, *(sp - 1));
4315			if (cur_sacks > 1)
4316				tcp_sack_maybe_coalesce(tp);
4317			return;
4318		}
4319	}
4320
4321	/* Could not find an adjacent existing SACK, build a new one,
4322	 * put it at the front, and shift everyone else down.  We
4323	 * always know there is at least one SACK present already here.
4324	 *
4325	 * If the sack array is full, forget about the last one.
4326	 */
4327	if (this_sack >= TCP_NUM_SACKS) {
4328		this_sack--;
4329		tp->rx_opt.num_sacks--;
4330		sp--;
4331	}
4332	for (; this_sack > 0; this_sack--, sp--)
4333		*sp = *(sp - 1);
4334
4335new_sack:
4336	/* Build the new head SACK, and we're done. */
4337	sp->start_seq = seq;
4338	sp->end_seq = end_seq;
4339	tp->rx_opt.num_sacks++;
4340}
4341
4342/* RCV.NXT advances, some SACKs should be eaten. */
4343
4344static void tcp_sack_remove(struct tcp_sock *tp)
4345{
4346	struct tcp_sack_block *sp = &tp->selective_acks[0];
4347	int num_sacks = tp->rx_opt.num_sacks;
4348	int this_sack;
4349
4350	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4351	if (skb_queue_empty(&tp->out_of_order_queue)) {
4352		tp->rx_opt.num_sacks = 0;
4353		return;
4354	}
4355
4356	for (this_sack = 0; this_sack < num_sacks;) {
4357		/* Check if the start of the sack is covered by RCV.NXT. */
4358		if (!before(tp->rcv_nxt, sp->start_seq)) {
4359			int i;
4360
4361			/* RCV.NXT must cover all the block! */
4362			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4363
4364			/* Zap this SACK, by moving forward any other SACKS. */
4365			for (i=this_sack+1; i < num_sacks; i++)
4366				tp->selective_acks[i-1] = tp->selective_acks[i];
4367			num_sacks--;
4368			continue;
4369		}
4370		this_sack++;
4371		sp++;
4372	}
4373	tp->rx_opt.num_sacks = num_sacks;
4374}
4375
4376/* This one checks to see if we can put data from the
4377 * out_of_order queue into the receive_queue.
4378 */
4379static void tcp_ofo_queue(struct sock *sk)
4380{
4381	struct tcp_sock *tp = tcp_sk(sk);
4382	__u32 dsack_high = tp->rcv_nxt;
4383	struct sk_buff *skb;
4384
4385	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4386		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4387			break;
4388
4389		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4390			__u32 dsack = dsack_high;
4391			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4392				dsack_high = TCP_SKB_CB(skb)->end_seq;
4393			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4394		}
4395
4396		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4397			SOCK_DEBUG(sk, "ofo packet was already received\n");
4398			__skb_unlink(skb, &tp->out_of_order_queue);
4399			__kfree_skb(skb);
4400			continue;
4401		}
4402		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4403			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4404			   TCP_SKB_CB(skb)->end_seq);
4405
4406		__skb_unlink(skb, &tp->out_of_order_queue);
4407		__skb_queue_tail(&sk->sk_receive_queue, skb);
4408		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4409		if (tcp_hdr(skb)->fin)
4410			tcp_fin(sk);
4411	}
4412}
4413
4414static int tcp_prune_ofo_queue(struct sock *sk);
4415static int tcp_prune_queue(struct sock *sk);
4416
4417static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4418{
4419	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4420	    !sk_rmem_schedule(sk, size)) {
4421
4422		if (tcp_prune_queue(sk) < 0)
4423			return -1;
4424
4425		if (!sk_rmem_schedule(sk, size)) {
4426			if (!tcp_prune_ofo_queue(sk))
4427				return -1;
4428
4429			if (!sk_rmem_schedule(sk, size))
4430				return -1;
4431		}
4432	}
4433	return 0;
4434}
4435
4436static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4437{
4438	const struct tcphdr *th = tcp_hdr(skb);
4439	struct tcp_sock *tp = tcp_sk(sk);
4440	int eaten = -1;
4441
4442	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4443		goto drop;
4444
4445	skb_dst_drop(skb);
4446	__skb_pull(skb, th->doff * 4);
4447
4448	TCP_ECN_accept_cwr(tp, skb);
4449
4450	tp->rx_opt.dsack = 0;
4451
4452	/*  Queue data for delivery to the user.
4453	 *  Packets in sequence go to the receive queue.
4454	 *  Out of sequence packets to the out_of_order_queue.
4455	 */
4456	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4457		if (tcp_receive_window(tp) == 0)
4458			goto out_of_window;
4459
4460		/* Ok. In sequence. In window. */
4461		if (tp->ucopy.task == current &&
4462		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4463		    sock_owned_by_user(sk) && !tp->urg_data) {
4464			int chunk = min_t(unsigned int, skb->len,
4465					  tp->ucopy.len);
4466
4467			__set_current_state(TASK_RUNNING);
4468
4469			local_bh_enable();
4470			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4471				tp->ucopy.len -= chunk;
4472				tp->copied_seq += chunk;
4473				eaten = (chunk == skb->len);
4474				tcp_rcv_space_adjust(sk);
4475			}
4476			local_bh_disable();
4477		}
4478
4479		if (eaten <= 0) {
4480queue_and_out:
4481			if (eaten < 0 &&
4482			    tcp_try_rmem_schedule(sk, skb->truesize))
4483				goto drop;
4484
4485			skb_set_owner_r(skb, sk);
4486			__skb_queue_tail(&sk->sk_receive_queue, skb);
4487		}
4488		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4489		if (skb->len)
4490			tcp_event_data_recv(sk, skb);
4491		if (th->fin)
4492			tcp_fin(sk);
4493
4494		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4495			tcp_ofo_queue(sk);
4496
4497			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4498			 * gap in queue is filled.
4499			 */
4500			if (skb_queue_empty(&tp->out_of_order_queue))
4501				inet_csk(sk)->icsk_ack.pingpong = 0;
4502		}
4503
4504		if (tp->rx_opt.num_sacks)
4505			tcp_sack_remove(tp);
4506
4507		tcp_fast_path_check(sk);
4508
4509		if (eaten > 0)
4510			__kfree_skb(skb);
4511		else if (!sock_flag(sk, SOCK_DEAD))
4512			sk->sk_data_ready(sk, 0);
4513		return;
4514	}
4515
4516	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4517		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4518		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4519		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4520
4521out_of_window:
4522		tcp_enter_quickack_mode(sk);
4523		inet_csk_schedule_ack(sk);
4524drop:
4525		__kfree_skb(skb);
4526		return;
4527	}
4528
4529	/* Out of window. F.e. zero window probe. */
4530	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4531		goto out_of_window;
4532
4533	tcp_enter_quickack_mode(sk);
4534
4535	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4536		/* Partial packet, seq < rcv_next < end_seq */
4537		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4538			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4539			   TCP_SKB_CB(skb)->end_seq);
4540
4541		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4542
4543		/* If window is closed, drop tail of packet. But after
4544		 * remembering D-SACK for its head made in previous line.
