rx.c revision d3c1597b8d1ba0447ce858c7c385eabcf69f2c8f
1/* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12#include <linux/jiffies.h> 13#include <linux/slab.h> 14#include <linux/kernel.h> 15#include <linux/skbuff.h> 16#include <linux/netdevice.h> 17#include <linux/etherdevice.h> 18#include <linux/rcupdate.h> 19#include <linux/export.h> 20#include <net/mac80211.h> 21#include <net/ieee80211_radiotap.h> 22 23#include "ieee80211_i.h" 24#include "driver-ops.h" 25#include "led.h" 26#include "mesh.h" 27#include "wep.h" 28#include "wpa.h" 29#include "tkip.h" 30#include "wme.h" 31 32/* 33 * monitor mode reception 34 * 35 * This function cleans up the SKB, i.e. it removes all the stuff 36 * only useful for monitoring. 37 */ 38static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 39 struct sk_buff *skb) 40{ 41 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 42 if (likely(skb->len > FCS_LEN)) 43 __pskb_trim(skb, skb->len - FCS_LEN); 44 else { 45 /* driver bug */ 46 WARN_ON(1); 47 dev_kfree_skb(skb); 48 skb = NULL; 49 } 50 } 51 52 return skb; 53} 54 55static inline int should_drop_frame(struct sk_buff *skb, 56 int present_fcs_len) 57{ 58 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 59 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 60 61 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 62 return 1; 63 if (unlikely(skb->len < 16 + present_fcs_len)) 64 return 1; 65 if (ieee80211_is_ctl(hdr->frame_control) && 66 !ieee80211_is_pspoll(hdr->frame_control) && 67 !ieee80211_is_back_req(hdr->frame_control)) 68 return 1; 69 return 0; 70} 71 72static int 73ieee80211_rx_radiotap_len(struct ieee80211_local *local, 74 struct ieee80211_rx_status *status) 75{ 76 int len; 77 78 /* always present fields */ 79 len = sizeof(struct ieee80211_radiotap_header) + 9; 80 81 if (status->flag & RX_FLAG_MACTIME_MPDU) 82 len += 8; 83 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 84 len += 1; 85 86 if (len & 1) /* padding for RX_FLAGS if necessary */ 87 len++; 88 89 if (status->flag & RX_FLAG_HT) /* HT info */ 90 len += 3; 91 92 return len; 93} 94 95/* 96 * ieee80211_add_rx_radiotap_header - add radiotap header 97 * 98 * add a radiotap header containing all the fields which the hardware provided. 99 */ 100static void 101ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 102 struct sk_buff *skb, 103 struct ieee80211_rate *rate, 104 int rtap_len) 105{ 106 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 107 struct ieee80211_radiotap_header *rthdr; 108 unsigned char *pos; 109 u16 rx_flags = 0; 110 111 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 112 memset(rthdr, 0, rtap_len); 113 114 /* radiotap header, set always present flags */ 115 rthdr->it_present = 116 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 117 (1 << IEEE80211_RADIOTAP_CHANNEL) | 118 (1 << IEEE80211_RADIOTAP_ANTENNA) | 119 (1 << IEEE80211_RADIOTAP_RX_FLAGS)); 120 rthdr->it_len = cpu_to_le16(rtap_len); 121 122 pos = (unsigned char *)(rthdr+1); 123 124 /* the order of the following fields is important */ 125 126 /* IEEE80211_RADIOTAP_TSFT */ 127 if (status->flag & RX_FLAG_MACTIME_MPDU) { 128 put_unaligned_le64(status->mactime, pos); 129 rthdr->it_present |= 130 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 131 pos += 8; 132 } 133 134 /* IEEE80211_RADIOTAP_FLAGS */ 135 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 136 *pos |= IEEE80211_RADIOTAP_F_FCS; 137 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 138 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 139 if (status->flag & RX_FLAG_SHORTPRE) 140 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 141 pos++; 142 143 /* IEEE80211_RADIOTAP_RATE */ 144 if (status->flag & RX_FLAG_HT) { 145 /* 146 * MCS information is a separate field in radiotap, 147 * added below. The byte here is needed as padding 148 * for the channel though, so initialise it to 0. 149 */ 150 *pos = 0; 151 } else { 152 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 153 *pos = rate->bitrate / 5; 154 } 155 pos++; 156 157 /* IEEE80211_RADIOTAP_CHANNEL */ 158 put_unaligned_le16(status->freq, pos); 159 pos += 2; 160 if (status->band == IEEE80211_BAND_5GHZ) 161 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ, 162 pos); 163 else if (status->flag & RX_FLAG_HT) 164 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ, 165 pos); 166 else if (rate->flags & IEEE80211_RATE_ERP_G) 167 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ, 168 pos); 169 else 170 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ, 171 pos); 172 pos += 2; 173 174 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 175 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) { 176 *pos = status->signal; 177 rthdr->it_present |= 178 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 179 pos++; 180 } 181 182 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 183 184 /* IEEE80211_RADIOTAP_ANTENNA */ 185 *pos = status->antenna; 186 pos++; 187 188 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 189 190 /* IEEE80211_RADIOTAP_RX_FLAGS */ 191 /* ensure 2 byte alignment for the 2 byte field as required */ 192 if ((pos - (u8 *)rthdr) & 1) 193 pos++; 194 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 195 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 196 put_unaligned_le16(rx_flags, pos); 197 pos += 2; 198 199 if (status->flag & RX_FLAG_HT) { 200 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 201 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS | 202 IEEE80211_RADIOTAP_MCS_HAVE_GI | 203 IEEE80211_RADIOTAP_MCS_HAVE_BW; 204 *pos = 0; 205 if (status->flag & RX_FLAG_SHORT_GI) 206 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 207 if (status->flag & RX_FLAG_40MHZ) 208 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 209 pos++; 210 *pos++ = status->rate_idx; 211 } 212} 213 214/* 215 * This function copies a received frame to all monitor interfaces and 216 * returns a cleaned-up SKB that no longer includes the FCS nor the 217 * radiotap header the driver might have added. 218 */ 219static struct sk_buff * 220ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 221 struct ieee80211_rate *rate) 222{ 223 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 224 struct ieee80211_sub_if_data *sdata; 225 int needed_headroom = 0; 226 struct sk_buff *skb, *skb2; 227 struct net_device *prev_dev = NULL; 228 int present_fcs_len = 0; 229 230 /* 231 * First, we may need to make a copy of the skb because 232 * (1) we need to modify it for radiotap (if not present), and 233 * (2) the other RX handlers will modify the skb we got. 234 * 235 * We don't need to, of course, if we aren't going to return 236 * the SKB because it has a bad FCS/PLCP checksum. 237 */ 238 239 /* room for the radiotap header based on driver features */ 240 needed_headroom = ieee80211_rx_radiotap_len(local, status); 241 242 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 243 present_fcs_len = FCS_LEN; 244 245 /* make sure hdr->frame_control is on the linear part */ 246 if (!pskb_may_pull(origskb, 2)) { 247 dev_kfree_skb(origskb); 248 return NULL; 249 } 250 251 if (!local->monitors) { 252 if (should_drop_frame(origskb, present_fcs_len)) { 253 dev_kfree_skb(origskb); 254 return NULL; 255 } 256 257 return remove_monitor_info(local, origskb); 258 } 259 260 if (should_drop_frame(origskb, present_fcs_len)) { 261 /* only need to expand headroom if necessary */ 262 skb = origskb; 263 origskb = NULL; 264 265 /* 266 * This shouldn't trigger often because most devices have an 267 * RX header they pull before we get here, and that should 268 * be big enough for our radiotap information. We should 269 * probably export the length to drivers so that we can have 270 * them allocate enough headroom to start with. 271 */ 272 if (skb_headroom(skb) < needed_headroom && 273 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 274 dev_kfree_skb(skb); 275 return NULL; 276 } 277 } else { 278 /* 279 * Need to make a copy and possibly remove radiotap header 280 * and FCS from the original. 281 */ 282 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 283 284 origskb = remove_monitor_info(local, origskb); 285 286 if (!skb) 287 return origskb; 288 } 289 290 /* prepend radiotap information */ 291 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom); 292 293 skb_reset_mac_header(skb); 294 skb->ip_summed = CHECKSUM_UNNECESSARY; 295 skb->pkt_type = PACKET_OTHERHOST; 296 skb->protocol = htons(ETH_P_802_2); 297 298 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 299 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 300 continue; 301 302 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 303 continue; 304 305 if (!ieee80211_sdata_running(sdata)) 306 continue; 307 308 if (prev_dev) { 309 skb2 = skb_clone(skb, GFP_ATOMIC); 310 if (skb2) { 311 skb2->dev = prev_dev; 312 netif_receive_skb(skb2); 313 } 314 } 315 316 prev_dev = sdata->dev; 317 sdata->dev->stats.rx_packets++; 318 sdata->dev->stats.rx_bytes += skb->len; 319 } 320 321 if (prev_dev) { 322 skb->dev = prev_dev; 323 netif_receive_skb(skb); 324 } else 325 dev_kfree_skb(skb); 326 327 return origskb; 328} 329 330 331static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 332{ 333 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 334 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 335 int tid, seqno_idx, security_idx; 336 337 /* does the frame have a qos control field? */ 338 if (ieee80211_is_data_qos(hdr->frame_control)) { 339 u8 *qc = ieee80211_get_qos_ctl(hdr); 340 /* frame has qos control */ 341 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 342 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 343 status->rx_flags |= IEEE80211_RX_AMSDU; 344 345 seqno_idx = tid; 346 security_idx = tid; 347 } else { 348 /* 349 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 350 * 351 * Sequence numbers for management frames, QoS data 352 * frames with a broadcast/multicast address in the 353 * Address 1 field, and all non-QoS data frames sent 354 * by QoS STAs are assigned using an additional single 355 * modulo-4096 counter, [...] 356 * 357 * We also use that counter for non-QoS STAs. 358 */ 359 seqno_idx = NUM_RX_DATA_QUEUES; 360 security_idx = 0; 361 if (ieee80211_is_mgmt(hdr->frame_control)) 362 security_idx = NUM_RX_DATA_QUEUES; 363 tid = 0; 364 } 365 366 rx->seqno_idx = seqno_idx; 367 rx->security_idx = security_idx; 368 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 369 * For now, set skb->priority to 0 for other cases. */ 370 rx->skb->priority = (tid > 7) ? 0 : tid; 371} 372 373/** 374 * DOC: Packet alignment 375 * 376 * Drivers always need to pass packets that are aligned to two-byte boundaries 377 * to the stack. 