4545		 */
4546		if (!tcp_receive_window(tp))
4547			goto out_of_window;
4548		goto queue_and_out;
4549	}
4550
4551	TCP_ECN_check_ce(tp, skb);
4552
4553	if (tcp_try_rmem_schedule(sk, skb->truesize))
4554		goto drop;
4555
4556	/* Disable header prediction. */
4557	tp->pred_flags = 0;
4558	inet_csk_schedule_ack(sk);
4559
4560	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4561		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4562
4563	skb_set_owner_r(skb, sk);
4564
4565	if (!skb_peek(&tp->out_of_order_queue)) {
4566		/* Initial out of order segment, build 1 SACK. */
4567		if (tcp_is_sack(tp)) {
4568			tp->rx_opt.num_sacks = 1;
4569			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4570			tp->selective_acks[0].end_seq =
4571						TCP_SKB_CB(skb)->end_seq;
4572		}
4573		__skb_queue_head(&tp->out_of_order_queue, skb);
4574	} else {
4575		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4576		u32 seq = TCP_SKB_CB(skb)->seq;
4577		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4578
4579		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4580			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4581
4582			if (!tp->rx_opt.num_sacks ||
4583			    tp->selective_acks[0].end_seq != seq)
4584				goto add_sack;
4585
4586			/* Common case: data arrive in order after hole. */
4587			tp->selective_acks[0].end_seq = end_seq;
4588			return;
4589		}
4590
4591		/* Find place to insert this segment. */
4592		while (1) {
4593			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4594				break;
4595			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4596				skb1 = NULL;
4597				break;
4598			}
4599			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4600		}
4601
4602		/* Do skb overlap to previous one? */
4603		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4604			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4605				/* All the bits are present. Drop. */
4606				__kfree_skb(skb);
4607				tcp_dsack_set(sk, seq, end_seq);
4608				goto add_sack;
4609			}
4610			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4611				/* Partial overlap. */
4612				tcp_dsack_set(sk, seq,
4613					      TCP_SKB_CB(skb1)->end_seq);
4614			} else {
4615				if (skb_queue_is_first(&tp->out_of_order_queue,
4616						       skb1))
4617					skb1 = NULL;
4618				else
4619					skb1 = skb_queue_prev(
4620						&tp->out_of_order_queue,
4621						skb1);
4622			}
4623		}
4624		if (!skb1)
4625			__skb_queue_head(&tp->out_of_order_queue, skb);
4626		else
4627			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4628
4629		/* And clean segments covered by new one as whole. */
4630		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4631			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4632
4633			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4634				break;
4635			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4636				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4637						 end_seq);
4638				break;
4639			}
4640			__skb_unlink(skb1, &tp->out_of_order_queue);
4641			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4642					 TCP_SKB_CB(skb1)->end_seq);
4643			__kfree_skb(skb1);
4644		}
4645
4646add_sack:
4647		if (tcp_is_sack(tp))
4648			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4649	}
4650}
4651
4652static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4653					struct sk_buff_head *list)
4654{
4655	struct sk_buff *next = NULL;
4656
4657	if (!skb_queue_is_last(list, skb))
4658		next = skb_queue_next(list, skb);
4659
4660	__skb_unlink(skb, list);
4661	__kfree_skb(skb);
4662	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4663
4664	return next;
4665}
4666
4667/* Collapse contiguous sequence of skbs head..tail with
4668 * sequence numbers start..end.
4669 *
4670 * If tail is NULL, this means until the end of the list.
4671 *
4672 * Segments with FIN/SYN are not collapsed (only because this
4673 * simplifies code)
4674 */
4675static void
4676tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4677	     struct sk_buff *head, struct sk_buff *tail,
4678	     u32 start, u32 end)
4679{
4680	struct sk_buff *skb, *n;
4681	bool end_of_skbs;
4682
4683	/* First, check that queue is collapsible and find
4684	 * the point where collapsing can be useful. */
4685	skb = head;
4686restart:
4687	end_of_skbs = true;
4688	skb_queue_walk_from_safe(list, skb, n) {
4689		if (skb == tail)
4690			break;
4691		/* No new bits? It is possible on ofo queue. */
4692		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4693			skb = tcp_collapse_one(sk, skb, list);
4694			if (!skb)
4695				break;
4696			goto restart;
4697		}
4698
4699		/* The first skb to collapse is:
4700		 * - not SYN/FIN and
4701		 * - bloated or contains data before "start" or
4702		 *   overlaps to the next one.
4703		 */
4704		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4705		    (tcp_win_from_space(skb->truesize) > skb->len ||
4706		     before(TCP_SKB_CB(skb)->seq, start))) {
4707			end_of_skbs = false;
4708			break;
4709		}
4710
4711		if (!skb_queue_is_last(list, skb)) {
4712			struct sk_buff *next = skb_queue_next(list, skb);
4713			if (next != tail &&
4714			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4715				end_of_skbs = false;
4716				break;
4717			}
4718		}
4719
4720		/* Decided to skip this, advance start seq. */
4721		start = TCP_SKB_CB(skb)->end_seq;
4722	}
4723	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4724		return;
4725
4726	while (before(start, end)) {
4727		struct sk_buff *nskb;
4728		unsigned int header = skb_headroom(skb);
4729		int copy = SKB_MAX_ORDER(header, 0);
4730
4731		/* Too big header? This can happen with IPv6. */
4732		if (copy < 0)
4733			return;
4734		if (end - start < copy)
4735			copy = end - start;
4736		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4737		if (!nskb)
4738			return;
4739
4740		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4741		skb_set_network_header(nskb, (skb_network_header(skb) -
4742					      skb->head));
4743		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4744						skb->head));
4745		skb_reserve(nskb, header);
4746		memcpy(nskb->head, skb->head, header);
4747		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4748		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4749		__skb_queue_before(list, skb, nskb);
4750		skb_set_owner_r(nskb, sk);
4751
4752		/* Copy data, releasing collapsed skbs. */
4753		while (copy > 0) {
4754			int offset = start - TCP_SKB_CB(skb)->seq;
4755			int size = TCP_SKB_CB(skb)->end_seq - start;
4756
4757			BUG_ON(offset < 0);
4758			if (size > 0) {
4759				size = min(copy, size);
4760				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4761					BUG();
4762				TCP_SKB_CB(nskb)->end_seq += size;
4763				copy -= size;
4764				start += size;
4765			}
4766			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4767				skb = tcp_collapse_one(sk, skb, list);
4768				if (!skb ||
4769				    skb == tail ||
4770				    tcp_hdr(skb)->syn ||
4771				    tcp_hdr(skb)->fin)
4772					return;
4773			}
4774		}
4775	}
4776}
4777
4778/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4779 * and tcp_collapse() them until all the queue is collapsed.