378 * 379 * Additionally, should, if possible, align the payload data in a way that 380 * guarantees that the contained IP header is aligned to a four-byte 381 * boundary. In the case of regular frames, this simply means aligning the 382 * payload to a four-byte boundary (because either the IP header is directly 383 * contained, or IV/RFC1042 headers that have a length divisible by four are 384 * in front of it). If the payload data is not properly aligned and the 385 * architecture doesn't support efficient unaligned operations, mac80211 386 * will align the data. 387 * 388 * With A-MSDU frames, however, the payload data address must yield two modulo 389 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 390 * push the IP header further back to a multiple of four again. Thankfully, the 391 * specs were sane enough this time around to require padding each A-MSDU 392 * subframe to a length that is a multiple of four. 393 * 394 * Padding like Atheros hardware adds which is between the 802.11 header and 395 * the payload is not supported, the driver is required to move the 802.11 396 * header to be directly in front of the payload in that case. 397 */ 398static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 399{ 400#ifdef CONFIG_MAC80211_VERBOSE_DEBUG 401 WARN_ONCE((unsigned long)rx->skb->data & 1, 402 "unaligned packet at 0x%p\n", rx->skb->data); 403#endif 404} 405 406 407/* rx handlers */ 408 409static ieee80211_rx_result debug_noinline 410ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx) 411{ 412 struct ieee80211_local *local = rx->local; 413 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 414 struct sk_buff *skb = rx->skb; 415 416 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) && 417 !local->sched_scanning)) 418 return RX_CONTINUE; 419 420 if (test_bit(SCAN_HW_SCANNING, &local->scanning) || 421 test_bit(SCAN_SW_SCANNING, &local->scanning) || 422 local->sched_scanning) 423 return ieee80211_scan_rx(rx->sdata, skb); 424 425 /* scanning finished during invoking of handlers */ 426 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan); 427 return RX_DROP_UNUSABLE; 428} 429 430 431static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 432{ 433 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 434 435 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1)) 436 return 0; 437 438 return ieee80211_is_robust_mgmt_frame(hdr); 439} 440 441 442static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 443{ 444 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 445 446 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1)) 447 return 0; 448 449 return ieee80211_is_robust_mgmt_frame(hdr); 450} 451 452 453/* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 454static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 455{ 456 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 457 struct ieee80211_mmie *mmie; 458 459 if (skb->len < 24 + sizeof(*mmie) || 460 !is_multicast_ether_addr(hdr->da)) 461 return -1; 462 463 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr)) 464 return -1; /* not a robust management frame */ 465 466 mmie = (struct ieee80211_mmie *) 467 (skb->data + skb->len - sizeof(*mmie)); 468 if (mmie->element_id != WLAN_EID_MMIE || 469 mmie->length != sizeof(*mmie) - 2) 470 return -1; 471 472 return le16_to_cpu(mmie->key_id); 473} 474 475 476static ieee80211_rx_result 477ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 478{ 479 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 480 char *dev_addr = rx->sdata->vif.addr; 481 482 if (ieee80211_is_data(hdr->frame_control)) { 483 if (is_multicast_ether_addr(hdr->addr1)) { 484 if (ieee80211_has_tods(hdr->frame_control) || 485 !ieee80211_has_fromds(hdr->frame_control)) 486 return RX_DROP_MONITOR; 487 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0) 488 return RX_DROP_MONITOR; 489 } else { 490 if (!ieee80211_has_a4(hdr->frame_control)) 491 return RX_DROP_MONITOR; 492 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0) 493 return RX_DROP_MONITOR; 494 } 495 } 496 497 /* If there is not an established peer link and this is not a peer link 498 * establisment frame, beacon or probe, drop the frame. 499 */ 500 501 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 502 struct ieee80211_mgmt *mgmt; 503 504 if (!ieee80211_is_mgmt(hdr->frame_control)) 505 return RX_DROP_MONITOR; 506 507 if (ieee80211_is_action(hdr->frame_control)) { 508 u8 category; 509 mgmt = (struct ieee80211_mgmt *)hdr; 510 category = mgmt->u.action.category; 511 if (category != WLAN_CATEGORY_MESH_ACTION && 512 category != WLAN_CATEGORY_SELF_PROTECTED) 513 return RX_DROP_MONITOR; 514 return RX_CONTINUE; 515 } 516 517 if (ieee80211_is_probe_req(hdr->frame_control) || 518 ieee80211_is_probe_resp(hdr->frame_control) || 519 ieee80211_is_beacon(hdr->frame_control) || 520 ieee80211_is_auth(hdr->frame_control)) 521 return RX_CONTINUE; 522 523 return RX_DROP_MONITOR; 524 525 } 526 527 return RX_CONTINUE; 528} 529 530#define SEQ_MODULO 0x1000 531#define SEQ_MASK 0xfff 532 533static inline int seq_less(u16 sq1, u16 sq2) 534{ 535 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1); 536} 537 538static inline u16 seq_inc(u16 sq) 539{ 540 return (sq + 1) & SEQ_MASK; 541} 542 543static inline u16 seq_sub(u16 sq1, u16 sq2) 544{ 545 return (sq1 - sq2) & SEQ_MASK; 546} 547 548 549static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw, 550 struct tid_ampdu_rx *tid_agg_rx, 551 int index) 552{ 553 struct ieee80211_local *local = hw_to_local(hw); 554 struct sk_buff *skb = tid_agg_rx->reorder_buf[index]; 555 struct ieee80211_rx_status *status; 556 557 lockdep_assert_held(&tid_agg_rx->reorder_lock); 558 559 if (!skb) 560 goto no_frame; 561 562 /* release the frame from the reorder ring buffer */ 563 tid_agg_rx->stored_mpdu_num--; 564 tid_agg_rx->reorder_buf[index] = NULL; 565 status = IEEE80211_SKB_RXCB(skb); 566 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 567 skb_queue_tail(&local->rx_skb_queue, skb); 568 569no_frame: 570 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 571} 572 573static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw, 574 struct tid_ampdu_rx *tid_agg_rx, 575 u16 head_seq_num) 576{ 577 int index; 578 579 lockdep_assert_held(&tid_agg_rx->reorder_lock); 580 581 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) { 582 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 583 tid_agg_rx->buf_size; 584 ieee80211_release_reorder_frame(hw, tid_agg_rx, index); 585 } 586} 587 588/* 589 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 590 * the skb was added to the buffer longer than this time ago, the earlier 591 * frames that have not yet been received are assumed to be lost and the skb 592 * can be released for processing. This may also release other skb's from the 593 * reorder buffer if there are no additional gaps between the frames. 594 * 595 * Callers must hold tid_agg_rx->reorder_lock. 596 */ 597#define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 598 599static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw, 600 struct tid_ampdu_rx *tid_agg_rx) 601{ 602 int index, j; 603 604 lockdep_assert_held(&tid_agg_rx->reorder_lock); 605 606 /* release the buffer until next missing frame */ 607 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 608 tid_agg_rx->buf_size; 609 if (!tid_agg_rx->reorder_buf[index] && 610 tid_agg_rx->stored_mpdu_num > 1) { 611 /* 612 * No buffers ready to be released, but check whether any 613 * frames in the reorder buffer have timed out. 614 */ 615 int skipped = 1; 616 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 617 j = (j + 1) % tid_agg_rx->buf_size) { 618 if (!tid_agg_rx->reorder_buf[j]) { 619 skipped++; 620 continue; 621 } 622 if (skipped && 623 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 624 HT_RX_REORDER_BUF_TIMEOUT)) 625 goto set_release_timer; 626 627#ifdef CONFIG_MAC80211_HT_DEBUG 628 if (net_ratelimit()) 629 wiphy_debug(hw->wiphy, 630 "release an RX reorder frame due to timeout on earlier frames\n"); 631#endif 632 ieee80211_release_reorder_frame(hw, tid_agg_rx, j); 633 634 /* 635 * Increment the head seq# also for the skipped slots. 636 */ 637 tid_agg_rx->head_seq_num = 638 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK; 639 skipped = 0; 640 } 641 } else while (tid_agg_rx->reorder_buf[index]) { 642 ieee80211_release_reorder_frame(hw, tid_agg_rx, index); 643 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 644 tid_agg_rx->buf_size; 645 } 646 647 if (tid_agg_rx->stored_mpdu_num) { 648 j = index = seq_sub(tid_agg_rx->head_seq_num, 649 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 650 651 for (; j != (index - 1) % tid_agg_rx->buf_size; 652 j = (j + 1) % tid_agg_rx->buf_size) { 653 if (tid_agg_rx->reorder_buf[j]) 654 break; 655 } 656 657 set_release_timer: 658 659 mod_timer(&tid_agg_rx->reorder_timer, 660 tid_agg_rx->reorder_time[j] + 1 + 661 HT_RX_REORDER_BUF_TIMEOUT); 662 } else { 663 del_timer(&tid_agg_rx->reorder_timer); 664 } 665} 666 667/* 668 * As this function belongs to the RX path it must be under 669 * rcu_read_lock protection. It returns false if the frame 670 * can be processed immediately, true if it was consumed. 671 */ 672static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw, 673 struct tid_ampdu_rx *tid_agg_rx, 674 struct sk_buff *skb) 675{ 676 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 677 u16 sc = le16_to_cpu(hdr->seq_ctrl); 678 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 679 u16 head_seq_num, buf_size; 680 int index; 681 bool ret = true; 682 683 spin_lock(&tid_agg_rx->reorder_lock); 684 685 buf_size = tid_agg_rx->buf_size; 686 head_seq_num = tid_agg_rx->head_seq_num; 687 688 /* frame with out of date sequence number */ 689 if (seq_less(mpdu_seq_num, head_seq_num)) { 690 dev_kfree_skb(skb); 691 goto out; 692 } 693 694 /* 695 * If frame the sequence number exceeds our buffering window 696 * size release some previous frames to make room for this one. 697 */ 698 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) { 699 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size)); 700 /* release stored frames up to new head to stack */ 701 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num); 702 } 703 704 /* Now the new frame is always in the range of the reordering buffer */ 705 706 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size; 707 708 /* check if we already stored this frame */ 709 if (tid_agg_rx->reorder_buf[index]) { 710 dev_kfree_skb(skb); 711 goto out; 712 } 713 714 /* 715 * If the current MPDU is in the right order and nothing else 716 * is stored we can process it directly, no need to buffer it. 717 * If it is first but there's something stored, we may be able 718 * to release frames after this one. 719 */ 720 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 721 tid_agg_rx->stored_mpdu_num == 0) { 722 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 723 ret = false; 724 goto out; 725 } 726 727 /* put the frame in the reordering buffer */ 728 tid_agg_rx->reorder_buf[index] = skb; 729 tid_agg_rx->reorder_time[index] = jiffies; 730 tid_agg_rx->stored_mpdu_num++; 731 ieee80211_sta_reorder_release(hw, tid_agg_rx); 732 733 out: 734 spin_unlock(&tid_agg_rx->reorder_lock); 735 return ret; 736} 737 738/* 739 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 740 * true if the MPDU was buffered, false if it should be processed. 741 */ 742static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx) 743{ 744 struct sk_buff *skb = rx->skb; 745 struct ieee80211_local *local = rx->local; 746 struct ieee80211_hw *hw = &local->hw; 747 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 748 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 749 struct sta_info *sta = rx->sta; 750 struct tid_ampdu_rx *tid_agg_rx; 751 u16 sc; 752 u8 tid, ack_policy; 753 754 if (!ieee80211_is_data_qos(hdr->frame_control)) 755 goto dont_reorder; 756 757 /* 758 * filter the QoS data rx stream according to 759 * STA/TID and check if this STA/TID is on aggregation 760 */ 761 762 if (!sta) 763 goto dont_reorder; 764 765 ack_policy = *ieee80211_get_qos_ctl(hdr) & 766 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 767 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 768 769 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 770 if (!tid_agg_rx) 771 goto dont_reorder; 772 773 /* qos null data frames are excluded */ 774 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 775 goto dont_reorder; 776 777 /* not part of a BA session */ 778 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 779 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 780 goto dont_reorder; 781 782 /* not actually part of this BA session */ 783 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 784 goto dont_reorder; 785 786 /* new, potentially un-ordered, ampdu frame - process it */ 787 788 /* reset session timer */ 789 if (tid_agg_rx->timeout) 790 mod_timer(&tid_agg_rx->session_timer, 791 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 792 793 /* if this mpdu is fragmented - terminate rx aggregation session */ 794 sc = le16_to_cpu(hdr->seq_ctrl); 795 if (sc & IEEE80211_SCTL_FRAG) { 796 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 797 skb_queue_tail(&rx->sdata->skb_queue, skb); 798 ieee80211_queue_work(&local->hw, &rx->sdata->work); 799 return; 800 } 801 802 /* 803 * No locking needed -- we will only ever process one 804 * RX packet at a time, and thus own tid_agg_rx. All 805 * other code manipulating it needs to (and does) make 806 * sure that we cannot get to it any more before doing 807 * anything with it. 808 */ 809 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb)) 810 return; 811 812 dont_reorder: 813 skb_queue_tail(&local->rx_skb_queue, skb); 814} 815 816static ieee80211_rx_result debug_noinline 817ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 818{ 819 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 820 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 821 822 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ 823 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) { 824 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 825 rx->sta->last_seq_ctrl[rx->seqno_idx] == 826 hdr->seq_ctrl)) { 827 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 828 rx->local->dot11FrameDuplicateCount++; 829 rx->sta->num_duplicates++; 830 } 831 return RX_DROP_UNUSABLE; 832 } else 833 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 834 } 835 836 if (unlikely(rx->skb->len < 16)) { 837 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 838 return RX_DROP_MONITOR; 839 } 840 841 /* Drop disallowed frame classes based on STA auth/assoc state; 842 * IEEE 802.11, Chap 5.5. 843 * 844 * mac80211 filters only based on association state, i.e. it drops 845 * Class 3 frames from not associated stations. hostapd sends 846 * deauth/disassoc frames when needed. In addition, hostapd is 847 * responsible for filtering on both auth and assoc states. 848 */ 849 850 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 851 return ieee80211_rx_mesh_check(rx); 852 853 if (unlikely((ieee80211_is_data(hdr->frame_control) || 854 ieee80211_is_pspoll(hdr->frame_control)) && 855 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 856 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 857 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 858 if (rx->sta && rx->sta->dummy && 859 ieee80211_is_data_present(hdr->frame_control)) { 860 u16 ethertype; 861 u8 *payload; 862 863 payload = rx->skb->data + 864 ieee80211_hdrlen(hdr->frame_control); 865 ethertype = (payload[6] << 8) | payload[7]; 866 if (cpu_to_be16(ethertype) == 867 rx->sdata->control_port_protocol) 868 return RX_CONTINUE; 869 } 870 871 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 872 cfg80211_rx_spurious_frame(rx->sdata->dev, 873 hdr->addr2, 874 GFP_ATOMIC)) 875 return RX_DROP_UNUSABLE; 876 877 return RX_DROP_MONITOR; 878 } 879 880 return RX_CONTINUE; 881} 882 883 884static ieee80211_rx_result debug_noinline 885ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 886{ 887 struct sk_buff *skb = rx->skb; 888 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 889 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 890 int keyidx; 891 int hdrlen; 892 ieee80211_rx_result result = RX_DROP_UNUSABLE; 893 struct ieee80211_key *sta_ptk = NULL; 894 int mmie_keyidx = -1; 895 __le16 fc; 896 897 /* 898 * Key selection 101 899 * 900 * There are four types of keys: 901 * - GTK (group keys) 902 * - IGTK (group keys for management frames) 903 * - PTK (pairwise keys) 904 * - STK (station-to-station pairwise keys) 905 * 906 * When selecting a key, we have to distinguish between multicast 907 * (including broadcast) and unicast frames, the latter can only 908 * use PTKs and STKs while the former always use GTKs and IGTKs. 909 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 910 * unicast frames can also use key indices like GTKs. Hence, if we 911 * don't have a PTK/STK we check the key index for a WEP key. 912 * 913 * Note that in a regular BSS, multicast frames are sent by the 914 * AP only, associated stations unicast the frame to the AP first 915 * which then multicasts it on their behalf. 916 * 917 * There is also a slight problem in IBSS mode: GTKs are negotiated 918 * with each station, that is something we don't currently handle. 919 * The spec seems to expect that one negotiates the same key with 920 * every station but there's no such requirement; VLANs could be 921 * possible. 922 */ 923 924 /* 925 * No point in finding a key and decrypting if the frame is neither 926 * addressed to us nor a multicast frame. 927 */ 928 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 929 return RX_CONTINUE; 930 931 /* start without a key */ 932 rx->key = NULL; 933 934 if (rx->sta) 935 sta_ptk = rcu_dereference(rx->sta->ptk); 936 937 fc = hdr->frame_control; 938 939 if (!ieee80211_has_protected(fc)) 940 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 941 942 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 943 rx->key = sta_ptk; 944 if ((status->flag & RX_FLAG_DECRYPTED) && 945 (status->flag & RX_FLAG_IV_STRIPPED)) 946 return RX_CONTINUE; 947 /* Skip decryption if the frame is not protected. */ 948 if (!ieee80211_has_protected(fc)) 949 return RX_CONTINUE; 950 } else if (mmie_keyidx >= 0) { 951 /* Broadcast/multicast robust management frame / BIP */ 952 if ((status->flag & RX_FLAG_DECRYPTED) && 953 (status->flag & RX_FLAG_IV_STRIPPED)) 954 return RX_CONTINUE; 955 956 if (mmie_keyidx < NUM_DEFAULT_KEYS || 957 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 958 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 959 if (rx->sta) 960 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 961 if (!rx->key) 962 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 963 } else if (!ieee80211_has_protected(fc)) { 964 /* 965 * The frame was not protected, so skip decryption. However, we 966 * need to set rx->key if there is a key that could have been 967 * used so that the frame may be dropped if encryption would 968 * have been expected. 969 */ 970 struct ieee80211_key *key = NULL; 971 struct ieee80211_sub_if_data *sdata = rx->sdata; 972 int i; 973 974 if (ieee80211_is_mgmt(fc) && 975 is_multicast_ether_addr(hdr->addr1) && 976 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 977 rx->key = key; 978 else { 979 if (rx->sta) { 980 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 981 key = rcu_dereference(rx->sta->gtk[i]); 982 if (key) 983 break; 984 } 985 } 986 if (!key) { 987 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 988 key = rcu_dereference(sdata->keys[i]); 989 if (key) 990 break; 991 } 992 } 993 if (key) 994 rx->key = key; 995 } 996 return RX_CONTINUE; 997 } else { 998 u8 keyid; 999 /* 1000 * The device doesn't give us the IV so we won't be 1001 * able to look up the key. That's ok though, we 1002 * don't need to decrypt the frame, we just won't 1003 * be able to keep statistics accurate. 1004 * Except for key threshold notifications, should 1005 * we somehow allow the driver to tell us which key 1006 * the hardware used if this flag is set? 1007 */ 1008 if ((status->flag & RX_FLAG_DECRYPTED) && 1009 (status->flag & RX_FLAG_IV_STRIPPED)) 1010 return RX_CONTINUE; 1011 1012 hdrlen = ieee80211_hdrlen(fc); 1013 1014 if (rx->skb->len < 8 + hdrlen) 1015 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1016 1017 /* 1018 * no need to call ieee80211_wep_get_keyidx, 1019 * it verifies a bunch of things we've done already 1020 */ 1021 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1022 keyidx = keyid >> 6; 1023 1024 /* check per-station GTK first, if multicast packet */ 1025 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1026 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1027 1028 /* if not found, try default key */ 1029 if (!rx->key) { 1030 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1031 1032 /* 1033 * RSNA-protected unicast frames should always be 1034 * sent with pairwise or station-to-station keys, 1035 * but for WEP we allow using a key index as well. 1036 */ 1037 if (rx->key && 1038 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1039 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1040 !is_multicast_ether_addr(hdr->addr1)) 1041 rx->key = NULL; 1042 } 1043 } 1044 1045 if (rx->key) { 1046 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1047 return RX_DROP_MONITOR; 1048 1049 rx->key->tx_rx_count++; 1050 /* TODO: add threshold stuff again */ 1051 } else { 1052 return RX_DROP_MONITOR; 1053 } 1054 1055 if (skb_linearize(rx->skb)) 1056 return RX_DROP_UNUSABLE; 1057 /* the hdr variable is invalid now! */ 1058 1059 switch (rx->key->conf.cipher) { 1060 case WLAN_CIPHER_SUITE_WEP40: 1061 case WLAN_CIPHER_SUITE_WEP104: 1062 /* Check for weak IVs if possible */ 1063 if (rx->sta && ieee80211_is_data(fc) && 1064 (!(status->flag & RX_FLAG_IV_STRIPPED) || 1065 !(status->flag & RX_FLAG_DECRYPTED)) && 1066 ieee80211_wep_is_weak_iv(rx->skb, rx->key)) 1067 rx->sta->wep_weak_iv_count++; 1068 1069 result = ieee80211_crypto_wep_decrypt(rx); 1070 break; 1071 case WLAN_CIPHER_SUITE_TKIP: 1072 result = ieee80211_crypto_tkip_decrypt(rx); 1073 break; 1074 case WLAN_CIPHER_SUITE_CCMP: 1075 result = ieee80211_crypto_ccmp_decrypt(rx); 1076 break; 1077 case WLAN_CIPHER_SUITE_AES_CMAC: 1078 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1079 break; 1080 default: 1081 /* 1082 * We can reach here only with HW-only algorithms 1083 * but why didn't it decrypt the frame?! 1084 */ 1085 return RX_DROP_UNUSABLE; 1086 } 1087 1088 /* either the frame has been decrypted or will be dropped */ 1089 status->flag |= RX_FLAG_DECRYPTED; 1090 1091 return result; 1092} 1093 1094static ieee80211_rx_result debug_noinline 1095ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1096{ 1097 struct ieee80211_local *local; 1098 struct ieee80211_hdr *hdr; 1099 struct sk_buff *skb; 1100 1101 local = rx->local; 1102 skb = rx->skb; 1103 hdr = (struct ieee80211_hdr *) skb->data; 1104 1105 if (!local->pspolling) 1106 return RX_CONTINUE; 1107 1108 if (!ieee80211_has_fromds(hdr->frame_control)) 1109 /* this is not from AP */ 1110 return RX_CONTINUE; 1111 1112 if (!ieee80211_is_data(hdr->frame_control)) 1113 return RX_CONTINUE; 1114 1115 if (!ieee80211_has_moredata(hdr->frame_control)) { 1116 /* AP has no more frames buffered for us */ 1117 local->pspolling = false; 1118 return RX_CONTINUE; 1119 } 1120 1121 /* more data bit is set, let's request a new frame from the AP */ 1122 ieee80211_send_pspoll(local, rx->sdata); 1123 1124 return RX_CONTINUE; 1125} 1126 1127static void ap_sta_ps_start(struct sta_info *sta) 1128{ 1129 struct ieee80211_sub_if_data *sdata = sta->sdata; 1130 struct ieee80211_local *local = sdata->local; 1131 1132 atomic_inc(&sdata->bss->num_sta_ps); 1133 set_sta_flag(sta, WLAN_STA_PS_STA); 1134 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1135 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1136#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1137 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n", 1138 sdata->name, sta->sta.addr, sta->sta.aid); 1139#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1140} 1141 1142static void ap_sta_ps_end(struct sta_info *sta) 1143{ 1144 struct ieee80211_sub_if_data *sdata = sta->sdata; 1145 1146 atomic_dec(&sdata->bss->num_sta_ps); 1147 1148#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1149 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n", 1150 sdata->name, sta->sta.addr, sta->sta.aid); 1151#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1152 1153 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1154#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1155 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n", 1156 sdata->name, sta->sta.addr, sta->sta.aid); 1157#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1158 return; 1159 } 1160 1161 ieee80211_sta_ps_deliver_wakeup(sta); 1162} 1163 1164int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1165{ 1166 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1167 bool in_ps; 1168 1169 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1170 1171 /* Don't let the same PS state be set twice */ 1172 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1173 if ((start && in_ps) || (!start && !in_ps)) 1174 return -EINVAL; 1175 1176 if (start) 1177 ap_sta_ps_start(sta_inf); 1178 else 1179 ap_sta_ps_end(sta_inf); 1180 1181 return 0; 1182} 1183EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1184 1185static ieee80211_rx_result debug_noinline 1186ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1187{ 1188 struct ieee80211_sub_if_data *sdata = rx->sdata; 1189 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1190 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1191 int tid, ac; 1192 1193 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1194 return RX_CONTINUE; 1195 1196 if (sdata->vif.type != NL80211_IFTYPE_AP && 1197 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1198 return RX_CONTINUE; 1199 1200 /* 1201 * The device handles station powersave, so don't do anything about 1202 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1203 * it to mac80211 since they're handled.) 