4780 */
4781static void tcp_collapse_ofo_queue(struct sock *sk)
4782{
4783	struct tcp_sock *tp = tcp_sk(sk);
4784	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4785	struct sk_buff *head;
4786	u32 start, end;
4787
4788	if (skb == NULL)
4789		return;
4790
4791	start = TCP_SKB_CB(skb)->seq;
4792	end = TCP_SKB_CB(skb)->end_seq;
4793	head = skb;
4794
4795	for (;;) {
4796		struct sk_buff *next = NULL;
4797
4798		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4799			next = skb_queue_next(&tp->out_of_order_queue, skb);
4800		skb = next;
4801
4802		/* Segment is terminated when we see gap or when
4803		 * we are at the end of all the queue. */
4804		if (!skb ||
4805		    after(TCP_SKB_CB(skb)->seq, end) ||
4806		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4807			tcp_collapse(sk, &tp->out_of_order_queue,
4808				     head, skb, start, end);
4809			head = skb;
4810			if (!skb)
4811				break;
4812			/* Start new segment */
4813			start = TCP_SKB_CB(skb)->seq;
4814			end = TCP_SKB_CB(skb)->end_seq;
4815		} else {
4816			if (before(TCP_SKB_CB(skb)->seq, start))
4817				start = TCP_SKB_CB(skb)->seq;
4818			if (after(TCP_SKB_CB(skb)->end_seq, end))
4819				end = TCP_SKB_CB(skb)->end_seq;
4820		}
4821	}
4822}
4823
4824/*
4825 * Purge the out-of-order queue.
4826 * Return true if queue was pruned.
4827 */
4828static int tcp_prune_ofo_queue(struct sock *sk)
4829{
4830	struct tcp_sock *tp = tcp_sk(sk);
4831	int res = 0;
4832
4833	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4834		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4835		__skb_queue_purge(&tp->out_of_order_queue);
4836
4837		/* Reset SACK state.  A conforming SACK implementation will
4838		 * do the same at a timeout based retransmit.  When a connection
4839		 * is in a sad state like this, we care only about integrity
4840		 * of the connection not performance.
4841		 */
4842		if (tp->rx_opt.sack_ok)
4843			tcp_sack_reset(&tp->rx_opt);
4844		sk_mem_reclaim(sk);
4845		res = 1;
4846	}
4847	return res;
4848}
4849
4850/* Reduce allocated memory if we can, trying to get
4851 * the socket within its memory limits again.
4852 *
4853 * Return less than zero if we should start dropping frames
4854 * until the socket owning process reads some of the data
4855 * to stabilize the situation.
4856 */
4857static int tcp_prune_queue(struct sock *sk)
4858{
4859	struct tcp_sock *tp = tcp_sk(sk);
4860
4861	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4862
4863	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4864
4865	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4866		tcp_clamp_window(sk);
4867	else if (tcp_memory_pressure)
4868		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4869
4870	tcp_collapse_ofo_queue(sk);
4871	if (!skb_queue_empty(&sk->sk_receive_queue))
4872		tcp_collapse(sk, &sk->sk_receive_queue,
4873			     skb_peek(&sk->sk_receive_queue),
4874			     NULL,
4875			     tp->copied_seq, tp->rcv_nxt);
4876	sk_mem_reclaim(sk);
4877
4878	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4879		return 0;
4880
4881	/* Collapsing did not help, destructive actions follow.
4882	 * This must not ever occur. */
4883
4884	tcp_prune_ofo_queue(sk);
4885
4886	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4887		return 0;
4888
4889	/* If we are really being abused, tell the caller to silently
4890	 * drop receive data on the floor.  It will get retransmitted
4891	 * and hopefully then we'll have sufficient space.
4892	 */
4893	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4894
4895	/* Massive buffer overcommit. */
4896	tp->pred_flags = 0;
4897	return -1;
4898}
4899
4900/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4901 * As additional protections, we do not touch cwnd in retransmission phases,
4902 * and if application hit its sndbuf limit recently.
4903 */
4904void tcp_cwnd_application_limited(struct sock *sk)
4905{
4906	struct tcp_sock *tp = tcp_sk(sk);
4907
4908	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4909	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4910		/* Limited by application or receiver window. */
4911		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4912		u32 win_used = max(tp->snd_cwnd_used, init_win);
4913		if (win_used < tp->snd_cwnd) {
4914			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4915			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4916		}
4917		tp->snd_cwnd_used = 0;
4918	}
4919	tp->snd_cwnd_stamp = tcp_time_stamp;
4920}
4921
4922static int tcp_should_expand_sndbuf(const struct sock *sk)
4923{
4924	const struct tcp_sock *tp = tcp_sk(sk);
4925
4926	/* If the user specified a specific send buffer setting, do
4927	 * not modify it.
4928	 */
4929	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4930		return 0;
4931
4932	/* If we are under global TCP memory pressure, do not expand.  */
4933	if (tcp_memory_pressure)
4934		return 0;
4935
4936	/* If we are under soft global TCP memory pressure, do not expand.  */
4937	if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4938		return 0;
4939
4940	/* If we filled the congestion window, do not expand.  */
4941	if (tp->packets_out >= tp->snd_cwnd)
4942		return 0;
4943
4944	return 1;
4945}
4946
4947/* When incoming ACK allowed to free some skb from write_queue,
4948 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4949 * on the exit from tcp input handler.
4950 *
4951 * PROBLEM: sndbuf expansion does not work well with largesend.