1204 */ 1205 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1206 return RX_CONTINUE; 1207 1208 /* 1209 * Don't do anything if the station isn't already asleep. In 1210 * the uAPSD case, the station will probably be marked asleep, 1211 * in the PS-Poll case the station must be confused ... 1212 */ 1213 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1214 return RX_CONTINUE; 1215 1216 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1217 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1218 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1219 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1220 else 1221 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1222 } 1223 1224 /* Free PS Poll skb here instead of returning RX_DROP that would 1225 * count as an dropped frame. */ 1226 dev_kfree_skb(rx->skb); 1227 1228 return RX_QUEUED; 1229 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1230 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1231 ieee80211_has_pm(hdr->frame_control) && 1232 (ieee80211_is_data_qos(hdr->frame_control) || 1233 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1234 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1235 ac = ieee802_1d_to_ac[tid & 7]; 1236 1237 /* 1238 * If this AC is not trigger-enabled do nothing. 1239 * 1240 * NB: This could/should check a separate bitmap of trigger- 1241 * enabled queues, but for now we only implement uAPSD w/o 1242 * TSPEC changes to the ACs, so they're always the same. 1243 */ 1244 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1245 return RX_CONTINUE; 1246 1247 /* if we are in a service period, do nothing */ 1248 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1249 return RX_CONTINUE; 1250 1251 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1252 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1253 else 1254 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1255 } 1256 1257 return RX_CONTINUE; 1258} 1259 1260static ieee80211_rx_result debug_noinline 1261ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1262{ 1263 struct sta_info *sta = rx->sta; 1264 struct sk_buff *skb = rx->skb; 1265 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1266 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1267 1268 if (!sta) 1269 return RX_CONTINUE; 1270 1271 /* 1272 * Update last_rx only for IBSS packets which are for the current 1273 * BSSID to avoid keeping the current IBSS network alive in cases 1274 * where other STAs start using different BSSID. 1275 */ 1276 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1277 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1278 NL80211_IFTYPE_ADHOC); 1279 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) { 1280 sta->last_rx = jiffies; 1281 if (ieee80211_is_data(hdr->frame_control)) { 1282 sta->last_rx_rate_idx = status->rate_idx; 1283 sta->last_rx_rate_flag = status->flag; 1284 } 1285 } 1286 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1287 /* 1288 * Mesh beacons will update last_rx when if they are found to 1289 * match the current local configuration when processed. 1290 */ 1291 sta->last_rx = jiffies; 1292 if (ieee80211_is_data(hdr->frame_control)) { 1293 sta->last_rx_rate_idx = status->rate_idx; 1294 sta->last_rx_rate_flag = status->flag; 1295 } 1296 } 1297 1298 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1299 return RX_CONTINUE; 1300 1301 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1302 ieee80211_sta_rx_notify(rx->sdata, hdr); 1303 1304 sta->rx_fragments++; 1305 sta->rx_bytes += rx->skb->len; 1306 sta->last_signal = status->signal; 1307 ewma_add(&sta->avg_signal, -status->signal); 1308 1309 /* 1310 * Change STA power saving mode only at the end of a frame 1311 * exchange sequence. 1312 */ 1313 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1314 !ieee80211_has_morefrags(hdr->frame_control) && 1315 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1316 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1317 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1318 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1319 /* 1320 * Ignore doze->wake transitions that are 1321 * indicated by non-data frames, the standard 1322 * is unclear here, but for example going to 1323 * PS mode and then scanning would cause a 1324 * doze->wake transition for the probe request, 1325 * and that is clearly undesirable. 1326 */ 1327 if (ieee80211_is_data(hdr->frame_control) && 1328 !ieee80211_has_pm(hdr->frame_control)) 1329 ap_sta_ps_end(sta); 1330 } else { 1331 if (ieee80211_has_pm(hdr->frame_control)) 1332 ap_sta_ps_start(sta); 1333 } 1334 } 1335 1336 /* 1337 * Drop (qos-)data::nullfunc frames silently, since they 1338 * are used only to control station power saving mode. 1339 */ 1340 if (ieee80211_is_nullfunc(hdr->frame_control) || 1341 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1342 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1343 1344 /* 1345 * If we receive a 4-addr nullfunc frame from a STA 1346 * that was not moved to a 4-addr STA vlan yet send 1347 * the event to userspace and for older hostapd drop 1348 * the frame to the monitor interface. 1349 */ 1350 if (ieee80211_has_a4(hdr->frame_control) && 1351 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1352 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1353 !rx->sdata->u.vlan.sta))) { 1354 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1355 cfg80211_rx_unexpected_4addr_frame( 1356 rx->sdata->dev, sta->sta.addr, 1357 GFP_ATOMIC); 1358 return RX_DROP_MONITOR; 1359 } 1360 /* 1361 * Update counter and free packet here to avoid 1362 * counting this as a dropped packed. 1363 */ 1364 sta->rx_packets++; 1365 dev_kfree_skb(rx->skb); 1366 return RX_QUEUED; 1367 } 1368 1369 return RX_CONTINUE; 1370} /* ieee80211_rx_h_sta_process */ 1371 1372static inline struct ieee80211_fragment_entry * 1373ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1374 unsigned int frag, unsigned int seq, int rx_queue, 1375 struct sk_buff **skb) 1376{ 1377 struct ieee80211_fragment_entry *entry; 1378 int idx; 1379 1380 idx = sdata->fragment_next; 1381 entry = &sdata->fragments[sdata->fragment_next++]; 1382 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1383 sdata->fragment_next = 0; 1384 1385 if (!skb_queue_empty(&entry->skb_list)) { 1386#ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1387 struct ieee80211_hdr *hdr = 1388 (struct ieee80211_hdr *) entry->skb_list.next->data; 1389 printk(KERN_DEBUG "%s: RX reassembly removed oldest " 1390 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d " 1391 "addr1=%pM addr2=%pM\n", 1392 sdata->name, idx, 1393 jiffies - entry->first_frag_time, entry->seq, 1394 entry->last_frag, hdr->addr1, hdr->addr2); 1395#endif 1396 __skb_queue_purge(&entry->skb_list); 1397 } 1398 1399 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1400 *skb = NULL; 1401 entry->first_frag_time = jiffies; 1402 entry->seq = seq; 1403 entry->rx_queue = rx_queue; 1404 entry->last_frag = frag; 1405 entry->ccmp = 0; 1406 entry->extra_len = 0; 1407 1408 return entry; 1409} 1410 1411static inline struct ieee80211_fragment_entry * 1412ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1413 unsigned int frag, unsigned int seq, 1414 int rx_queue, struct ieee80211_hdr *hdr) 1415{ 1416 struct ieee80211_fragment_entry *entry; 1417 int i, idx; 1418 1419 idx = sdata->fragment_next; 1420 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1421 struct ieee80211_hdr *f_hdr; 1422 1423 idx--; 1424 if (idx < 0) 1425 idx = IEEE80211_FRAGMENT_MAX - 1; 1426 1427 entry = &sdata->fragments[idx]; 1428 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1429 entry->rx_queue != rx_queue || 1430 entry->last_frag + 1 != frag) 1431 continue; 1432 1433 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1434 1435 /* 1436 * Check ftype and addresses are equal, else check next fragment 1437 */ 1438 if (((hdr->frame_control ^ f_hdr->frame_control) & 1439 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1440 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 || 1441 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0) 1442 continue; 1443 1444 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1445 __skb_queue_purge(&entry->skb_list); 1446 continue; 1447 } 1448 return entry; 1449 } 1450 1451 return NULL; 1452} 1453 1454static ieee80211_rx_result debug_noinline 1455ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1456{ 1457 struct ieee80211_hdr *hdr; 1458 u16 sc; 1459 __le16 fc; 1460 unsigned int frag, seq; 1461 struct ieee80211_fragment_entry *entry; 1462 struct sk_buff *skb; 1463 struct ieee80211_rx_status *status; 1464 1465 hdr = (struct ieee80211_hdr *)rx->skb->data; 1466 fc = hdr->frame_control; 1467 sc = le16_to_cpu(hdr->seq_ctrl); 1468 frag = sc & IEEE80211_SCTL_FRAG; 1469 1470 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 1471 (rx->skb)->len < 24 || 1472 is_multicast_ether_addr(hdr->addr1))) { 1473 /* not fragmented */ 1474 goto out; 1475 } 1476 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1477 1478 if (skb_linearize(rx->skb)) 1479 return RX_DROP_UNUSABLE; 1480 1481 /* 1482 * skb_linearize() might change the skb->data and 1483 * previously cached variables (in this case, hdr) need to 1484 * be refreshed with the new data. 1485 */ 1486 hdr = (struct ieee80211_hdr *)rx->skb->data; 1487 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1488 1489 if (frag == 0) { 1490 /* This is the first fragment of a new frame. */ 1491 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1492 rx->seqno_idx, &(rx->skb)); 1493 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && 1494 ieee80211_has_protected(fc)) { 1495 int queue = rx->security_idx; 1496 /* Store CCMP PN so that we can verify that the next 1497 * fragment has a sequential PN value. */ 1498 entry->ccmp = 1; 1499 memcpy(entry->last_pn, 1500 rx->key->u.ccmp.rx_pn[queue], 1501 CCMP_PN_LEN); 1502 } 1503 return RX_QUEUED; 1504 } 1505 1506 /* This is a fragment for a frame that should already be pending in 1507 * fragment cache. Add this fragment to the end of the pending entry. 1508 */ 1509 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1510 rx->seqno_idx, hdr); 1511 if (!entry) { 1512 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1513 return RX_DROP_MONITOR; 1514 } 1515 1516 /* Verify that MPDUs within one MSDU have sequential PN values. 1517 * (IEEE 802.11i, 8.3.3.4.5) */ 1518 if (entry->ccmp) { 1519 int i; 1520 u8 pn[CCMP_PN_LEN], *rpn; 1521 int queue; 1522 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) 1523 return RX_DROP_UNUSABLE; 1524 memcpy(pn, entry->last_pn, CCMP_PN_LEN); 1525 for (i = CCMP_PN_LEN - 1; i >= 0; i--) { 1526 pn[i]++; 1527 if (pn[i]) 1528 break; 1529 } 1530 queue = rx->security_idx; 1531 rpn = rx->key->u.ccmp.rx_pn[queue]; 1532 if (memcmp(pn, rpn, CCMP_PN_LEN)) 1533 return RX_DROP_UNUSABLE; 1534 memcpy(entry->last_pn, pn, CCMP_PN_LEN); 1535 } 1536 1537 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1538 __skb_queue_tail(&entry->skb_list, rx->skb); 1539 entry->last_frag = frag; 1540 entry->extra_len += rx->skb->len; 1541 if (ieee80211_has_morefrags(fc)) { 1542 rx->skb = NULL; 1543 return RX_QUEUED; 1544 } 1545 1546 rx->skb = __skb_dequeue(&entry->skb_list); 1547 if (skb_tailroom(rx->skb) < entry->extra_len) { 1548 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1549 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1550 GFP_ATOMIC))) { 1551 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1552 __skb_queue_purge(&entry->skb_list); 1553 return RX_DROP_UNUSABLE; 1554 } 1555 } 1556 while ((skb = __skb_dequeue(&entry->skb_list))) { 1557 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1558 dev_kfree_skb(skb); 1559 } 1560 1561 /* Complete frame has been reassembled - process it now */ 1562 status = IEEE80211_SKB_RXCB(rx->skb); 1563 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1564 1565 out: 1566 if (rx->sta) 1567 rx->sta->rx_packets++; 1568 if (is_multicast_ether_addr(hdr->addr1)) 1569 rx->local->dot11MulticastReceivedFrameCount++; 1570 else 1571 ieee80211_led_rx(rx->local); 1572 return RX_CONTINUE; 1573} 1574 1575static ieee80211_rx_result debug_noinline 1576ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx) 1577{ 1578 u8 *data = rx->skb->data; 1579 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data; 1580 1581 if (!ieee80211_is_data_qos(hdr->frame_control)) 1582 return RX_CONTINUE; 1583 1584 /* remove the qos control field, update frame type and meta-data */ 1585 memmove(data + IEEE80211_QOS_CTL_LEN, data, 1586 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN); 1587 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN); 1588 /* change frame type to non QOS */ 1589 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1590 1591 return RX_CONTINUE; 1592} 1593 1594static int 1595ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1596{ 1597 if (unlikely(!rx->sta || 1598 !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1599 return -EACCES; 1600 1601 return 0; 1602} 1603 1604static int 1605ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1606{ 1607 struct sk_buff *skb = rx->skb; 1608 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1609 1610 /* 1611 * Pass through unencrypted frames if the hardware has 1612 * decrypted them already. 1613 */ 1614 if (status->flag & RX_FLAG_DECRYPTED) 1615 return 0; 1616 1617 /* Drop unencrypted frames if key is set. */ 1618 if (unlikely(!ieee80211_has_protected(fc) && 1619 !ieee80211_is_nullfunc(fc) && 1620 ieee80211_is_data(fc) && 1621 (rx->key || rx->sdata->drop_unencrypted))) 1622 return -EACCES; 1623 1624 return 0; 1625} 1626 1627static int 1628ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1629{ 1630 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1631 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1632 __le16 fc = hdr->frame_control; 1633 1634 /* 1635 * Pass through unencrypted frames if the hardware has 1636 * decrypted them already. 1637 */ 1638 if (status->flag & RX_FLAG_DECRYPTED) 1639 return 0; 1640 1641 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1642 if (unlikely(!ieee80211_has_protected(fc) && 1643 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1644 rx->key)) { 1645 if (ieee80211_is_deauth(fc)) 1646 cfg80211_send_unprot_deauth(rx->sdata->dev, 1647 rx->skb->data, 1648 rx->skb->len); 1649 else if (ieee80211_is_disassoc(fc)) 1650 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1651 rx->skb->data, 1652 rx->skb->len); 1653 return -EACCES; 1654 } 1655 /* BIP does not use Protected field, so need to check MMIE */ 1656 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1657 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1658 if (ieee80211_is_deauth(fc)) 1659 cfg80211_send_unprot_deauth(rx->sdata->dev, 1660 rx->skb->data, 1661 rx->skb->len); 1662 else if (ieee80211_is_disassoc(fc)) 1663 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1664 rx->skb->data, 1665 rx->skb->len); 1666 return -EACCES; 1667 } 1668 /* 1669 * When using MFP, Action frames are not allowed prior to 1670 * having configured keys. 1671 */ 1672 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1673 ieee80211_is_robust_mgmt_frame( 1674 (struct ieee80211_hdr *) rx->skb->data))) 1675 return -EACCES; 1676 } 1677 1678 return 0; 1679} 1680 1681static int 1682__ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1683{ 1684 struct ieee80211_sub_if_data *sdata = rx->sdata; 1685 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1686 bool check_port_control = false; 1687 struct ethhdr *ehdr; 1688 int ret; 1689 1690 *port_control = false; 1691 if (ieee80211_has_a4(hdr->frame_control) && 1692 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1693 return -1; 1694 1695 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1696 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1697 1698 if (!sdata->u.mgd.use_4addr) 1699 return -1; 1700 else 1701 check_port_control = true; 1702 } 1703 1704 if (is_multicast_ether_addr(hdr->addr1) && 1705 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1706 return -1; 1707 1708 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1709 if (ret < 0) 1710 return ret; 1711 1712 ehdr = (struct ethhdr *) rx->skb->data; 1713 if (ehdr->h_proto == rx->sdata->control_port_protocol) 1714 *port_control = true; 1715 else if (check_port_control) 1716 return -1; 1717 1718 return 0; 1719} 1720 1721/* 1722 * requires that rx->skb is a frame with ethernet header 1723 */ 1724static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1725{ 1726 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1727 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1728 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1729 1730 /* 1731 * Allow EAPOL frames to us/the PAE group address regardless 1732 * of whether the frame was encrypted or not. 1733 */ 1734 if (ehdr->h_proto == rx->sdata->control_port_protocol && 1735 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 || 1736 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0)) 1737 return true; 1738 1739 if (ieee80211_802_1x_port_control(rx) || 1740 ieee80211_drop_unencrypted(rx, fc)) 1741 return false; 1742 1743 return true; 1744} 1745 1746/* 1747 * requires that rx->skb is a frame with ethernet header 1748 */ 1749static void 1750ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1751{ 1752 struct ieee80211_sub_if_data *sdata = rx->sdata; 1753 struct net_device *dev = sdata->dev; 1754 struct sk_buff *skb, *xmit_skb; 1755 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1756 struct sta_info *dsta; 1757 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1758 1759 skb = rx->skb; 1760 xmit_skb = NULL; 1761 1762 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1763 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1764 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1765 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 1766 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 1767 if (is_multicast_ether_addr(ehdr->h_dest)) { 1768 /* 1769 * send multicast frames both to higher layers in 1770 * local net stack and back to the wireless medium 1771 */ 1772 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1773 if (!xmit_skb && net_ratelimit()) 1774 printk(KERN_DEBUG "%s: failed to clone " 1775 "multicast frame\n", dev->name); 1776 } else { 1777 dsta = sta_info_get(sdata, skb->data); 1778 if (dsta) { 1779 /* 1780 * The destination station is associated to 1781 * this AP (in this VLAN), so send the frame 1782 * directly to it and do not pass it to local 1783 * net stack. 1784 */ 1785 xmit_skb = skb; 1786 skb = NULL; 1787 } 1788 } 1789 } 1790 1791 if (skb) { 1792 int align __maybe_unused; 1793 1794#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1795 /* 1796 * 'align' will only take the values 0 or 2 here 1797 * since all frames are required to be aligned 1798 * to 2-byte boundaries when being passed to 1799 * mac80211. That also explains the __skb_push() 1800 * below. 1801 */ 1802 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3; 1803 if (align) { 1804 if (WARN_ON(skb_headroom(skb) < 3)) { 1805 dev_kfree_skb(skb); 1806 skb = NULL; 1807 } else { 1808 u8 *data = skb->data; 1809 size_t len = skb_headlen(skb); 1810 skb->data -= align; 1811 memmove(skb->data, data, len); 1812 skb_set_tail_pointer(skb, len); 1813 } 1814 } 1815#endif 1816 1817 if (skb) { 1818 /* deliver to local stack */ 1819 skb->protocol = eth_type_trans(skb, dev); 1820 memset(skb->cb, 0, sizeof(skb->cb)); 1821 netif_receive_skb(skb); 1822 } 1823 } 1824 1825 if (xmit_skb) { 1826 /* send to wireless media */ 1827 xmit_skb->protocol = htons(ETH_P_802_3); 1828 skb_reset_network_header(xmit_skb); 1829 skb_reset_mac_header(xmit_skb); 1830 dev_queue_xmit(xmit_skb); 1831 } 1832} 1833 1834static ieee80211_rx_result debug_noinline 1835ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 1836{ 1837 struct net_device *dev = rx->sdata->dev; 1838 struct sk_buff *skb = rx->skb; 1839 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1840 __le16 fc = hdr->frame_control; 1841 struct sk_buff_head frame_list; 1842 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1843 1844 if (unlikely(!ieee80211_is_data(fc))) 1845 return RX_CONTINUE; 1846 1847 if (unlikely(!ieee80211_is_data_present(fc))) 1848 return RX_DROP_MONITOR; 1849 1850 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 1851 return RX_CONTINUE; 1852 1853 if (ieee80211_has_a4(hdr->frame_control) && 1854 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1855 !rx->sdata->u.vlan.sta) 1856 return RX_DROP_UNUSABLE; 1857 1858 if (is_multicast_ether_addr(hdr->addr1) && 1859 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1860 rx->sdata->u.vlan.sta) || 1861 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1862 rx->sdata->u.mgd.use_4addr))) 1863 return RX_DROP_UNUSABLE; 1864 1865 skb->dev = dev; 1866 __skb_queue_head_init(&frame_list); 1867 1868 if (skb_linearize(skb)) 1869 return RX_DROP_UNUSABLE; 1870 1871 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 1872 rx->sdata->vif.type, 1873 rx->local->hw.extra_tx_headroom, true); 1874 1875 while (!skb_queue_empty(&frame_list)) { 1876 rx->skb = __skb_dequeue(&frame_list); 1877 1878 if (!ieee80211_frame_allowed(rx, fc)) { 1879 dev_kfree_skb(rx->skb); 1880 continue; 1881 } 1882 dev->stats.rx_packets++; 1883 dev->stats.rx_bytes += rx->skb->len; 1884 1885 ieee80211_deliver_skb(rx); 1886 } 1887 1888 return RX_QUEUED; 1889} 1890 1891#ifdef CONFIG_MAC80211_MESH 1892static ieee80211_rx_result 1893ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 1894{ 1895 struct ieee80211_hdr *hdr; 1896 struct ieee80211s_hdr *mesh_hdr; 1897 unsigned int hdrlen; 1898 struct sk_buff *skb = rx->skb, *fwd_skb; 1899 struct ieee80211_local *local = rx->local; 1900 struct ieee80211_sub_if_data *sdata = rx->sdata; 1901 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1902 u16 q; 1903 1904 hdr = (struct ieee80211_hdr *) skb->data; 1905 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1906 