4952 */
4953static void tcp_new_space(struct sock *sk)
4954{
4955	struct tcp_sock *tp = tcp_sk(sk);
4956
4957	if (tcp_should_expand_sndbuf(sk)) {
4958		int sndmem = SKB_TRUESIZE(max_t(u32,
4959						tp->rx_opt.mss_clamp,
4960						tp->mss_cache) +
4961					  MAX_TCP_HEADER);
4962		int demanded = max_t(unsigned int, tp->snd_cwnd,
4963				     tp->reordering + 1);
4964		sndmem *= 2 * demanded;
4965		if (sndmem > sk->sk_sndbuf)
4966			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4967		tp->snd_cwnd_stamp = tcp_time_stamp;
4968	}
4969
4970	sk->sk_write_space(sk);
4971}
4972
4973static void tcp_check_space(struct sock *sk)
4974{
4975	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4976		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4977		if (sk->sk_socket &&
4978		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4979			tcp_new_space(sk);
4980	}
4981}
4982
4983static inline void tcp_data_snd_check(struct sock *sk)
4984{
4985	tcp_push_pending_frames(sk);
4986	tcp_check_space(sk);
4987}
4988
4989/*
4990 * Check if sending an ack is needed.
4991 */
4992static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4993{
4994	struct tcp_sock *tp = tcp_sk(sk);
4995
4996	    /* More than one full frame received... */
4997	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4998	     /* ... and right edge of window advances far enough.
4999	      * (tcp_recvmsg() will send ACK otherwise). Or...
5000	      */
5001	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5002	    /* We ACK each frame or... */
5003	    tcp_in_quickack_mode(sk) ||
5004	    /* We have out of order data. */
5005	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5006		/* Then ack it now */
5007		tcp_send_ack(sk);
5008	} else {
5009		/* Else, send delayed ack. */
5010		tcp_send_delayed_ack(sk);
5011	}
5012}
5013
5014static inline void tcp_ack_snd_check(struct sock *sk)
5015{
5016	if (!inet_csk_ack_scheduled(sk)) {
5017		/* We sent a data segment already. */
5018		return;
5019	}
5020	__tcp_ack_snd_check(sk, 1);
5021}
5022
5023/*
5024 *	This routine is only called when we have urgent data
5025 *	signaled. Its the 'slow' part of tcp_urg. It could be
5026 *	moved inline now as tcp_urg is only called from one
5027 *	place. We handle URGent data wrong. We have to - as
5028 *	BSD still doesn't use the correction from RFC961.
5029 *	For 1003.1g we should support a new option TCP_STDURG to permit
5030 *	either form (or just set the sysctl tcp_stdurg).
5031 */
5032
5033static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5034{
5035	struct tcp_sock *tp = tcp_sk(sk);
5036	u32 ptr = ntohs(th->urg_ptr);
5037
5038	if (ptr && !sysctl_tcp_stdurg)
5039		ptr--;
5040	ptr += ntohl(th->seq);
5041
5042	/* Ignore urgent data that we've already seen and read. */
5043	if (after(tp->copied_seq, ptr))
5044		return;
5045
5046	/* Do not replay urg ptr.
5047	 *
5048	 * NOTE: interesting situation not covered by specs.
5049	 * Misbehaving sender may send urg ptr, pointing to segment,
5050	 * which we already have in ofo queue. We are not able to fetch
5051	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5052	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5053	 * situations. But it is worth to think about possibility of some
5054	 * DoSes using some hypothetical application level deadlock.
5055	 */
5056	if (before(ptr, tp->rcv_nxt))
5057		return;
5058
5059	/* Do we already have a newer (or duplicate) urgent pointer? */
5060	if (tp->urg_data && !after(ptr, tp->urg_seq))
5061		return;
5062
5063	/* Tell the world about our new urgent pointer. */
5064	sk_send_sigurg(sk);
5065
5066	/* We may be adding urgent data when the last byte read was
5067	 * urgent. To do this requires some care. We cannot just ignore
5068	 * tp->copied_seq since we would read the last urgent byte again
5069	 * as data, nor can we alter copied_seq until this data arrives
5070	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5071	 *
5072	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5073	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5074	 * and expect that both A and B disappear from stream. This is _wrong_.
5075	 * Though this happens in BSD with high probability, this is occasional.
5076	 * Any application relying on this is buggy. Note also, that fix "works"
5077	 * only in this artificial test. Insert some normal data between A and B and we will
5078	 * decline of BSD again. Verdict: it is better to remove to trap
5079	 * buggy users.
5080	 */
5081	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5082	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5083		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5084		tp->copied_seq++;
5085		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5086			__skb_unlink(skb, &sk->sk_receive_queue);
5087			__kfree_skb(skb);
5088		}
5089	}
5090
5091	tp->urg_data = TCP_URG_NOTYET;
5092	tp->urg_seq = ptr;
5093
5094	/* Disable header prediction. */
5095	tp->pred_flags = 0;
5096}
5097
5098/* This is the 'fast' part of urgent handling. */
5099static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5100{
5101	struct tcp_sock *tp = tcp_sk(sk);
5102
5103	/* Check if we get a new urgent pointer - normally not. */
5104	if (th->urg)
5105		tcp_check_urg(sk, th);
5106
5107	/* Do we wait for any urgent data? - normally not... */
5108	if (tp->urg_data == TCP_URG_NOTYET) {
5109		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5110			  th->syn;
5111
5112		/* Is the urgent pointer pointing into this packet? */
5113		if (ptr < skb->len) {
5114			u8 tmp;
5115			if (skb_copy_bits(skb, ptr, &tmp, 1))
5116				BUG();
5117			tp->urg_data = TCP_URG_VALID | tmp;
5118			if (!sock_flag(sk, SOCK_DEAD))
5119				sk->sk_data_ready(sk, 0);
5120		}
5121	}
5122}
5123
5124static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5125{
5126	struct tcp_sock *tp = tcp_sk(sk);
5127	int chunk = skb->len - hlen;
5128	int err;
5129
5130	local_bh_enable();
5131	if (skb_csum_unnecessary(skb))
5132		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5133	else
5134		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5135						       tp->ucopy.iov);
5136
5137	if (!err) {
5138		tp->ucopy.len -= chunk;
5139		tp->copied_seq += chunk;
5140		tcp_rcv_space_adjust(sk);
5141	}
5142
5143	local_bh_disable();
5144	return err;
5145}
5146
5147static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5148					    struct sk_buff *skb)
5149{
5150	__sum16 result;
5151
5152	if (sock_owned_by_user(sk)) {
5153		local_bh_enable();
5154		result = __tcp_checksum_complete(skb);
5155		local_bh_disable();
5156	} else {
5157		result = __tcp_checksum_complete(skb);
5158	}
5159	return result;
5160}
5161
5162static inline int tcp_checksum_complete_user(struct sock *sk,
5163					     struct sk_buff *skb)
5164{
5165	return !skb_csum_unnecessary(skb) &&
5166	       __tcp_checksum_complete_user(sk, skb);
5167}
5168
5169#ifdef CONFIG_NET_DMA
5170static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5171				  int hlen)
5172{
5173	struct tcp_sock *tp = tcp_sk(sk);
5174	int chunk = skb->len - hlen;
5175	int dma_cookie;
5176	int copied_early = 0;
5177
5178	if (tp->ucopy.wakeup)
5179		return 0;
5180
5181	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5182		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5183
5184	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5185
5186		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5187							 skb, hlen,
5188							 tp->ucopy.iov, chunk,
5189							 tp->ucopy.pinned_list);
5190
5191		if (dma_cookie < 0)
5192			goto out;
5193
5194		tp->ucopy.dma_cookie = dma_cookie;
5195		copied_early = 1;
5196
5197		tp->ucopy.len -= chunk;
5198		tp->copied_seq += chunk;
5199		tcp_rcv_space_adjust(sk);
5200
5201		if ((tp->ucopy.len == 0) ||
5202		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5203		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5204			tp->ucopy.wakeup = 1;
5205			sk->sk_data_ready(sk, 0);
5206		}
5207	} else if (chunk > 0) {
5208		tp->ucopy.wakeup = 1;
5209		sk->sk_data_ready(sk, 0);
5210	}
5211out:
5212	return copied_early;
5213}
5214#endif /* CONFIG_NET_DMA */
5215
5216/* Does PAWS and seqno based validation of an incoming segment, flags will
5217 * play significant role here.