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 1907 1908 /* frame is in RMC, don't forward */ 1909 if (ieee80211_is_data(hdr->frame_control) && 1910 is_multicast_ether_addr(hdr->addr1) && 1911 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata)) 1912 return RX_DROP_MONITOR; 1913 1914 if (!ieee80211_is_data(hdr->frame_control)) 1915 return RX_CONTINUE; 1916 1917 if (!mesh_hdr->ttl) 1918 /* illegal frame */ 1919 return RX_DROP_MONITOR; 1920 1921 if (mesh_hdr->flags & MESH_FLAGS_AE) { 1922 struct mesh_path *mppath; 1923 char *proxied_addr; 1924 char *mpp_addr; 1925 1926 if (is_multicast_ether_addr(hdr->addr1)) { 1927 mpp_addr = hdr->addr3; 1928 proxied_addr = mesh_hdr->eaddr1; 1929 } else { 1930 mpp_addr = hdr->addr4; 1931 proxied_addr = mesh_hdr->eaddr2; 1932 } 1933 1934 rcu_read_lock(); 1935 mppath = mpp_path_lookup(proxied_addr, sdata); 1936 if (!mppath) { 1937 mpp_path_add(proxied_addr, mpp_addr, sdata); 1938 } else { 1939 spin_lock_bh(&mppath->state_lock); 1940 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0) 1941 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 1942 spin_unlock_bh(&mppath->state_lock); 1943 } 1944 rcu_read_unlock(); 1945 } 1946 1947 /* Frame has reached destination. Don't forward */ 1948 if (!is_multicast_ether_addr(hdr->addr1) && 1949 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0) 1950 return RX_CONTINUE; 1951 1952 q = ieee80211_select_queue_80211(local, skb, hdr); 1953 if (ieee80211_queue_stopped(&local->hw, q)) { 1954 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh, 1955 dropped_frames_congestion); 1956 return RX_DROP_MONITOR; 1957 } 1958 skb_set_queue_mapping(skb, q); 1959 mesh_hdr->ttl--; 1960 1961 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 1962 if (!mesh_hdr->ttl) 1963 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh, 1964 dropped_frames_ttl); 1965 else { 1966 struct ieee80211_hdr *fwd_hdr; 1967 struct ieee80211_tx_info *info; 1968 1969 fwd_skb = skb_copy(skb, GFP_ATOMIC); 1970 1971 if (!fwd_skb && net_ratelimit()) 1972 printk(KERN_DEBUG "%s: failed to clone mesh frame\n", 1973 sdata->name); 1974 if (!fwd_skb) 1975 goto out; 1976 1977 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 1978 info = IEEE80211_SKB_CB(fwd_skb); 1979 memset(info, 0, sizeof(*info)); 1980 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1981 info->control.vif = &rx->sdata->vif; 1982 info->control.jiffies = jiffies; 1983 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 1984 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh, 1985 fwded_mcast); 1986 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 1987 } else { 1988 int err; 1989 err = mesh_nexthop_lookup(fwd_skb, sdata); 1990 /* Failed to immediately resolve next hop: 1991 * fwded frame was dropped or will be added 1992 * later to the pending skb queue. */ 1993 if (err) 1994 return RX_DROP_MONITOR; 1995 1996 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh, 1997 fwded_unicast); 1998 } 1999 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh, 2000 fwded_frames); 2001 ieee80211_add_pending_skb(local, fwd_skb); 2002 } 2003 } 2004 2005 out: 2006 if (is_multicast_ether_addr(hdr->addr1) || 2007 sdata->dev->flags & IFF_PROMISC) 2008 return RX_CONTINUE; 2009 else 2010 return RX_DROP_MONITOR; 2011} 2012#endif 2013 2014static ieee80211_rx_result debug_noinline 2015ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2016{ 2017 struct ieee80211_sub_if_data *sdata = rx->sdata; 2018 struct ieee80211_local *local = rx->local; 2019 struct net_device *dev = sdata->dev; 2020 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2021 __le16 fc = hdr->frame_control; 2022 bool port_control; 2023 int err; 2024 2025 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2026 return RX_CONTINUE; 2027 2028 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2029 return RX_DROP_MONITOR; 2030 2031 /* 2032 * Send unexpected-4addr-frame event to hostapd. For older versions, 2033 * also drop the frame to cooked monitor interfaces. 2034 */ 2035 if (ieee80211_has_a4(hdr->frame_control) && 2036 sdata->vif.type == NL80211_IFTYPE_AP) { 2037 if (rx->sta && 2038 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2039 cfg80211_rx_unexpected_4addr_frame( 2040 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2041 return RX_DROP_MONITOR; 2042 } 2043 2044 err = __ieee80211_data_to_8023(rx, &port_control); 2045 if (unlikely(err)) 2046 return RX_DROP_UNUSABLE; 2047 2048 if (!ieee80211_frame_allowed(rx, fc)) 2049 return RX_DROP_MONITOR; 2050 2051 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2052 unlikely(port_control) && sdata->bss) { 2053 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2054 u.ap); 2055 dev = sdata->dev; 2056 rx->sdata = sdata; 2057 } 2058 2059 rx->skb->dev = dev; 2060 2061 dev->stats.rx_packets++; 2062 dev->stats.rx_bytes += rx->skb->len; 2063 2064 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2065 !is_multicast_ether_addr( 2066 ((struct ethhdr *)rx->skb->data)->h_dest) && 2067 (!local->scanning && 2068 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2069 mod_timer(&local->dynamic_ps_timer, jiffies + 2070 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2071 } 2072 2073 ieee80211_deliver_skb(rx); 2074 2075 return RX_QUEUED; 2076} 2077 2078static ieee80211_rx_result debug_noinline 2079ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx) 2080{ 2081 struct ieee80211_local *local = rx->local; 2082 struct ieee80211_hw *hw = &local->hw; 2083 struct sk_buff *skb = rx->skb; 2084 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2085 struct tid_ampdu_rx *tid_agg_rx; 2086 u16 start_seq_num; 2087 u16 tid; 2088 2089 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2090 return RX_CONTINUE; 2091 2092 if (ieee80211_is_back_req(bar->frame_control)) { 2093 struct { 2094 __le16 control, start_seq_num; 2095 } __packed bar_data; 2096 2097 if (!rx->sta) 2098 return RX_DROP_MONITOR; 2099 2100 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2101 &bar_data, sizeof(bar_data))) 2102 return RX_DROP_MONITOR; 2103 2104 tid = le16_to_cpu(bar_data.control) >> 12; 2105 2106 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2107 if (!tid_agg_rx) 2108 return RX_DROP_MONITOR; 2109 2110 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2111 2112 /* reset session timer */ 2113 if (tid_agg_rx->timeout) 2114 mod_timer(&tid_agg_rx->session_timer, 2115 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2116 2117 spin_lock(&tid_agg_rx->reorder_lock); 2118 /* release stored frames up to start of BAR */ 2119 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num); 2120 spin_unlock(&tid_agg_rx->reorder_lock); 2121 2122 kfree_skb(skb); 2123 return RX_QUEUED; 2124 } 2125 2126 /* 2127 * After this point, we only want management frames, 2128 * so we can drop all remaining control frames to 2129 * cooked monitor interfaces. 2130 */ 2131 return RX_DROP_MONITOR; 2132} 2133 2134static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2135 struct ieee80211_mgmt *mgmt, 2136 size_t len) 2137{ 2138 struct ieee80211_local *local = sdata->local; 2139 struct sk_buff *skb; 2140 struct ieee80211_mgmt *resp; 2141 2142 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) { 2143 /* Not to own unicast address */ 2144 return; 2145 } 2146 2147 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 || 2148 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) { 2149 /* Not from the current AP or not associated yet. */ 2150 return; 2151 } 2152 2153 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2154 /* Too short SA Query request frame */ 2155 return; 2156 } 2157 2158 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2159 if (skb == NULL) 2160 return; 2161 2162 skb_reserve(skb, local->hw.extra_tx_headroom); 2163 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2164 memset(resp, 0, 24); 2165 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2166 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2167 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2168 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2169 IEEE80211_STYPE_ACTION); 2170 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2171 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2172 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2173 memcpy(resp->u.action.u.sa_query.trans_id, 2174 mgmt->u.action.u.sa_query.trans_id, 2175 WLAN_SA_QUERY_TR_ID_LEN); 2176 2177 ieee80211_tx_skb(sdata, skb); 2178} 2179 2180static ieee80211_rx_result debug_noinline 2181ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2182{ 2183 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2184 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2185 2186 /* 2187 * From here on, look only at management frames. 2188 * Data and control frames are already handled, 2189 * and unknown (reserved) frames are useless. 2190 */ 2191 if (rx->skb->len < 24) 2192 return RX_DROP_MONITOR; 2193 2194 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2195 return RX_DROP_MONITOR; 2196 2197 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2198 ieee80211_is_beacon(mgmt->frame_control) && 2199 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2200 struct ieee80211_rx_status *status; 2201 2202 status = IEEE80211_SKB_RXCB(rx->skb); 2203 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2204 rx->skb->data, rx->skb->len, 2205 status->freq, GFP_ATOMIC); 2206 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2207 } 2208 2209 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2210 return RX_DROP_MONITOR; 2211 2212 if (ieee80211_drop_unencrypted_mgmt(rx)) 2213 return RX_DROP_UNUSABLE; 2214 2215 return RX_CONTINUE; 2216} 2217 2218static ieee80211_rx_result debug_noinline 2219ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2220{ 2221 struct ieee80211_local *local = rx->local; 2222 struct ieee80211_sub_if_data *sdata = rx->sdata; 2223 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2224 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2225 int len = rx->skb->len; 2226 2227 if (!ieee80211_is_action(mgmt->frame_control)) 2228 return RX_CONTINUE; 2229 2230 /* drop too small frames */ 2231 if (len < IEEE80211_MIN_ACTION_SIZE) 2232 return RX_DROP_UNUSABLE; 2233 2234 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC) 2235 return RX_DROP_UNUSABLE; 2236 2237 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2238 return RX_DROP_UNUSABLE; 2239 2240 switch (mgmt->u.action.category) { 2241 case WLAN_CATEGORY_BACK: 2242 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2243 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2244 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2245 sdata->vif.type != NL80211_IFTYPE_AP) 2246 break; 2247 2248 /* verify action_code is present */ 2249 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2250 break; 2251 2252 switch (mgmt->u.action.u.addba_req.action_code) { 2253 case WLAN_ACTION_ADDBA_REQ: 2254 if (len < (IEEE80211_MIN_ACTION_SIZE + 2255 sizeof(mgmt->u.action.u.addba_req))) 2256 goto invalid; 2257 break; 2258 case WLAN_ACTION_ADDBA_RESP: 2259 if (len < (IEEE80211_MIN_ACTION_SIZE + 2260 sizeof(mgmt->u.action.u.addba_resp))) 2261 goto invalid; 2262 break; 2263 case WLAN_ACTION_DELBA: 2264 if (len < (IEEE80211_MIN_ACTION_SIZE + 2265 sizeof(mgmt->u.action.u.delba))) 2266 goto invalid; 2267 break; 2268 default: 2269 goto invalid; 2270 } 2271 2272 goto queue; 2273 case WLAN_CATEGORY_SPECTRUM_MGMT: 2274 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ) 2275 break; 2276 2277 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2278 break; 2279 2280 /* verify action_code is present */ 2281 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2282 break; 2283 2284 switch (mgmt->u.action.u.measurement.action_code) { 2285 case WLAN_ACTION_SPCT_MSR_REQ: 2286 if (len < (IEEE80211_MIN_ACTION_SIZE + 2287 sizeof(mgmt->u.action.u.measurement))) 2288 break; 2289 ieee80211_process_measurement_req(sdata, mgmt, len); 2290 goto handled; 2291 case WLAN_ACTION_SPCT_CHL_SWITCH: 2292 if (len < (IEEE80211_MIN_ACTION_SIZE + 2293 sizeof(mgmt->u.action.u.chan_switch))) 2294 break; 2295 2296 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2297 break; 2298 2299 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN)) 2300 break; 2301 2302 goto queue; 2303 } 2304 break; 2305 case WLAN_CATEGORY_SA_QUERY: 2306 if (len < (IEEE80211_MIN_ACTION_SIZE + 2307 sizeof(mgmt->u.action.u.sa_query))) 2308 break; 2309 2310 switch (mgmt->u.action.u.sa_query.action) { 2311 case WLAN_ACTION_SA_QUERY_REQUEST: 2312 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2313 break; 2314 ieee80211_process_sa_query_req(sdata, mgmt, len); 2315 goto handled; 2316 } 2317 break; 2318 case WLAN_CATEGORY_SELF_PROTECTED: 2319 switch (mgmt->u.action.u.self_prot.action_code) { 2320 case WLAN_SP_MESH_PEERING_OPEN: 2321 case WLAN_SP_MESH_PEERING_CLOSE: 2322 case WLAN_SP_MESH_PEERING_CONFIRM: 2323 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2324 goto invalid; 2325 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE) 2326 /* userspace handles this frame */ 2327 break; 2328 goto queue; 2329 case WLAN_SP_MGK_INFORM: 2330 case WLAN_SP_MGK_ACK: 2331 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2332 goto invalid; 2333 break; 2334 } 2335 break; 2336 case WLAN_CATEGORY_MESH_ACTION: 2337 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2338 break; 2339 if (mesh_action_is_path_sel(mgmt) && 2340 (!mesh_path_sel_is_hwmp(sdata))) 2341 break; 2342 goto queue; 2343 } 2344 2345 return RX_CONTINUE; 2346 2347 invalid: 2348 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2349 /* will return in the next handlers */ 2350 return RX_CONTINUE; 2351 2352 handled: 2353 if (rx->sta) 2354 rx->sta->rx_packets++; 2355 dev_kfree_skb(rx->skb); 2356 return RX_QUEUED; 2357 2358 queue: 2359 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2360 skb_queue_tail(&sdata->skb_queue, rx->skb); 2361 ieee80211_queue_work(&local->hw, &sdata->work); 2362 if (rx->sta) 2363 rx->sta->rx_packets++; 2364 return RX_QUEUED; 2365} 2366 2367static ieee80211_rx_result debug_noinline 2368ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2369{ 2370 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2371 2372 /* skip known-bad action frames and return them in the next handler */ 2373 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2374 return RX_CONTINUE; 2375 2376 /* 2377 * Getting here means the kernel doesn't know how to handle 2378 * it, but maybe userspace does ... include returned frames 2379 * so userspace can register for those to know whether ones 2380 * it transmitted were processed or returned. 2381 */ 2382 2383 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq, 2384 rx->skb->data, rx->skb->len, 2385 GFP_ATOMIC)) { 2386 if (rx->sta) 2387 rx->sta->rx_packets++; 2388 dev_kfree_skb(rx->skb); 2389 return RX_QUEUED; 2390 } 2391 2392 2393 return RX_CONTINUE; 2394} 2395 2396static ieee80211_rx_result debug_noinline 2397ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2398{ 2399 struct ieee80211_local *local = rx->local; 2400 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2401 struct sk_buff *nskb; 2402 struct ieee80211_sub_if_data *sdata = rx->sdata; 2403 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2404 2405 if (!ieee80211_is_action(mgmt->frame_control)) 2406 return RX_CONTINUE; 2407 2408 /* 2409 * For AP mode, hostapd is responsible for handling any action 2410 * frames that we didn't handle, including returning unknown 2411 * ones. For all other modes we will return them to the sender, 2412 * setting the 0x80 bit in the action category, as required by 2413 * 802.11-2007 7.3.1.11. 2414 * Newer versions of hostapd shall also use the management frame 2415 * registration mechanisms, but older ones still use cooked 2416 * monitor interfaces so push all frames there. 2417 */ 2418 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2419 (sdata->vif.type == NL80211_IFTYPE_AP || 2420 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2421 return RX_DROP_MONITOR; 2422 2423 /* do not return rejected action frames */ 2424 if (mgmt->u.action.category & 0x80) 2425 return RX_DROP_UNUSABLE; 2426 2427 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2428 GFP_ATOMIC); 2429 if (nskb) { 2430 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2431 2432 nmgmt->u.action.category |= 0x80; 2433 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2434 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2435 2436 memset(nskb->cb, 0, sizeof(nskb->cb)); 2437 2438 ieee80211_tx_skb(rx->sdata, nskb); 2439 } 2440 dev_kfree_skb(rx->skb); 2441 return RX_QUEUED; 2442} 2443 2444static ieee80211_rx_result debug_noinline 2445ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2446{ 2447 struct ieee80211_sub_if_data *sdata = rx->sdata; 2448 ieee80211_rx_result rxs; 2449 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2450 __le16 stype; 2451 2452 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb); 2453 if (rxs != RX_CONTINUE) 2454 return rxs; 2455 2456 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2457 2458 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2459 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2460 sdata->vif.type != NL80211_IFTYPE_STATION) 2461 return RX_DROP_MONITOR; 2462 2463 switch (stype) { 2464 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2465 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2466 /* process for all: mesh, mlme, ibss */ 2467 break; 2468 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2469 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2470 if (is_multicast_ether_addr(mgmt->da) && 2471 !is_broadcast_ether_addr(mgmt->da)) 2472 return RX_DROP_MONITOR; 2473 2474 /* process only for station */ 2475 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2476 return RX_DROP_MONITOR; 2477 break; 2478 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2479 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2480 /* process only for ibss */ 2481 if (sdata->vif.type != NL80211_IFTYPE_ADHOC) 2482 return RX_DROP_MONITOR; 2483 break; 2484 default: 2485 return RX_DROP_MONITOR; 2486 } 2487 2488 /* queue up frame and kick off work to process it */ 2489 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2490 skb_queue_tail(&sdata->skb_queue, rx->skb); 2491 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2492 if (rx->sta) 2493 rx->sta->rx_packets++; 2494 2495 return RX_QUEUED; 2496} 2497 2498/* TODO: use IEEE80211_RX_FRAGMENTED */ 2499static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2500 struct ieee80211_rate *rate) 2501{ 2502 struct ieee80211_sub_if_data *sdata; 2503 struct ieee80211_local *local = rx->local; 2504 struct ieee80211_rtap_hdr { 2505 struct ieee80211_radiotap_header hdr; 2506 u8 flags; 2507 u8 rate_or_pad; 2508 __le16 chan_freq; 2509 __le16 chan_flags; 2510 } __packed *rthdr; 2511 struct sk_buff *skb = rx->skb, *skb2; 2512 struct net_device *prev_dev = NULL; 2513 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2514 2515 /* 2516 * If cooked monitor has been processed already, then 2517 * don't do it again. If not, set the flag. 2518 */ 2519 if (rx->flags & IEEE80211_RX_CMNTR) 2520 goto out_free_skb; 2521 rx->flags |= IEEE80211_RX_CMNTR; 2522 2523 /* If there are no cooked monitor interfaces, just free the SKB */ 2524 if (!local->cooked_mntrs) 2525 goto out_free_skb; 2526 2527 if (skb_headroom(skb) < sizeof(*rthdr) && 2528 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) 2529 goto out_free_skb; 2530 2531 rthdr = (void *)skb_push(skb, sizeof(*rthdr)); 2532 memset(rthdr, 0, sizeof(*rthdr)); 2533 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr)); 2534 rthdr->hdr.it_present = 2535 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 2536 (1 << IEEE80211_RADIOTAP_CHANNEL)); 2537 2538 if (rate) { 2539 rthdr->rate_or_pad = rate->bitrate / 5; 2540 rthdr->hdr.it_present |= 2541 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 2542 } 2543 rthdr->chan_freq = cpu_to_le16(status->freq); 2544 2545 if (status->band == IEEE80211_BAND_5GHZ) 2546 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM | 2547 IEEE80211_CHAN_5GHZ); 2548 else 2549 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN | 2550 IEEE80211_CHAN_2GHZ); 2551 2552 skb_set_mac_header(skb, 0); 2553 skb->ip_summed = CHECKSUM_UNNECESSARY; 2554 skb->pkt_type = PACKET_OTHERHOST; 2555 skb->protocol = htons(ETH_P_802_2); 2556 2557 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2558 if (!ieee80211_sdata_running(sdata)) 2559 continue; 2560 2561 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 2562 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 2563 continue; 2564 2565 if (prev_dev) { 2566 skb2 = skb_clone(skb, GFP_ATOMIC); 2567 if (skb2) { 2568 skb2->dev = prev_dev; 2569 netif_receive_skb(skb2); 2570 } 2571 } 2572 2573 prev_dev = sdata->dev; 2574 sdata->dev->stats.rx_packets++; 2575 sdata->dev->stats.rx_bytes += skb->len; 2576 } 2577 2578 if (prev_dev) { 2579 skb->dev = prev_dev; 2580 netif_receive_skb(skb); 2581 return; 2582 } 2583 2584 out_free_skb: 2585 dev_kfree_skb(skb); 2586} 2587 2588static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 2589 ieee80211_rx_result res) 2590{ 2591 switch (res) { 2592 case RX_DROP_MONITOR: 2593 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2594 if (rx->sta) 2595 rx->sta->rx_dropped++; 2596 /* fall through */ 2597 case RX_CONTINUE: { 2598 struct ieee80211_rate *rate = NULL; 2599 struct ieee80211_supported_band *sband; 2600 struct ieee80211_rx_status *status; 2601 2602 status = IEEE80211_SKB_RXCB((rx->skb)); 2603 2604 sband = rx->local->hw.wiphy->bands[status->band]; 2605 if (!(status->flag & RX_FLAG_HT)) 2606 rate = &sband->bitrates[status->rate_idx]; 2607 2608 ieee80211_rx_cooked_monitor(rx, rate); 2609 break; 2610 } 2611 case RX_DROP_UNUSABLE: 2612 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2613 if (rx->sta) 2614 rx->sta->rx_dropped++; 2615 dev_kfree_skb(rx->skb); 2616 break; 2617 case RX_QUEUED: 2618 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 2619 break; 2620 } 2621} 2622 2623static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx) 2624{ 2625 ieee80211_rx_result res = RX_DROP_MONITOR; 2626 struct sk_buff *skb; 2627 2628#define CALL_RXH(rxh) \ 2629 do { \ 2630 res = rxh(rx); \ 2631 if (res != RX_CONTINUE) \ 2632 goto rxh_next; \ 2633 } while (0); 2634 2635 spin_lock(&rx->local->rx_skb_queue.lock); 2636 if (rx->local->running_rx_handler) 2637 goto unlock; 2638 2639 rx->local->running_rx_handler = true; 2640 2641 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) { 2642 spin_unlock(&rx->local->rx_skb_queue.lock); 2643 2644 /* 2645 * all the other fields are valid across frames 2646 * that belong to an aMPDU since they are on the 2647 * same TID from the same station 2648 */ 2649 rx->skb = skb; 2650 2651 CALL_RXH(ieee80211_rx_h_decrypt) 2652 CALL_RXH(ieee80211_rx_h_check_more_data) 2653 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 2654 CALL_RXH(ieee80211_rx_h_sta_process) 2655 CALL_RXH(ieee80211_rx_h_defragment) 2656 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 2657 /* must be after MMIC verify so header is counted in MPDU mic */ 2658#ifdef CONFIG_MAC80211_MESH 2659 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 2660 CALL_RXH(ieee80211_rx_h_mesh_fwding); 2661#endif 2662 CALL_RXH(ieee80211_rx_h_remove_qos_control) 2663 CALL_RXH(ieee80211_rx_h_amsdu) 2664 CALL_RXH(ieee80211_rx_h_data) 2665 CALL_RXH(ieee80211_rx_h_ctrl); 2666 CALL_RXH(ieee80211_rx_h_mgmt_check) 2667 CALL_RXH(ieee80211_rx_h_action) 