5218 */
5219static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5220			      const struct tcphdr *th, int syn_inerr)
5221{
5222	const u8 *hash_location;
5223	struct tcp_sock *tp = tcp_sk(sk);
5224
5225	/* RFC1323: H1. Apply PAWS check first. */
5226	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5227	    tp->rx_opt.saw_tstamp &&
5228	    tcp_paws_discard(sk, skb)) {
5229		if (!th->rst) {
5230			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5231			tcp_send_dupack(sk, skb);
5232			goto discard;
5233		}
5234		/* Reset is accepted even if it did not pass PAWS. */
5235	}
5236
5237	/* Step 1: check sequence number */
5238	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5239		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5240		 * (RST) segments are validated by checking their SEQ-fields."
5241		 * And page 69: "If an incoming segment is not acceptable,
5242		 * an acknowledgment should be sent in reply (unless the RST
5243		 * bit is set, if so drop the segment and return)".
5244		 */
5245		if (!th->rst)
5246			tcp_send_dupack(sk, skb);
5247		goto discard;
5248	}
5249
5250	/* Step 2: check RST bit */
5251	if (th->rst) {
5252		tcp_reset(sk);
5253		goto discard;
5254	}
5255
5256	/* ts_recent update must be made after we are sure that the packet
5257	 * is in window.
5258	 */
5259	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5260
5261	/* step 3: check security and precedence [ignored] */
5262
5263	/* step 4: Check for a SYN in window. */
5264	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5265		if (syn_inerr)
5266			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5267		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5268		tcp_reset(sk);
5269		return -1;
5270	}
5271
5272	return 1;
5273
5274discard:
5275	__kfree_skb(skb);
5276	return 0;
5277}
5278
5279/*
5280 *	TCP receive function for the ESTABLISHED state.
5281 *
5282 *	It is split into a fast path and a slow path. The fast path is
5283 * 	disabled when:
5284 *	- A zero window was announced from us - zero window probing
5285 *        is only handled properly in the slow path.
5286 *	- Out of order segments arrived.
5287 *	- Urgent data is expected.
5288 *	- There is no buffer space left
5289 *	- Unexpected TCP flags/window values/header lengths are received
5290 *	  (detected by checking the TCP header against pred_flags)
5291 *	- Data is sent in both directions. Fast path only supports pure senders
5292 *	  or pure receivers (this means either the sequence number or the ack
5293 *	  value must stay constant)
5294 *	- Unexpected TCP option.
5295 *
5296 *	When these conditions are not satisfied it drops into a standard
5297 *	receive procedure patterned after RFC793 to handle all cases.
5298 *	The first three cases are guaranteed by proper pred_flags setting,
5299 *	the rest is checked inline. Fast processing is turned on in
5300 *	tcp_data_queue when everything is OK.
5301 */
5302int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5303			const struct tcphdr *th, unsigned int len)
5304{
5305	struct tcp_sock *tp = tcp_sk(sk);
5306	int res;
5307
5308	/*
5309	 *	Header prediction.
5310	 *	The code loosely follows the one in the famous
5311	 *	"30 instruction TCP receive" Van Jacobson mail.
5312	 *
5313	 *	Van's trick is to deposit buffers into socket queue
5314	 *	on a device interrupt, to call tcp_recv function
5315	 *	on the receive process context and checksum and copy
5316	 *	the buffer to user space. smart...
5317	 *
5318	 *	Our current scheme is not silly either but we take the
5319	 *	extra cost of the net_bh soft interrupt processing...
5320	 *	We do checksum and copy also but from device to kernel.
5321	 */
5322
5323	tp->rx_opt.saw_tstamp = 0;
5324
5325	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5326	 *	if header_prediction is to be made
5327	 *	'S' will always be tp->tcp_header_len >> 2
5328	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5329	 *  turn it off	(when there are holes in the receive
5330	 *	 space for instance)
5331	 *	PSH flag is ignored.
5332	 */
5333
5334	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5335	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5336	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5337		int tcp_header_len = tp->tcp_header_len;
5338
5339		/* Timestamp header prediction: tcp_header_len
5340		 * is automatically equal to th->doff*4 due to pred_flags
5341		 * match.
5342		 */
5343
5344		/* Check timestamp */
5345		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5346			/* No? Slow path! */
5347			if (!tcp_parse_aligned_timestamp(tp, th))
5348				goto slow_path;
5349
5350			/* If PAWS failed, check it more carefully in slow path */
5351			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5352				goto slow_path;
5353
5354			/* DO NOT update ts_recent here, if checksum fails
5355			 * and timestamp was corrupted part, it will result
5356			 * in a hung connection since we will drop all
5357			 * future packets due to the PAWS test.
5358			 */
5359		}
5360
5361		if (len <= tcp_header_len) {
5362			/* Bulk data transfer: sender */
5363			if (len == tcp_header_len) {
5364				/* Predicted packet is in window by definition.
5365				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5366				 * Hence, check seq<=rcv_wup reduces to:
5367				 */
5368				if (tcp_header_len ==
5369				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5370				    tp->rcv_nxt == tp->rcv_wup)
5371					tcp_store_ts_recent(tp);
5372
5373				/* We know that such packets are checksummed
5374				 * on entry.
5375				 */
5376				tcp_ack(sk, skb, 0);
5377				__kfree_skb(skb);
5378				tcp_data_snd_check(sk);
5379				return 0;
5380			} else { /* Header too small */
5381				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5382				goto discard;
5383			}
5384		} else {
5385			int eaten = 0;
5386			int copied_early = 0;
5387
5388			if (tp->copied_seq == tp->rcv_nxt &&
5389			    len - tcp_header_len <= tp->ucopy.len) {
5390#ifdef CONFIG_NET_DMA
5391				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5392					copied_early = 1;
5393					eaten = 1;
5394				}
5395#endif
5396				if (tp->ucopy.task == current &&
5397				    sock_owned_by_user(sk) && !copied_early) {
5398					__set_current_state(TASK_RUNNING);
5399
5400					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5401						eaten = 1;
5402				}
5403				if (eaten) {
5404					/* Predicted packet is in window by definition.
5405					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5406					 * Hence, check seq<=rcv_wup reduces to:
5407					 */
5408					if (tcp_header_len ==
5409					    (sizeof(struct tcphdr) +
5410					     TCPOLEN_TSTAMP_ALIGNED) &&
5411					    tp->rcv_nxt == tp->rcv_wup)
5412						tcp_store_ts_recent(tp);
5413
5414					tcp_rcv_rtt_measure_ts(sk, skb);
5415
5416					__skb_pull(skb, tcp_header_len);
5417					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5418					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5419				}
5420				if (copied_early)
5421					tcp_cleanup_rbuf(sk, skb->len);
5422			}
5423			if (!eaten) {
5424				if (tcp_checksum_complete_user(sk, skb))
5425					goto csum_error;
5426
5427				/* Predicted packet is in window by definition.
5428				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5429				 * Hence, check seq<=rcv_wup reduces to:
5430				 */
5431				if (tcp_header_len ==
5432				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5433				    tp->rcv_nxt == tp->rcv_wup)
5434					tcp_store_ts_recent(tp);
5435
5436				tcp_rcv_rtt_measure_ts(sk, skb);
5437
5438				if ((int)skb->truesize > sk->sk_forward_alloc)
5439					goto step5;
5440
5441				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5442
5443				/* Bulk data transfer: receiver */
5444				__skb_pull(skb, tcp_header_len);
5445				__skb_queue_tail(&sk->sk_receive_queue, skb);
5446				skb_set_owner_r(skb, sk);
5447				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5448			}
5449
5450			tcp_event_data_recv(sk, skb);
5451
5452			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5453				/* Well, only one small jumplet in fast path... */
5454				tcp_ack(sk, skb, FLAG_DATA);
5455				tcp_data_snd_check(sk);
5456				if (!inet_csk_ack_scheduled(sk))
5457					goto no_ack;
5458			}
5459
5460			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5461				__tcp_ack_snd_check(sk, 0);
5462no_ack:
5463#ifdef CONFIG_NET_DMA
5464			if (copied_early)
5465				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5466			else
5467#endif
5468			if (eaten)
5469				__kfree_skb(skb);
5470			else
5471				sk->sk_data_ready(sk, 0);
5472			return 0;
5473		}
5474	}
5475
5476slow_path:
5477	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5478		goto csum_error;
5479
5480	/*
5481	 *	Standard slow path.
5482	 */
5483
5484	res = tcp_validate_incoming(sk, skb, th, 1);
5485	if (res <= 0)
5486		return -res;
5487
5488step5:
5489	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5490		goto discard;
5491
5492	tcp_rcv_rtt_measure_ts(sk, skb);
5493
5494	/* Process urgent data. */
5495	tcp_urg(sk, skb, th);
5496
5497	/* step 7: process the segment text */
5498	tcp_data_queue(sk, skb);
5499
5500	tcp_data_snd_check(sk);
5501	tcp_ack_snd_check(sk);
5502	return 0;
5503
5504csum_error:
5505	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5506
5507discard:
5508	__kfree_skb(skb);
5509	return 0;
5510}
5511EXPORT_SYMBOL(tcp_rcv_established);
5512
5513static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5514					 const struct tcphdr *th, unsigned int len)
5515{
5516	const u8 *hash_location;
5517	struct inet_connection_sock *icsk = inet_csk(sk);
5518	struct tcp_sock *tp = tcp_sk(sk);
5519	struct tcp_cookie_values *cvp = tp->cookie_values;
5520	int saved_clamp = tp->rx_opt.mss_clamp;
5521
5522	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5523
5524	if (th->ack) {
5525		/* rfc793:
5526		 * "If the state is SYN-SENT then
5527		 *    first check the ACK bit
5528		 *      If the ACK bit is set
5529		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5530		 *        a reset (unless the RST bit is set, if so drop
5531		 *        the segment and return)"
5532		 *
5533		 *  We do not send data with SYN, so that RFC-correct
5534		 *  test reduces to:
5535		 */
5536		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5537			goto reset_and_undo;
5538
5539		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5540		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5541			     tcp_time_stamp)) {
5542			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5543			goto reset_and_undo;
5544		}
5545
5546		/* Now ACK is acceptable.
5547		 *
5548		 * "If the RST bit is set
5549		 *    If the ACK was acceptable then signal the user "error:
5550		 *    connection reset", drop the segment, enter CLOSED state,
5551		 *    delete TCB, and return."
5552		 */
5553
5554		if (th->rst) {
5555			tcp_reset(sk);
5556			goto discard;
5557		}
5558
5559		/* rfc793:
5560		 *   "fifth, if neither of the SYN or RST bits is set then
5561		 *    drop the segment and return."
5562		 *
5563		 *    See note below!
5564		 *                                        --ANK(990513)
5565		 */
5566		if (!th->syn)
5567			goto discard_and_undo;
5568
5569		/* rfc793:
5570		 *   "If the SYN bit is on ...
5571		 *    are acceptable then ...
5572		 *    (our SYN has been ACKed), change the connection
5573		 *    state to ESTABLISHED..."
5574		 */
5575
5576		TCP_ECN_rcv_synack(tp, th);
5577
5578		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5579		tcp_ack(sk, skb, FLAG_SLOWPATH);
5580
5581		/* Ok.. it's good. Set up sequence numbers and
5582		 * move to established.
5583		 */
5584		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5585		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5586
5587		/* RFC1323: The window in SYN & SYN/ACK segments is
5588		 * never scaled.