2668 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 2669 CALL_RXH(ieee80211_rx_h_action_return) 2670 CALL_RXH(ieee80211_rx_h_mgmt) 2671 2672 rxh_next: 2673 ieee80211_rx_handlers_result(rx, res); 2674 spin_lock(&rx->local->rx_skb_queue.lock); 2675#undef CALL_RXH 2676 } 2677 2678 rx->local->running_rx_handler = false; 2679 2680 unlock: 2681 spin_unlock(&rx->local->rx_skb_queue.lock); 2682} 2683 2684static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 2685{ 2686 ieee80211_rx_result res = RX_DROP_MONITOR; 2687 2688#define CALL_RXH(rxh) \ 2689 do { \ 2690 res = rxh(rx); \ 2691 if (res != RX_CONTINUE) \ 2692 goto rxh_next; \ 2693 } while (0); 2694 2695 CALL_RXH(ieee80211_rx_h_passive_scan) 2696 CALL_RXH(ieee80211_rx_h_check) 2697 2698 ieee80211_rx_reorder_ampdu(rx); 2699 2700 ieee80211_rx_handlers(rx); 2701 return; 2702 2703 rxh_next: 2704 ieee80211_rx_handlers_result(rx, res); 2705 2706#undef CALL_RXH 2707} 2708 2709/* 2710 * This function makes calls into the RX path, therefore 2711 * it has to be invoked under RCU read lock. 2712 */ 2713void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 2714{ 2715 struct ieee80211_rx_data rx = { 2716 .sta = sta, 2717 .sdata = sta->sdata, 2718 .local = sta->local, 2719 /* This is OK -- must be QoS data frame */ 2720 .security_idx = tid, 2721 .seqno_idx = tid, 2722 .flags = 0, 2723 }; 2724 struct tid_ampdu_rx *tid_agg_rx; 2725 2726 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 2727 if (!tid_agg_rx) 2728 return; 2729 2730 spin_lock(&tid_agg_rx->reorder_lock); 2731 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx); 2732 spin_unlock(&tid_agg_rx->reorder_lock); 2733 2734 ieee80211_rx_handlers(&rx); 2735} 2736 2737/* main receive path */ 2738 2739static int prepare_for_handlers(struct ieee80211_rx_data *rx, 2740 struct ieee80211_hdr *hdr) 2741{ 2742 struct ieee80211_sub_if_data *sdata = rx->sdata; 2743 struct sk_buff *skb = rx->skb; 2744 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2745 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 2746 int multicast = is_multicast_ether_addr(hdr->addr1); 2747 2748 switch (sdata->vif.type) { 2749 case NL80211_IFTYPE_STATION: 2750 if (!bssid && !sdata->u.mgd.use_4addr) 2751 return 0; 2752 if (!multicast && 2753 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) { 2754 if (!(sdata->dev->flags & IFF_PROMISC) || 2755 sdata->u.mgd.use_4addr) 2756 return 0; 2757 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2758 } 2759 break; 2760 case NL80211_IFTYPE_ADHOC: 2761 if (!bssid) 2762 return 0; 2763 if (ieee80211_is_beacon(hdr->frame_control)) { 2764 return 1; 2765 } 2766 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 2767 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN)) 2768 return 0; 2769 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2770 } else if (!multicast && 2771 compare_ether_addr(sdata->vif.addr, 2772 hdr->addr1) != 0) { 2773 if (!(sdata->dev->flags & IFF_PROMISC)) 2774 return 0; 2775 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2776 } else if (!rx->sta) { 2777 int rate_idx; 2778 if (status->flag & RX_FLAG_HT) 2779 rate_idx = 0; /* TODO: HT rates */ 2780 else 2781 rate_idx = status->rate_idx; 2782 rx->sta = ieee80211_ibss_add_sta(sdata, bssid, 2783 hdr->addr2, BIT(rate_idx), GFP_ATOMIC); 2784 } 2785 break; 2786 case NL80211_IFTYPE_MESH_POINT: 2787 if (!multicast && 2788 compare_ether_addr(sdata->vif.addr, 2789 hdr->addr1) != 0) { 2790 if (!(sdata->dev->flags & IFF_PROMISC)) 2791 return 0; 2792 2793 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2794 } 2795 break; 2796 case NL80211_IFTYPE_AP_VLAN: 2797 case NL80211_IFTYPE_AP: 2798 if (!bssid) { 2799 if (compare_ether_addr(sdata->vif.addr, 2800 hdr->addr1)) 2801 return 0; 2802 } else if (!ieee80211_bssid_match(bssid, 2803 sdata->vif.addr)) { 2804 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) && 2805 !ieee80211_is_beacon(hdr->frame_control) && 2806 !(ieee80211_is_action(hdr->frame_control) && 2807 sdata->vif.p2p)) 2808 return 0; 2809 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2810 } 2811 break; 2812 case NL80211_IFTYPE_WDS: 2813 if (bssid || !ieee80211_is_data(hdr->frame_control)) 2814 return 0; 2815 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2)) 2816 return 0; 2817 break; 2818 default: 2819 /* should never get here */ 2820 WARN_ON(1); 2821 break; 2822 } 2823 2824 return 1; 2825} 2826 2827/* 2828 * This function returns whether or not the SKB 2829 * was destined for RX processing or not, which, 2830 * if consume is true, is equivalent to whether 2831 * or not the skb was consumed. 2832 */ 2833static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 2834 struct sk_buff *skb, bool consume) 2835{ 2836 struct ieee80211_local *local = rx->local; 2837 struct ieee80211_sub_if_data *sdata = rx->sdata; 2838 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2839 struct ieee80211_hdr *hdr = (void *)skb->data; 2840 int prepares; 2841 2842 rx->skb = skb; 2843 status->rx_flags |= IEEE80211_RX_RA_MATCH; 2844 prepares = prepare_for_handlers(rx, hdr); 2845 2846 if (!prepares) 2847 return false; 2848 2849 if (!consume) { 2850 skb = skb_copy(skb, GFP_ATOMIC); 2851 if (!skb) { 2852 if (net_ratelimit()) 2853 wiphy_debug(local->hw.wiphy, 2854 "failed to copy skb for %s\n", 2855 sdata->name); 2856 return true; 2857 } 2858 2859 rx->skb = skb; 2860 } 2861 2862 ieee80211_invoke_rx_handlers(rx); 2863 return true; 2864} 2865 2866/* 2867 * This is the actual Rx frames handler. as it blongs to Rx path it must 2868 * be called with rcu_read_lock protection. 2869 */ 2870static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 2871 struct sk_buff *skb) 2872{ 2873 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2874 struct ieee80211_local *local = hw_to_local(hw); 2875 struct ieee80211_sub_if_data *sdata; 2876 struct ieee80211_hdr *hdr; 2877 __le16 fc; 2878 struct ieee80211_rx_data rx; 2879 struct ieee80211_sub_if_data *prev; 2880 struct sta_info *sta, *tmp, *prev_sta; 2881 int err = 0; 2882 2883 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 2884 memset(&rx, 0, sizeof(rx)); 2885 rx.skb = skb; 2886 rx.local = local; 2887 2888 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 2889 local->dot11ReceivedFragmentCount++; 2890 2891 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) || 2892 test_bit(SCAN_SW_SCANNING, &local->scanning))) 2893 status->rx_flags |= IEEE80211_RX_IN_SCAN; 2894 2895 if (ieee80211_is_mgmt(fc)) 2896 err = skb_linearize(skb); 2897 else 2898 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 2899 2900 if (err) { 2901 dev_kfree_skb(skb); 2902 return; 2903 } 2904 2905 hdr = (struct ieee80211_hdr *)skb->data; 2906 ieee80211_parse_qos(&rx); 2907 ieee80211_verify_alignment(&rx); 2908 2909 if (ieee80211_is_data(fc)) { 2910 prev_sta = NULL; 2911 2912 for_each_sta_info_rx(local, hdr->addr2, sta, tmp) { 2913 if (!prev_sta) { 2914 prev_sta = sta; 2915 continue; 2916 } 2917 2918 rx.sta = prev_sta; 2919 rx.sdata = prev_sta->sdata; 2920 ieee80211_prepare_and_rx_handle(&rx, skb, false); 2921 2922 prev_sta = sta; 2923 } 2924 2925 if (prev_sta) { 2926 rx.sta = prev_sta; 2927 rx.sdata = prev_sta->sdata; 2928 2929 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 2930 return; 2931 goto out; 2932 } 2933 } 2934 2935 prev = NULL; 2936 2937 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2938 if (!ieee80211_sdata_running(sdata)) 2939 continue; 2940 2941 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 2942 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 2943 continue; 2944 2945 /* 2946 * frame is destined for this interface, but if it's 2947 * not also for the previous one we handle that after 2948 * the loop to avoid copying the SKB once too much 2949 */ 2950 2951 if (!prev) { 2952 prev = sdata; 2953 continue; 2954 } 2955 2956 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2); 2957 rx.sdata = prev; 2958 ieee80211_prepare_and_rx_handle(&rx, skb, false); 2959 2960 prev = sdata; 2961 } 2962 2963 if (prev) { 2964 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2); 2965 rx.sdata = prev; 2966 2967 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 2968 return; 2969 } 2970 2971 out: 2972 dev_kfree_skb(skb); 2973} 2974 2975/* 2976 * This is the receive path handler. It is called by a low level driver when an 2977 * 802.11 MPDU is received from the hardware. 2978 */ 2979void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 2980{ 2981 struct ieee80211_local *local = hw_to_local(hw); 2982 struct ieee80211_rate *rate = NULL; 2983 struct ieee80211_supported_band *sband; 2984 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2985 2986 WARN_ON_ONCE(softirq_count() == 0); 2987 2988 if (WARN_ON(status->band < 0 || 2989 status->band >= IEEE80211_NUM_BANDS)) 2990 goto drop; 2991 2992 sband = local->hw.wiphy->bands[status->band]; 2993 if (WARN_ON(!sband)) 2994 goto drop; 2995 2996 /* 2997 * If we're suspending, it is possible although not too likely 2998 * that we'd be receiving frames after having already partially 2999 * quiesced the stack. We can't process such frames then since 3000 * that might, for example, cause stations to be added or other 3001 * driver callbacks be invoked. 3002 */ 3003 if (unlikely(local->quiescing || local->suspended)) 3004 goto drop; 3005 3006 /* 3007 * The same happens when we're not even started, 3008 * but that's worth a warning. 3009 */ 3010 if (WARN_ON(!local->started)) 3011 goto drop; 3012 3013 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3014 /* 3015 * Validate the rate, unless a PLCP error means that 3016 * we probably can't have a valid rate here anyway. 3017 */ 3018 3019 if (status->flag & RX_FLAG_HT) { 3020 /* 3021 * rate_idx is MCS index, which can be [0-76] 3022 * as documented on: 3023 * 3024 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3025 * 3026 * Anything else would be some sort of driver or 3027 * hardware error. The driver should catch hardware 3028 * errors. 3029 */ 3030 if (WARN((status->rate_idx < 0 || 3031 status->rate_idx > 76), 3032 "Rate marked as an HT rate but passed " 3033 "status->rate_idx is not " 3034 "an MCS index [0-76]: %d (0x%02x)\n", 3035 status->rate_idx, 3036 status->rate_idx)) 3037 goto drop; 3038 } else { 3039 if (WARN_ON(status->rate_idx < 0 || 3040 status->rate_idx >= sband->n_bitrates)) 3041 goto drop; 3042 rate = &sband->bitrates[status->rate_idx]; 3043 } 3044 } 3045 3046 status->rx_flags = 0; 3047 3048 /* 3049 * key references and virtual interfaces are protected using RCU 3050 * and this requires that we are in a read-side RCU section during 3051 * receive processing 3052 */ 3053 rcu_read_lock(); 3054 3055 /* 3056 * Frames with failed FCS/PLCP checksum are not returned, 3057 * all other frames are returned without radiotap header 3058 * if it was previously present. 3059 * Also, frames with less than 16 bytes are dropped. 3060 */ 3061 skb = ieee80211_rx_monitor(local, skb, rate); 3062 if (!skb) { 3063 rcu_read_unlock(); 3064 return; 3065 } 3066 3067 ieee80211_tpt_led_trig_rx(local, 3068 ((struct ieee80211_hdr *)skb->data)->frame_control, 3069 skb->len); 3070 __ieee80211_rx_handle_packet(hw, skb); 3071 3072 rcu_read_unlock(); 3073 3074 return; 3075 drop: 3076 kfree_skb(skb); 3077} 3078EXPORT_SYMBOL(ieee80211_rx); 3079 3080/* This is a version of the rx handler that can be called from hard irq 3081 * context. Post the skb on the queue and schedule the tasklet */ 3082void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3083{ 3084 struct ieee80211_local *local = hw_to_local(hw); 3085 3086 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3087 3088 skb->pkt_type = IEEE80211_RX_MSG; 3089 skb_queue_tail(&local->skb_queue, skb); 3090 tasklet_schedule(&local->tasklet); 3091} 3092EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3093