5589		 */
5590		tp->snd_wnd = ntohs(th->window);
5591		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5592
5593		if (!tp->rx_opt.wscale_ok) {
5594			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5595			tp->window_clamp = min(tp->window_clamp, 65535U);
5596		}
5597
5598		if (tp->rx_opt.saw_tstamp) {
5599			tp->rx_opt.tstamp_ok	   = 1;
5600			tp->tcp_header_len =
5601				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5602			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5603			tcp_store_ts_recent(tp);
5604		} else {
5605			tp->tcp_header_len = sizeof(struct tcphdr);
5606		}
5607
5608		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5609			tcp_enable_fack(tp);
5610
5611		tcp_mtup_init(sk);
5612		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5613		tcp_initialize_rcv_mss(sk);
5614
5615		/* Remember, tcp_poll() does not lock socket!
5616		 * Change state from SYN-SENT only after copied_seq
5617		 * is initialized. */
5618		tp->copied_seq = tp->rcv_nxt;
5619
5620		if (cvp != NULL &&
5621		    cvp->cookie_pair_size > 0 &&
5622		    tp->rx_opt.cookie_plus > 0) {
5623			int cookie_size = tp->rx_opt.cookie_plus
5624					- TCPOLEN_COOKIE_BASE;
5625			int cookie_pair_size = cookie_size
5626					     + cvp->cookie_desired;
5627
5628			/* A cookie extension option was sent and returned.
5629			 * Note that each incoming SYNACK replaces the
5630			 * Responder cookie.  The initial exchange is most
5631			 * fragile, as protection against spoofing relies
5632			 * entirely upon the sequence and timestamp (above).
5633			 * This replacement strategy allows the correct pair to
5634			 * pass through, while any others will be filtered via
5635			 * Responder verification later.
5636			 */
5637			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5638				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5639				       hash_location, cookie_size);
5640				cvp->cookie_pair_size = cookie_pair_size;
5641			}
5642		}
5643
5644		smp_mb();
5645		tcp_set_state(sk, TCP_ESTABLISHED);
5646
5647		security_inet_conn_established(sk, skb);
5648
5649		/* Make sure socket is routed, for correct metrics.  */
5650		icsk->icsk_af_ops->rebuild_header(sk);
5651
5652		tcp_init_metrics(sk);
5653
5654		tcp_init_congestion_control(sk);
5655
5656		/* Prevent spurious tcp_cwnd_restart() on first data
5657		 * packet.
5658		 */
5659		tp->lsndtime = tcp_time_stamp;
5660
5661		tcp_init_buffer_space(sk);
5662
5663		if (sock_flag(sk, SOCK_KEEPOPEN))
5664			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5665
5666		if (!tp->rx_opt.snd_wscale)
5667			__tcp_fast_path_on(tp, tp->snd_wnd);
5668		else
5669			tp->pred_flags = 0;
5670
5671		if (!sock_flag(sk, SOCK_DEAD)) {
5672			sk->sk_state_change(sk);
5673			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5674		}
5675
5676		if (sk->sk_write_pending ||
5677		    icsk->icsk_accept_queue.rskq_defer_accept ||
5678		    icsk->icsk_ack.pingpong) {
5679			/* Save one ACK. Data will be ready after
5680			 * several ticks, if write_pending is set.
5681			 *
5682			 * It may be deleted, but with this feature tcpdumps
5683			 * look so _wonderfully_ clever, that I was not able
5684			 * to stand against the temptation 8)     --ANK
5685			 */
5686			inet_csk_schedule_ack(sk);
5687			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5688			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5689			tcp_incr_quickack(sk);
5690			tcp_enter_quickack_mode(sk);
5691			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5692						  TCP_DELACK_MAX, TCP_RTO_MAX);
5693
5694discard:
5695			__kfree_skb(skb);
5696			return 0;
5697		} else {
5698			tcp_send_ack(sk);
5699		}
5700		return -1;
5701	}
5702
5703	/* No ACK in the segment */
5704
5705	if (th->rst) {
5706		/* rfc793:
5707		 * "If the RST bit is set
5708		 *
5709		 *      Otherwise (no ACK) drop the segment and return."
5710		 */
5711
5712		goto discard_and_undo;
5713	}
5714
5715	/* PAWS check. */
5716	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5717	    tcp_paws_reject(&tp->rx_opt, 0))
5718		goto discard_and_undo;
5719
5720	if (th->syn) {
5721		/* We see SYN without ACK. It is attempt of
5722		 * simultaneous connect with crossed SYNs.
5723		 * Particularly, it can be connect to self.
5724		 */
5725		tcp_set_state(sk, TCP_SYN_RECV);
5726
5727		if (tp->rx_opt.saw_tstamp) {
5728			tp->rx_opt.tstamp_ok = 1;
5729			tcp_store_ts_recent(tp);
5730			tp->tcp_header_len =
5731				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5732		} else {
5733			tp->tcp_header_len = sizeof(struct tcphdr);
5734		}
5735
5736		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5737		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5738
5739		/* RFC1323: The window in SYN & SYN/ACK segments is
5740		 * never scaled.
5741		 */
5742		tp->snd_wnd    = ntohs(th->window);
5743		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5744		tp->max_window = tp->snd_wnd;
5745
5746		TCP_ECN_rcv_syn(tp, th);
5747
5748		tcp_mtup_init(sk);
5749		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5750		tcp_initialize_rcv_mss(sk);
5751
5752		tcp_send_synack(sk);
5753#if 0
5754		/* Note, we could accept data and URG from this segment.
5755		 * There are no obstacles to make this.
5756		 *
5757		 * However, if we ignore data in ACKless segments sometimes,
5758		 * we have no reasons to accept it sometimes.
5759		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5760		 * is not flawless. So, discard packet for sanity.
5761		 * Uncomment this return to process the data.
5762		 */
5763		return -1;
5764#else
5765		goto discard;
5766#endif
5767	}
5768	/* "fifth, if neither of the SYN or RST bits is set then
5769	 * drop the segment and return."
5770	 */
5771
5772discard_and_undo:
5773	tcp_clear_options(&tp->rx_opt);
5774	tp->rx_opt.mss_clamp = saved_clamp;
5775	goto discard;
5776
5777reset_and_undo:
5778	tcp_clear_options(&tp->rx_opt);
5779	tp->rx_opt.mss_clamp = saved_clamp;
5780	return 1;
5781}
5782
5783/*
5784 *	This function implements the receiving procedure of RFC 793 for
5785 *	all states except ESTABLISHED and TIME_WAIT.
5786 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5787 *	address independent.
5788 */
5789
5790int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5791			  const struct tcphdr *th, unsigned int len)
5792{
5793	struct tcp_sock *tp = tcp_sk(sk);
5794	struct inet_connection_sock *icsk = inet_csk(sk);
5795	int queued = 0;
5796	int res;
5797
5798	tp->rx_opt.saw_tstamp = 0;
5799
5800	switch (sk->sk_state) {
5801	case TCP_CLOSE:
5802		goto discard;
5803
5804	case TCP_LISTEN:
5805		if (th->ack)
5806			return 1;
5807
5808		if (th->rst)
5809			goto discard;
5810
5811		if (th->syn) {
5812			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5813				return 1;
5814
5815			/* Now we have several options: In theory there is
5816			 * nothing else in the frame. KA9Q has an option to
5817			 * send data with the syn, BSD accepts data with the
5818			 * syn up to the [to be] advertised window and
5819			 * Solaris 2.1 gives you a protocol error. For now
5820			 * we just ignore it, that fits the spec precisely
5821			 * and avoids incompatibilities. It would be nice in
5822			 * future to drop through and process the data.
5823			 *
5824			 * Now that TTCP is starting to be used we ought to
5825			 * queue this data.
5826			 * But, this leaves one open to an easy denial of
5827			 * service attack, and SYN cookies can't defend
5828			 * against this problem. So, we drop the data
5829			 * in the interest of security over speed unless
5830			 * it's still in use.
5831			 */
5832			kfree_skb(skb);
5833			return 0;
5834		}
5835		goto discard;
5836
5837	case TCP_SYN_SENT:
5838		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5839		if (queued >= 0)
5840			return queued;
5841
5842		/* Do step6 onward by hand. */
5843		tcp_urg(sk, skb, th);
5844		__kfree_skb(skb);
5845		tcp_data_snd_check(sk);
5846		return 0;
5847	}
5848
5849	res = tcp_validate_incoming(sk, skb, th, 0);
5850	if (res <= 0)
5851		return -res;
5852
5853	/* step 5: check the ACK field */
5854	if (th->ack) {
5855		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5856
5857		switch (sk->sk_state) {
5858		case TCP_SYN_RECV:
5859			if (acceptable) {
5860				tp->copied_seq = tp->rcv_nxt;
5861				smp_mb();
5862				tcp_set_state(sk, TCP_ESTABLISHED);
5863				sk->sk_state_change(sk);
5864
5865				/* Note, that this wakeup is only for marginal
5866				 * crossed SYN case. Passively open sockets
5867				 * are not waked up, because sk->sk_sleep ==
5868				 * NULL and sk->sk_socket == NULL.
5869				 */
5870				if (sk->sk_socket)
5871					sk_wake_async(sk,
5872						      SOCK_WAKE_IO, POLL_OUT);
5873
5874				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5875				tp->snd_wnd = ntohs(th->window) <<
5876					      tp->rx_opt.snd_wscale;
5877				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5878
5879				if (tp->rx_opt.tstamp_ok)
5880					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5881
5882				/* Make sure socket is routed, for
5883				 * correct metrics.
5884				 */
5885				icsk->icsk_af_ops->rebuild_header(sk);
5886
5887				tcp_init_metrics(sk);
5888
5889				tcp_init_congestion_control(sk);
5890
5891				/* Prevent spurious tcp_cwnd_restart() on
5892				 * first data packet.
5893				 */
5894				tp->lsndtime = tcp_time_stamp;
5895
5896				tcp_mtup_init(sk);
5897				tcp_initialize_rcv_mss(sk);
5898				tcp_init_buffer_space(sk);
5899				tcp_fast_path_on(tp);
5900			} else {
5901				return 1;
5902			}
5903			break;
5904
5905		case TCP_FIN_WAIT1:
5906			if (tp->snd_una == tp->write_seq) {
5907				tcp_set_state(sk, TCP_FIN_WAIT2);
5908				sk->sk_shutdown |= SEND_SHUTDOWN;
5909				dst_confirm(__sk_dst_get(sk));
5910
5911				if (!sock_flag(sk, SOCK_DEAD))
5912					/* Wake up lingering close() */
5913					sk->sk_state_change(sk);
5914				else {
5915					int tmo;
5916
5917					if (tp->linger2 < 0 ||
5918					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5919					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5920						tcp_done(sk);
5921						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5922						return 1;
5923					}
5924
5925					tmo = tcp_fin_time(sk);
5926					if (tmo > TCP_TIMEWAIT_LEN) {
5927						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5928					} else if (th->fin || sock_owned_by_user(sk)) {
5929						/* Bad case. We could lose such FIN otherwise.
5930						 * It is not a big problem, but it looks confusing
5931						 * and not so rare event. We still can lose it now,
5932						 * if it spins in bh_lock_sock(), but it is really
5933						 * marginal case.
5934						 */
5935						inet_csk_reset_keepalive_timer(sk, tmo);
5936					} else {
5937						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5938						goto discard;
5939					}
5940				}
5941			}
5942			break;
5943
5944		case TCP_CLOSING:
5945			if (tp->snd_una == tp->write_seq) {
5946				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5947				goto discard;
5948			}
5949			break;
5950
5951		case TCP_LAST_ACK:
5952			if (tp->snd_una == tp->write_seq) {
5953				tcp_update_metrics(sk);
5954				tcp_done(sk);
5955				goto discard;
5956			}
5957			break;
5958		}
5959	} else
5960		goto discard;
5961
5962	/* step 6: check the URG bit */
5963	tcp_urg(sk, skb, th);
5964
5965	/* step 7: process the segment text */
5966	switch (sk->sk_state) {
5967	case TCP_CLOSE_WAIT:
5968	case TCP_CLOSING:
5969	case TCP_LAST_ACK:
5970		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5971			break;
5972	case TCP_FIN_WAIT1:
5973	case TCP_FIN_WAIT2:
5974		/* RFC 793 says to queue data in these states,
5975		 * RFC 1122 says we MUST send a reset.
5976		 * BSD 4.4 also does reset.
5977		 */
5978		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5979			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5980			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5981				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5982				tcp_reset(sk);
5983				return 1;
5984			}
5985		}
5986		/* Fall through */
5987	case TCP_ESTABLISHED:
5988		tcp_data_queue(sk, skb);
5989		queued = 1;
5990		break;
5991	}
5992
5993	/* tcp_data could move socket to TIME-WAIT */
5994	if (sk->sk_state != TCP_CLOSE) {
5995		tcp_data_snd_check(sk);
5996		tcp_ack_snd_check(sk);
5997	}
5998
5999	if (!queued) {
6000discard:
6001		__kfree_skb(skb);
6002	}
6003	return 0;
6004}
6005EXPORT_SYMBOL(tcp_rcv_state_process);
6006